WO2010053140A1 - ヒアルロン酸誘導体、およびその医薬組成物 - Google Patents

ヒアルロン酸誘導体、およびその医薬組成物 Download PDF

Info

Publication number
WO2010053140A1
WO2010053140A1 PCT/JP2009/068933 JP2009068933W WO2010053140A1 WO 2010053140 A1 WO2010053140 A1 WO 2010053140A1 JP 2009068933 W JP2009068933 W JP 2009068933W WO 2010053140 A1 WO2010053140 A1 WO 2010053140A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
group
derivative
acid derivative
alkyl
Prior art date
Application number
PCT/JP2009/068933
Other languages
English (en)
French (fr)
Inventor
一成 秋吉
貴士 中井
泰 平倉
剛 下房地
Original Assignee
国立大学法人 東京医科歯科大学
中外製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学, 中外製薬株式会社 filed Critical 国立大学法人 東京医科歯科大学
Priority to JP2010536794A priority Critical patent/JP5542687B2/ja
Priority to US13/127,582 priority patent/US8759322B2/en
Priority to EP09824839.6A priority patent/EP2360188B1/en
Publication of WO2010053140A1 publication Critical patent/WO2010053140A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Definitions

  • the present invention relates to a novel hyaluronic acid derivative having a hydrophobic group introduced therein, a pharmaceutical composition containing the hyaluronic acid derivative, and particularly a pharmaceutical composition containing a medicinal protein and / or peptide.
  • the pharmacological activity of proteins and peptides is largely attributed to their higher order structures, and the pharmacological activity of proteins and peptides is impaired by denaturation and aggregation caused by external environments such as contact with organic solvents and air interfaces, pressure, temperature, and pH. It is known that It is also known that the risk of antigenicity is increased by administering a denatured or aggregated protein into the body. In sustained-release preparations containing protein or peptide as the active ingredient, the stability of the protein or peptide is ensured from the formulation process until the active ingredient is released in vivo after administration through the storage period of the preparation. Is required.
  • Non-patent Documents 1 and 2 Attempts to commercialize sustained-release preparations based on biodegradable polymers such as polylactic acid-polyglycolic acid copolymer (PLGA) have been widely made. Protein denaturation or aggregation due to the operation for (emulsification, drying, acidification, etc.) has been reported (Non-patent Documents 1 and 2).
  • the base material used for the preparation must be non-antigenic, non-mutagenic, non-toxic and biodegradable.
  • sustained-release preparations there are no known sustained-release preparations that have reached a practical level in the amount of protein or peptide encapsulated and the recovery rate.
  • HA hyaluronic acid
  • HA is considered to be preferable as a base material for a sustained-release preparation from the viewpoint of safety.
  • Many preparations using HA as a base material have been reported so far, with the aim of using modified HA for the purpose of improving blood retention (Patent Document 1) and improving the retention in the knee joint.
  • Patent Document 2 an HA derivative having an introduced alkyl chain
  • Patent Document 3 use of an in situ crosslinked HA gel for protein sustained release (Patent Document 3), hyaluronic acid ester for sustained release of bone morphogenetic protein (BMP)
  • BMP bone morphogenetic protein
  • Patent Document 5 As an example of a pharmaceutical preparation using a polyamino acid derivative as a base material, use of a polyglutamic acid into which tocopherol has been introduced has been reported (Patent Document 5).
  • Non-Patent Document 3 Thermodynamic evaluation of the pullulan derivative after protein incorporation shows that the incorporated protein is stabilized by hydrogen bonding with the hydroxy group of pullulan (Non-patent Document 11).
  • Patent Document 6 carboxymethyl cellulose
  • Non-Patent Document 12 Non-Patent Document 12
  • Patent Document 8 published after the priority date of the present application discloses a composition containing a hyaluronic acid derivative having a crosslinkable group and a hydrophilic polysaccharide derivative having a hydrophobic group, the hyaluron having a crosslinkable group.
  • Compositions have been reported in which the acid derivative is prepared by a cross-linking reaction of hyaluronic acid or a derivative having a group capable of cross-linking in the presence of a hydrophilic polysaccharide derivative.
  • CD44 In vivo, CD44, RHAMM (Receptor for Hyaluronic Acid-Mediated Motility), LYVE-1 (Lymphe Vessel Endothelial HA Receptor-1), HARE (Hyperonic Receptor, etc.) are present. (Non-patent document 18 and Non-patent document 19).
  • CD44 and RHAMM are overexpressed in many cancer cells, and therefore, attempts have been made to use HA as a substrate for cancer targeting carriers.
  • Non-patent Documents 20 to 22 and Patent Document 9 examples thereof include paclitaxel-HA conjugate (Non-patent Documents 20 to 22 and Patent Document 9), camptothecin-HA conjugate (Patent Document 10), doxorubicin-HPMA [N- (2-hydroxypropyl) methacrylamide] -HA. Conjugate (Non-patent document 23), Butyric acid-HA conjugate (Non-patent document 24), Doxorubicin-encapsulated HA-PEG-PLGA nanoparticles (Non-patent document 25), siRNA-encapsulated HA gel (Non-patent document 26), Doxorubicin encapsulated HA-coated liposome (Non-patent Document 27) and the like can be mentioned.
  • Non-Patent Document 28 published after the priority date of the present application reports on an HA derivative conjugated with cholic acid via an ethylenediamine linker introduced by an amide bond. It has been reported that these HA-based carriers are efficiently taken up in cells expressing CD44 in vitro (for example, Non-Patent Document 20). However, HA is known to be instantaneously taken up and metabolized by the HARE receptor present in the sinusoidal endothelium such as the liver when systemically administered, and rapidly disappears from the blood (Non-Patent Documents 29 to 31). ). Therefore, efficient cancer targeting using an HA base material requires a carrier that suppresses uptake in the liver and has improved blood retention.
  • a carrier that can encapsulate proteins, peptides, small molecules, and nucleic acids as drugs and that can be used as a sustained release carrier or targeting carrier in blood, particularly a carrier that has excellent retention in blood.
  • An object of the present invention is to provide a substrate for a pharmaceutical preparation excellent in safety, and when a protein or peptide having a medicinal effect is used as a drug, many drugs can be efficiently used while maintaining pharmacological activity.
  • a carrier that can be encapsulated and a substrate that can be used as a sustained-release carrier in blood and a targeting carrier with excellent retention in blood, and can also be a topical (for example, subcutaneous) sustained-release carrier capable of sustained sustained drug release It is to be.
  • a hyaluronic acid derivative having a specific hydrophobic group introduced therein contains an aqueous solution while encapsulating a large amount of a drug, particularly a protein or peptide having pharmacological activity. I found that they would meet spontaneously. In addition, it has been found that there is a range in which the amount of hydrophobic group introduced causes significant aggregation and precipitation under physiological salt concentration, and a range in which stable fine particles are formed even under physiological salt concentration and stably dispersed in water. It was. Furthermore, the inventors have found that the retention in blood of a hyaluronic acid derivative using HA having a specific molecular weight as a raw material is remarkably improved, and completed the present invention.
  • the present invention spontaneously associates in an aqueous solution and can efficiently encapsulate drugs, particularly proteins and peptides having medicinal properties while maintaining their biological activity, and significantly aggregates under physiological salt concentration. (Or disperse even under physiological salt concentration) and good blood retention, hyaluronic acid derivative having a hydrophobic group introduced therein, a method for producing the same, and a drug containing the drug and the hyaluronic acid derivative
  • the present invention relates to a composition and a method for producing the same.
  • a hyaluronic acid derivative having a hydrophobic group introduced therein which has the formula (I): [Wherein R 1 , R 2 , R 3 , and R 4 are each independently selected from a hydrogen atom, C 1-6 alkyl, formyl, and C 1-6 alkylcarbonyl; Z represents a direct bond or a peptide linker consisting of 2 to 30 arbitrary amino acid residues;
  • X 1 has the following formula: -NR b -R, —NR b —COO—R, —NR b —CO—R, —NR b —CO—NR c —R, -COO-R, -O-COO-R, -SR, -CO-Y a -SR, —O—CO—Y b —S—R, —NR b —CO—Y b —S—R, and —S—S—R,
  • R g is selected from a hydrogen atom, C 1-20 alkyl, amino C 2-20 alkyl or hydroxy C 2-20 alkyl, wherein the alkyl portion of the group is 1-3 selected from —O— and —NH— Groups may be inserted;
  • Y a is C 1-5 alkylene;
  • Y b is C 2-8 alkylene or C 2-8 alkenylene;
  • m is an integer selected from 1 to 100]
  • the hyaluronic acid derivative comprising one or more repeating units represented by is provided.
  • a hyaluronic acid derivative having a hydrophobic group introduced therein which is represented by the formula (Ia): [Wherein R 1 , R 2 , R 3 , and R 4 are each independently selected from a hydrogen atom, C 1-6 alkyl, formyl, and C 1-6 alkylcarbonyl; X is a hydrophobic group represented by —NR a —Y—NR b —COO—R; R a and R b are each independently selected from a hydrogen atom and C 1-6 alkyl; R is a steryl group; Y is C 2-30 alkylene, or — (CH 2 CH 2 O) m —CH 2 CH 2 —, m is an integer selected from 1 to 100]
  • the hyaluronic acid derivative comprising one or more repeating units represented by is provided.
  • the repeating units may be the same or different.
  • the hyaluronic acid derivative may be modified at a position other than the repeating unit of formula (I).
  • the hydroxy group has —O (C 1-6 alkyl), —O (formyl) and —O (C 1 -6 alkylcarbonyl) and the like, and the carboxy group may be converted to an amide or ester, or may form a salt.
  • the group —ZN (R a ) Y—X 1 of formula (I) above has the following formula: —NH— (CH 2 ) mz —NH—R; —NH— (CH 2 ) mz —NH—COO—R; —NH— (CH 2 CH 2 O) m —CH 2 CH 2 —NH—COO—R; —NH— (CH 2 ) mz —COO—R; —NH— (CH 2 CH 2 O) m —CH 2 CH 2 —COO—R, —NH— (CH 2 ) mz —O—COO—R; —NH— (CH 2 CH 2 O) m —CH 2 CH 2 —O—COO—R, —NH— (CH 2 ) mz —S—R; —NH— (CH 2 CH 2 O) m —CH 2 CH 2 —S—R; —NH— (CH 2 ) mz —S—R; —NH—
  • Z is a direct bond.
  • X 1 is —NR b —COO—R.
  • Y include —CH 2 CH 2 O—CH 2 CH 2 —SS—CH 2 CH 2 O—CH 2 CH 2 —, — (CH 2 CH 2 O) 2 —CH 2 CH 2 —.
  • Y a is preferably —CH 2 — and —CH 2 —CH 2 —.
  • Y b includes —CH 2 —CH 2 —, —CH (CH 3 ) CH 2 —, 2-butene-1,4-diyl, hepta-2,4-diene-1,6-diyl and octa-2. , 4,6-triene-1,8-diyl is preferred, and —CH 2 —CH 2 — and —CH (CH 3 ) CH 2 — are more preferred.
  • Z is a peptide linker represented by —NH— [CH (—Z a ) —CONH] n ⁇ 1 —CH (—Z a ) —CO—, wherein n Is an integer of 2 to 30, and Z a each independently represents a substituent in an ⁇ -amino acid represented as H 2 N—CH (—Z a ) —COOH.
  • the peptide linker binds to the carboxy group of the glucuronic acid moiety at the N-terminus and to the group —N (—R a ) —Y—X 1 at the C-terminus.
  • amino acids that can be used as amino acid residues of the peptide linker include ⁇ -amino acids such as alanine, arginine, asparagine (Asn), aspartic acid, cysteine, glutamine, glutamic acid, glycine (Gly), histidine, isoleucine, leucine (Leu). ), Lysine, methionine, phenylalanine (Phe), proline, serine, threonine, tryptophan, tyrosine, valine, etc.
  • -Amino acids can be used.
  • examples of Z a include —CH 3 , H 2 NC (NH) NH (CH 2 ) 3 —, H 2 NCOCH 2 —, and the like.
  • the n Zs may be the same or different.
  • n is an integer of 2 to 30, preferably 2 to 10, and more preferably 2 to 4.
  • Preferable examples of the peptide linker include -Gly-Phe-Leu-Gly-, -Asn-Phe-Phe-, -Phe-Phe-, Phe-Gly- and the like.
  • Specific examples of the group —ZN (R a ) Y—X 1 include —NH— (CH 2 ) 2 —NH—CO—cholesteryl, —NH— (CH 2 ) 4 —NH— (CH 2 ) 3 —NH— (CH 2 ) 3 —NH—COO-cholesteryl, —NH— (CH 2 ) 3 —NH— (CH 2 ) 4 —NH— (CH 2 ) 3 —NH—COO-cholesteryl, —NH— ( CH 2 ) 4 —NH— (CH 2 ) 3 —NH—COO-cholesteryl, —NH— (CH 2 ) 4 —N (— (CH 2 ) 3 —NH 2 ) —COO-cholesteryl, —NH— (CH 2 ) 3 —NH— (CH 2 ) 4 —N (— (CH 2 ) 3 —NH 2 ) —COO-cholesteryl, —NH— (CH 2 ) 3 —NH— (CH 2
  • R a , R b and R c are hydrogen atoms and Y is a linear C 2-30 alkylene or — (CH 2 CH 2 O) m —CH 2 CH 2 — and Y a is linear C 1-5 alkylene or Y b is linear C 2-8 alkylene or linear C 2-8 Alkenylene.
  • the repeating unit represented by formula (I) and formula (II) wherein R 1a , R 2a , R 3a , and R 4a are each independently selected from a hydrogen atom, C 1-6 alkyl, formyl, and C 1-6 alkylcarbonyl; X a is selected from hydroxy and —O ⁇ Q + ; where Q + is a counter cation]
  • the hyaluronic acid derivative containing the repeating unit represented by these is provided.
  • the hyaluronic acid derivative of the present invention contains two or more repeating units represented by the formula (II), the repeating units may be the same or different.
  • the present invention provides a hyaluronic acid derivative substantially consisting of a repeating unit represented by formula (I) and a repeating unit represented by formula (II).
  • Q + is not particularly limited as long as it is a counter cation that forms a salt with a carboxy group in water.
  • counter cations include metal ions such as lithium ion, sodium ion, rubidium ion, cesium ion, magnesium ion, calcium ion; formula: N + R j R k R l R m (where R j , R k , R 1 and R m are each independently selected from a hydrogen atom and C 1-6 alkyl), preferably sodium ion, potassium ion, tetraalkylammonium ion ( For example, tetra n-butylammonium ion).
  • R j , R k , R 1 and R m are preferably the same group selected from C 1-6 alkyl, and preferably an n-butyl group.
  • R 1 , R 2 , R 3 , and R 4 , and R 1a , R 2a , R 3a, and R 4a are preferably all hydrogen atoms. Moreover, it is preferable that both R a and R b are hydrogen atoms.
  • the hyaluronic acid derivative is substantially composed of repeating units of the formulas (I) and (II).
  • the hyaluronic acid derivative is, for example, 80% or more, preferably 90% or more, more preferably 95% of the disaccharide repeating units composed of D-glucuronic acid and N-acetylglucosamine contained in the derivative.
  • the above is the repeating unit of formula (I) or (II). In one embodiment of the present invention, it is composed of only the repeating units represented by the above formulas (I) and (II).
  • Y defined in formula (I) is, for example, — (CH 2 ) na — (wherein na is selected from an integer of 2 to 20, preferably 2 to 15, more preferably 2 to 12). at best, preferably, - (CH 2) 2 - , - (CH 2) 6 -, - (CH 2) 8 - and - (CH 2) 12 - a, and still more preferably - (CH 2) 6 -.
  • Y are preferable from the viewpoints of precipitation formation and stable dispersion described later.
  • a hyaluronic acid derivative as defined herein, wherein the hyaluronic acid derivative is characterized by forming fine particles by association in water.
  • the particle diameter of the fine particles is not particularly limited, but is, for example, 1 ⁇ m or less, preferably 500 nm, more preferably 200 nm or less, still more preferably 100 nm or less, and even more preferably 50 nm or less.
  • the introduction rate of the hydrophobic group is expressed by the following formula: Is calculated by
  • a repeating unit of the formula (I) in which a carboxy group is converted to an amide group and a hydrophobic group is introduced, and a hydrophobic group are introduced.
  • Not repeating units of formula (II), (III) and (IV) are included.
  • the introduction rate can be controlled by reaction conditions, for example, the ratio of reagents, and can be determined by, for example, NMR measurement.
  • a hyaluronic acid derivative introduced with a hydrophobic group as defined herein, wherein the introduction rate of the hydrophobic group with respect to the disaccharide repeating unit present in the derivative is
  • the hyaluronic acid derivative is provided at 7-15%.
  • the introduction rate is in the above range, the hyaluronic acid derivative has a property that it significantly aggregates in a solution having a salt concentration equal to or higher than a certain value (for example, under physiological salt concentration) to form a precipitate.
  • the group-introduced hyaluronic acid derivative is combined with a drug and administered into the body (for example, subcutaneously), whereby a precipitation-type sustained-release preparation taking advantage of the characteristics of aggregation after administration can be obtained.
  • a hyaluronic acid derivative introduced with a hydrophobic group as defined herein, wherein the introduction ratio of the hydrophobic group to the repeating unit of the disaccharide present in the derivative is The hyaluronic acid derivative is provided that is 18-42%.
  • the introduction rate is within the above range, the hyaluronic acid derivative has the property of forming stable fine particles even in a solution having a salt concentration above a certain level (for example, under physiological salt concentration) and stably dispersing in water.
  • the hyaluronic acid derivative having the introduction rate is combined with a drug and administered into the body (for example, intravenously), it can be a sustained-release preparation in blood and a target preparation for target tissues or cells.
  • a hyaluronic acid derivative introduced with a hydrophobic group as defined herein, wherein the introduction rate of the hydrophobic group with respect to the disaccharide repeating unit present in the derivative
  • the hyaluronic acid derivative is provided in which is 2 to 50%.
  • the introduction rate in the above range is preferable from the viewpoint of improving the retention in blood, more preferably 8 to 35%, and further preferably 15 to 22%.
  • the hyaluronic acid derivative of the present invention containing one or more repeating units represented by formula (I) is preferably hyaluronic acid or a derivative thereof substantially consisting of repeating units represented by formula (II), more preferably It is synthesized from hyaluronic acid or a derivative thereof composed only of the repeating unit represented by (II).
  • the weight average molecular weight of the raw material is preferably 27 kilodaltons (kDa) or less, and more preferably 18 kDa or less, from the viewpoint of improving retention in blood.
  • the lower limit of the molecular weight may be 5 kDa or more.
  • the preferred range of the molecular weight is 5 to 27 kDa, more preferably 5 to 18 kDa.
  • the hyaluronic acid derivative of the present invention uses, as a raw material, hyaluronic acid or a derivative thereof substantially consisting of a repeating unit represented by the formula (II) having a weight average molecular weight of 27 kDa or less. Can be manufactured.
  • the hyaluronic acid derivative of the present invention is a hyaluronic acid derivative substantially composed of repeating units of formula (I) and (II).
  • the hyaluronic acid derivative of the present invention in which a hydrophobic group is introduced at the introduction rate using the hyaluronic acid having a molecular weight or a derivative thereof, is compared with the case of using hyaluronic acid having a weight average molecular weight of 27 kDa or a salt thereof, or Compared to the case of modification with a group other than the hydrophobic group, the blood retention property is remarkably improved.
  • a systemic administration type particularly an intravenous administration type sustained-release preparation in blood, and a targeting preparation for target tissues or cells are provided. it can.
  • Y in the formula (I) is — (CH 2 ) n1 — and — (CH 2 CH 2 O) m1 —CH 2 CH 2 — (where n1 is 2 to 15, preferably 2 -12, more preferably an integer of 2-6, and m1 is an integer of 1-4.
  • — (CH 2 ) 2 —, — (CH 2 ) 6 —, — (CH 2 ) 12 — and — (CH 2 CH 2 O) 2 —CH 2 CH 2 — are preferred, and — (CH 2 ) 2 —, — (CH 2 ) 6 — and — (CH 2 CH 2 O) 2 —CH 2 CH 2 — are more preferred.
  • hydrophobic group that is X in the formula (I) examples include —NH— (CH 2 ) 2 —NH—COO-cholesteryl, —NH— (CH 2 ) 6 —NH—COO-cholesteryl, —NH— (CH 2 ) 12 —NH—COO-cholesteryl and —NH— (CH 2 CH 2 O) 2 —CH 2 CH 2 —NH—COO-cholesteryl are preferred, —NH— (CH 2 ) 2 —NH—COO-cholesteryl, More preferred are —NH— (CH 2 ) 6 —NH—COO-cholesteryl and —NH— (CH 2 CH 2 O) 2 —CH 2 CH 2 —NH—COO-cholesteryl.
  • R 1b , R 2b , R 3b , and R 4b are each independently selected from a hydrogen atom, C 1-6 alkyl, formyl and C 1-6 alkylcarbonyl;
  • X b represents —NR e —Y b —R d ;
  • R e is a hydrogen atom or a C 1-6 alkyl group;
  • R d is a hydrogen atom, a C 1-6 alkyl group or a group —CO—C (R 7 ) ⁇ CH 2 ;
  • Y b represents —CH 2 — (CHR 5 ) 1 -2 —CH 2 —NH—, —CH 2 — (CHR 6 ) p-2 —CH 2 —O—, — (CH 2 ) j —S—, -CH 2 -CH 2 - (Y 3 -CH 2 -CH 2) z -S -, - CH 2 -CH 2 -
  • the hyaluronic acid derivative is preferably hyaluronic acid composed of only a repeating unit represented by the formula (II) having a weight average molecular weight of 27 kDa or less, more preferably 18 kDa or less, from the viewpoint of improving retention in blood.
  • the derivative can be used as a raw material.
  • the minimum of the weight average molecular weight of a raw material should just be 5 kDa or more.
  • the preferred range of the molecular weight is 5 to 27 kDa, more preferably 5 to 18 kDa.
  • the ratio of the repeating unit represented by the formula (II) to the repeating unit of the disaccharide present is preferably 50% or less, more preferably 30% or less, and further preferably 20% or less.
  • the lower limit of the ratio may be 0% or more.
  • 50% or more of the carboxy groups of the hyaluronic acid derivative are modified with —ZN (R a ) —Y—X 1 and X b or the like.
  • the ratio of the repeating unit represented by the formula (II) is used as a raw material as described above, a part or most of the carboxy group is modified with the hydrophobic group, so that other than the hydrophobic group Compared with the case where the carboxy group is modified only with a group, the blood retention property is remarkably improved.
  • the introduction ratio of the hydrophobic group to the repeating unit of the disaccharide present is preferably 2 to 70%, more preferably 5 to 35%, and further preferably 15 to 22%.
  • Xb may be the same or different.
  • Two amines that are —NH 2 (secondary amine) can be condensed with the carboxy group of the glucuronic acid moiety simultaneously or in series.
  • the hyaluronic acid derivative having a double bond introduced by a primary amine can be subjected to a crosslinking reaction with a crosslinking agent having a mercapto group at both ends of the alkylene group (for example, dithiothreitol: DTT).
  • the hyaluronic acid derivative of the present invention can be gelled.
  • the other terminal amino group may be utilized for conjugating drugs by condensing a secondary amine, which is a diamine, with the carboxy group of the glucuronic acid moiety.
  • the amino group remaining without being used is treated with, for example, dicarboxylic anhydride such as succinic anhydride, maleic anhydride, glutaric anhydride and adipic anhydride, or maleic acid, glutaric acid and adipic acid.
  • dicarboxylic anhydride such as succinic anhydride, maleic anhydride, glutaric anhydride and adipic anhydride
  • maleic acid glutaric acid and adipic acid.
  • H 2 N—CH 2 —CH 2 —O—CO—C (CH 3 ) ⁇ CH 2 primary amine
  • H 2 N—CH 2 —CH 2 —OH secondary amine
  • These amines may be condensed with the carboxy group of the glucuronic acid moiety simultaneously or sequentially.
  • the double bond introduced by the primary amine can be subjected to a crosslinking reaction in the same manner as described above, and the hyaluronic acid derivative modified with the secondary amine can be expected to improve blood retention.
  • a hyaluronic acid derivative having an amino group introduced therein and a crosslinking agent having succinimidyl ester or other imide ester at both ends of C 2-20 alkylene (for example, bis [ Cross-linking by condensation reaction with sulfosuccinimidyl] suberate (BS 3 ), ethylene glycol-bis [sulfosuccinimidyl] succinate (Sulfo-EGS), dimethyl adipimidate hydrochloride (DMA), etc .; HA -AM and a crosslinking agent having a formyl group at both ends of C 2-20 alkylene (eg, glutaraldehyde); a hyaluronic acid derivative (HA-ALD) into which formyl group is introduced, and C 2-20 alkylene Crosslinking with a crosslinking agent having amino groups at both ends (for example, ethylenediamine (EDA)) Oxidizing conditions
  • the chemical cross-linking structure possessed by the gel of the hyaluronic acid derivative of the present invention may be a cross-linking agent, a group capable of forming a cross-link introduced into a polymer, a bond mode, or the like that decomposes in vivo.
  • a group having an ester bond and a methacryloyl group may be used as a group for the crosslinking reaction.
  • a compound having an ester bond such as Sulfo-EGS or EDMA, or a compound having a peptide spacer that is degraded by an enzyme in a living body may be used.
  • a gel crosslinked by a disulfide bond formed by oxidation of a mercapto group is decomposed in a living body by a disulfide exchange reaction or a reduction reaction.
  • Preferred examples of X b include —NR i — (CH 2 ) n2 —OH (wherein R i is a hydrogen atom; n2 is an integer selected from 2 to 10), and Preferred are —NH— (CH 2 ) 2 —OH and —NH— (CH 2 ) 3 —OH.
  • a hyaluronic acid derivative consisting of a repeating unit represented by the formula (III) is disclosed in WO2006 / 028110.
  • a method for converting a carboxy group (—COOH) of hyaluronic acid into —COX a is described in the publication, or can be converted using a known condensation reaction.
  • R 2c , R 3c , and R 4c are each independently selected from a hydrogen atom, C 1-6 alkyl, formyl, and C 1-6 alkylcarbonyl;
  • X c is selected from hydroxy and —O ⁇ Q + , wherein Q + is a counter cation;
  • R 1c is —CO—C (R 21 ) ⁇ CH 2 , —CH 2 CH (OH) —R 22 —Y 1 , —CH (CH 2 OH) —R 22 —Y 1 , -CONH-R 23 -Y 1 , -CO-R 23 -Y 1 , Selected from —CONH—CH 2 CH 2 — (X 21 —CH 2 CH 2 ) n3 —Y 1 , and —CO—CH 2 CH 2 — (X 21 —CH 2 CH 2 ) n4 —Y 1 ,
  • X 21 is selected from O and S: n3 and
  • the hyaluronic acid derivative of the present invention is preferably made from hyaluronic acid or a derivative thereof having a weight average molecular weight of 27 kDa or less and comprising only a repeating unit represented by the formula (II).
  • the hyaluronic acid derivative substantially consisting of the repeating unit represented by formula (I), the repeating unit represented by formula (II) and the repeating unit represented by formula (IV); Hyaluron consisting essentially of a repeating unit represented by formula (I), a repeating unit represented by formula (II), a repeating unit represented by formula (III) and a repeating unit represented by formula (IV) Acid derivatives are provided.
  • R 1c is a hydroxy substituent at the 6-position of the N-acetylglucosamine moiety, and is mainly a crosslinkable group.
  • —CO—C (CH 3 ) ⁇ CH 2 —CO—CH ⁇ CH 2 , —CH 2 CH (OH) —CH 2 CH 2 —O—CO—C (CH 3 ) ⁇ CH 2 , —CONH—CH 2 CH 2 —O—CO—C (CH 3 ) ⁇ CH 2 , —CONH—CH 2 CH 2 — (O—CH 2 CH 2 ) 2 —O—CO—CH ⁇ CH 2
  • —CO—C (CH 3 ) ⁇ CH 2 —CO—CH ⁇ CH 2
  • —CO—CH ⁇ CH 2 —CO—CH ⁇ CH 2
  • —CO—CH ⁇ CH 2 —CO—CH ⁇ CH 2
  • —CH 2 CH (OH) —CH 2 CH 2 —O—CO—C (CH 3 ) ⁇ CH 2 —CONH—CH
  • the ratio of the repeating unit represented by the formula (IV) to the existing disaccharide repeating unit is preferably 10 to 40%.
  • a hyaluronic acid derivative comprising a repeating unit represented by the formula (IV) is disclosed in WO2008 / 136536, and the conversion of hydroxy (—OH) at the 6-position of the N-acetylglucosamine moiety of hyaluronic acid to —OR 1c , WO 2008/136536 (Patent Document 8) and JP-A-2005-298644 and Biomacromolecules Vol. 6, pp. 1829-1834, 2005 (Non-Patent Document 9) cited therein. be able to. Moreover, it can also convert by well-known esterification reaction and etherification reaction.
  • a pharmaceutical composition comprising a hyaluronic acid derivative as defined herein as a carrier.
  • the active ingredient contained in the pharmaceutical composition is not particularly limited, and may be, for example, a protein and / or peptide, polysaccharide, nucleic acid, low molecular weight compound and the like.
  • a pharmaceutical composition comprising a hyaluronic acid derivative as defined herein as a carrier together with a protein or peptide having pharmacological activity.
  • the hyaluronic acid derivative of the present invention is characterized by forming a complex with a drug in water.
  • the formed complex of the hyaluronic acid derivative and the drug may be a dispersible fine particle or a precipitate.
  • Dispersible microparticles can be used as a base material for systemically administered, particularly intravenously administered blood sustained-release preparations and targeting preparations for target tissues or cells, and precipitates are used for locally administered sustained-release preparations. It can be used as a substrate.
  • a hyaluronic acid derivative as defined herein which is complexed with a drug present in the system by spontaneous association in the aqueous solution by hydrophobic interaction of the hydrophobic group.
  • Said hyaluronic acid derivative forming a body is provided.
  • the drug is a protein or peptide.
  • a hyaluronic acid derivative-drug conjugate in which one or more drugs are bound to the hyaluronic acid derivative defined herein.
  • the drug is a protein or peptide, or a nucleic acid or small molecule compound.
  • a method for producing a pharmaceutical composition comprising the step of forming a hyaluronic acid derivative-drug complex as defined herein in water.
  • the following steps (A) producing a hyaluronic acid derivative having a hydrophobic group as defined herein; (B) a step of dissolving or dispersing the obtained hyaluronic acid derivative in an aqueous phase; (C) a step of adding a drug to the obtained aqueous solution or dispersion of a hyaluronic acid derivative to form drug-carrying fine particles;
  • a method for producing a pharmaceutical composition is provided.
  • a step of adding a salt substance to precipitate the drug-carrying fine particles may be added.
  • Each of the above steps may be performed in a discontinuous phase such as in a W / O emulsion or spray droplets.
  • the fine particles formed in the aqueous phase in the step (c) or the precipitate obtained in the step (d) are dried and solidified (for example, by spray drying or freeze drying), and further pulverized, dried and washed as necessary.
  • the target pharmaceutical composition may be obtained as a solid by performing a process or the like.
  • hyaluronic acid derivative of the present invention By using the hyaluronic acid derivative of the present invention, it becomes possible to provide a sustained-release preparation encapsulating a large amount of a drug, particularly a protein or peptide having medicinal properties while maintaining its biological activity.
  • Hyaluronic acid derivatives are also excellent in safety, and are particularly excellent as a carrier for pharmaceutical preparations.
  • the retention of the drug in the blood can be improved by using a conjugate in which the drug is bound to the hyaluronic acid derivative of the present invention.
  • FIG. 1 is an example of 1 H-NMR spectrum of cholesteryl 6-aminohexyl carbamate hydrochloride prepared in Example 1-1.
  • FIG. 2 is an example of the 1 H-NMR spectrum of cholesteryl 2-aminoethylcarbamate hydrochloride prepared in Example 1-2.
  • FIG. 3 is an example of 1 H-NMR spectrum of cholesteryl 8-aminooctylcarbamate hydrochloride prepared in Example 1-3.
  • FIG. 4 is an example of the 1 H-NMR spectrum of cholesteryl 12-aminododecylcarbamate hydrochloride prepared in Example 1-4.
  • FIG. 5 shows an example of 1 H-NMR spectrum of tetrabutylammonium hyaluronate salt prepared in Example 2-2 and starting from 50 kDa sodium hyaluronate salt.
  • FIG. 6 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 6 -Chol) into which cholesteryl 6-aminohexyl carbamate prepared in Example 2-3-1 was introduced.
  • FIG. 7 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 2 -Chol) into which cholesteryl 2-aminoethyl carbamate prepared in Example 2-3-2 was introduced.
  • FIG. 6 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 6 -Chol) into which cholesteryl 6-aminohexyl carbamate prepared in Example 2-3-1 was introduced.
  • FIG. 7 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 2 -Chol)
  • FIG. 8 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 8 -Chol) into which cholesteryl 8-aminooctylcarbamate prepared in Example 2-3-3 was introduced.
  • FIG. 9 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 12 -Chol) into which cholesteryl 12-aminododecyl carbamate prepared in Example 2-3-4 was introduced.
  • FIG. 10-1 shows the results (Example 3) in which the HA derivative obtained in Example 2-3-1 was subjected to size exclusion chromatography and the formation of aggregates of the HA derivative was observed from the change in retention time. It is an example of a chart.
  • FIG. 10-1 shows the results (Example 3) in which the HA derivative obtained in Example 2-3-1 was subjected to size exclusion chromatography and the formation of aggregates of the HA derivative was observed from the change in retention time. It is an example of a chart.
  • FIG. 10-2 shows the results (Example 3) in which the HA derivative obtained in Example 2-3-2 was subjected to size exclusion chromatography and the formation of aggregates of the HA derivative was observed from the change in retention time. It is an example of a chart.
  • FIG. 10-3 shows the results (Example 3) in which the HA derivative obtained in Example 2-3-4 was subjected to size exclusion chromatography and the formation of aggregates of the HA derivative was observed from the change in retention time. It is an example of a chart.
  • FIG. 10-4 shows the results (Example 3) in which the HA derivative obtained in Example 2-3-3 was subjected to size exclusion chromatography and the formation of aggregates of the HA derivative was observed from the change in retention time. It is an example of a chart.
  • FIG. 10-3 shows the results (Example 3) in which the HA derivative obtained in Example 2-3-4 was subjected to size exclusion chromatography and the formation of aggregates of the HA derivative was observed from the change in retention time. It
  • FIG. 11-1 shows the change in retention time when hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) was added and the sample obtained in Example 2-3-1 was subjected to size exclusion chromatography. It is an example of the chart showing the result (Example 4) which observed the decay
  • FIG. 11-2 shows the change in retention time when hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) was added and the sample obtained in Example 2-3-2 was subjected to size exclusion chromatography. It is an example of the chart showing the result (Example 4) which observed the decay
  • FIG. 11-3 shows the change in retention time when hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) was added and the sample obtained in Example 2-3-4 was subjected to size exclusion chromatography. It is an example of the chart showing the result (Example 4) which observed the decay
  • FIG. 11-4 shows the change in retention time when hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) was added and the sample obtained in Example 2-3-3 was subjected to size exclusion chromatography. It is an example of the chart showing the result (Example 4) which observed the decay
  • FIG. 12 is an example of a chart showing the results of size exclusion chromatography performed in Examples 5 and 6.
  • FIG. 13 is a graph in which the residual ratio of the HA derivative in the solution calculated in Example 7-1 is plotted against the hydrophobic group introduction ratio of the HA derivative.
  • FIG. 14 is a graph in which the residual ratio of the HA derivative in the solution calculated in Example 7-2 is plotted against the NaCl concentration.
  • FIG. 15 is a chart of size exclusion chromatography measured in Example 8.
  • FIG. 16 is an example of the 1 H-NMR spectrum of the hydrochloride salt of cholesteryl 8-amino-3,6-dioxaoctylcarbamate (Chol-EO2) prepared in Example 9-1.
  • FIG. 17 is an example of the 1 H-NMR spectrum of the HA derivative (HA-EO2-Chol) into which cholesteryl 8-amino-3,6-dioxaoctylcarbamate prepared in Example 9-2 was introduced.
  • FIG. 18 is an example of the 1 H-NMR spectrum of the HA derivative (HA-SS-Chol) into which 2-aminoethyl cholesteryl disulfide prepared in Example 10 was introduced.
  • FIG. 19 is an example of the 1 H-NMR spectrum of the HA derivative (HA-C 2 -Chol / AEMA) into which cholesteryl 2-aminoethyl carbamate and aminoethyl methacrylate prepared in Example 11 were introduced.
  • FIG. 20 shows the 1 H-NMR of the HA derivative (HA-C 6 -Chol / C 2 -OH / FL) into which 5-aminomethylfluorescein, cholesteryl 6-aminoheptylcarbamate and ethanolamine prepared in Example 13 were introduced. It is an example of a spectrum.
  • FIG. 21 is an example of a chart showing the results of measuring the particle size of the HA derivative (50k HA-C 6 -Chol-22% / FL) by a dynamic light scattering method (DLS).
  • DLS dynamic light scattering method
  • FIG. 22-1 is a graph showing the result of preparing a complex of a cholesteryl group-introduced HA derivative and lysozyme in Example 18-1, and the vertical axis represents (Lys weight in complex / HA derivative weight) ⁇ A value of 100 (% conjugation), the horizontal axis indicates the hydrophobic group introduction rate (%) per unit.
  • FIG. 22-2 is a graph showing the result of preparing a complex of exendin-4 with an HA derivative into which a cholesteryl group was introduced in Example 18-2, and the vertical axis represents (Ex-4 weight /% of complex). The value of HA derivative weight) ⁇ 100 (complexing%), and the horizontal axis represents the rate of introduction of hydrophobic groups per unit (%).
  • FIG. 22-3 is a graph showing the results of preparation of a complex of a HA derivative into which cholesteryl group was introduced and human growth hormone in Example 18-3, and the vertical axis represents (hGH weight in complex / HA derivative weight). ) ⁇ 100 value (complexation%), the horizontal axis indicates the hydrophobic group introduction rate (%) per unit.
  • FIG. 22-4 is a graph showing the results of preparation of a complex of a cholesteryl group-introduced HA derivative and erythropoietin in Example 18-4, and the vertical axis represents (EPO weight in complex / HA derivative weight) ⁇ A value of 100 (% conjugation), the horizontal axis indicates the hydrophobic group introduction rate (%) per unit.
  • FIG. 22-3 is a graph showing the results of preparation of a complex of a cholesteryl group-introduced HA derivative and erythropoietin in Example 18-4, and the vertical axis represents (EPO weight in complex
  • FIG. 23-1 is an example of a graph showing the release of erythropoietin from an HA derivative into which a cholesteryl group has been introduced in a bovine serum albumin (20 mg / mL) solution.
  • the vertical axis represents the amount of released erythropoietin
  • the horizontal axis represents Indicates elapsed time.
  • FIG. 23-2 is an example of a graph showing the release of erythropoietin from an HA derivative (HA-C 12 -Chol-7%) into which cholesteryl groups have been introduced in bovine serum albumin solutions having different concentrations, and the vertical axis represents the release.
  • the amount of erythropoietin applied and the horizontal axis represents the elapsed time.
  • FIG. 24 is an example of a graph showing the results of changes in plasma concentration of human growth hormone during subcutaneous and tail vein administration in rats.
  • FIG. 25 is a photograph of a preparation sample of the hGH / HA derivative complex used in Example 20-4.
  • FIG. 26-1 shows changes in plasma concentration of hGH up to 96 hours during administration of the hGH / HA derivative complex of Sample 20-1 to Sample 20-4 in Table 23-1, and plasma of the hGH solution of Comparative Example 1 It is a graph which shows medium density transition collectively.
  • FIG. 25 is a photograph of a preparation sample of the hGH / HA derivative complex used in Example 20-4.
  • FIG. 26-1 shows changes in plasma concentration of hGH up to 96 hours during administration of the hGH / HA derivative complex of Sample 20-1 to Sample 20-4 in Table 23-1, and plasma of the hGH solution of Comparative Example 1 It is a graph which shows medium density transition collectively.
  • FIG. 26-2 shows changes in the plasma concentration of hGH up to 24 hours at the time of administration of the hGH / HA derivative complex of Sample 20-1 to Sample 20-4 in Table 23-1, and the plasma of the hGH solution of Comparative Example 1 It is a graph which shows medium density transition collectively.
  • FIG. 27-1 shows changes in plasma concentration of hGH up to 96 hours during administration of the hGH / HA derivative conjugates of Sample 20-4 to Sample 20-6 in Table 23-1, and plasma of the hGH solution of Comparative Example 1 It is a graph which shows medium density transition collectively.
  • FIG. 27-2 shows changes in plasma concentration of hGH up to 24 hours at the time of administration of the hGH / HA derivative complex of Sample 20-4 to Sample 20-6 in Table 23-1, and the plasma of the hGH solution of Comparative Example 1 It is a graph which shows medium density transition collectively.
  • FIG. 28 is a graph showing the average residence time (MRT) of the hGH / HA derivative complexes of Sample 20-1 to Sample 20-6 in Table 23-1 and the hGH solution of Comparative Example 1.
  • FIG. 29 is a graph showing changes in plasma concentration of the fluorescently labeled HA derivative in rats administered with the fluorescently labeled HA derivative prepared in Comparative Examples 2-1 to 2-3.
  • 30-1 is a graph showing changes in plasma concentration of the fluorescently labeled HA derivative in rats administered with the fluorescently labeled HA derivative prepared in Example 12 and Example 15.
  • 30-2 is a graph showing the relationship between the molecular weight and the area extrapolated value (AUC ⁇ ) under the plasma concentration-time curve in Table 28.
  • the vertical axis represents AUC ⁇ , and the horizontal axis represents the molecular weight of the raw material HA-Na.
  • FIG. 31 is a graph showing changes in plasma concentration of fluorescently labeled HA derivatives in rats administered with fluorescently labeled HA derivatives of Samples 21-2, 21-8 and 21-9 in Table 29.
  • FIG. 32-1 is a graph showing changes in plasma concentrations of fluorescently labeled HA derivatives in rats administered with fluorescently labeled HA derivatives of Samples 21-2 and 21-10 in Table 31.
  • FIG. 32-2 is a graph showing changes in plasma concentrations of fluorescently labeled HA derivatives in rats administered with fluorescently labeled HA derivatives of Samples 21-5, 21-11 and 21-12 in Table 31.
  • FIG. 33 is a graph showing the change in plasma concentration of the fluorescently labeled HA derivative in rats administered with the fluorescently labeled HA derivative of Sample 21-13 in Table 33.
  • FIG. 34-1 shows changes in plasma concentration of the fluorescently labeled HA derivative in rats administered subcutaneously and intravenously with the fluorescently labeled HA derivative of Table 35 (10k HA-C 6 -Chol-22% / FL). It is a graph.
  • FIG. 34-2 shows the fluorescence-labeled HA derivative in rats administered subcutaneously and intravenously with the fluorescence-labeled HA derivative of Table 35 (10k HA-C 6 -Chol-19% / C 2 -OH / FL-95%). It is a graph which shows transition of the plasma concentration.
  • FIG. 34-1 shows changes in plasma concentration of the fluorescently labeled HA derivative in rats administered subcutaneously and intravenously with the fluorescently labeled HA derivative of Table 35 (10k HA-C 6 -Chol-22% / FL). It is a graph.
  • FIG. 34-2 shows the fluorescence-labeled HA derivative in rats administered subcutaneously and intravenously with the fluorescence-labeled HA derivative
  • 35-1 shows the change in plasma concentration of the fluorescently labeled HA derivative in rats administered intravenously with the fluorescently labeled HA derivative (10k HA-C 6 -Chol-22% / FL) in Table 37.
  • Sodium hyaluronate It is a graph which shows the experimental result which confirmed the influence of prior administration.
  • FIG. 35-2 shows the change in the plasma concentration of the fluorescently labeled HA derivative in rats administered subcutaneously and intravenously with the fluorescently labeled HA derivative of Table 34 (50k HA-C 6 -Chol-27% / FL). It is a graph which shows the experimental result which confirmed the influence of prior administration of sodium hyaluronate.
  • FIG. 36-1 is a chromatogram showing the results of SEC analysis of sample 21-2 (sample from 5 minutes to 2 hours) after measurement in Example 21-1.
  • FIG. 36-2 is a chromatogram showing the results of SEC analysis of sample 21-2 (sample from 1st to 4th) after measurement in Example 21-1.
  • FIG. 37-1 is a chromatogram showing the results of SEC analysis of a urine sample collected from the rat (Comparative Sample 2-2) used in the pharmacokinetic test of Comparative Example 2-4.
  • FIG. 37-2 is a chromatogram showing the results of SEC analysis of a urine sample collected from the rat (sample 21-2) used in the pharmacokinetic test of Example 21-1.
  • FIG. 37-3 is a chromatogram showing the results of SEC analysis of a urine sample collected from the rat (sample 21-5) used in the pharmacokinetic test of Example 21-1.
  • FIG. 37-4 is a chromatogram showing the results of SEC analysis of a urine sample collected from the rat (sample 21-6) used in the pharmacokinetic test of Example 21-1.
  • FIG. 37-5 is a chromatogram showing the results of SEC analysis of a urine sample collected from the rat (sample 21-7) used in the pharmacokinetic test of Example 21-1.
  • FIG. 38 is a graph in which the residual ratio of the HA derivative in the solution calculated in Example 22 is plotted against the hydrophobic group introduction ratio of the HA derivative.
  • FIG. 39 shows the results of observing the amount of free doxorubicin by mixing the HA derivative prepared in Example 2-3 and Example 14 and doxorubicin, and subjecting the ultrafiltered filtrate to reverse phase romatography (Example 23). ).
  • FIG. 40 is a photograph in which the Hilate-labeled HA derivative prepared in Example 16 and the 50k HA-Hilyte prepared in Example 24 were administered to xenograft mice, and the accumulation in the tumor was evaluated using an in vivo imaging apparatus.
  • FIG. 41 is a graph plotting the fluorescence intensity of tumors in xenograft mice administered with a Hyte-labeled HA derivative and 50k HA-Hilyte.
  • FIG. 42 is a photograph of a state in which the HA-Chol / AEMA prepared in Example 11 was cross-linked with DTT and gelled.
  • steryl group referred to in the present specification is not particularly limited as long as it is a group having a steroid skeleton.
  • Specific examples of steroids include cholesterol, cholestanol, campestanol, ergostanol, stigmasterol, coprostanol, stigmasterol, sitosterol, lanosterol, ergosterol, simarelenol, bile acids, testosterone, estradiol, pro Guestron, cortisol, cortisone, aldosterone, corticosterone, deoxycortisosterone and the like can be mentioned.
  • Examples of the steryl group include a cholesteryl group, a stigmasteryl group, a lanosteryl group, and an ergosteryl group, and a cholesteryl group (particularly, a cholester-5-en-3 ⁇ -yl group) is preferable.
  • C 1-20 alkyl means a linear or branched alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, n-propyl, i-propyl. , n- butyl, s- butyl, i- butyl, it includes "C 1-4 alkyl” such as t- butyl, furthermore, n- pentyl, 3-methylbutyl, 2-methylbutyl, 1-methylbutyl, 1-ethyl Examples include propyl, n-hexyl, 4-methylpentyl, 3-methylpentyl, 2-methylpentyl, 1-methylpentyl, 3-ethylbutyl, 2-ethylbutyl and the like.
  • C 1-20 alkyl includes C 1-12 alkyl having 1 to 12 carbons and C 1-6 alkyl having 1 to 6 carbons.
  • C 1-6 alkylcarbonyl refers to an alkylcarbonyl group in which the alkyl moiety is a C 1-6 alkyl as already mentioned, eg, acetyl, propionyl, n-propylcarbonyl, i “C 1-4 alkylcarbonyl” such as -propylcarbonyl, n-butylcarbonyl, s-butylcarbonyl, i-butylcarbonyl, t-butylcarbonyl and the like are included.
  • amino C 2-20 alkyl referred to herein means a linear or branched alkyl having 2 to 20 carbon atoms having an amino group as a substituent.
  • an amino group is an alkyl group. It may be located on the terminal carbon atom.
  • hydroxy C 2-20 alkyl referred to herein means a linear or branched alkyl group having 2 to 20 carbon atoms and having a hydroxy group as a substituent.
  • a hydroxy group is an alkyl group. It may be located on the terminal carbon atom of the group.
  • C 2-30 alkylene referred to in the present specification means a linear or branched divalent saturated hydrocarbon group having 2 to 30 carbon atoms, and includes, for example, ethylene, propylene and the like. , C 2-20 alkylene, C 2-8 alkylene, the group — (CH 2 ) n —, where n is 2-30, preferably 2-20 , more preferably 2-15 .
  • C 1-30 alkylene referred to in the present specification means a linear or branched divalent saturated hydrocarbon group having 1 to 5 carbon atoms, such as methylene, ethylene, propylene, etc. including.
  • C 2-8 alkenylene referred to in the present specification means a divalent saturated hydrocarbon group containing one or more double bonds of straight or branched chain having 2 to 8 carbon atoms.
  • geometric isomerism is present, the respective isomers and mixtures thereof are also included.
  • the “divalent C 2-50 hydrocarbon group” referred to in the present specification is not particularly limited, and examples thereof include linear, branched, cyclic and partially cyclic alkylene having 2 to 50 carbon atoms. Groups, alkenylene groups and alkynylene groups, which may be divalent aromatic rings or may include aromatic rings as part of the structure.
  • the “divalent C 2-50 polyalkyleneoxy” referred to in the present specification is not particularly limited, and the alkylene group of the repeating unit may be linear or branched.
  • Examples of “divalent C 2-50 polyalkyleneoxy” include divalent C 2-50 polyethyleneoxy group, C 3-48 polypropyleneoxy group, C 3-48 polybutyleneoxy group and the like. The group may be linked to another group through an oxygen atom or a carbon atom.
  • salt substance referred to in the present specification is not particularly limited as long as it is an inorganic substance soluble in water.
  • calcium salts such as calcium chloride and calcium phosphate
  • magnesium salts such as magnesium sulfate and magnesium chloride
  • sulfuric acid Aluminum salts such as aluminum, aluminum chloride, potassium salts such as potassium sulfate, potassium carbonate, potassium nitrate, potassium chloride, potassium bromide, potassium iodide, sodium hydrogen carbonate, sodium carbonate, sodium sulfate, sodium nitrate, sodium chloride, bromide
  • Sodium salts such as sodium, sodium iodide, sodium silicate, trisodium phosphate, disodium phosphate, sodium borate, sodium acetate, sodium citrate, lithium chloride, lithium bromide, lithium iodide, lithium carbonate, etc.
  • Lithium salt It is preferably, sodium chloride, trisodium phosphate, disodium phosphate, potassium chloride, calcium chloride, and magnesium
  • hyaluronic acid As a raw material for producing the hyaluronic acid derivative of the present invention, hyaluronic acid, a salt thereof or a derivative thereof can be used.
  • the hyaluronic acid salt include alkali metal salts such as sodium salt, potassium salt and lithium salt, and a particularly preferable salt is a sodium salt frequently used as a pharmaceutical product.
  • HA or a pharmaceutically acceptable salt thereof can be produced using various known methods such as a method for extracting a biological product such as a chicken crown or a pig subcutaneous, or a biological fermentation method, or a commercially available product. It is also possible to purchase (for example, from Electrochemical Industry Co., Ltd., Shiseido Co., Ltd., Seikagaku Corporation, R & D system, etc.).
  • the molecular weight of the hyaluronic acid derivative of the present invention is not particularly limited, but hyaluronic acid having a high viscosity and molecular weight is preferable when expecting a sustained release function derived from diffusion delay in local administration, and when the final dosage form is a solution formulation, Hyaluronic acid with low viscosity and molecular weight is preferred for smooth administration. Therefore, the molecular weight of the hyaluronic acid derivative is preferably 1 kDa to 1,000 kDa, more preferably 10 kDa to 300 kDa. In general, the molecular weight of the target product can be adjusted by using a raw material having a corresponding molecular weight.
  • the molecular weight of the raw material of the hyaluronic acid derivative of the present invention that is preferable from the viewpoints of precipitation formation and stable dispersion described above is 10 kDa to 500 kDa, more preferably 27 kDa to 230 kDa, further preferably 50 kDa to 230 kDa, and further Preferably, it is 50 kDa to 99 kDa.
  • the molecular weight of the raw material of the hyaluronic acid derivative of the present invention, which is preferable from the viewpoint of improving the blood retention, is 5 kDa to 27 kDa, more preferably 5 kDa to 18 kDa.
  • the molecular weight of the raw material of the hyaluronic acid derivative of the present invention that is preferable from the viewpoint of gelation is 5 kDa to 300 kDa, more preferably 5 kDa to 50 kDa, and further preferably 5 kDa to 27 kDa.
  • the molecular weight is calculated as a number average molecular weight or a weight average molecular weight.
  • the weight average molecular weight is calculated.
  • the method for measuring the weight average molecular weight for example, the light scattering method, the osmotic pressure method, the viscosity method, etc. described in Seiichi Nakahama et al., “Essential Polymer Science” (published by Kodansha, ISBN4-06-153310-X), etc.
  • the viscosity average molecular weight shown in the present specification can also be measured by a method usually used in the technical field to which the present invention belongs, such as using an Ubbelohde viscometer.
  • a method usually used in the technical field to which the present invention belongs such as using an Ubbelohde viscometer.
  • the specified numerical value can be used as the molecular weight.
  • the hyaluronic acid derivative of the present invention has a hydrophobic group introduced by converting the carboxy group of glucuronic acid, which is one of the disaccharides constituting the repeating unit, to an amide.
  • the carboxy group modification rate of the glucuronic acid portion of the hyaluronic acid derivative is low, for example, when 50% or less of the existing carboxy groups are modified, CD44 that is expressed in large quantities at inflammatory sites and tumor sites
  • CD44 that is expressed in large quantities at inflammatory sites and tumor sites
  • Targeting effects on the hyaluronic acid receptor and the liver and lymph systems, which are the main metabolic systems of hyaluronic acid, can be expected. For example, it can be expected to target inflamed synovial cells of patients with osteoarthritis and rheumatism, take up into cells by receptor-dependent endocytosis, and cure inflammation by releasing drugs inside the cells.
  • the carboxy group modification rate of the glucuronic acid moiety of the hyaluronic acid derivative is high, the binding to the hyaluronic acid receptor is suppressed, and the hyaluronic acid derivative becomes a drug carrier with a long staying property having a stealth effect in the body.
  • a targeting effect on tumor cells using the EPR effect can also be expected.
  • EPR effect Enhanced Permeation and Retention effect
  • target element examples include a target tissue-specific peptide, antibody, fragmented antibody, aptamer, RGD peptide for cancer cells, folic acid, anisamide, transferrin, galactose for liver, tocopherol, and the like.
  • the carboxy group modification rate of the glucuronic acid portion of the hyaluronic acid derivative may be low or high.
  • the rate of modification of the carboxy group of the glucuronic acid moiety of the hyaluronic acid derivative by the hydrophobic group is preferably 2 to 60% from the viewpoint of complex formation with a drug, preferably a protein, and 2 It is preferably ⁇ 50%, further 2 to 40%, further 5 to 20%, and more preferably 7 to 15%. From the viewpoint of precipitation formation as described above, 7 to 15% is preferable, and from the viewpoint of stable dispersion, 18 to 42% is preferable. From the viewpoint of improving blood retention, it is preferably 2 to 50%, more preferably 8 to 35%, and further preferably 15 to 22%. From the viewpoint of gelation, it is preferably 2 to 30%, more preferably 2 to 22%, further preferably 5 to 22%, and further preferably 7 to 22%.
  • the combination of the molecular weight of the raw material of the hyaluronic acid derivative of the present invention and the introduction rate of the hydrophobic group is preferably 27 kDa to 230 kDa and 7 to 15%, and 50 kDa to 230 kDa and 7 to 15% from the viewpoint of the above-described precipitation formation. More preferably, 50 kDa to 99 kDa and 7 to 15% are more preferable. From the viewpoint of stable dispersion, 27 kDa to 230 kDa and 18 to 42% are preferable, 50 kDa to 230 kDa and 18 to 42% are more preferable, and 50 kDa to 99 kDa and 18 to 42% are more preferable.
  • 5 kDa to 27 kDa and 2 to 50% are preferable, 5 kDa to 27 kDa and 8 to 35% are more preferable, 5 kDa to 18 kDa and 8 to 35% are further preferable, 5 kDa to 18 kDa and 8 to 8 to 35% is more preferable, and 5 kDa to 18 kDa and 15 to 22% are more preferable.
  • 5 kDa to 300 kDa and 2 to 30% are preferable, 5 kDa to 50 kDa and 2 to 22% are more preferable, 5 kDa to 27 kDa and 2 to 22% are further preferable, 5 kDa to 27 kDa and 7 to 22% are preferable. Further preferred.
  • a method for converting the carboxy group of glucuronic acid into an amide and introducing a hydrophobic group is, for example, a raw material hyaluronic acid or a derivative thereof, preferably represented by the formula (II)
  • Hyaluronic acid or a derivative thereof composed only of the represented repeating units is ion-exchanged with a tetraalkylammonium salt (for example, tetrabutylammonium (TBA) salt), and the hyaluronic acid is present in a solvent in the presence of a suitable condensing agent.
  • TSA tetrabutylammonium
  • the condensing agent that can be used in the above reaction is not particularly limited.
  • DMT-MM 4- (4,6-dimethoxy-1,3,5-triazine) -4-methylmorpholium
  • CDI N , N′-carbonyldiimidazole
  • DCC N, N′-dicyclohexylcarbodiimide
  • EEDQ N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline
  • benzotriazole-1-oxy -Tris-pyrrolidino-phosphonium hexafluorophosphate (PyBOP) benzotriazol-1-yl-oxy-tris (di Chiruamino) and the like phosphonium he
  • DMT-MM is preferable in that the reaction proceeds with high efficiency even in a mixed solvent of water and an organic solvent.
  • DMT-MM as a condensing agent, it is possible to highly selectively form an amide bond between an amino group and a carboxy group while suppressing the formation of an ester bond in a system in which many hydroxy groups coexist.
  • the alcohol as a solvent reacts with the carboxy group of the hyaluronic acid moiety, or the carboxy group and hydroxy simultaneously present in the hyaluronic acid moiety are bonded within the molecule or between the molecules, It is possible to prevent the formation of unwanted crosslinks.
  • Examples of the solvent used in the hydrophobic group introduction reaction include water, DMSO, methanol, ethanol, propanol, butanol, acetonitrile, DMF, THF, dichloromethane, chloroform, hexane, diethyl ether, ethyl acetate, and mixed solvents thereof. it can.
  • the introduction rate of the hydrophobic group is 18 to 42%
  • only DMSO is used as the reaction solvent from the viewpoint of suppressing precipitation of fine particles formed after the introduction of the hydrophobic group and dispersibility in the solvent. Is preferred.
  • the raw material hyaluronic acid or a derivative thereof is ion-exchanged with a tetraalkylammonium salt (for example, tetrabutylammonium (TBA) salt), and the hyaluronic acid salt is reacted with the spacer portion in a solvent in the presence of an appropriate condensing agent.
  • a tetraalkylammonium salt for example, tetrabutylammonium (TBA) salt
  • TSA tetrabutylammonium
  • the carboxy group (—COOH) of the raw material hyaluronic acid or its derivative may be converted and then reacted with an appropriate reagent.
  • TSA tetrabutylammonium
  • reaction mode examples include dehydrohalogenation reaction, condensation reaction, dehydration reaction, nucleophilic addition reaction such as Michael addition, oxidative disulfide formation reaction, etc., and these are well-known reactions and are appropriately selected by those skilled in the art. And it can carry out by finding preferable reaction conditions.
  • the converter or the reaction product may be reacted as an N-hydroxysuccinimide (hereinafter also referred to as “NHS”) ester.
  • NHS N-hydroxysuccinimide
  • a hyaluronic acid derivative in which a spacer having a mercapto group modified with a leaving group is introduced at the end by reacting the carboxy group of the raw material hyaluronic acid or its derivative with 2-aminoethyl 2-pyridyl disulfide is prepared.
  • a method of forming a disulfide bond by reacting thiocholesterol with a nucleophilic substitution reaction can also be mentioned.
  • a method in which a part of the spacer is introduced into the carboxy group of hyaluronic acid or its derivative and a part of the steryl group into which a part of the spacer is introduced are prepared and reacted.
  • Some of the specific examples have been described above.
  • a hyaluronic acid derivative in which a spacer having a mercapto group at the terminal is introduced into the carboxy group of hyaluronic acid;
  • a method may also be mentioned in which a steryl group having a mercapto group-terminated spacer introduced therein is prepared, and these are oxidatively reacted to form a disulfide bond. At this time, one mercapto group can be reacted with 2-mercaptopyridine to form a disulfide, and then substituted with the other mercapto group.
  • a substituent may be further introduced.
  • X z is a group —NH— (CH 2 ) p1 —O—CO—C (R 17 ) ⁇ CH 2 ; —NH— (CH 2 ) p1 —O—CO—CH (R 17 ) —CH 2 —S—CH 2 —CH (OH) —CH (OH) —CH 2 —SH; —NH— (CH 2 ) p1 —SH; —NH— (CH 2 ) p1 —NH—CO—C (R 17 ) ⁇ CH 2 ; —NH— (CH 2 ) p1 —NH—C ( ⁇ NH)
  • the conditions may be appropriately selected.
  • the crosslinking conditions include crosslinking method, polymer concentration, crosslinking agent concentration, solvent, solvent pH, salt concentration, temperature, time and the like.
  • the cross-linking of the gel formed by increasing the polymer concentration during chemical cross-linking and the introduction rate of groups capable of cross-linking, for example, in the cross-linking reaction conditions It is possible to increase the density.
  • the concentration of the cross-linking agent in the step of gelling the hyaluronic acid derivative of the present invention is such that when the group having groups capable of forming a cross-link at both ends is used, the group can participate in the cross-linking reaction quickly without excess or deficiency. It is preferable to add.
  • MA group: SH group 3: 1 to 1: 3 is preferable, and 2: 1 to 1: 2 is particularly preferable.
  • the solvent in the step of gelling the hyaluronic acid derivative of the present invention is preferably one that can sufficiently dissolve the polymer and the cross-linking agent, and is not particularly limited, but water, dimethyl sulfoxide (DMSO), dimethylacetamide (DMAc), It is preferable to use dimethylformamide (DMF), N-methylpyrrolidone (NMP) and a mixed solvent selected from these. It is also possible to use a mixture of organic solvents that are miscible with these solvents. Although it does not specifically limit, As an organic solvent to mix, methanol, ethanol, propanol, isopropanol, butanol, acetone, acetonitrile etc. are mentioned, for example.
  • the hyaluronic acid derivative of the present invention forms nanoparticles in an aqueous solution, it can form nano-sized particle gels by crosslinking under dilute conditions, and is used as a blood release carrier and targeting carrier. be able to.
  • the dilute condition is 10 mg / mL or less, preferably 5 mg / mL or less, more preferably 1 mg / mL or less.
  • a high concentration condition is 5 mg / mL or more, preferably 20 mg / mL or more, and more preferably 40 mg / mL.
  • the step of gelling the hyaluronic acid derivative of the present invention may be performed in bulk or in a discontinuous phase such as in an emulsion or spray droplets.
  • a discontinuous phase such as in an emulsion or spray droplets.
  • an aqueous phase in which a polymer or a crosslinking agent is dissolved is emulsified in a solvent immiscible with water, and a gelation reaction may be carried out.
  • the solvent immiscible with water is not particularly limited, and examples thereof include hexane, chloroform, dichloromethane, ethyl acetate, medium chain fatty acid triglyceride (MCT), liquid paraffin, and soybean oil.
  • a surfactant for stabilizing the emulsification may be added. Further, for example, it may be performed in a solvent capable of desolvation such as in supercritical carbon dioxide or PEG. In this case, the concentration of the polymer accompanying desolvation (solvent diffusion) is achieved by emulsifying and dispersing the aqueous phase or organic solvent phase in which the polymer or crosslinking agent is dissolved in the solvent of the previous example. It becomes possible to obtain a gel with a higher crosslinking density.
  • the step of gelling the hyaluronic acid derivative of the present invention and then the operation of stopping the crosslinking reaction and the operation of deactivating or washing the remaining crosslinkable functional groups may be performed.
  • Crosslinkable functional groups that were not involved in the reaction groups in which only one end of the crosslinker was bonded, residual crosslinkers, etc. were used for safety, storage stability, side reactions with encapsulated drugs, etc. It is preferable to remove from the viewpoint. Although not particularly limited, for example, when unreacted crosslinking agent remains, it may be removed by washing with excess water or the like.
  • a pulverization step may be performed after the step of gelling the hyaluronic acid derivative of the present invention.
  • Examples of the pulverization method include pulverization using a pestle and mortar and pulverization using a mill, but pulverization using a mill is preferred.
  • rotating disc type crusher such as centrifugal crusher (Nippon Seiki Seisakusho) and impact mill (Dalton Co., Ltd.), atomizer (Tokyo Atomizer Manufacturing Co., Ltd.), sample mill (Tokyo Atomizer Manufacturing Co., Ltd.) ), Bantam mill (Tokyo Atomizer Manufacturing Co., Ltd.), screen mill crusher such as SK mill (Tokken), jet crusher such as ultra-small lab jet mill (AO jet mill, Seishin company), and ultra-low temperature Linlex mill (Liquid Gas Co., Ltd.) and the like that can be pulverized with SK are preferable, but SK mill and Linlex mill are preferable.
  • SK mill and Linlex mill are preferable.
  • a drying step may be performed after the step of gelling the hyaluronic acid derivative of the present invention.
  • the drying method include ventilation drying, drying in a thermostatic bath, vacuum drying, hot air circulation drying and the like.
  • the wind speed, drying time, temperature, pressure and the like are appropriately selected within a range where the gel of the present invention does not decompose or deteriorate.
  • a pharmaceutical composition can be obtained by encapsulating a drug in the gel of the hyaluronic acid derivative of the present invention.
  • Examples of the drug encapsulation method include a method of adding a drug solution to a pre-crosslinked hyaluronic acid derivative gel. In this method, first, the drug is absorbed by diffusion into the swollen gel, and the absorbed drug is held in the physical cross-linking domain by the hydrophobic interaction of the hyaluronic acid derivative gel, thereby encapsulating the drug.
  • conditions such as solvent, salt concentration, pH, temperature, time, addition of a denaturant, and the like may be appropriately selected so that the drug is stably encapsulated in a high yield.
  • the swelling degree and density of the hyaluronic acid derivative gel change depending on the salt concentration and pH at the time of drug encapsulation, and the ionization state of the drug also changes. Therefore, appropriate conditions may be used depending on the combination.
  • Encapsulating drugs under low salt concentration makes use of electrostatic repulsion between carboxy groups of hyaluronic acid derivatives, reduces gel density, increases drug encapsulation, and encapsulates higher molecular weight drugs can do. After encapsulating the drug, by increasing the salt concentration, the electrostatic repulsion is weakened, the gel density is increased, and the gel network is made smaller than the drug size, so that the drug can be firmly held and the release can be delayed.
  • the salt concentration may be a physiological salt concentration.
  • a method for encapsulating a drug there is a method in which a drug is combined with the hyaluronic acid derivative of the present invention and then gelled by crosslinking.
  • conditions such as solvent, salt concentration, pH, temperature, time, addition of denaturing agent, concentration of hydrophilic polysaccharide derivative, drug concentration, HP to drug ratio, etc. during the conjugation are stable. And may be appropriately selected so as to be combined with the nanogel in a high yield.
  • the free drug that has not been complexed may be separated and removed by dialysis or size exclusion chromatography (SEC).
  • SEC size exclusion chromatography
  • cross-linking it is preferable to use cross-linking conditions in which the encapsulated drug is not denatured.
  • the drug encapsulated in the gel of the hyaluronic acid derivative of the present invention is released by simple diffusion in the gel of the drug, decomposition of the gel of the hyaluronic acid derivative, and substitution of the biological component with the drug.
  • the rate can be controlled by the cross-linking density of the gel, the amount of cross-linking domains, and the strength of the hydrophobicity.
  • gel decomposition include decomposition of a chemical cross-linking domain and decomposition of a skeleton of a hyaluronic acid derivative. These decompositions cause a decrease in crosslink density (increase in swelling rate).
  • a gel when a gel is administered into a living body such as subcutaneous or blood, plasma proteins such as albumin and lipids exist, and these are infiltrated and encapsulated in the gel. It means the case where the drug is released by substitution.
  • the gel of the hyaluronic acid derivative of the present invention can suppress substitution with a drug accompanying infiltration of a biological component by the chemical crosslinking as well as physical crosslinking by hydrophobic groups.
  • the rate of infiltration of biological components can be controlled by the crosslink density of the gel, the charge in the gel, and the like.
  • the encapsulation is performed so that the drug is easily absorbed into the gel at the time of encapsulation and infiltration of biological components is suppressed in vivo.
  • Conditions can be selected as appropriate.
  • the electrostatic repulsion between the hyaluronic acid derivative and the drug can be suppressed by performing the encapsulation step near the isoelectric point.
  • the negative charge of the gel can be weakened by performing the encapsulation step at a pKa (about 4.0) or less of the carboxylic acid derived from glucuronic acid contained in hyaluronic acid, the negative charge is charged under that condition.
  • the electrostatic repulsion with the protein is suppressed, and the encapsulation efficiency can be improved.
  • the gel swelling rate becomes higher than in the living body, so that the encapsulation becomes easy.
  • the gelation by chemical crosslinking of the hyaluronic acid derivative into which the hydrophobic group and the crosslinkable functional group of the present invention are simultaneously introduced can be performed in the presence of a hydrophilic polysaccharide derivative having a hydrophobic group.
  • a hydrophilic polysaccharide derivative having a hydrophobic group in which a hydrophobic group and a functional group having an unsaturated bond are introduced, and a hydrophilic polysaccharide derivative having a hydrophobic group are mixed and crosslinked to form a hydrophobic group.
  • a hyaluronic acid derivative gel can be prepared in which the hydrophilic polysaccharide derivative is physically encapsulated. The same process can be performed using HA-AM, HA-ALD, and HA-SH.
  • the hydrophilic polysaccharide derivative having a hydrophobic group is a hydrophilic polysaccharide obtained by introducing at least one or more hydrophobic groups per molecule of polysaccharide into the hydrophilic polysaccharide and its derivative.
  • the hydrophilic polysaccharide is not particularly limited, but is preferably pullulan, amylopectin, amylose, dextran, mannan, levan, inulin, chitin, chitosan, hyaluronic acid, dextrin, which are commercially available or according to methods described in the literature. Those having various average molecular weights can also be obtained.
  • hydrophilic polysaccharides are pullulan, hyaluronic acid and dextrin.
  • cluster dextrin (registered trademark) is preferable.
  • Cluster dextrin (registered trademark) can be purchased and used from Ezaki Glico Co., Ltd.
  • the hydrophobic group is not particularly limited, but is preferably a C 8-50 hydrocarbon group, a steryl group, a polylactic acid (PLA) group, a polylactic acid / glycolic acid copolymer (PLGA) group, or a group thereof. And particularly preferably a group containing a cholesteryl group, a C 8-30 linear or branched alkyl, or a group containing the group.
  • the hydrophobic group may be introduced via a spacer.
  • Hydrophilic polysaccharide derivatives having a hydrophobic group can be produced by various known methods.
  • a hydrophilic polysaccharide derivative in which N- [6- (cholesteryloxycarbonylamino) hexyl] carbamoyl group is introduced as a hydrophobic group into a hydroxy group of pullulan as a hydrophilic polysaccharide (hereinafter referred to as “cholesterol pullulan”, “ It is also possible to purchase a commercially available product (for example, Nippon Oil & Fat Co., Ltd.).
  • Hydrophilic polysaccharide derivatives having hydrophobic groups form fine particles (nanogels) having a nano-sized (1 to 1,000 nm) gel structure by spontaneously associating several molecules in aqueous solution by hydrophobic interaction. By doing so, it can be complexed with a hydrophobic drug or a protein or peptide having medicinal properties.
  • the molecular weight of the hydrophilic polysaccharide derivative having a hydrophobic group used in the present invention is not particularly limited, but is preferably 1 kDa to 1,000 kDa, more preferably 10 kDa to 300 kDa.
  • the hydrophilic polysaccharide derivative may be a pharmaceutically acceptable salt.
  • the hydroxy group contained in the hyaluronic acid derivative of the present invention and the hydrophilic polysaccharide derivative having a hydrophobic group can also be used as a group capable of forming a crosslink. That is, the hydroxy group of the hyaluronic acid derivative of the present invention and the hydrophilic polysaccharide derivative having a hydrophobic group is converted to a glycidyl ether at both ends of a specific cross-linking agent such as divinyl sulfone (DVS), carbodiimide, or C 2-20 alkylene. It can be crosslinked by a crosslinking agent having a group.
  • a specific cross-linking agent such as divinyl sulfone (DVS), carbodiimide, or C 2-20 alkylene. It can be crosslinked by a crosslinking agent having a group.
  • substituents introduced into the carboxy group of hyaluronic acid When there are a plurality of types of substituents introduced into the carboxy group of hyaluronic acid, these substituents may be introduced simultaneously or sequentially.
  • the hyaluronic acid derivative of the present invention has a characteristic of forming nanoscale fine particles by spontaneously associating in an aqueous solution by the hydrophobic interaction of the hydrophobic group.
  • the nanoparticle formed by the hyaluronic acid derivative of the present invention is one of the most effective means, and proteins and peptides that are active components in the hydrophobic domain formed inside , And can be used as a capsule to be delivered to a target site while retaining a low molecular weight compound.
  • the drug can be delivered to the target site by conjugating the drug.
  • Nano-scale microparticles can be administered systemically, particularly intravenously, and release the encapsulated (complexed) drug slowly in the blood, and selectively deliver the drug to target organs and cells. It can be used as a carrier for targeting to be delivered.
  • a targeting carrier when used as a targeting carrier, when the carboxy group of the glucuronic acid moiety of the HA derivative is not highly modified (for example, the modification rate is 54% or less), as described above, the hyaluronic acid receptor, CD44, RHAMM, LYVE-1, HARE It is possible to deliver drugs targeting In particular, targeting to CD44 and RHAMM enables targeting to a tumor.
  • the hyaluronic acid derivative can be further chemically crosslinked.
  • HA derivative when used as a carrier for sustained drug release or targeting in blood, it is instantaneously taken up and metabolized by the HARE receptor present in the sinusoidal endothelium such as the liver. There is a problem that it disappears rapidly from the blood.
  • the blood retention of the HA derivative of the present invention is dependent on the molecular weight, and the HA derivative using low molecular weight HA (5 kDa to 27 kDa) as a raw material has good blood retention performance, It can be used as a carrier for release and targeting.
  • polyethylene glycol which is a linear polymer similar to hyaluronic acid, has been reported to undergo renal excretion at a molecular weight of 40 kDa or less (Europian Journal of Cancer. Vol. 31, 766-770, (1995)), molecules below a certain size are known to undergo renal excretion. Therefore, hyaluronic acid and hyaluronic acid derivatives having the same molecular weight or less are also excreted by the kidneys and may disappear from the blood instantly.
  • the HA derivative into which the hydrophobic group of the present invention is introduced has a good retention in blood even when the PEG has a molecular weight or less that undergoes renal excretion regardless of the modification rate of the carboxy group. It can be used as a carrier for sustained release and targeting.
  • the fine particles of the hyaluronic acid derivative are formed by self-association in an aqueous solution, they can be formed by dissolving a solid hyaluronic acid derivative in water or an aqueous salt solution.
  • the fine particles can be formed by dissolving in another solvent (for example, DMSO) and then substituting it with water or a salt solution.
  • ultrasonic treatment may be performed.
  • the hyaluronic acid derivative has a carboxy group that is a dissociating group, the higher the ionic strength in the system, the lower the solubility. Therefore, by controlling the introduction rate, it is possible to prepare hyaluronic acid derivatives that dissolve under low salt concentrations or salt-free conditions and aggregate and precipitate at physiological saline concentrations. It can be the base material of the preparation.
  • a hyaluronic acid derivative having a hydrophobic group introduced so as to form stable fine particles even under physiological salt concentration can be a systemic administration type drug carrier.
  • the HA derivative of the present invention is shown to have a range of introduction of a hydrophobic group into a carboxy group that aggregates and precipitates under physiological salt concentration, and also encapsulates (complexes) a protein (erythropoietin) Was shown to be precipitated. Further, it was confirmed that when a pharmaceutical composition comprising the hyaluronic acid derivative of the present invention encapsulated (complexed) and precipitated with human growth hormone was administered subcutaneously to rats, a sustained release effect was exhibited. In addition, it was confirmed that even when administered in a solution (dispersed) state, it was precipitated subcutaneously (under physiological salt concentration) and exhibited a sustained release effect.
  • the particle size of the formed fine particles is not particularly limited, but is preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less so that the needle can pass through without clogging during administration by injection.
  • the particle diameter is preferably 500 nm or less, and more preferably 200 nm or less in order not to block the peripheral blood vessel.
  • it is preferably 100 nm or less.
  • the hyaluronic acid derivative of the present invention can be used as a drug carrier in a pharmaceutical preparation. Since the hyaluronic acid derivative of the present invention spontaneously forms a complex with a drug in an aqueous solution, no special operation is required, and the hyaluronic acid derivative and the drug are mixed in an aqueous solution and incubated to obtain a carrier. -Drug complexes can be easily formed.
  • the driving force for complex formation is mainly the hydrophobic interaction between the hydrophobic group of the hyaluronic acid derivative and the drug, but when the drug is basic, the electrostatic interaction with the carboxylic acid of the hyaluronic acid derivative May contribute. At biological salt concentration, electrostatic interaction is weak and hydrophobic interaction is strong, so it is considered that a complex is formed mainly by hydrophobic interaction.
  • the linker (spacer) moiety in the hydrophobic group is an ester or carbonate (for example, when X 1 is —COO—R and —O—COO—R), the ester or carbonate decomposes in vivo,
  • the biodegradability is further increased by reducing the hydrophobicity of the hyaluronic acid derivative, which is preferable from the viewpoint of safety.
  • the pH is lowered around the tumor tissue.
  • the linker (spacer) moiety has a disulfide bond (for example, when X 1 is —S—S—R), the linker is decomposed under reducing conditions, and the hydrophobicity of the hyaluronic acid derivative is reduced.
  • the linker (spacer) moiety has a peptide that is cleaved in an enzyme-specific manner (for example, when the hydrophobic group is —Z—NR a —Y—NR b —COO—R), at the site where the enzyme is present Only when the linker is decomposed and a part of the hydrophobic group is eliminated, the aggregate of the hyaluronic acid derivative of the present invention is destroyed.
  • Gly-Phe-Leu-Gly is specifically cleaved in lysosomes.
  • the drug can be specifically released by the tumor.
  • linker moiety is not a linker that undergoes physicochemical cleavage such as an ester bond, carbonate bond, or disulfide bond, there is an advantage that the storage stability in the preparation is good.
  • Conditions such as solvent, salt concentration, pH, temperature, time, and addition of a denaturant when forming a carrier-drug complex can be appropriately changed depending on the drug used.
  • the density of the hyaluronic acid derivative varies depending on the salt concentration and pH at the time of drug encapsulation, and the ionization state of the drug also varies.
  • the modifying agent used include urea, guanidine hydrochloride, sodium dodecyl sulfate and the like.
  • the electrostatic repulsion of the hyaluronic acid derivative and the protein is suppressed by forming the complex near its isoelectric point.
  • the amount of protein contained in the complex can be increased.
  • the negative charge of the hyaluronic acid derivative can be weakened by performing the complex formation step under the condition of pKa (approximately 4.0) or less of the carboxy group of the glucuronic acid moiety. When the electric charge is charged, electrostatic repulsion can be suppressed, and the amount of protein contained in the complex can be increased.
  • the density of the fine particles of the hyaluronic acid derivative formed in the aqueous solution is reduced, so that the amount of protein contained in the complex is increased. Can do. Further, by increasing the salt concentration in this state, the density of the fine particles can be improved and the protein can be firmly encapsulated.
  • the complex formation between the hyaluronic acid derivative and the protein can be influenced by the molecular weight of the protein.
  • the lower the molecular weight of a protein the higher the rate of migration into the fine particles of the hyaluronic acid derivative of the protein.
  • the density of the fine particles depending on the introduction rate of the hydrophobic group can also affect the rate of complex formation with the protein and the amount of protein contained in the complex.
  • Biological components such as plasma proteins and lipids exist in the living body, and when a complex of hyaluronic acid derivative and drug is administered to the living body, such as subcutaneously or in blood, this biological component must replace the drug in the complex. May cause drug release.
  • Albumin is assumed as the main in vivo protein that causes this substitution.
  • the drug and the hyaluronic acid derivative of the present invention are combined.
  • a method for preparing a conjugated conjugate in addition to the method of spontaneously forming a complex with a drug in the aqueous solution described above, the drug and the hyaluronic acid derivative of the present invention are combined.
  • a method for preparing a conjugated conjugate in addition to the method of spontaneously forming a complex with a drug in the aqueous solution described above, the drug and the hyaluronic acid derivative of the present invention are combined.
  • a method for preparing a conjugated conjugate in addition to the method of spontaneously forming a complex with a drug in the aqueous solution described above.
  • a method for preparing a conjugate comprising a hyaluronic acid derivative of the present invention and a drug a method used for preparing a conjugate of a known polymer and drug can be used.
  • the following reaction can be used. Can do.
  • linker spacer containing an ester or carbonate, ⁇ thioester, disulfide, or a peptide that cleaves at a specific site used when introducing the hydrophobic group described above into the HA derivative is used as a linker for conjugation with a drug. It can also be used. These linkers are cleaved at the target site as described above to release the drug.
  • the reagent used for modification of the hyaluronic acid derivative or drug for the preparation of the conjugate is not particularly limited as long as it does not cause an adverse reaction in the preparation of the conjugate.
  • the compound is available as a reagent or may be synthesized with reference to methods known in the literature.
  • the hyaluronic acid derivative of the present invention is synthesized, and a drug having an amino group or a drug having an amino group introduced is reacted using a condensing agent such as DMT-MM, and the drug is conjugated by an amide bond.
  • a condensing agent such as DMT-MM
  • the drug is conjugated by an amide bond.
  • the drug may be added together with cholesteryl 6-aminohexylcarbamate hydrochloride and the like, and a hydrophobic group may be simultaneously introduced.
  • the compound may be added after or before the drug.
  • the drug may be reacted after synthesizing and purifying the hyaluronic acid derivative of the present invention, or the hydrophobic group derivative may be introduced after synthesizing and purifying the hyaluronic acid derivative into which the drug has been introduced.
  • the hyaluronic acid derivative of the present invention is synthesized, and a drug having a hydroxy group or a drug into which a hydroxy group is introduced is reacted with a condensing agent such as DMT-MM, 1,3-dichlorohexadiimide (DCC),
  • DCC 1,3-dichlorohexadiimide
  • the drug can be conjugated to the hyaluronic acid derivative through an ester bond.
  • the drug may be added together with cholesteryl 6-aminohexylcarbamate hydrochloride and the like, and a hydrophobic group may be simultaneously introduced.
  • the compound may be added after or before the drug.
  • the above method can be performed with reference to, for example, a report that paclitaxel is introduced into HA as an ester (Bioconjugate Vol. 19, paragraphs 1319-1325, 2008).
  • the carboxy group of the glucuronic acid moiety is converted to an ester.
  • Drugs can be conjugated. In order to avoid hydrolysis of the ester, it is desirable to conjugate the drug after introducing the hydrophobic group.
  • the hyaluronic acid derivative of the present invention is synthesized, and a drug having a carboxy group or a drug into which a carboxy group is introduced is used as an NHS ester, reacted with hydroxy at the 6-position of the N-acetylglucosamine moiety, and the drug is conjugated via an ester bond.
  • the drug may be added after introducing the hydrophobic group into the HA by cholesteryl 6-aminohexyl carbamate hydrochloride or the like, or may be added before the introduction.
  • the drug may be reacted after synthesizing and purifying the hyaluronic acid derivative of the present invention, or the hydrophobic group derivative may be introduced after synthesizing and purifying the hyaluronic acid derivative into which the drug has been introduced.
  • the hydrophobic group derivative may be introduced after synthesizing and purifying the hyaluronic acid derivative into which the drug has been introduced.
  • the above-mentioned method can be performed with reference to, for example, a report in which camptothecin is introduced into HA as an ester (International Publication No. WO2009 / 074678).
  • the carboxy group of the glucuronic acid moiety can be dehydrated and condensed with a diamine such as ethylenediamine to introduce an amino group.
  • a diamine such as ethylenediamine
  • N-succinimidyl iodoacetate (PIERCE) or N-succinimidyl [4-iodoacetyl] aminobenzoate (PIERCE) can be reacted with an amino group to synthesize a hyaluronic acid derivative introduced with an iodoacetyl group.
  • a drug having a thiol group can be conjugated to this hyaluronic acid derivative.
  • This method is particularly effective because it can be thiol-selectively conjugated even in a polymer drug containing many reactive groups such as amino groups such as proteins, peptides, and nucleic acids.
  • the drug may be introduced before or after the hydrophobic group derivative is introduced into the HA.
  • a hyaluronic acid derivative of the present invention in which X 1 is —NH 2 —COO—R is synthesized, wherein a part of the carboxy group of the glucuronic acid moiety is reacted with 2-aminoethyl 2-pyridyl disulfide hydrochloride. It is possible to introduce a drug having a mercapto group and a drug having a mercapto group introduced into the hyaluronic acid derivative by a disulfide bond exchange reaction, that is, a substitution reaction.
  • the length of the linker between the drug and the hyaluronic acid derivative can also be adjusted.
  • a peptide linker that can be cleaved with an enzyme or the like at a specific site in the living body can also be introduced.
  • methotrexate was introduced into HA through a linker containing a peptide (International Publication No. WO2005 / 095464)
  • doxorubicin was introduced through a linker containing HPMA (N- (2-hydroxypropyl) methacrylamide) and a peptide And the like (International Publication No. WO2002 / 090209).
  • the pharmaceutical composition comprising the hyaluronic acid derivative of the present invention and one or more drugs, and the conjugate in which the hyaluronic acid derivative of the present invention and one or more drugs are bonded are nano-particulates, micro-particulates, solutions, emulsions, suspensions. , Gels, micelles, implants, powders, or films.
  • the powder may be produced by pulverizing a solid obtained by freeze drying or spray drying, or may be produced from a dried precipitate.
  • compositions and conjugates of the invention are administered via the oral, parenteral, intranasal, intravaginal, intraocular, subcutaneous, intravenous, intramuscular, intradermal, intraperitoneal, intracerebral or buccal route. It's okay.
  • the pharmaceutical composition and conjugate of the present invention are preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less, in order to allow the needle to pass through without clogging, particularly for the purpose of local sustained release. .
  • the pharmaceutical composition and conjugate of the present invention preferably have a size of 5 ⁇ m or less, particularly when targeting the hyaluronic acid receptor including CD44.
  • the hyaluronic acid derivative used in this case preferably has a hydrophobic group introduction rate of 10% or less so that binding to the hyaluronic acid receptor is not suppressed.
  • the pharmaceutical composition and conjugate of the present invention have a size of preferably 500 nm or less, more preferably 200 nm or less, particularly for the purpose of prolonging blood retention and accumulation in tumor tissue or inflamed tissue. It is. Moreover, in order to avoid uptake into the reticuloendothelial system and improve the blood retention, it is preferably 100 nm or less.
  • the hyaluronic acid derivative used in this case it is preferable to use a hyaluronic acid derivative in which most of the carboxy groups of the glucuronic acid moiety are converted so that the binding to the hyaluronic acid receptor is suppressed.
  • the size is preferably 200 ⁇ m or less. From the viewpoint of mucoadhesiveness, it is preferable that the hyaluronic acid derivative used has a lower hydrophobic group introduction rate.
  • the drug that forms a complex with the hyaluronic acid derivative of the present invention is not particularly limited as long as it is a drug that can be carried.
  • the drug to be bound to the hyaluronic acid derivative of the present invention is not particularly limited as long as a conjugate can be prepared.
  • the drug include proteins and / or peptides, polysaccharides, nucleic acids, and low molecular weight compounds, and preferably proteins and / or peptides.
  • low molecular weight compounds include, for example, anticancer agents (eg, alkylating agents, antimetabolites, alkaloids, etc.), immunosuppressants, anti-inflammatory agents (eg, steroids, non-steroidal anti-inflammatory agents), antirheumatic agents. And antibacterial agents ( ⁇ -lactam antibiotics, aminoglycoside antibiotics, macrolide antibiotics, tetracycline antibiotics, new quinolone antibiotics, sulfa drugs, etc.).
  • anticancer agents eg, alkylating agents, antimetabolites, alkaloids, etc.
  • immunosuppressants eg, anti-inflammatory agents (eg, steroids, non-steroidal anti-inflammatory agents)
  • antirheumatic agents e.g., antirheumatic agents.
  • antibacterial agents ⁇ -lactam antibiotics, aminoglycoside antibiotics, macrolide antibiotics, tetracycline antibiotics, new quinolone antibiotics, sulfa drugs, etc.
  • proteins and peptides include, for example, erythropoietin (EPO), granulosite colony stimulating factor (G-CSF), interferon- ⁇ , ⁇ , ⁇ , (INF- ⁇ , ⁇ , ⁇ ), thrombopoietin (TPO), Serial neutrophic factor (CNTF), Tumor necrosis factor (TNF), Tumor necrosis factor binding protein (TNFbp), interleukin-10 (IL-10), FMS-like tyrosine kinase (Flt-3), growth hormone (GH), insulin, insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), interleukin-1 receptor antagonist (IL-1ra), brain-derived neurotrophic factor (BDNF) Keratinocyte growth factor (KGF), stem cell factor (SCF), megacaryosite growth differentiation factor (MGDF), osteoprotegerin (OPG), leptin, parathyroid hormone (PTH), basic fibroblast growth factor (b-FGF)
  • nucleic acids examples include DNA, RNA, antisense, decoy, ribozyme, small interfering RNA, RNA aptamer and the like.
  • —NR a in formula (I) forms an amide bond with carbonyl (CO), and the hydrophobic group having a steryl group is obtained by converting the carboxy group of hyaluronic acid or a salt thereof into an amide. It has been introduced by converting.
  • a hydrophobic group can also be introduced by converting a carboxy group into an ester.
  • —COOH contained in hyaluronic acid or a salt thereof —COOA; -R, -Y-NR b -R, -Y-NR b -COO-R, -Y-NR b -CO-R, —Y—NR b —CO—NR c —R, -Y-COO-R, -YO-COO-R, -YSR, -Y-CO-Y a -SR, —Y—O—CO—Y b —S—R, —Y—NR b —CO—Y b —S—R, and —Y—S—S—R (R, Y, R b , R c , Y a and Y b are as defined above) Can also be converted.
  • a hydroxy group (—OH) of hyaluronic acid or a salt thereof is —OAa; where Aa is -R, -CO-Y-NR b -COO-R, -OCO-Y-NR b -COO-R, —CO—NR a —Y—NR b —COO—R, -CO-Y-COO-R, -OCO-Y-COO-R, —CO—NR a —Y—COO—R, -CO-Y-OCOO-R, -OCO-Y-OCOO-R, —CO—NR a —Y—OCOO—R, —CH 2 CH (OH) —O—R, —CH (CH 2 OH) —OR, and —CH 2 CHR h —SO 2 —OR (R, Y, R a and R b are as defined above, and R h is a hydrogen atom or C 1-6 alky
  • the HA unit in the following description means a repeating unit (1 unit) of N-acetylglucosamine-glucuronic acid in hyaluronic acid.
  • Example 1 Preparation of HA Derivatives Introduced with Cholesteryl Group (Example 1-1) Preparation of Cholesteryl 6-Aminohexyl Carbamate Hydrochloride Cholesteryl chloroformate (3.37 g, 7.5 mmol) in anhydrous dichloromethane (20 mL) To this solution, triethylamine (TEA, 1.05 mL) was added and stirred under an argon atmosphere. Under ice-cooling, 6- (t-butoxycarbonyl) amino-1-aminohexane (1.12 mL, 5 mmol) was added dropwise, and the mixture was stirred for 30 minutes under ice-cooling and then warmed to room temperature. Was stirred overnight.
  • TEA triethylamine
  • the reaction mixture was washed with ultrapure water and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure.
  • Example 1-3 Preparation of Cholesteryl 8-Aminooctylcarbamate Hydrochloride 8- (t-Butoxycarbonyl) amino-1-aminooctane (1.21 g, 5 mmol) in anhydrous dichloromethane (100 mL) and anhydrous toluene (200 mL) To this solution, TEA (0.7 mL) was added and stirred under an argon atmosphere. Under ice cooling, an anhydrous dichloromethane solution of cholesteryl chloroformate (2.66 g, 6 mmol) was added dropwise, and the mixture was stirred as it was for 30 minutes under ice cooling, then warmed to room temperature and stirred overnight.
  • cholesteryl chloroformate 2.66 g, 6 mmol
  • FIG. 3 shows the 1 H-NMR spectrum (JNM-ECA500, manufactured by JEOL Ltd .; EtOH-d 6 ) of the product.
  • Example 1-4 Preparation of Cholesteryl 12-Aminododecyl Carbamate Hydrochloride 12- (t-Butoxycarbonyl) amino-1-aminododecane (1) instead of 6- (t-butoxycarbonyl) amino-1-aminohexane .59 g, 5 mmol) was used in the same manner as in Example 1-1 to obtain cholesteryl 12-aminododecylcarbamate (Chol-C 12 ) hydrochloride (1.0 g).
  • the 1 H-NMR spectrum JNM-ECA500, manufactured by JEOL Ltd .; EtOH-d 6 ) of the product is shown in FIG.
  • Example 2 Preparation of HA derivative having cholesteryl group introduced (Example 2-1) Tetrabutylammonium (TBA) cation exchange resin DOWEX (registered trademark) 50WX-8-400 (manufactured by Aldrich) The resin was suspended in water, and the resin was washed about 3 times with ultrapure water by decantation. A 40 wt% tetrabutylammonium hydroxide aqueous solution (TBA-OH) (manufactured by Aldrich) was added in an amount of about 1.5 times the molar equivalent of the cation exchange capacity of the resin and stirred for 30 minutes.
  • TAA-OH Tetrabutylammonium hydroxide aqueous solution
  • Example 2-2 Preparation of HA TBA salt Hyaluronic acid sodium salt (HA-Na, manufactured by Shiseido Co., Ltd.) having molecular weights of 27 kDa, 50 kDa and 100 kDa was dissolved in ultrapure water at a concentration of 15 mg / mL.
  • Example 2-1 The suspension of the cation exchange resin that had been subjected to TBA salification in Example 2-1 was added in an amount equivalent to 5 times the molar amount of the HA unit (unit molecular weight 401.3) in terms of the ion exchange capacity of the resin. After stirring for 15 minutes, filtration was performed using a 0.45 ⁇ m filter, and the filtrate was freeze-dried to obtain a TBA salt of hyaluronic acid (HA-TBA) as a white solid.
  • HA-TBA TBA salt of hyaluronic acid
  • a 1 H-NMR spectrum JNM-ECA500, manufactured by JEOL Ltd .; EtOH-d 6 ) of a product starting from 50 kDa HA—Na is shown in FIG.
  • the amount ratio of TBA to HA unit was calculated from the value, and the unit average molecular weight of HA-TBA was calculated from this ratio.
  • Example 2-3 Preparation of HA Derivative Introduced with Cholesteryl Group (Example 2-3-1) Preparation of HA Derivative Introduced with Cholesteryl 6-aminohexylcarbamate HA-Na prepared in Example 2-2 An anhydrous DMSO solution (10 mg / mL) of HA-TBA starting from (50 kDa) was prepared. Thereafter, Chol-C 6 hydrochloride prepared in Example 1-1 was added to each solution at a ratio shown in Table 1 below with respect to the HA-TBA unit.
  • FIG. 6 shows JNM-ECA500 (manufactured by JEOL Ltd.). From the integrated value of the peak derived from the acetyl group of glucosamine (COCH 3 , 1.6 to 2.0 ppm; 3H) and the integrated value of the peak derived from the methyl group in the cholesteryl group (CH 3 , 0.7 ppm; 3H), The introduction rate of the cholesteryl group with respect to the HA unit was calculated from the formula shown below (Table 1).
  • the peak around 1.6 to 2.0 ppm which includes the peak derived from the acetyl group of glucosamine, is overlapped with the peak (5H) derived from the cholesteryl group, so the integrated value of the peak around 1.6 to 2.0 ppm
  • Example 2-3-2 Preparation of HA Derivative Modified with Cholesteryl 2-Aminoethyl Carbamate HA-TBA prepared in Example 2-2 starting from HA-Na (50 kDa) at 10 mg / mL Dissolved in anhydrous DMSO. It was then added to each solution at a ratio showing the Chol-C 2 hydrochloride prepared in Example 1-2 in Table 2 below with respect to HA-TBA units. Next, DMT-MM was added to the HA-TBA unit at the ratio shown in Table 2 below, and the mixture was stirred overnight at room temperature. Sodium nitrate is added to the reaction solution to a concentration of 0.3 M, and isopropyl alcohol (IPA) is added to collect the precipitate.
  • IPA isopropyl alcohol
  • Example 7 shows the 1 H-NMR spectrum of the product (introduction rate 8%) measured under the same conditions as described in Example 2-3-1.
  • Table 2 shows the introduction rate of cholesteryl group with respect to the HA unit calculated by the formula described in Example 2-3-1.
  • Example 2-3-3 Preparation of HA Derivative Modified with Cholesteryl 8-Aminooctyl Carbamate Using Chol-C 8 hydrochloride prepared in Example 1-3 instead of Chol-C 2 hydrochloride, the following HA-C 8 -Chol was obtained as a white solid in the same manner as in Example 2-3-2 except that Chol-C 8 hydrochloride and DMT-MM were added in the ratios shown in Table 3.
  • FIG. 8 shows the 1 H-NMR spectrum of the product (introduction rate 7%) measured under the same conditions as described in Example 2-3-1.
  • Table 3 shows the introduction rate of cholesteryl group with respect to the HA unit calculated by the formula described in Example 2-3-1.
  • Example 2-3-4 using cholesteryl 12-Chol-C 12 hydrochloride as prepared in Example 1-4 in place of the amino prepared Chol-C 2 hydrochloride dodecyl carbamate HA derivatives modified by, the following HA-C 12 -Chol was obtained as a white solid in the same manner as in Example 2-3-2 except that Chol-C 12 hydrochloride and DMT-MM were added in the ratios shown in Table 4.
  • FIG. 9 shows the 1 H-NMR spectrum of the product (introduction rate: 7%) measured under the same conditions as described in Example 2-3-1. Further, Table 4 shows the introduction rate of cholesteryl groups with respect to the HA unit calculated by the formula described in Example 2-3-1.
  • Example 3 Confirmation of Aggregate Formation by PBS Size Exclusion Chromatography
  • the HA derivative obtained in Examples 2-3-1 to 2-3-4 was added to distilled water (ultra pure water) at a concentration of 1 mg / mL. Dissolved. Each was subjected to size exclusion chromatography (SEC), and aggregate formation was observed from the change in the retention time of the HA derivative (FIGS. 10-1 to 10-4). SEC conditions are shown below. Column: G3000SWXL (manufactured by Tosoh Corporation) Eluent: PBS (pH 7.4) Flow rate: 1 mL / min Injection volume: 50 ⁇ L Detection: differential refractive index.
  • Example 4 Confirmation of Aggregate Disintegration by Hydroxylpropyl- ⁇ -cyclodextrin-added PBS Size Exclusion Chromatography
  • the HA derivative obtained in Examples 2-3-1 to 2-3-4 Dissolved in distilled water (ultra pure water). Hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) in PBS (33 mM, 30 ⁇ L) was added to 70 ⁇ L each, and incubated at 37 ° C. for 1 hour. Each sample was subjected to size exclusion chromatography (SEC), and the decay of the HA derivative aggregate was observed from the change in retention time (FIGS. 11-1 to 11-4).
  • SEC size exclusion chromatography
  • the HA of the present invention is considered to form multimolecular associative microparticles in the aqueous solution similar to CHP using the hydrophobic interaction of cholesteryl groups as a driving force.
  • HA-C 6 -Chol is 18% or more (FIG. 11-1)
  • HA-C 2 -Chol is 16% or more (FIG. 11-2)
  • HA-C 12 -Chol is 19% or more (FIG. 11-3).
  • HA derivative of the present invention can form strong associative microparticles that do not completely disintegrate under the current HP- ⁇ -CD addition conditions. It is suggested that it is useful as a carrier for stably holding the drug.
  • Example 5 Preparation of complex of HA derivative introduced with cholesteryl group and protein (erythropoietin)
  • the HA derivative obtained in Examples 2-3-1 to 2-3-4 was distilled water at a concentration of 1 mg / mL. Dissolved in (ultra pure water).
  • HA-Na molecular weight: 50 kDa
  • CHP cholesteryl-introduced pullulan
  • Concentrated PBS 50 ⁇ L was added to an erythropoietin (EPO) aqueous solution (2 mg / mL, 50 ⁇ L) to a final concentration of 1 ⁇ PBS, and HA derivative (1 mg / mL, 100 ⁇ L) was further added. After incubation at 37 ° C. for 24 hours, the mixture was centrifuged at 2000 G, and the supernatant containing all of free EPO and the dispersible complex was subjected to size exclusion chromatography. The amount of free EPO remaining in the aqueous solution without being incorporated into the complex was determined from the chromatographic result, and the amount of EPO contained in the complex was calculated.
  • EPO erythropoietin
  • transduction pullulan showed the introduction rate to each unit when the disaccharide of pullulan was considered as 1 unit for the comparison with a HA derivative.
  • the introduction rate was calculated from the number (1.38) of cholesteryl groups introduced per 100 monosaccharides indicated in the purchased product.
  • the value of% complexation of the HA derivative of the present invention was about 3 times higher than that of CHP, and it was confirmed that the HA derivative of the present invention efficiently forms a complex with EPO.
  • Example 6 Analysis of erythropoietin released from complex
  • a solution of hydroxypropyl- ⁇ -cyclodextrin (HP- ⁇ -CD) in PBS (50 mM, 50 ⁇ L) was added, and the mixture was further incubated at 37 ° C. for 1 hour.
  • Each sample was subjected to size exclusion chromatography.
  • Free EPO concentration including EPO released from the complex was calculated from EPO peak area, and recovery rate (%; free EPO weight / initial EPO weight ⁇ 100 ) Is shown in Table 6 below.
  • a typical chromatogram is shown in the lower part of FIG.
  • Example 7 Precipitation and Dispersibility of HA Derivatives Introduced with Cholesteryl Group (Example 7-1) Behavior under physiological salt concentration 6 mg / mL of the HA derivative obtained in Example 2-3-1 It dissolved in distilled water (ultra pure water) at a concentration. The concentrated buffer was added so that the final buffer composition was 10 mM PB (pH 7.4) and 150 mM NaCl, and the HA derivative concentration was 4.5 mg / mL. After incubating at 37 ° C. for 20 minutes, the mixture was centrifuged at 2000 G for 1 minute, and the supernatant was diluted twice with HP- ⁇ -CD / PBS solution (250 mM), incubated for 2 hours, and then subjected to SEC. The residual ratio of the HA derivative in the solution relative to the initial use amount was calculated from the detected peak area of the HA derivative. FIG. 13 shows a plot of the residual ratio versus the hydrophobic group introduction ratio of the HA derivative.
  • Example 7-2 Effect of NaCl Concentration on Dispersibility of HA Derivative
  • the HA derivative obtained in Example 2-3-1 was dissolved in distilled water (ultra pure water) at a concentration of 6 mg / mL.
  • Example 7-1 Concentrated buffer was added so that the final buffer composition was 10 mM PB, 0 mM NaCl, and 10 mM PB, 50 mM NaCl, and the HA derivative concentration was 4.5 mg / mL. After incubation at 37 ° C. for 20 minutes, the mixture was centrifuged at 2000 G for 1 minute, and the supernatant was diluted twice with HP- ⁇ -CD / PBS solution (250 mM), incubated for 2 hours, and then subjected to SEC. The residual ratio of the HA derivative in the solution relative to the initial use amount was calculated from the detected peak area of the HA derivative. FIG. 14 shows the residual ratio plotted for each HA derivative against the salt concentration. The SEC measurement conditions are the same as in Example 7-1.
  • HA derivatives with an introduction rate of 7% have a salt concentration-dependent behavior in which they are uniformly dispersed under conditions where the salt concentration is low (10 mM PB pH 7.4, 0 or 50 mM NaCl) and precipitate at physiological salt concentrations (150 mM). It was confirmed to show. This result suggests the possibility that the HA derivative of the present invention can be used as a carrier in a preparation that precipitates subcutaneously after administration by preparing a low salt concentration solution made isotonic with sugar or the like.
  • Example 8 Precipitation / dispersibility of HA derivative / protein (erythropoietin) complex
  • the HA derivative obtained in Example 2-3-1 shown in Table 7 was distilled water (ultra pure) at a concentration of 4 mg / mL. Dissolved in water).
  • Concentrated PBS (50 ⁇ L) was added to the erythropoietin aqueous solution (1 mg / mL, 25 ⁇ L) to a final concentration of 1 ⁇ PBS, and HA derivative (4 mg / mL, 25 ⁇ L) was further added. After incubation at 37 ° C.
  • the chromatograph is shown in FIG.
  • the HA derivative / protein complex is also a stable dispersible fine particle.
  • the residual rate was 32%, so that it was confirmed that the HA derivative / protein complex was precipitated. That is, it was confirmed that the precipitation / dispersion performance of the HA derivative of the present invention is maintained even after the complex formation with the protein.
  • Example 9 Preparation of HA derivative modified with cholesteryl 8-amino-3,6-dioxaoctylcarbamate (Example 9-1) Preparation of cholesteryl 8-amino-3,6-dioxaoctylcarbamate hydrochloride Cholesteryl To a solution of chloroformate (1.7 g, 4.7 mmol) in anhydrous dichloromethane (50 mL) was added triethylamine (TEA, 0.53 mL) and stirred under an argon atmosphere.
  • TEA triethylamine
  • FIG. 16 shows the 1 H-NMR spectrum of the product (JNM-ECA500, manufactured by JEOL Ltd .; MeOH-d 4 ).
  • Example 9-2 Preparation of HA Derivative Modified with Cholesteryl 8-amino-3,6-dioxaoctylcarbamate
  • Chol-EO2 hydrochloride prepared in Example 9-1 was used.
  • the HA-EO2-Chol was obtained as a solid in the same manner as in Example 2-3-1, except that Chol-EO2 hydrochloride and DMT-MM were added at the ratios shown in Table 8 below.
  • FIG. 17 shows the 1 H-NMR spectrum of the product (introduction rate: 7%) measured under the same conditions as described in Example 2-3-1.
  • Table 8 shows the introduction rate of cholesteryl group with respect to the HA unit calculated by the formula described in Example 2-3-1.
  • Example 10 Preparation of HA derivative modified with 2-aminoethyl cholesteryl disulfide HA-Na (manufactured by Shiseido Co., Ltd.) having a molecular weight of 10 kDa was used as a raw material, and HA-TBA prepared in the same manner as in Example 2-2 An anhydrous DMSO solution (10 mg / mL) was prepared. Thereafter, 2-aminoethyl 2-pyridyl disulfide hydrochloride (Py-SS-AM, manufactured by Toronto) was added to each solution at a ratio shown in Table 9 below with respect to the HA-TBA unit.
  • 2-aminoethyl 2-pyridyl disulfide hydrochloride Py-SS-AM, manufactured by Toronto
  • Example 11 Preparation of HA derivative modified with cholesteryl 2-aminoethyl carbamate and aminoethyl methacrylate HA-TBA prepared in Example 2-2 starting from HA-Na (50 kDa) at 10 mg / mL Dissolved in anhydrous DMSO. It was then added to each solution at a ratio shown in Table 10 below Chol-C 2 hydrochloride prepared in Example 1-2 with respect to HA-TBA units. Next, DMT-MM was added to the HA-TBA unit at the ratio shown in Table 10 below, and the mixture was stirred at room temperature for 4 hours.
  • Example 2-3-1 aminoethyl methacrylate (AEMA, manufactured by Polysciences) hydrochloride and DMT-MM were added at the ratio shown in Table 10 below, and the mixture was stirred overnight at room temperature. Thereafter, the same treatment as in Example 2-3-1 was performed to obtain HA-C 2 -Chol / AEMA as a white solid.
  • the 1 H-NMR spectrum measured under the same conditions as described in Example 2-3-1 is shown in FIG. 19, and the introduction rate of cholesteryl group with respect to the HA unit calculated by the formula described in Example 2-3-1.
  • Table 10 shows. Table 10 shows the introduction ratio of methacrylic groups with respect to the HA unit calculated from the average value of signals derived from methacryloyl groups at 5.6 ppm and 6.0 ppm by the following formula.
  • Example 12 Preparation of HA derivative modified with 5-aminomethylfluorescein and cholesteryl 6-aminoheptylcarbamate A low molecular weight compound was introduced into the HA derivative of the present invention by the following method to obtain a fluorescently labeled HA derivative. .
  • HA-TBA prepared in Example 2-2 and starting from HA-Na (50 kDa) was dissolved in anhydrous DMSO at 10 mg / mL. Thereafter, Chol-C 6 hydrochloride prepared in Example 1-1 was added to each solution at a ratio shown in Table 11 below with respect to the HA-TBA unit.
  • Example 11 shows the introduction rate of the cholesteryl group with respect to the HA unit calculated from the 1 H-NMR spectrum measured under the same conditions as described in Example 2-3-1 by the formula described in Example 2-3-1.
  • the introduction rate of fluorescein was calculated from a molar extinction coefficient at 494 nm of 80000 M ⁇ 1 cm ⁇ 1 .
  • Labeling with FL was performed by forming an amide bond between the amino group of FL and the carboxy group of HA-TBA.
  • Example 13 Preparation of HA derivative modified with 5-aminomethylfluorescein, cholesteryl 6-aminoheptylcarbamate and ethanolamine or propanolamine Using HA-Na having a molecular weight of 10 kDa as a raw material, the same method as in Example 2-2 An anhydrous DMSO solution (10 mg / mL) of the prepared HA-TBA was prepared. Thereafter, Chol-C 6 hydrochloride prepared in Example 1-1 was added to each solution at a ratio shown in Table 12 below with respect to the HA-TBA unit. Next, DMT-MM was added to the HA-TBA unit at the ratio shown in Table 12 below, and the mixture was stirred at room temperature for 2 hours.
  • 5-aminomethylfluorescein (FL) hydrochloride and DMT-MM were added at the ratio shown in Table 12 below, and the mixture was stirred overnight at room temperature.
  • ethanolamine (HO—C 2 ) hydrochloride, propanolamine (HO—C 3 ) hydrochloride and DMT-MM were added in the ratios shown in Table 12 below, and the mixture was stirred at room temperature for 5 hours. Thereafter, the same treatment as in Example 2-3-1 was performed to obtain HA-C 6 -Chol / C 2 -OH / FL or HA-C 6 -Chol / C 3 -OH / FL as a yellow solid. .
  • H-C 6 -Chol / C 2 —OH / FL shows a 1 H-NMR spectrum (JNM-ECA500, manufactured by JEOL Ltd.) using DMSO-d 6 as a measurement solvent.
  • Introduction rate of cholesteryl group with respect to HA unit calculated by the formula described in Example 2-3-1, and amide of NHCO derived from amide group of glucosamine and Chol-C 6 , HO-C 2 or HO-C 3 , FL
  • the total introduction rate of Chol-C 6 , HO—C 2 or HO—C 3 , FL was calculated from the group-derived (NH). This is shown in Table 12.
  • Example 14 Preparation of HA derivatives obtained by modifying hyaluronic acid TBA salts of different molecular weights with various cholesteryl carbamates Modified with various cholesteryl carbamates using HA-TBA of various molecular weights under the same conditions as Example 2-3-1.
  • the prepared HA derivative was prepared.
  • Table 13-1-Table 13-2 shows the reagent usage and synthesis results of HA derivatives having a cholesteryl group introduced therein.
  • the raw material hyaluronic acid was all manufactured by Shiseido.
  • Example 15 Preparation of HA derivatives obtained by modifying hyaluronic acid TBA salts having different molecular weights with various cholesteryl carbamates and 5-aminomethyl fluorescein. HA derivatives modified with 5-aminomethylfluorescein (FL) were prepared. The amount of FL used was also the same as in Example 12. As the raw material hyaluronic acid, only 5 kDa used was manufactured by R & D Systems, and other products were manufactured by Shiseido.
  • Table 14 shows the reagent usage and synthesis results of the HA derivative having a cholesteryl group introduced therein.
  • Example 16 Preparation of HA derivative modified with Hilite Fluor TM 750 amine and 6-aminohexyl carbamate (for in vivo imaging)
  • the title HA derivative (HA-C 6 ) was prepared under the same conditions except that instead of 5-aminomethylfluorescein (FL) hydrochloride of Example 12, Hilyte Fluor TM 750 amine (Hyrite) TFA salt was used. -Chol / Hilyte) was prepared. The molar ratio added is shown in Table 15.
  • Hiyte Fluor TM 750 amine TFA salt ethanolamine hydrochloride was reacted in the same manner as in Example 13 to prepare HA-C 6 -Chol / C 2 -OH / Hyte.
  • the molar ratio added is shown in Table 15.
  • the introduction rate was calculated by the same method as in Example 12 and Example 13.
  • labeled by Hilyte Fluor TM 750 amine is an amino group of Hilyte Fluor TM 750 amine is performed by forming an amide bond with a carboxyl group of HA-TBA.
  • Example 17 DLS Measurement of HA Derivatives Introduced with Cholesteryl Group PBS solutions (0.25 mg / mL) of the HA derivatives synthesized in Example 12 and Example 15 were prepared, and the particle size was determined by dynamic light scattering method ( DLS). Zetasizer Nano ZS (manufactured by Malvern) was used as a measuring device. The z-average particle size is shown in Table 16. Further, FIG. 21 shows the size distribution of 50k HA-C 6 -Chol-22% / FL.
  • HA derivative formed very small fine particles of 50 nm or less in PBS.
  • Microparticles of the above size are suitable as drug carriers because they can avoid uptake from the reticuloendothelial system in vivo.
  • Example 18 Preparation of a complex of a HA derivative having a cholesteryl group and a protein (Example 18-1) Lysozyme Lysozyme (Lys: from lysozym from chicken white, manufactured by Sigma) Were complexed with the HA derivatives and CHP shown in Table 17.
  • Concentrated PBS 50 ⁇ L was added to the Lys aqueous solution (4 mg / mL, 25 ⁇ L) to a final concentration of 1 ⁇ PBS, and further HA derivative or CHP (4 mg / mL, 25 ⁇ L) was added. After incubation at 37 ° C.
  • the mixture was centrifuged at 6000 G, and the supernatant containing all of the free Lys and the dispersible complex was subjected to size exclusion chromatography. From the result of chromatography, the amount of free Lys remaining in the aqueous solution without being incorporated into the complex was determined, and the amount of Lys contained in the complex was calculated. Further, the amount of Lys contained in the complex per unit weight of the HA derivative and CHP (complex%; (Lys weight in complex / HA derivative weight) ⁇ 100) was determined. The results are shown in Table 17 below, and the graph is shown in FIG.
  • Measurement condition column for SEC G3000PWXL (manufactured by Tosoh Corporation) Eluent: 2 ⁇ PBS (pH 7.4) Flow rate: 1 mL / min Injection volume: 50 ⁇ L Detection: UV (280 nm).
  • the value of% complexation of the HA derivative of the present invention is about 5 to 12 times higher than that of CHP, and it was confirmed that the HA derivative of the present invention efficiently forms a complex with Lys.
  • Example 18-2 Exendin-4 Exendin-4 (Ex-4, manufactured by American Peptide) was combined with the HA derivative and CHP shown in Table 18 in the same manner as in Example 5.
  • Concentrated PBS (44.8 ⁇ L) was added to an Ex-4 aqueous solution (3.31 mg / mL, 30.2 ⁇ L) to a final concentration of 1 ⁇ PBS, and then HA derivative or CHP (4 mg / mL, 25 ⁇ L). was added. After incubation at 37 ° C.
  • SEC measurement condition column QC-PAK-GFC200 (manufactured by Tosoh Corporation) Eluent: PBS (pH 7.4) Flow rate: 1.2 mL / min Injection volume: 50 ⁇ L Detection: UV (280 nm).
  • the value of% complexation of the HA derivative of the present invention was about 3 to 11 times higher than that of CHP, and it was confirmed that the HA derivative of the present invention efficiently forms a complex with exendin-4.
  • Example 18-3 Human Growth Hormone In the same manner as in Example 5, human growth hormone (hGH: Genotropin (registered trademark) for injection), HA derivative and CHP shown in Table 19 were combined. hGH used was obtained by substituting Genotropin (registered trademark) with a phosphate buffer (10 mM, pH 7.4) by dialysis.
  • SEC measurement condition column QC-PAK-GFC300 (manufactured by Tosoh Corporation) Eluent: PBS (pH 7.4) Flow rate: 1.2 mL / min Injection volume: 30 ⁇ L Detection: UV (280 nm).
  • the value of% complexation of the HA derivative of the present invention is about 2 to 5 times higher than that of CHP, and it was confirmed that the HA derivative of the present invention efficiently forms a complex with hGH.
  • Example 18-4 EPO complex amount 2 of HA-modified product
  • the HA derivatives shown in Table 20 were subjected to EPO conjugation in the same manner as in Example 5, and the percent conjugation was calculated. The graph is shown in Fig. 22-4.
  • the value of% complexation of the HA derivative of the present invention is about 5 times higher than that of CHP, and it was confirmed that the HA derivative of the present invention efficiently forms a complex with EPO.
  • Example 19 EPO in vitro release (Example 19-1) Preparation of Alexa-EPO Alexa Fluor (registered trademark) 488 5-into an EPO aqueous solution substituted with a carbonate buffer (0.3 M, pH 9.0) 1 mg of TFP (manufactured by Invitrogen) was added dropwise, and the mixture was stirred at room temperature for 1 hour. After gel filtration purification using a PD-10 column, dialysis purification (7000 MWCO dialysis membrane) was performed with a phosphate buffer (10 mM, pH 7.4), and EPO (Alexa-) fluorescently labeled with Alexa Fluor (registered trademark) 488 was used. An EPO) solution was obtained.
  • Alexa Fluor (registered trademark) 488 Labeling with Alexa Fluor (registered trademark) 488 is achieved by an amide bond between the carboxy group of Alexa Fluor (registered trademark) 488 and the amino group of EPO.
  • Example 19-2 Alexa-EPO Sustained Release Effect of HA Derivatives The final concentration was 1 ⁇ PBS with respect to the Alexa-EPO solution (3.34 mg / mL, 10 ⁇ L) obtained in Example 19-1. Concentrated PBS (90 ⁇ L) was added to the mixture, and HA derivative (6 mg / mL, 100 ⁇ L) was further added.
  • HA-C 6 -Chol-7%, HA-C 6 -Chol-15% and HA-C 12 -Chol-7% were used as HA derivatives (the molecular weight of HA-Na used as a raw material is all 50 kDa).
  • the mixture was incubated at 37 ° C. for 24 hours and lyophilized as it was. 20 mg / mL bovine serum albumin (BSA: manufactured by Sigma) / PBS solution (200 ⁇ L) is added to the total amount of the lyophilized product, centrifuged over time, the supernatant (100 ⁇ L) is taken, and a fresh BSA / PBS solution (100 ⁇ L) is collected. ) was added.
  • BSA bovine serum albumin
  • the supernatant was diluted twice with an aqueous HP- ⁇ -CD solution (100 mM), incubated at 37 ° C. for 1 hour, and then subjected to SEC to calculate the concentration of Alexa-EPO, and the amount of Alexa-EPO released was calculated.
  • the results are shown in FIG.
  • SEC analysis condition column G3000SWXL (manufactured by Tosoh Corporation) Eluent: 10 mM HP- ⁇ -CD / PBS (pH 7.4) Flow rate: 1 mL / min Injection volume: 50 ⁇ L Detection: Fluorescence detection 494/525 Been shown to be even sustained release effect in any of the HA derivative, an additional 15% more than the introduction rate of 7% cholesteryl group, the spacer clear that towards the C 12 than C 6 there is a sustained release effect became. (Example 19-3) Effect of BSA concentration in release solution Concentrated to a final concentration of 1 ⁇ PBS with respect to Alexa-EPO solution (3.34 mg / mL, 10 ⁇ L) obtained in Example 19-1.
  • the supernatant was diluted twice with an aqueous HP- ⁇ -CD solution (100 mM), incubated at 37 ° C. for 1 hour, and then subjected to SEC to calculate the concentration of Alexa-EPO, and the amount of Alexa-EPO released was calculated.
  • the results are shown in FIG.
  • the SEC conditions are the same as in Example 19-2.
  • Example 20 Release of hGH in vivo (Example 20-1) Preparation of a precipitate freeze-dried product of complex of hGH and HA derivative HA derivative obtained in Example 2-3-1 and Example 14 (6 mg HGH (4.31 mg / mL, 0.940 mL) was added to / 375 mL) and incubated at 37 ° C. for 1 hour. Further, concentrated PBS (0.185 mL) was added so that the final concentration was 1 ⁇ PBS, and the mixture was incubated at room temperature for 1 hour. Precipitation was confirmed.
  • HA derivative of the present invention efficiently encapsulates (complexes) hGH.
  • Example 20-2 Preparation of hGH / HA derivative complex (precipitate) HA-C 6 -Chol-14% (6 mg / mL, 0.583 mL; molecular weight of HA-Na used as raw material is 50 kDa)
  • hGH (4.84 mg / mL, 0.145 mL) was added and incubated at 37 ° C. for 1 hour. Further, concentrated PBS (0.147 mL) was added so that the final concentration was 1 ⁇ PBS, and the mixture was incubated at room temperature for 1 hour. Precipitation was confirmed.
  • Example 20-3 Preparation of hGH / HA derivative complex (solution) HA-C 6 -Chol-14% (6 mg / mL, 0.583 mL; the molecular weight of HA-Na used as a raw material is 50 kDa) (4.84 mg / mL, 0.145 mL) and an aqueous sucrose solution (0.147 mL) were added so that the final concentration was 82 mg / mL, and the mixture was incubated at 37 ° C. for 1 hour. No precipitation was confirmed. Stored at 4 ° C.
  • This preparation is a preparation intended to be administered in a solution state and to cause precipitation by an increase in the ionic strength in the skin after administration.
  • Example 20-4 Sustained Release Test of hGH / HA Derivative Complex in Rats by Subcutaneous Administration
  • the hGH / HA derivative complex prepared in Examples 20-1 to 20-3 has a capacity of 25 G in the capacity shown in Table 23-1.
  • Normal rats SD, 6 weeks old, male
  • the lyophilized product prepared in Example 20-1 was suspended in PBS immediately before administration. The preparation before administration is shown in FIG.
  • FIGS. 26-1 to 27-2 show changes in plasma concentration of hGH at the time of administration of various hGH / HA derivative complexes—and changes in plasma concentration of the hGH solution of Comparative Example 1 together.
  • pharmacokinetic parameters extrapolated area under plasma concentration-time curve (AUC ⁇ ) and mean residence time (MRT) were measured using WinNonlin Ver. The analysis was performed according to 5.0.1 (manufactured by Pharsight), and the values are shown in Table 23-2. An MRT graph is shown in FIG.
  • the solution preparation (Sample 20-6) obtained in Example 20-3 can be sterilized by a 0.2 ⁇ m filter, and is less likely to clog a syringe needle, so that it is useful as a pharmaceutical preparation. .
  • Example 2-3-1 the product was treated in the same manner as in Example 2-3-1 to obtain the desired product (10k HA—C 2 —OH / FL) as a yellow solid.
  • NHCO derived from the amide group of glucosamine calculated from the 1 H-NMR spectrum (JNM-ECA500 manufactured by JEOL Ltd.) using DMSO-d 6 as a measurement solvent according to the formula described in Example 13, C 2 -OH,
  • the total introduction rate of C 2 -OH and FL was calculated from NHCO derived from the amide group of FL. This is shown in Table 24.
  • Example 2-3-1 Thereafter, the same treatment as in Example 2-3-1 was performed to obtain the target 10k HA—C 2 —OH / FL as a yellow solid.
  • the total introduction rate of C 2 —OH and FL was calculated in the same manner as in Comparative Example 2-2. This is shown in Table 25.
  • the sample using 10k HA-Na as a raw material is not only a HA derivative having a low introduction rate of C 2 -OH (Comparative Example 2-3) but also a highly modified HA derivative (Comparative Example 2- Also in 4), it was clarified that it disappeared from the blood instantly.
  • Example 21 Pharmacokinetic study of HA-Chol-FL (Example 21-1) Effect of HA molecular weight on plasma concentration transition Fluorescent label prepared in Examples 12 and 15 at the doses shown in Table 27
  • the HA derivative was administered into the tail vein of normal rats (SD, 6 weeks old, male) using a 25G needle. After administration, blood was collected from the jugular vein with a syringe that had been heparinized over time. The obtained blood was separated into plasma, diluted 2-fold with an HP- ⁇ -CD (100 mM) / Tris buffer (500 mM, pH 9.0) solution, incubated at 37 ° C.
  • HP- ⁇ -CD 100 mM
  • Tris buffer 500 mM, pH 9.0
  • FIG. 30-1 The change in plasma concentration of the fluorescently labeled HA derivative is shown in FIG. 30-1.
  • pharmacokinetic parameters plasma concentration-time curve extrapolated value (AUC ⁇ )) were measured using WinNonlin Ver. The analysis was performed according to 5.0.1 (manufactured by Pharsight), and the values are shown in Table 28. A graph in which AUC ⁇ in Table 28 is plotted against the molecular weight of the raw material HA—Na is shown in FIG. 30-2.
  • HA-Chol of the present invention introduces only a maximum of 23% substituents (27% or less even if FL is taken into consideration), unexpectedly low molecular weight (5-18 kDa) hyaluronic acid is obtained. Only in the case of HA-Chol as a raw material, good blood retention was shown.
  • Example 21-2 Effect of linker on transition of plasma concentration
  • a fluorescently labeled HA derivative having a different linker prepared in Example 15 shown in Table 29 was subjected to a pharmacokinetic test in the same manner as in Example 21-1, and plasma The transition of medium concentration is shown in FIG. Further, the pharmacokinetic parameter (AUC ⁇ ) was calculated in the same manner as in Example 21-1, and the value is shown in Table 30.
  • Example 21-3 Effect of Chol Introduction Rate on Plasma Concentration Transition
  • Example 21-1 was applied to fluorescently labeled HA derivatives prepared in Example 12 and Example 15 shown in Table 31 and having different Chol introduction rates.
  • a pharmacokinetic test was conducted with and the changes in plasma concentration are shown in FIGS. 32-1 and 32-2. Further, the pharmacokinetic parameter (AUC ⁇ ) was calculated in the same manner as in Example 21-1, and the value is shown in Table 32.
  • Example 21-4 Plasma concentration transition (HA-Chol / C 2 -OH / FL) A pharmacokinetic test was carried out on the fluorescently labeled HA derivative highly modified with C 2 -OH and Chol prepared in Example 13 shown in Table 33 in the same manner as in Example 21-1, and the plasma concentration transition was shown in FIG. It was shown to. Further, the pharmacokinetic parameter (AUC ⁇ ) was calculated in the same manner as in Example 21-1, and the value is shown in Table 34.
  • Example 21-5 Changes in plasma concentration of HA derivative after subcutaneous administration
  • a pharmacokinetic test was conducted in the same manner as in Example 21-1, except that the fluorescently labeled HA derivative shown in Table 35 was administered subcutaneously. The changes in plasma concentration are shown in FIGS. 34-1 and 34-2. Further, pharmacokinetic parameters (AUC ⁇ ) were calculated in the same manner as in Example 21-1, and the values are shown in Table 36.
  • HA derivative can also be administered subcutaneously.
  • Example 21-6 Effect of plasma concentration transition by prior administration of hyaluronic acid 20 mg before administration, 30 mg of sodium hyaluronate (mixture containing 6 mg each of 1000 k, 300 k, 100 k, 50 k, 10 k) was administered from the tail vein Thereafter, a pharmacokinetic test was conducted in the same manner as in Example 21-1, except that the fluorescently labeled HA derivative shown in Table 34 was administered from the tail vein, and the plasma concentration transition was shown in FIGS. 35-1 and 35-. It was shown in 2. Further, pharmacokinetic parameters (AUC ⁇ , MRT) were calculated in the same manner as in Example 21-1, and the values are shown in Table 38.
  • Example 21-7 SEC analysis of plasma sample To sample 21-2 and 20 ⁇ L measured by the plate reader in Example 21-1, 80 ⁇ L of ultrapure water was added and SEC analysis was performed. The chromatograms are shown in FIGS. 36-1 and 36-2.
  • HP- ⁇ -CD (100 mM) / Tris buffer solution (500 mM, pH 9.0) solution (50 ⁇ L) was added to 50 ⁇ L of urine sample, and incubated at 37 ° C. for 1 hour, followed by SEC analysis.
  • the chromatograms are shown in FIGS. 37-1 to 37-5.
  • Example 22 Precipitation and Dispersibility of HA Derivatives Introduced with Cholesteryl Group (Part 2)
  • the residual ratio was calculated by the same method as in Example 7, except that the HA derivative obtained in Examples 2-3-2 to 2-3-4 was used.
  • FIG. 38 shows a plot of the residual ratio versus the hydrophobic group introduction ratio of the HA derivative.
  • Example 23 Preparation of complex of HA derivative introduced with cholesteryl group and low molecular weight drug 10k HA-C 6 -Chol-15% prepared in Example 14 and prepared in Example 2-3-1. 50k HA-C 6 -Chol-15 % aqueous solution (6 mg / mL, 100 [mu] L) to, doxorubicin (DOX) solution (10 mg / mL, 4 [mu] L, manufactured by Wako pure Chemical) was added, a final concentration of 1 ⁇ PBS 96 ⁇ L of concentrated PBS solution was added. What added ultrapure water instead of DOX aqueous solution was set as control.
  • DOX doxorubicin
  • Measurement condition column for RP cadenza CD-C18 (manufactured by Intact) Eluent A: Ultrapure water, 0.1% TFA Eluent B: acetonitrile, 0.1% TFA Gradient: B5% ⁇ B95% (8 minutes) Flow rate: 0.75 mL / min Injection volume: 10 ⁇ L Detection: UV480 It was revealed that the HA derivative of the present invention was mixed with doxorubicin to form a complex.
  • HA-Chol in vivo imaging Nude mice (BALB-nu / nu, female, 7 weeks old) were transplanted with human breast cancer-derived MDA-MB-213 cell sections (2 mm x 2 mm x 2 mm) subcutaneously, and xeno A graft mouse was created. After 17 days, tumor size, grouped by body weight (analysis software: Antes, weighing 18.8 ⁇ 24.3 g, tumor size 215mm 3 ⁇ 360mm 3), Hilyte labeled HA derivative and 50k prepared in Example 16 HA- Hilite (prepared in the same manner as in Comparative Example 2-1 except that Hilite TFA salt was used instead of FL hydrochloride) was administered via the tail vein in the volume shown in Table 39.
  • FIG. 41 shows a graph of the amount of light obtained from the tumor.
  • Example 25 Gelation of HA derivative (HA-Chol / AEMA) into which cholesteryl group and methacryloyl group were introduced (50k) HA-C 2 -Chol-8% prepared in Example 11 / AEMA-27% was exceeded. Dissolve in pure water (40 mg / mL, 100 ⁇ L), add triethanolamine (TEA, 1.3 ⁇ L), mix, add dithiothreitol (DTT, 100 mg / mL, 2.0 ⁇ L), and add to a 500 ⁇ L tube. And incubated at 37 ° C. After 24 hours, when it was taken out from the tube, it was confirmed that it was gelled. This is shown in FIG.
  • HA-Chol / AEMA can be gelled by DTT, and it is possible to prepare a dual gel having both physical and chemical cross-linking by hydrophobic interaction with cholesteryl groups. Became clear. This dual gel is expected to have a function of holding the encapsulated drug more firmly than HA-Chol having only physical crosslinking.
  • HA-C 2 -Chol-8% / AEMA-27% gel was added to 2 mL of 0.93 mg / ml Cy TM 3 labeled hGH solution (red) and incubated at room temperature for 4 days.
  • TM3- labeled hGH solution was prepared according to the instructions using Cy3 Mono-Reactive Dye Pack (manufactured by GE Healthcare) and hGH solution.) It was confirmed that the gel was stained in a deeper red color than the surrounding solution ( Data not shown). From these results, it was shown that the HA-Chol / AEMA gel spontaneously encapsulates hGH after gelation.
  • the HA-Chol / AEMA gel is useful as a pharmaceutical substrate from the viewpoint of stably encapsulating proteins.
  • Example 26 Synthesis of hyaluronic acid derivative in which a cholesteryl group was introduced into the 6-position hydroxy group of the N-acetylglucosamine moiety of hyaluronic acid.
  • HA-Na (50 kDa) prepared in Example 2-2 was used as a starting material.
  • 68.26 mg of HA-TBA was dissolved in anhydrous DMSO.
  • Cholesteryl N- (6-isocyanatohexyl) carbamate (CHI, 4.15 mg) dissolved in dehydrated pyridine was added dropwise thereto, and the mixture was stirred at 80 ° C. for 9.5 hours under nitrogen.
  • the reaction solution was reprecipitated with ethyl acetate and collected by centrifugation.
  • the obtained white solid was dissolved again in DMSO and dialyzed against 0.3 M NaCl solution, distilled water, 10 mM HCl solution and distilled water (Slide-A-Lyser, molecular weight cut off 3500 Da, manufactured by PIERCE) to obtain The resulting dialysate was lyophilized to obtain 50k HA—O—C 6 -Chol.
  • Table 40 shows the introduction rate of the cholesteryl group with respect to the HA unit calculated from the 1 H-NMR spectrum (manufactured by 500 MHz Bruker) using DMSO-d 6 as the measurement solvent by the formula described in Example 2-3-1.
  • Example 27 DLS measurement of a hyaluronic acid derivative in which a cholesteryl group was introduced into the 6-position hydroxy group of the N-acetylglucosamine moiety of hyaluronic acid 50 k HA-O-C 6 -Chol-1% 99k HA-O-C 6 using -Chol-2%, other dissolved in ultrapure water as a solvent was DLS measurement in the same manner as in example 17. The z-average particle size is shown in Table 41.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

 本発明により、疎水性基を導入したヒアルロン酸誘導体であって、式(I): [式中、R、R、R、R、Z、n、R、Y、およびXは、明細書中に定義されたとおりである]で表される繰り返し単位を1以上含む、前記ヒアルロン酸誘導体が提供される。

Description

ヒアルロン酸誘導体、およびその医薬組成物
 本発明は、疎水性基を導入した新規ヒアルロン酸誘導体、当該ヒアルロン酸誘導体を含む医薬組成物、特に薬効を有するタンパク質および/またはペプチドを含む医薬組成物に関する。
 近年、組み換え遺伝子技術や化学合成技術の発展により、タンパク質およびペプチドを活性成分とする製剤が実用化されており、その数は年々増え続けている。しかし、タンパク質やペプチドは消化管あるいは粘膜などからは吸収されにくく、また、体内では不安定で血中半減期が短い。そのため、タンパク質製剤およびペプチド製剤は注射による頻回投与が必要となっており、患者にも医療関係者にも負担が大きくなっている。薬理活性を損なうことなくタンパク質やペプチドをカプセル化するための徐放性DDS基材が望まれている。また、投与の効率の観点から、基材に対してできるだけ多量のタンパク質、ペプチドが封入できることが望ましい。
 タンパク質やペプチドの薬理活性はそれらの高次構造に起因するところが大きく、有機溶媒や空気界面との接触、圧力や温度、pHといった外部環境に起因する変性および凝集によりタンパク質やペプチドの薬理活性が損なわれることが知られている。また、変性や凝集したタンパク質を体内に投与することにより抗原性などのリスクが高まることも知られている。タンパク質またはペプチドを活性成分とする徐放性製剤においては、製剤化工程から、製剤の貯蔵期間を経て、投与後に生体内で当該活性成分が放出されるまで、タンパク質やペプチドの安定性を確保することが求められる。
 ポリ乳酸-ポリグリコール酸共重合体(PLGA)などの生分解性高分子を基材にした徐放性製剤について実用化の試みが広く行われているが、基材の疎水性、および製剤化のための操作(乳化、乾燥、酸性化など)に起因するタンパク質の変性または凝集が報告されている(非特許文献1および2)。
 一方、親水性のハイドロゲルを基材に用いた徐放性製剤も報告されているが、ゲル化工程中のタンパク質安定性などの問題もあり、やはり実用化には至っていない。
 また、安全性の面から、製剤に用いる基材は、非抗原性、非変異原性、無毒性、生分解性を併せ持つものでなければならない。安全性に加えて、タンパク質またはペプチドの封入量および回収率の全てにおいて、実用化レベルに達している徐放性製剤は知られていない。
 近年、多糖を薬物担体の基材として用いるという報告がある。その中でも、ヒアルロン酸(HA)は、1934年、K.Meyerによって牛の眼の硝子体から単離された生体材料(多糖)であり、細胞外マトリックスの主成分として古くから知られている。HAは、D-グルクロン酸とN-アセチルグルコサミンとがβ(1→3)グリコシド結合により連結された二糖単位から成るグリコサミノグリカンの一種である。HAは、化学的、物理的構造に種差が無く、ヒトもその代謝系を有しており、免疫性および毒性といった面でも最も安全な医用生体材料(Biomaterial)の一つである。近年、微生物による高分子量HAの大量生産が可能となり、変形性軟骨治療薬、化粧品などの分野でも実用化されている。
 このように非抗原性、非変異原性、無毒性、生分解性を併せ持つことから、HAは安全性の面から徐放性製剤の基材として好ましいと考えられる。これまでにも、HAを基材として用いた製剤は数多く報告されており、血中滞留性向上を目的とした修飾したHAの使用(特許文献1)や、膝関節内滞留性向上を目的としたアルキル鎖を導入したHA誘導体の使用(特許文献2)、タンパク質徐放のためのin situ架橋HAゲルの使用(特許文献3)、骨形成タンパク質(BMP)の徐放のためのヒアルロン酸エステル固形物の使用(特許文献4)が報告されている。
 一方、有機溶媒を使用することなく水溶液中においてタンパク質やペプチドと自発的に複合化する基材はいくつか報告されており、それら基材は、主に、多糖またはポリアミノ酸を原料として製造されている。
 ポリアミノ酸誘導体を基材として使用した医薬製剤の例として、トコフェロールを導入したポリグルタミン酸の基材としての使用が報告されている(特許文献5)。
 多糖誘導体の基材に関しては、コレステリル基などを導入したプルラン誘導体が、水溶液中においてナノサイズの微粒子を形成し、疎水性低分子、ペプチド、タンパク質などと複合化するホスト分子として機能することが報告されている(非特許文献3)。タンパク質取り込み後の当該プルラン誘導体についての熱力学的評価により、取り込まれたタンパク質が、プルランのヒドロキシ基との水素結合により安定化されることが示されている(非特許文献11)。
 また、カルボキシメチルセルロース(CMC)(特許文献6)およびリノレイン酸を導入したキトサン(非特許文献12)をタンパク質との複合体形成の材料として利用する報告もある。さらに、本願優先日以降に公開された特許文献8には、架橋性基を有するヒアルロン酸誘導体、および疎水性基を有する親水性多糖類誘導体を含む組成物であって、架橋性基を有するヒアルロン酸誘導体が、親水性多糖類誘導体の存在下、ヒアルロン酸または架橋形成が可能な基を有するその誘導体の架橋形成反応により調製される組成物が報告されている。
 生体内にはCD44やRHAMM(Receptor for Hyaluronic Acid-Mediated Motility)、LYVE-1(Lymphe Vessel Endothelial HA Receptor-1)、HARE(Hyaluronic acid Receptor for Endocytosis)などのHAレセプターが存在することが報告されている(非特許文献18および非特許文献19)。特にCD44やRHAMMは多くの癌細胞において過剰発現しており、それゆえHAを癌ターゲティングキャリアの基材として用いる試みがなされている。その例として、パクリタキセル-HAコンジュゲート(非特許文献20~22および特許文献9)、カンプトテシン-HAコンジュゲート(特許文献10)、ドキソルビシン-HPMA[N-(2-ヒドロキシプロピル)メタクリルアミド]-HAコンジュゲート(非特許文献23)、酪酸-HAコンジュゲート(非特許文献24)、ドキソルビシン封入HA-PEG-PLGAナノパーティクル(非特許文献25)、siRNA封入HAゲル(非特許文献26)、ドキソルビシン封入HA被覆リポソーム(非特許文献27)などが挙げられる。さらに本願優先日以降に公開された非特許文献28には、アミド結合により導入したエチレンジアミンリンカーを介してコール酸をコンジュゲートしたHA誘導体について報告されている。これらHAを基材としたキャリアは、in vitroにおけるCD44高発現細胞において効率良く取り込まれることが報告されている(例えば非特許文献20)。しかし、HAは全身投与した場合、肝臓などの類洞内皮に存在するHAREレセプターにより瞬時に取り込まれ、代謝されることが知られており、急速に血中から消失する(非特許文献29~31)。したがって、HA基材を用いた効率の良い癌ターゲティングには肝臓での取り込みを抑え、血中滞留性を向上させたキャリアーが必要とされている。
国際公開第WO2006/028110号 国際公開第WO2006/092233号 国際公開第WO2004/050712号 国際公開第WO2003/099992号 国際公開第WO2005/051416号 国際公開第WO2002/022154号 特開昭62-64802号公報 国際公開第WO2008/136536号 国際公開第WO2004/035629号 国際公開第WO2009/074678号
J. Pharm. Sci. 第88巻、第166-173頁、1999年 J. Microencapsulation 第15巻、第699-713頁、1998年 Macromolecules 第26巻、第3062-3068頁、1993年 Macromolecules 第30巻、第857-861頁、1997年 Macromolecules 第27巻、第7654-7659頁、1994年 J.Am.Chem.Soc. 第118巻、第6110-6115頁、1996年 Bioconjugate Chem. 第10巻、第321-324頁、1999年 FEBS Letters 第533巻、第271-276頁、2003年 Biomacromolecules 第6巻、第1829-1834頁、2005年 J.Controlled Release 第54巻、第313-230頁、1998年 Colloids and Surfaces 第112巻、第91-95頁、1996年 Carbohydrate Polymers 第62巻、第293-298頁、2005年 Ki Young Cholら、"Hydrogel Nanoparticles Based on Hyaluronic Acid", 34th Annual Meeting & Exposition of the Controlled Release Society, July 7-11, 2007, Long Beach, California USA, Poster Session I, No.244(学会発表予稿集CD) Polymer 第47巻、第2706-2713頁、2006年 Journal of Biomedical Materials Research Part A 第83A巻、第1号、第184-190頁、2007年 Biomacromolecules 第8巻、第2366-2373頁、2007年 Carbohydrate Polymers 第62巻、第293-298頁、2005年 MOLECULAR PHARMACEUTICS. 第5巻、第474-486頁、2008年 Journal of Drug Targeting. 第16巻、第91-107頁、2008年 Bioconjugate Chem.第10巻、第755-763頁、1999年 Clinical Cancer Research. 第14巻、第3598-3606頁、2008年 Bioconjugate Chem.第19巻、第1319-1325頁、2008年 Pharmaceutical Research. 第19巻、第396-402頁、2002年 Clinical Cancer Research. 第10巻、第4822-4830頁、2004年 Nanomedicine: Nanotechnology, Biology, and Medicine. 第3巻、第246-257頁、2007年) Journal of Controlled Release、第119巻、第245-252頁、2007年) Neoplasia 、第6巻、第343-353頁、2004年 Journal of Materials Chemistry.第19巻、第4029-4280頁、2004年 Cell and Tissue Research.第243巻、第505-510頁、1985年) THE JOURNAL OF BIOLOGICAL CHEMISTRY、第275巻、第37733-37741頁、2000年 The Biochemical journal、第200巻、第415-424頁、1981年
 タンパク質およびペプチドの徐放性製剤用基材として、これまでに報告された材料は、必ずしも充分な性能を有していなかった。例えば、生体外由来のポリグルタミン酸やキトサン、プルラン、CMCを原料とした基材を使用した場合、生体適合性、生分解性に不安がある。特に反復投与、多量投与が必要な場合、生体への影響が懸念される。また、コレステロール置換プルランは、コレステロールなどの疎水性基の導入量を増加させることにより、水に対する溶解性が低下するため、封入させるタンパク質の量を、より増加させた担体の出現が望まれている。
 また、薬物としてタンパク質、ペプチド、低分子、核酸を封入することができ、血中徐放キャリアまたはターゲティングキャリアとして用いることができる担体、特に、血中滞留性に優れた担体が望まれている。
 本発明の目的は、安全性に優れた医薬製剤の基材を提供することであり、特に薬効を有するタンパク質またはペプチドを薬物として使用する場合に、薬理活性を維持したまま多くの薬物を効率よく封入できる担体、および血中滞留性に優れた血中徐放キャリアならびにターゲティングキャリアとして用いることができ、薬物を持続的に徐放できる局所(たとえば皮下)徐放キャリアにもなり得る基材を提供することである。
 本発明者は、かかる目的を達成する為に鋭意検討を進めたところ、特定の疎水性基を導入したヒアルロン酸誘導体が、薬物、特に薬理活性を有するタンパク質またはペプチドを多量に封入しながら、水溶液中で自発的に会合することを見出した。また、疎水性基の導入率により生理塩濃度下で顕著に凝集して沈殿形成する範囲、および生理塩濃度下でも安定な微粒子を形成し、水中で安定に分散する範囲が存在することを見出した。さらに、特定の分子量のHAを原料としたヒアルロン酸誘導体の血中滞留性が顕著に向上することを見出し、本発明を完成させた。
 すなわち、本発明は、水溶液中で自発的に会合し、薬物、特に薬効を有するタンパク質やペプチドを、その生物活性を維持したまま効率よく封入することができ、生理塩濃度下で顕著に凝集し(あるいは生理塩濃度下でも分散し)、なおかつ血中滞留性が良好であることを特徴とする、疎水性基を導入したヒアルロン酸誘導体、その製造法、ならびに薬物および該ヒアルロン酸誘導体を含む医薬組成物およびその製造方法に関する。
 本発明の1つの側面によれば、疎水性基を導入したヒアルロン酸誘導体であって、式(I):
Figure JPOXMLDOC01-appb-C000005
[式中、R、R、R、およびRは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
 Zは、直接結合、または2~30個の任意のアミノ酸残基からなるペプチドリンカーを表し;
 Xは、以下の式:
 -NR-R、
 -NR-COO-R、
 -NR-CO-R、
 -NR-CO-NR-R、
 -COO-R、
 -O-COO-R、
 -S-R、
 -CO-Y-S-R、
 -O-CO-Y-S-R、
 -NR-CO-Y-S-R、および
 -S-S-R、
により表される基から選択される疎水性基であり;
 R、RおよびRは、それぞれ独立に、水素原子、C1-20アルキル、アミノC2-20アルキルおよびヒドロキシC2-20アルキルから選択され、ここで当該基のアルキル部分は、-O-および-NR-から選択される1~3個の基が挿入されていてもよく;
 Rは、水素原子、C1-12アルキル、アミノC2-12アルキルおよびヒドロキシC2-12アルキルから選択され、当該基のアルキル部分は-O-および-NH-から選択される1~2個の基が挿入されていてもよく;
 Rは、ステリル基であり;
 Yは、C2-30アルキレン、または-(CHCHO)-CHCH-であり、ここで、当該アルキレンは、-O-、-NR-および-S-S-から選択される1~5の基が挿入されていてもよく;
 Rは、水素原子、C1-20アルキル、アミノC2-20アルキルまたはヒドロキシC2-20アルキルから選択され、当該基のアルキル部分は-O-および-NH-から選択される1~3個の基が挿入されていてもよく;
 Yは、C1-5アルキレンであり;
 Yは、C2-8アルキレンまたはC2-8アルケニレンであり;
 mは、1~100から選択される整数である]
で表される繰り返し単位を、1以上含む、前記ヒアルロン酸誘導体が提供される。
 本発明の1つの側面において、疎水性基を導入したヒアルロン酸誘導体であって、式(Ia):
Figure JPOXMLDOC01-appb-C000006
[式中、R、R、R、およびRは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
 Xは、-NR-Y-NR-COO-Rで表される疎水性基であり;
 RおよびRは、それぞれ独立に、水素原子およびC1-6アルキルから選択され;
 Rは、ステリル基であり;
 Yは、C2-30アルキレン、または-(CHCHO)-CHCH-であり、
 mは、1~100から選択される整数である]
で表される繰り返し単位を、1以上含む、前記ヒアルロン酸誘導体が提供される。
 本発明のヒアルロン酸誘導体に式(I)で表される繰り返し単位が2以上含まれる場合、当該繰り返し単位は同一であっても、異なっていてもよい。当該ヒアルロン酸誘導体は、式(I)の繰り返し単位以外の位置において修飾されていてもよく、例えば、ヒドロキシ基は-O(C1-6アルキル)、-O(ホルミル)および-O(C1-6アルキルカルボニル)等に変換されていてもよく、カルボキシ基は、アミド、エステルに変換されていても、塩を形成していてもよい。
 本発明の別の側面によれば、上記式(I)の基-Z-N(R)Y-Xは、以下の式: 
 -NH-(CHmz-NH-R;
 -NH-(CHmz-NH-COO-R;
 -NH-(CHCHO)-CHCH-NH-COO-R;
 -NH-(CHmz-COO-R;
 -NH-(CHCHO)-CHCH-COO-R、
 -NH-(CHmz-O-COO-R;
 -NH-(CHCHO)-CHCH-O-COO-R、
 -NH-(CHmz-S-R;
 -NH-(CHCHO)-CHCH-S-R;
 -NH-(CHmz-O-CO-CH(R)-CH-S-R;
 -NH-(CHmz-NHCO-CH(R)-CH-S-R;
 -NH-(CHCHO)-CHCH-NHCO-CH(R)-CH-S-R; 
 -NH-(CHCHO)-CHCH-O-CO-CH(R)-CH-S-R;および
 -NH-(CHmz-S-S-R;
 -Z-NR-Y-NR-COO-R
(ここで、mzは、2~30の整数であり、Rは、水素原子またはメチル基であり、R、およびmは、本明細書で既に定義したとおりである)
で表される基から選択される。当該基は、好ましくは、
 -NH-(CHmz-NH-COO-R;
 -NH-(CHCHO)-CHCH-NH-COO-R;および
 -NH-(CHmz-S-S-R
(ここで、mz、R、およびmは、本明細書で既に定義したとおりである)
から選択される基である。
 本発明の好ましい態様において、Zは直接結合である。また、本発明の1つの態様において、Zがペプチドリンカーの場合、Xは-NR-COO-Rである。
 Yの具体例としては、-CHCHO-CHCH-S-S-CHCHO-CHCH-、-(CHCHO)-CHCH-S-S-CHCHO-CHCH-、-CHCHO-CHCH-S-S-(CHCHO)-CHCH-および-(CHCHO)-CHCH-S-S-(CHCHO)-CHCH-が挙げられる。
 Yとしては、-CH-および-CH-CH-が好ましい。
 Yとしては、-CH-CH-、-CH(CH)CH-、2-ブテン-1,4-ジイル、ヘプタ-2,4-ジエン-1,6-ジイルおよびオクタ-2,4,6-トリエン-1,8-ジイルが好ましく、-CH-CH-および-CH(CH)CH-がさらに好ましい。
 本発明の1つの態様において、Zは、-NH-[CH(-Z)-CONH]n-1-CH(-Z)-CO-で表されるペプチドリンカーであり、ここで、nは2~30の整数であり、Zは、それぞれ独立に、HN-CH(-Z)-COOHとして表されるα-アミノ酸中の置換基を表す。当該ペプチドリンカーは、N末端にてグルクロン酸部分のカルボキシ基に結合し、C末端にて基-N(-R)-Y-Xに結合する。当該ペプチドリンカーのアミノ酸残基として利用できるアミノ酸の例としてはα-アミノ酸、例えばアラニン、アルギニン、アスパラギン(Asn)、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン(Gly)、ヒスチジン、イソロイシン、ロイシン(Leu)、リジン、メチオニン、フェニルアラニン(Phe)、プロリン、セリン、スレオニン、トリプトファン、チロシン、バリンといった天然型(L型)のアミノ酸、それらのD体などが挙げられ、合成されたアミノ酸を含む全てのα-アミノ酸を用いることができる。すなわち、Zとしては、例えば、-CH、HNC(NH)NH(CH-、HNCOCH-などが挙げられる。また、n個のZは、同一でも異なっていてもよい。nは、2~30の整数であるが、2~10が好ましく、2~4がさらに好ましい。ペプチドリンカーの好ましい例としては、例えば、-Gly-Phe-Leu-Gly-、-Asn-Phe-Phe-、-Phe-Phe-、Phe-Gly-などが挙げられる。
 基-Z-N(R)Y-Xの具体例としては、-NH-(CH-NH-CO-コレステリル、-NH-(CH-NH-(CH-NH-(CH-NH-COO-コレステリル、-NH-(CH-NH-(CH-NH-(CH-NH-COO-コレステリル、-NH-(CH-NH-(CH-NH-COO-コレステリル、-NH-(CH-N(-(CH-NH)-COO-コレステリル、-NH-(CH-NH-(CH-N(-(CH-NH)-COO-コレステリル、-NH-(CH-NH-(CH-N(-(CH-NH-(CH-NH)-COO-コレステリル、-NH-(CH-NH-(CH-N(-(CH-NH)-CO-NH-コレステリル、-NH-(CH-NH-(CH-N(-(CH-NH)-CO-コレステリル、-NH-(CH-NH-(CH-N(-(CH-NH)-コレステリルが挙げられる。基-Z-N(R)Y-Xの好ましい態様において、R、RおよびRが、水素原子であり、Yが、直鎖状のC2-30アルキレンまたは-(CHCHO)-CHCH-であり、Yが、直鎖状のC1-5アルキレンであるか、またはYが、直鎖状のC2-8アルキレンまたは直鎖状のC2-8アルケニレンである。
 本発明の別の側面によれば、式(I)で表される繰り返し単位、および式(II):
Figure JPOXMLDOC01-appb-C000007
[式中、R1a、R2a、R3a、およびR4aは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
 Xは、ヒドロキシおよび-Oから選択され;ここで、Qは、カウンターカチオンである]
で表される繰り返し単位を含むヒアルロン酸誘導体が提供される。本発明のヒアルロン酸誘導体に式(II)で表される繰り返し単位が2以上含まれる場合、当該繰り返し単位は同一であっても、異なっていてもよい。1つの態様において、本発明は、式(I)で表される繰り返し単位、および式(II)で表される繰り返し単位から実質的になるヒアルロン酸誘導体を提供する。
 ここで、Qはカルボキシ基と水中で塩を形成するカウンターカチオンであれば特に限定されず、2価以上の場合は価数に応じて複数のカルボキシ基と塩を形成する。カウンターカチオンの例としては、リチウムイオン、ナトリウムイオン、ルビジウムイオン、セシウムイオン、マグネシウムイオン、カルシウムイオンなどの金属イオン;式:N(式中、R、R、RおよびRは、それぞれ独立に、水素原子およびC1-6アルキルから選択される)で表されるアンモニウムイオンなどが挙げられ、好ましくは、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン(例えば、テトラn-ブチルアンモニウムイオンなど)が挙げられる。R、R、RおよびRは、C1-6アルキルから選択される同一の基であるのが好ましく、n-ブチル基であるのが好ましい。
 R、R、R、およびR、並びにR1a、R2a、R3aおよびR4aは、全て水素原子であるのが好ましい。また、RおよびRは、いずれも水素原子であるのが好ましい。
 本発明の一態様において、ヒアルロン酸誘導体は、式(I)および(II)の繰り返し単位から実質的に構成される。当該ヒアルロン酸誘導体は、当該誘導体に含まれるD-グルクロン酸とN-アセチルグルコサミンとから成る二糖の繰り返し単位のうちの、例えば80%以上が、好ましくは90%以上が、より好ましくは95%以上が式(I)または(II)の繰り返し単位である。本発明の1つの態様において、上記式(I)および式(II)で表される繰り返し単位のみから構成される。
 式(I)で定義したYは、例えば、-(CHna-(ここで、naは2~20、好ましくは2~15、さらに好ましくは2~12の整数から選択される)であってもよく、好ましくは、-(CH-、-(CH-、-(CH-および-(CH12-であり、さらに好ましくは-(CH-である。これらのYは、後述する、沈殿形成および安定な分散という観点で好ましいものである。
 本発明のさらに別の側面によれば、本明細書に定義したヒアルロン酸誘導体であって、水中で会合により微粒子を形成することを特徴とする前記ヒアルロン酸誘導体が提供される。特に限定はされないが、導入された疎水性基の疎水性相互作用により水中において自発的会合が起こり、微粒子を形成すると考えられている。当該微粒子の粒子径は特に限定されないが、例えば、1μm以下、好ましくは500nm、より好ましくは200nm以下、さらに好ましくは100nm以下、さらにより好ましくは50nm以下である。
 本発明のさらに別の側面によれば、本明細書に定義した疎水性基を導入したヒアルロン酸誘導体であって、当該誘導体に存在する二糖の繰り返し単位に対する疎水性基の導入率が7~42%である、前記ヒアルロン酸誘導体が提供される。
 ここで、疎水性基の導入率は、以下の式:
Figure JPOXMLDOC01-appb-C000008
により算出される。ここで、「当該誘導体に存在する二糖の繰り返し単位」には、カルボキシ基がアミド基に変換されて疎水性基が導入されている式(I)の繰り返し単位、および疎水性基が導入されていない式(II)、(III)および(IV)の繰り返し単位が含まれる。当該導入率は、反応条件、例えば試薬の比率により制御することができ、例えば、NMR測定などにより決定することができる。
 本発明の上記側面の一つの態様によれば、本明細書に定義した疎水性基を導入したヒアルロン酸誘導体であって、当該誘導体に存在する二糖の繰り返し単位に対する疎水性基の導入率が7~15%である、前記ヒアルロン酸誘導体が提供される。導入率が前記範囲の場合、ヒアルロン酸誘導体は、塩濃度が一定以上の溶液中(例えば、生理塩濃度下)で顕著に凝集し、沈殿を形成するという性質を有する。前記基導入率のヒアルロン酸誘導体を薬物と複合化させて、体内に投与(例えば皮下)することにより、投与後に凝集する特徴を生かした沈殿型の徐放製剤となりうる。
 本発明の上記側面の別の態様によれば、本明細書に定義した疎水性基を導入したヒアルロン酸誘導体であって、当該誘導体に存在する二糖の繰り返し単位に対する疎水性基の導入率が18~42%である、前記ヒアルロン酸誘導体が提供される。導入率が前記範囲の場合、ヒアルロン酸誘導体は、塩濃度が一定以上の溶液中(例えば、生理塩濃度下)であっても安定な微粒子を形成し、水中で安定に分散するという性質を有する。前記導入率のヒアルロン酸誘導体を薬物と複合化させて、体内に投与(例えば静脈内)することにより、血中徐放製剤および目的組織または細胞へのターゲティング製剤となりうる。
 本発明の上記側面のさらに別の態様によれば、本明細書に定義した疎水性基を導入したヒアルロン酸誘導体であって、当該誘導体に存在する二糖の繰り返し単位に対する疎水性基の導入率が2~50%である、前記ヒアルロン酸誘導体が提供される。前記範囲の導入率は、血中滞留性向上の観点で好ましく、さらに好ましくは8~35%であり、さらに好ましくは15~22%である。
 式(I)で表される繰り返し単位を1以上含む本発明のヒアルロン酸誘導体は、好ましくは式(II)で表される繰り返し単位から実質的になるヒアルロン酸またはその誘導体、さらに好ましくは、式(II)で表される繰り返し単位のみから構成されるヒアルロン酸またはその誘導体を原料として合成される。原料の重量平均分子量は、血中滞留性向上の観点では、27キロダルトン(kDa)以下が好ましく、18kDa以下がさらに好ましい。分子量の下限は5kDa以上あればよい。当該分子量の好ましい範囲は5~27kDaであり、さらに好ましくは5~18kDaである。本発明の別の側面によれば、本発明のヒアルロン酸誘導体は、重量平均分子量が27kDa以下である、式(II)で表される繰り返し単位から実質的になるヒアルロン酸またはその誘導体を原料として製造することができる。当該側面の1つの態様において、本発明のヒアルロン酸誘導体は式(I)および(II)の繰り返し単位から実質的に構成されるヒアルロン酸誘導体である。
 前記分子量のヒアルロン酸またはその誘導体を用いて前記導入率で疎水性基を導入した本発明のヒアルロン酸誘導体は、重量平均分子量27kDaを超えるヒアルロン酸あるいはその塩を用いた場合と比較して、あるいは前記疎水性基以外の基で修飾した場合と比較して、血中滞留性が顕著に向上するという性質を有する。前記分子量のヒアルロン酸を原料としたヒアルロン酸誘導体を用いることにより、血中滞留性が良好な全身投与型、特に静脈内投与型の血中徐放製剤および目的組織または細胞へのターゲティング製剤が提供できる。
 ここで、前記式(I)中のYは、-(CHn1-および-(CHCHO)m1-CHCH-(ここで、n1は、2~15、好ましくは2~12、さらに好ましくは2~6の整数であり、m1は、1~4の整数である)であるのが好ましい。具体的には、-(CH-、-(CH-、-(CH12-および-(CHCHO)-CHCH-が好ましく、-(CH-、-(CH-および-(CHCHO)-CHCH-がさらに好ましい。
 式(I)におけるXである前記疎水性基としては、-NH-(CH-NH-COO-コレステリル、-NH-(CH-NH-COO-コレステリル、-NH-(CH12-NH-COO-コレステリルおよび-NH-(CHCHO)-CHCH-NH-COO-コレステリルが好ましく、-NH-(CH-NH-COO-コレステリル、-NH-(CH-NH-COO-コレステリルおよび-NH-(CHCHO)-CHCH-NH-COO-コレステリルがさらに好ましい。
 本発明の別の側面によれば、式(III):
Figure JPOXMLDOC01-appb-C000009
[式中、R1b、R2b、R3b、およびR4bは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
 Xは、-NR-Y-Rを表し;
 Rは、水素原子またはC1-6アルキル基であり;
 Rは、水素原子、C1-6アルキル基または基-CO-C(R)=CHであり、
 Yは、-CH-(CHRl-2-CH-NH-、-CH-(CHRp-2-CH-O-、-(CH-S-、-CH-CH-(Y-CH-CH-S-、-CH-CH-(Y-CH-CH-NH-または-CH-CH-(Y-CH-CH-O-であり、
 ここで、l、p、およびjは、それぞれ独立に2~10から選択される整数であり、z、tおよびyは、それぞれ独立に1~200から選択される整数であり、RおよびRはそれぞれ独立に水素原子またはヒドロキシであり、Rは、水素原子またはメチル基であり、Y、YおよびYは、それぞれ独立して、酸素原子または-NH-である]
で表される繰り返し単位をさらに含む、ヒアルロン酸誘導体が提供される。本発明の1つの態様において、上記式(I)、式(II)および式(III)で表される繰り返し単位から実質的になるヒアルロン酸誘導体が提供され、さらに別の態様において、上記式(I)、式(II)および式(III)で表される繰り返し単位のみから構成されるヒアルロン酸誘導体が提供される。当該ヒアルロン酸誘導体は、血中滞留性向上の観点からは、好ましくは重量平均分子量が27kDa以下、より好ましくは18kDa以下の、式(II)で表される繰り返し単位のみから構成されるヒアルロン酸またはその誘導体を原料として製造されうる。原料の重量平均分子量の下限は5kDa以上あればよい。当該分子量の好ましい範囲は5~27kDaであり、さらに好ましくは5~18kDaである。
 存在する二糖の繰り返し単位に対する式(II)で表される繰り返し単位の割合は、50%以下であるのが好ましく、30%以下がさらに好ましく、20%以下がさらに好ましい。その割合の下限は0%以上であればよい。ここでは、ヒアルロン酸誘導体のカルボキシ基の50%以上が、-Z-N(R)-Y-XおよびXなどで修飾されているが、前記重量平均分子量のヒアルロン酸またはその誘導体を原料に用い、式(II)で表される繰り返し単位の割合を前記の通りとした場合、前記疎水性基でカルボキシ基の一部または大部分が修飾されることで、前記疎水性基以外の基のみでカルボキシ基が修飾された場合と比較して、血中滞留性が顕著に向上するという性質を有する。その、存在する二糖の繰り返し単位に対する前記疎水性基の導入率は、2~70%が好ましく、5~35%がさらに好ましく、15~22%がさらに好ましい。
 Xは、それぞれ同一であっても異なっていてもよい。例えば、HN-CH-CH-O-CO-C(CH)=CH(第1アミン)およびHN-CH-CH-(O-CH-CH-NH(第2アミン)である2種類のアミンを、同時に、または相前後してグルクロン酸部分のカルボキシ基と縮合させることができる。第1アミンにより二重結合が導入されたヒアルロン酸誘導体は、アルキレン基の両端にメルカプト基を有する架橋剤(例えば、ジチオスレイトール:DTT)との架橋反応に供することができる。架橋反応を行うことで、本発明のヒアルロン酸誘導体をゲル化することができる。また、ジアミンである第2アミンをグルクロン酸部分のカルボキシ基と縮合させることにより、もう一方の末端アミノ基を、薬物を結合させるために利用してもよい。この時、利用されることなく残存したアミノ基は、例えば無水コハク酸、無水マレイン酸、無水グルタル酸および無水アジピン酸などのジカルボン酸無水物などで処理するか、マレイン酸、グルタル酸およびアジピン酸などのジカルボン酸を縮合剤共存下で反応させることで、末端の官能基をカルボキシ基に戻してトータル電荷をアニオン性にすることもできる。
 あるいは、HN-CH-CH-O-CO-C(CH)=CH(第1アミン)およびHN-CH-CH-OH(第2アミン)である2種類のアミンを、同時に、または相前後してグルクロン酸部分のカルボキシ基と縮合させてもよい。第1アミンにより導入される二重結合を前記と同様に架橋反応に供することができ、また、第2アミンにより修飾されたヒアルロン酸誘導体には血中滞留性の向上を期待することができる。 架橋反応の他の事例としては、アミノ基を導入したヒアルロン酸誘導体(HA-AM)と、C2-20アルキレンの両端にスクシンイミジルエステルやその他のイミドエステルを有する架橋剤(例えば、ビス[スルフォスクシンイミジル]スベレート(BS)、エチレングリコール-ビス[スルフォスクシンイミジル]スクシネート(Sulfo-EGS)、ジメチルアジピミデート塩酸塩(DMA)など)とので縮合反応による架橋;HA-AMと、C2-20アルキレンの両端にホルミル基を有する架橋剤(例えば、グルタルアルデヒドなど)との架橋;ホルミル基を導入したヒアルロン酸誘導体(HA-ALD)と、C2-20アルキレンの両端にアミノ基を有する架橋剤(例えば、エチレンジアミン(EDA)など)との架橋;メルカプト基を導入したヒアルロン酸誘導体(HA-SH)の酸化条件下(例えば、テトラチオネートナトリウム(STT)存在下など)での酸化反応による架橋;HA-SHと、C2-20アルキレンの両端にマレイミド(MAL)基やメタクリロイル基などの不飽和結合を有する架橋剤(例えば、1,4-ビス-マレイミドブタン(BMB)、ジメタクリル酸エチレン(EDMA)など)とのマイケル付加反応による架橋;アルクロイル基およびメタクリロイル基などの不飽和結合を導入したヒアルロン酸誘導体と各種重合開始剤(例えば、ペルオキソ二硫酸カリウム(KPS)/N,N,N’,N’-テトラメチルエチレンジアミン(TEMED)、Irgacure2959など)とのラジカル重合による架橋;ジアミン化合物(例えば、EDA、2,2’-(エチレンジオキシ)ビス(エチレンジアミン)など)共存下、縮合剤(例えば、N,N’-カルボニルジイミダゾール(CDI)、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン(EEDQ)、4-(4,6-ジメトキシ-1,3,5-トリアジン)-4-メチルモルホリウムクロライド(DMT-MM)、2-ベンゾトリアゾール-1,1,3,3-テトラメチルウロニウム4フッ化ホウ酸塩(TBTU)、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,3-ベンゾトリアジン(HODhbt)、ベンゾトリアゾール-1-オキシ-トリス-ピロリジノ-ホスホニウム6フッ化リン酸塩(PyBOP)、ベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウム ヘキサフルオロホスフェート(BOP)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)またはN-ヒドロキシスクシンイミド(NHS)など)による架橋が挙げられる。上記の架橋形成は、ヒアルロン酸誘導体の分子内であっても、複数のヒアルロン酸誘導体の分子間であってもよい。
 本発明のヒアルロン酸誘導体のゲルが有する化学架橋構造は、架橋剤、ポリマーに導入した架橋形成が可能な基、結合様式などに、生体内で分解するものを用いてもよい。特に限定されないが、例えば架橋反応に供する基として、エステル結合およびメタクリロイル基を有する基を用いてもよい。また、架橋剤として、Sulfo-EGSやEDMAなど、エステル結合を有する化合物、または生体内の酵素によって分解されるペプチドスペーサーを有する化合物を用いてもよい。また、メルカプト基の酸化によって形成するジスルフィド結合によって架橋したゲルは、ジスルフィド交換反応や還元反応によって生体で分解される。分解性の化学架橋構造を有することで、本発明のヒアルロン酸誘導体のゲルの生体内での分解速度を制御することができ、これによって薬物の放出速度も制御することが可能である。
 Xの好ましい例としては、-NR-(CHn2-OH(式中、Rは、水素原子であり;n2は2~10から選択される整数である)が挙げられ、さらに好ましくは-NH-(CH-OHおよび-NH-(CH-OHであるのがが挙げられる。
 式(III)で表される繰り返し単位からなるヒアルロン酸誘導体は、WO2006/028110に開示されている。また、ヒアルロン酸のカルボキシ基(-COOH)を-COXに変換する方法は、当該公報に記載されており、または周知の縮合反応を利用して変換することもできる。
 本発明の別の側面において、式(IV):
Figure JPOXMLDOC01-appb-C000010
[式中、R2c、R3c、およびR4cは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
 Xは、ヒドロキシおよび-O、から選択され;ここで、Qは、カウンターカチオンであり;
 R1cは、
 -CO-C(R21)=CH
 -CHCH(OH)-R22-Y
 -CH(CHOH)-R22-Y
 -CONH-R23-Y
 -CO-R23-Y
 -CONH-CHCH-(X21-CHCHn3-Y、および
 -CO-CHCH-(X21-CHCHn4-Yから選択され、
 X21は、OおよびSから選択され:
 n3およびn4は、それぞれ1~50の整数を表し;
 Yは、アミノ、メルカプト、ホルミル、-X14-CO-C(R18)=CHから選択され、
 R21は、水素原子またはC1-6アルキルから選択され;
 R22およびR23は、2価のC2-50炭化水素基または2価のC2-50ポリアルキレンオキシ基であり、前記2価のC2-50炭化水素基は、1~10個の-O-が挿入されて一部にポリアルキレンオキシ部分が形成されていてもよく;
 X14は、OおよびN(R19)から選択され;
 R18は水素原子またはC1-6アルキルであり;
 R19は水素原子またはC1-6アルキルである]
で表される繰り返し単位をさらに含む、本明細書で定義したヒアルロン酸誘導体が提供される。当該側面の1つの態様において、当該ヒアルロン酸誘導体は、上記式(I)、式(II)および式(IV)で表される繰り返し単位のみから;または上記式(I)、式(II)、式(III)および式(IV)で表される繰り返し単位のみから構成される。
 本発明のさらに別の側面によれば、本発明のヒアルロン酸誘導体は、好ましくは重量平均分子量27kDa以下の、式(II)で表される繰り返し単位のみから構成されるヒアルロン酸またはその誘導体を原料として合成される。当該側面の1つの態様において、式(I)で表される繰り返し単位、式(II)で表される繰り返し単位および式(IV)で表される繰り返し単位から実質的になるヒアルロン酸誘導体;または式(I)で表される繰り返し単位、式(II)で表される繰り返し単位、式(III)で表される繰り返し単位および式(IV)で表される繰り返し単位から実質的になるのヒアルロン酸誘導体が提供される。
 R1cは、N-アセチルグルコサミン部分の6位のヒドロキシの置換基であり、主に架橋性の基である。具体例としては、-CO-C(CH)=CH、-CO-CH=CH、-CHCH(OH)-CHCH-O-CO-C(CH)=CH、-CONH-CHCH-O-CO-C(CH)=CH、-CONH-CHCH-(O-CHCH-O-CO-CH=CHなどが挙げられる。存在する二糖の繰り返し単位に対する式(IV)で表される繰り返し単位の割合は、10~40%であるのが好ましい。式(IV)で表される繰り返し単位からなるヒアルロン酸誘導体はWO2008/136536に開示されており、ヒアルロン酸のN-アセチルグルコサミン部分の6位のヒドロキシ(-OH)の-OR1cへの変換は、WO2008/136536(特許文献8)の実施例10および14ならびにそれが引用する特開2005-298644およびBiomacromolecules 第6巻、第1829-1834頁、2005年(非特許文献9)を参考にして行うことができる。また、周知のエステル化反応およびエーテル化反応により変換することもできる。
 本発明のさらに別の側面によれば、本明細書に定義したヒアルロン酸誘導体を担体として含む医薬組成物が提供される。当該医薬組成物に含まれる活性成分は特に限定されず、例えば、タンパク質および/またはペプチド、多糖類、核酸類、低分子化合物などであってもよい。当該側面の一つの態様において、薬理活性を有するタンパク質またはペプチドと共に、本明細書に定義したヒアルロン酸誘導体を担体として含む医薬組成物が提供される。本発明のヒアルロン酸誘導体は、水中で薬物と複合体を形成することを特徴とする。形成されたヒアルロン酸誘導体と薬物との複合体は分散性微粒子であっても沈殿物であってもよい。 
 分散性微粒子は、全身投与型、特に静脈内投与型の血中徐放製剤やおよび目的組織または細胞へのターゲティング製剤の基材として用いることができ、沈殿物は局所投与型の徐放製剤の基材として用いることができる。
 本発明の別の側面によれば、本明細書で定義したヒアルロン酸誘導体であって、水溶液中において前記疎水性基の疎水性相互作用により自発的会合することで系中に存在する薬物と複合体を形成する前記ヒアルロン酸誘導体が提供される。当該側面の一つの態様において、薬物はタンパク質またはペプチドである。
 本発明の別の側面によれば、本明細書で定義したヒアルロン酸誘導体に1以上の薬物が結合した、ヒアルロン酸誘導体-薬物結合体が提供される。当該側面の一つの態様において、薬物はタンパク質またはペプチド、あるいは核酸類または低分子化合物である。
 本発明のさらに別の側面によれば、本明細書で定義したヒアルロン酸誘導体と薬物との複合体を水中で形成する工程を含む、医薬組成物の製造方法が提供される。当該側面の一つの態様によれば、以下の工程:
(a)本明細書で定義した疎水性基を有するヒアルロン酸誘導体を製造する工程;
(b)得られたヒアルロン酸誘導体を水相に溶解または分散させる工程;
(c)得られたヒアルロン酸誘導体水溶液または分散液に薬物を加え、薬物担持微粒子を形成させる工程;
 を含む、医薬組成物の製造方法が提供される。当該医薬組成物が沈殿物の場合は、さらに以下の工程:
(d)塩物質を加え、薬物担持微粒子を沈殿させる工程
を加えてもよい。上記各工程は、W/Oエマルション中や噴霧液滴中などの不連続相中で行ってもよい。工程(c)において水相中で形成した微粒子または工程(d)において得られた沈殿を乾燥して(例えば、噴霧乾燥または凍結乾燥などによる)固化し、さらに必要に応じて粉砕、乾燥、洗浄工程などを行って、固体として目的の医薬組成物を得てもよい。
 本発明のヒアルロン酸誘導体を用いることで、薬物、特に薬効を有するタンパク質やペプチドをその生物活性を維持したまま多量に封入した徐放性製剤を提供することが可能となる。また、ヒアルロン酸誘導体は安全性の面においても優れており、医薬製剤の担体として特に優れている。また、薬物と本発明のヒアルロン酸誘導体とを結合させたコンジュゲートにすることで、薬物の血中滞留性を向上させることができる。
図1は、実施例1-1で調製したコレステリル 6-アミノヘキシルカーバメート塩酸塩のH-NMRスペクトルの一例である。 図2は、実施例1-2で調製したコレステリル 2-アミノエチルカーバメート塩酸塩のH-NMRスペクトルの一例である。 図3は、実施例1-3で調製したコレステリル 8-アミノオクチルカーバメート塩酸塩のH-NMRスペクトルの一例である。 図4は、実施例1-4で調製したコレステリル 12-アミノドデシルカーバメート塩酸塩のH-NMRスペクトルの一例である。 図5は、実施例2-2で調製した、50kDaのヒアルロン酸ナトリウム塩を出発原料とするヒアルロン酸テトラブチルアンモニウム塩のH-NMRスペクトルの一例である。 図6は、実施例2-3-1で調製したコレステリル 6-アミノヘキシルカーバメートを導入したHA誘導体(HA-C-Chol)のH-NMRスペクトルの一例である。 図7は、実施例2-3-2で調製したコレステリル 2-アミノエチルカーバメートを導入したHA誘導体(HA-C-Chol)のH-NMRスペクトルの一例である。 図8は、実施例2-3-3で調製したコレステリル 8-アミノオクチルカーバメートを導入したHA誘導体(HA-C-Chol)のH-NMRスペクトルの一例である。 図9は、実施例2-3-4で調製したコレステリル 12-アミノドデシルカーバメートを導入したHA誘導体(HA-C12-Chol)のH-NMRスペクトルの一例である。 図10-1は、実施例2-3-1で得られたHA誘導体をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体形成を観察した結果(実施例3)を表すチャートの一例である。 図10-2は、実施例2-3-2で得られたHA誘導体をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体形成を観察した結果(実施例3)を表すチャートの一例である。 図10-3は、実施例2-3-4で得られたHA誘導体をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体形成を観察した結果(実施例3)を表すチャートの一例である。 図10-4は、実施例2-3-3で得られたHA誘導体をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体形成を観察した結果(実施例3)を表すチャートの一例である。 図11-1は、ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)を添加して、実施例2-3-1で得られた試料をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体の崩壊を観察した結果(実施例4)を表すチャートの一例である。 図11-2は、ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)を添加して、実施例2-3-2で得られた試料をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体の崩壊を観察した結果(実施例4)を表すチャートの一例である。 図11-3は、ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)を添加して、実施例2-3-4で得られた試料をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体の崩壊を観察した結果(実施例4)を表すチャートの一例である。 図11-4は、ヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)を添加して、実施例2-3-3で得られた試料をサイズ排除クロマトグラフィーに供して、保持時間の変化からHA誘導体の会合体の崩壊を観察した結果(実施例4)を表すチャートの一例である。 図12は、実施例5および6で行ったサイズ排除クロマトグラフィーの結果を表すチャートの一例である。 図13は、実施例7-1で算出した溶液中のHA誘導体の残存率をHA誘導体の疎水性基導入率に対してプロットしたグラフである。 図14は、実施例7-2で算出した溶液中のHA誘導体の残存率をNaCl濃度に対してプロットしたグラフである。 図15は、実施例8において測定したサイズ排除クロマトグラフィーのチャートである。 図16は、実施例9-1で調製したコレステリル 8-アミノ-3,6-ジオキサオクチルカーバメート(Chol-EO2)の塩酸塩のH-NMRスペクトルの一例である。 図17は、実施例9-2で調製したコレステリル 8-アミノ-3、6-ジオキサオクチルカーバメートを導入したHA誘導体(HA-EO2-Chol)のH-NMRスペクトルの一例である。 図18は、実施例10で調製した2-アミノエチル コレステリル ジスルフィドを導入したHA誘導体(HA-SS-Chol)のH-NMRスペクトルの一例である。 図19は、実施例11で調製したコレステリル 2-アミノエチルカーバメートおよびアミノエチルメタクリレートを導入したHA誘導体(HA-C-Chol/AEMA)のH-NMRスペクトルの一例である。 図20は、実施例13で調製した5-アミノメチルフルオレセイン、コレステリル 6-アミノヘプチルカーバメートおよびエタノールアミンを導入したHA誘導体(HA-C-Chol/C-OH/FL)のH-NMRスペクトルの一例である。 図21は、HA誘導体(50k HA-C-Chol-22%/FL)の粒子サイズを、動的光散乱法(DLS)にて測定した結果を表すチャートの一例である。 図22-1は、実施例18-1におけるコレステリル基を導入したHA誘導体とリゾチームとの複合体調製の結果を示すグラフであり、縦軸は(複合体中のLys重量/HA誘導体重量)×100の値(複合化%)、横軸はユニット当たりの疎水基導入率(%)を示す。 図22-2は、実施例18-2におけるコレステリル基を導入したHA誘導体とエキセンディン-4との複合体調製の結果を示すグラフであり、縦軸は(複合体中のEx-4重量/HA誘導体重量)×100の値(複合化%)、横軸はユニット当たりの疎水基導入率(%)を示す。 図22-3は、実施例18-3におけるコレステリル基を導入したHA誘導体とヒト成長ホルモンとの複合体調製の結果を示すグラフであり、縦軸は(複合体中のhGH重量/HA誘導体重量)×100の値(複合化%)、横軸はユニット当たりの疎水基導入率(%)を示す。 図22-4は、実施例18-4におけるコレステリル基を導入したHA誘導体とエリスロポエチンとの複合体調製の結果を示すグラフであり、縦軸は(複合体中のEPO重量/HA誘導体重量)×100の値(複合化%)、横軸はユニット当たりの疎水基導入率(%)を示す。 図23-1は、ウシ血清アルブミン(20mg/mL)溶液中におけるコレステリル基を導入したHA誘導体からのエリスロポエチンの放出を示すグラフの一例であり、縦軸はリリースされたエリスロポエチンの量、横軸は経過時間を示す。 図23-2は、濃度の異なるウシ血清アルブミン溶液中におけるコレステリル基を導入したHA誘導体(HA-C12-Chol-7%)からのエリスロポエチンの放出を示すグラフの一例であり、縦軸はリリースされたエリスロポエチンの量、横軸は経過時間を示す。 図24は、ラットにおける皮下ならびに尾静脈投与時のヒト成長ホルモンの血漿中濃度推移の結果を示すグラフの一例である。 図25は、実施例20-4で使用したhGH/HA誘導体複合体の製剤サンプルの写真である。 図26-1は、表23-1のサンプル20-1~サンプル20-4のhGH/HA誘導体複合体投与時のhGHの96時間までの血漿中濃度推移と、比較例1のhGH溶液の血漿中濃度推移を併せて示すグラフである。 図26-2は、表23-1のサンプル20-1~サンプル20-4のhGH/HA誘導体複合体投与時のhGHの24時間までの血漿中濃度推移と、比較例1のhGH溶液の血漿中濃度推移を併せて示すグラフである。 図27-1は、表23-1のサンプル20-4~サンプル20-6のhGH/HA誘導体複合体投与時のhGHの96時間までの血漿中濃度推移と、比較例1のhGH溶液の血漿中濃度推移を併せて示すグラフである。 図27-2は、表23-1のサンプル20-4~サンプル20-6のhGH/HA誘導体複合体投与時のhGHの24時間までの血漿中濃度推移と、比較例1のhGH溶液の血漿中濃度推移を併せて示すグラフである。 図28は、表23-1のサンプル20-1~サンプル20-6のhGH/HA誘導体複合体と、比較例1のhGH溶液の平均滞留時間(MRT)を示すグラフである。 図29は、比較例2-1~2-3で調製した蛍光標識HA誘導体を投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図30-1は、実施例12ならびに実施例15で調製した蛍光標識HA誘導体を投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図30-2は、表28の血漿中濃度-時間曲線下面積外挿値(AUC∞)と分子量の関係を示すグラフである。縦軸はAUC∞、横軸は原料のHA-Naの分子量である。 図31は、表29のサンプル21-2、21-8および21-9の蛍光標識HA誘導体を投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図32-1は、表31のサンプル21-2および21-10の蛍光標識HA誘導体を投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図32-2は、表31のサンプル21-5、21-11および21-12の蛍光標識HA誘導体を投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図33は、表33のサンプル21-13の蛍光標識HA誘導体を投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図34-1は、表35の蛍光標識HA誘導体(10k HA-C-Chol-22%/FL)を皮下投与および静脈内投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図34-2は、表35の蛍光標識HA誘導体(10k HA-C-Chol-19%/C-OH/FL-95%)を皮下投与および静脈内投与したラットにおける、蛍光標識HA誘導体の血漿中濃度の推移を示すグラフである。 図35-1は、表37の蛍光標識HA誘導体(10k HA-C-Chol-22%/FL)を静脈内投与したラットでの蛍光標識HA誘導体の血漿中濃度の推移において、ヒアルロン酸ナトリウムの先行投与の影響を確認した実験結果を示すグラフである。 図35-2は、表34の蛍光標識HA誘導体(50k HA-C-Chol-27%/FL)を皮下投与および静脈内投与したラットでの蛍光標識HA誘導体の血漿中濃度の推移において、ヒアルロン酸ナトリウムの先行投与の影響を確認した実験結果を示すグラフである。 図36-1は、実施例21-1での測定後のサンプル21-2(5分から2時間までの試料)についてSEC分析を行った結果を示すクロマトグラムである。 図36-2は、実施例21-1での測定後のサンプル21-2(1日から4日までの試料)についてSEC分析を行った結果を示すクロマトグラムである。 図37-1は、比較例2-4の薬物動態試験で用いたラット(比較サンプル2-2)から採取した尿サンプルについてSEC分析を行った結果を示すクロマトグラムである。 図37-2は、実施例21-1の薬物動態試験で用いたラット(サンプル21-2)から採取した尿サンプルについてSEC分析を行った結果を示すクロマトグラムである。 図37-3は、実施例21-1の薬物動態試験で用いたラット(サンプル21-5)から採取した尿サンプルについてSEC分析を行った結果を示すクロマトグラムである。 図37-4は、実施例21-1の薬物動態試験で用いたラット(サンプル21-6)から採取した尿サンプルについてSEC分析を行った結果を示すクロマトグラムである。 図37-5は、実施例21-1の薬物動態試験で用いたラット(サンプル21-7)から採取した尿サンプルについてSEC分析を行った結果を示すクロマトグラムである。 図38は、実施例22で算出した溶液中のHA誘導体の残存率をHA誘導体の疎水性基導入率に対してプロットしたグラフである。 図39は、実施例2-3ならびに実施例14で調製したHA誘導体とドキソルビシンを混合し、限外ろ過したろ液を逆相ロマトグラフィーに供してフリーのドキソルビシン量を観察した結果(実施例23)を表すチャートである。 図40は、実施例16で調製したHilyte標識HA誘導体ならびに実施例24で調製した50k HA-Hilyteをゼノグラフトマウスに投与し、腫瘍への集積をin vivo イメージング装置にて評価した写真である。 図41は、Hilyte標識HA誘導体ならびに50k HA-Hilyteを投与したゼノグラフトマウスの腫瘍の蛍光強度をプロットしたグラフである。 図42は、実施例11で調製したHA-Chol/AEMAをDTTにて架橋させ、ゲル化した状態を撮影した写真である。
 以下、本発明を更に具体的に説明する。
 本明細書で言及する用語「ステリル基」とは、ステロイド骨格を有する基であれば特に制限されない。ここでステロイドとしては、具体的には、コレステロール、コレスタノール、カンペスタノール、エルゴスタノール、スチグマスタノール、コプロスタノール、スチグマステロール、シトステロール、ラノステロール、エルゴステロール、シミアレノール、胆汁酸、テストステロン、エストラジオール、プロゲストロン、コルチゾール、コルチゾン、アルドステロン、コルチコステロン、デオキシコルチステロンなどが挙げられる。ステリル基としては、コレステリル基、スチグマステリル基、ラノステリル基、エルゴステリル基などが挙げられ、好ましくはコレステリル基(特に、コレスタ-5-エン-3β-イル基)が挙げられる。
 本明細書で言及する用語「C1-20アルキル」とは、炭素数1~20の直鎖状、分岐鎖状のアルキル基を意味し、例えば、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、s-ブチル、i-ブチル、t-ブチルなどの「C1-4アルキル」が含まれ、さらに、n-ペンチル、3-メチルブチル、2-メチルブチル、1-メチルブチル、1-エチルプロピル、n-ヘキシル、4-メチルペンチル、3-メチルペンチル、2-メチルペンチル、1-メチルペンチル、3-エチルブチル、および2-エチルブチルなどが含まれる。C1-20アルキルには、炭素数が1~12のC1-12アルキル、炭素数が1~6のC1-6アルキル基も含まれる。
 本明細書で言及する用語「C1-6アルキルカルボニル」とは、アルキル部分が既に言及したC1-6アルキルであるアルキルカルボニル基を意味し、例えば、アセチル、プロピオニル、n-プロピルカルボニル、i-プロピルカルボニル、n-ブチルカルボニル、s-ブチルカルボニル、i-ブチルカルボニル、t-ブチルカルボニルなどの「C1-4アルキルカルボニル」が含まれる。
 本明細書で言及する用語「アミノC2-20アルキル」は、置換基としてアミノ基を有する炭素数2~20の直鎖状、分岐鎖状のアルキルを意味し、例えば、アミノ基はアルキル基の末端の炭素原子上に位置していてもよい。
 本明細書で言及する用語「ヒドロキシC2-20アルキル」は、置換基としてヒドロキシ基を有する炭素数2~20の直鎖状、分岐鎖状のアルキル基を意味し、例えば、ヒドロキシ基はアルキル基の末端の炭素原子上に位置していてもよい。
 本明細書で言及する用語「C2-30アルキレン」とは、炭素数2~30の直鎖状または分岐鎖状の2価の飽和炭化水素基を意味し、例えば、エチレン、プロピレンなどを含み、C2-20アルキレン、C2-8アルキレン、基-(CH-(ここで、nは2~30、好ましくは2~20、さらに好ましくは2~15)を含む。
 本明細書で言及する用語「C1-30アルキレン」とは、炭素数1~5の直鎖状または分岐鎖状の2価の飽和炭化水素基を意味し、例えば、メチレン、エチレン、プロピレンなどを含む。
 本明細書で言及する用語「C2-8アルケニレン」とは、炭素数2~8の直鎖状または分岐鎖状の、1以上の二重結合を含む、2価の飽和炭化水素基を意味し、例えば、-CH=CH-、-C(CH)=CH-、2-ブテン-1,4-ジイル、ヘプタ-2,4-ジエン-1,6-ジイルおよびオクタ-2,4,6-トリエン-1,8-ジイルなどを含む。幾何異性が存在する場合は、それぞれの異性体およびそれらの混合物も含まれる。
 本明細書で言及する「2価のC2-50炭化水素基」は特に限定されず、その例として、炭素数2~50の直鎖状、分岐鎖状、環状および一部が環状のアルキレン基、アルケニレン基およびアルキニレン基が挙げられ、当該基は2価の芳香族環であってもよく、または芳香族環を構造の一部に含んでいてもよい。
 本明細書で言及する「2価のC2-50ポリアルキレンオキシ」は特には限定されず、繰り返し単位のアルキレン基は直鎖であっても分岐鎖であってもよい。「2価のC2-50ポリアルキレンオキシ」の例には、2価のC2-50ポリエチレンオキシ基、C3-48ポリプロピレンオキシ基、C3-48ポリブチレンオキシ基などが含まれる。当該基は、酸素原子または炭素原子を介して他の基と連結していてよく、例えばC2-50ポリエチレンオキシ基には、-O(CHCHO)1-25-、-(CHCHO)1-25-、-(OCHCH1-25-、-(CHCHO)1-24-(CHCH)-などが含まれる。
 本明細書で言及する用語「塩物質」とは、水に可溶な無機物であれば特に限定されず、例えば、塩化カルシウム、リン酸カルシウム等のカルシウム塩、硫酸マグネシウム、塩化マグネシウム等のマグネシウム塩、硫酸アルミニウム、塩化アルミニウム等のアルミニウム塩、硫酸カリウム、炭酸カリウム、硝酸カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム等のカリウム塩、炭酸水素ナトリウム、炭酸ナトリウム、硫酸ナトリウム、硝酸ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、ケイ酸ナトリウム、リン酸三ナトリウム、リン酸二ナトリウム、ホウ酸ナトリウム、酢酸ナトリウム、クエン酸ナトリウム等のナトリウム塩、塩化リチウム、臭化リチウム、ヨウ化リチウム、炭酸リチウム等のリチウム塩が挙げられ、好ましくは、塩化ナトリウム、リン酸三ナトリウム、リン酸二ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウムなどが挙げられる。
 本発明のヒアルロン酸誘導体を製造するための原料としては、ヒアルロン酸またはその塩もしくはその誘導体を使用することができる。ヒアルロン酸塩としては、例えば、ナトリウム塩、カリウム塩、リチウム塩等のアルカリ金属塩を挙げることができ、特に好ましい塩は、医薬品として繁用されているナトリウム塩である。HAまたはその薬学的に許容される塩は、鶏冠や豚皮下等の生物由来のものを抽出する方法や生物発酵法等の各種公知の方法を用いて製造することができ、あるいは市販のものを購入して(例えば、電気化学工業株式会社、株式会社資生堂、生化学工業株式会社、R&D system社等から)入手することも可能である。
 本発明のヒアルロン酸誘導体の分子量は特に限定はされないが、局所投与における拡散遅延由来の徐放機能を期待する場合には粘度および分子量の高いヒアルロン酸が好ましく、最終剤形が溶液製剤の場合、スムーズな投与のため粘度および分子量の低いヒアルロン酸が好ましい。従って、ヒアルロン酸誘導体の分子量は、1kDa~1,000kDaが好ましく、10kDa~300kDaがさらに好ましい。目的物の分子量は、一般的には、対応する分子量を有する原料を使用することにより調節することができる。前述した、沈殿形成および安定な分散という観点で好ましい本発明のヒアルロン酸誘導体の原料の分子量は、10kDa~500kDaであり、さらに好ましくは27kDa~230kDaであり、さらに好ましくは50kDa~230kDaであり、さらに好ましくは50kDa~99kDaである。血中滞留性向上の観点で好ましい本発明のヒアルロン酸誘導体の原料の分子量は、5kDa~27kDaであり、さらに好ましくは5kDa~18kDaである。ゲル化の観点で好ましい本発明のヒアルロン酸誘導体の原料の分子量は、5kDa~300kDaであり、さらに好ましくは5kDa~50kDaであり、さらに好ましくは5kDa~27kDaである。
 なお、一般的に、ヒアルロン酸およびその誘導体は単一品として得ることが難しいため、その分子量は、数平均分子量または重量平均分子量として算出する。本発明においては、重量平均分子量として算出している。重量平均分子量の測定方法については、例えば、中浜精一他著「エッセンシャル高分子科学」(講談社発行、ISBN4-06-153310-X)に記載された、光散乱法、浸透圧法、粘度法等、各種の公知の方法を利用することができ、本明細書において示される粘度平均分子量もウベローデ粘度計を使用するなど、本発明が属する技術分野において通常用いられる方法により測定することができる。分子量を明示して市販されているヒアルロン酸およびその誘導体を使用する場合は、その明示された数値を分子量とすることもできる。
 本発明のヒアルロン酸誘導体は、繰り返し単位を構成する二糖の一つであるグルクロン酸のカルボキシ基をアミドに変換して、疎水性基を導入している。ヒアルロン酸誘導体の修飾の程度を調節することにより、当該誘導体を用いて製造する製剤の体内動態を制御することも可能である。
 ヒアルロン酸誘導体のグルクロン酸部分のカルボキシ基修飾率が低い場合、例えば、存在するカルボキシ基のうちの50%以下が修飾されている場合、炎症部位や腫瘍部位に大量に発現しているCD44を始めとするヒアルロン酸レセプターや、ヒアルロン酸の主な代謝系である肝臓、リンパ系へのターゲティング効果を期待できる。例えば、変形性関節症やリウマチ患者の炎症を起こした滑膜細胞へのターゲッティング、レセプター依存型のエンドサイトーシスによる細胞内への取り込み、細胞内での薬物放出による炎症治癒が期待できる。
 また、ヒアルロン酸誘導体のグルクロン酸部分のカルボキシ基修飾率が高ければ、ヒアルロン酸レセプターへの結合が抑制され、当該ヒアルロン酸誘導体は体内でステルス効果をもつ滞留性の長い薬物担体となる。この場合、EPR効果(Enhanced Permeation and Retention effect)を利用した腫瘍細胞へのターゲッティング効果も期待できる。さらにヒアルロン酸誘導体にターゲット素子を導入することにより、各臓器ならびに細胞へターゲッティングすることができる。ターゲット素子としては、例えば、標的組織特異的なペプチド、抗体、断片化抗体、アプタマー、がん細胞に対するRGDペプチド、葉酸、アニサミド、トランスフェリン、肝臓に対するガラクトース、トコフェロールなどがある。
 なお、ゲル化する場合は、ヒアルロン酸誘導体のグルクロン酸部分のカルボキシ基修飾率は、低くても、高くてもよい。
 ヒアルロン酸誘導体のグルクロン酸部分のカルボキシ基の疎水性基による修飾率、すなわち疎水性基の導入率は、薬物、好ましくはタンパク質との複合体形成の観点では、2~60%が好ましく、さらに2~50%、さらに2~40%、さらに5~20%、さらに7~15%が好ましい。前述の沈殿形成の観点では、7~15%が好ましく、安定な分散という観点では、18~42%が好ましい。血中滞留性向上の観点では、2~50%が好ましく、8~35%がさらに好ましく、15~22%がさらに好ましい。ゲル化の観点では、2~30%が好ましく、2~22%がさらに好ましく、5~22%がさらに好ましく、7~22%がさらに好ましい。
 本発明のヒアルロン酸誘導体の原料の分子量と疎水性基の導入率の組み合わせとしては、前述の沈殿形成の観点では、27kDa~230kDaかつ7~15%が好ましく、50kDa~230kDaかつ7~15%がさらに好ましく、50kDa~99kDaかつ7~15%がさらに好ましい。安定な分散という観点では、27kDa~230kDaかつ18~42%が好ましく、50kDa~230kDaかつ18~42%がさらに好ましく、50kDa~99kDaかつ18~42%がさらに好ましい。血中滞留性向上の観点では、5kDa~27kDaかつ2~50%が好ましく、5kDa~27kDaかつ8~35%がさらに好ましく、5kDa~18kDaかつ8~35%がさらに好ましく、5kDa~18kDaかつ8~35%がさらに好ましく、5kDa~18kDaかつ15~22%がさらに好ましい。ゲル化の観点では、5kDa~300kDaかつ2~30%が好ましく、5kDa~50kDaかつ2~22%がさらに好ましく、5kDa~27kDaかつ2~22%がさらに好ましく、5kDa~27kDaかつ7~22%がさらに好ましい。
 本発明のヒアルロン酸誘導体を製造するために、グルクロン酸のカルボキシ基をアミドに変換し疎水性基を導入する方法としては、例えば、原料のヒアルロン酸またはその誘導体、好ましくは、式(II)で表される繰り返し単位のみから構成されるヒアルロン酸またはその誘導体を、テトラアルキルアンモニウム塩(例えば、テトラブチルアンモニウム(TBA)塩)にイオン交換し、適当な縮合剤存在下、溶媒中で当該ヒアルロン酸塩と式:HNR-Y-NR-R、NHR-Y-NR-COO-R、HNR-Y-NR-COO-R、HNR-Y-NR-CO-R、HNR-Y-NR-CO-NR-R、HNR-Y-COO-R、HNR-Y-O-COO-R、HNR-Y-S-R、HNR-Y-CO-Y-S-R、HNR-Y-O-CO-Y-S-R、HNR-Y-NR-CO-Y-S-R、HNR-Y-S-S-R、および-Z-NR-Y-NR-COO-R(式中、R、R、R、Y、Y、Y、ZおよびRは本明細書で既に定義したとおりである)で表される疎水性基を導入したアミンとを反応させる方法が挙げられる。
 上記の反応において使用することができる縮合剤は特に限定されず、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン)-4-メチルモルホリウム(DMT-MM)、N,N’-カルボニルジイミダゾール(CDI)、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキノリン(EEDQ)、2-ベンゾトリアゾール-1,1,3,3-テトラメチルウロニウム4フッ化ホウ酸塩(TBTU)、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,3-ベンゾトリアジン(HODhbt)、ベンゾトリアゾール-1-オキシ-トリス-ピロリジノ-ホスホニウム6フッ化リン酸塩(PyBOP)、ベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウム ヘキサフルオロホスフェート(BOP)または1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)またはN-ヒドロキシスクシンイミド(NHS)などを挙げることができる。
 特に、限定はされないが、DMT-MMは水および有機溶媒の混合溶媒中でも反応が高効率に進む点において好ましい。また、DMT-MMを縮合剤として使用することにより、多数のヒドロキシが共存する系において、エステル結合形成を抑えつつ、高選択的にアミノ基とカルボキシ基によるアミド結合形成を行うことができる。この縮合剤の使用により、例えば、溶媒であるアルコールがヒアルロン酸部分のカルボキシ基と反応することや、ヒアルロン酸部分に同時に存在するカルボキシ基とヒドロキシとが、分子内もしくは分子間で結合して、望まない架橋を形成してしまうことを防ぐことができる。
 疎水性基導入反応において用いる溶媒としては、水、DMSO、メタノール、エタノール、プロパノール、ブタノール、アセトニトリル、DMF、THF、ジクロロメタン、クロロホルム、ヘキサン、ジエチルエーテル、酢酸エチル、およびこれらの混合溶媒を挙げることができる。例えば、疎水性基の導入率が18~42%の時は、疎水性基の導入後に形成する微粒子の沈殿の抑制および溶媒中での分散性の観点から、反応溶媒としてDMSOのみを使用するのが好ましい。
 あるいは、原料のヒアルロン酸またはその誘導体を、テトラアルキルアンモニウム塩(例えば、テトラブチルアンモニウム(TBA)塩)にイオン交換し、適当な縮合剤存在下、溶媒中で当該ヒアルロン酸塩とスペーサー部分を反応させ(この際、必要に応じて保護及び脱保護反応を行ってもよい)、原料のヒアルロン酸またはその誘導体のカルボキシ基(-COOH)を変換し、その後に適当な試薬と反応させてもよい。カルボキシ基から誘導される基と、反応試薬の組み合わせの例を以下に示す。
 -CONR-Y-NRH + Hal-R、
 -CONR-Y-NRH + Hal-COOR、
 -CONR-Y-NRH + HOCO-R、
 -CONR-Y-NRH + Hal-CO-R、
 -CONR-Y-NR-COOH + HNR-R、
 -CONR-Y-NR-CO-NRH + Hal-R、
 -CONR-Y-NRH + HOCO-NR-R、
 -CONR-Y-NRH + Hal-CO-NR-R、
 -CONR-Y-COOH + HO-R、
 -CONR-Y-OH + Hal-COO-R、
 -CONR-Y-OCOOH + HO-R、
 -CONR-Y-OCOOH + Hal-R、
 -CONR-Y-OCO-Hal + HO-R、
 -CONR-Y-SH + Hal-R、
 -CONR-Y-Hal + HS-R、
 -CONR-Y-CO-Y-Hal + HS-R
 -CONR-Y-CO-Y-SH + Hal-R、
 -CONR-Y-O-CO-CH=CH + HS-R、
 -CONR-Y-NR-CO-CH(CH)=CH + HS-R、
 -CONR-Y-SH + HS-R、
 -COZ-OH + HNR-Y-NR-COO-R、
 -COZ-NR-Y-NRH + Hal-COO-R
(式中、R、R、R、Y、Y、Y、およびZは本明細書で既に定義したとおりであり、Halは、フッ素原子、塩素原子、臭素原子およびヨウ素から選択されるハロゲン原子を表す)。
 反応様式としては、脱ハロゲン化水素反応、縮合反応、脱水反応、マイケル付加等の求核付加反応、酸化的なジスルフィド形成反応等が挙げられ、これらは周知な反応であり、当業者が適宜選択し、好ましい反応条件を見出して行うことができる。変換体または反応物がカルボキシ基を有する場合は、N-ヒドロキシコハク酸イミド(以下、「NHS」とも称す)エステルとし、反応させてもよい。
 また、原料のヒアルロン酸またはその誘導体のカルボキシ基に、2-アミノエチル 2-ピリジル ジスルフィドを反応させて、末端に脱離基で修飾されたメルカプト基を有するスペーサーが導入されたヒアルロン酸誘導体を調製し、これにチオコレステロールを求核置換反応させてジスルフィド結合を形成する方法を挙げることもできる。
 さらに、ヒアルロン酸またはその誘導体のカルボキシ基にスペーサーの一部を導入したものと、ステリル基にスペーサーの一部を導入したものを調製し、これらを反応させる方法を挙げることもできる。具体例の一部は上述したが、さらに、Yに-S-S-が挿入されている場合は、ヒアルロン酸のカルボキシ基に、末端にメルカプト基を有するスペーサーが導入されたヒアルロン酸誘導体と、末端にメルカプト基を有するスペーサーが導入されたステリル基をそれぞれ調製し、これらを酸化的に反応させてジスルフィド結合を形成させる方法を挙げることもできる。このとき、一方のメルカプト基を2-メルカプトピリジンと反応させてジスルフィドとした後に、他方のメルカプト基と置換させることもできる。
 また、本発明のヒアルロン酸誘導体を調製後、さらに他の置換基を導入してもよい。例えば、式(I)で表される繰り返し単位、および式(II)で表される繰り返し単位から実質的になるヒアルロン酸誘導体におけるカルボキシ基の0.1~99.5%、好ましくは10~40%を、-CO-X、[ここで、Xは、以下の基:
 -NH-(CHp1-O-CO-C(R17)=CH
 -NH-(CHp1-O-CO-CH(R17)-CH-S-CH-CH(OH)-CH(OH)-CH-SH;
 -NH-(CHp1-SH;
 -NH-(CHp1-NH-CO-C(R17)=CH
 -NH-(CHp1-NH-C(=NH)-(CH-SH;
 -NH-(CHp1-NH-CO-(CH-SH;
 -NH-(CHp1-NH-CO-CH(R17)-CH-S-CH-CH(OH)-CH(OH)-CH-SH;
 -NH-(CHp1-NH-CO-CH(NH)-CH-SH;
 -NH-(CHp1-NH-CO-CH(NH)-(CH-SH;
 -NH-NH-CO-(CH-CO-NH-NH-C(=NH)-(CH-SH;
 -NH-(CH-CH-O)-CH-CH-O-CO-C(R17)=CH
 -NH-(CH-CH-O)-CH-CH-O-CO-CH(R17)-CH-S-CH-CH(OH)-CH(OH)-CH-SH;
 -NH-(CH-CH-O)-CH-CH-SH;
 -NH-(CH-CH-O)-CH-CH-NH-CO-C(R17)=CH
 -NH-(CH-CH-O)-CH-CH-NH-C(=NH)-(CH-SH;
 -NH-(CH-CH-O)-CH-CH-NH-CO-(CH-SH;
 -NH-(CH-CH-O)-CH-CH-NH-CO-CH(R17)-CH-S-CH-CH(OH)-CH(OH)-CH-SH;
 -NH-(CH-CH-O)-CH-CH-NH-CO-CH(NH)-CH-SH;
 -NH-(CH-CH-O)-CH-CH-NH-CO-CH(NH)-(CH-SH;
 -NH-CH(COH)-(CH)-SH;
 -NH-CH(COH)-(CH-SH;および
 -NH-CH(COH)-(CH-CONH-CH(CONH-CH-COH)-CH-SH
(ここで、R17は、水素原子またはC1-6アルキル基であり、p1は2~10の整数、qは1~200の整数、rは1~3の整数を、それぞれ表す)から選択される]
に変換することで、分子内あるいは他分子を含めた分子間で架橋させてゲル化することもできる。
 本発明のヒアルロン酸誘導体を、化学架橋によりゲル化させる工程は、適宜その条件を選択してもよい。架橋の条件とは、架橋方法、ポリマー濃度、架橋剤濃度、溶媒、溶媒pH、塩濃度、温度、時間などがある。
 本発明のヒアルロン酸誘導体をゲル化させる工程において、架橋形成の反応条件の中で、例えば化学架橋時のポリマー濃度および架橋形成が可能な基の導入率を高くすることで、生成するゲルの架橋密度を高くすることが可能である。
 本発明のヒアルロン酸誘導体をゲル化させる工程における架橋剤濃度は、両端に架橋形成が可能な基を有するものを使用する場合、当該基が過不足なく速やかに架橋反応に関与できるような濃度で添加することが好ましい。例えば、メタクリロイル基を導入したポリマーをDTTを用いてマイケル付加反応により架橋する場合は、MA基:SH基=3:1~1:3が好ましく、2:1~1:2が特に好ましい。
 本発明のヒアルロン酸誘導体をゲル化させる工程における溶媒は、ポリマーおよび架橋剤を充分に溶解することができるものが好ましく、特に限定されないが、水、ジメチルスルホキシド(DMSO)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)およびこれらから選択される混合溶媒を用いることが好ましい。また、これらの溶媒に混和する有機溶媒を混合して使用することも可能である。特に限定されないが、混和する有機溶媒としては例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、アセトン、アセトニトリルなどが挙げられる。
 本発明のヒアルロン酸誘導体は、水溶液中においてナノ微粒子を形成するため、希薄な条件化において架橋することにより、ナノサイズの微粒子ゲルを形成することができ、血中除放キャリア、ターゲティングキャリアとして用いることができる。希薄な条件とは10mg/mL以下であり、好ましくは5mg/mL以下、さらに好ましくは1mg/mL以下である。一方、高濃度な条件下において架橋することにより、微粒子同士が架橋した、バルク状のゲルを形成することができる。これは皮下徐放型のキャリアとして有用である。高濃度な条件とは5mg/mL以上であり、好ましくは20mg/mL以上、さらに好ましくは40mg/mLである。
 本発明のヒアルロン酸誘導体をゲル化させる工程は、バルクで行ってもよく、エマルション中や噴霧液滴中などの不連続相中で行ってもよい。例えば、W/Oエマルション中で行う場合は、ポリマーや架橋剤などを溶解させた水相を、水に混和しない溶媒中に乳化し、ゲル化反応を行えばよい。水に混和しない溶媒とは、特に限定されないが、例えばヘキサン、クロロホルム、ジクロロメタン、酢酸エチル、中鎖脂肪酸トリグリセリド(MCT)、流動パラフィン、大豆油などが挙げられる。乳化を安定化するための界面活性剤を添加してもよい。また、例えば、超臨界二酸化炭素中やPEG中など脱溶媒が可能な溶媒中で行ってもよい。この場合は、ポリマーや架橋剤などを溶解させた水相や有機溶媒相を、前例の溶媒中に乳化、分散することで、脱溶媒(溶媒拡散)に伴うポリマーの濃縮が成されることから、より高い架橋密度のゲルを得ることが可能になる。
 本発明のヒアルロン酸誘導体をゲル化させる工程、およびその後に、架橋反応を停止する操作および残存した架橋性官能基を失活もしくは洗浄する操作を行ってもよい。反応に関与しなかった架橋性官能基、架橋剤の片端のみが結合した基、残存した架橋剤などは、安全性の観点、保存中安定性の観点、封入される薬物との副反応などの観点から除去した方が好ましい。特に限定されないが、例えば、未反応の架橋剤が残存している場合は、過剰の水などで洗浄することで除去してもよい。また、例えばポリマーに置換したメタクリロイル基が残存する場合は、過剰のメルカプトエタノールなどを添加し、メタクリロイル基を失活させた後、過剰の水などで余剰のメルカプトエタノールを洗浄することで除去してもよい。さらには、例えばメルカプト基が残存する場合は、過剰の3-マレイミドプロピオン酸、ヨード酢酸などを添加し、メルカプト基を失活させた後、過剰の水などで余剰の3-マレイミドプロピオン酸、ヨード酢酸を洗浄することで除去してもよい。
 本発明のヒアルロン酸誘導体をゲル化させる工程の後に、粉砕工程を行ってもよい。粉砕方法としては、乳棒と乳鉢を用いる粉砕やミルを用いる粉砕が挙げられるが、ミルを用いる粉砕が好ましい。ミル粉砕装置としては、遠心式粉砕機(日本精機製作所)およびインパクトミル(株式会社ダルトン)等の回転円板型の粉砕装置、アトマイザー(東京アトマイザー製造株式会社)、サンプルミル(東京アトマイザー製造株式会社)、バンタムミル(東京アトマイザー製造株式会社)、およびSKミル(トッケン)等のスクリーンミルの粉砕装置、超微少量ラボジェットミル(A-Oジェットミル、セイシン企業)等のジェット粉砕装置、並びに、超低温での粉砕が可能なリンレックスミル(リキッドガス株式会社)等が挙げられるが、SKミルおよびリンレックスミルが好ましい。
 本発明のヒアルロン酸誘導体をゲル化させる工程の後に、乾燥工程を行ってもよい。乾燥方法としては、例えば通風乾燥、恒温槽中での乾燥、減圧乾燥、熱風循環式乾燥などが挙げられる。風速、乾燥時間、温度、圧力などは本発明のゲルが分解や変質を生じない範囲で適宜選択される。
 本発明のヒアルロン酸誘導体のゲルに薬物を封入することで医薬品組成物とすることができる。
 薬物封入方法として、あらかじめ架橋されたヒアルロン酸誘導体ゲルに薬物溶液を添加する方法が挙げられる。当該方法では、まず、膨潤したゲル内部へ拡散によって薬物が吸収され、吸収された薬物は、ヒアルロン酸誘導体ゲルの疎水性相互作用による物理架橋ドメインに保持されることによって薬物が封入される。特に限定されないが、溶媒、塩濃度、pH、温度、時間、変性剤の添加などの条件は、薬物が安定でかつ高収率で封入されるように適宜選択してよい。例えば、薬物封入時の塩濃度やpHによって、ヒアルロン酸誘導体ゲルの膨潤度や密度が変化し、薬物の電離状態なども変わるため、その組み合わせによって適宜、適した条件を使用すればよい。薬物の封入を低塩濃度下で行うことで、ヒアルロン酸誘導体のカルボキシ基同士の静電反発を利用し、ゲル密度を減少させ、薬物封入量を増加させることや、より高分子量の薬物を封入することができる。薬物封入後、塩濃度を上昇させることにより静電反発を弱め、ゲル密度を上昇させ、ゲル網目を薬物サイズより小さくすることにより、強固に薬物を保持し、放出を遅らせることが可能となる。この際、塩濃度を生理塩濃度とすることもできる。
 また、薬物封入方法として、本発明のヒアルロン酸誘導体に薬物を複合化させた後、架橋することでゲル化させる方法が挙げられる。特に限定されないが、複合化の際の溶媒、塩濃度、pH、温度、時間、変性剤の添加、前記親水性多糖類誘導体濃度、薬物濃度、HPと薬物の比率などの条件は、薬物が安定でかつ高収率でナノゲルと複合化されるように適宜選択してもよい。複合化されなかったフリーの薬物は、透析法やサイズ排除クロマトグラフ(SEC)法などで分離、除去すればよい。架橋の際は、封入された薬物が変性しない架橋条件を用いることが好ましい。
 本発明のヒアルロン酸誘導体のゲルに封入された薬物は、薬物のゲル中における単純拡散、ヒアルロン酸誘導体のゲルの分解、および生体成分と薬物の置換によって放出される。薬物の拡散によって薬物放出がなされる場合には、ゲルの架橋密度、および架橋ドメインの量やその疎水性の強さによってその速度を制御することが可能である。ゲルの分解とは、例えば、化学架橋ドメインの分解、ヒアルロン酸誘導体の骨格の分解などがある。これらの分解により、架橋密度の低下(膨潤率の増大)が生じる。架橋密度が低下すると、ゲル中の薬物の拡散速度が加速されるため放出が促進され、また結合が切れることによっても放出が促進される。このため、化学架橋ドメインの分解性、ポリマー骨格の分解性、スペーサーの分解性などを制御することによって、薬物放出速度を制御することが可能である。
 生体成分との置換とは、例えば、ゲルを皮下や血中などの生体内に投与した場合、アルブミンなどの血漿タンパク質や脂質などが存在し、これらがゲル中に浸潤、封入されている薬物と置換されることにより薬物が放出される場合を意味する。本発明のヒアルロン酸誘導体のゲルは、疎水性基同士による物理的な架橋だけでなく、前記の化学架橋により、生体成分の浸潤に伴う薬物との置換を抑制することが可能である。生体成分の浸潤は、ゲルの架橋密度、ゲル中の電荷などによってその速度を制御することが可能である。なお、前記の架橋によるゲルの形成後に薬物溶液を添加して薬物封入をする場合は、封入時に薬物はゲル中に吸収されやすく、生体内では生体成分の浸潤が抑制されるように、その封入条件を適宜選択することができる。特に限定されないが、例えば、タンパク質を封入する場合、その等電点付近で封入工程行うことで、ヒアルロン酸誘導体と薬物の静電反発を抑制することができる。また、ヒアルロン酸に含まれるグルクロン酸由来のカルボン酸のpKa(およそ4.0)以下で封入工程を行うことで、ゲルが持つ負電荷を弱めることができるので、その条件で負電荷に帯電しているタンパク質との静電反発が抑制され、封入効率の向上が可能となる。また、例えば生体内よりも低い塩濃度において封入工程を行うことで、生体内よりもゲルの膨潤率が高くなるため、封入が容易となる。
 さらに、本発明の疎水性基と架橋性官能基を同時に導入したヒアルロン酸誘導体の化学架橋によるゲル化を、疎水性基を有する親水性多糖類誘導体の共存下で、行うことができる。具体的には、疎水性基および不飽和結合を有する官能基を導入した本発明のヒアルロン酸誘導体と、疎水性基を有する親水性多糖類誘導体を混合し、架橋することにより、疎水性基を有する親水性多糖類誘導体を物理的に封入した、ヒアルロン酸誘導体ゲルが調製できる。HA-AM、HA-ALD、HA-SHを用いても同様に行える。
 疎水性基を有する親水性多糖類誘導体とは、親水性多糖類およびその誘導体に、多糖1分子あたり少なくとも1分子以上の疎水性基を導入して得ることができる親水性多糖類である。親水性多糖類としては特に限定されないが、好ましくはプルラン、アミロペクチン、アミロース、デキストラン、マンナン、レバン、イヌリン、キチン、キトサン、ヒアルロン酸、デキストリンであり、これらは市販されているか、文献記載の方法に従い、種々の平均分子量を有するものを入手することもできる。親水性多糖類として特に好ましいものは、プルラン、ヒアルロン酸、デキストリンである。デキストリンとしてはクラスターデキストリン(登録商標)が好ましい。クラスターデキストリン(登録商標)は、江崎グリコ株式会社から販売されているものを購入して使用することができる。疎水性基としては特に限定されないが、好ましくはC8-50の炭化水素基、ステリル基、ポリ乳酸(PLA)基、ポリ乳酸・グリコール酸共重合体(PLGA)基などの基またはこれらの基を含む基であり、特に好ましくはコレステリル基を含む基、C8-30の直鎖または分岐アルキルまたは当該基を含む基である。疎水性基はスペーサーを介して導入されていてもよい。
 疎水性基を有する親水性多糖類誘導体は各種公知の方法により製造することができる。また、親水性多糖類としてプルランのヒドロキシ基に、疎水性基としてN-[6-(コレステリルオキシカルボニルアミノ)ヘキシル]カルバモイル基を導入した水親水性多糖類誘導体(以下、「コレステロールプルラン」、「CHP」とも称する)は、市販のものを購入して(例えば、日本油脂株式会社)入手することも可能である。疎水性基を有する親水性多糖類誘導体は、水溶液中において疎水性相互作用により数分子が自発的に会合することでナノサイズ(1~1,000nm)のゲル構造を有する微粒子(ナノゲル)を形成することなどにより、疎水性薬物や薬効を有するタンパク質やペプチドと複合化することがきるものである。
 本発明に用いられる疎水性基を有する親水性多糖類誘導体の分子量は、特に限定されないが、好ましくは1kDa~1,000kDa、さらに好ましくは10kDa~300kDaである。また前記親水性多糖類誘導体は、薬学的に許容される塩であってもよい。
 さらに、例えば、本発明のヒアルロン酸誘導体および疎水性基を有する親水性多糖類誘導体に含まれるヒドロキシ基もまた架橋形成が可能な基として利用することができる。すなわち、本発明のヒアルロン酸誘導体および疎水性基を有する親水性多糖類誘導体のヒドロキシ基を、特定の架橋剤、例えば、ジビニルスルホン(DVS)、カルボジイミド、またはC2-20アルキレンの両端にグリシジルエーテル基を有する架橋剤などによって架橋することができる。
 ヒアルロン酸のカルボキシ基に導入される置換基の種類が複数のときは、それらの置換基は、同時導入しても、順次に導入してもよい。
  本発明のヒアルロン酸誘導体は、水溶液中において前記疎水性基の疎水性相互作用により自発的に会合することでナノスケールの微粒子を形成するという特性を有する。望まれるドラッグデリバリーシステムの構築のために、本発明のヒアルロン酸誘導体により形成されるナノ微粒子は非常に有力な手段の一つであり、内部に形成される疎水ドメインに活性成分であるタンパク質、ペプチド、低分子化合物を保持したまま目的の部位に送達するカプセルとして使用することができる。また、薬物をコンジュゲートすることにより目的の部位に薬物を送達することができる。
 ナノスケールの微粒子は、全身投与、特に静脈内投与が可能であり、封入(複合化)した薬物を血中で徐放する血中薬物徐放、また、標的臓器および細胞へ薬物を選択的にデリバリーさせる、ターゲティング用の担体として使用できる。ターゲティング用の担体として使用する場合、HA誘導体のグルクロン酸部分のカルボキシ基を高度に修飾しない場合(例えば修飾率54%以下)、前述の様にヒアルロン酸レセプター、CD44やRHAMM、LYVE-1、HAREをターゲットとした薬物のデリバリーが可能となる。特に、CD44やRHAMMをターゲットとすることで、腫瘍へのターゲティングが可能となる。また、HA誘導体のグルクロン酸部分のカルボキシ基を高度に修飾し(例えば修飾率55%以上)、さらに前述の様なターゲット素子をくわえることにより各臓器ならびに細胞へターゲッティングすることもできる。血中での薬物の保持を強固にするために、さらにヒアルロン酸誘導体を化学架橋させることもできる。
 なお、高度に修飾されていないHA誘導体を、血中薬物徐放やターゲティング用の担体として用いる場合、肝臓などの類洞内皮に存在するHAREレセプターにより瞬時に取り込まれ、代謝されることが知られており、急速に血中から消失するという問題点がある。しかし、本発明のHA誘導体の血中滞留性には分子量依存性があり、低分子量のHA(5kDa~27kDa)を原料としたHA誘導体は、良好な血中滞留性能を有する、血中薬物徐放およびターゲティング用の担体として用いることができる。
 また、ヒアルロン酸と同様直鎖状のポリマーであるポリエチレングリコール(PEG)が、分子量40kDa以下で腎排泄を受けることが報告されている(Europian Journal of Cancer. 第31巻、第766-770頁、1995年)など、ある一定の大きさ以下の分子は、腎排泄を受けることが知られている。よって、同程度以下の分子量のヒアルロン酸ならびにヒアルロン酸誘導体も腎排泄され、瞬時に血中から消失する懸念がある。しかし、本発明の疎水性基を導入したHA誘導体は、カルボキシ基の修飾率に関わらず、PEGが腎排泄を受ける分子量以下であっても、血中滞留性が良好であるため、血中薬物徐放およびターゲティング用の担体として用いることができる。
 ヒアルロン酸誘導体による微粒子は、水溶液中で自己会合により形成するので、固体のヒアルロン酸誘導体をから水または塩水溶液に溶解することによって形成することができる。また、別の方法では、他の溶媒(例えばDMSO)に溶解したあと、水、または塩水溶液に置換することによっても微粒子を形成することができる。形成した微粒子のサイズを均一化するために超音波処理を行ってもよい。
 ヒアルロン酸誘導体の疎水性基導入率が高くなるに従って、水への溶解性が減少する。そのため水溶液中で分散性の微粒子を形成させるためには、共有結合により導入する疎水性基は80%以下、このましくは60%以下になるように調製されたヒアルロン酸誘導体を用いることがこのましい。
 ヒアルロン酸誘導体は解離基であるカルボキシ基を有するため、系中のイオン強度が高いほど、溶解性が低くなる。したがって、導入率をコントロールすることにより、低塩濃度下あるいは無塩条件下では溶解し、生理食塩濃度にて凝集・沈殿するヒアルロン酸誘導体の調製が可能であり、これは、皮下での徐放製剤の基材となり得る。また、生理塩濃度下においても安定な微粒子を形成する程度の疎水性基を導入したヒアルロン酸誘導体は、全身投与型の薬物担体となり得る。
 本発明のHA誘導体は、生理塩濃度下中で凝集し沈殿形成する、カルボキシ基への疎水性基の導入範囲を持つことが示され、また、タンパク質(エリスロポエチン)を封入(複合化)した状態で沈殿させられることが示された。さらに、ヒト成長ホルモンを封入(複合化)し沈殿させた本発明のヒアルロン酸誘導体からなる医薬品組成物をラットの皮下に投与した場合、徐放効果を示すことが確認された。また、溶液(分散)状態で投与することによっても皮下(生理塩濃度下)で沈殿し、徐放効果を示すことが確認された。
 形成される微粒子の粒子径は特に限定されないが、注射による投与の際にニードルを詰まらせずに通過できるようにするため200μm以下であることが好ましく、100μm以下であることが更に好ましい。また、静脈投与の場合は、抹消血管を閉塞させないために粒子径500nm以下であることが好ましく、200nm以下であることがさらに好ましい。また、細網内皮系への取り込みを回避し、血中滞留性を向上させるために100nm以下であることが好ましい。
 本発明ヒアルロン酸誘導体は、医薬製剤における薬物担体として使用することができる。本発明のヒアルロン酸誘導体は、水溶液中で自発的に薬物と複合体を形成するため、特別な操作を必要とせず、当該ヒアルロン酸誘導体と薬物を水溶液中で混合し、インキュベートすることにより、担体-薬物の複合体を容易に形成することができる。複合体形成の駆動力は、主にヒアルロン酸誘導体の疎水性基と薬物との疎水性相互作用であるが、薬物が塩基性の場合、ヒアルロン酸誘導体のカルボン酸との静電的相互作用が寄与する場合がある。生体塩濃度では、静電的相互作用は弱く、疎水性相互作用は強くなるため、主に疎水性相互作用により複合体が形成すると考えられる。
 上記式(I)において、基-NR-Y-XのYがアルキレンの場合、アルキレンの炭素鎖が長いほど、当該基の疎水性が高くなり、強い疎水性相互作用により強固な微粒子を形成することができる。また、アルキレン基が長いほど分子間での絡み合いが大きくなり、粘度を上昇させることができる。さらに、アルキレン基の長さを変更することで、微粒子のサイズを制御することもできる。
 疎水性基中のリンカー(スペーサー)部分がエステルまたはカーボネートである場合(例えば、Xが、-COO-Rおよび-O-COO-Rである場合)、生体内においてエステルまたはカーボネートが分解し、ヒアルロン酸誘導体の疎水性が低下することによってさらに生分解性が高まり、安全性の面から好ましい。また、腫瘍組織周辺ではpHが低下していることが知られており、このようなスペーサーを有している場合、目的薬物を担持した本発明のヒアルロン酸誘導体の会合体は腫瘍周辺にて崩壊し、薬物を腫瘍周辺で放出することができる。
 特に、-O-CO-CH-CH-S-のようなβチオエステル構造を有するリンカーの場合、わずかなpHの低下(pH6程度)においても分解が促進される。このため、通常のエステルよりもpH応答がシャープである。また、細胞内への薬物の送達を目指す場合、エンドソームにおけるpH低下にも応答し、細胞に取り込まれた後にのみ薬物を放出させることができる。
 リンカー(スペーサー)部分がジスルフィド結合を有する場合(例えば、Xが-S-S-Rである場合)、還元状況下においてリンカーが分解し、ヒアルロン酸誘導体の疎水性が低下することによって本発明のヒアルロン酸誘導体の会合体が崩壊する。細胞質は還元環境であることが知られているため、このリンカーを用いたヒアルロン酸誘導体に薬物を封入し、投与することによって、血中では薬物を放出せず、細胞質内でのみ薬物を放出させることができる。
 リンカー(スペーサー)部分が酵素特異的に切断されるペプチドを有する場合(例えば、疎水性基が-Z-NR-Y-NR-COO-Rである場合)、その酵素が存在する部位でのみリンカーが分解し、疎水性基の一部が脱離することによって本発明のヒアルロン酸誘導体の会合体が崩壊する。たとえば、ライソソームではGly-Phe-Leu-Glyが特異的に切断される。また、腫瘍や炎症部位で発現しているペプチダーゼで切断されるペプチドがリンカー中に含まれる場合、腫瘍で特異的に薬物を放出することができる。
 リンカー部分が、エステル結合、カーボネート結合、ジスルフィド結合の様な物理化学的切断を受けるリンカーではない場合、製剤中における保存安定性が良好であるという利点がある。
 担体-薬物複合体を形成するときの、溶媒、塩濃度、pH、温度、時間、変性剤の添加などの条件は、用いる薬物により適宜変更することができる。例えば、薬物封入時の塩濃度やpHによって、ヒアルロン酸誘導体は密度が変わるとともに、薬物もその電離状態などが変動する。使用する変性剤の例としては、尿素、塩酸グアニジン、ドデシル硫酸ナトリウムなどが挙げられる。変性剤を添加した場合は、複合体形成後に、過剰の水などで洗浄することにより余剰の変性剤を除去することができる。
 特に限定されないが、例えば、本発明のヒアルロン酸誘導体とタンパク質の複合体を形成する場合、その等電点付近で複合体形成を行うことにより、ヒアルロン酸誘導体とタンパク質の静電反発を抑制することが可能なため、複合体に含まれるタンパク質の量を増加させることができる。また、グルクロン酸部分のカルボキシ基のpKa(およそ4.0)以下の条件で複合体形成工程を行うことにより、ヒアルロン酸誘導体が有する負電荷を弱めることができるので、タンパク質が当該条件下で負電荷に帯電している場合には静電反発を抑制することが可能であり、複合体に含まれるタンパク質の量を増加させることができる。さらに、例えば生体内よりも低い塩濃度において複合体形成工程を行うことにより、水溶液中で形成されるヒアルロン酸誘導体の微粒子の密度が低下するため、複合体に含まれるタンパク質の量を増加させることができる。また、その状態で塩濃度を上げることにより微粒子の密度を向上させ、強固にタンパク質を封入することができる。
 ヒアルロン酸誘導体とタンパク質との複合体形成は、タンパク質の分子量にも影響され得る。一般に、タンパク質が低分子量であるほど、当該タンパク質のヒアルロン酸誘導体の微粒子内部へ移行速度は高い。また、疎水性基の導入率に依存する微粒子の密度も、タンパク質との複合体形成の速度、および複合体に含まれるタンパク質の量に影響を与えうる。
 ヒアルロン酸誘導体と薬物の複合体からの生体内における薬物放出は、複合体からの薬物の拡散に加えて、生体成分が薬物と置換することにより促進される。微粒子の密度を増減させて、この拡散や置換を制御することにより、薬物の徐放性を制御することが可能となる。
 生体内には血漿タンパク質や脂質などの生体成分が存在し、ヒアルロン酸誘導体と薬物の複合体を皮下や血中などの生体内に投与した場合、この生体成分が複合体内の薬物と置換することにより薬物が放出される場合がある。当該置換を生じさせる主な生体内タンパク質としてアルブミンが想定される。本発明のヒアルロン酸誘導体の疎水性基の導入率を低くすることにより、グルクロン酸部分のカルボキシ基の負電荷を高くすることができ、負電荷を有するアルブミン(pI=4.6)との置換を抑制することができる。
 また、本発明のヒアルロン酸誘導体を薬物担体として使用する方法としては、前述の水溶性液中で自発的に薬物と複合体を形成させる方法の他、薬物と本発明のヒアルロン酸誘導体とを結合させたコンジュゲートにする方法を挙げることもできる。
 本発明のヒアルロン酸誘導体と薬物とからなるコンジュゲートの調製方法は、既知のポリマーと薬物とのコンジュゲートの調製で使用されている方法を用いることができ、例えば、以下の反応を利用することができる。
 ヒアルロン酸誘導体のグルクロン酸部分のカルボキシ基と、薬物のアミノ基、ヒドロキシ基、ヨード基、ブロモ基または、薬物に導入したアミノ基、ヒドロキシ基、ブロモ基、ヨード基との反応;
 ヒアルロン酸誘導体のN-アセチルグルコサミン部分の6位のヒドロキシと、薬物のカルボキシ基または薬物に導入したカルボキシ基との反応;
 ヒアルロン酸誘導体に導入したアミノ基と、薬物のカルボキシ基または薬物に導入したカルボキシ基との反応; 
 ヒアルロン酸誘導体に導入したアミノ基と、修飾によりイソチオシアネート、イソシアネート、アシルアジド、NHSエステルおよびエポキシドなどに変換された薬物との反応;
 薬物のアミノ基または薬物に導入したアミノ基と、修飾によりイソチオシアネート、イソシアネート、アシルアジド、カルボニル、NHSエステルおよびエポキシドに変換されたヒアルロン酸誘導体との反応;
 ヒアルロン酸誘導体のアミノ基と、カルボニル基を有するまたは導入された薬物(アルデヒドおよびケトンなど)とのシッフ塩基形成ならびに還元的アミノ化反応;
 薬物のアミノ基または薬物に導入したアミノ基と、修飾によりカルボニル基が導入されたヒアルロン酸誘導体とのシッフ塩基形成ならびに還元アミノ化反応;
 ヒアルロン酸誘導体に導入したメルカプト基と、不飽和結合を有する化合物(マレイミド、アクリルエステル、アクリルアミド、メタクリルエステル、メタクリルアミド、アリル化物、ビニルスルホンなど)、ハロゲン化物(クロロ酢酸エステル、ブロモ酢酸エステル、ヨード酢酸エステル、クロロ酢酸アミド、ブロモ酢酸アミド、ヨード酢酸アミドなど)またはチオールである薬物または修飾により当該化合物に変換された薬物との反応;および
 薬物に導入したメルカプト基と、修飾により、不飽和結合を有する化合物(マレイミド、アクリルエステル、アクリルアミド、メタクリルエステル、メタクリルアミド、アリル化物、ビニルスルホンなど)、ハロゲン化物(クロロ酢酸エステル、ブロモ酢酸エステル、ヨード酢酸エステル、クロロ酢酸アミド、ブロモ酢酸アミド、ヨード酢酸アミドなど)またはチオールに変換されたヒアルロン酸誘導体との反応。
 さらに、前述の疎水性基をHA誘導体に導入する際に用いたエステルまたはカーボネート、βチオエステル、ジスルフィド、特定の部位で切断するペプチドを含むリンカー(スペーサー)を、薬物とのコンジュゲート用のリンカーとして使用することもできる。これらのリンカーは前述の通り、標的部位において切断され、薬物が放出される。
 コンジュゲートの調製のためにヒアルロン酸誘導体または薬物の修飾に使用する試薬は、コンジュゲートの調製において不都合な反応を生じさせないものであれば、特に限定されない。該化合物は試薬として入手可能であるか、または文献公知の方法を参考にして合成してもよい。
 具体的には、本発明のヒアルロン酸誘導体を合成し、さらにアミノ基を有する薬物またはアミノ基を導入した薬物をDMT-MMなどの縮合剤を用いて反応させ、アミド結合により薬物をコンジュゲートすることができる。この際、薬物をコレステリル 6-アミノへキシルカーバメート塩酸塩などと一緒に加えて、疎水性基を同時に導入してもよい。また、薬物の後もしくは前に当該化合物を加えてもよい。また、本発明のヒアルロン酸誘導体を合成・精製後に薬物を反応させても、薬物を導入したヒアルロン酸誘導体を合成・精製後に疎水性基誘導体を導入してもよい。
 また、本発明のヒアルロン酸誘導体を合成し、さらにヒドロキシ基を有する薬物またはヒドロキシ基を導入した薬物をDMT-MM、1,3-ジクロロヘキシルカルボジイミト゛(DCC)などの縮合剤を用いて反応させ、エステル結合によりヒアルロン酸誘導体に薬物をコンジュゲートすることができる。この際、薬物をコレステリル 6-アミノへキシルカーバメート塩酸塩などと一緒に加えて、疎水性基を同時に導入してもよい。また、薬物の後もしくは前に当該化合物を加えてもよい。しかし、エステルの加水分解を回避するためには、疎水性基を導入後、薬物をコンジュゲートすることが望ましい。上記の方法は、例えば、パクリタキセルがHAにエステルで導入された報告(Bioconjugate 第19巻、第1319-1325項、2008年)などを参考にして行うことができる。
 また、本発明のヒアルロン酸誘導体を合成し、さらに臭化物もしくはヨウ化物である薬物または、修飾により臭化物もしくはヨウ化物に変換された薬物を反応させ、グルクロン酸部分のカルボキシ基をエステルに変換することにより薬物をコンジュゲートすることができる。エステルの加水分解を回避するためには、疎水性基を導入後、薬物をコンジュゲートすることが望ましい。
 本発明のヒアルロン酸誘導体を合成し、さらにカルボキシ基を有する薬物またはカルボキシ基を導入した薬物をNHSエステルとし、N-アセチルグルコサミン部分の6位のヒドロキシと反応させ、エステル結合により薬物をコンジュゲートすることができる。この際、コレステリル6-アミノへキシルカーバメート塩酸塩などにより疎水性基をHAに導入した後に薬物を加えても、導入の前に加えてもよい。また、本発明のヒアルロン酸誘導体を合成・精製後に薬物を反応させても、薬物を導入したヒアルロン酸誘導体を合成・精製後に疎水性基誘導体を導入してもよい。エステル結合の加水分解を回避するためには、疎水性基誘導体を導入後、薬物をコンジュゲートすることが望ましい。上記の方法は、例えば、カンプトテシンがHAにエステルで導入された報告(国際公開第WO2009/074678号)などを参考にして行うことができる。
 1つの態様において、本発明のヒアルロン酸誘導体を合成後、グルクロン酸部分のカルボキシ基をエチレンジアミンなどのジアミンと脱水縮合させ、アミノ基を導入することができる。さらに、N-スクシンイミジル ヨードアセテート(PIERCE社)やN-スクシンイミジル [4-ヨードアセチル]アミノベンゾエート(PIERCE社)をアミノ基に反応させ、ヨードアセチル基が導入されたヒアルロン酸誘導体を合成することができる。このヒアルロン酸誘導体に対して、チオール基を有する薬物を、コンジュゲートすることができる。この方法はタンパク質、ペプチド、核酸などのアミノ基などの反応性基を多く含む高分子薬物においてもチオール選択的にコンジュゲートできるため特に有効である。この際、薬物の導入は疎水基誘導体をHAに導入する前でも後でもよい。
 Xが-NH-COO-Rである、本発明のヒアルロン酸誘導体を合成し、ここで、グルクロン酸部分のカルボキシ基の一部を2-アミノエチル 2-ピリジル ジスルフィド塩酸塩と反応させる。このヒアルロン酸誘導体に対してメルカプト基を有する薬物ならびにメルカプト基を導入した薬物をジスルフィド結合交換反応、すなわち置換反応により導入することが可能である。
  ここで、当該コンジュゲートの生物活性を有効に保つために、薬物とヒアルロン酸誘導体間のリンカーの長さを調節することもできる。また、生体内の特定部位にて酵素等で切断されるペプチドリンカーを導入することもできる。例えば、メトトレキセートがHAにペプチドを含むリンカーを介して導入された報告(国際公開第WO2005/095464号)、ドキソルビシンがHPMA(N-(2-hydroxypropyl)methacrylamide)およびペプチドを含むリンカーを介して導入された報告(国際公開第WO2002/090209号)などを参考にして行うことができる。
 また、抗体に低分子化合物をコンジュゲートさせたADC(Antibody Drug Conjugate)に関する報告(国際公開第WO2009/026274号;Expert Opinion. 第15巻、第1087-1103頁、2005年;Bioconjugate Chem. 第19巻、第1960-1963頁、2008年;Bioconjugate Chem.  in press、Bernhard Stumpら、Antibody-Drug Conjugates: Linking Cytotoxic Payloads to Monoclonal Antibodies)が多数あり、これらを参考にして、ヒアルロン酸誘導体と低分子化合物とのコンジュゲートを調製することもできる。
 本発明のヒアルロン酸誘導体と1以上の薬物とを含む医薬組成物および本発明のヒアルロン酸誘導体と1以上の薬物とが結合したコンジュゲートは、ナノ微粒子、ミクロ微粒子、溶液、エマルジョン、懸濁液、ゲル、ミセル、インプラント、粉末、またはフィルムの形態にあってよい。粉末は、凍結乾燥または噴霧乾燥により得た固体を粉砕して製造してもよく、沈殿物を乾燥したものから製造してもよい。
 本発明の医薬組成物およびコンジュゲートは、経口、腸管外、鼻腔内、膣内、眼内、皮下、静脈内、筋肉内、皮内、腹腔内、脳内または口腔内の経路を経て投与されてよい。
 本発明の医薬組成物およびコンジュゲートは、特に局所における徐放を目的とした場合、ニードルを詰まらせずに通過できるようにするため200μm以下であることが好ましく、100μm以下であることが更に好ましい。
 本発明の医薬組成物およびコンジュゲートは、特にCD44をはじめとするヒアルロン酸レセプターへのターゲティングを目的とした場合、そのサイズは5μm以下であることが好ましい。この際に用いるヒアルロン酸誘導体は、ヒアルロン酸レセプターへの結合が抑制されないように、疎水性基の導入率が10%以下であることが好ましい。
 本発明の医薬組成物およびコンジュゲートは、特に血中滞留性延長、ならびに腫瘍組織または炎症組織への集積性を目的とする場合、そのサイズは500nm以下であることが好ましく、さらに好ましくは200nm以下である。また、細網内皮系への取り込みを回避し、血中滞留性を向上させるためには100nm以下であることが好ましい。この際に用いるヒアルロン酸誘導体は、ヒアルロン酸レセプターへの結合が抑制されるように、グルクロン酸部分のカルボキシ基の多くが変換されたヒアルロン酸誘導体を用いることが好ましい。
 本発明の医薬組成物およびコンジュゲートは、粘膜付着性を持ち非侵襲投与用途を目的とした場合、そのサイズは200μm以下であることが好ましい。粘膜付着性の観点からは、用いるヒアルロン酸誘導体の疎水性基導入率は低い方が好ましい。
 本発明のヒアルロン酸誘導体と複合体を形成する薬物は、担持可能な薬物であれば特に限定されない。また、本発明のヒアルロン酸誘導体と結合させる薬物は、コンジュゲートが調製可能であれば特に限定されない。当該薬物の例としては、タンパク質および/またはペプチド、多糖類、核酸類、低分子化合物が挙げられ、好ましくは、タンパク質および/またはペプチドが挙げられる。
 低分子化合物の例としては、例えば、制癌剤(例えば、アルキル化剤、代謝拮抗剤、アルカロイドなど)、免疫抑制剤、抗炎症剤(ステロイド剤、非ステロイド剤系抗炎症剤など)、抗リウマチ剤、抗菌剤(β-ラクタム系抗生物質、アミノグリコシド系抗生物質、マクロライド系抗生物質、テトラサイクリン系抗生物質、新キノロン系抗生物質、サルファ剤など)などを挙げることができる。
 タンパク質およびペプチドの例としては、例えば、エリスロポエチン(EPO)、グラニュロサイトコロニー刺激因子(G-CSF)、インターフェロン-α、β、γ、(INF-α、β、γ)、トロンボポエチン(TPO)、シリアリーニュートロフィクファクター(CNTF)、チューマーネクローシスファクター(TNF)、チューマーネクローシスファクター結合タンパク質(TNFbp)、インターロイキン-10(IL-10)、FMS類似チロシンカイネース(Flt-3)、成長ホルモン(GH)、インシュリン、インシュリン類似成長因子-1(IGF-1)、血小板由来成長因子(PDGF)、インターロイキン-1レセプターアンタゴニスト(IL-1ra)、ブレイン由来ニューロトロフィクファクター(BDNF)、ケラチノサイト成長因子(KGF)、幹細胞因子(SCF)、メガカリオサイト成長分化因子(MGDF)、オステオプロテゲリン(OPG)、レプチン、副甲状腺ホルモン(PTH)、塩基性フィブロブラスト成長因子(b-FGF)、骨形成タンパク質(BMP)、心房性ナトリウム利尿ペプチド(ANP)、脳性ナトリウム利尿ペプチド(BNP)、C型ナトリウム利尿ペプチド(CNP)、グルカゴン様ペプチド-1(GLP-1)、抗体、ダイアボディー、ミニボディー、断片化抗体などを挙げることができる。
 核酸類の例としては、例えば、DNA、RNA、アンチセンス、デコイ、リボザイム、低分子干渉RNA、RNAアプタマーなどを挙げることができる。
 なお、本発明においては、式(I)における-NRは、カルボニル(CO)とアミド結合を形成しており、ステリル基を有する疎水性基は、ヒアルロン酸またはその塩のカルボキシ基をアミドに変換することにより導入されている。一方、カルボキシ基をエステルに変換することにより疎水性基を導入することもできる。具体的には、ヒアルロン酸またはその塩に含まれる-COOHを-COOA;ここで、Aは、
 -R、
 -Y-NR-R、
 -Y-NR-COO-R、
 -Y-NR-CO-R、
 -Y-NR-CO-NR-R、
 -Y-COO-R、
 -Y-O-COO-R、
 -Y-S-R、
 -Y-CO-Y-S-R、
 -Y-O-CO-Y-S-R、
 -Y-NR-CO-Y-S-R、および
 -Y-S-S-R
(R、Y、R、R、YおよびYは、前記にて定義した通りである)
に変換することもできる。
 また、カルボキシ基ではなく、ヒアルロン酸またはその塩のヒドロキシ基(-OH)を-OAa;ここで、Aaは、
 -R、
 -CO-Y-NR-COO-R、
 -OCO-Y-NR-COO-R、
 -CO-NR-Y-NR-COO-R、
 -CO-Y-COO-R、
 -OCO-Y-COO-R、
 -CO-NR-Y-COO-R、
 -CO-Y-OCOO-R、
 -OCO-Y-OCOO-R、
 -CO-NR-Y-OCOO-R、
 -CHCH(OH)-O-R、
 -CH(CHOH)-OR、および
 -CHCHR-SO-OR
(R、Y、R、Rは、前記にて定義した通りであり、Rは、水素原子またはC1-6アルキルである)
に変換することにより、ヒアルロン酸またはその塩にステリル基を有する疎水性基を導入することもできる。
 上記式(I)において、Zが、2~30個の任意のアミノ酸残基からなるペプチドリンカーである場合、基-Z-N(R)-Y-Xを、基-N(R)-Y-NR-Z-X1a
(R、Y、R、R、RおよびYは明細書中に定義されたとおりであり、X1aは、以下の式:
 -R、
 -COO-R、
 -CO-R、
 -CO-NR-R、又は
 -CO-Y-S-R、
を表す)
に変換することもできる。当該ペプチドリンカーは、N末端にて基X1aに結合する。
 以下、本発明の好適な具体的態様を実施例として説明する。
 また、以下の記載中のHAユニットとは、ヒアルロン酸中のN-アセチルグルコサミン-グルクロン酸の繰り返し単位(1ユニット)を意味する。
〔実施例1〕コレステリル基を導入したHA誘導体の調製
(実施例1-1)コレステリル 6-アミノヘキシルカーバメート塩酸塩の調製
 コレステリルクロロホルメート(3.37g、7.5mmol)の無水ジクロロメタン(20mL)の溶液に、アルゴン雰囲気下、トリエチルアミン(TEA、1.05mL)を加えて撹拌した。氷冷下で、6-(t-ブトキシカルボニル)アミノ-1-アミノヘキサン(1.12mL、5mmol)を滴下して加え、そのまま氷冷下で30分間攪拌後、室温まで昇温し、当該混合物を一晩撹拌した。反応混合物を、超純水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル:n-ヘキサン=1:4)で精製し、目的物のフラクションを合わせて溶媒を減圧下留去した。
 得られた残渣を酢酸エチル(40mL)に溶解し、4N塩酸/酢酸エチル溶液(40mL)を加えて室温で一晩撹拌した。生じた沈殿物を遠心分離により回収した。得られた固体を酢酸エチルにて4回洗浄後、減圧下で乾燥し、コレステリル 6-アミノヘキシルカーバメート(Chol-C)の塩酸塩(1.2g)を得た。生成物のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製;EtOH-d)を図1に示す。
(実施例1-2)コレステリル 2-アミノエチルカーバメート塩酸塩の調製
 6-(t-ブトキシカルボニル)アミノ-1-アミノヘキサンの代わりに2-(t-ブトキシカルボニル)アミノ-1-アミノエタン(0.79mL、5mmol)を用い、シリカゲルカラムクロマトグラフィーの溶離液に酢酸エチル:n-ヘキサン=1:2を用いたこと以外は実施例1-1と同様の方法で行い、コレステリル 2-アミノエチルカーバメート(Chol-C)の塩酸塩(2.3g)を得た。生成物のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製;EtOH-d)を図2に示す。
(実施例1-3)コレステリル 8-アミノオクチルカーバメート塩酸塩の調製
 8-(t-ブトキシカルボニル)アミノ-1-アミノオクタン(1.21g、5mmol)の無水ジクロロメタン(100mL)および無水トルエン(200mL)の溶液に、アルゴン雰囲気下、TEA(0.7mL)を加えて撹拌した。氷冷下、コレステリルクロロホルメート(2.66g、6mmol)の無水ジクロロメタン溶液を滴下し、そのまま氷冷下で30分間攪拌後、室温に昇温して一晩撹拌した。反応混合物を減圧下で濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル:n-ヘキサン=1:4)で精製し、目的物のフラクションを合わせて溶媒を減圧下留去した。
 得られた残渣をジクロロメタン(1.5mL)に溶解し、トリフルオロ酢酸(1.5mL)を加えて室温で2時間撹拌した。溶媒を減圧下留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル:メタノール:アンモニア水=9:1:0.5)で精製し、目的物のフラクションを合わせて溶媒を減圧下留去した。得られた残渣に4N塩酸/ジオキサンを加えて、さらに酢酸エチルを加えて生じた固体を回収し、酢酸エチルで洗浄し、減圧下乾燥し、コレステリル 8-アミノオクチルカーバメート(Chol-C)の塩酸塩(0.5g)を得た。生成物のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製;EtOH-d)を図3に示す。
(実施例1-4)コレステリル 12-アミノドデシルカーバメート塩酸塩の調製
 6-(t-ブトキシカルボニル)アミノ-1-アミノヘキサンの代わりに12-(t-ブトキシカルボニル)アミノ-1-アミノドデカン(1.59g、5mmol)を用いたこと以外は実施例1-1と同様の方法で行い、コレステリル 12-アミノドデシルカーバメート(Chol-C12)の塩酸塩(1.0g)を得た。生成物のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製;EtOH-d)を図4に示す。
〔実施例2〕コレステリル基を導入したHA誘導体の調製
(実施例2-1)カチオン交換樹脂のテトラブチルアンモニウム(TBA)塩化
 DOWEX(登録商標)50WX-8-400(アルドリッチ社製)を超純水に懸濁させ、デカンテーションにより樹脂を超純水で3回程度洗浄した。40wt%テトラブチルアンモニウムヒドロキシド水溶液(TBA-OH)(アルドリッチ社製)を樹脂のカチオン交換能に対し約1.5倍モル等量加え、30分間撹拌した。余剰のTBA-OH溶液をデカンテーションにより除去した後、さらに過剰の超純水で洗浄することで、TBA塩化したカチオン交換樹脂を得た。
(実施例2-2)HAのTBA塩の調製
 分子量27kDa、50kDaおよび100kDaのヒアルロン酸ナトリウム塩(HA-Na、資生堂株式会社製)をそれぞれ15mg/mLの濃度で超純水に溶解した。実施例2-1でTBA塩化したカチオン交換樹脂の懸濁液をHAユニット(ユニット分子量401.3)のモル数に対し樹脂のイオン交換能換算で5倍モル等量添加した。15分間撹拌した後、0.45μmのフィルターを用いて濾過を行い、濾液を凍結乾燥し、ヒアルロン酸のTBA塩(HA-TBA)を白色固体として得た。
 代表例として50kDaのHA-Naを出発原料とする生成物のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製;EtOH-d)を図5に示す。グルコサミンのアセチル基(COCH、2.0ppm;3H)の積分値と、TBAの二つのメチレン(N(CH CH CH CH、1.3~1.8ppm;16H)の積分値より、HAユニットに対するTBAの量比を算出し、この比からHA-TBAのユニット平均分子量を算出した。例えば50kDaのHA-Naを出発原料とするHA-TBAの場合、ユニット平均分子量は692.5であった。
(実施例2-3)コレステリル基を導入したHA誘導体の調製
(実施例2-3-1)コレステリル 6-アミノヘキシルカーバメートを導入したHA誘導体の調製
 実施例2-2で調製した、HA-Na(50kDa)を出発原料とするHA-TBAの、無水DMSO溶液(10mg/mL)を調製した。その後、実施例1-1で調製したChol-C塩酸塩をHA-TBAユニットに対して以下の表1に示す比率で各溶液に添加した。次に、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)をHA-TBAユニットに対して以下の表1に示す比率で加え、室温で一晩撹拌した。反応溶液は、0.3M 酢酸アンモニア/DMSO溶液、0.15M NaCl水溶液、超純水の順で透析(スペクトラポア4、分画分子量(MWCO):12k~14kDa)し、得られた透析液を凍結乾燥して目的物(HA-C-Chol)を白色固体として得た。
 測定溶媒として0.02N DCl DMSO-d/DO混液(2N DCl DO:DMSO-d=1:99)を用いた生成物(導入率7%)のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製)を図6に示す。グルコサミンのアセチル基由来のピーク(COCH、1.6~2.0ppm;3H)の積分値と、コレステリル基中のメチル基由来のピーク(CH、0.7ppm;3H)の積分値より、下に示す式からHAユニットに対するコレステリル基の導入率を算出した(表1)。なおグルコサミンのアセチル基由来のピークが含まれる1.6~2.0ppm付近のピークにはコレステリル基由来のピーク(5H)が重なっているため、1.6~2.0ppm付近のピークの積分値からコレステリル基メチル由来のピーク(0.7ppm)の積分値を5/3したものを差し引いて算出した値(即ち、積分値(1.6~2.0ppm)-積分値(0.7ppm)×5/3)をHA由来のアセチル基の積分値として、導入率の計算に使用した。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
(実施例2-3-2)コレステリル 2-アミノエチルカーバメートにより修飾したHA誘導体の調製
 実施例2-2で調製した、HA-Na(50kDa)を出発原料とするHA-TBAを10mg/mLで無水DMSOに溶解した。その後、実施例1-2で調製したChol-C塩酸塩をHA-TBAユニットに対して以下の表2に示す比率で各溶液に添加した。次に、DMT-MMをHA-TBAユニットに対して以下の表2に示す比率で加え、室温で一晩撹拌した。反応溶液に0.3Mとなるように硝酸ナトリウムを加え、イソプロピルアルコール(IPA)を加えて生じた沈殿を回収し、IPA、エタノール洗浄後に、超純水に溶解し、0.15M NaCl水溶液、超純水の順で透析(スペクトラポア4、分画分子量(MWCO):12k-14kDa)した。得られた透析液を凍結乾燥してHA-C-Cholを白色固体として得た。なお、HA-C-Cholは、上記反応溶液に、実施例2-3-1と同様の処理(0.3M 酢酸アンモニア/DMSO溶液、0.15M NaCl水溶液、超純水の順で透析して得られた透析液を凍結乾燥すること)を施すことによっても得ることができる。実施例2-3-1に記載と同じ条件で測定した生成物(導入率8%)のH-NMRスペクトルを図7に示す。また、実施例2-3-1記載の式にて算出したHAユニットに対するコレステリル基の導入率を表2に示す。
Figure JPOXMLDOC01-appb-T000013
(実施例2-3-3)コレステリル 8-アミノオクチルカーバメートにより修飾したHA誘導体の調製
 Chol-C塩酸塩の代わりに実施例1-3で調製したChol-C塩酸塩を用い、以下の表3に示す比率でChol-C塩酸塩ならびにDMT-MMを添加したこと以外は実施例2-3-2と同様の方法で行い、HA-C-Cholを白色固体として得た。実施例2-3-1記載と同じ条件で測定した生成物(導入率7%)のH-NMRスペクトルを図8に示す。また、実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率を表3に示す。
Figure JPOXMLDOC01-appb-T000014
(実施例2-3-4)コレステリル 12-アミノドデシルカーバメートにより修飾したHA誘導体の調製
 Chol-C塩酸塩の代わりに実施例1-4で調製したChol-C12塩酸塩を用い、以下の表4に示す比率でChol-C12塩酸塩ならびにDMT-MMを添加したこと以外は実施例2-3-2と同様の方法で行い、HA-C12-Cholを白色固体として得た。実施例2-3-1記載と同じ条件で測定した生成物(導入率7%)のH-NMRスペクトルを図9に示す。また、実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率を表4に示す。
Figure JPOXMLDOC01-appb-T000015
〔実施例3〕PBS系サイズ排除クロマトグラフィーによる会合体形成の確認
 実施例2-3-1~2-3-4で得られたHA誘導体を1mg/mL濃度で蒸留水(超純水)に溶解した。それぞれをサイズ排除クロマトグラフィー(SEC)に供してHA誘導体の保持時間の変化から会合体形成を観察した(図10-1~10-4)。
SECの条件を以下に示す。
 カラム:G3000SWXL(東ソー株式会社製)
 溶離液:PBS(pH7.4)
 流速:1mL/分
 注入量:50μL
 検出:示差屈折率。
〔実施例4〕ヒドロキシプロピル-β-シクロデキストリン添加PBS系サイズ排除クロマトグラフィーによる会合体崩壊の確認
 実施例2-3-1~2-3-4で得られたHA誘導体を1mg/mL濃度で蒸留水(超純水)に溶解した。それぞれ70μLに対してヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)PBS溶液(33mM、30μL)加え、37℃にて1時間インキュベートした。各試料をサイズ排除クロマトグラフィー(SEC)に供して、保持時間の変化からHA誘導体の会合体の崩壊を観察した(図11-1~11-4)。
 SECの条件を以下に示す。
 カラム:G3000SWXL(東ソー株式会社製)
 溶離液:10mM HP-β-CD/PBS(pH7.4)
 流速:1mL/分
 注入量:50μL
 検出:示差屈折率
 HA誘導体の溶出が、PBS系SEC(実施例3)においては原料であるHAに比べて早く、HP-β-CD系SEC(実施例4)においては一致していることから、本発明のHA誘導体は水溶液中においてCHP同様にコレステリル基の疎水性相互作用を駆動力とした多分子会合性微粒子を形成していると考えられる。HA-C-Cholでは18%以上(図11-1)、HA-C-Cholでは16%以上(図11-2)、HA-C12-Cholでは19%以上(図11-3)のHP-β-CD系SECにおいて溶出時間が早いピークが確認されるが、これは多分子性会合微粒子に対応するピークと考えられる。この結果から、本発明のHA誘導体は、今回のHP-β-CD添加条件では完全に崩壊しないほどの強固な会合性微粒子を形成しうることが確認され、当該微粒子が、血中ならびに皮下において薬物を安定に保持するための担体として有用であることが示唆される。
〔実施例5〕コレステリル基を導入したHA誘導体とタンパク質(エリスロポエチン)との複合体の調製
 実施例2-3-1~2-3-4で得られたHA誘導体を1mg/mL濃度で蒸留水(超純水)に溶解した。また、比較例として、実施例2-2において原料として用いたHA-Na(分子量:50kDa)、ならびにプルラン(分子量100kDa)の100単糖あたり1.38個の-CONH-(CH-NHCOO-コレステリル基が、そのヒドロキシに導入されているコレステリル導入プルラン(CHP;商品名PUREBRIGHT CP-100T、日本油脂株式会社製)を1mg/mL濃度で蒸留水(超純水)に溶解した。
 エリスロポエチン(EPO)水溶液(2mg/mL、50μL)に対して最終濃度が1×PBSとなるように濃縮PBS(50μL)を加え、さらにHA誘導体(1mg/mL、100μL)を加えた。37℃にて24時間インキュベート後、2000Gにて遠心分離し、フリーEPOの全て、および分散性複合体が存在する上澄みをサイズ排除クロマトグラフィーに供した。クロマトグラフィーの結果から複合体中に取り込まれずに水溶液中に残存するフリーEPOの量を求め、複合体に含まれるEPOの量を算出した。さらに、HA誘導体の単位重量当たりの複合体に含まれるEPOの量(複合化%;(複合体中のEPO重量/HA誘導体重量)×100)を求めた。結果を以下の表5に示し、代表的なクロマトグラムを図12上段に示す。
  SECの測定条件1
 カラム:G4000SWXL(東ソー株式会社製)
 溶離液:PBS(pH7.4)
 流速:1mL/分
 注入量:50μL
 検出:UV(280nm)。
  SECの測定条件2
 カラム:QC-PAK-GFC300(東ソー株式会社製)
 溶離液:PBS(pH7.4)
 流速:1.2mL/分
 注入量:20μL
 検出:UV(280nm)。
Figure JPOXMLDOC01-appb-T000016
 なお、コレステリル導入プルラン(CHP)の導入率は、HA誘導体との比較のために、プルランの二糖を1ユニットとしてみたときの各ユニットへの導入率を示した。当該導入率は、購入品に示された100単糖あたりに導入されたコレステリル基の数(1.38個)から算出した。
 本発明のHA誘導体の複合化%の値はCHPに比べて約3倍程度高く、本発明のHA誘導体が効率よくEPOと複合体を形成することが確認された。
〔実施例6〕複合体から放出されたエリスロポエチンの分析
 実施例5において37℃にて24時間インキュベートした試料(200μL)に対し、それぞれヒドロキシプロピル-β-シクロデキストリン(HP-β-CD)PBS溶液(50mM、50μL)加え、さらに37℃にて1時間インキュベートした。各試料をサイズ排除クロマトグラフィーに供した。複合体から放出されたEPOを含むフリーEPO濃度(算出にはEPO標準試料から作成した検量線を用いた)をEPOピーク面積から算出し、回収率(%;フリーEPO重量/当初EPO重量×100)を以下に示す表6に記載した。代表的なクロマトグラムを図12下段に示す。
  SECの測定条件
 カラム:G4000SWXL(東ソー株式会社製)
 溶離液:10mM HP-β-CD/PBS(pH7.4)
 流速:1mL/分
 注入量:50μL
 検出:UV(280nm)
Figure JPOXMLDOC01-appb-T000017
 HP-β-CD添加によるHA誘導体の会合性微粒子崩壊により放出されたEPOがインタクトな状態であることがサイズ排除クロマトグラフィーにより確認された。したがって、本発明のHA誘導体は、タンパク質を安定な状態に保ったまま、複合体を形成し、複合体中で保持し、その後放出することが確認された。
〔実施例7〕コレステリル基を導入したHA誘導体の沈殿性および分散性
(実施例7-1)生理塩濃度下中での挙動
 実施例2-3-1で得られたHA誘導体を6mg/mL濃度で蒸留水(超純水)に溶解した。最終緩衝液組成が10mM PB(pH7.4)、150mM NaClとなるように濃縮緩衝液を加え、HA誘導体濃度を4.5mg/mLとした。37℃にて20分間インキュベート後、2000Gにて1分間遠心分離し、上澄みをHP-β-CD/PBS溶液(250mM)にて二倍希釈し、2時間インキュベート後、SECに供した。検出されたHA誘導体のピーク面積から当初使用量に対するHA誘導体の溶液中の残存率を算出した。HA誘導体の疎水性基導入率に対して残存率をプロットしたものを図13に示す。
 SECの測定条件
 カラム:QC-PAK-GFC200(東ソー株式会社製)
 溶離液:10mM HP-β-CD/PBS(pH7.4)
 流速:1.2mL/分
 注入量:20μL
 検出:示差屈折率
 疎水性基導入率が7~15%であるHA誘導体は、生理塩濃度にて凝集し、沈殿形成することが確認された。これは、当該HA誘導体が、生理塩濃度条件下で凝集することにより皮下において長時間存在し、タンパク質やペプチドを徐放する長期徐放性製剤の担体となりうることを示唆する。18~42%においては生理塩濃度条件下でも安定に分散していることが確認された。これは全身投与型のタンパク質担体となりうることを示す。
(実施例7-2)HA誘導体の分散性におけるNaCl濃度の影響
 実施例2-3-1で得られたHA誘導体を6mg/mL濃度で蒸留水(超純水)に溶解した。最終緩衝液組成が10mM PB、0mM NaClならびに10mM PB,50mM NaClとなるように濃縮緩衝液を加え、HA誘導体濃度を4.5mg/mLとした。37℃にて20分間インキュベート後、2000Gにて1分間遠心し、上澄みをHP-β-CD/PBS溶液(250mM)にて二倍希釈し、2時間インキュベート後、SECに供した。検出されたHA誘導体のピーク面積から当初使用量に対するHA誘導体の溶液中の残存率を算出した。塩濃度に対して残存率を各HA誘導体についてプロットしたものを図14に示す。なお、SECの測定条件は実施例7-1と同じである。
 導入率7%のHA誘導体は、塩の濃度が低い条件(10mM PB pH7.4, 0または50mM NaCl)では均一に分散し、生理塩濃度(150mM)では析出するという塩濃度依存的な挙動を示すことが確認された。この結果は、糖などにより等張化した低塩濃度溶液を調製することにより投与後皮下で沈殿する製剤において本発明のHA誘導体が担体として使用されうる可能性を示唆する。
 一方、導入率21%のHA誘導体は、実施例7-1と同様、生理塩濃度でも沈殿せず、安定に分散していることが確認された。
〔実施例8〕HA誘導体/タンパク質(エリスロポエチン)複合体の沈殿・分散性
 表7に示した、実施例2-3-1で得られたHA誘導体を、4mg/mL濃度で蒸留水(超純水)に溶解した。エリスロポエチン水溶液(1mg/mL、25μL)に対して最終濃度が1×PBSとなるように濃縮PBS(50μL)を加え、さらにHA誘導体(4mg/mL、25μL)を加えた。37℃にて2時間インキュベート後、2000Gにて遠心分離し、上澄みをサイズ排除クロマトグラフィーに供し、上澄みに存在するHA誘導体・EPO複合体のピーク面積、および複合体に取り込まれなかったフリーのEPOのピーク面積を求めた。さらに、本実験で添加したEPO単独のピーク面積およびHA誘導体単独のピーク面積を求めるために、別途溶液を調製しサイズ排除クロマトグラフィーに付した。添加したEPO単独のピーク面積およびHA誘導体単独のピーク面積の和に対する、上澄みに存在するHA誘導体・EPO複合体のピーク面積およびフリーのEPOのピーク面積の和の割合を残存率として算出した(表7)。なお、この実験系においては、EPOは、フリーの状態では、遠心後でも、全て上澄み中に存在し、沈殿することはない。
Figure JPOXMLDOC01-appb-C000018
 クロマトグラフを図15に示す。
  SECの測定条件
 カラム:QC-PAK-GFC300(東ソー株式会社製)
 溶離液:PBS(pH7.4)
 流速:1.2mL/分
 注入量:20μL
 検出:UV(215nm)
Figure JPOXMLDOC01-appb-T000019
 HA-C-Chol-2%ならびにHA-C-Chol-21%においては残存率が約100%であることから、HA誘導体/タンパク複合体も安定な分散性微粒子であり、HA-C-Chol-7%においては残存率が32%であることからHA誘導体/タンパク複合体が沈殿性であることが確認された。すなわち、本発明のHA誘導体の沈殿・分散性能はタンパク質との複合体形成後も維持されることが確認された。
〔実施例9〕コレステリル 8-アミノ-3,6-ジオキサオクチルカーバメートにより修飾したHA誘導体の調製
(実施例9-1)コレステリル 8-アミノ-3,6-ジオキサオクチルカーバメート塩酸塩の調製
 コレステリルクロロホルメート(1.7g、4.7mmol)の無水ジクロロメタン(50mL)の溶液に、アルゴン雰囲気下、トリエチルアミン(TEA、0.53mL)を加えて撹拌した。氷冷下で、8-(t-ブトキシカルボニル)アミノ-3,6-ジオキサオクチルアミン(0.59mL、2.5mmol)を滴下して加え、そのまま氷冷下で30分間攪拌後、室温まで昇温し、当該混合物を一晩撹拌した。反応混合物を、超純水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル:n-ヘキサン=1:1)で精製し、目的物のフラクションを合わせて溶媒を減圧下留去した。
 得られた残渣を酢酸エチル(40mL)に溶解し、4N塩酸/酢酸エチル溶液(40mL)を加えて室温で一晩撹拌した。生じた沈殿物を遠心分離により回収した。得られた固体を酢酸エチルにて5回洗浄後、減圧下で乾燥し、コレステリル 8-アミノ-3,6-ジオキサオクチルカーバメート(Chol-EO2)の塩酸塩(1.3g)を得た。生成物のH-NMRスペクトル(JNM-ECA500 日本電子株式会社製;MeOH-d)を図16に示す。
(実施例9-2)コレステリル 8-アミノ-3,6-ジオキサオクチルカーバメートにより修飾したHA誘導体の調製
 Chol-C塩酸塩の代わりに実施例9-1で調製したChol-EO2塩酸塩を用い、以下の表8に示す比率でChol-EO2塩酸塩ならびにDMT-MMを添加したこと以外は実施例2-3-1と同様の方法で行い、HA-EO2-Cholを固体として得た。実施例2-3-1記載と同じ条件で測定した生成物(導入率7%)のH-NMRスペクトルを図17に示す。また、実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率を表8に示す。
Figure JPOXMLDOC01-appb-T000020
〔実施例10〕2-アミノエチル コレステリル ジスルフィドにより修飾したHA誘導体の調製
 分子量10kDaのHA-Na(資生堂社製)を原料とし、実施例2-2と同様の方法で調製したHA-TBAの、無水DMSO溶液(10mg/mL)を調製した。その後、2-アミノエチル 2-ピリジル ジスルフィド塩酸塩(Py-SS-AM、トロント社製)をHA-TBAユニットに対して以下の表9に示す比率で各溶液に添加した。次に、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)をHA-TBAユニットに対して以下の表9に示す比率で加え、室温で一晩撹拌した。さらに、チオコレステロール(Chol-SH、シグマアルドリッチ社製)を以下の表9に示す比率で加え、室温で一晩撹拌した。反応溶液に0.3Mとなるように硝酸ナトリウムを加え、イソプロピルアルコール(IPA)を加えて生じた沈殿を回収し、IPA洗浄後、減圧乾燥し、目的物(HA-SS-Chol)を白色固体として得た。実施例2-3-1に記載と同じ条件で測定したH-NMRスペクトルを図18に示す。また、実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率を表9に示す。
Figure JPOXMLDOC01-appb-T000021
〔実施例11〕コレステリル 2-アミノエチルカーバメートおよびアミノエチルメタクリレートにより修飾したHA誘導体の調製
 実施例2-2で調製した、HA-Na(50kDa)を出発原料とするHA-TBAを10mg/mLで無水DMSOに溶解した。その後、実施例1-2で調製したChol-C塩酸塩をHA-TBAユニットに対して以下の表10に示す比率で各溶液に添加した。次に、DMT-MMをHA-TBAユニットに対して以下の表10に示す比率で加え、室温で4時間撹拌した。さらにアミノエチル メタクリレート(AEMA、ポリサイエンス社製)塩酸塩、DMT-MMを以下の表10に示す比率で加え、室温で一晩撹拌した。以降は実施例2-3-1と同様の方法によって処理し、HA-C-Chol/AEMAを白色固体として得た。実施例2-3-1に記載と同じ条件で測定したH-NMRスペクトルを図19に示し、実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率を表10に示す。また、5.6ppmと6.0ppmにおけるメタクロイル基由来のシグナルの平均値から下式により算出したHAユニットに対するメタクリル基の導入率を表10に示す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-T000023
〔実施例12〕5-アミノメチルフルオレセインおよびコレステリル 6-アミノヘプチルカーバメートにより修飾したHA誘導体の調製
 以下の方法により、本発明のHA誘導体に低分子化合物を導入し、蛍光標識化HA誘導体を得た。実施例2-2で調製した、HA-Na(50kDa)を出発原料とするHA-TBAを10mg/mLで無水DMSOに溶解した。その後、実施例1-1で調製したChol-C塩酸塩をHA-TBAユニットに対して以下の表11に示す比率で各溶液に添加した。次に、DMT-MMをHA-TBAユニットに対して以下の表11に示す比率で加え、室温で4時間撹拌した。さらに5-アミノメチルフルオレセイン(FL、インビトロジェン社製)塩酸塩、DMT-MMを以下の表11に示す比率で加え、室温で一晩撹拌した。以降は実施例2-3-1と同様の方法によって処理し、目的物(HA-C-Chol/FL)を黄色固体として得た。実施例2-3-1に記載と同じ条件で測定したH-NMRスペクトルから実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率を表11に示す。また、フルオレセインの導入率は494nmにおけるモル吸光係数80000M-1cm-1から算出した。なお、FLによる標識は、FLのアミノ基とHA-TBAのカルボキシ基とのアミド結合形成により行われた。
Figure JPOXMLDOC01-appb-T000024
〔実施例13〕5-アミノメチルフルオレセイン、コレステリル 6-アミノヘプチルカーバメートおよびエタノールアミンもしくはプロパノールアミンにより修飾したHA誘導体の調製
 分子量10kDaのHA-Naを原料とし、実施例2-2と同様の方法で調製したHA-TBAの、無水DMSO溶液(10mg/mL)を調製した。その後、実施例1-1で調製したChol-C塩酸塩をHA-TBAユニットに対して以下の表12に示す比率で各溶液に添加した。次に、DMT-MMをHA-TBAユニットに対して以下の表12に示す比率で加え、室温で2時間撹拌した。さらに5-アミノメチルフルオレセイン(FL)塩酸塩、DMT-MMを以下の表12に示す比率で加え、室温で一晩撹拌した。さらにエタノールアミン(HO-C)塩酸塩もしくはプロパノールアミン(HO-C)塩酸塩、DMT-MMを以下の表12に示す比率で加え、室温で5時間撹拌した。以降は実施例2-3-1と同様の方法によって処理し、HA-C-Chol/C-OH/FLもしくはHA-C-Chol/C-OH/FLを黄色固体として得た。測定溶媒としてDMSO-dを用いたH-NMRスペクトル(JNM-ECA500 日本電子株式会社製)を図20(HA-C-Chol/C-OH/FL)に示す。実施例2-3-1に記載の式にて算出したHAユニットに対するコレステリル基の導入率ならびに、グルコサミンのアミド基由来NHCOとChol-C、HO-CもしくはHO-C、FLのアミド基由来(NH)からChol-C、HO-CもしくはHO-C、FLの総導入率を算出した。これを表12に示す。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-T000026
〔実施例14〕分子量の異なるヒアルロン酸TBA塩を各種コレステリルカーバメートにより修飾したHA誘導体の調製
 実施例2-3-1と同じ条件にて、各種分子量のHA-TBAを用い、各種コレステリルカーバメートにより修飾したHA誘導体を調製した。コレステリル基を導入したHA誘導体の試薬使用量と合成結果を表13-1-表13-2に示す。原料のヒアルロン酸は、すべて資生堂社製のものを用いた。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
〔実施例15〕分子量の異なるヒアルロン酸TBA塩を各種コレステリルカーバメートおよび5-アミノメチルフルオレセインにより修飾したHA誘導体の調製
 実施例12と同じ条件にて各分子量のHA-TBAを用い、各種コレステリルカーバメートと5-アミノメチルフルオレセイン(FL)により修飾したHA誘導体を調製した。FLの使用量も実施例12と同様とした。原料のヒアルロン酸は、5kDaのみR&Dシステム社製を用い、それ以外は資生堂社製のものを用いた。
 コレステリル基を導入したHA誘導体の試薬使用量と合成結果を表14に示す。
Figure JPOXMLDOC01-appb-T000030
〔実施例16〕Hilyte FluorTM750 amineおよび6-アミノヘキシルカーバメートにより修飾したHA誘導体の調製(in vivo imaging用)
 実施例12の5-アミノメチルフルオレセイン(FL)塩酸塩の代わりにHilyte FluorTM750 amine(Hilyte)TFA塩を用いた以外は同様の条件にて操作を行い、標題のHA誘導体(HA-C-Chol/Hilyte)を調製した。添加したモル比は表15に示す。また、Hilyte FluorTM750 amine TFA塩添加後に実施例13と同様にエタノールアミン塩酸塩を反応させ、HA-C-Chol/C-OH/Hilyteを調製した。添加したモル比は表15に示す。導入率は実施例12ならびに実施例13と同様の方法にて算出した。なお、Hilyte FluorTM750 amineによる標識は、Hilyte FluorTM750 amineのアミノ基がHA-TBAのカルボキシ基とアミド結合を形成することにより行われた。
Figure JPOXMLDOC01-appb-T000031
〔実施例17〕コレステリル基を導入したHA誘導体のDLS測定
 実施例12ならびに実施例15で合成したHA誘導体のPBS溶液(0.25mg/mL)を調製し、粒子サイズを動的光散乱法(DLS)にて測定した。測定装置にはゼータサイザーナノZS(Malvern社製)を用いた。z平均粒子サイズを表16に示す。また、50k HA-C-Chol-22%/FLの サイズ分布を図21に示す。
Figure JPOXMLDOC01-appb-T000032
 これにより、HA誘導体はPBS中において50nm以下の非常に小さな微粒子を形成していることが確認された。上記サイズの微粒子は生体内において細網内皮系からの取り込みを回避できため、薬物キャリアとして適している。
〔実施例18〕コレステリル基を導入したHA誘導体とタンパク質との複合体の調製
(実施例18-1)リゾチーム
 実施例5と同様にして、リゾチーム(Lys:Lysozym from chicken egg white、シグマ社製)を、表17に示すHA誘導体およびCHPと複合化させた。Lys水溶液(4mg/mL、25μL)に対して最終濃度が1×PBSとなるように濃縮PBS(50μL)を加え、さらにHA誘導体またはCHP(4mg/mL、25μL)を加えた。37℃にて24時間インキュベート後、6000Gにて遠心分離し、フリーLysの全て、および分散性複合体が存在する上澄みをサイズ排除クロマトグラフィーに供した。クロマトグラフィーの結果から複合体中に取り込まれずに水溶液中に残存するフリーLysの量を求め、複合体に含まれるLysの量を算出した。さらに、HA誘導体およびCHPの単位重量当たりの複合体に含まれるLysの量(複合化%;(複合体中のLys重量/HA誘導体重量)×100)を求めた。結果を以下の表17に示し、グラフを図22-1に示す。
  SECの測定条件
 カラム:G3000PWXL(東ソー株式会社製)
 溶離液:2×PBS(pH7.4)
 流速:1mL/分
 注入量:50μL
 検出:UV(280nm)。
Figure JPOXMLDOC01-appb-T000033
 本発明のHA誘導体の複合化%の値はCHPに比べて約5~12倍程度高く、本発明のHA誘導体が効率よくLysと複合体を形成することが確認された。
(実施例18-2)エキセンディン-4
 実施例5と同様にしてエキセンディン-4(Ex-4、アメリカンペプタイド社製)と表18に示すHA誘導体およびCHPを複合化させた。Ex-4水溶液(3.31mg/mL、30.2μL)に対して最終濃度が1×PBSとなるように濃縮PBS(44.8μL)を加え、さらにHA誘導体またはCHP(4mg/mL、25μL)を加えた。37℃にて24時間インキュベート後、6000Gにて遠心分離し、フリーEx-4の全て、および分散性複合体が存在する上澄みをサイズ排除クロマトグラフィーに供した。クロマトグラフィーの結果から複合体中に取り込まれずに水溶液中に残存するフリーEx-4の量を求め、複合体に含まれるEx-4の量を算出した。さらに、HA誘導体およびCHPの単位重量当たりの複合体に含まれるEx-4の量(複合化%;(複合体中のEx-4重量/HA誘導体重量)×100)を求めた。結果を以下の表18に示し、グラフを図22-2に示す。
  SECの測定条件
 カラム:QC-PAK-GFC200(東ソー株式会社製)
 溶離液:PBS(pH7.4)
 流速:1.2mL/分
 注入量:50μL
 検出:UV(280nm)。
Figure JPOXMLDOC01-appb-T000034
 本発明のHA誘導体の複合化%の値はCHPに比べて約3~11倍程度高く、本発明のHA誘導体が効率よくエキセンディン-4と複合体を形成することが確認された。
(実施例18-3)ヒト成長ホルモン
 実施例5と同様にしてヒト成長ホルモン(hGH:ジェノトロピン(登録商標)注射用)と表19に示すHA誘導体およびCHPを複合化させた。hGHはジェノトロピン(登録商標)を透析によりリン酸緩衝液(10mM、pH7.4)に溶媒置換したものを用いた。hGH水溶液(3.5mg/mL、14.3μL)に対して最終濃度が1×PBSとなるように濃縮PBS(60.4μL)を加え、さらにHA誘導体またはCHP(4mg/mL、25μL)を加えた。37℃にて24時間インキュベート後、6000Gにて遠心分離し、フリーhGHの全て、および分散性複合体が存在する上澄みをサイズ排除クロマトグラフィーに供した。クロマトグラフィーの結果から複合体中に取り込まれずに水溶液中に残存するフリーhGHの量を求め、複合体に含まれるhGHの量を算出した。さらに、HA誘導体の単位重量当たりの複合体に含まれるhGHの量(複合化%;(複合体中のEx-4重量/HA誘導体重量)×100)を求めた。結果を以下の表19に示し、グラフを図22-3に示す。
  SECの測定条件
 カラム:QC-PAK-GFC300(東ソー株式会社製)
 溶離液:PBS(pH7.4)
 流速:1.2mL/分
 注入量:30μL
 検出:UV(280nm)。
Figure JPOXMLDOC01-appb-T000035
 本発明のHA誘導体の複合化%の値はCHPに比べて約2~5倍程度高く、本発明のHA誘導体が効率よくhGHと複合体を形成することが確認された。
(実施例18-4)HA修飾物のEPO複合化量2
 実施例5と同様の方法にて表20に示すHA誘導体のEPO複合化を行い、複合化%を算出した。グラフを図22-4に示す。
Figure JPOXMLDOC01-appb-T000036
 本発明のHA誘導体の複合化%の値はCHPに比べて最大5倍程度高く、本発明のHA誘導体が効率よくEPOと複合体を形成することが確認された。
〔実施例19〕EPO in vitroリリース
(実施例19-1)Alexa-EPOの調製
 炭酸緩衝液(0.3M、pH9.0)に緩衝液置換したEPO水溶液にAlexa Fluor(登録商標)488 5-TFP(インビトロジェン社製)を1mg滴下し、室温にて1時間攪拌した。PD-10カラムによるゲルろ過精製の後、リン酸緩衝液(10mM、pH7.4)にて透析精製(7000MWCO透析膜)を行い、Alexa Fluor(登録商標)488で蛍光標識されたEPO(Alexa-EPO)溶液を得た。なお、Alexa Fluor(登録商標)488による標識は、Alexa Fluor(登録商標)488のカルボキシ基とEPOのアミノ基がアミド結合することで達成されている。
(実施例19-2)HA誘導体のAlexa-EPO徐放効果
 実施例19-1で得られたAlexa-EPO溶液(3.34mg/mL、10μL)に対して最終濃度が1×PBSとなるように濃縮PBS(90μL)を加え、さらにHA誘導体(6mg/mL、100μL)を加えた。HA誘導体にはHA-C-Chol-7%、HA-C-Chol-15%およびHA-C12-Chol-7%を用いた(原料として用いたHA-Naの分子量は、いずれも50kDaである)。37℃にて24時間インキュベートし、そのまま凍結乾燥した。凍結乾燥品全量に対して20mg/mL ウシ血清アルブミン(BSA:シグマ社製)/PBS溶液(200μL)を加え、経時的に遠心後、上澄み(100μL)を採り、フレッシュなBSA/PBS溶液(100μL)を加えた。上澄みをHP-β-CD水溶液(100mM)にて二倍希釈し、37℃にて1時間インキュベート後、SECに供し、Alexa-EPOの濃度を算出し、Alexa-EPOのリリース量を計算した。結果を図23-1に示す。
 SEC分析条件
 カラム:G3000SWXL(東ソー株式会社製)
 溶離液:10mM HP-β-CD/PBS(pH7.4)
 流速:1mL/分
 注入量:50μL
 検出:蛍光検出494/525
 いずれのHA誘導体においても徐放効果があることが示され、さらにコレステリル基の導入率は7%よりも15%、スペーサーはCよりもC12の方が徐放効果があることが明らかとなった。
(実施例19-3)リリース溶液のBSA濃度の影響
 実施例19-1で得られたAlexa-EPO溶液(3.34mg/mL、10μL)に対して最終濃度が1×PBSとなるように濃縮PBS(133.3μL)を加え、さらにHA-C12-Chol-7%(6mg/mL、16.7μL)を加えた(原料として用いたHA-Naの分子量は、50kDaである)。37℃にて24時間インキュベートし、そのまま凍結乾燥した。凍結乾燥品全量に対して20mg/mL、10mg/mL、0mg/mL ウシ血清アルブミン(BSA:シグマ社製)/PBS溶液(200μL)を加え、経時的に遠心後、上澄み100μLを採り、フレッシュなBSA/PBS溶液(100μL)を加えた。上澄みをHP-β-CD水溶液(100mM)にて二倍希釈し、37℃にて1時間インキュベート後、SECに供し、Alexa-EPOの濃度を算出し、Alexa-EPOのリリース量を計算した。結果を図23-2に示す。SEC条件は実施例19-2と同じである。
 この結果より、本発明のHA誘導体に封入(複合化)されたEPOの放出速度は、BSA濃度に依存することが明らかとなった。
〔比較例1〕hGHのラットにおける薬物動態試験
 表21に示した用量で、hGH溶液を25G針を用いて正常ラット(SD、6週齢、オス)の皮下ならびに尾静脈に投与した。投与後、経時的にへパリン処理をしたシリンジで頸静脈採血を行い、プロテアーゼ阻害剤としてアプロチニンを加えた。得られた血液は血漿分離し、hGH濃度をELISAキット(ロシュアプライドサイエンス社製)にて測定した。皮下ならびに尾静脈投与時のhGHの血漿中濃度推移を図24に示した。また、薬物動態パラメーター(血漿中濃度-時間曲線下面積外挿値(AUC∞)および平均滞留時間(MRT))をWinNonlin Ver.5.0.1(Pharsight社製)によって解析し、その値を表21に示した。
Figure JPOXMLDOC01-appb-T000037
〔実施例20〕hGH in vivoリリース
(実施例20-1)hGHとHA誘導体との複合体の沈殿凍結乾燥品の調製
 実施例2-3-1および実施例14で得られたHA誘導体(6mg/mL、3.375mL)にhGH(4.31mg/mL、0.940mL)を加え、37℃にて1時間インキュベートした。さらに最終濃度が1×PBSとなるように濃縮PBS(0.185mL)を加え、室温にて1時間インキュベートした。沈殿が確認された。30分間遠心後、上澄み(2.25mL)を取り除き、スクロース水溶液(150mg/mL、1.125mL)を加え、よく分散した後に凍結乾燥した。上澄みに含まれるフリーのhGH量をSECから算出し、複合化%を算出した。また、凍結乾燥品を一定量採り、そこに含まれるhGH量から回収率を算出した。結果を表22に示す。
Figure JPOXMLDOC01-appb-T000038
 この結果より、本発明のHA誘導体は、効率良くhGHを封入(複合化)することが明らかとなった。 
(実施例20-2)hGH/HA誘導体複合体(沈殿品)の調製
 HA-C-Chol-14%(6mg/mL、0.583mL;原料として用いたHA-Naの分子量は50kDa)にhGH(4.84mg/mL、0.145mL)を加え、37℃にて1時間インキュベートした。さらに最終濃度が1×PBSとなるように濃縮PBS(0.147mL)を加え、室温にて1時間インキュベートした。沈殿が確認された。4℃にて保存した。
(実施例20-3)hGH/HA誘導体複合体(溶液)の調製
 HA-C-Chol-14%(6mg/mL、0.583mL;原料として用いたHA-Naの分子量は50kDa)にhGH(4.84mg/mL、0.145mL)ならびに最終濃度が82mg/mLとなるようにスクロース水溶液(0.147mL)を加え、37℃にて1時間インキュベートした。沈殿は確認されなかった。4℃にて保存した。
 この製剤は溶液状態で投与し、投与後、皮下におけるイオン強度の上昇により沈殿を生じさせることを目的とした製剤である。
(実施例20-4)hGH/HA誘導体複合体のラット皮下投与での徐放試験
 実施例20-1~20-3で調製したhGH/HA誘導体複合体を表23-1に示す容量で25G針を用いて正常ラット(SD、6週齢、オス)の皮下に投与した。実施例20-1で調製した凍結乾燥品は、投与直前にPBSに懸濁させて投与した。投与前の製剤を図25に示す。投与後、経時的にへパリン処理をしたシリンジで頸静脈採血を行い、プロテアーゼ阻害剤としてアプロチニンを加えた。得られた血液は血漿分離し、hGH濃度をELISAキット(ロシュアプライドサイエンス社製)にて測定した。各種hGH/HA誘導体複合体投与時のhGHの血漿中濃度推移-および比較例1のhGH溶液の血漿中濃度推移を併せて図26-1~27-2に示した。また、薬物動態パラメーター(血漿中濃度-時間曲線下面積外挿値(AUC∞)および平均滞留時間(MRT))をWinNonlin Ver.5.0.1(Pharsight社製)によって解析し、その値を表23-2に示した。またMRTのグラフを図28に示す。
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 この結果、hGH/HA誘導体沈殿製剤からのhGH放出挙動はin vivoにおいても徐放性を有するものであり、また、溶液製剤も皮下にて沈殿を形成することにより徐放性を示すことが確認された。特に実施例20-3で得られた溶液製剤(サンプル20-6)は0.2μmのフィルターによる滅菌が可能であり、シリンジ針への目詰まりの可能性が低いことから医薬品製剤として有用である。
〔比較例2〕5-アミノメチルフルオレセインにより修飾したHA誘導体(HA-FL)、および5-アミノメチルフルオレセインとエタノールアミンにより修飾したHA誘導体(HA-C-OH/FL)の薬物動態試験
(比較例2-1)10kDaおよび50kDaのHA-Naを用いたHA-FLの調製
 分子量10kDaのHA-Naおよび分子量50kDaのHA-Naを原料とし、実施例2-2と同様の方法で調製したHA-TBAの、無水DMSO溶液(10mg/mL)を調製した。その後、5-アミノメチルフルオレセイン(FL)塩酸塩、DMT-MMをHA-TBAユニットに対してそれぞれ4.4%、4.0%の比率(モル%)で加え、室温で一晩撹拌した。以降は実施例2-3-1と同様の方法によって処理し、目的物(10k HA-FLおよび50k HA-FL)を、それぞれ黄色固体として得た。
(比較例2-2)10kDaのHA-Naを用いたHA-C-OH/FLの調製(その1)
 分子量10kのHA-Naを原料とし、実施例2-2と同様の方法で調製したHA-TBAの、無水DMSO溶液(10mg/mL)を調製した。その後、エタノールアミン(HO-C)塩酸塩、DMT-MMを以下の表24に示す比率で加え、室温で4時間撹拌した。さらに、5-アミノメチルフルオレセイン(FL)塩酸塩、DMT-MMを以下の表24に示す比率で加え、室温で一晩撹拌した。以降は実施例2-3-1と同様の方法によって処理し、目的物(10k HA-C-OH/FL)を黄色固体として得た。測定溶媒としてDMSO-dを用いたH-NMRスペクトル(JNM-ECA500 日本電子株式会社製)から実施例13に記載の式にて算出したグルコサミンのアミド基由来NHCOと、C-OH、FLのアミド基由来NHCOからC-OH、FLの総導入率を算出した。これを表24に示す。
Figure JPOXMLDOC01-appb-T000041
(比較例2-3)10k HA-C-OH/FLの調製(その2)
 分子量10kのHA-Naを原料とし、実施例2-2と同様の方法で調製したHA-TBAの、無水DMSO溶液(10mg/mL)を調製した。その後、5-アミノメチルフルオレセイン(FL)塩酸塩、DMT-MMを以下の表25に示す比率で加え、室温で一晩撹拌した。さらにエタノールアミン(C-OH)塩酸塩、DMT-MMを以下の表25に示す比率で加え、室温で5時間撹拌した。以降は実施例2-3-1と同様の方法によって処理し、目的の10k HA-C-OH/FLを黄色固体として得た。比較例2-2と同様の方法にてC-OH、FLの総導入率を算出した。これを表25に示す。
Figure JPOXMLDOC01-appb-T000042
(比較例2-4)薬物動態試験
 表26に示した用量で、比較例2-1~2-3で調製した蛍光標識HA誘導体を、25G針を用いて正常ラット(SD、6週齢、オス)の尾静脈に投与した。投与後、経時的にへパリン処理をしたシリンジで頸静脈採血を行った。得られた血液は血漿分離し、HP-β-CD(100mM)/トリス緩衝液(500mM、pH9.0)溶液にて2倍希釈し、37℃にて1時間インキュベート後、96穴プレートリーダー(ARVO)にて蛍光標識HA誘導体濃度を測定した。蛍光標識HA誘導体の血漿中濃度推移を図29に示した。また、薬物動態パラメーター(血漿中濃度-時間曲線下面積外挿値(AUC∞))をWinNonlin Ver.5.0.1(Pharsight社製)によって解析し、その値を表26に示した。
Figure JPOXMLDOC01-appb-T000043
 この結果より、10kのHA-Naを原料としたサンプルは、C-OHの導入率が低いHA誘導体(比較例2-3)のみならず、高度に修飾されたHA誘導体(比較例2-4)においても血中から瞬時に消失することが明らかとなった。
〔実施例21〕HA-Chol-FLの薬物動態試験
(実施例21-1)血漿中濃度推移におけるHA分子量の影響
 表27に示した用量で、実施例12ならびに実施例15で調製した蛍光標識HA誘導体を25G針を用いて正常ラット(SD、6週齢、オス)の尾静脈に投与した。投与後、経時的にへパリン処理をしたシリンジで頸静脈採血を行った。得られた血液は血漿分離し、HP-β-CD(100mM)/トリス緩衝液(500mM、pH9.0)溶液にて2倍希釈し、37℃にて1時間インキュベート後、96穴プレートリーダー(ARVO)にて蛍光標識HA誘導体濃度を測定した。蛍光標識HA誘導体の血漿中濃度推移を図30-1に示した。また、薬物動態パラメーター(血漿中濃度-時間曲線下面積外挿値(AUC∞))をWinNonlin Ver.5.0.1(Pharsight社製)によって解析し、その値を表28に示した。表28のAUC∞を原料のHA-Naの分子量に対してプロットしたグラフを図30-2に示す。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
 カルボキシ基を高度に修飾していない(例えば修飾率54%以下の)HA誘導体は分子量にかかわらず、静脈内投与時、瞬時に血中から消失することが知られている。本発明のHA-Cholは最大で23%しか置換基を導入していないにもかかわらず(FLを勘案しても27%以下)、予想外にも低分子量(5k~18kDa)のヒアルロン酸を原料としたHA-Cholに限ってのみ良好な血中滞留性を示した。
(実施例21-2)血漿中濃度推移におけるリンカーの影響
 表29に示す実施例15で調製したリンカーの異なる蛍光標識HA誘導体を実施例21-1と同様の方法で薬物動態試験を行い、血漿中濃度推移を図31に示した。また、実施例21-1と同様の方法にて薬物動態パラメーター(AUC∞)を算出し、その値を表30に示した。
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
 リンカーの種類によらず低分子量のヒアルロン酸を原料としたHA-Cholは良好な血中滞留性を有することが明らかとなった。
(実施例21-3)血漿中濃度推移におけるChol導入率の影響
 表31に示す実施例12および実施例15で調製したChol導入率の異なる蛍光標識HA誘導体を実施例21-1と同様の方法で薬物動態試験を行い、血漿中濃度推移を図32-1、図32-2に示した。また、実施例21-1と同様の方法にて薬物動態パラメーター(AUC∞)を算出し、その値を表32に示した。
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
 コレステリル基の導入率はHA-Cholの血中滞留性に大きな影響を与えないことが明らかとなった。
(実施例21-4)血漿中濃度推移(HA-Chol/C-OH/FL)
 表33に示す実施例13で調製したC-OHとCholにて高度に修飾した蛍光標識HA誘導体を実施例21-1と同様の方法で薬物動態試験を行い、血漿中濃度推移を図33に示した。また、実施例21-1と同様の方法にて薬物動態パラメーター(AUC∞)を算出し、その値を表34に示した。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 C-OHのみで高度に修飾した(例えば修飾率96%以上)10kHA-C-OHは比較的早く血中から消失するが、ほぼ同じ修飾率であっても、その一部にコレステリル基が導入されている本発明の10kHA-Chol/C-OHは意外にも良好な血中滞留性を示した。
 ヒアルロン酸のカルボキシ基を高度に修飾した場合、血中滞留性が向上することが知られている(特許文献8)が、10kDa程度の低分子量のヒアルロン酸およびその誘導体(塩)を原料にした場合、血中滞留性(AUC)を向上させることは困難であり(実施例21-4;比較サンプル2-4)、それは、腎排泄によるものと推測される。同じ分子量のヒアルロン酸およびその誘導体(塩)を原料にし、同等の修飾率でヒアルロン酸のカルボキシ基を高度に修飾した場合であっても、その修飾が前記疎水性基を含んで行われた場合は、血中滞留性が顕著に向上し、低分子量のヒアルロン酸誘導体であっても、薬物の担体として実用性の高いものが供給できることが明らかとなった(実施例21-4;サンプル21-13)。
(実施例21-5)皮下投与後のHA誘導体の血漿中濃度推移
 表35に示す蛍光標識HA誘導体を皮下から投与したことを除くと実施例21-1と同様の方法で薬物動態試験を行い、血漿中濃度推移を図34-1、34-2に示した。また、実施例21-1と同様の方法にて薬物動態パラメーター(AUC∞)を算出し、その値を表36に示した。
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
 HA誘導体は皮下投与も可能であることが示唆された。
(実施例21-6)ヒアルロン酸先行投与による血漿中濃度推移の影響
 投与する20分前に30mgのヒアルロン酸ナトリウム(1000k、300k、100k、50k、10kをそれぞれ6mg含む混合物)を尾静脈から投与した後に、表34に示す蛍光標識HA誘導体を尾静脈から投与したことを除くと実施例21-1と同様の方法で薬物動態試験を行い、血漿中濃度推移を図35-1および図35-2に示した。また、実施例21-1と同様の方法にて薬物動態パラメーター(AUC∞、MRT)を算出し、その値を表38に示した。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
 サンプル21-2はHAによる動態への変化がほとんど確認されなかったことから、肝臓におけるHA特有の代謝を回避していることが明らかになった。一方、サンプル21-12-3はHAのプレ投与により動態が改善したことから、ヒアルロン酸誘導体の消失にHAの代謝系が関与していることが明らかとなった。
(実施例21-7)血漿サンプルのSEC分析
 実施例21-1でプレートリーダー測定したサンプル21-2、20μLに対し、超純水80μLを加え、SEC分析を行った。クロマトグラムを図36-1、図36-2に示す。
 SECの測定条件
 カラム:G5000PWXL(東ソー株式会社製)
 溶離液:HP-β-CD(10mM)/トリス緩衝液(500mM、pH9.0) 流速:0.5mL/分
 注入量:50μL
 検出:蛍光494/515
 血漿サンプルのピークが投与前サンプルのピーク位置と同じであることから、プレートリーダーで検出された蛍光はHA-Chol-FLの分解物に由来するものではないことが示唆された。
(実施例21-8)尿サンプルのSEC分析
 実施例21-1ならびに比較例2-4のラット薬物動態試験と同時に尿サンプルも採取した。尿サンプル50μLに対し、HP-β-CD(100mM)/トリス緩衝液(500mM、pH9.0)溶液(50μL)を加え、37℃にて1時間インキュベート後、SEC分析を行った。クロマトグラムを図37-1~37-5に示す。
 SECの測定条件
 カラム:G5000PWXL(東ソー株式会社製)
 溶離液:HP-β-CD(10mM)/トリス緩衝液(500mM、pH9.0)溶液
 流速:0.5mL/分
 注入量:50μL
 検出:蛍光494/515
 尿サンプルのピークが投与前サンプルのピーク位置より後ろで溶出していることから、HA-Chol-FLは何らかの経路によって、分解されていることが示唆された。よってHA-Chol-FLは生分解性かつ血中滞留性の良い粒子を形成することが示された。生分解性であることは安全性の観点から非常に有用である。
〔実施例22〕コレステリル基を導入したHA誘導体の沈殿性および分散性(その2)
 実施例2-3-2~2-3-4で得られたHA誘導体を用いたほかは実施例7と同じ方法によって残存率を算出した。HA誘導体の疎水性基導入率に対して残存率をプロットしたものを図38に示す。
 リンカーがC、C、C12においてもCと同様に沈殿する範囲と安定に分散する範囲があることが明らかとなった。
〔実施例23〕コレステリル基を導入したHA誘導体と低分子薬物との複合体の調製
 実施例14で調製した10k HA-C-Chol-15%、ならびに実施例2-3-1で調製した50k HA-C-Chol-15%の水溶液(6mg/mL、100μL)に対し、ドキソルビシン(DOX)水溶液(10mg/mL、4μL、和光純薬製)を加え、最終濃度が1×PBSとなるように濃縮PBS溶液を96μL加えた。DOX水溶液の代わりに超純水を加えたものをコントロールとした。室温にて1時間インキュベート後、限外ろ過器(マイクロコン、分画分子量10,000)にて遠心ろ過し、ろ液をHPLC(逆相、RP)に供した。HA誘導体と複合化していないフリーのDOXが検出される。クロマトグラムを図39に示す。
 RPの測定条件
 カラム:cadenza CD-C18(インタクト社製)
 溶離液A:超純水、0.1% TFA
 溶離液B:アセトニトリル、0.1% TFA
 グラジエント:B5%→B95%(8分)
 流速:0.75mL/分
 注入量:10μL
 検出:UV480
 本発明のHA誘導体をドキソルビシンと混合することによって、複合体を形成することが明らかとなった。
 〔実施例24〕HA-Chol in vivoイメージング
 ヌードマウス(BALB-nu/nu、メス、7週齢)にヒト乳癌由来MDA-MB-213細胞切片(2mm×2mm×2mm)を皮下移植し、ゼノグラフトマウスを作成した。17日後、腫瘍サイズ、体重にて群分けし(解析ソフト:ANTES、体重18.8~24.3g、腫瘍サイズ215mm~360mm)、実施例16で調製したHilyte標識HA誘導体および50k HA-Hilyte(FL塩酸塩の代わりにHilyte TFA塩を用いた以外は比較例2-1と同様の方法で調製)を表39に示す容量で尾静脈投与した。In vivo イメージング装置(NightOWL983、ベルトールド社製)を用いて、6時間後にゼノグラフトマウスを撮影した(700/780nm、0.5msec)。また24時間後に腫瘍を取り出し、同様にIn vivo imaging装置で撮影した。撮影したデータはすべて解析ソフト(Indigo)にて解析した。6時間後のIn vivo イメージング図を図40に示す。また、腫瘍から得られた光量をグラフ化したものを図41に示す。
Figure JPOXMLDOC01-appb-T000056
 この結果より、10k HA-C-Chol(サンプル24-2)は、修飾していないHA(サンプル24-1)もしくは50k HA-C-Chol(サンプル24-3)と比べて、腫瘍に集積しやすい特性を有していることが明らかとなった。本発明のHA誘導体に抗がん効果のある薬物を封入(複合化)もしくはコンジュゲートすることにより、腫瘍特異的なターゲティングが可能となる可能性が示された。
〔実施例25〕コレステリル基とメタクロイル基を導入したHA誘導体(HA-Chol/AEMA)のゲル化
 実施例11で調製した(50k)HA-C-Chol-8%/AEMA-27%を超純水にて溶解し(40mg/mL、100μL)、トリエタノールアミン(TEA、1.3μL)を加えて混合後、ジチオトレイトール(DTT、100mg/mL、2.0μL)を加え、500μLチューブにて37℃でインキュベートした。24時間後、チューブから取り出したところ、ゲル化していることが確認された。これを図42に示す。
 この結果より、HA-Chol/AEMAは、DTTによりゲル化させることが可能であり、コレステリル基による疎水性相互作用による物理架橋と化学架橋の両方を有するデュアルゲルを調製することが可能であることが明らかとなった。このデュアルゲルは物理架橋のみのHA-Cholよりも封入した薬物をより強固に保持する機能を有することが予想される。
 なお、調製したHA-C-Chol-8%/AEMA-27%ゲルを0.93mg/ml CyTM3標識hGH溶液(赤色)2mL中に加え、室温にて4日間インキュベートしところ、(CyTM3標識hGH溶液はCy3 Mono-Reactive Dye Pack(GE Healthcare社製)とhGH溶液を用い、説明書に従い調製した。)ゲルが周囲の溶液よりも濃い赤色で染まっていることが確認された(データは示さず)。この結果より、HA-Chol/AEMAのゲルは、ゲル化後に自発的にhGHを封入することが示された。HA-Chol/AEMAのゲルは、タンパク質を安定に封入するという観点から医薬品基材として有用である。
〔実施例26〕ヒアルロン酸のN-アセチルグルコサミン部分の6位のヒドロキシ基にコレステリル基を導入したヒアルロン酸誘導体の合成
 実施例2-2で調製した、HA-Na(50kDa)を出発原料とするHA-TBA 68.26mgを無水DMSOに溶解した。そこに脱水ピリジンに溶解させたコレステリル N-(6-イソシアネートヘキシル)カーバメート(CHI、4.15mg)を滴下し、窒素下、80℃にて9.5時間攪拌した。反応溶液を酢酸エチルにて再沈殿後、遠心分離にて回収した。得られた白色固体を再度DMSOに溶解し、0.3M NaCl溶液、蒸留水、10mM HCl溶液、蒸留水に対して透析し(Slide-A-Lyzer、分画分子量3500Da、PIERCE社製)、得られた透析液を凍結乾燥し、50k HA-O-C-Cholを得た。測定溶媒としてDMSO-dを用いたH-NMRスペクトル(500MHz Bruker社製)から実施例2-3-1記載の式にて算出したHAユニットに対するコレステリル基の導入率を表40に示す。
 また、99kDa HA-TBA(102.68mg)を用い、4.99mgのCHIを用いた他は同様の方法で合成した99k HA-O-C-Cholを得た。コレステリル基の導入率を表40に示す。
Figure JPOXMLDOC01-appb-T000057
〔実施例27〕ヒアルロン酸のN-アセチルグルコサミン部分の6位のヒドロキシ基にコレステリル基を導入したヒアルロン酸誘導体のDLS測定
 実施例26で調製した50k HA-O-C-Chol-1%および99k HA-O-C-Chol-2%を用い、溶媒として超純水に溶解した他は実施例17と同様の方法にてDLS測定を行った。z平均粒子サイズを表41に示す。
Figure JPOXMLDOC01-appb-T000058

Claims (18)

  1.  疎水性基を導入したヒアルロン酸誘導体であって、式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、R、R、R、およびRは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
     Zは、直接結合、または2~30個の任意のアミノ酸残基からなるペプチドリンカーを表し;
     Xは、以下の式:
     -NR-R、
     -NR-COO-R、
     -NR-CO-R、
     -NR-CO-NR-R、
     -COO-R、
     -O-COO-R、
     -S-R、
     -CO-Y-S-R、
     -O-CO-Y-S-R、
     -NR-CO-Y-S-R、および
     -S-S-R、
    により表される基から選択される疎水性基であり;
     R、RおよびRは、それぞれ独立に、水素原子、C1-20アルキル、アミノC2-20アルキルおよびヒドロキシC2-20アルキルから選択され、ここで当該基のアルキル部分は、-O-および-NR-から選択される1~3個の基が挿入されていてもよく;
     Rは、水素原子、C1-12アルキル、アミノC2-12アルキルおよびヒドロキシC2-12アルキルから選択され、当該基のアルキル部分は-O-および-NH-から選択される1~2個の基が挿入されていてもよく;
     Rは、ステリル基であり;
     Yは、C2-30アルキレン、または-(CHCHO)-CHCH-であり、ここで、当該アルキレンは、-O-、-NR-および-S-S-から選択される1~5の基が挿入されていてもよく;
     Rは、水素原子、C1-20アルキル、アミノC2-20アルキルまたはヒドロキシC2-20アルキルから選択され、当該基のアルキル部分は-O-および-NH-から選択される1~3個の基が挿入されていてもよく;
     Yは、C1-5アルキレンであり;
     Yは、C2-8アルキレンまたはC2-8アルケニレンであり;
     mは、1~100から選択される整数である]
    で表される繰り返し単位を1以上含む、前記ヒアルロン酸誘導体。
  2.  式(II):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1a、R2a、R3a、およびR4aは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
     Xは、ヒドロキシおよび-O、から選択され;ここで、Qは、カウンターカチオンである]
    で表される繰り返し単位さらに含む、請求項1に記載のヒアルロン酸誘導体。
  3.  存在する二糖の繰り返し単位に対する前記疎水性基の導入率が7~42%である、請求項1または2に記載のヒアルロン酸誘導体。
  4.  存在する二糖の繰り返し単位に対する前記疎水性基の導入率が7~15%、または18~42%である、請求項3に記載のヒアルロン酸誘導体。
  5.  Yが、-(CH-、-(CH-、-(CH-、および-(CH12-から選択される、請求項1~4のいずれか1項に記載のヒアルロン酸誘導体。
  6.  重量平均分子量が27kDa以下である、請求項2の式(II)で表される繰り返し単位から実質的になるヒアルロン酸またはその誘導体を原料として製造することを特徴とする、請求項1~5に記載のヒアルロン酸誘導体。
  7.  存在する二糖の繰り返し単位に対する前記疎水性基の導入率が2~50%である、請求項6に記載のヒアルロン酸誘導体。
  8.  Yが、-(CHn1-または-(CHCHO)m1-CHCH-であり、ここでn1は2~15の整数であり、m1は1~4の整数である、請求項6または7に記載のヒアルロン酸誘導体。
  9.  式(III):
    Figure JPOXMLDOC01-appb-C000003
    [式中、R1b、R2b、R3b、およびR4bは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
     Xは、-NR-Y-Rを表し; Rは、水素原子またはC1-6アルキルであり;
     Rは、水素原子、C1-6アルキルまたは基-CO-C(R)=CHであり;
     Yは、-CH-(CHRl-2-CH-NH-、-CH-(CHRp-2-CH-O-、-(CH-S-、-CH-CH-(Y-CH-CH-S-、-CH-CH-(Y-CH-CH-NH-または-CH-CH-(Y-CH-CH-O-であり、
     l、p、およびjは、それぞれ独立に2~10から選択される整数であり、z、tおよびyは、それぞれ独立に1~200から選択される整数であり、RおよびRはそれぞれ独立に水素原子またはヒドロキシであり、Rは、水素原子またはメチルであり、Y、YおよびYは、それぞれ独立して、-O-または-NH-である]
    で表される繰り返し単位をさらに含む、請求項1~8のいずれか1項に記載のヒアルロン酸誘導体。
  10.  Xが、-NR-(CHn2-OHであり、ここで、Rは、水素原子であり、n2は2~10から選択される整数である、請求項9に記載のヒアルロン酸誘導体。
  11.  存在する二糖の繰り返し単位に対する式(II)で表される繰り返し単位の割合が50%以下である、請求項9または10に記載のヒアルロン酸誘導体。
  12.  式(IV):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R2c、R3c、およびR4cは、それぞれ独立に、水素原子、C1-6アルキル、ホルミルおよびC1-6アルキルカルボニルから選択され;
     Xは、ヒドロキシおよび-O、から選択され;ここで、Qは、カウンターカチオンであり;
     R1cは、
     -CO-C(R21)=CH
     -CHCH(OH)-R22-Y
     -CH(CHOH)-R22-Y
     -CONH-R23-Y
     -CO-R23-Y
     -CONH-CHCH-(X21-CHCHn3-Y、および
     -CO-CHCH-(X21-CHCHn4-Yから選択され、
     X21は、OおよびSから選択され:
     n3およびn4は、それぞれ1~50の整数を表し;
     Yは、アミノ、メルカプト、ホルミル、-X14-CO-C(R18)=CHから選択され、
     R21は、水素原子またはC1-6アルキルから選択され;
     R22およびR23は、2価のC2-50炭化水素基または2価のC2-50ポリアルキレンオキシ基であり、前記2価のC2-50炭化水素基は、1~10個の-O-が挿入されて一部にポリアルキレンオキシ部分が形成されていてもよく;
     X14は、OおよびN(R19)から選択され;
     R18は水素原子またはC1-6アルキルであり;
     R19は水素原子またはC1-6アルキルである]
    で表される繰り返し単位をさらに含む、請求項1~11のいずれか1項に記載のヒアルロン酸誘導体。
  13.  式(I)で表される1以上の繰り返し単位;および式(II)、式(III)または式(IV)で表される1以上の繰り返し単位から実質的になる、請求項1~12のいずれか1項に記載のヒアルロン酸誘導体。
  14.  水中で会合により微粒子を形成する、請求項1~13のいずれか1項に記載のヒアルロン酸誘導体。
  15.  請求項1~14のいずれか1項に記載のヒアルロン酸誘導体を担体として含む医薬組成物。
  16.  薬物がヒアルロン酸誘導体と複合体を形成する、請求項15に記載の医薬組成物。
  17.  請求項1~14のいずれか1項に記載のヒアルロン酸誘導体に、1以上の薬物が結合した、ヒアルロン酸誘導体-薬物結合体。
  18.  薬物が、薬理活性を有するタンパク質またはペプチドである、請求項15または16に記載の医薬組成物。
PCT/JP2009/068933 2008-11-05 2009-11-05 ヒアルロン酸誘導体、およびその医薬組成物 WO2010053140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010536794A JP5542687B2 (ja) 2008-11-05 2009-11-05 ヒアルロン酸誘導体、およびその医薬組成物
US13/127,582 US8759322B2 (en) 2008-11-05 2009-11-05 Hyaluronic acid derivative and pharmaceutical composition thereof
EP09824839.6A EP2360188B1 (en) 2008-11-05 2009-11-05 Hyaluronic acid derivative and pharmaceutical composition thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-284103 2008-11-05
JP2008284103 2008-11-05

Publications (1)

Publication Number Publication Date
WO2010053140A1 true WO2010053140A1 (ja) 2010-05-14

Family

ID=42152947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068933 WO2010053140A1 (ja) 2008-11-05 2009-11-05 ヒアルロン酸誘導体、およびその医薬組成物

Country Status (4)

Country Link
US (1) US8759322B2 (ja)
EP (1) EP2360188B1 (ja)
JP (1) JP5542687B2 (ja)
WO (1) WO2010053140A1 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118189A1 (ja) * 2011-03-03 2012-09-07 中外製薬株式会社 アミノ-カルボン酸により修飾されたヒアルロン酸誘導体
WO2012153071A2 (fr) 2011-05-10 2012-11-15 Adocia Polysaccharides à degré de fonctionnalisation modulable
WO2013021143A1 (fr) 2011-08-10 2013-02-14 Adocia Solution injectable d'au moins une insuline basale
JP2014505672A (ja) * 2010-12-02 2014-03-06 エコシンセティックス リミテッド アプタマーバイオコンジュゲート薬物送達システム
US8669227B2 (en) 2009-03-27 2014-03-11 Adocia Fast-acting insulin formulation
WO2014038641A1 (ja) 2012-09-05 2014-03-13 中外製薬株式会社 アミノ酸およびステリル基が導入されたヒアルロン酸誘導体
WO2014076422A1 (fr) 2012-11-13 2014-05-22 Adocia Composes anioniques substitues constitues d'un squelette forme d'un nombre discret d'unites saccharidiques
WO2014124993A1 (fr) 2013-02-12 2014-08-21 Adocia Solution injectable a ph7 comprenant au moins une insuline basale dont le point isoelectrique est compris entre 5,8 et 8,5 et un polymere anionique hydrophobise
WO2014124994A1 (fr) 2013-02-12 2014-08-21 Adocia Solution injectable a ph7 comprenant au moins une insuline basale dont le point isoelectrique est compris entre 5,8 et 8,5 et un compose anionique porteur de charges carboxylates et de radicaux hydrophobes
JP2014185127A (ja) * 2013-03-25 2014-10-02 Morishita Jintan Co Ltd 多糖ナノゲルおよびその製造方法、ならびにそれを用いた創傷治癒剤
US9018190B2 (en) 2009-03-27 2015-04-28 Adocia Functionalized oligosaccharides
US9198971B2 (en) 2012-01-09 2015-12-01 Adocia Injectable solution at pH 7 comprising at least one basal insulin the pI of which is between 5.8 and 8.5 and a substituted co-polyamino acid
JP2016529362A (ja) * 2013-08-29 2016-09-23 ホーリー ストーン バイオテック カンパニー リミテッド グリコサミノグリカン化合物、その調製方法および使用
US9492467B2 (en) 2011-11-02 2016-11-15 Adocia Rapid-acting insulin formulation comprising an oligosaccharide
US9700599B2 (en) 2012-11-13 2017-07-11 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US9795678B2 (en) 2014-05-14 2017-10-24 Adocia Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound
WO2017195880A1 (ja) * 2016-05-11 2017-11-16 中外製薬株式会社 カチオン性基および疎水性基が導入されたヒアルロン酸誘導体
JPWO2016159159A1 (ja) * 2015-03-31 2018-01-25 キユーピー株式会社 ヒアルロン酸誘導体およびその製造方法、ならびにヒアルロン酸誘導体を含む化粧料、食品組成物および医薬組成物
WO2019098393A1 (ja) 2017-11-15 2019-05-23 中外製薬株式会社 ポリエチレングリコールにより修飾されたヒアルロン酸誘導体
US10449256B2 (en) 2013-02-12 2019-10-22 Adocia Injectable solution at pH 7 comprising at least one basal insulin the isoelectric point of which is between 5.8 and 8.5 and a hydrophobized anionic polymer
US10525133B2 (en) 2014-05-14 2020-01-07 Adocia Aqueous composition comprising at least one protein and one solubilizing agent, preparation thereof and uses thereof
WO2020158771A1 (ja) 2019-01-29 2020-08-06 国立大学法人三重大学 がんワクチン製剤
US10792335B2 (en) 2015-11-16 2020-10-06 Adocia Rapid-acting insulin composition comprising a substituted citrate
WO2021157677A1 (ja) 2020-02-05 2021-08-12 旭化成株式会社 ヒアルロン酸誘導体組成物、医薬組成物及びヒアルロン酸誘導体-薬物結合体組成物
WO2021157665A1 (ja) 2020-02-07 2021-08-12 旭化成株式会社 ヒアルロン酸誘導体、医薬組成物及びヒアルロン酸誘導体-薬物結合体
JP2021520352A (ja) * 2018-04-04 2021-08-19 アリヴィオ セラピューティクス, インコーポレイテッド 生物製剤の制御送達用の自己組織化ゲルおよびその製造方法
WO2022255384A1 (ja) 2021-05-31 2022-12-08 国立大学法人三重大学 医薬組成物
US11666515B2 (en) 2018-03-28 2023-06-06 Greenmark Biomedical Inc. Phosphate crosslinked starch nanoparticle and dental treatments
WO2024019118A1 (ja) * 2022-07-20 2024-01-25 旭化成株式会社 ヒアルロン酸誘導体医薬品組成物及び医薬品組成物
JP7502861B2 (ja) 2019-12-27 2024-06-19 旭化成株式会社 標的物質と両親媒性高分子との複合体の形成反応の反応温度の評価方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120893A2 (en) 2008-03-28 2009-10-01 The Regents Of The University Of California Polypeptide-polymer conjugates and methods of use thereof
WO2012140650A2 (en) 2011-04-12 2012-10-18 Hepacore Ltd. Conjugates of carboxy polysaccharides with fibroblast growth factors and variants thereof
US8883862B2 (en) * 2012-01-12 2014-11-11 Kaohsiung Medical University Method for controlled release of parathyroid hormone from cross-linked hyaluronic acid hydrogel
KR101445265B1 (ko) * 2012-09-18 2014-09-30 포항공과대학교 산학협력단 히알루론산-핵산 접합체 및 이를 포함하는 핵산 전달용 조성물
CN108472310B (zh) 2015-12-09 2021-08-03 加利福尼亚大学董事会 治疗眼部疾病或病症的缀合物
CZ2016826A3 (cs) * 2016-12-22 2018-07-04 Contipro A.S. Léčivý prostředek s nosičem na bázi hyaluronanu a/nebo jeho derivátů, způsob výroby a použití
KR102020781B1 (ko) * 2017-12-14 2019-09-11 (주)바이오제닉스 피부 보습용 마유 캡슐 및 이의 제조방법
CN108912245B (zh) * 2018-07-13 2020-04-28 吉林大学 一种具有靶向性和抗炎活性的氟化透明质酸衍生物及其制备方法和应用
US11939408B2 (en) * 2019-12-20 2024-03-26 Massachusetts Institute Of Technology Hyaluronic acid derivatives
WO2021174330A1 (en) * 2020-03-05 2021-09-10 Nuecology Biomedical Inc. Amphiphilic alginate-oleic acid macromolecules and process for preparation therof
WO2022183126A1 (en) * 2021-02-27 2022-09-01 The Brigham And Women's Hospital, Inc. Microneedles and methods for treating the skin

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264802A (ja) 1985-07-08 1987-03-23 フイデイ−ア・ソシエタ・ペル・アチオニ 新規多糖類エステルおよびその塩
JPH03292301A (ja) * 1990-04-11 1991-12-24 Nippon Oil & Fats Co Ltd 多糖類―ステロール誘導体とその製造法
JPH07206903A (ja) * 1994-01-24 1995-08-08 Takeda Chem Ind Ltd 超分子構造型集合体
WO2002022154A2 (en) 2000-09-13 2002-03-21 Praecis Pharmaceuticals Incorporated Pharmaceutical compositions for sustained drug delivery
JP2002516355A (ja) * 1998-05-28 2002-06-04 メディプレックス コーポレイション、コリア 両親媒性ポリサッカリド誘導体
WO2002090209A1 (en) 2001-05-07 2002-11-14 Australian Postal Corporation Packaging system
WO2003099992A2 (en) 2002-05-17 2003-12-04 Wyeth Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
WO2004035629A2 (en) 2002-10-18 2004-04-29 Fidia Farmaceutici S.P.A. Taxanes covalently bounded to hyaluronic acid or hyaluronic acid derivatives
WO2004050712A1 (ja) 2002-11-29 2004-06-17 Chugai Seiyaku Kabushiki Kaisha 薬物徐放担体
WO2005051416A1 (fr) 2003-11-21 2005-06-09 Flamel Technologies Formulations pharmaceutiques pour la libération prolongée de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
WO2005095464A1 (ja) 2004-04-02 2005-10-13 Denki Kagaku Kogyo Kabushiki Kaisha ヒアルロン酸-メトトレキサート結合体
JP2005298644A (ja) 2004-04-09 2005-10-27 Kazunari Akiyoshi ナノゲル工学によるハイブリッドゲルの調製とバイオマテリアル応用
WO2006028110A1 (ja) 2004-09-07 2006-03-16 Chugai Seiyaku Kabushiki Kaisha 水溶性ヒアルロン酸修飾物の製造方法
WO2006092233A1 (en) 2005-03-02 2006-09-08 Fidia Farmaceutici S.P.A. Amide derivatives of hyaluronic acid in osteoarthrosis
JP2006291097A (ja) * 2005-04-13 2006-10-26 Chisso Corp ヒアルロン酸誘導体、およびその製造法
WO2007043702A1 (en) * 2005-10-12 2007-04-19 Seikagaku Corporation Agent for applying to mucosa and method for production thereof
WO2008000136A1 (fr) 2006-06-21 2008-01-03 Tong Su Structure décorative de sol et sa méthode de pose
WO2008136536A1 (ja) 2007-05-01 2008-11-13 National University Corporation Tokyo Medical And Dental University 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
WO2009026274A1 (en) 2007-08-22 2009-02-26 Medarex, Inc. Site-specific attachment of drugs or other agents to engineered antibodies with c-terminal extensions
WO2009074678A2 (en) 2007-12-12 2009-06-18 Eurand Pharmaceuticals Limited Anticancer conjugates of camptothecin to hyaluronic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264802A (ja) 1993-03-10 1994-09-20 Hitachi Ltd リーンバーンエンジンシステムとその補助空気制御装置
IT1281876B1 (it) * 1995-05-10 1998-03-03 Fidia Advanced Biopolymers Srl Acido ialuronico e suoi derivati esterei per la preparazione di matrici per il rilascio controllato di farmaci.
KR100314496B1 (ko) * 1998-05-28 2001-11-22 윤동진 항혈전성이 있는 헤파린 유도체, 그의 제조방법 및 용도

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264802A (ja) 1985-07-08 1987-03-23 フイデイ−ア・ソシエタ・ペル・アチオニ 新規多糖類エステルおよびその塩
JPH03292301A (ja) * 1990-04-11 1991-12-24 Nippon Oil & Fats Co Ltd 多糖類―ステロール誘導体とその製造法
JPH07206903A (ja) * 1994-01-24 1995-08-08 Takeda Chem Ind Ltd 超分子構造型集合体
JP2002516355A (ja) * 1998-05-28 2002-06-04 メディプレックス コーポレイション、コリア 両親媒性ポリサッカリド誘導体
WO2002022154A2 (en) 2000-09-13 2002-03-21 Praecis Pharmaceuticals Incorporated Pharmaceutical compositions for sustained drug delivery
WO2002090209A1 (en) 2001-05-07 2002-11-14 Australian Postal Corporation Packaging system
WO2003099992A2 (en) 2002-05-17 2003-12-04 Wyeth Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
WO2004035629A2 (en) 2002-10-18 2004-04-29 Fidia Farmaceutici S.P.A. Taxanes covalently bounded to hyaluronic acid or hyaluronic acid derivatives
WO2004050712A1 (ja) 2002-11-29 2004-06-17 Chugai Seiyaku Kabushiki Kaisha 薬物徐放担体
WO2005051416A1 (fr) 2003-11-21 2005-06-09 Flamel Technologies Formulations pharmaceutiques pour la libération prolongée de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
WO2005095464A1 (ja) 2004-04-02 2005-10-13 Denki Kagaku Kogyo Kabushiki Kaisha ヒアルロン酸-メトトレキサート結合体
JP2005298644A (ja) 2004-04-09 2005-10-27 Kazunari Akiyoshi ナノゲル工学によるハイブリッドゲルの調製とバイオマテリアル応用
WO2006028110A1 (ja) 2004-09-07 2006-03-16 Chugai Seiyaku Kabushiki Kaisha 水溶性ヒアルロン酸修飾物の製造方法
WO2006092233A1 (en) 2005-03-02 2006-09-08 Fidia Farmaceutici S.P.A. Amide derivatives of hyaluronic acid in osteoarthrosis
JP2008531148A (ja) * 2005-03-02 2008-08-14 フィディア ファルマチェウティチ ソシエタ ペル アチオニ 骨関節症におけるヒアルロン酸のアミド誘導体
JP2006291097A (ja) * 2005-04-13 2006-10-26 Chisso Corp ヒアルロン酸誘導体、およびその製造法
WO2007043702A1 (en) * 2005-10-12 2007-04-19 Seikagaku Corporation Agent for applying to mucosa and method for production thereof
WO2008000136A1 (fr) 2006-06-21 2008-01-03 Tong Su Structure décorative de sol et sa méthode de pose
WO2008136536A1 (ja) 2007-05-01 2008-11-13 National University Corporation Tokyo Medical And Dental University 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
WO2009026274A1 (en) 2007-08-22 2009-02-26 Medarex, Inc. Site-specific attachment of drugs or other agents to engineered antibodies with c-terminal extensions
WO2009074678A2 (en) 2007-12-12 2009-06-18 Eurand Pharmaceuticals Limited Anticancer conjugates of camptothecin to hyaluronic acid

Non-Patent Citations (37)

* Cited by examiner, † Cited by third party
Title
BERNHARD STUMP, BIOCONJUGATE CHEM.
BIOCONJUGATE CHEM., vol. 10, 1999, pages 321 - 324
BIOCONJUGATE CHEM., vol. 10, 1999, pages 755 - 763
BIOCONJUGATE CHEM., vol. 19, 2008, pages 1319 - 1325
BIOCONJUGATE CHEM., vol. 19, 2008, pages 1960 - 1963
BIOCONJUGATE, vol. 19, 2008, pages 1319 - 1325
BIOMACROMOLECULES, vol. 6, 2005, pages 1829 - 1834
BIOMACROMOLECULES, vol. 8, 2007, pages 2366 - 2373
CARBOHYDRATE POLYMERS, vol. 62, 2005, pages 293 - 298
CELL AND TISSUE RESEARCH., vol. 243, 1985, pages 505 - 510
CLINICAL CANCER RESEARCH, vol. 10, 2004, pages 4822 - 4830
CLINICAL CANCER RESEARCH, vol. 14, 2008, pages 3598 - 3606
COLLOIDS AND SURFACES, vol. 112, 1996, pages 91 - 95
EUROPEAN JOURNAL OF CANCER, vol. 31, 1995, pages 766 - 770
EXPERT OPINION, vol. 15, 2005, pages 1087 - 1103
FEES LETTERS, vol. 533, 2003, pages 271 - 276
J. MICROENCAPSULATION, vol. 15, 1998, pages 699 - 713
J. PHARM. SCI., vol. 88, 1999, pages 166 - 173
J.AM.CHEM.SOC., vol. 118, 1996, pages 6110 - 6115
J.CONTROLLED RELEASE, vol. 54, 1998, pages 313 - 230
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 83A, no. 1, 2007, pages 184 - 190
JOURNAL OF CONTROLLED RELEASE, vol. 119, 2007, pages 245 - 252
JOURNAL OF DRUG TARGETING., vol. 16, 2008, pages 91 - 107
JOURNAL OF MATERIALS CHEMISTRY., vol. 19, 2004, pages 4029 - 4280
MACROMOLECULES, vol. 26, 1993, pages 3062 - 3068
MACROMOLECULES, vol. 27, 1994, pages 7654 - 7659
MACROMOLECULES, vol. 30, 1997, pages 857 - 861
MOLECULAR PHARMACEUTICS., vol. 5, 2008, pages 474 - 486
NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY, AND MEDICINE., vol. 3, 2007, pages 246 - 257
NEOPLASIA, vol. 6, 2004, pages 343 - 353
PHARMACEUTICAL RESEARCH., vol. 19, 2002, pages 396 - 402
POLYMER, vol. 47, 2006, pages 2706 - 2713
See also references of EP2360188A4
SEIICHI NAKAHAMA: "Essential Kobunshi Kagaku (Essential Polymer Chemistry", KODANSHA LTD
THE BIOCHEMICAL JOURNAL, vol. 200, 1981, pages 415 - 424
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, 2000, pages 37733 - 37741
YOUNG CHOL ET AL.: "Hydrogel Nanoparticles Based on Hyaluronic Acid", 34TH ANNUAL MEETING & EXPOSITION OF THE CONTROLLED RELEASE SOCIETY, 7 July 2007 (2007-07-07)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018190B2 (en) 2009-03-27 2015-04-28 Adocia Functionalized oligosaccharides
US8669227B2 (en) 2009-03-27 2014-03-11 Adocia Fast-acting insulin formulation
US11369570B2 (en) 2010-12-02 2022-06-28 Greenmark Biomedical Inc. Aptamer bioconjugate drug delivery device
US10285943B2 (en) 2010-12-02 2019-05-14 Greenmark Biomedical Inc. Aptamer bioconjugate drug delivery device
JP2014505672A (ja) * 2010-12-02 2014-03-06 エコシンセティックス リミテッド アプタマーバイオコンジュゲート薬物送達システム
WO2012118189A1 (ja) * 2011-03-03 2012-09-07 中外製薬株式会社 アミノ-カルボン酸により修飾されたヒアルロン酸誘導体
US9243077B2 (en) 2011-03-03 2016-01-26 Chugai Seiyaku Kabushiki Kaisha Derivative of hyaluronic acid modified with amino-carboxylic acid
JPWO2012118189A1 (ja) * 2011-03-03 2014-07-07 中外製薬株式会社 アミノ−カルボン酸により修飾されたヒアルロン酸誘導体
JP2017179374A (ja) * 2011-03-03 2017-10-05 中外製薬株式会社 アミノ−カルボン酸により修飾されたヒアルロン酸誘導体
JP6141180B2 (ja) * 2011-03-03 2017-06-07 中外製薬株式会社 アミノ−カルボン酸により修飾されたヒアルロン酸誘導体
WO2012153071A2 (fr) 2011-05-10 2012-11-15 Adocia Polysaccharides à degré de fonctionnalisation modulable
WO2013021143A1 (fr) 2011-08-10 2013-02-14 Adocia Solution injectable d'au moins une insuline basale
US9089476B2 (en) 2011-08-10 2015-07-28 Adocia Injectable solution at pH 7 comprising at least one basal insulin whose PI is between 5.8 and 8.5
EP3053590A1 (fr) 2011-08-10 2016-08-10 Adocia Solution injectable d'au moins une insuline basale
US9492467B2 (en) 2011-11-02 2016-11-15 Adocia Rapid-acting insulin formulation comprising an oligosaccharide
US10335489B2 (en) 2012-01-09 2019-07-02 Adocia Injectable solution at pH 7 comprising at least one basal insulin the pi of which is between 5.8 and 8.5 and a substituted co-polyamino acid
US9198971B2 (en) 2012-01-09 2015-12-01 Adocia Injectable solution at pH 7 comprising at least one basal insulin the pI of which is between 5.8 and 8.5 and a substituted co-polyamino acid
US11564971B2 (en) 2012-09-05 2023-01-31 Chugai Seiyaku Kabushiki Kaisha Hyaluronic acid derivative having amino acid and steryl group introduced thereinto
JPWO2014038641A1 (ja) * 2012-09-05 2016-08-12 中外製薬株式会社 アミノ酸およびステリル基が導入されたヒアルロン酸誘導体
WO2014038641A1 (ja) 2012-09-05 2014-03-13 中外製薬株式会社 アミノ酸およびステリル基が導入されたヒアルロン酸誘導体
KR20150048238A (ko) 2012-09-05 2015-05-06 추가이 세이야쿠 가부시키가이샤 아미노산 및 스테릴기가 도입된 히알루론산 유도체
US9700599B2 (en) 2012-11-13 2017-07-11 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US10583175B2 (en) 2012-11-13 2020-03-10 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US11324808B2 (en) 2012-11-13 2022-05-10 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US10881716B2 (en) 2012-11-13 2021-01-05 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
US10646551B2 (en) 2012-11-13 2020-05-12 Adocia Rapid-acting insulin formulation comprising a substituted anionic compound
WO2014076422A1 (fr) 2012-11-13 2014-05-22 Adocia Composes anioniques substitues constitues d'un squelette forme d'un nombre discret d'unites saccharidiques
WO2014124993A1 (fr) 2013-02-12 2014-08-21 Adocia Solution injectable a ph7 comprenant au moins une insuline basale dont le point isoelectrique est compris entre 5,8 et 8,5 et un polymere anionique hydrophobise
US10449256B2 (en) 2013-02-12 2019-10-22 Adocia Injectable solution at pH 7 comprising at least one basal insulin the isoelectric point of which is between 5.8 and 8.5 and a hydrophobized anionic polymer
WO2014124994A1 (fr) 2013-02-12 2014-08-21 Adocia Solution injectable a ph7 comprenant au moins une insuline basale dont le point isoelectrique est compris entre 5,8 et 8,5 et un compose anionique porteur de charges carboxylates et de radicaux hydrophobes
JP2014185127A (ja) * 2013-03-25 2014-10-02 Morishita Jintan Co Ltd 多糖ナノゲルおよびその製造方法、ならびにそれを用いた創傷治癒剤
JP2016529362A (ja) * 2013-08-29 2016-09-23 ホーリー ストーン バイオテック カンパニー リミテッド グリコサミノグリカン化合物、その調製方法および使用
US10525133B2 (en) 2014-05-14 2020-01-07 Adocia Aqueous composition comprising at least one protein and one solubilizing agent, preparation thereof and uses thereof
US9795678B2 (en) 2014-05-14 2017-10-24 Adocia Fast-acting insulin composition comprising a substituted anionic compound and a polyanionic compound
JPWO2016159159A1 (ja) * 2015-03-31 2018-01-25 キユーピー株式会社 ヒアルロン酸誘導体およびその製造方法、ならびにヒアルロン酸誘導体を含む化粧料、食品組成物および医薬組成物
US10792335B2 (en) 2015-11-16 2020-10-06 Adocia Rapid-acting insulin composition comprising a substituted citrate
US11389539B2 (en) 2016-05-11 2022-07-19 Chugai Seiyaku Kabushiki Kaisha Hyaluronic acid derivatives into which cationic and hydrophobic groups are introduced
JPWO2017195880A1 (ja) * 2016-05-11 2019-03-22 中外製薬株式会社 カチオン性基および疎水性基が導入されたヒアルロン酸誘導体
WO2017195880A1 (ja) * 2016-05-11 2017-11-16 中外製薬株式会社 カチオン性基および疎水性基が導入されたヒアルロン酸誘導体
US11512147B2 (en) 2017-11-15 2022-11-29 Chugai Seiyaku Kabushiki Kaisha Hyaluronic acid derivative modified with polyethylene glycol
JP7221211B2 (ja) 2017-11-15 2023-02-13 中外製薬株式会社 ポリエチレングリコールにより修飾されたヒアルロン酸誘導体
JPWO2019098393A1 (ja) * 2017-11-15 2020-11-19 中外製薬株式会社 ポリエチレングリコールにより修飾されたヒアルロン酸誘導体
WO2019098393A1 (ja) 2017-11-15 2019-05-23 中外製薬株式会社 ポリエチレングリコールにより修飾されたヒアルロン酸誘導体
US11666515B2 (en) 2018-03-28 2023-06-06 Greenmark Biomedical Inc. Phosphate crosslinked starch nanoparticle and dental treatments
JP2021520352A (ja) * 2018-04-04 2021-08-19 アリヴィオ セラピューティクス, インコーポレイテッド 生物製剤の制御送達用の自己組織化ゲルおよびその製造方法
JPWO2020158771A1 (ja) * 2019-01-29 2021-12-02 国立大学法人三重大学 がんワクチン製剤
WO2020158771A1 (ja) 2019-01-29 2020-08-06 国立大学法人三重大学 がんワクチン製剤
JP7502861B2 (ja) 2019-12-27 2024-06-19 旭化成株式会社 標的物質と両親媒性高分子との複合体の形成反応の反応温度の評価方法
JPWO2021157677A1 (ja) * 2020-02-05 2021-08-12
KR20220124207A (ko) 2020-02-05 2022-09-13 아사히 가세이 가부시키가이샤 히알루론산 유도체 조성물, 의약 조성물 및 히알루론산 유도체-약물 결합체 조성물
JP7397103B2 (ja) 2020-02-05 2023-12-12 旭化成株式会社 ヒアルロン酸誘導体組成物、医薬組成物及びヒアルロン酸誘導体-薬物結合体組成物
WO2021157677A1 (ja) 2020-02-05 2021-08-12 旭化成株式会社 ヒアルロン酸誘導体組成物、医薬組成物及びヒアルロン酸誘導体-薬物結合体組成物
JPWO2021157665A1 (ja) * 2020-02-07 2021-08-12
WO2021157665A1 (ja) 2020-02-07 2021-08-12 旭化成株式会社 ヒアルロン酸誘導体、医薬組成物及びヒアルロン酸誘導体-薬物結合体
WO2022255384A1 (ja) 2021-05-31 2022-12-08 国立大学法人三重大学 医薬組成物
WO2024019118A1 (ja) * 2022-07-20 2024-01-25 旭化成株式会社 ヒアルロン酸誘導体医薬品組成物及び医薬品組成物

Also Published As

Publication number Publication date
US8759322B2 (en) 2014-06-24
JPWO2010053140A1 (ja) 2012-04-05
US20110212901A1 (en) 2011-09-01
JP5542687B2 (ja) 2014-07-09
EP2360188B1 (en) 2014-09-17
EP2360188A1 (en) 2011-08-24
EP2360188A4 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5542687B2 (ja) ヒアルロン酸誘導体、およびその医薬組成物
CN104603156B (zh) 引入有氨基酸和甾基的透明质酸衍生物
JP5443976B2 (ja) 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
JP5060131B2 (ja) 水溶性ヒアルロン酸修飾物の製造方法
JP6893918B2 (ja) カチオン性基および疎水性基が導入されたヒアルロン酸誘導体
WO2021157665A1 (ja) ヒアルロン酸誘導体、医薬組成物及びヒアルロン酸誘導体-薬物結合体
JP7221211B2 (ja) ポリエチレングリコールにより修飾されたヒアルロン酸誘導体
JP2021123597A (ja) ヒアルロン酸誘導体組成物、医薬組成物及びヒアルロン酸誘導体−薬物結合体組成物
JP2021123598A (ja) ヒアルロン酸誘導体組成物、医薬組成物及びヒアルロン酸誘導体−薬物結合体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824839

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010536794

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13127582

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009824839

Country of ref document: EP