WO2010055652A1 - 固体状ポリメチルアルミノキサン組成物およびその製造方法 - Google Patents

固体状ポリメチルアルミノキサン組成物およびその製造方法 Download PDF

Info

Publication number
WO2010055652A1
WO2010055652A1 PCT/JP2009/006019 JP2009006019W WO2010055652A1 WO 2010055652 A1 WO2010055652 A1 WO 2010055652A1 JP 2009006019 W JP2009006019 W JP 2009006019W WO 2010055652 A1 WO2010055652 A1 WO 2010055652A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymethylaluminoxane composition
solid
composition
solution
solid polymethylaluminoxane
Prior art date
Application number
PCT/JP2009/006019
Other languages
English (en)
French (fr)
Inventor
加地栄一
Original Assignee
東ソー・ファインケム株式会社
吉岡悦男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42169797&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010055652(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東ソー・ファインケム株式会社, 吉岡悦男 filed Critical 東ソー・ファインケム株式会社
Priority to US13/128,632 priority Critical patent/US8404880B2/en
Priority to KR1020167017079A priority patent/KR101660685B1/ko
Priority to CN200980144954.7A priority patent/CN102239187B/zh
Priority to EP09825906.2A priority patent/EP2360191B2/en
Priority to JP2010537691A priority patent/JP5611833B2/ja
Publication of WO2010055652A1 publication Critical patent/WO2010055652A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/066Aluminium compounds with C-aluminium linkage compounds with Al linked to an element other than Al, C, H or halogen (this includes Al-cyanide linkage)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/10Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Definitions

  • the present invention relates to a solid polymethylaluminoxane composition used for the polymerization of olefins and a method for producing the same, a polymerization catalyst using the solid polymethylaluminoxane composition as a catalyst component, and a method for producing polyolefins.
  • a solution-like polyaluminoxane composition is a condensation product generally prepared by partial hydrolysis reaction of an organoaluminum compound, and a co-catalyst that efficiently activates a transition metal compound as a main catalyst in the production of an olefin polymer. It is known to be useful as an ingredient. It is widely known that a polymethylaluminoxane composition using trimethylaluminum as a raw material organoaluminum compound exhibits particularly excellent promoter performance, and this composition is usually dissolved in an aromatic hydrocarbon solvent such as toluene. Handled in solution. (See Patent Documents 1 to 6, etc.)
  • the polymethylaluminoxane composition exhibits excellent promoter performance, but usually the main catalyst such as a metallocene compound and the polymethylaluminoxane composition are handled in a state of being dissolved in a solvent, so that the morphology control of the polymer to be produced cannot be performed. For this reason, not only does the handling of the polymer become difficult, but fouling due to the adhesion of the polymer to the polymerization reactor or the like is very likely to occur.
  • a supported solid polymethylaluminoxane composition in which a polymethylaluminoxane composition is supported on a solid inorganic carrier such as silica, alumina, or magnesium chloride is applied to suspension polymerization or gas phase polymerization.
  • a solid inorganic carrier such as silica, alumina, or magnesium chloride
  • Addition of the third component for obtaining a solid polymethylaluminoxane composition may cause problems such as toxicity depending on the use of the polymer, and should be avoided. From such an idea, there is a proposal relating to a method for obtaining a solid polymethylaluminoxane composition only by adding an insoluble or hardly soluble solvent to the solution-like polymethylaluminoxane composition.
  • Patent Documents 12 and 16 n-hexane or n-decane is added to a toluene solution of a polymethylaluminoxane composition at room temperature to precipitate a solid polymethylaluminoxane composition, and then the solvent is removed by a vacuum pump. Thus, a method for increasing the amount of precipitation has been proposed.
  • the morphology of the solid polymethylaluminoxane composition greatly affects the properties of the prepared olefin polymer.
  • the solid polymethylaluminoxane composition is fine particles and the particle diameter is more uniform because the prepared olefin polymer becomes more uniform particles.
  • the particle size of the solid polymethylaluminoxane composition described in Examples of Patent Document 12 was 210 to 350 ⁇ m, and the particle size of the solid polymethylaluminoxane composition described in Patent Document 16 was 28 to 47 ⁇ m.
  • the solid polymethylaluminoxane composition generally has a problem that the polymerization activity is lower than that of the solution-like polymethylaluminoxane composition. Furthermore, regarding the yield of the solid polymethylaluminoxane composition, the total amount of polymethylaluminoxane contained in the solution polymethylaluminoxane composition is not recovered as the solid polymethylaluminoxane composition, and the yield is low. This leads to high costs. Further, as in the methods described in Patent Documents 12 and 16, when a solid polymethylaluminoxane composition is obtained, a method of removing a large amount of solvent from a solution-like polymethylaluminoxane composition by a vacuum pump is at a laboratory level.
  • the problem to be solved by the present invention is that relatively fine particles, for example, a volume-based median diameter is in the range of 5 to 50 ⁇ m without using a solid carrier such as silica and the third component, and the particle diameter
  • Another object of the present invention is to provide a solid polymethylaluminoxane composition that is more uniform. Furthermore, it is relatively fine particles and not only has a more uniform particle diameter, but also has a high polymerization activity when preparing an olefin polymer, and desirably has an activity comparable to that of a solution-like polymethylaluminoxane composition.
  • the object is to provide a solid polymethylaluminoxane composition.
  • the yield of the polymethylaluminoxane composition is high when preparing the solid polymethylaluminoxane composition from the solution-like polymethylaluminoxane composition, and the solvent is removed from the solution-like polymethylaluminoxane composition by a vacuum pump. It is also an object of the present invention to provide a method that does not need to be used.
  • the present invention also provides a method for producing a high-quality olefin polymer industrially efficiently and inexpensively using the solid polymethylaluminoxane composition and the transition metal compound. one of.
  • the present invention is as follows. [1] (i) the aluminum content is in the range of 36% to 41% by weight, and (ii) A solid polymethylaluminoxane composition, wherein the molar fraction of methyl groups derived from trimethylaluminum moieties relative to the total number of moles of methyl groups is 12 mol% or less. [2] The composition according to [1], which is in the form of particles and has a volume-based median diameter in the range of 5 to 50 ⁇ m. [3] The composition according to [1] or [2], wherein the solubility in n-hexane at 25 ° C. is 0 to 2 mol%, and the solubility in toluene at 25 ° C.
  • n represents an integer of 10 to 50.
  • (a) A polymethylaluminoxane containing a unit represented by the following general formula (II) and an aromatic hydrocarbon solution containing trimethylaluminum (hereinafter referred to as a solution-like polymethylaluminoxane composition) are heated to form polymethylaluminoxane.
  • the method for producing a solid polymethylaluminoxane composition comprising a step of precipitating a solid polymethylaluminoxane composition containing aluminoxane and trimethylaluminum.
  • -[(Me) AlO] n- (II) (In the formula, n represents an integer of 1 to 50.)
  • n represents an integer of 1 to 50.
  • step (a) heating temperature in the range of 80 ° C to 200 ° C, and (ii) From a heating time of 5 minutes to less than 24 hours,
  • the alkylaluminum compound having an aluminum-oxygen-carbon bond is prepared by a reaction between trimethylaluminum and an oxygen-containing organic compound.
  • R 1- (COOH) n (III) (Wherein R 1 represents a C1-C20 linear or branched alkyl group, alkenyl group, or aryl hydrocarbon group, and n represents an integer of 1-5.)
  • a polymerization catalyst for olefins containing, as catalyst components, the solid polymethylaluminoxane composition according to any one of [1] to [7] and a transition metal compound represented by the following general formula (IV).
  • M represents a transition metal element
  • R 5 , R 6 , R 7 , and R 8 together represent an organic group having a cycloalkadienyl skeleton, an alkyl group, an alkoxy group, an aryloxy group, an alkylsilyl group.
  • a solid polymethylaluminoxane composition having relatively fine particles and a uniform particle size can be obtained very easily and at a high yield.
  • the solid polymethylaluminoxane composition of the present invention is used as a co-catalyst for polymerization, extremely high polymerization activity is exhibited.
  • the solid polymethylaluminoxane composition of the present invention has very low solvent solubility, it can remarkably suppress fouling of the reactor when used for polymerization, and a polymer having a uniform particle size can be obtained. Obtainable.
  • 1 is a 1 H-NMR chart of a solution-like polymethylaluminoxane composition obtained according to the present invention.
  • 2 is a particle size distribution evaluation result of the dried solid polymethylaluminoxane composition obtained in Example 1 using Mastersizer 2000 Hydro S.
  • FIG. The particle size distribution evaluation result by Mastersizer 2000 Hydro S of the solid polymethylaluminoxane composition in the solution obtained in Example 1-2 at the time of heating for 4 hours.
  • FIG. 10 is a particle size distribution evaluation result of the dried solid polymethylaluminoxane composition obtained in Example 11 using Mastersizer 2000 Hydro S.
  • FIG. 4 is an electron micrograph (300 times) of the solid polymethylaluminoxane composition obtained in Comparative Example 1.
  • FIG. 4 The particle size distribution evaluation result by the master sizer 2000 Hydro S of the dry solid polymethylaluminoxane obtained in Comparative Example 6.
  • Solid polymethylaluminoxane composition The solid polymethylaluminoxane composition of the present invention is (i) the aluminum content is in the range of 36% to 41% by weight, and (ii) The mole fraction of methyl groups derived from trimethylaluminum moieties relative to the total number of moles of methyl groups is 12 mol% or less.
  • the solid polymethylaluminoxane composition of the present invention contains polymethylaluminoxane and trimethylaluminum.
  • the coexistence state of polymethylaluminoxane and trimethylaluminum is not necessarily clear, but polymethylaluminoxane and trimethylaluminum are contained in a composition ratio and existing state satisfying the above (i) and (ii).
  • the polymethylaluminoxane can contain, for example, a unit represented by the following general formula (I). -[(Me) AlO] n- (I) (In the formula, n represents an integer of 10 to 50.)
  • n is a single polymethylaluminoxane (n is a specific integer) within the above range or a plurality of polymethylaluminoxanes (a plurality of integers where n is different). Means containing methylaluminoxane.
  • n is an integer of 10 to 50 is that n of the polymethylaluminoxane in the solution-like polymethylaluminoxane composition used as the raw material for the solid polymethylaluminoxane composition is 10 to 50.
  • n of polymethylaluminoxane in the solid polymethylaluminoxane composition substantially corresponds to n of the solution-like polymethylaluminoxane composition used as a raw material.
  • the polymethylaluminoxane in the present invention may be a chain structure, a cyclic structure or a branched structure as long as it contains the above unit.
  • the theoretical amount of aluminum content is about 46 to 47% by mass, and the theoretical amount of aluminum content in trimethylaluminum is about 38% by mass. That is, when the aluminum content in the solid polymethylaluminoxane composition exceeds 46% by mass, the solid polymethylaluminoxane composition consists only of polymethylaluminoxane having a cyclic structure, and trimethylaluminum is hardly present. It is estimated and further contains no impurities such as a solvent.
  • the theoretical amount of aluminum content varies depending on the n number of general formula (I), but is smaller than that of a cyclic structure.
  • the solid polymethylaluminoxane composition of the present invention contains a polymethylaluminoxane having a linear structure and a branched structure in addition to the polymethylaluminoxane having a cyclic structure, and further contains a residual solvent in addition to trimethylaluminum. Since impurities are included, the solid polymethylaluminoxane composition of the present invention has an aluminum content in the range of 36% by mass to 41% by mass as shown by (i). The smaller the aluminum content, the greater the proportion of trimethylaluminum, and the greater the aluminum content, the lower the proportion of trimethylaluminum.
  • the solid polymethylaluminoxane composition When the aluminum content is in the range of 36% by mass to 41% by mass, the solid polymethylaluminoxane composition has the performance of good uniformity of particle size and robustness that does not easily break due to cracks and the like. Can have. Conversely, when the aluminum content of the present invention is less than 36% by mass, it indicates that the drying is insufficient and impurities such as a solvent are included excessively. When the aluminum content exceeds 46% by mass, it is presumed to be composed of polymethylaluminoxane mainly composed of a cyclic structure, and it is shown that it contains almost no trimethylaluminum and solvent impurities. The composition itself is different from the polymethylaluminoxane composition. From the above viewpoint, the aluminum content is preferably in the range of 38% by mass to 41% by mass.
  • the aluminum content of the solution-like polymethylaluminoxane composition and the solid aluminoxane composition prepared in the present invention is, for example, after adding an excessive amount of disodium ethylenediaminetetraacetate to a solution hydrolyzed with a 0.5 N aqueous sulfuric acid solution. It can be determined by back titrating with zinc sulfate using dithizone as an indicator. When the measurement concentration is dilute, the measurement can also be performed using atomic absorption spectrometry.
  • the total number of moles of methyl groups in the mole fraction of methyl groups derived from trimethylaluminum sites relative to the total number of moles of methyl groups shown in (ii) is the methyl group derived from polymethylaluminoxane and the methyl group derived from trimethylaluminum.
  • the total number of moles of the group, the number of moles of the methyl group derived from the trimethylaluminum site is the number of moles of the methyl group derived from the trimethylaluminum site, and the mole fraction of the methyl group derived from the trimethylaluminum site is 12 mol% It is as follows.
  • a low molar fraction of methyl groups derived from trimethylaluminum moieties means that there are few methyl groups derived from trimethylaluminum moieties contained in polymethylaluminoxane and there are many states of aluminum in the polymethylaluminoxane chain.
  • the molar fraction of methyl groups derived from the trimethylaluminum moiety is preferably 11 mol% or less.
  • the lower limit of the molar fraction of the methyl group derived from the trimethylaluminum moiety may be 6 mol%, for example, because it depends on the solution-like polymethylaluminoxane that is a raw material capable of controlling the shape of the solid polymethylaluminoxane. Is 8 mol%.
  • the polymethylaluminoxane composition used in the present invention contains trimethylaluminum inherent as an unreacted raw material.
  • the amount of trimethylaluminum present in the polymethylaluminoxane composition depends on the molar fraction of methyl groups derived from polymethylaluminoxane and trimethylaluminum (abbreviated as Me (PMAO) and Me (TMAL), respectively).
  • Me polymethylaluminoxane
  • TMAL trimethylaluminum
  • the molar fraction of each component in the polymethylaluminoxane composition can be determined from the area ratio attributed to each component by 1 H-NMR measurement of the polymethylaluminoxane composition.
  • the specific method for determining the molar fraction of Me (PMAO) and Me (TMAL) in the polymethylaluminoxane composition is exemplified in the examples.
  • the solid polymethylaluminoxane composition of the present invention is in the form of particles, and the uniformity represented by the following formula is preferably 0.45 or less.
  • Uniformity ⁇ Xi
  • the uniformity of the solid polymethylaluminoxane composition of the present invention which is in the form of particles is 0.45 or less, so that an olefin polymer having a uniform particle size is obtained using the solid polymethylaluminoxane composition and the transition metal compound. be able to.
  • the uniformity is preferably 0.4 or less, more preferably 0.35 or less, and still more preferably 0.3 or less. As the uniformity value is lower, the resulting olefin polymer tends to be particles having a uniform particle size.
  • the uniformity is used as an index of the catalyst particle size distribution. In this index, the larger the value, the wider the distribution.
  • the lower limit of the uniformity can be, for example, 0.15 considering that the solid polymethylaluminoxane composition is controlled in particle shape by self-association.
  • the solid polymethylaluminoxane composition of the present invention can be prepared in a particulate form with a volume-based median diameter in the range of 5 to 50 ⁇ m.
  • the volume-based median diameter of the solid polymethylaluminoxane composition of the present invention which is in the form of particles is in the above range, so that a good polymer bulk density can be obtained using the solid polymethylaluminoxane composition and the transition metal compound. It is possible to obtain an olefin polymer that is retained and in which fine polymer production is suppressed.
  • the volume-based median diameter of the solid polymethylaluminoxane composition is generally considered to be about 5 to 200 ⁇ m from the viewpoint of improving powder properties such as bulk density of the resulting olefin polymer.
  • the volume-based median diameter of the solid polymethylaluminoxane composition of the present invention is preferably 5 to 50 ⁇ m, more preferably 5 to 40 ⁇ m, even more preferably 5 to It is in the range of 30 ⁇ m
  • the volume-based median diameter and particle size distribution of the solid polymethylaluminoxane composition of the present invention can be determined by a laser diffraction / scattering method in a dry nitrogen atmosphere using Mastersizer 2000 Hydro S from Malvern Instrument Ltd. Specific methods are described in the examples.
  • the solid polymethylaluminoxane composition of the present invention is preferably particulate and has a specific surface area in the range of 10 to 25 m 2 / mmol-Al.
  • specific surface area of the solid polymethylaluminoxane composition of the present invention in the form of particles is in the above range, good activity in polymerization of olefinic compounds using the solid polymethylaluminoxane composition and a transition metal compound Can be shown.
  • Good activity here means that it is equivalent to the activity obtained when a polymethylaluminoxane composition in the form of a solution is preferably used.
  • the good polymerization activity of the solid polymethylaluminoxane composition of the present invention is due not only to the specific surface area but also to the composition and structure other than the specific surface area of the solid polymethylaluminoxane composition.
  • the specific surface area is considered to affect the activation by contact between the solid polymethylaluminoxane composition and the transition metal compound including the metallocene compound as the main catalyst when used for the polymerization of olefins. That is, generally, the activation efficiency of the main catalyst is poor when the specific surface area is small, and the activation efficiency is high when the specific surface area is large.
  • the specific surface area is too high, it is considered that the inside of the solid polymethylaluminoxane composition becomes too porous and the strength of the solid decreases.
  • it is preferably in the range of 10 to 25 m 2 / mmol-Al, more preferably in the range of 13 to 22 m 2 / mmol-Al.
  • the specific surface area of the solid polymethylaluminoxane composition of the present invention can be determined using the BET adsorption isotherm and utilizing the gas adsorption phenomenon on the solid surface. Specific methods are described in the examples.
  • the solid polymethylaluminoxane composition of the present invention preferably has a solubility in n-hexane at 25 ° C. of 0 to 2 mol% and a solubility in toluene at 25 ° C. of 0 to 2 mol%.
  • the solid polymethylaluminoxane composition of the present invention is characterized by a very low dissolution rate with respect to n-hexane and toluene maintained at a temperature of 25 ° C.
  • a range of 0 to 2 mol%, preferably 0 to 1 mol%, particularly preferably 0 to 0.2 mol% is satisfied with respect to n-hexane.
  • 0 to 2 mol%, preferably 0 to 1 mol%, particularly preferably 0 to 0.5 mol% of toluene is satisfied.
  • the measurement of the dissolution rate in a solvent can be carried out according to the method described in Japanese Patent Publication No. 7-42301. Specifically, it is described in Examples.
  • the solid polymethylaluminoxane composition of the present invention does not contain SiO 2 .
  • the solid polymethylaluminoxane composition of the present invention does not actively contain SiO 2 at least during the production process. Solid polymethylaluminoxane composition of the present invention, by not containing SiO 2, it is possible to avoid the drawbacks solid polymethylaluminoxane composition containing SiO 2 has.
  • the method for producing a solid polymethylaluminoxane composition of the present invention comprises: (a) an aromatic hydrocarbon solution containing polymethylaluminoxane containing a unit represented by the following general formula (II) and trimethylaluminum (solution-like polymethylaluminum).
  • This is a method for producing the solid polymethylaluminoxane composition of the present invention, comprising a step of heating the aluminoxane composition) to precipitate a solid polymethylaluminoxane composition containing polymethylaluminoxane and trimethylaluminum.
  • -[(Me) AlO] n- (II) In the formula, n represents an integer of 10 to 50.)
  • n is a single number within the above range (n is a specific integer), or n is a plurality of types within the above range (a plurality of different n It is meant to include a plurality of polymethylaluminoxanes that are integers).
  • n is an integer of 10 to 50 is that the degree of polymerization of aluminoxane based on the molecular weight determined from the freezing point depression in benzene is in the range of 10 to 50.
  • the solution-like polymethylaluminoxane composition used as a raw material in the production method of the present invention can be prepared, for example, by the method described in Patent Document 17.
  • the method described in Patent Document 17 is a method for preparing a polymethylaluminoxane composition without hydrolyzing trimethylaluminum. Specifically, it is a method for obtaining a solution-like polymethylaluminoxane composition by thermally decomposing an alkylaluminum compound having an aluminum-oxygen-carbon bond.
  • aromatic hydrocarbon used in the solution-like polymethylaluminoxane composition examples include benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, xylene, chlorobenzene, dichlorobenzene and the like. However, it is not limited to these examples, and any aromatic hydrocarbon can be used as a solvent for the solution-like polymethylaluminoxane composition.
  • the alkylaluminum compound having an aluminum-oxygen-carbon bond is preferably prepared by a reaction between trimethylaluminum and an oxygen-containing organic compound.
  • the oxygen-containing organic compound is preferably an aliphatic or aromatic carboxylic acid represented by the general formula (III).
  • R 1- (COOH) n (III) (Wherein R 1 represents a C1-C20 linear or branched alkyl group, alkenyl group, or aryl hydrocarbon group, and n represents an integer of 1-5.)
  • the oxygen-containing compound used in the reaction of trimethylaluminum of an aluminum alkyl group having an aluminum-oxygen-carbon bond that gives a solution-like polymethylaluminoxane composition by thermal decomposition reaction with an oxygen-containing compound is, for example, a carboxyl group having a COOH group. It is an acid compound and a carboxylic anhydride. In preparing the solution-like polymethylaluminoxane composition, these may be used alone or in combination with a plurality of compounds.
  • oxygen-containing compounds include formic acid, acetic acid, propionic acid, orthobutyric acid, orthovaleric acid, orthocaproic acid, orthoenanthic acid, orthocaprylic acid, orthopelargonic acid, orthocapric acid, ortholauric acid, and orthomyristic acid.
  • acetic acid acetic anhydride
  • propionic acid propionic anhydride
  • benzoic acid benzoic anhydride
  • phthalic acid phthalic anhydride
  • toluic acid and toluic acid anhydride.
  • the molar ratio of the aluminum atom contained in trimethylaluminum used for the synthesis of the solution-like polymethylaluminoxane composition and the oxygen atom of the oxygen-containing organic compound is arbitrarily selected for the purpose of controlling the molecular weight of polymethylaluminoxane and the residual amount of trimethylaluminum. Can be set.
  • the ratio of the molar amount of aluminum atoms contained in trimethylaluminum to oxygen atoms in the oxygen-containing organic compound can be arbitrarily set in the range of 0.5 to 3.0: 1.
  • the molar ratio is preferably in the range of 1.0 to 1.7: 1.
  • the range is more preferably 1.15 to 1.4: 1, and still more preferably 1.2 to 1.4: 1.
  • the thermal decomposition temperature of the aluminum compound having an aluminum-oxygen-carbon bond which is a precursor of the solution-like polymethylaluminoxane composition, can be carried out at any temperature between 20 and 90 ° C. From the viewpoint of easy handling and safety of the reaction and an appropriate reaction time, it is preferably 30 ° C. to 80 ° C., more preferably 60 ° C. to 80 ° C.
  • the thermal decomposition time of the aluminum compound having an aluminum-oxygen-carbon bond varies depending on the thermal decomposition temperature and the composition of the raw material (for example, Al / O molar ratio), but is, for example, in the range of 5 to 100 hours. If the temperature is low, it takes a long time. If the temperature is high, the thermal decomposition can be completed in a short time.
  • the thermal decomposition temperature exceeds 100 ° C., the gel product is remarkably generated, and the recovery yield of the polymethylaluminoxane homogeneous solution is lowered.
  • the thermal decomposition temperature is lower than 50 ° C., there may be a case where a significant reduction in productivity is caused due to an increase in the polymethylaluminoxane formation reaction time.
  • a solid methylaluminoxane composition is obtained.
  • a solid methylaluminoxane composition having a uniform particle size cannot be obtained by directly heating the raw material of the solution-like polymethylaluminoxane composition to 100 ° C.
  • the concentration of polymethylaluminoxane in the inert hydrocarbon solvent may be in the range of 6 to 40% by weight, preferably 6 to 30% by weight, and more preferably 10 to 25% by weight.
  • a solution-like polymethylaluminoxane composition can be obtained with a quantitative reaction yield.
  • the emphasis is placed on the fact that the amount of trimethylaluminum in the solution-like polymethylaluminoxane composition can be controlled.
  • trimethylaluminum does not act as an activator for transition metal compounds such as metallocene compounds, it has been an important problem to control the amount of trimethylaluminum remaining in the solution-like polymethylaluminoxane composition.
  • the solution-form polymethylaluminoxane composition used as a raw material has a solid polymethylaluminoxane yield of 15 mol% or less of a methyl group derived from a trimethylaluminum moiety with respect to the total number of moles of methyl groups. From the viewpoint of improving the ratio.
  • the mole fraction of methyl groups derived from trimethylaluminum moieties relative to the total number of moles of methyl groups is preferably 14 mol% or less.
  • the lower limit of the mole fraction of methyl groups derived from the aluminoxane moiety relative to the total number of moles of methyl groups is about 6 mol%.
  • the solution-like polymethylaluminoxane composition prepared by the hydrolysis method has a molar fraction of methyl groups derived from aluminoxane sites with respect to the total number of moles of methyl groups of 40 to 50 mol%. It is difficult to lower the mole fraction of methyl groups derived from trimethylaluminum sites relative to the total number of moles of methyl groups in the methylaluminoxane composition below 15 mol%.
  • the molar ratio of aluminum atoms in trimethylaluminum to oxygen atoms in the oxygen-containing organic compound is 1.15, so that the aluminoxane with respect to the total number of moles of methyl groups is
  • the lower limit of the molar fraction of methyl groups derived from the site can be 8 mol%, and the performance of the resulting solid polymethylaluminoxane composition is good.
  • the molar ratio of the aluminum atom of trimethylaluminum to the oxygen atom of the oxygen-containing organic compound is 1.10
  • the molar fraction of the methyl group derived from the trimethylaluminum moiety with respect to the total number of moles of the methyl group can be 5.2 mol%.
  • the performance of the obtained solid polymethylaluminoxane composition is poor.
  • the content is preferably 8 mol% to 14 mol%.
  • the aromatic hydrocarbon used in the production method of the present invention is not particularly limited, and examples thereof include benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, xylene, chlorobenzene, dichlorobenzene and the like.
  • step (a) (i) heating temperature in the range of 80 ° C to 200 ° C, and (ii) From a heating time of 5 minutes to less than 24 hours, It is preferable to select a heating temperature and a heating time suitable for precipitating the solid polymethylaluminoxane composition.
  • polymethylaluminoxane containing the unit represented by the general formula (II) and trimethylaluminum (solution-like polymethylaluminoxane composition) is heated at a predetermined temperature
  • polymethylaluminoxane and trimethylaluminum solution-like polymethylaluminoxane composition
  • the predetermined temperature is in the range of 80 ° C. to 200 ° C.
  • the time required for precipitation varies depending on the temperature, but is, for example, in the range of 5 minutes or more and less than 24 hours.
  • the heating temperature may be 80 to 200 ° C, preferably 90 to 150 ° C, more preferably 100 to 130 ° C. is there.
  • the time is preferably 1 to 20 hours, more preferably 5 to 12 hours in this temperature range.
  • the temperature is low, the time required for solid polymethylaluminoxane composition particle precipitation becomes long, and when the temperature is high, the time required for solid polymethylaluminoxane composition particle precipitation tends to be short.
  • the production method of the present invention may further include (b) a step of washing the solid polymethylaluminoxane composition deposited by heating using a non-aromatic hydrocarbon solvent.
  • Non-aromatic hydrocarbon solvents used for washing are, for example, n-pentane, n-hexane, cyclohexane, methylcyclohexane, ethylcyclohexane, n-heptane, n-octane, n-decane, n-undecane, isopar E, etc. Can be mentioned.
  • the non-aromatic solvent used in the present invention is not used for the precipitation of the solid polymethylaluminoxane composition as recognized in the prior art, but the solid polymethylaluminoxane composition deposited by heating is washed and dried. Since it aims at facilitating, a solvent having a low boiling point, which is easy to dry solid polymethylaluminoxane, specifically n-pentane, n-hexane and cyclohexane are preferred.
  • the addition of the non-aromatic hydrocarbon solvent can be an amount of 4 times or more by volume ratio with respect to the solution-like polymethylaluminoxane composition heated in the step (a). .
  • this amount there is an advantage that the residual amount of the aromatic solvent is reduced and the resulting solid polymethylaluminoxane composition can be easily dried.
  • the solid polymethylaluminoxane composition of the present invention may be a dispersion in a state of being dispersed in a solvent, or may be a powder obtained by removing the solvent and drying if necessary. For example, a method of removing the solvent under reduced pressure or a method of flowing dried heated nitrogen can be used to dry the powder.
  • the solid polymethylaluminoxane composition of the present invention does not scatter the trimethylaluminum because it is intended only to remove the solvent adhering to the solid. Therefore, there is no problem in using a vacuum pump.
  • the present invention includes an olefin polymerization catalyst.
  • the polymerization catalyst for olefins of the present invention contains the solid polymethylaluminoxane composition of the present invention and a transition metal compound represented by the following general formula (IV) as catalyst components.
  • MR 5 R 6 R 7 R 8 (IV) (In the formula, M represents a transition metal element, and R 5 , R 6 , R 7 and R 8 together represent an organic group having a cycloalkadienyl skeleton, an alkyl group, an alkoxy group, an aryloxy group, an alkylsilyl group. A group, an alkylamide group, an alkylimide group, an alkylamino group, an alkylimino group, or a halogen atom.)
  • the solid polymethylaluminoxane composition of the present invention can be used as a polymerization catalyst in combination with a catalyst known as an olefin polymerization catalyst.
  • a catalyst known as an olefin polymerization catalyst examples include transition metal compounds.
  • Such a transition metal compound can be one represented by the above general formula (IV).
  • M in the general formula (IV) is titanium, zirconium, hafnium, chromium, vanadium, manganese, iron, cobalt, nickel, or palladium, preferably titanium, zirconium, chromium, iron, nickel. .
  • a preferable transition metal compound is a metallocene compound in which one or two ligands having a cycloalkadienyl skeleton are coordinated.
  • ligands having a cycloalkadienyl skeleton include cyclopentadienyl, methylcyclopentadienyl, ethylcyclopentadienyl, butylcyclopentadienyl, dimethylcyclopentadienyl, and pentamethyl.
  • alkyl-substituted cyclopentadienyl group such as cyclopentadienyl group, indenyl group, and fluorenyl group can be exemplified, and the cycloalkadienyl group is bridged by a divalent substituted alkylene group, a substituted silylene group or the like. Also good.
  • the ligand other than the ligand having a cycloalkadienyl skeleton is a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, an aryloxy group, an alkylsilyl group, an amino group, an imino group, a halogen atom or a hydrogen atom. is there.
  • the hydrocarbon group having 1 to 20 carbon atoms include an alkyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • examples of the alkyl group include a methyl group, an ethyl group, and a propyl group.
  • transition metal compound containing a ligand having a cycloalkadienyl skeleton when M in the general formula (IV) is zirconium are exemplified.
  • M in the general formula (IV) is zirconium, includes at least two ligands having a cycloalkadienyl skeleton, and the ligand having at least two cycloalkadienyl skeletons.
  • the transition metal compound bonded via an alkylene group such as ethylene and propylene, a substituted alkylene group such as isopropylidene and diphenylmethylene, a substituted silylene group such as silylene group and dimethylsilylene, and the like are exemplified.
  • transition metal compounds may be used alone in homogeneous polymerization, or two or more kinds may be used for the purpose of adjusting the molecular weight distribution. In the case of preparing a solid catalyst in advance, only one kind of these transition metal compounds may be used, or two or more kinds may be used for the purpose of adjusting the molecular weight distribution.
  • This invention includes the manufacturing method of polyolefin including polymerizing olefin using the catalyst of the said invention.
  • the homogeneous polymerization using the solid polymethylaluminoxane composition of the present invention and the polymerization using the supported catalyst prepared using the solid polymethylaluminoxane composition of the present invention are solution polymerization using a solvent as a polymerization mode.
  • suitable performance is exhibited.
  • preferable performance is exhibited, and hydrogen as a molecular weight regulator can be used as necessary.
  • the monomer used for the polymerization may be any compound that can be used for copolymerization of olefinic monomers alone or in combination.
  • Specific examples include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-decene, 1-hexadecene, 1-octadecene, 1-eicocene, bisfluoroethylene, trifluoroethylene.
  • Halogen-substituted olefins such as tetrafluoroethylene and hexafluoropropene
  • cyclic olefins such as cyclopentene, cyclohexene and norbornene.
  • the solid methylaluminoxane composition is usually dried at 40 ° C. under a vacuum pump full vacuum through a seal pot containing liquid paraffin, and no bubbles are observed in the seal pot. The time was taken as the end point of drying.
  • the aluminum content of the solution-like polymethylaluminoxane composition and the solid aluminoxane composition is basically determined by adding an excess amount of disodium ethylenediaminetetraacetate to a solution hydrolyzed with a 0.5 N aqueous sulfuric acid solution. It was determined by back titrating with zinc sulfate using dithizone as an indicator. When the measurement concentration was dilute, the measurement was performed using atomic absorption spectrometry.
  • volume-based median diameter and particle size distribution of the solid aluminoxane composition were measured using a master sizer 2000 Hydro S of Malvern Instrument Ltd. under a dry nitrogen atmosphere. It was determined by the laser diffraction / scattering method.
  • the dispersion medium was mainly dehydrated and degassed n-hexane, and partially dehydrated and degassed toluene depending on the purpose.
  • the uniformity represented by the following formula was used as an index of the catalyst particle size distribution.
  • Uniformity ⁇ Xi
  • Xi is the histogram value of particle i
  • d (0.5) is the volume-based median diameter
  • Di is the volume-based diameter of particle i.
  • 1 H-NMR measurement of a polymethylaluminoxane composition is performed using d 8 -THF as a heavy solvent.
  • 1 H-NMR measurement was performed at a measurement temperature of 24 ° C. using a Gemini 2000 NMR measurement apparatus manufactured by 300 MHz Varian Technologies Japan Limited.
  • An example of a 1 H-NMR chart is shown in FIG. (i) The total integral value of the Me group peak of polymethylaluminoxane containing trimethylaluminoxane appearing at about -0.3 ppm to -1.2 ppm is obtained, and this is defined as I (polymethylaluminoxane).
  • Each peak can be cut out by a method using a commercially available curve fitting program or a method using a baseline collection.
  • An analytical sample of the solution polymethylaluminoxane composition was prepared by adding about 0.5 ml of d 8 -THF to about 0.05 ml of the solution polymethylaluminoxane composition.
  • An analysis sample of the solid polymethylaluminoxane composition was prepared by adding 0.5 ml of d 8 -THF to 10 mg of the solution polymethylaluminoxane composition.
  • the reaction solution was heated at 70 ° C. for 4 hours, and then heated at 60 ° C. for 6 hours to obtain a toluene solution of a polymethylaluminoxane composition.
  • the obtained solution was a transparent liquid without gel. From the results of aluminum analysis performed after the reaction solution was recovered, the reaction yield shown on the aluminum atom basis was quantitative. The aluminum concentration of the obtained reaction solution was 9.30 wt%.
  • the Me (TMAL) content of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 26.0 mol%.
  • the solubility measurement described in the test method section cannot be performed, but the concentration in toluene obtained by calculation from the specific gravity of the solution and the aluminum concentration is about 3.1 mol / L.
  • the polymethylaluminoxane that had been subjected to the concentration-drying treatment was dissolved in benzene, and the molecular weight was determined by the freezing point depression method. As a result, it was 2430.
  • Indenyl) zirconium dichloride (rac-Et (Ind) 2 ZrCl 2 ) was added, and ethylene gas was blown in while raising the temperature to 40 ° C. Ten minutes later, the supply of ethylene gas was stopped, and methanol was added to deactivate the catalyst. The produced polyethylene was filtered and dried, and the polymerization activity was determined to be 25 ⁇ 10 6 g-PE / mol-Zr ⁇ atm ⁇ hr.
  • the amount of benzoic acid charged into the powder was changed to a molar ratio of TMAL to oxygen atoms of benzoic acid of 1.30 and heating after aging at 50 ° C to 70 ° C.
  • the solution-like polymethylaluminoxane composition was synthesized in the same manner as in Preliminary Experiment 1 except that the time was changed to 15 hours.
  • the obtained solution was a transparent liquid without gel. From the results of aluminum analysis performed after the reaction solution was recovered, the reaction yield shown on the aluminum atom basis was quantitative.
  • the aluminum concentration of the obtained reaction liquid was 9.40 wt%.
  • the Me (TMAL) content of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 18.3 mol%. Since the solution-like polymethylaluminoxane is in a solution state, the solubility measurement described in the test method section cannot be performed, but the concentration in toluene obtained by calculation from the specific gravity of the solution and the aluminum concentration is about 3.1 mol / L. there were.
  • the amount of benzoic acid charged into the powder was set to 70% after heating and aging at a molar ratio of TMAL to benzoic acid of oxygen atoms of 1.25 and 50 ° C.
  • a solution-like polymethylaluminoxane composition was synthesized in the same manner as in Preliminary Experiment 1 except that the temperature was changed to 21 hours at ° C.
  • the obtained solution was a transparent liquid without gel. From the results of aluminum analysis performed after the reaction solution was recovered, the reaction yield shown on the aluminum atom basis was quantitative.
  • the aluminum concentration of the obtained reaction solution was 9.15 wt%.
  • the Me (TMAL) content of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 17.5 mol%. Since this solution-like polymethylaluminoxane is in a solution state, the solubility measurement described in the test method section cannot be performed, but the concentration in toluene obtained by calculation from the specific gravity of the solution and the aluminum concentration is about 3.1 mol / L. there were.
  • the amount of benzoic acid charged into the powder was set to 70% after heating and aging at 50 ° C with a molar ratio of oxygen atoms of TMAL to benzoic acid of 1.20.
  • a solution-like polymethylaluminoxane composition was synthesized in the same manner as in Preliminary Experiment 1 except that the temperature was changed to 32 hours at 0 ° C.
  • the obtained solution was a transparent liquid without gel. From the results of aluminum analysis performed after the reaction solution was recovered, the reaction yield shown on the aluminum atom basis was quantitative.
  • the aluminum concentration of the obtained reaction liquid was 9.04 wt%.
  • the Me (TMAL) content of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 14.0 mol%. Since this solution-like polymethylaluminoxane is in a solution state, the solubility measurement described in the test method section cannot be performed, but the concentration in toluene obtained by calculation from the specific gravity of the solution and the aluminum concentration is about 3.0 mol / L. there were.
  • the amount of benzoic acid charged into the powder was set to 70% after heating and aging at 50 ° C, with the molar ratio of oxygen atoms of TMAL and benzoic acid being 1.10.
  • a solution-like polymethylaluminoxane composition was synthesized in the same manner as in Preliminary Experiment 1 except that the temperature was changed to 60 ° C. for 60 hours. The obtained solution was a transparent viscous liquid with no gel. From the results of aluminum analysis performed after the reaction solution was recovered, the reaction yield shown on the aluminum atom basis was quantitative.
  • the aluminum concentration of the obtained reaction liquid was 8.81 wt%.
  • the amount of Me (TMAL) of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 5.2 mol%. Since this solution-like polymethylaluminoxane is in a solution state, the solubility measurement described in the test method section cannot be performed, but the concentration in toluene calculated from the specific gravity of the solution and the aluminum concentration is about 2.9 mol / L. there were.
  • the molar ratio of oxygen atoms of TMAL and acetophenone was 1.39.
  • the toluene solution (Al concentration: 9.30 wt%) of the polymethylaluminoxane composition prepared in Preliminary Experiment 1 was used as an activator for the thermal decomposition reaction, and an amount of 49.0 mmol (14.23 g in solution) based on aluminum atoms was used.
  • the solution was charged all at once and then heated at 65 ° C. for 9 hours to obtain a toluene solution of a polymethylaluminoxane composition using acetophenone as an oxygen source.
  • the resulting solution was a light yellow transparent liquid with no gel.
  • the reaction yield shown on the basis of aluminum atoms was quantitative.
  • the aluminum concentration of the obtained reaction liquid was 9.15 wt%.
  • the Me (TMAL) content of the obtained solution-like polymethylaluminoxane composition was determined by 1 H-NMR and found to be 23.2 mol%. Since the solution-like polymethylaluminoxane composition is in a solution state, the solubility measurement described in the test method section cannot be performed, but the concentration in toluene obtained by calculation from the specific gravity of the solution and the aluminum concentration is about 3.1 mol / L.
  • Me Me
  • the polymethylaluminoxane composition that had been subjected to the concentration and drying treatment was dissolved in benzene, and the molecular weight was determined by the freezing point depression method. As a result, it was 1220. Therefore, the polymerization degree n of this aluminoxane was determined to be 21.
  • the obtained solid was dried under reduced pressure at room temperature to obtain a dry solid polymethylaluminoxane composition.
  • the precipitation rate of the dry solid polymethylaluminoxane composition was 96% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • the amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 9.0 mol%.
  • Pentadienyl) zirconium dichloride (Cp 2 ZrCl 2 ) was added, and ethylene gas was blown in while raising the temperature to 40 ° C. Ten minutes later, the supply of ethylene gas was stopped, and methanol was added to deactivate the catalyst. The produced polyethylene was filtered and dried, and the polymerization activity was determined to be 64 ⁇ 10 6 g-PE / mol-Zr ⁇ atm ⁇ hr. The obtained polymer was in the form of free flowing fine particles and did not adhere to the reactor after polymerization. The molecular weight determined by high temperature GPC was 160,000, and Mw / Mn was 2.7.
  • Indenyl) zirconium dichloride (rac-Et (Ind) 2 ZrCl 2 ) was added, and ethylene gas was blown in while raising the temperature to 40 ° C. Ten minutes later, the supply of ethylene gas was stopped, and methanol was added to deactivate the catalyst. The produced polyethylene was filtered and dried, and the polymerization activity was determined to be 51 ⁇ 10 6 g-PE / mol-Zr ⁇ atm ⁇ hr. The obtained polymer was in the form of free flowing fine particles and did not adhere to the reactor after polymerization.
  • Example 1-2 The toluene solution of the polymethylaluminoxane composition prepared in the preliminary experiment 4 was heat-treated in the same manner as in Example 1 to precipitate a solid product. Thereafter, the particle size distribution of the reaction solution was directly measured without washing with n-hexane. Toluene was used as a solvent for Mastersizer 2000 Hydro S. As a result, the volume-based median diameter d (0.5) 14.5 ⁇ m (see Fig. 3) at the time of heating 4 hours, and the volume-based median diameter d (0.5) 14.6 ⁇ m (see Fig. 4) at the time of heating 8 hours The particle shape had a diameter.
  • Example 1 the dry solid polymethylaluminoxane composition was evaluated for particle size distribution, and a volume-based median diameter d (0.5) 9.4 ⁇ m and a uniformity of 0.296 were obtained, but in this example, The particle size distribution evaluation test of the toluene dispersion of the solid polymethylaluminoxane composition was performed without drying.
  • the median diameter d (0.5) in the particle size distribution exceeds 10 ⁇ m, because the solid polymethylaluminoxane composition in the toluene dispersion of the solid polymethylaluminoxane composition that has not been dried is swollen. it is conceivable that.
  • Example 2 (1) Synthesis of solid polymethylaluminoxane composition
  • Solid polymethylaluminoxane composition as in Example 1 except that the solution-like polymethylaluminoxane composition (Al / O 1.25) prepared in Preliminary Experiment 3 was used.
  • a product was prepared.
  • the precipitation rate of the dry solid was 72% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • the amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR and found to be 10.5 mol%.
  • Example 3 (1) Synthesis of solid polymethylaluminoxane composition
  • Me Me
  • Example 4 (1) Synthesis of solid polymethylaluminoxane composition
  • Solid polymethylaluminoxane composition in the same manner as in Example 3 except that the toluene solution of the polymethylaluminoxane composition prepared in Preliminary Experiment 2 was heated at 100 ° C for 16 hours. A product was prepared. The precipitation rate of the dry solid was 75% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. The amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR and found to be 11.0 mol%.
  • TMAL Me
  • Example 5 (1) Synthesis of solid polymethylaluminoxane composition
  • Solid polymethylaluminoxane composition as in Example 1 except that the solution-like polymethylaluminoxane composition (Al / O 1.40) prepared in Preliminary Experiment 1 was used.
  • a product was prepared.
  • the precipitation rate of the dry solid was 54.6% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • the amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 11.5 mol%.
  • TMAL Me
  • TMAL Me
  • Example 8 (When trimethylaluminum content is reduced by concentration) A solid polymethylaluminoxane composition was prepared in the same manner as in Example 1 except that the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 7 was used. The precipitation rate of the dry solid was 70.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. The amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR and found to be 10.5 mol%.
  • TMAL Me
  • Example 9 Influence of n-hexane addition time A solid polymethylaluminoxane composition was synthesized in the same manner as in Example 1 except that n-hexane was added over 60 minutes. The precipitation rate of the dry solid polymethylaluminoxane composition was 97.4% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. When the amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 8.8 mol%.
  • Example 10 (Influence of heating time) Using the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 4, the influence of the heating time was examined under the conditions shown in Example 1. The result of the measured solid precipitation rate is shown in FIG.
  • Example 11 (Dilution Solution Treatment) The solution-like polymethylaluminoxane composition prepared in preliminary experiment 4 was diluted with toluene so that the aluminum concentration became 4.55 wt%. There was no change in the diluted solution, and it remained a clear solution. A composition of solid polymethylaluminoxane was synthesized in the same manner as in Example 1 except that this diluted solution was used. The precipitation rate of the dry solid was 95.3% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. When the amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 9.2 mol%.
  • Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 9.2 mol%.
  • Comparative Example 4 (1) Synthesis of solid polymethylaluminoxane composition As in Example 1, except that the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 4 was used and n-hexane was added without performing heat treatment. A solid polymethylaluminoxane composition was synthesized. The precipitation rate of the dry solid was 47.0% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. When the amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 11.5 mol%.
  • Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 11.5 mol%.
  • Comparative Example 5 (1) Synthesis of solid polymethylaluminoxane composition Solid state as in Example 1 except that n-hexane was added without carrying out the heat treatment of the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 7. A polymethylaluminoxane composition was synthesized. The precipitation rate of the solid was 24.5% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. The amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR and found to be 12.7 mol%.
  • TMAL Me
  • Comparative Example 6 (1) was introduced toluene 625ml four-necked flask 1L with resultant magnetic stirring device SiO 2 supported polymethylaluminoxane composition.
  • SiO 2 SiO 2 P-10, manufactured by Fuji Silysia
  • the liquid temperature was cooled to 5 ° C while stirring. did.
  • Comparative Example 7 (1) Synthesis of dry SiO 2 -supported polymethylaluminoxane composition 625 ml of toluene was introduced into a 1 L four-necked flask equipped with a magnetic stirrer. Next, 49.9 g of SiO 2 (SiO 2 P-10 made by Fuji Silysia) having a surface hydroxyl group concentration of 1.63 wt% by baking at 400 ° C. for 2 hours was introduced, and the liquid temperature was cooled to 5 ° C. while stirring. .
  • Comparative Example 8 (1) Synthesis of solid polymethylaluminoxane composition (corresponding to Patent Document 16) Using the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 7, a solid polymethylaluminoxane composition was synthesized in the same manner as in Example 1 described in JP-B-7-42301. Specific operations will be described below. First, the aluminum concentration of the solution-like polymethylaluminoxane composition prepared in Preliminary Experiment 7 was adjusted to 4.10 wt% by adding toluene, and this weight was 140.0 g in a 500 ml eggplant type flask. While stirring this solution, 1.5 times by volume of dry n-decane was dropped from the dropping funnel over 30 minutes.
  • the diluted solution-like polymethylaluminoxane composition started to become cloudy when about 30 ml of n-decane was added, and became cloudy at the end of dropping. While stirring this, the temperature was raised to 35 ° C. over 3 hours while reducing the pressure to 4 Torr. This solution was filtered through a glass filter, and the liquid phase portion was removed to obtain a particulate polymethylaluminoxane composition. Since the obtained solid contained n-decane and was in a wet state, the solid was dried by drying at 60 ° C. for 2 hours and further at 100 ° C. for 2 hours under full vacuum.
  • the precipitation rate of the solid was 63.5% based on the aluminum atom of the solution-like polymethylaluminoxane composition used.
  • amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR, it was 13.2 mol%.
  • Comparative Example 9 (1) Synthesis of solid polymethylaluminoxane composition Solid polymethyl as in Example 1 except that n-hexane was added to the solution polymethylaluminoxane composition prepared in Preliminary Experiment 5 without heat treatment. The aluminoxane composition was synthesized. The precipitation rate of the solid was 63.8% based on the aluminum atom of the solution-like polymethylaluminoxane composition used. The amount of Me (TMAL) of the obtained solid polymethylaluminoxane composition was determined by 1 H-NMR and found to be 6.0 mol%.
  • the present invention is useful in the technical field of polyolefin production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本発明は、シリカなどを利用することなく、比較的微粒子で、粒子径もより均一であり、オレフィン系重合体を調製する際の重合活性も高い固体状ポリメチルアルミノキサン組成物とその製造方法を提供する。重合触媒とオレフィン系重合体の製造方法を提供する。アルミニウム含有量が36質量%から41質量%の範囲にあり、かつトリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%以下である固体状ポリメチルアルミノキサン組成物。ポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液を加熱して固体状ポリメチルアルミノキサン組成物を析出させる工程を含む、上記固体状ポリメチルアルミノキサン組成物の製造方法。上記固体状ポリメチルアルミノキサン組成物と遷移金属化合物を触媒成分として含有するオレフィン類の重合触媒とそれを用いたオレフィン系重合体の製造方法。

Description

固体状ポリメチルアルミノキサン組成物およびその製造方法 関連出願の相互参照
 本出願は、2008年11月11日出願の日本特願2008-289211号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
 本発明は、オレフィン類の重合に用いられる固体状ポリメチルアルミノキサン組成物およびその製造方法、固体状ポリメチルアルミノキサン組成物を触媒成分として用いる重合触媒およびポリオレフィン類の製造方法に関するものである。
 溶液状ポリアルミノキサン組成物は、一般に有機アルミニウム化合物の部分加水分解反応により調製される縮合生成物であり、オレフィン重合体の製造において、主触媒となる遷移金属化合物を効率的に活性化する助触媒成分として有用であることが知られている。原料の有機アルミニウム化合物にトリメチルアルミニウムを用いたポリメチルアルミノキサン組成物が、特に優れた助触媒性能を示すことは広く知られており、この組成物は通常トルエンなどの芳香族炭化水素溶媒に溶解した溶液状態で取り扱われる。(特許文献1~6などを参照)
 ポリメチルアルミノキサン組成物は優れた助触媒性能を示すが、通常、メタロセン化合物などの主触媒およびポリメチルアルミノキサン組成物共に溶媒に溶解した状態で取り扱われるため、生成する重合体のモルフォロジー制御ができない。このため、重合体の取扱いが困難となるだけでなく、重合反応器等への重合体付着によるファウリングが非常に起こり易いという問題を抱えている。
 これらの問題を解決するために、ポリメチルアルミノキサン組成物をシリカ、アルミナ、塩化マグネシウムなどの固体状無機担体に担持した担持型固体状ポリメチルアルミノキサン組成物を、懸濁重合や気相重合に適用する方法が提案されている。固体状無機担体の中でも、表面水酸基量を制御したシリカが担体として最も広く用いられており、工業レベルへの展開に至っている事例も少なくない。(特許文献7~11、17などを参照)
 前記のシリカ担体は重合体中へ残留し易く、重合体の性能悪化をもたらすことが知られている。また、上述のような担体を利用した固体状ポリメチルアルミノキサン組成物は、均一系重合における重合活性と比較した場合、大きな活性低下を示すことも知られている。したがって、上記課題を解決するため、助触媒のポリメチルアルミノキサン組成物が固体状態であるメリットを保持しつつ、均一系重合に匹敵する高活性固体状ポリメチルアルミノキサン組成物の開発が望まれていた。
 上述のような固体状担体を使用せずに、固体状ポリメチルアルミノキサン組成物を得ようとする試みがなされている。一般的に固体状ポリメチルアルミノキサン組成物を調製しようとする場合、何らかの添加物と溶液状ポリメチルアルミノキサン組成物を反応させる方法が採用されている(特許文献12~16などを参照)。しかし、この方法では、アルミニウム基準の固体状物の回収率は高くない。
日本特開昭58-19309号公報 日本特開昭60-35005号公報 日本特開昭62-234009号公報 日本特開昭63-234009号公報 日本特開昭64-66214号公報 日本特開平1-207355号公報 日本特開昭60-260602号公報 日本特開昭63-89506号公報 日本特開昭63-178108号公報 日本特開平1-315407号公報 日本特開平2-22308号公報 日本特開2000-95810号公報 日本特開平8-319309号公報 日本特開平7-300486号公報 日本特開平7-70144号公報 日本特公平7-42301号公報 特表2000-505785号公報(WO97/23288)特許文献1~17の全記載は、ここに特に開示として援用される。
 固体状ポリメチルアルミノキサン組成物を得るための第三成分の添加は、重合体の用途によっては毒性などの問題を引き起こす場合があり得るため、避けたほうが良い。このような考えから、溶液状ポリメチルアルミノキサン組成物に、不溶性あるいは難溶性の溶媒を加えることのみにより固体状ポリメチルアルミノキサン組成物を得る方法に関する提案がある。特許文献12及び16にはポリメチルアルミノキサン組成物のトルエン溶液へn-ヘキサンまたはn-デカンを室温下に添加して固体状ポリメチルアルミノキサン組成物を析出させ、その後、真空ポンプによる溶媒除去を行って析出量を増加させる方法の提案がなされている。
 特許文献12及び16に記載の方法には、析出した固体状ポリメチルアルミノキサン組成物の収率および平均粒径の記述はあるがその他モルフォロジーに関する記述はない。
 固体状ポリメチルアルミノキサン組成物を遷移金属化合物と組み合わせてオレフィン系重合体を調製する場合、固体状ポリメチルアルミノキサン組成物のモルフォロジーが、調製されるオレフィン系重合体の性状に大きく影響する。一般に、固体状ポリメチルアルミノキサン組成物が微粒子であり、粒子径がより均一である方が、調製されるオレフィン系重合体はより均一な粒子となり好ましい。特許文献12の実施例に記載の固体状ポリメチルアルミノキサン組成物の粒子径は210~350μmであり、特許文献16に記載の固体状ポリメチルアルミノキサン組成物の粒子径は28~47μmであった。すなわち、これら特許文献には、30μm以下の粒径の小さな固体状ポリメチルアルミノキサン組成物をどのようにすれば調製可能なのか記載がなく不明で、実施例記載の固体状ポリメチルアルミノキサン組成物の粒径の均一性がどの程度であるのかも不明である。
 また、固体状ポリメチルアルミノキサン組成物は、一般に、溶液状ポリメチルアルミノキサン組成物に比べて、重合活性が低いという課題もある。さらに、固体状ポリメチルアルミノキサン組成物の収率についても、溶液状ポリメチルアルミノキサン組成物に含まれるポリメチルアルミノキサンの全量が固体状ポリメチルアルミノキサン組成物として回収されるわけではなく、収率が低いと、コスト高につながる。また、特許文献12及び16に記載の方法のように、固体状ポリメチルアルミノキサン組成物を得る際に、溶液状ポリメチルアルミノキサン組成物から多量の溶媒を真空ポンプによって除去する方法は、ラボレベルでは特に問題なく実施可能であるが、商業スケールでの実施を考慮すると、固体状態とならないトリメチルアルミニウムやポリメチルアルミノキサンの真空ポンプ側への飛散が起こる可能性があるため、危険であるばかりでなく、生産効率などの観点からも問題が多く、実用的な処方ではない。
 そこで本発明が解決しようとする課題は、シリカなどの固体状担体および第三成分を利用することなく、比較的微粒子、例えば、体積基準のメジアン径が5~50μmの範囲であって、粒子径もより均一である固体状ポリメチルアルミノキサン組成物を提供することにある。さらに、比較的微粒子であって、粒子径もより均一であるだけでなく、オレフィン系重合体を調製する際の重合活性も高く、望ましくは、溶液状ポリメチルアルミノキサン組成物に匹敵する活性を有する固体状ポリメチルアルミノキサン組成物を提供することにある。
 さらに、その際、溶液状ポリメチルアルミノキサン組成物から固体状ポリメチルアルミノキサン組成物を調製する際のポリメチルアルミノキサン組成物の収率が高く、溶液状ポリメチルアルミノキサン組成物から真空ポンプによる溶媒の除去も必要としない方法を提供することも本発明の課題のひとつである。
 加えて、本発明は、上記固体状ポリメチルアルミノキサン組成物と遷移金属化合物を用いて品質の良好なオレフィン系重合体を、工業的に効率よく、しかも安価に製造する方法を提供することも課題の一つである。
 本発明は以下のとおりである。
[1]
(i) アルミニウム含有量が36質量%から41質量%の範囲にあり、かつ
(ii) メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%以下である、固体状ポリメチルアルミノキサン組成物。
[2]
粒子状であり、体積基準のメジアン径が5~50μmの範囲である[1]に記載の組成物。
[3]
25℃におけるn-ヘキサンに対する溶解度が0~2モル%であり、かつ25℃におけるトルエンに対する溶解度が0~2モル%である[1]または[2]に記載の組成物。
[4]
下記式で示される均一性が0.45以下である[1]~[3]のいずれかに記載の組成物。
       均一性 = ΣXi|d(0.5) - Di|/d(0.5)ΣXi
(ここで、Xiは粒子iのヒストグラム値、d(0.5)は体積基準のメジアン径、Diは粒子iの体積基準径を示す。)
[5]
比表面積が、10~25m2/mmol-Alの範囲である[1]~[4]のいずれかに記載の組成物。
[6]
以下の一般式(I)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する、[1]~[5]のいずれかに記載の組成物。
       -[(Me)AlO]n-                    (I)
                 (式中、nは10~50の整数を示す。) 
[7]
SiO2を含有しない、[1]~[6]のいずれかに記載の組成物。
[8]
(a)下記一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(以下、溶液状ポリメチルアルミノキサン組成物と称す)を加熱して、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状ポリメチルアルミノキサン組成物を析出させる工程を含む、[1]~[7]のいずれかに記載の固体状ポリメチルアルミノキサン組成物の製造方法。
       -[(Me)AlO]n-                    (II)
                 (式中、nは1~50の整数を示す。) 
[9]
前記加熱前の溶液状ポリメチルアルミノキサン組成物は、メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率が15モル%以下である、[8]に記載の製造方法。
[10]
工程(a)において、
(i) 80℃~200℃の範囲の加熱温度、及び
(ii) 5分間以上24時間未満の加熱時間から、
固体状ポリメチルアルミノキサン組成物を析出させるに適した加熱温度及び加熱時間を選択する、[8]または[9]に記載の製造方法。
[11]
工程(a)で原料として用いる溶液状ポリメチルアルミノキサン組成物が、アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解することにより得られるものである、[8]~[10]のいずれかに記載の製造方法。
[12]
前記アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物は、トリメチルアルミニウムと含酸素有機化合物との反応により調製されるものである、
[11]に記載の製造方法。
[13]
前記含酸素有機化合物が、一般式(III)で示される脂肪族または芳香族カルボン酸である、[12]に記載の製造方法。
                    R1-(COOH)n   (III)
(式中、R1は、C1~C20の直鎖あるいは分岐したアルキル基、アルケニル基、アリール基の炭化水素基を表し、nは1~5の整数を表す。)
[14]
 [1]~[7]のいずれかに記載の固体状ポリメチルアルミノキサン組成物と下記一般式(IV)で表される遷移金属化合物を触媒成分として含有するオレフィン類の重合触媒。
                   MR5R6R7R8      (IV)
(式中、Mは遷移金属元素を示し、R5,R6,R7,R8は一緒になって、シクロアルカジエニル骨格を有する有機基、アルキル基、アルコシキ基、アリーロキシ基、アルキルシリル基、アルキルアミド基、アルキルイミド基、アルキルアミノ基、アルキルイミノ基、ハロゲン原子を示す。)
[15]
[14]に記載の触媒を用いてオレフィン類を重合することを含む、ポリオレフィン類の製造方法。
 本発明によれば、比較的微粒子であり、かつ粒度の揃った固体状ポリメチルアルミノキサン組成物を、極めて簡便に高い収率で得ることができる。本発明の固体状ポリメチルアルミノキサン組成物を助触媒として重合に用いると極めて高い重合活性を示す。さらに、本発明の固体状ポリメチルアルミノキサン組成物は溶媒溶解性が非常に低いことから、重合に用いた場合に反応器のファウリングを著しく抑制することができ、粒径の揃った重合体を得ることができる。
本発明に従い得られた溶液状ポリメチルアルミノキサン組成物の1H-NMRチャートである。 実施例1において得られた、乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 実施例1-2において得られた、加熱4時間の時点で溶液中の固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 実施例1-2において得られた、加熱8時間の時点で溶液中の固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 実施例3において得られた、乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 実施例10で求めた、固体状メチルアルミノキサン組成物の析出率に及ぼす加熱時間の影響を示す結果。 実施例11において得られた、乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 比較例1で得られた固体状ポリメチルアルミノキサン組成物の電子顕微鏡写真(300倍)。 比較例6で得られた、乾燥固体状ポリメチルアルミノキサンのマスターサイザー2000 Hydro Sによる粒度分布評価結果。 比較例8で得られた、乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 比較例8で得られた、未乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。 比較例9で得られた、乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価結果。
[固体状ポリメチルアルミノキサン組成物]
 本発明の固体状ポリメチルアルミノキサン組成物は、
(i) アルミニウム含有量が36質量%から41質量%の範囲にあり、かつ
(ii) メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%以下である。
 本発明の固体状ポリメチルアルミノキサン組成物は、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する。ポリメチルアルミノキサンとトリメチルアルミニウムの共存状態は必ずしも明らかではないが、上記(i)及び(ii)を満足する組成比及び存在状態で、ポリメチルアルミノキサンとトリメチルアルミニウムが含まれる。
ポリメチルアルミノキサンは、例えば、以下の一般式(I)で示される単位を含むものであることができる。
       -[(Me)AlO]n-                    (I)
                 (式中、nは10~50の整数を示す。) 
 一般式(I)で示される単位を含むとは、nが上記範囲内の単数(nがある特定の整数)であるポリメチルアルミノキサンまたは複数種類(nが異なる複数の整数)である複数のポリメチルアルミノキサンを含むことを意味する。nが10~50の整数であるのは、固体状ポリメチルアルミノキサン組成物の原料となる溶液状ポリメチルアルミノキサン組成物中のポリメチルアルミノキサンのnが10~50であることによる。文献には溶液状ポリメチルアルミノキサン組成物中のポリメチルアルミノキサン鎖同士またはポリメチルアルミノキサン鎖とトリメチルアルミニウムが不均化により、ポリメチルアルミノキサン鎖長が変化するとの記載があるものもある。ポリメチルアルミノキサン鎖同士の不均化反応の場合にはトリメチルアルミニウムが生成し、ポリメチルアルミノキサン鎖とトリメチルアルミニウムとの不均化反応の場合にはトリメチルアルミニウムが消費されることになる。しかし、溶媒洗浄実施前の固体状ポリメチルアルミノキサンをd8-THFを溶媒とし1H-NMR測定を実施したところ、顕著なトリメチルアルミニウム含有量の変化が観られていない。このことから、固体状ポリメチルアルミノキサン組成物中のポリメチルアルミノキサンのnは、原料として用いた溶液状ポリメチルアルミノキサン組成物のnにほぼ相当すると考えられる。本発明におけるポリメチルアルミノキサンとは、上記単位を含むものであれば、鎖状構造であっても環状構造であっても、また枝分かれ構造であってもよい。
 ポリメチルアルミノキサンが環状構造をとる場合、アルミニウム含有量の理論量は約46~47質量%であり、トリメチルアルミニウム中のアルミニウム含有量の理論量は約38質量%である。すなわち、固体状ポリメチルアルミノキサン組成物中のアルミニウム含量が46質量%を超えるような場合、固体状ポリメチルアルミノキサン組成物は環状構造を有するポリメチルアルミノキサンのみからなり、トリメチルアルミニウムはほとんど存在しないものと推定され、更には溶媒等の不純物を全く含んでいないことになる。ポリメチルアルミノキサンが直鎖状構造をとる場合、一般式(I)のn数によってアルミニウム含有量の理論量は変動するが、環状構造のものに比べ小さくなる。一方、本発明の固体状ポリメチルアルミノキサン組成物には、環状構造のポリメチルアルミノキサンに加え、線状構造および枝分かれ構造を有するポリメチルアルミノキサンを含んでおり、更にはトリメチルアルミニウムに加え残留溶媒等の不純物が含まれることから、本発明の固体状ポリメチルアルミノキサン組成物では(i)で示されるように、アルミニウム含有量が、36質量%から41質量%の範囲にある。アルミニウム含有量が小さい程、トリメチルアルミニウムの存在割合が多く、アルミニウム含有量が大きい程、トリメチルアルミニウムの存在割合が少ない傾向がある。
 アルミニウム含有量が、36質量%から41質量%の範囲にあることで、固体状ポリメチルアルミノキサン組成物は、良好な粒子径の均一性と容易に割れ等による破砕が起こらない強固さという性能を有することができる。逆に、本発明のアルミニウム含有量が36質量%未満の場合、乾燥が不十分で溶剤等の不純物を含みすぎていることを示している。アルミニウム含有量が46質量%を超えると、環状構造を主とするポリメチルアルミノキサンから成ると推定され、また、トリメチルアルミニウムおよび溶媒不純物をほとんど含まないことを示しているが、本発明で得られる固体状ポリメチルアルミノキサン組成物とは組成自身が異なるものである。アルミニウム含有量は、上記観点から、好ましくは38質量%から41質量%の範囲である。
 本発明において調製される溶液状ポリメチルアルミノキサン組成物および固体状アルミノキサン組成物のアルミニウム含量は、例えば、0.5Nの硫酸水溶液で加水分解した溶液に過剰量のエチレンジアミン四酢酸二ナトリウムを加えた後に、ジチゾンを指示薬とし硫酸亜鉛で逆滴定することにより求めることができる。測定濃度が希薄な場合は、原子吸光分析法を用いて測定を行うこともできる。
 (ii)で示されるメチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率における、メチル基の総モル数は、ポリメチルアルミノキサンに由来するメチル基とトリメチルアルミニウムに由来するメチル基の総モル数であり、トリメチルアルミニウム部位に由来するメチル基のモル数は、トリメチルアルミニウムに由来するメチル基のモル数であり、トリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%以下である。トリメチルアルミニウム部位に由来するメチル基のモル分率が低いことは、ポリメチルアルミノキサンに含まれるトリメチルアルミニウム部位に由来するメチル基が少なく、ポリメチルアルミノキサン鎖のアルミニウムの状態が多いことを意味する。トリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%以下であることで、溶媒溶解性が低く、乾燥処理によっても粒子が壊れることのない強度を有した固体状ポリメチルアルミノキサン組成物となる。逆に、トリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%をこえると、溶媒溶解性が高くなると共に、粒子が容易に破砕される傾向を示すようになる。
 本発明の固体状メチルアルミノキサン組成物においてトリメチルアルミニウム部位に由来するメチル基のモル分率は、好ましくは11モル%以下である。トリメチルアルミニウム部位に由来するメチル基のモル分率の下限は、固体状ポリメチルアルミノキサンの形状制御可能な原料となる溶液状ポリメチルアルミノキサンに依存するという理由から、例えば、6モル%でよく、好ましくは 8モル%である。
 本発明に利用されるポリメチルアルミノキサン組成物は、未反応原料として内在するトリメチルアルミニウムを含有している。本発明において、ポリメチルアルミノキサン組成物中に存在するトリメチルアルミニウムの量は、ポリメチルアルミノキサンおよびトリメチルアルミニウムに由来するメチル基のモル分率(それぞれ、Me(PMAO),Me(TMAL)と略記)により表現する。
 ポリメチルアルミノキサン組成物中のそれぞれの成分のモル分率は、ポリメチルアルミノキサン組成物の1H-NMR測定により、それぞれの成分に帰属される面積比から求めることができる。ポリメチルアルミノキサン組成物の具体的なMe(PMAO),Me(TMAL)のモル分率の求め方は、実施例において例示する。
 本発明の固体状ポリメチルアルミノキサン組成物は、粒子状であり、下記式で示される均一性が0.45以下であることが好ましい。
       均一性 = ΣXi|d(0.5) - Di|/d(0.5)ΣXi
(ここで、Xiは粒子iのヒストグラム値、d(0.5)は体積基準のメジアン径、Diは粒子iの体積基準径を示す。)
 粒子状である本発明の固体状ポリメチルアルミノキサン組成物の均一性が0.45以下であることで、固体状ポリメチルアルミノキサン組成物と遷移金属化合物を用いて粒径の揃ったオレフィン系重合体を得ることができる。上記均一性は好ましくは0.4以下、より好ましくは0.35以下、さらに好ましくは0.3以下である。上記均一性の値が低い程、得られるオレフィン系重合体は粒径の揃った粒子になる傾向がある。上記均一性は、触媒粒度分布の指標として用いられるものであり、この指標では値が大きくなるほど分布が広いことを示す。上記均一性の下限は、本固体状ポリメチルアルミノキサン組成物が自己会合により粒子形状が制御されていることを考慮すると、例えば、0.15であることができる。
 さらに本発明の固体状ポリメチルアルミノキサン組成物は、粒子状であり、体積基準のメジアン径が5~50μmの範囲のものを調製することが出来る。粒子状である本発明の固体状ポリメチルアルミノキサン組成物の体積基準のメジアン径が上記範囲であることで、固体状ポリメチルアルミノキサン組成物と遷移金属化合物を用いて良好な重合体の嵩密度を保持し、微粉重合体生成が抑制されたオレフィン系重合体を得ることができる。固体状ポリメチルアルミノキサン組成物の体積基準のメジアン径は、得られるオレフィン系重合体の嵩密度などの粉体性状が良好になるという点から、一般には5~200μm程度が良いとされている。しかし、本発明の固体状ポリメチルアルミノキサン組成物の体積基準のメジアン径は、均一性を考慮すると、5~50μmであルことが好ましく、より好ましくは5~40μmの範囲、さらに好ましくは5~30μmの範囲である。
 本発明の固体状ポリメチルアルミノキサン組成物の体積基準のメジアン径および粒度分布はMalvern Instrument Ltd.のマスターサイザー2000 Hydro Sを利用し、乾燥窒素雰囲気下にレーザー回折・散乱法により求めることができる。具体的な方法は、実施例に記載した。
 本発明の固体状ポリメチルアルミノキサン組成物は、粒子状であり、比表面積が、10~25m2/mmol-Alの範囲であることが好ましい。粒子状である本発明の固体状ポリメチルアルミノキサン組成物の比表面積が上記範囲であることで、固体状ポリメチルアルミノキサン組成物と遷移金属化合物を用いてのオレフィン系化合物の重合において、良好な活性を示すことができる。ここで良好な活性とは、好ましくは溶液状のポリメチルアルミノキサン組成物を用いた場合に得られる活性と同等であることを意味する。但し、本発明の固体状ポリメチルアルミノキサン組成物の良好な重合活性は、比表面積のみによるものではなく、固体状ポリメチルアルミノキサン組成物の比表面積以外の組成や構造によるものと考えられる。比表面積は、オレフィン類の重合に使用する際に固体状ポリメチルアルミノキサン組成物と主触媒となるメタロセン化合物を初めとする遷移金属化合物の接触による活性化に影響すると考えられる。すなわち、一般には、比表面積が小さいと主触媒の活性化効率が悪く、大きいと活性化効率が高いと考えられる。一方、比表面積が高すぎると、固体状ポリメチルアルミノキサン組成物の内部が多孔質となりすぎ、固体の強度が低下するものと考えられる。以上の理由から、好ましくは10~25m2/mmol-Alの範囲、より好ましくは13~22m2/mmol-Alの範囲である。
 本発明の固体状ポリメチルアルミノキサン組成物の比表面積は、BET吸着等温式を用い、固体表面におけるガスの吸着現象を利用して求めることができる。具体的な方法は実施例に記載した。
 本発明の固体状ポリメチルアルミノキサン組成物は、25℃におけるn-ヘキサンに対する溶解度が0~2モル%であり、かつ25℃におけるトルエンに対する溶解度が0~2モル%であることが好ましい。
 本発明の固体状ポリメチルアルミノキサン組成物は、25℃の温度に保持されたn-ヘキサンおよびトルエンに対する溶解する割合が非常に低いことが特徴である。n-ヘキサンに対し0ないし2モル%、好ましくは0ないし1モル%、特に好ましくは0ないし0.2モル%の範囲を満足する。また、トルエンに対しても0ないし2モル%、好ましくは0ないし1モル%、特に好ましくは0ないし0.5モル%の範囲を満足する。溶媒への溶解割合の測定は、特公平7-42301号公報に記載の方法に準じて実施することができる。具体的には、実施例に記載する。
 本発明の固体状ポリメチルアルミノキサン組成物は、SiO2を含有しない。本発明の固体状ポリメチルアルミノキサン組成物は、少なくとも製造の過程で積極的に、SiO2を含有させたものではない。本発明の固体状ポリメチルアルミノキサン組成物は、SiO2を含有しないことで、SiO2を含有する固体状ポリメチルアルミノキサン組成物が有する欠点を回避することができる。
[固体状ポリメチルアルミノキサン組成物の製造方法]
 本発明の固体状ポリメチルアルミノキサン組成物の製造方法は、(a)下記一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(溶液状ポリメチルアルミノキサン組成物)を加熱して、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状ポリメチルアルミノキサン組成物を析出させる工程を含む、上記本発明の固体状ポリメチルアルミノキサン組成物の製造方法である。
       -[(Me)AlO]n-                    (II)
                 (式中、nは10~50の整数を示す。)
 一般式(II)で示される単位を含むとは、nが上記範囲内の単数(nがある特定の整数)であるポリメチルアルミノキサン、またはnが上記範囲内の複数種類(nが異なる複数の整数)である複数のポリメチルアルミノキサンを含むことを意味する。nが10~50の整数であるのは、ベンゼン中の凝固点降下から求めた分子量を基準とするアルミノキサンの重合度が10~50の範囲に存在するという理由からである。
 本発明の製造方法に原料として用いられる、溶液状ポリメチルアルミノキサン組成物は、例えば、特許文献17に記載の方法によって調製することができるものである。特許文献17に記載の方法は、トリメチルアルミニウムを加水分解することなくポリメチルアルミノキサン組成物を調製する方法である。具体的には、アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解することにより溶液状ポリメチルアルミノキサン組成物を得る方法である。
 溶液状ポリメチルアルミノキサン組成物に用いられる芳香族系炭化水素は、例えば、ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、キシレン、クロルベンゼン、ジクロルベンゼンなどを挙げることができる。但し、これらの例に限られず、芳香族系炭化水素であれば、溶液状ポリメチルアルミノキサン組成物用の溶媒として利用できる。
 さらに、前記アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物は、トリメチルアルミニウムと含酸素有機化合物との反応により調製されるものであることが好ましい。さらに、上記含酸素有機化合物は、一般式(III)で示される脂肪族または芳香族カルボン酸であることが好ましい。
           R1-(COOH)n   (III)
(式中、R1は、C1~C20の直鎖あるいは分岐したアルキル基、アルケニル基、アリール基の炭化水素基を表し、nは1~5の整数を表す。) 
 熱分解反応により溶液状ポリメチルアルミノキサン組成物を与えるアルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物のトリメチルアルミニウムと含酸素化合物との反応に用いられる含酸素化合物とは、例えば、COOH基を有するカルボン酸化合物、カルボン酸無水物である。溶液状ポリメチルアルミノキサン組成物の調製に当たっては、これらを単独あるいは複数の化合物を用いることも可能である。含酸素化合物を具体的に例示すると、蟻酸、酢酸、プロピオン酸、正酪酸、正吉草酸、正カプロン酸、正エナント酸、正カプリル酸、正ペラルゴン酸、正カプリン酸、正ラウリン酸、正ミリスチン酸、正ステアリン酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、安息香酸、フタル酸、クエン酸、酒石酸、乳酸、リンゴ酸、トルイル酸、トルイル酸無水物、酢酸無水物、プロピオン酸無水物、正酪酸無水物、正吉草酸無水物、正カプロン酸無水物、蓚酸無水物、マロン酸無水物、コハク酸無水物、グルタル酸無水物、安息香酸無水物、フタル酸無水物、トルイル酸無水物などを挙げることが出来る。この中で好ましいものは、酢酸、酢酸無水物、プロピオン酸、プロピオン酸無水物、安息香酸、安息香酸無水物、フタル酸、フタル酸無水物、トルイル酸、トルイル酸無水物である。
 溶液状ポリメチルアルミノキサン組成物の合成に用いるトリメチルアルミニウムに含まれるアルミニウム原子と含酸素有機化合物の酸素原子のモル比は、ポリメチルアルミノキサンの分子量、またトリメチルアルミニウム残量の制御を目的として、任意に設定することができる。含酸素有機化合物の酸素原子に対するトリメチルアルミニウム含まれるアルミニウム原子のモル量の比は、0.5~3.0:1の範囲で任意に設定することができる。
 溶液状ポリメチルアルミノキサン組成物の調製のし易さ、その安定性および適切な残留トリメチルアルミニウム量の制御と言う観点から、上記モル量の比は、好ましくは1.0~1.7:1の範囲であり、より好ましくは1.15~1.4:1の範囲であり、さらに好ましくは1.2~1.4:1の範囲である。
 溶液状ポリメチルアルミノキサン組成物の前駆体であるアルミニウム-酸素-炭素結合を有するアルミニウム化合物の熱分解温度は、20~90℃の間の任意の温度で実施することができる。反応の易操作性と安全性および適切な反応時間という観点から、好ましくは 30℃~80℃であり、さらに好ましくは60℃~80℃である。アルミニウム-酸素-炭素結合を有するアルミニウム化合物の熱分解の時間は、熱分解温度や原料の組成(例えば、Al/Oモル比等)により変化するが、例えば、5~100時間の範囲である。温度が低ければ、長時間を要し、温度が高ければ、短時間で熱分解を終了することができる。
 上記熱分解温度が100℃を超えると、ゲル状物の著しい生成を引き起こし、ポリメチルアルミノキサン均一溶液の回収収率が低下する。一方、熱分解温度が50℃を下回ると、ポリメチルアルミノキサン生成反応時間の増大による著しい生産性低下を引起す場合がある。
 本発明では原料として用いる溶液状ポリメチルアルミノキサン組成物調製時の温度制御が重要である。一見すると、本発明は溶液状ポリメチルアルミノキサン組成物の調製工程に、一部含まれるものと理解されかねない。しかし、粒径の制御された固体状ポリメチルアルミノキサン組成物を得ようとする場合、溶液状ポリメチルアルミノキサン組成物の原料であるアルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解して溶液状ポリメチルアルミノキサン組成物を得ること無しに、直接、固体状メチルアルミノキサン組成物を得ることはできない。まずは、アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解して溶液状ポリメチルアルミノキサン組成物を調製し、調製された溶液状ポリメチルアルミノキサン組成物を所定の条件下で加熱することで、初めてして固体状メチルアルミノキサン組成物は得られる。例えば、溶液状ポリメチルアルミノキサン組成物の原料を直接100℃に加熱しても、粒径の揃った固体状メチルアルミノキサン組成物は得られない。この理由は現状で明確ではないが、ある鎖長および鎖長分布を有したポリメチルアルミノキサンの自己会合によりエネルギー的に安定な粒径の固体状メチルアルミノキサン組成物が熱処理により形成されると考えると、一旦きちんと形成されたポリメチルアルミノキサン構造が必要であることが理解できるものと発明者は考えている。
 不活性炭化水素溶媒中のポリメチルアルミノキサン濃度は、6~40重量%の範囲で良く、好ましくは6~30重量%であり、さらに好ましくは10~25重量%である。
 これまでのアルミニウム-酸素-炭素結合を有するアルミニウム化合物の熱分解反応により溶液状ポリメチルアルミノキサン組成物を得るほとんどの文献においては、定量的な反応収率で溶液状ポリメチルアルミノキサン組成物が得られるという点と溶液状ポリメチルアルミノキサン組成物中のトリメチルアルミニウム量の制御可能な点に力点が置かれている。一般に、トリメチルアルミニウムはメタロセン化合物をはじめとする遷移金属化合物の活性化剤として作用しないため、溶液状ポリメチルアルミノキサン組成物中に残存するトリメチルアルミニウム量を制御することは重要な課題であった。一方、溶液状ポリメチルアルミノキサン組成物を加水分解法において調製する場合、反応液中のアルミニウム濃度を低くし、かつ原料トリメチルアルミニウムに対する水の投入量を低く押さえなければ、アルミニウム回収率が大きく低下することが知られている。
 原料として用いられる溶液状ポリメチルアルミノキサン組成物は、メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率が15モル%以下であることが、固体状ポリメチルアルミノキサンの収率を向上させるという観点から好ましい。メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率は、好ましくは14モル%以下である。メチル基の総モル数に対するアルミノキサン部位に由来するメチル基のモル分率の下限はおよそ6モル%である。加水分解法で調製された溶液状ポリメチルアルミノキサン組成物は40~50mol%のメチル基の総モル数に対するアルミノキサン部位に由来するメチル基のモル分率を有し、通常の濃縮乾固処理によりポリメチルアルミノキサン組成物中のメチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率を15モル%より下げることは困難である。一方、熱分解法による溶液状ポリメチルアルミノキサン組成物の調製では、トリメチルアルミニウムに含まれるアルミニウム原子と含酸素有機化合物の酸素原子のモル比を1.15とすることで、メチル基の総モル数に対するアルミノキサン部位に由来するメチル基のモル分率の下限は8モル%とすることが可能で、得られる固体状ポリメチルアルミノキサン組成物の性能も良い。トリメチルアルミニウムのアルミニウム原子と含酸素有機化合物の酸素原子のモル比を1.10とすると、メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率を5.2モル%とすることが出来るが、得られる固体状ポリメチルアルミノキサン組成物の性能は悪い。以上の理由から、好ましくは8モル%~14モル%である。
 本発明の製造方法で用いる芳香族系炭化水素は、特に制限はないが、例えば、ベンゼン、トルエン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、キシレン、クロルベンゼン、ジクロルベンゼン等を例示できる。
工程(a)においては、
(i) 80℃~200℃の範囲の加熱温度、及び
(ii) 5分間以上24時間未満の加熱時間から、
固体状ポリメチルアルミノキサン組成物を析出させるに適した加熱温度及び加熱時間を選択することが好ましい。
 一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(溶液状ポリメチルアルミノキサン組成物)は、所定の温度で加熱を続けると、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状ポリメチルアルミノキサン組成物が、粒径が揃った形で溶液中に析出してくることを本発明者らは見出した。所定の温度とは、80℃~200℃の範囲であり、析出に必要な時間は、温度により異なるが、例えば、5分間以上24時間未満の範囲である。この範囲にあることで、所望の粒子径と、粒子径の均一性を有する固体状ポリメチルアルミノキサン組成物粒子を、高い収率で得ることができる。但し、加熱温度によってはこの時間範囲を超えた時間の加熱が適切な場合もあり得る。固体状ポリメチルアルミノキサン組成物の溶液中への析出は、時間の経過とともに増大し、一定のレベルまで達するとそれ以上、析出物の量の増大はなくなる。溶液状ポリメチルアルミノキサン組成物の組成や、溶媒(芳香族系炭化水素溶液)中の溶質の濃度により、析出物の量(回収率)は変化する。
 固体状ポリメチルアルミノキサン組成物粒子の粒子径、粒子径の均一性、収率等を考慮すると、加熱温度は80~200℃でよく、好ましくは90~150℃、より好ましくは100~130℃である。時間は、この温度範囲では、好ましくは1~20時間、より好ましくは5~12時間である。但し、温度が低くなると、固体状ポリメチルアルミノキサン組成物粒子析出に要する時間は長くなり、温度が高くなれば、固体状ポリメチルアルミノキサン組成物粒子析出に要する時間は短くなる傾向がある。
 本発明の製造方法は、(b)加熱して析出した固体状ポリメチルアルミノキサン組成物を、非芳香族系炭化水素溶媒を用いて洗浄する工程をさらに含むことができる。洗浄に用いられる非芳香族系炭化水素溶媒は、例えば、n-ペンタン、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、n-ヘプタン、n-オクタン、n-デカン、n-ウンデカン、アイソパーE等を挙げることができる。本発明において用いる非芳香族系溶媒は先行技術に認められるように固体状ポリメチルアルミノキサン組成物の析出に使用されるのではなく、加熱により析出した固体状ポリメチルアルミノキサン組成物の洗浄および乾燥を容易にすることを目的とするものであるから、固体状ポリメチルアルミノキサンの乾燥操作が容易な沸点の低い溶媒、具体的には、n-ペンタン、n-ヘキサン、シクロヘキサンが好ましい。
 工程(b)においては、前記非芳香族炭化水素溶媒の添加は、工程(a)で加熱した溶液状ポリメチルアルミノキサン組成物に対して、体積比で4倍量以上の量とすることができる。この量とすることで、芳香族系溶媒の残留量が低減され、得られる固体状ポリメチルアルミノキサン組成物の乾燥が容易になるという利点がある。
 上記製造方法において本発明の固体状ポリメチルアルミノキサン組成物は、溶媒中に分散した状態の分散液であっても、溶媒を除去し、必要により乾燥した粉体であってもよい。粉体の乾燥は、例えば、減圧下に溶媒を除去する方法や乾燥した加熱窒素をフローする方法などを利用することができる。なお、本発明の固体状ポリメチルアルミノキサン組成物の乾燥では、溶液状ポリメチルアルミノキサン組成物の場合と異なり、固体への付着溶媒の除去のみを目的とすることから、トリメチルアルミニウムの飛散などもないため、真空ポンプを使用することに問題はない。
[オレフィン類の重合触媒]
 本発明は、オレフィン類の重合触媒を包含する。本発明のオレフィン類の重合触媒は、上記本発明の固体状ポリメチルアルミノキサン組成物と下記一般式(IV)で表される遷移金属化合物を触媒成分として含有する。
                    MR5R6R7R8      (IV)
(式中、Mは遷移金属元素を示し、R5,R6,R7,R8は一緒になって、シクロアルカジエニル骨格を有する有機基、アルキル基、アルコシキ基、アリーロキシ基、アルキルシリル基、アルキルアミド基、アルキルイミド基、アルキルアミノ基、アルキルイミノ基、ハロゲン原子を示す。)
 本発明の固体状ポリメチルアルミノキサン組成物は、オレフィン重合用触媒として公知の触媒と組合わせて重合触媒として用いることができる。オレフィン重合用触媒としては、例えば、遷移金属化合物を挙げることができる。このような遷移金属化合物は、上記一般式(IV)で示されるものであることができる。
 一般式(IV)中のMとしては、具体的にはチタン、ジルコニウム、ハフニウム、クロム、バナジウム、マンガン、鉄、コバルト、ニッケルあるいはパラジウムであり、好ましくはチタン、ジルコニウム、クロム、鉄、ニッケルである。
 前記一般式(IV)において、好ましい遷移金属化合物としては、シクロアルカジエニル骨格を有する配位子が1個ないし2個配位したメタロセン化合物である。シクロアルカジエニル骨格を有する配位子としては、たとえばシクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基,ペンタメチルシクロペンタジエニル基などのアルキル置換シクロペンタジエニル基、インデニル基、フルオレニル基などを例示することができ、シクロアルカジエニル基は2価の置換アルキレン基、置換シリレン基等で架橋されていてもよい。
 シクロアルカジエニル骨格を有する配位子以外の配位子は、炭素数が1~20の炭化水素基、アルコキシ基、アリーロキシ基、アルキルシリル基、アミノ基、イミノ基、ハロゲン原子または水素原子である。炭素数が1~20の炭化水素基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基などを例示することができ、具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロビル基、ブチル基などが例示され、シクロアルキル基としては、シクロペンチル基、シクロへキシル基などが例示され、アリール基としては、フェニル基、トリル基などが例示され、アラルキル基としてはべンジル基などが例示される。アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基などが例示され、アリーロキシ基としてはフェノキシ基などが例示される。これらの基にはハロゲン原子などが置換していてもよい。アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基などが例示される。ハロゲンとしては、フッ素、塩素、臭素、ヨウ素が例示される。
 前記一般式(IV)中のMがジルコニウムである場合の、シクロアルカジエニル骨格を有する配位子を含む遷移金属化合物について、具体的に化合物を例示する。ビス(シクロペンタジエニル)ジルコニウムモノクロリドモノハイドライド、ビス(シクロペンタジエニル)ジルコニウムモノブロミドモノハイドライド、ビス(シクロペンタジエニル)メチルジルコニウムハイドライド、ビス(シクロペンタジエニル)エチルジルコニウムハイドライド、ビス(シクロペンタジエニル)フェニルジルコニウムハイドライド、ビス(シクロペンタジエニル)べンジルジルコニウムハイドライド、ビス(シクロペンタジエニル)ネオぺンチルジルコニウムハイドライド、ビス(メチルシクロペンタジエニル)ジルコニウムモノクロリドハイドライド、ビス(インデニル)ジルコニウムモノクロリドハイドライド、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムジブロミド、ビス(シクロペンタジエニル)メチルジルコニウムモノクロリド、ビス(シクロペンタジエニル)エチルジルコニウムモノクロリド、ビス(シクロペンタジエニル)シクロヘキシルジルコニウムモノクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムモノクロリド、ビス(シクロペンタジエニル)ベンジルジルコニウムモノクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(インデニル)ジルコニウムジクロリド、ビス(インデニル)ジルコニウムジブロミド、ビス(シクロペンタジエニル)ジルコニウムジメチル、ビス(シクロペンタジエニル)ジルコニウムジフェニル、ビス(シクロペンタジエニル)ジルコニウムジベンジル、ビス(シクロペンタジエニル)ジルコニウムモノメトキシモノクロリド、ビス(シクロペンタジエニル)ジルコニウムモノエトキシモノクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムモノエトキシモノクロリド、ビス(シクロペンタジエニル)ジルコニウムモノフエノキシモノクロリド、ビス(フルオレニル)ジルコニウムジクロリドなどが挙げられる。
 また、前記一般式(IV)中のMがジルコニウムであり、シクロアルカジエニル骨格を有する配位子を少なくとも2個以上含み、かつこの少なくとも2個のシクロアルカジエニル骨格を有する配位子がエチレン、プロピレンなどのアルキレン基、イソプロピリデン、ジフェニルメチレンなどの置換アルキレン基、シリレン基、ジメチルシリレンなどの置換シリレン基などを介して結合されている遷移金属化合物について、具体的な化合物を例示する。エチレンビス(インデニル)ジメチルジルコニウム、エチレンビス(インデニル)ジエチルジルコニウム、エチレンビス(インデニル)ジフェニルジルコニウム、エチレンビス(インデニル)メチルジルコニウムモノクロリド、エチレンビス(インデニル)エチルジルコニウムモノクロリド、エチレンビス(インデニル)メチルジルコニウムモノブロミド、エチレンビス(インデニル)ジルコニウムジクロリド、エチレンビス(インデニル)ジルコニウムブロミド、エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライドなどを挙げることができ、ラセミ体、メソ体およびそれらの混合物であってよい。
 これらの遷移金属化合物は、均一系重合に際して、1種類のみ使用してもよいし、分子量分布調整等を目的として2種類以上を使用してもよい。また、あらかじめ固体触媒調製を行う場合に際しては、これらの遷移金属化合物を1種類のみ使用してもよいし、分子量分布調整等を目的として2種類以上を使用してもよい。
[ポリオレフィン類の製造方法]
 本発明は上記本発明の触媒を用いてオレフィン類を重合することを含む、ポリオレフィン類の製造方法を包含する。
 本発明の固体状ポリメチルアルミノキサン組成物を用いた均一系重合および本発明の固体状ポリメチルアルミノキサン組成物を用いて調製された担持触媒を使用する重合は、重合形式として、溶媒を用いる溶液重合、溶媒を用いないバルク重合や気相重合等のいずれの方法においても適した性能を発揮する。また、連続重合、回分式重合のいずれの方法においても好ましい性能を発揮し、分子量調節剤としての水素なども必要に応じて用いることが出来る。
 重合に用いられるモノマーについては、オレフィン系モノマーの単独およびそれらの組み合わされた共重合に用いることができるどのような化合物でも良い。具体例を示せば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-デセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどのα-オレフィン、ビスフルオロエチレン、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロペンなどのハロゲン置換オレフィン、シクロペンテン、シクロヘキセン、ノルボルネンなどの環状オレフィンが挙げられる。
 以下に本発明を実施例で詳細に説明するが、本発明は本実施例に限定されるものではない。
 尚、下記実施例においては、固体状メチルアルミノキサン組成物の乾燥は、通常、流動パラフィンを入れたシールポットを介し40℃において真空ポンプのフルバキューム下に実施し、シールポットに気泡が認められない時点を以って乾燥の終点とした。
[試験方法]
(1) 溶解度
 本発明の固体状メチルアルミノキサン組成物の25℃の温度に保持されたn-ヘキサンおよびトルエンに対する溶解する割合の測定は、特公平7-42301号公報に記載の方法に準じて実施した。具体的には、n-ヘキサンに対する溶解割合は25℃に保持された50mlのn-ヘキサンに固体状ポリメチルアルミノキサン組成物2gを加え、その後2時間の攪拌を行ない、次いでG-4グラス製フイルターを用いて溶液部を分離して、この濾液中のアルミニウム濃度を測定することにより求める。この方法で得られる溶解割合は、試料として用いた固体状ポリメチルアルミノキサン組成物2gに相当するアルミニウム原子の量に対する上記濾液中に存在するアルミニウム原子の割合として決定される。
(2) アルミニウム含量
 溶液状ポリメチルアルミノキサン組成物および固体状アルミノキサン組成物のアルミニウム含量は、基本的に0.5Nの硫酸水溶液で加水分解した溶液に過剰量のエチレンジアミン四酢酸二ナトリウムを加えた後に、ジチゾンを指示薬とし硫酸亜鉛で逆滴定することにより求めた。測定濃度が希薄な場合は、原子吸光分析法を用いて測定を行った。
(3) 固体状アルミノキサン組成物の比表面積
 固体状アルミノキサン組成物の比表面積は、BET吸着等温式を用い、固体表面におけるガスの吸着現象を利用して求めた。測定装置にはBEL JAPAN,INC.製のBELSORP mini IIを、測定ガスには窒素ガスを用いた。
(4) 固体状アルミノキサン組成物の体積基準のメジアン径および粒度分布
 固体状アルミノキサン組成物の体積基準のメジアン径および粒度分布はMalvern Instrument Ltd.のマスターサイザー2000 Hydro Sを利用し、乾燥窒素雰囲気下にレーザー回折・散乱法により求めた。分散媒には主に脱水・脱気したn-ヘキサンを、目的により一部には脱水・脱気したトルエンを用いた。触媒粒度分布の指標として、均一性は、下記の式で示される定義を用いた。
       均一性 = ΣXi|d(0.5) - Di|/d(0.5)ΣXi
 ここで、Xiは粒子iのヒストグラム値、d(0.5)は体積基準のメジアン径、Diは粒子iの体積基準径を示す。
(5) メチル基のモル分率
 ポリメチルアルミノキサン組成物中のそれぞれの成分のモル分率は、ポリメチルアルミノキサン組成物の1H-NMR測定により、それぞれの成分に帰属される面積比から求めた。以下にポリメチルアルミノキサン組成物の具体的なMe(PMAO), Me(TMAL)のモル分率の求め方を例示する。ポリメチルアルミノキサンに由来するメチル基のモル分率をMe(PMAO)と表す。トリメチルアルミニウムに由来するメチル基のモル分率をMe(TMAL)と表す。
 まず、重溶媒にはd8-THFを用いてポリメチルアルミノキサン組成物の1H-NMR測定を実施する。1H-NMR測定は300MHz バリアン・テクノロジーズ・ジャパン・リミテッドのGemini 2000 NMR測定装置を用い、測定温度24℃で行った。1H-NMRチャートの例を図1に示す。
(i) -0.3ppmから-1.2ppm程度に現われるトリメチルアルミノキサンを含むポリメチルアルミノキサンのMe基ピークの全体の積分値を求め、これをI(ポリメチルアルミノキサン)とする。
(ii) -1.1ppm付近のTMALに由来するMe基ピークを接線-1により切り出し、その積分値 I(TMAL-Me)を求める。
(iii) (ii)で求めたそれぞれの積分値を、(i)で求めた積分値 I(ポリメチルアルミノキサン)から引くと、トリメチルアルミニウムを含まないポリメチルアルミノキサンのみのMe-基の積分値I(PMAO-Me)を求めることができる。I(TMAL-Me)およびI(PMAO-Me)をI(ポリメチルアルミノキサン)で割って規格化すると、Me(PMAO), Me(TMAL)のモル分率を求めることが出来る。
 なお、それぞれのピークの切り出し方法としては、市販のカーブフィッティングプログラムを用いる方法やベースラインコレクションを用いる方法などにより簡便に行うことが出来る。
 また、溶液状ポリメチルアルミノキサン組成物の分析サンプルは、溶液状ポリメチルアルミノキサン組成物約0.05mlに対しd8-THFを約0.5ml添加することにより調製した。固体状ポリメチルアルミノキサン組成物の分析サンプルは、溶液状ポリメチルアルミノキサン組成物10mgに対しd8-THFを0.5ml添加することにより調製した。
 以下の反応は乾燥窒素ガス雰囲気下に行い、溶媒はすべて脱水および脱気したものを使用した。
予備実験1 (安息香酸-Al/O=1.40)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 撹拌装置を有する内容積2Lのセパラブルフラスコに、トリメチルアルミニウム(TMAL) 240.8g(3.34mol)、トルエン600.5gを入れた。この溶液を15℃にまで冷却し、これに安息香酸145.7g(1.19mol)を溶液の温度が25℃以下になるような速度でゆっくりと添加した。その後50℃で加熱熟成を1時間行った。この時、TMALと安息香酸の酸素原子のモル比は、1.40であった。反応液を70℃で4時間加熱し、その後60℃で6時間加熱することにより、ポリメチルアルミノキサン組成物のトルエン溶液を得た。得られた溶液は、ゲル状物のない透明な液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は9.30wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、26.0mol%であった。なお、本溶液状ポリメチルアルミノキサン組成物は溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.1mol/Lであった。
 濃縮乾固処理を行ったポリメチルアルミノキサンをベンゼンに溶解し凝固点降下法により分子量を求めたところ、2430であり、従ってこのアルミノキサンの重合度nは42と求められた。
(2) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.16g(5.93mmol)のポリメチルアルミノキサンのトルエン溶液を加え、さらにAl/Zrのモル比が5000となるようにビス(シクロペンタジエニル)ジルコニウムジクロライド(Cp2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ62×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
2. ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.043g(1.6mmol)のポリメチルアルミノキサン組成物のトルエン溶液を加え、さらにAl/Zrのモル比が5000となるように ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライド((nBu-Cp)2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ35×106g-PE/mol-Zr・atm・hrであった。
3. rac-エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.035g(1.3mmol)のポリメチルアルミノキサンのトルエン溶液を加え、さらにAl/Zrのモル比が5000となるように rac-エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライド (rac-Et(Ind)2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ25×106g-PE/mol-Zr・atm・hrであった。
予備実験2 (安息香酸-Al/O=1.30)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 予備実験1において、粉体投入した安息香酸量をTMALと安息香酸の酸素原子のモル比が1.30、50℃での加熱熟成後の加熱を70℃で15時間となるように変更したことを除いては、予備実験1と同様に溶液状ポリメチルアルミノキサン組成物の合成を行った。得られた溶液は、ゲル状物のない透明な液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は、9.40wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、18.3mol%であった。なお、本溶液状ポリメチルアルミノキサンは溶液状態のため、試験方法の項で記載した溶解度測定は出来ないが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.1mol/Lであった。
(2) エチレン重合評価
 重合評価は予備実験1の(2)1.に記載の方法と同様に実施したところ、重合活性は45×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
予備実験3 (安息香酸-Al/O=1.25)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 予備実験1において、粉体投入した安息香酸量を、TMALと安息香酸の酸素原子のモル比が1.25、50℃での加熱熟成後の加熱を70℃で21時間となるように変更したことを除いては、予備実験1と同様に溶液状ポリメチルアルミノキサン組成物の合成を行った。得られた溶液は、ゲル状物のない透明な液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は、9.15wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、17.5mol%であった。なお、本溶液状ポリメチルアルミノキサンは溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.1mol/Lであった。
(2) エチレン重合評価
 重合評価は予備実験1の(2)1.に記載の方法と同様に実施したところ、重合活性は49×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
予備実験4 (安息香酸-Al/O=1.20)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 予備実験1において、粉体投入した安息香酸量を、TMALと安息香酸の酸素原子のモル比が1.20、50℃での加熱熟成後の加熱を70℃で32時間となるように変更したことを除いては、予備実験1と同様に溶液状ポリメチルアルミノキサン組成物の合成を行った。得られた溶液は、ゲル状物のない透明な液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は、9.04wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、14.0mol%であった。なお、本溶液状ポリメチルアルミノキサンは溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.0mol/Lであった。
(2) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 重合評価は予備実験1の(2)1.に記載の方法と同様に実施したところ、重合活性は39×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、高温GPCにより求めた分子量は18万で、Mw/Mnは2.9であった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
2. ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 重合評価は予備実験1の(2) 2.記載の方法と同様に実施したところ、重合活性は70×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
3. rac-エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライドを用いた重合
重合評価は予備実験1の(2) 3.記載の方法と同様に実施したところ、重合活性は35×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
予備実験5 (安息香酸-Al/O=1.10)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 予備実験1において、粉体投入した安息香酸量を、TMALと安息香酸の酸素原子のモル比が1.10、50℃での加熱熟成後の加熱を70℃で60時間となるように変更したことを除いては、予備実験1と同様に溶液状ポリメチルアルミノキサン組成物の合成を行った。得られた溶液は、ゲル状物のない透明な粘調性の液体であった。反応液回収後に行ったアルミニウム分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は8.81wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、5.2mol%であった。なお、本溶液状ポリメチルアルミノキサンは溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約2.9mol/Lであった。
(2) エチレン重合評価
 重合評価は予備実験1の(2) 1.記載の方法と同様に実施したところ、重合活性は46×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
予備実験6 (アセトフェノン-Al/O=1.39)
(1) 溶液状ポリメチルアルミノキサン組成物の合成
 撹拌装置を有する内容積500mLのセパラブルフラスコに、トリメチルアルミニウム(TMAL) 68.39g(948.81mmol)、トルエン102.51gを入れた。この溶液を15℃にまで冷却し、これにアセトフェノン82.13g(683.56mmol)とトルエン19.35gの溶液を、フラスコ中の内部温度が25℃以下になるような速度でゆっくりと添加した。その後50℃で加熱熟成を1時間行った。この時、TMALとアセトフェノンの酸素原子のモル比は、1.39であった。反応液に予備実験1で調製したポリメチルアルミノキサン組成物のトルエン溶液(Al濃度9.30wt%)を熱分解反応の活性化剤とし、アルミニウム原子基準で49.0mmol(溶液で14.23g)となる量を一気に投入し、その後65℃で9時間加熱することにより、アセトフェノンを酸素源に用いたポリメチルアルミノキサン組成物のトルエン溶液を得た。得られた溶液は、ゲル状物のない薄黄色の透明な液体であった。反応液回収後に行ったアルミニウム濃度分析結果より、アルミニウム原子基準で示す反応収率は定量的なものであった。得られた反応液のアルミニウム濃度は9.15wt%であった。得られた溶液状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、23.2mol%であった。なお、本溶液状ポリメチルアルミノキサン組成物は溶液状態のため、試験方法の項で記載した溶解度測定は出来なが、溶液の比重とアルミニウム濃度から計算で求めたトルエン中の濃度は約3.1mol/Lであった。
(2) エチレン重合評価
 重合評価は予備実験1の(2)1.に記載の方法と同様に実施したところ、重合活性は65×106g-PE/mol-Zr・atm・hrであった。ポリマー形状は不定形で、重合器のファウリングが顕著であった。
予備実験7
 予備実験1(Al/O=1.40)で調製した溶液状ポリメチルアルミノキサン組成物174.63gを室温下、フルバキューム下において濃縮乾固処理を行い、残留分として濃縮ポリメチルアルミノキサン54.03gを得た。この残留分にトルエンを投入し、アルミニウム濃度を8.92wt%に調整した。得られたポリメチルアルミノキサン組成物のトルエン溶液は不溶物のない均一な溶液で、Me(TMAL)量を1H-NMRより求めたところ、15.0mol%と濃縮処理前の26.0mol%から大きく低下していた。
 濃縮乾固処理を行ったポリメチルアルミノキサン組成物をベンゼンに溶解し凝固点降下法により分子量を求めたところ、1220であり、従ってこのアルミノキサンの重合度nは21と求められた。
予備実験8 n-ヘキサンの投入量の影響評価
 予備実験1で調製したポリメチルアルミノキサン組成物のトルエン溶液(Al/O=1.40)にn-ヘキサンをポリメチルアルミノキサン溶液体積の6倍量、10倍量、20倍量を一気に投入し、固体状ポリメチルアルミノキサン組成物の析出量変化を測定した。その結果、固体状ポリメチルアルミノキサン組成物の析出量は一定で、アルミニウムベースの析出率はいずれも22%とn-ヘキサン投入量の差異は認められなかった。
実施例1
(1) 固体状ポリメチルアルミノキサン組成物の合成
 撹拌装置を有する内容積5Lのセパラブルフラスコに予備実験4(Al/O=1.20)で調製したポリメチルアルミノキサン組成物のトルエン溶液 406.5g(1.361mol-Al)を入れ、攪拌しながら100℃で8時間加熱した。加熱中に固体状ポリメチルアルミノキサン組成物が析出した。溶液を30℃以下にまで冷却した後に、洗浄のためにn-ヘキサン3.6Lを攪拌下に添加した。固体状ポリメチルアルミノキサン組成物をデカンテーションし、上澄み液を除去した後に、n-ヘキサン 3Lで2度のデカンテーションによる洗浄操作を行った。得られた固体を室温下に減圧乾燥することにより乾燥固体状ポリメチルアルミノキサン組成物を得た。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で96%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、9.0mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、37.3wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 9.4μm、均一性は0.296であった(図2参照)。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は19.5m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.1mol%、0.4mol%と極めて低い値であった。
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.16g(5.93mmol)の固体状ポリメチルアルミノキサン組成物(Al/O=1.20)のトルエンスラリー溶液を加え、さらにAl/Zrのモル比が5000となるようにビス(シクロペンタジエニル)ジルコニウムジクロライド(Cp2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ64×106g-PE/mol-Zr・atm・hrであった。
 得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。また、高温GPCにより求めた分子量は16万で、Mw/Mnは2.7であった。
2. ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.038g(1.4mmol)のポリメチルアルミノキサンのトルエン溶液を加え、さらにAl/Zrのモル比が5000となるように ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライド((nBu-Cp)2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ140×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
3. rac-エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライドを用いた重合
 磁気撹拌装置を持つ500mlの四つ口フラスコにトルエン250mlを導入し、34℃にまで加熱した。これにアルミニウム原子換算で0.038g(1.4mmol)のポリメチルアルミノキサンのトルエン溶液を加え、さらにAl/Zrのモル比が5000となるようにrac-エチレンビス(4,5,6-テトラヒドロ-1-インデニル)ジルコニウムジクロライド(rac-Et(Ind)2ZrCl2)を加え、40℃に昇温しながらエチレンガスを吹き込んだ。10分後に、エチレンガスの供給を止め、メタノールを投入して触媒を失活させた。生成したポリエチレンを濾過乾燥し、重合活性を求めたところ51×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例1-2
 予備実験4で調製したポリメチルアルミノキサン組成物のトルエン溶液を実施例1と同様に熱処理を行い、固形状物を析出させた。その後、n-ヘキサンによる洗浄を行わずに直接反応液の粒度分布測定を行った。マスターサイザー2000 Hydro Sにはトルエンを溶剤として用いた。その結果、加熱4時間の時点で体積基準のメジアン径d(0.5)14.5μm(図3参照)、加熱8時間の時点で体積基準のメジアン径d(0.5)14.6μm(図4参照)の粒径を有する粒子形状であった。
 尚、実施例1では、乾燥固体状ポリメチルアルミノキサン組成物について、粒度分布評価を行い、体積基準のメジアン径d(0.5) 9.4μm、均一性0.296の結果を得たが、本実施例では、乾燥することなく、固体状ポリメチルアルミノキサン組成物のトルエン分散物の粒度分布評価試験を行った。粒度分布におけるメジアン径d(0.5)が10μmを超えているが、これは、乾燥していない固体状ポリメチルアルミノキサン組成物のトルエン分散物中の固体状ポリメチルアルミノキサン組成物が膨潤しているためと考えられる。
実施例2
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験3において調製した溶液状ポリメチルアルミノキサン組成物(Al/O=1.25)を用いたこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で72%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、10.5mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.3wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 28.3μm、均一性は0.339であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は17.6m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.2mol%、0.6mol%と低い値であった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は34×106g-PE/mol-Zr・atm・hrであった。
 得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例3
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験2において調製したポリメチルアルミノキサン組成物(Al/O=1.30)を用いたこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用したポリメチルアルミノキサン組成物のアルミニウム原子基準で65%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、11.5mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、38.5wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 30.9μm、均一性は0.313であった(図5参照)。
(c) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.4mol%、1.4mol%と低い値であった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は33×106g-PE/mol-Zr・atm・hrであった。
 得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例4
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験2で調製したポリメチルアルミノキサン組成物のトルエン溶液の100℃加熱時間を16時間としたこと以外は実施例3と同様に固体ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で75%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、11.0mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.2wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 28.7μm、均一性は0.422であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は21.1m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.3mol%、1.2mol%と低い値であった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は30×106g-PE/mol-Zr・atm・hrであった。
 得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例5
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験1において調製した溶液状ポリメチルアルミノキサン組成物(Al/O=1.40)を用いたこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で54.6%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、11.5mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、38.4wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 10.3μm、均一性は0.366であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は18.3m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.5mol%、1.5mol%と低い値であった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は38×106g-PE/mol-Zr・atm・hrであった。
 得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例6
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験1において調製した溶液状ポリメチルアルミノキサン組成物(Al/O=1.40)を用い、100℃加熱時間を16時間としたこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で62%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、12.0mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.1wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) は8.2μm、均一性は0.345であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は16.8m2/mmol-Alであった。
(3) エチレン重合評価
1. ビス(シクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は40×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
2. ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロライドを用いた重合
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)2.と同様に重合評価を実施したところ、重合活性は135×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例7
 予備実験6においてアセトフェノンを用いて調製した溶液状ポリメチルアルミノキサン組成物(Al/O=1.39)を用いたこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で54.8%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、11.8mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.1wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 6.2μm、均一性は0.300であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は13.2m2/mmol-Alであった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は37×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例8 (濃縮によりトリメチルアルミニウム含有量を低下させた場合)
 予備実験7において調製した溶液状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物を調製した。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で70.0%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、10.5mol%であった。
(2) 固体状ポリアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、40.2wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5)42.8μm、均一性は0.322であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は20.1m2/mmol-Alであった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は33×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例9 (n-ヘキサン添加時間の影響)
 n-ヘキサンを60分かけて添加したこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物の合成を行った。乾燥固体状ポリメチルアルミノキサン組成物の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で97.4%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、8.8mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、38.2wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 10.1μm、均一性は0.290であった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は20.8m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.11mol%、0.42mol%と極めて低い値であった。
(3) エチレン重合評価
 上記で合成した固体状ポリメチルアルミノキサン組成物を用いたこと以外は実施例1の(3)1.と同様に重合評価を実施したところ、重合活性は66×106g-PE/mol-Zr・atm・hrであった。得られたポリマーはさらさらした微粒子状で、重合後の反応器への付着がないものであった。
実施例10 (加熱時間の影響)
 予備実験4で調製した溶液状ポリメチルアルミノキサン組成物を用い、実施例1に示した条件下において加熱時間の影響について検討した。測定した固体析出率の結果を図6に示す。
実施例11 (希釈溶液の処理)
 予備実験4で調製した溶液状ポリメチルアルミノキサン組成物をトルエンにてアルミニウム濃度を4.55wt%となるように希釈した。希釈溶液に変化は観られず、クリアな溶液のままであった。この希釈溶液を利用した以外は実施例1と同様に固体状ポリメチルアルミノキサンの組成物合成を行った。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で95.3%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、9.2mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量を測定したところ、37.8wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5)36.7μm、均一性は0.276であった。(図7参照)
比較例1
(1) 固体状ポリメチルアルミノキサン組成物の合成
 加熱処理を実施せずにn-ヘキサンを添加したこと以外は実施例5と同様に固体状ポリメチルアルミノキサン組成物(Al/O=1.40)の合成を行った。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で22%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、12.5mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、37.8wt%-Alであった。
(b) 形状評価
 乾燥固体状メポリチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 330.8μmとの値が得られたが、電子顕微鏡観測を実施したところ形状がバラバラで全く制御されたものではないことが判った。観測した電子顕微鏡写真を図8に示す。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は17.0m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ4.2mol%、15.2mol%であった。
(3) エチレン重合評価
 上記に調製した固体状ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は58×106g-PE/mol-Zr・atm・hrであった。得られた重合体は不定形で、重合後の反応器への重合体付着も多いものであった。
比較例2
(1) 固体状ポリメチルアルミノキサン組成物の合成
 加熱処理を実施せずにn-ヘキサンを添加したこと以外は実施例3(Al/O=1.30)と同様に固体状ポリメチルアルミノキサン組成物の合成を行った。乾燥固体の析出率は使用したポリメチルアルミノキサンのアルミニウム原子基準で31%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、12.2mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、36.0wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 590.2μmとの値が得られたが、比較例1の図8と同じく電子顕微鏡観測を実施したところ形状がバラバラで全く制御されたものではないことが判った。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は16.7m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ2.7mol%、12.5mol%であった。
(3) エチレン重合評価
 上記に調製した固体状ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は40×106g-PE/mol-Zr・atm・hrであった。得られた重合体は不定形で、重合後の反応器への重合体付着も多いものであった。
比較例3
(1) 固体状ポリメチルアルミノキサン組成物の合成
 加熱処理を実施せずにn-ヘキサンを添加したこと以外は実施例2(Al/O=1.25)と同様に固体状ポリメチルアルミノキサン組成物の合成を行った。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で34.4%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、13.1mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、33.6wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 575.2μmとの値が得られたが、比較例1の図8と同じく電子顕微鏡観測を実施したところ形状がバラバラで全く制御されたものではなかった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は17.0m2/mmol-Alであった。
(3) エチレン重合評価
 上記に調製した固体状ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性29×106g-PE/mol-Zr・atm・hrであった。得られた重合体は不定形で、重合後の反応器への重合体付着も多いものであった。また、高温GPCにより求めた分子量は18万で、Mw/Mnは2.6であった。
比較例4
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験4で調製した溶液状ポリメチルアルミノキサン組成物を用い、加熱処理を実施せずにn-ヘキサンを添加したこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物の合成を行った。乾燥固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で47.0%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、11.5mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、36.8wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 508.6μmとの値が得られたが、比較例1の図8と同じく電子顕微鏡観測を実施したところ形状がバラバラで全く制御されたものではなかった。
(c) 比表面積測定
乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は17.6m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ0.8mol%、1.6mol%であった。
(3) エチレン重合評価
 上記に調製した固体状ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は30×106g-PE/mol-Zr・atm・hrであった。得られた重合体は不定形で、重合後の反応器への重合体付着も多いものであった。
比較例5
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験7で調製した溶液状ポリメチルアルミノキサン組成物の加熱処理を実施せずにn-ヘキサンを添加したこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物の合成を行った。固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で24.5%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、12.7mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、38.4wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 317μmとの値が得られたが、比較例1の図8と同じく電子顕微鏡観測を実施したところ形状がバラバラで全く制御されたものではなかった。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は16.5m2/mmol-Alであった。
(3) エチレン重合評価
 上記に調製した固体状ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は36×106g-PE/mol-Zr・atm・hrであった。得られた重合体は不定形で、重合後の反応器への重合体付着も多いものであった。
比較例6
(1) SiO2担持ポリメチルアルミノキサン組成物の合成
 磁気撹拌装置を持つ1Lの四つ口フラスコにトルエン625mlを導入した。次いで、400℃で2時間焼成することにより表面水酸基濃度を1.63wt%としたSiO2(富士シリシア製SiO2 P-10, )を49.9g導入し、攪拌しながら液温を5℃にまで冷却した。これに予備実験1で調製したポリメチルアルミノキサン組成物のトルエン溶液 147.6g(Al/O=1.40, 0.508mol-Al)を60分かけてゆっくりと添加した。これをゆっくりと65℃にまで加熱昇温し、その温度で60分の熟成を行った。反応液の上澄みをデカンテーションにより除去し、更にトルエン500mlで5回の洗浄を行った。得られたSiO2担持ポリメチルアルミノキサン組成物のスラリーを60℃で減圧下に乾燥して、SiO2担持ポリメチルアルミノキサン組成物の乾燥固体を71.77g得た。
(2) の分析
(a) アルミニウム含量
 乾燥SiO2担持ポリメチルアルミノキサン組成物中のアルミニウム含量をICP分析により測定したところ、15.3wt%-Alであった。このアルミニウム含有量からSiO2担持ポリメチルアルミノキサン組成物の固体として回収されたアルミニウム量は80%であった。
(b) 形状評価
乾燥SiO2担持ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 41.8μm、均一性は0.481であった(図9参照)。
(c) 比表面積測定
乾燥SiO2担持ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は51.0m2/mmol-Alであった。
(3) エチレン重合評価
 上記に調製した乾燥SiO2担持ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は9×106g-PE/mol-Zr・atm・hrと低活性であった。得られたポリマーは微粒子状で、重合後の反応器への付着は抑制されていた。また、高温GPCにより求めた分子量は16万で、Mw/Mnは3.0であった。
比較例7
(1) 乾燥SiO2担持ポリメチルアルミノキサン組成物の合成
 磁気撹拌装置を持つ1Lの四つ口フラスコにトルエン625mlを導入した。次いで、400℃で2時間焼成することにより表面水酸基濃度を1.63wt%としたSiO2(富士シリシア製SiO2 P-10)を49.9g導入し、攪拌しながら液温を5℃にまで冷却した。これに予備実験4で調製したポリメチルアルミノキサン組成物のトルエン溶液 151.73g(Al/O=1.20, 0.508mol-Al)を60分かけてゆっくりと添加した。これをゆっくりと65℃にまで加熱昇温し、その温度で60分の熟成を行った。熟成時間が進むに連れて溶液の粘性が増大し、熟成終了後のSiO2担持ポリメチルアルミノキサン組成物のデカンテーション速度が非常に遅く、比較例4と同様な操作を行うことが出来なかった。そこで、スラリーを100ml取得し、これにトルエン添加により同様な効率となるように洗浄を行った。得られたSiO2担持ポリメチルアルミノキサン組成物のスラリーを60℃で減圧下に乾燥して、SiO2担持ポリメチルアルミノキサン組成物の乾燥固体を74.0g得た。
(2) SiO2担持メチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥SiO2担持ポリメチルアルミノキサン組成物中のアルミニウム含量をICP分析により測定したところ、16wt%-Alであった。このアルミニウム含有量からSiO2担持ポリメチルアルミノキサン組成物の固体として回収されたアルミニウム量は86.3%であった。
(b) 形状評価
 乾燥SiO2担持ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 44.5μm、均一性は0.577であった。
(c) 比表面積測定
 乾燥SiO2担持ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、Al 1mmol当りの比表面積は55.1m2/mmol-Alであった。
(3) エチレン重合評価
 上記に調製したSiO2担持ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は17.0×106g-PE/mol-Zr・atm・hrと比較例6に示したSiO2担持ポリメチルアルミノキサン組成物に比べて高活性であったが、依然として低活性のままであった。得られたポリマーは微粒子状で、重合後の反応器への付着は抑制されていた。
比較例8
(1) 固体状ポリメチルアルミノキサン組成物の合成(特許文献16対応)
 予備実験7で調製した溶液状ポリメチルアルミノキサン組成物を用いて特公平7-42301記載実施例1と同様に固体状ポリメチルアルミノキサン組成物の合成を行った。以下に、具体的な操作について述べる。まず、予備実験7で調製した溶液状ポリメチルアルミノキサン組成物をトルエン追加によりアルミニウム濃度を4.10wt%に調整し、500mlのナス型フラスコにこの重量が140.0gであった。この溶液を攪拌しながら、体積比で1.5倍量の乾燥n-デカンを滴下ロートより30分間かけて滴下した。希釈溶液状ポリメチルアルミノキサン組成物はn-デカンを約30ml添加した時点より濁り始め、滴下終了時には白濁状態であった。これを攪拌しながら、4Torrに減圧しつつ、温度を35℃に3時間かけて昇温した。この溶液をガラスフィルターにより濾過し、液相部を除去することにより、微粒子状ポリメチルアルミノキサン組成物を得た。得た固体はn-デカンを含んでおり湿った状態であったため、フルバキューム下に60℃で2時間、更に100℃で2時間乾燥することにより固体を乾燥した。固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で63.5%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、13.2mol%であった。
(2) 固体状メチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状メチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、34.9wt%-Alであった。
(b) 形状評価
 乾燥固体状メチルアルミノキサン組成物のマイクロトラックによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 12.5μm、均一性は3.43との値が得られた(図10参照)。さらに、乾燥時に粉砕の可能性があったため、未乾燥品を測定したところ体積基準のメジアン径d(0.5) 22.2μm、均一性は0.778との値が得られた(図11参照)。本固体状ポリメチルアルミノキサン組成物は比較的脆いことが推定される。
(c) 比表面積測定
 乾燥固体状ポリメチルアルミノキサン組成物の比表面積測定を行ったところ、アルミニウム原子 1mmol当りの比表面積は18.8m2/mmol-Alであった。
(d) 溶媒への溶解割合
 乾燥固体状ポリメチルアルミノキサン組成物のn-ヘキサンとトルエンへの溶解割合を求めたところ、それぞれ8.3mol%、23.6mol%と非常によく溶解した。
(3) エチレン重合評価
 上記に調製した固体状ポリメチルアルミノキサン組成物を用いた以外は実施例1の(3)1.記載の方法と同様に重合評価を実施したところ、重合活性は34×106g-PE/mol-Zr・atm・hrであった。重合体形状は不定形で、溶液重合と変らないもので、重合後の反応器への重合体付着も抑制されてはいなかった。
比較例9
(1) 固体状ポリメチルアルミノキサン組成物の合成
 予備実験5で調製した溶液状ポリメチルアルミノキサン組成物を加熱処理せずにn-ヘキサンを添加したこと以外は実施例1と同様に固体状ポリメチルアルミノキサン組成物合成を行った。固体の析出率は使用した溶液状ポリメチルアルミノキサン組成物のアルミニウム原子基準で63.8%であった。得られた固体状ポリメチルアルミノキサン組成物のMe(TMAL)量を1H-NMRより求めたところ、6.0mol%であった。
(2) 固体状ポリメチルアルミノキサン組成物の分析
(a) アルミニウム含量
 乾燥固体状ポリメチルアルミノキサン組成物中のアルミニウム含量をキレート滴定により測定したところ、36.0wt%-Alであった。
(b) 形状評価
 乾燥固体状ポリメチルアルミノキサン組成物のマスターサイザー2000 Hydro Sによる粒度分布評価を行ったところ、体積基準のメジアン径d(0.5) 147.5μm、均一性は0.989との値との値が得られたが、粒度分布が制御されたものとは言えないものであった(図12参照)。
 本発明は、ポリオレフィン類の製造技術分野において有用である。

Claims (15)

  1. (i) アルミニウム含有量が36質量%から41質量%の範囲にあり、かつ
    (ii) メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率が12モル%以下である、
    固体状ポリメチルアルミノキサン組成物。
  2. 粒子状であり、体積基準のメジアン径が5~50μmの範囲である請求項1に記載の組成物。
  3. 25℃におけるn-ヘキサンに対する溶解度が0~2モル%であり、かつ25℃におけるトルエンに対する溶解度が0~2モル%である請求項1または2に記載の組成物。
  4. 下記式で示される均一性が0.45以下である請求項1~3のいずれかに記載の組成物。
             均一性 = ΣXi|d(0.5) - Di|/d(0.5)ΣXi
    (ここで、Xiは粒子iのヒストグラム値、d(0.5)は体積基準のメジアン径、Diは粒子iの体積基準径を示す。)
  5. 比表面積が、10~25m2/mmol-Alの範囲である請求項1~4のいずれかに記載の組成物。
  6. 以下の一般式(I)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する、請求項1~5のいずれかに記載の組成物。
           -[(Me)AlO]n-                    (I)
                   (式中、nは10~50の整数を示す。) 
  7. SiO2を含有しない、請求項1~6のいずれかに記載の組成物。
  8. (a)下記一般式(II)で示される単位を含むポリメチルアルミノキサンとトリメチルアルミニウムを含有する芳香族系炭化水素溶液(以下、溶液状ポリメチルアルミノキサン組成物と称す)を加熱して、ポリメチルアルミノキサンとトリメチルアルミニウムを含有する固体状ポリメチルアルミノキサン組成物を析出させる工程を含む、請求項1~7のいずれかに記載の固体状ポリメチルアルミノキサン組成物の製造方法。
           -[(Me)AlO]n-                    (II)
                   (式中、nは1~50の整数を示す。) 
  9. 前記加熱前の溶液状ポリメチルアルミノキサン組成物は、メチル基の総モル数に対するトリメチルアルミニウム部位に由来するメチル基のモル分率が15モル%以下である、請求項8に記載の製造方法。
  10. 工程(a)において、
    (i) 80℃~200℃の範囲の加熱温度、及び
    (ii) 5分間以上24時間未満の加熱時間から、
    固体状ポリメチルアルミノキサン組成物を析出させるに適した加熱温度及び加熱時間を選択する、請求項8または9に記載の製造方法。
  11. 工程(a)で原料として用いる溶液状ポリメチルアルミノキサン組成物が、アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物を熱分解することにより得られるものである、請求項8~10のいずれかに記載の製造方法。
  12. 前記アルミニウム-酸素-炭素結合を有するアルキルアルミニウム化合物は、トリメチルアルミニウムと含酸素有機化合物との反応により調製されるものである、請求項11に記載の製造方法。
  13. 前記含酸素有機化合物が、一般式(III)で示される脂肪族または芳香族カルボン酸である、請求項12に記載の製造方法。
                R1-(COOH)n   (III)
    (式中、R1は、C1~C20の直鎖あるいは分岐したアルキル基、アルケニル基、アリール基の炭化水素基を表し、nは1~5の整数を表す。) 
  14. 請求項1~7のいずれかに記載の固体状ポリメチルアルミノキサン組成物と下記一般式(IV)で表される遷移金属化合物を触媒成分として含有するオレフィン類の重合触媒。
                MR5R6R7R8      (IV)
    (式中、Mは遷移金属元素を示し、R5,R6,R7,R8は一緒になって、シクロアルカジエニル骨格を有する有機基、アルキル基、アルコシキ基、アリーロキシ基、アルキルシリル基、アルキルアミド基、アルキルイミド基、アルキルアミノ基、アルキルイミノ基、ハロゲン原子を示す。)
  15. 請求項14に記載の触媒を用いてオレフィン類を重合することを含む、ポリオレフィン類の製造方法。
PCT/JP2009/006019 2008-11-11 2009-11-11 固体状ポリメチルアルミノキサン組成物およびその製造方法 WO2010055652A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/128,632 US8404880B2 (en) 2008-11-11 2009-11-11 Solid polymethylaluminoxane composition and method for manufacturing same
KR1020167017079A KR101660685B1 (ko) 2008-11-11 2009-11-11 고체 형태 폴리메틸알루미녹산 조성물 및 이의 제조방법
CN200980144954.7A CN102239187B (zh) 2008-11-11 2009-11-11 固体状聚甲基铝氧烷组合物及其制造方法
EP09825906.2A EP2360191B2 (en) 2008-11-11 2009-11-11 Solid polymethylaluminoxane composition and process for producing same
JP2010537691A JP5611833B2 (ja) 2008-11-11 2009-11-11 固体状ポリメチルアルミノキサン組成物およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008289211 2008-11-11
JP2008-289211 2008-11-11

Publications (1)

Publication Number Publication Date
WO2010055652A1 true WO2010055652A1 (ja) 2010-05-20

Family

ID=42169797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006019 WO2010055652A1 (ja) 2008-11-11 2009-11-11 固体状ポリメチルアルミノキサン組成物およびその製造方法

Country Status (6)

Country Link
US (1) US8404880B2 (ja)
EP (1) EP2360191B2 (ja)
JP (1) JP5611833B2 (ja)
KR (2) KR101648997B1 (ja)
CN (1) CN102239187B (ja)
WO (1) WO2010055652A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059990A1 (en) * 2010-05-11 2013-03-07 Tosoh Finechem Corporation Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
JP2013049783A (ja) * 2011-08-31 2013-03-14 Mitsui Chemicals Inc オレフィン重合用触媒、エチレン系重合体の製造方法ならびに該エチレン系重合体から得られる延伸成形体。
WO2013146337A1 (ja) 2012-03-28 2013-10-03 東ソー・ファインケム株式会社 小粒径固体状ポリメチルアルミノキサン組成物の製造方法
WO2014123212A1 (ja) 2013-02-08 2014-08-14 三井化学株式会社 固体状ポリアルミノキサン組成物、オレフィン重合用触媒、オレフィン重合体の製造方法、および固体状ポリアルミノキサン組成物の製造方法
JP2014224188A (ja) * 2013-05-16 2014-12-04 三井化学株式会社 オレフィン重合用固体触媒成分およびそれを用いたオレフィン系重合体の製造方法
WO2017090585A1 (ja) * 2015-11-26 2017-06-01 東ソー・ファインケム株式会社 Al2O3を含有する固体状MAO組成物およびその製造方法
US9714306B2 (en) 2014-03-28 2017-07-25 Mitsui Chemicals, Inc. Olefin resin and method for producing same
WO2017175766A1 (ja) * 2016-04-05 2017-10-12 東ソー・ファインケム株式会社 固体状pmao組成物およびその製造方法
JP2018523005A (ja) * 2015-08-14 2018-08-16 アランセオ・ネザーランズ・ベー・フェー 触媒系
JP2018149537A (ja) * 2017-03-14 2018-09-27 三井化学株式会社 オレフィン多量化用触媒組成物の製造方法およびその触媒組成物存在下で行うオレフィン多量体の製造方法
WO2018179619A1 (ja) 2017-03-27 2018-10-04 三井化学株式会社 4-メチル-1-ペンテン系重合体、樹脂組成物および成形体
JP2018162384A (ja) * 2017-03-27 2018-10-18 東ソー株式会社 ポリエチレン製造用触媒及びポリエチレンの製造方法
US10124326B2 (en) 2014-09-30 2018-11-13 Sumitomo Chemical Company, Limited Modified solid polyalkylaluminoxane and catalyst for olefin oligomerization reaction
WO2019198694A1 (ja) 2018-04-11 2019-10-17 三井化学株式会社 4-メチル-1-ペンテン系重合体粒子および4-メチル-1-ペンテン系樹脂の製造方法
WO2020116368A1 (ja) 2018-12-04 2020-06-11 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
WO2020120935A1 (en) 2018-12-10 2020-06-18 Scg Chemicals Co., Ltd. Catalytic compounds for use in olefins polymerization
JP2020138944A (ja) * 2019-02-28 2020-09-03 国立大学法人広島大学 高純度固体アルミノキサン及びその製造方法
US10773246B2 (en) 2015-01-06 2020-09-15 Scg Chemicals Co., Ltd. SiO2-layered double hydroxide microspheres and methods of making them
WO2020189676A1 (ja) 2019-03-19 2020-09-24 三井化学株式会社 プロピレン系樹脂組成物、成形体およびプロピレン重合体
US10888854B2 (en) 2015-10-06 2021-01-12 Oxford University Innovation Limited Catalyst comprising permethylpentalene ligands
WO2021025141A1 (ja) 2019-08-08 2021-02-11 株式会社プライムポリマー プロピレン系重合体組成物および成形体
US11053269B2 (en) 2016-05-12 2021-07-06 Scg Chemicals Co., Ltd. Unsymmetrical metallocene catalysts and uses thereof
US11248069B2 (en) 2016-03-03 2022-02-15 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer, resin composition and molded article
WO2022050208A1 (ja) 2020-09-01 2022-03-10 三井化学株式会社 樹脂組成物および成形体
WO2022210843A1 (ja) 2021-03-31 2022-10-06 三井化学株式会社 エチレン-α-オレフィン共重合体、熱可塑性樹脂組成物、フィルムおよび積層体
WO2022210845A1 (ja) 2021-03-31 2022-10-06 三井化学株式会社 エチレン系樹脂組成物および成形体
WO2022210844A1 (ja) 2021-03-31 2022-10-06 三井化学株式会社 エチレン-α-オレフィン共重合体、熱可塑性樹脂組成物、およびフィルム
WO2022234293A1 (en) 2021-05-07 2022-11-10 SCG Chemicals Public Company Limited Polymerisation of propylene
WO2022234292A1 (en) 2021-05-07 2022-11-10 SCG Chemicals Public Company Limited Catalysts
WO2023145924A1 (ja) 2022-01-31 2023-08-03 三井化学株式会社 エチレン系重合体粒子、エチレン系重合体粒子の製造方法、延伸成形体、延伸成形体の製造方法、およびその用途

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539873A (zh) * 2012-07-11 2014-01-29 苏州亚培克生物科技有限公司 固体活化剂体系及其制备方法
GB201407000D0 (en) 2014-04-17 2014-06-04 Isis Innovation Catalysts
SG11201705079RA (en) 2015-01-06 2017-07-28 Scg Chemicals Co Ltd SIO<sb>2</sb>-LAYERED DOUBLE HYDROXIDE MICROSPHERES AND THEIR USE AS CATALYST SUPPORTS IN ETHYLENE POLYMERISATION
JP6968103B2 (ja) 2016-05-24 2021-11-17 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップNouryon Chemicals International B.V. アルミノキサンを調製する方法
GB201610464D0 (en) * 2016-06-15 2016-07-27 Scg Chemicals Co Ltd Catalytic compositions
SG11202001743RA (en) * 2017-10-31 2020-05-28 Exxonmobil Chemical Patents Inc Toluene free silica supported single-site metallocene catalysts from in-situ supported alumoxane formation in aliphatic solvents
US11161922B2 (en) 2017-10-31 2021-11-02 Exxonmobil Chemical Patents Inc. Toluene free silica supported single-site metallocene catalysts from in-situ supported MAO formation in aliphatic solvents
US10889663B2 (en) 2017-11-29 2021-01-12 Exxonmobil Chemical Patents Inc. Asymmetric ANSA-metallocene catalyst compounds for producing polyolefins having a broad molecular weight distribution
US10882925B2 (en) 2017-11-29 2021-01-05 Exxonmobil Chemical Patents Inc. Catalysts that produce polyethylene with broad, bimodal molecular weight distribution
WO2019108977A1 (en) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
WO2019108327A1 (en) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Films comprising polyethylene composition
US11952480B2 (en) 2018-02-05 2024-04-09 Exxonmobil Chemical Patents Inc. Enhanced processability of LLDPE by addition of ultra-high molecular weight density polyethylene
WO2019156968A1 (en) 2018-02-07 2019-08-15 Exxonmobil Chemical Patents Inc. Supported catalysts systems and polymerization processes for using the same
WO2019160710A1 (en) 2018-02-19 2019-08-22 Exxonmobil Chemical Patents Inc. Catalysts, catalyst systems, and methods for using the same
WO2019173605A1 (en) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Ethylene-propylene branched copolymers as viscosity modifiers with enhanced fuel economy
US11578155B2 (en) 2018-03-08 2023-02-14 Exxonmobil Chemical Patents Inc. Ethylene-propylene linear copolymers as viscosity modifiers
CN112805329B (zh) 2018-08-29 2024-02-02 埃克森美孚化学专利公司 通过在并联方法中采用vtp和hmp催化剂体系制备具有增强弹性的聚合物组合物的方法
WO2020146375A2 (en) 2019-01-08 2020-07-16 Exxonmobil Chemical Patents Inc Olefin polymerization processes featuring in situ blending of an oil extension
WO2020205708A1 (en) 2019-04-01 2020-10-08 Exxonmobil Research And Engineering Company Processes for polymerizing alpha-olefins, internal olefins and compositions thereof
WO2020208128A1 (en) 2019-04-12 2020-10-15 Borealis Ag Catalyst system
EP4007780A4 (en) 2019-08-02 2022-09-14 ExxonMobil Chemical Patents Inc. METALLOCENES AND RELATED METHODS
EP4017887A4 (en) 2019-08-22 2023-01-18 ExxonMobil Chemical Patents Inc. ISOTACTIC PROPYLENE HOMOPOLYMERS AND COPOLYMERS MADE WITH C1-SYMMETRIC METALLOCENE CATALYSTS
EP4021948A1 (en) 2019-08-27 2022-07-06 Chevron Oronite Company LLC Ethylene copolymers and use as viscosity modifiers
WO2021066550A1 (ko) * 2019-09-30 2021-04-08 주식회사 엘지화학 하이드록시기 함유 화합물을 이용한 폴리알킬알루미녹산 함유 용액의 정제방법 및 이를 이용한 촉매 조성물
US11649256B2 (en) 2019-10-11 2023-05-16 Exxonmobil Chemical Patents Inc. Catalysts for olefin polymerization
KR20220101715A (ko) 2019-11-26 2022-07-19 엑손모빌 케미칼 패턴츠 인코포레이티드 지지 촉매를 제조하기 위한 시스템 및 방법
US11718635B2 (en) 2019-12-16 2023-08-08 Exxonmobil Chemical Patents Inc. Iron bis(imino) aryl catalysts and methods thereof
EP4110835A1 (en) 2020-02-24 2023-01-04 ExxonMobil Chemical Patents Inc. Lewis base catalysts and methods thereof
WO2021188337A1 (en) 2020-03-19 2021-09-23 Exxonmobil Chemical Patents Inc. Pentavalent dimeric group 6 transition metal complexes and methods for use thereof
WO2021202091A1 (en) 2020-03-30 2021-10-07 Exxonmobil Chemical Patents Inc. Comb-block copolymers and methods thereof
US20230167254A1 (en) 2020-05-01 2023-06-01 Exxonmobil Chemical Patents Inc. Linear Low Density Polyethylene for Film Applications
WO2021222280A2 (en) 2020-05-01 2021-11-04 Exxonmobil Chemical Patents Inc. Linear low density polyethylene for film applications
WO2021247244A2 (en) 2020-06-03 2021-12-09 Exxonmobil Chemical Patents Inc. Process for production of thermoplastic vulcanizates using supported catalyst systems and compositions made therefrom
WO2021262838A1 (en) 2020-06-26 2021-12-30 Exxonmobil Chemical Patents Inc. Copolymers composed of ethylene, a-olefin, non-conjugated diene, and substituted styrene and articles therefrom
WO2021262842A1 (en) 2020-06-26 2021-12-30 Exxonmobil Chemical Patents Inc. COPOLYMERS OF ETHYLENE, α-OLEFIN, NON-CONJUGATED DIENE, AND ARYL-SUBSTITUTED CYCLOALKENE, METHODS TO PRODUCE, BLENDS, AND ARTICLES THEREFROM
JP2023538006A (ja) 2020-08-13 2023-09-06 エクソンモービル ケミカル パテンツ インコーポレイテッド 遷移金属ビス(フェノラート)触媒錯体を使用して得られる環含有ポリマー組成物およびその製造方法
EP4208487A1 (en) 2020-09-03 2023-07-12 SABIC Global Technologies B.V. Ultra-high molecular weight polyethylene polymers having improved processability and morpology
CN116323694A (zh) 2020-09-30 2023-06-23 埃克森美孚化学专利公司 双(杂环-醇盐)路易斯碱催化剂及其方法
US20230322972A1 (en) 2020-10-08 2023-10-12 Exxonmobil Chemical Patents Inc. Supported Catalyst Systems and Processes for Use Thereof
US11919981B2 (en) 2020-10-22 2024-03-05 Exxonmobil Chemical Patents Inc. Monocyclopentadienyl pyridyl hydroxyl amine catalyst compounds and systems for olefin polymerization
US11814460B2 (en) 2020-10-22 2023-11-14 Exxonmobil Chemical Patents Inc. Pyridyl hydroxyl amine catalyst compounds and systems for Olefin Polymerization
CN117043198A (zh) 2020-10-22 2023-11-10 埃克森美孚化学专利公司 多齿路易斯碱催化剂及其使用方法
WO2022093814A1 (en) 2020-10-28 2022-05-05 Exxonmobil Chemical Patents Inc. Non-aromatic hydrocarbon soluble olefin polymerization catalysts and use thereof
EP4247825A1 (en) 2020-11-23 2023-09-27 ExxonMobil Chemical Patents Inc. Metallocene polypropylene prepared using aromatic solvent-free supports
WO2022108971A1 (en) 2020-11-23 2022-05-27 Exxonmobil Chemical Patents Inc. Toluene free supported methylalumoxane precursor
US20240018278A1 (en) 2020-11-23 2024-01-18 ExxonMobil Technology and Engineering Company-Chem Improved Process to Prepare Catalyst from In-Situ Formed Alumoxane
EP4247821A1 (en) 2020-11-23 2023-09-27 ExxonMobil Chemical Patents Inc. Non-hydrolytic preparation of smao and catalysts
JP2024518830A (ja) 2021-05-14 2024-05-07 エクソンモービル ケミカル パテンツ,インコーポレイティド 粘度調整剤としてのエチレン-プロピレン分岐コポリマー
EP4355484A1 (en) 2021-06-15 2024-04-24 ExxonMobil Chemical Patents Inc. Method to activate carbene and carbyne complexes and their use in metathesis polymerization
EP4396246A1 (en) 2021-09-02 2024-07-10 ExxonMobil Chemical Patents Inc. C1 symmetric metallocene catalysts tailored for production of vinyl-terminated polypropylene oligomers and macromonomers
WO2023044215A1 (en) 2021-09-14 2023-03-23 Exxonmobil Chemical Patents Inc. Catalyst feeder and processes thereof
EP4426804A1 (en) 2021-11-05 2024-09-11 ExxonMobil Chemical Patents Inc. Polypropylene viscosity modifiers and lubricating oils thereof
CN118696109A (zh) 2021-11-05 2024-09-24 雪佛龙奥伦耐有限责任公司 具有基于间规立构的丙烯的乙烯-丙烯共聚物的粘度改性剂的性能改进的润滑油组合物
EP4426756A1 (en) 2021-11-05 2024-09-11 ExxonMobil Chemical Patents Inc. Syndiotactic propylene-based ethylene-propylene copolymers
WO2023177956A1 (en) 2022-03-14 2023-09-21 Exxonmobil Chemical Patents Inc. Metal bis(imino) aryl compounds and methods thereof
WO2023177957A1 (en) 2022-03-14 2023-09-21 Exxonmobil Chemical Patents Inc. Metal-containing bis(imino) per-substituted aryl compounds and methods thereof
WO2023250268A1 (en) 2022-06-24 2023-12-28 Exxonmobil Chemical Patents Inc. Constrained geometry metal-ligand complexes and use thereof in olefin polymerization
WO2024072545A1 (en) 2022-09-29 2024-04-04 Exxonmobil Chemical Patents Inc. Foamable branched polypropylene compositions and foamed products produced therefrom
FR3140775A1 (fr) 2022-10-17 2024-04-19 IFP Energies Nouvelles Nouvelle composition catalytique à base de chrome ou de titane supporté
WO2024167619A1 (en) 2023-02-08 2024-08-15 ExxonMobil Technology and Engineering Company Catalysts for copolymerizations
WO2024173956A1 (en) 2023-02-14 2024-08-22 ExxonMobil Technology and Engineering Company Metallocene catalyst compounds having ferrocenyl substituents

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819309A (ja) 1981-07-09 1983-02-04 ヘキスト・アクチエンゲゼルシヤフト ポリオレフインの製造法
JPS6035005A (ja) 1983-05-25 1985-02-22 アトケム オレフィン重合触媒系
JPS60260602A (ja) 1984-06-07 1985-12-23 Idemitsu Kosan Co Ltd ポリオレフィンの製造方法
JPS62234009A (ja) 1986-04-03 1987-10-14 Shiseido Co Ltd 固形粉末化粧料の成型方法
JPS6389506A (ja) 1986-10-01 1988-04-20 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS63178108A (ja) 1986-09-24 1988-07-22 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS63198691A (ja) * 1987-02-14 1988-08-17 Mitsui Petrochem Ind Ltd 微粒子状アルミノオキサン、その製法およびその用途
JPS63234009A (ja) 1986-10-27 1988-09-29 Ihara Chem Ind Co Ltd メタクリル系樹脂組成物
JPS6466214A (en) 1987-09-08 1989-03-13 Mitsui Petrochemical Ind Production of alpha-olefin polymer
JPH01207355A (ja) 1987-10-26 1989-08-21 Texas Alkyls Inc アルミノキサンの製造法
JPH01315407A (ja) 1988-02-26 1989-12-20 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH0222308A (ja) 1988-07-12 1990-01-25 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH02308802A (ja) * 1989-05-25 1990-12-21 Idemitsu Kosan Co Ltd アルミノキサンの乾燥方法およびポリマーの製造方法
JPH0742301A (ja) 1993-07-30 1995-02-10 Mitsui Constr Co Ltd 配管用壁材
JPH0770144A (ja) 1993-02-12 1995-03-14 Phillips Petroleum Co 固体有機アルミノキシ生成物の製造方法
JPH07300486A (ja) 1994-04-15 1995-11-14 Phillips Petroleum Co 固体オルガノアルミノキシ生成物の製造方法
JPH08319309A (ja) 1995-05-26 1996-12-03 Albemarle Corp アルミノキサネート組成物
WO1997023288A1 (en) 1995-12-22 1997-07-03 Akzo Nobel N.V. Polyalkylaluminoxane compositions formed by non-hydrolytic means
JP2000095810A (ja) 1997-09-03 2000-04-04 Mitsui Chemicals Inc 触媒担体用固体状アルミノキサンおよびその製造方法、ならびにその用途
JP2001502714A (ja) * 1996-10-25 2001-02-27 アクゾ ノーベル ナムローゼ フェンノートシャップ 非加水分解的手段の使用により形成された炭化水素可溶性アルキルアルミノキサン組成物
JP2005263749A (ja) * 2004-03-22 2005-09-29 Tosoh Finechem Corp ポリメチルアルミノキサン調製物、その製造方法、重合触媒およびオレフィン類の重合方法
JP2008289211A (ja) 2007-05-15 2008-11-27 Shindengen Electric Mfg Co Ltd 系統連系インバータ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118625B2 (ja) 1986-07-30 1995-12-18 日本無線株式会社 斜め電極指弾性表面波フイルタ
JPS6427355A (en) 1987-04-09 1989-01-30 Ricoh Kk Private branch of exchange
US5308815A (en) 1991-07-26 1994-05-03 Ethyl Corporation Heterogeneous methylaluminoxane catalyst system
US5235081A (en) 1992-03-18 1993-08-10 Ethyl Corporation Method of removing gel forming materials from methylaluminoxanes
US5728855A (en) 1995-10-19 1998-03-17 Akzo Nobel Nv Modified polyalkylaluminoxane composition formed using reagent containing carbon-oxygen double bond
KR100297121B1 (ko) 1997-09-03 2001-10-26 나까니시 히로유끼 촉매담체용고체상알루미녹산,촉매담체용고체상알루미녹산제조방법,및그용도
US6518445B1 (en) 2000-12-15 2003-02-11 Albemarle Corporation Methylaluminoxane compositions, enriched solutions of such compositions, and the preparation thereof
EP1352913B1 (en) * 2002-04-08 2016-06-01 Tosoh Finechem Corporation Preparation of modified methylaluminoxane olefin polymerisation catalyst component
JP3914502B2 (ja) * 2002-04-08 2007-05-16 東ソー・ファインケム株式会社 オレフィン重合用助触媒およびオレフィン重合触媒用修飾メチルアルミノキサンの製造方法
MXPA04010513A (es) * 2002-04-23 2005-07-14 Composite Tech Corp Cable reforzado de nucleo compuesto de conductor de aluminio y metodo de fabricacion.

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819309A (ja) 1981-07-09 1983-02-04 ヘキスト・アクチエンゲゼルシヤフト ポリオレフインの製造法
JPS6035005A (ja) 1983-05-25 1985-02-22 アトケム オレフィン重合触媒系
JPS60260602A (ja) 1984-06-07 1985-12-23 Idemitsu Kosan Co Ltd ポリオレフィンの製造方法
JPS62234009A (ja) 1986-04-03 1987-10-14 Shiseido Co Ltd 固形粉末化粧料の成型方法
JPS63178108A (ja) 1986-09-24 1988-07-22 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS6389506A (ja) 1986-10-01 1988-04-20 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS63234009A (ja) 1986-10-27 1988-09-29 Ihara Chem Ind Co Ltd メタクリル系樹脂組成物
JPS63198691A (ja) * 1987-02-14 1988-08-17 Mitsui Petrochem Ind Ltd 微粒子状アルミノオキサン、その製法およびその用途
JPH0742301B2 (ja) 1987-02-14 1995-05-10 三井石油化学工業株式会社 微粒子状アルミノオキサン、その製法およびその用途
JPS6466214A (en) 1987-09-08 1989-03-13 Mitsui Petrochemical Ind Production of alpha-olefin polymer
JPH01207355A (ja) 1987-10-26 1989-08-21 Texas Alkyls Inc アルミノキサンの製造法
JPH01315407A (ja) 1988-02-26 1989-12-20 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH0222308A (ja) 1988-07-12 1990-01-25 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
JPH02308802A (ja) * 1989-05-25 1990-12-21 Idemitsu Kosan Co Ltd アルミノキサンの乾燥方法およびポリマーの製造方法
JPH0770144A (ja) 1993-02-12 1995-03-14 Phillips Petroleum Co 固体有機アルミノキシ生成物の製造方法
JPH0742301A (ja) 1993-07-30 1995-02-10 Mitsui Constr Co Ltd 配管用壁材
JPH07300486A (ja) 1994-04-15 1995-11-14 Phillips Petroleum Co 固体オルガノアルミノキシ生成物の製造方法
JPH08319309A (ja) 1995-05-26 1996-12-03 Albemarle Corp アルミノキサネート組成物
WO1997023288A1 (en) 1995-12-22 1997-07-03 Akzo Nobel N.V. Polyalkylaluminoxane compositions formed by non-hydrolytic means
JP2000505785A (ja) 1995-12-22 2000-05-16 アクゾ ノーベル ナムローゼ フェンノートシャップ 非加水分解的手段により形成されるポリアルキルアルミノキサン組成物
JP2001502714A (ja) * 1996-10-25 2001-02-27 アクゾ ノーベル ナムローゼ フェンノートシャップ 非加水分解的手段の使用により形成された炭化水素可溶性アルキルアルミノキサン組成物
JP2000095810A (ja) 1997-09-03 2000-04-04 Mitsui Chemicals Inc 触媒担体用固体状アルミノキサンおよびその製造方法、ならびにその用途
JP2005263749A (ja) * 2004-03-22 2005-09-29 Tosoh Finechem Corp ポリメチルアルミノキサン調製物、その製造方法、重合触媒およびオレフィン類の重合方法
JP2008289211A (ja) 2007-05-15 2008-11-27 Shindengen Electric Mfg Co Ltd 系統連系インバータ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2360191A4

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570437A1 (en) * 2010-05-11 2013-03-20 Tosoh Finechem Corporation Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
EP2570437A4 (en) * 2010-05-11 2014-07-09 Tosoh Finechem Corp SOLID-POLYMETHYLALUMINOXANE SUPPORT COMPLEX, PROCESS FOR PRODUCING THE SAME, OLEFIN POLYMERIZATION CATALYST, AND PROCESS FOR PRODUCING POLYOLEFIN
US20130059990A1 (en) * 2010-05-11 2013-03-07 Tosoh Finechem Corporation Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
US8975209B2 (en) * 2010-05-11 2015-03-10 Tosoh Finechem Corporation Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
JP2013049783A (ja) * 2011-08-31 2013-03-14 Mitsui Chemicals Inc オレフィン重合用触媒、エチレン系重合体の製造方法ならびに該エチレン系重合体から得られる延伸成形体。
JP2017019828A (ja) * 2012-03-28 2017-01-26 東ソー・ファインケム株式会社 小粒径固体状ポリメチルアルミノキサン組成物の製造方法
WO2013146337A1 (ja) 2012-03-28 2013-10-03 東ソー・ファインケム株式会社 小粒径固体状ポリメチルアルミノキサン組成物の製造方法
KR20140138337A (ko) * 2012-03-28 2014-12-03 토소 화인켐 가부시키가이샤 작은 입자 직경을 갖는 고체상 폴리메틸알루미녹산 조성물의 제조방법
KR102009005B1 (ko) * 2012-03-28 2019-10-23 토소 화인켐 가부시키가이샤 작은 입자 직경을 갖는 고체상 폴리메틸알루미녹산 조성물의 제조방법
JPWO2013146337A1 (ja) * 2012-03-28 2015-12-10 東ソー・ファインケム株式会社 小粒径固体状ポリメチルアルミノキサン組成物の製造方法
US9340630B2 (en) 2012-03-28 2016-05-17 Tosoh Finechem Corporation Method for manufacturing a small particle diameter product of solid polymethylaluminoxane composition
WO2014123212A1 (ja) 2013-02-08 2014-08-14 三井化学株式会社 固体状ポリアルミノキサン組成物、オレフィン重合用触媒、オレフィン重合体の製造方法、および固体状ポリアルミノキサン組成物の製造方法
US9676879B2 (en) 2013-02-08 2017-06-13 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
KR101746744B1 (ko) * 2013-02-08 2017-06-13 미쓰이 가가쿠 가부시키가이샤 고체상 폴리알루미녹세인 조성물, 올레핀 중합용 촉매, 올레핀 중합체의 제조 방법, 및 고체상 폴리알루미녹세인 조성물의 제조 방법
US10870715B2 (en) 2013-02-08 2020-12-22 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
EP3312200A1 (en) 2013-02-08 2018-04-25 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
JP2018076542A (ja) * 2013-02-08 2018-05-17 三井化学株式会社 固体状ポリアルミノキサン組成物、オレフィン重合用触媒、オレフィン重合体の製造方法、および固体状ポリアルミノキサン組成物の製造方法
US10150823B2 (en) 2013-02-08 2018-12-11 Mitsui Chemicals, Inc. Solid polyaluminoxane composition, olefin polymerization catalyst, olefin polymer production method and solid polyaluminoxane composition production method
JP2014224188A (ja) * 2013-05-16 2014-12-04 三井化学株式会社 オレフィン重合用固体触媒成分およびそれを用いたオレフィン系重合体の製造方法
US9714306B2 (en) 2014-03-28 2017-07-25 Mitsui Chemicals, Inc. Olefin resin and method for producing same
US10124326B2 (en) 2014-09-30 2018-11-13 Sumitomo Chemical Company, Limited Modified solid polyalkylaluminoxane and catalyst for olefin oligomerization reaction
US11643331B2 (en) 2015-01-06 2023-05-09 Scg Chemicals Co., Ltd. SiO2-layered double hydroxide microspheres and methods of making them
US10773246B2 (en) 2015-01-06 2020-09-15 Scg Chemicals Co., Ltd. SiO2-layered double hydroxide microspheres and methods of making them
US10316113B2 (en) 2015-08-14 2019-06-11 Arlanxeo Netherlands B.V. Catalyst system
JP2018523005A (ja) * 2015-08-14 2018-08-16 アランセオ・ネザーランズ・ベー・フェー 触媒系
US10888854B2 (en) 2015-10-06 2021-01-12 Oxford University Innovation Limited Catalyst comprising permethylpentalene ligands
US10730969B2 (en) 2015-11-26 2020-08-04 Tosoh Finechem Corporation Solid MAO composition containing Al2O3 and method for producing same
KR102574150B1 (ko) 2015-11-26 2023-09-04 토소 화인켐 가부시키가이샤 Al2O3를 함유하는 고체상태 MAO 조성물 및 그 제조 방법
KR20180088671A (ko) 2015-11-26 2018-08-06 토소 화인켐 가부시키가이샤 Al2O3를 함유하는 고체상태 MAO 조성물 및 그 제조 방법
JP6159049B1 (ja) * 2015-11-26 2017-07-05 東ソー・ファインケム株式会社 Al2O3を含有する固体状MAO組成物およびその製造方法
WO2017090585A1 (ja) * 2015-11-26 2017-06-01 東ソー・ファインケム株式会社 Al2O3を含有する固体状MAO組成物およびその製造方法
US11248069B2 (en) 2016-03-03 2022-02-15 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer, resin composition and molded article
JP6259549B1 (ja) * 2016-04-05 2018-01-10 東ソー・ファインケム株式会社 固体状pmao組成物およびその製造方法
WO2017175766A1 (ja) * 2016-04-05 2017-10-12 東ソー・ファインケム株式会社 固体状pmao組成物およびその製造方法
US10793652B2 (en) 2016-04-05 2020-10-06 Tosoh Finechem Corporation Solid PMAO composition and method for producing same
KR20180133254A (ko) 2016-04-05 2018-12-13 토소 화인켐 가부시키가이샤 고체 상태 pmao 조성물 및 이의 제조 방법
US11053269B2 (en) 2016-05-12 2021-07-06 Scg Chemicals Co., Ltd. Unsymmetrical metallocene catalysts and uses thereof
JP2018149537A (ja) * 2017-03-14 2018-09-27 三井化学株式会社 オレフィン多量化用触媒組成物の製造方法およびその触媒組成物存在下で行うオレフィン多量体の製造方法
JP7169750B2 (ja) 2017-03-14 2022-11-11 三井化学株式会社 オレフィン多量化用触媒組成物の製造方法およびその触媒組成物存在下で行うオレフィン多量体の製造方法
WO2018179619A1 (ja) 2017-03-27 2018-10-04 三井化学株式会社 4-メチル-1-ペンテン系重合体、樹脂組成物および成形体
JP7295494B2 (ja) 2017-03-27 2023-06-21 東ソー株式会社 ポリエチレン製造用触媒及びポリエチレンの製造方法
JP2018162384A (ja) * 2017-03-27 2018-10-18 東ソー株式会社 ポリエチレン製造用触媒及びポリエチレンの製造方法
US11034782B2 (en) 2017-03-27 2021-06-15 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer, resin composition and molded article
US11485815B2 (en) 2018-04-11 2022-11-01 Mitsui Chemicals, Inc. 4-methyl-1-pentene polymer particle and method for producing 4-methyl-1-pentene resin
WO2019198694A1 (ja) 2018-04-11 2019-10-17 三井化学株式会社 4-メチル-1-ペンテン系重合体粒子および4-メチル-1-ペンテン系樹脂の製造方法
WO2020116368A1 (ja) 2018-12-04 2020-06-11 三井化学株式会社 4-メチル-1-ペンテン共重合体を含有する樹脂組成物、およびキャパシタ用フィルム
WO2020120935A1 (en) 2018-12-10 2020-06-18 Scg Chemicals Co., Ltd. Catalytic compounds for use in olefins polymerization
JP7216958B2 (ja) 2019-02-28 2023-02-02 国立大学法人広島大学 高純度固体アルミノキサン及びその製造方法
JP2020138944A (ja) * 2019-02-28 2020-09-03 国立大学法人広島大学 高純度固体アルミノキサン及びその製造方法
WO2020189676A1 (ja) 2019-03-19 2020-09-24 三井化学株式会社 プロピレン系樹脂組成物、成形体およびプロピレン重合体
WO2021025141A1 (ja) 2019-08-08 2021-02-11 株式会社プライムポリマー プロピレン系重合体組成物および成形体
WO2022050208A1 (ja) 2020-09-01 2022-03-10 三井化学株式会社 樹脂組成物および成形体
WO2022210843A1 (ja) 2021-03-31 2022-10-06 三井化学株式会社 エチレン-α-オレフィン共重合体、熱可塑性樹脂組成物、フィルムおよび積層体
WO2022210845A1 (ja) 2021-03-31 2022-10-06 三井化学株式会社 エチレン系樹脂組成物および成形体
WO2022210844A1 (ja) 2021-03-31 2022-10-06 三井化学株式会社 エチレン-α-オレフィン共重合体、熱可塑性樹脂組成物、およびフィルム
WO2022234293A1 (en) 2021-05-07 2022-11-10 SCG Chemicals Public Company Limited Polymerisation of propylene
WO2022234292A1 (en) 2021-05-07 2022-11-10 SCG Chemicals Public Company Limited Catalysts
WO2023145924A1 (ja) 2022-01-31 2023-08-03 三井化学株式会社 エチレン系重合体粒子、エチレン系重合体粒子の製造方法、延伸成形体、延伸成形体の製造方法、およびその用途

Also Published As

Publication number Publication date
EP2360191A1 (en) 2011-08-24
US20110282017A1 (en) 2011-11-17
JP5611833B2 (ja) 2014-10-22
EP2360191B2 (en) 2020-01-22
KR101660685B1 (ko) 2016-09-27
US8404880B2 (en) 2013-03-26
CN102239187B (zh) 2014-04-30
KR20160083126A (ko) 2016-07-11
JPWO2010055652A1 (ja) 2012-04-12
KR101648997B1 (ko) 2016-08-17
KR20110094301A (ko) 2011-08-23
EP2360191A4 (en) 2014-03-19
CN102239187A (zh) 2011-11-09
EP2360191B1 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP5611833B2 (ja) 固体状ポリメチルアルミノキサン組成物およびその製造方法
JP6158994B2 (ja) 小粒径固体状ポリメチルアルミノキサン組成物の製造方法
JP5856561B2 (ja) 固体状担体−ポリメチルアルミノキサン複合体、その製造方法、オレフィン類の重合触媒及びポリオレフィン類の製造方法
KR102574150B1 (ko) Al2O3를 함유하는 고체상태 MAO 조성물 및 그 제조 방법
EP1728795B1 (en) Polymethylaluminoxane product, process for producing the same, polymerization catalyst, and method of polymerizing olefin
JP6259549B1 (ja) 固体状pmao組成物およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144954.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010537691

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117013033

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009825906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009825906

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13128632

Country of ref document: US