WO2010041686A1 - 薄膜トランジスタおよび表示装置 - Google Patents
薄膜トランジスタおよび表示装置 Download PDFInfo
- Publication number
- WO2010041686A1 WO2010041686A1 PCT/JP2009/067492 JP2009067492W WO2010041686A1 WO 2010041686 A1 WO2010041686 A1 WO 2010041686A1 JP 2009067492 W JP2009067492 W JP 2009067492W WO 2010041686 A1 WO2010041686 A1 WO 2010041686A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- oxide semiconductor
- oxide
- aluminum
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 47
- 239000010410 layer Substances 0.000 claims abstract description 258
- 239000010408 film Substances 0.000 claims abstract description 239
- 239000004065 semiconductor Substances 0.000 claims abstract description 101
- 238000002161 passivation Methods 0.000 claims abstract description 70
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims abstract description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 26
- 239000010703 silicon Substances 0.000 claims abstract description 26
- 239000011810 insulating material Substances 0.000 claims abstract description 21
- 239000002356 single layer Substances 0.000 claims abstract description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 46
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 46
- 239000000758 substrate Substances 0.000 claims description 33
- 239000010936 titanium Substances 0.000 claims description 31
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 22
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- 238000004544 sputter deposition Methods 0.000 claims description 20
- 150000004767 nitrides Chemical class 0.000 claims description 14
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 9
- 239000012044 organic layer Substances 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 abstract description 48
- 229910052760 oxygen Inorganic materials 0.000 abstract description 48
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 46
- 239000011241 protective layer Substances 0.000 abstract description 35
- 238000003795 desorption Methods 0.000 abstract description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 24
- 239000000463 material Substances 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 22
- 239000001257 hydrogen Substances 0.000 description 18
- 229910052739 hydrogen Inorganic materials 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 17
- 239000007789 gas Substances 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000011787 zinc oxide Substances 0.000 description 12
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 239000011733 molybdenum Substances 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 238000000231 atomic layer deposition Methods 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052738 indium Inorganic materials 0.000 description 8
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000007789 sealing Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 1
- 229910017073 AlLi Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- UBSJOWMHLJZVDJ-UHFFFAOYSA-N aluminum neodymium Chemical compound [Al].[Nd] UBSJOWMHLJZVDJ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- AHLBNYSZXLDEJQ-FWEHEUNISA-N orlistat Chemical compound CCCCCCCCCCC[C@H](OC(=O)[C@H](CC(C)C)NC=O)C[C@@H]1OC(=O)[C@H]1CCCCCC AHLBNYSZXLDEJQ-FWEHEUNISA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4908—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78606—Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/121—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
- H10K59/1213—Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
Definitions
- the present invention relates to a thin film transistor (TFT: Thin Film Transistor) having an oxide semiconductor layer as a channel and a display device including the same.
- TFT Thin Film Transistor
- Oxide semiconductors such as zinc oxide or indium gallium zinc oxide (IGZO) exhibit excellent properties as active layers in semiconductor devices, and in recent years they have been developed for application to TFTs, light-emitting devices, transparent conductive films, etc. ing.
- IGZO indium gallium zinc oxide
- a TFT using an oxide semiconductor has a higher electron mobility and superior electrical characteristics than those using amorphous silicon (a-Si: H) used for a conventional liquid crystal display device as a channel. have.
- a-Si: H amorphous silicon
- an oxide semiconductor does not have sufficient heat resistance, and oxygen and zinc are eliminated by heat treatment during the TFT manufacturing process to form lattice defects.
- This lattice defect forms a shallow impurity level electrically and causes the resistance of the oxide semiconductor layer to be lowered. Therefore, a normally-on type, that is, a depletion type operation in which a drain current flows without applying a gate voltage, a threshold voltage decreases as a defect level increases, and a leakage current increases.
- the gate insulating layer in contact with the channel layer made of an oxide semiconductor is made of amorphous aluminum oxide (Al 2 O 3 ) to reduce the defect level at the interface (for example, , See Patent Document 1.)
- the thickness of the gate insulating layer is 100 nm or more, more preferably 200 nm or more. Since aluminum oxide has a slow film formation rate, it takes a long film formation time to form such a thick aluminum oxide layer.
- Non-Patent Document 1 In addition to lattice defects due to desorption of oxygen, hydrogen has been reported as an element that forms a shallow impurity level in an oxide semiconductor (see, for example, Non-Patent Document 1). That is, when the oxide semiconductor is exposed to the atmosphere, hydrogen in the atmosphere reduces oxygen in the oxide semiconductor.
- a passivation film (protective film) such as silicon oxide or silicon nitride is formed on the TFT to suppress hydrogen permeation.
- the protection properties of such a conventional passivation film are sufficient, and the development of a passivation film having higher barrier performance against oxygen and hydrogen has been desired.
- the present invention has been made in view of such problems, and a first object thereof is to provide a thin film transistor capable of suppressing the desorption of oxygen and the like from the oxide semiconductor layer and reducing the film formation time. It is to provide a display device provided.
- a second object of the present invention is to provide a thin film transistor capable of suppressing reduction of oxygen in an oxide semiconductor by hydrogen in the atmosphere and suppressing desorption of oxygen and the like from the oxide semiconductor layer, and a display device including the same Is to provide.
- a first thin film transistor includes a gate insulating film between a gate electrode and an oxide semiconductor layer, and aluminum oxide is formed on the gate electrode side and the opposite side of the gate electrode of the oxide semiconductor layer.
- a laminated film of a first layer made of the above and a second layer made of an insulating material containing silicon (Si) is provided.
- a second thin film transistor includes a gate electrode, a gate insulating film, an oxide semiconductor layer, a channel protective film, a source / drain electrode, and a passivation film in this order on a substrate, and the passivation film is made of aluminum. It is made of an oxide, nitride or oxynitride containing at least one of (Al), titanium (Ti) and tantalum (Ta).
- a first display device includes a thin film transistor and a display element, and the thin film transistor is configured by the first thin film transistor of the present invention.
- a second display device includes a thin film transistor and a display element, and the thin film transistor is configured by the second thin film transistor of the present invention.
- a second layer made of an insulating material containing silicon (Si) and a first layer made of aluminum oxide on the gate electrode side and the opposite side of the gate electrode of the oxide semiconductor layer Since the stacked film with the layers is provided, the oxide semiconductor layer is sandwiched from both sides by the first layer made of aluminum oxide. Therefore, desorption of oxygen and the like from the oxide semiconductor layer is suppressed, and electrical characteristics are stabilized.
- the second layer is made of an insulating material containing silicon (Si)
- the film formation time is shorter than that of a conventional aluminum oxide single-layer gate insulating layer.
- the passivation film is made of an oxide, nitride, or oxynitride containing at least one of aluminum (Al), titanium (Ti), and tantalum (Ta).
- Al aluminum
- Ti titanium
- Ta tantalum
- the oxide semiconductor layer includes the first layer made of aluminum oxide and the insulating material containing silicon (Si) on the gate electrode side and the opposite side of the gate electrode. Since the laminated film with the second layer is provided, the oxide semiconductor layer can be sandwiched from both sides by the first layer made of aluminum oxide. Therefore, desorption of oxygen or the like from the oxide semiconductor layer can be suppressed and electrical characteristics can be stabilized. Further, by forming the second layer with an insulating material containing silicon (Si), the film formation time can be shortened as compared with a conventional gate insulating layer of an aluminum oxide single layer.
- the passivation film is an oxide, nitride or oxynitride containing at least one of aluminum (Al), titanium (Ti) and tantalum (Ta). It was made to comprise.
- Al aluminum
- Ti titanium
- Ta tantalum
- FIG. 2 is an equivalent circuit diagram illustrating an example of the pixel drive circuit illustrated in FIG. 1.
- FIG. 3 is a cross-sectional view illustrating a configuration of a TFT illustrated in FIG. 2. It is sectional drawing showing the structure of the display area shown in FIG.
- FIG. 3 is a cross-sectional view illustrating a method of manufacturing the display device illustrated in FIG. 1 in order of steps.
- FIG. 6 is a cross-sectional view illustrating a process following FIG. 5.
- 10 is a cross-sectional view illustrating a configuration of a TFT according to Modification 1.
- FIG. 1 is an equivalent circuit diagram illustrating an example of the pixel drive circuit illustrated in FIG. 1.
- FIG. 3 is a cross-sectional view illustrating a configuration of a TFT illustrated in FIG. 2. It is sectional drawing showing the structure of the display area shown in FIG.
- FIG. 3 is a cross-sectional view illustrating a method of manufacturing the display device illustrated in FIG. 1 in order of steps.
- FIG. 10 is a cross-sectional view illustrating a configuration of a TFT according to Modification 2.
- FIG. 12 is a cross-sectional view illustrating a configuration of a TFT according to Modification 3.
- FIG. It is sectional drawing showing the structure of TFT which concerns on the 2nd Embodiment of this invention. It is sectional drawing showing the manufacturing method of TFT shown in FIG. 10 in order of a process.
- FIG. 12 is a cross-sectional diagram illustrating a process following the process in FIG. 11. It is a figure showing the result of having investigated the correlation with addition of nitrogen and the density of a passivation film. It is sectional drawing showing the structure of TFT which concerns on the 3rd Embodiment of this invention.
- FIG. 14 is a perspective view illustrating an appearance of application example 4.
- (A) is a front view of the application example 5 in an open state
- (B) is a side view thereof
- (C) is a front view in a closed state
- (D) is a left side view
- (E) is a right side view
- (F) is a top view
- (G) is a bottom view.
- First Embodiment Example in which a gate insulating film, a channel protective layer, and a passivation film are stacked films in the first thin film transistor
- Second Embodiment Example of single-layer passivation film in second thin film transistor
- Third Embodiment Example of Passivation Film Laminated in Second Thin Film Transistor 4
- Modification 1 example in which the gate insulating film and the channel protective layer are stacked films in the first thin film transistor
- Modification 2 example in which the gate insulating film and the passivation film are stacked films in the first thin film transistor
- FIG. 1 shows a configuration of a display device according to the first embodiment of the present invention.
- This display device is used as an ultra-thin organic light emitting color display device or the like.
- a pixel PXLC composed of a plurality of organic light emitting elements 10R, 10G, and 10B described later as display elements is provided on a TFT substrate 1 described later.
- a display area 110 arranged in a matrix is formed, and a horizontal selector (HSEL) 121 that is a signal section, a light scanner (WSCN) 131 that is a scanner section, and a power scanner (a power scanner) are formed around the display area 110.
- DSCN 132 is formed.
- signal lines DTL101 to 10n are arranged in the column direction, and scanning lines WSL101 to 10m and power supply lines DSL101 to 10m are arranged in the row direction.
- a pixel circuit 140 including an organic light emitting element PXLC (any one of 10R, 10G, and 10B (subpixel)) is provided at the intersection of each signal line DTL and each scanning line WSL.
- Each signal line DTL is connected to a horizontal selector 121, and a video signal is supplied from the horizontal selector 121 to the signal line DTL.
- Each scanning line WSL is connected to the write scanner 131.
- Each power line DSL is connected to a power line scanner 132.
- FIG. 2 shows an example of the pixel circuit 140.
- the pixel circuit 140 is an active driving circuit having a sampling transistor 3A and a driving transistor 3B, a storage capacitor 3C, and a light emitting element 3D made of an organic light emitting element PXLC.
- Sampling transistor 3A has its gate connected to corresponding scanning line WSL101, one of its source and drain connected to corresponding signal line DTL101, and the other connected to gate g of driving transistor 3B.
- the driving transistor 3B has a drain d connected to the corresponding power supply line DSL101 and a source s connected to the anode of the light emitting element 3D.
- the cathode of the light emitting element 3D is connected to the ground wiring 3H.
- the ground wiring 3H is wired in common to all the pixels PXLC.
- the storage capacitor 3C is connected between the source s and the gate g of the driving transistor 3B.
- the sampling transistor 3A is turned on according to the control signal supplied from the scanning line WSL101, samples the signal potential of the video signal supplied from the signal line DTL101, and holds it in the holding capacitor 3C.
- the driving transistor 3B is supplied with current from the power supply line DSL101 at the first potential, and supplies driving current to the light emitting element 3D according to the signal potential held in the holding capacitor 3C.
- the light emitting element 3D emits light with a luminance corresponding to the signal potential of the video signal by the supplied drive current.
- FIG. 3 shows a cross-sectional configuration of the TFT 20 constituting the sampling transistor 3A and the driving transistor 3B shown in FIG.
- the TFT 20 is, for example, an oxide semiconductor transistor having a gate electrode 21, a gate insulating film 22, an oxide semiconductor layer 23, a channel protective layer 24, a source / drain electrode 25, and a passivation film 26 in this order on the substrate 10.
- an oxide semiconductor refers to an oxide of zinc, indium, gallium, tin, or a mixture thereof, and is known to exhibit excellent semiconductor characteristics.
- the gate electrode 21 controls the electron density in the oxide semiconductor layer 23 by a gate voltage applied to the TFT 20.
- a molybdenum (Mo) layer having a thickness of 50 nm and aluminum (Al) having a thickness of 400 nm. It has a two-layer structure with a layer or an aluminum alloy layer.
- the aluminum alloy layer include an aluminum-neodymium alloy layer.
- Each of the gate insulating film 22, the channel protective layer 24, and the passivation film 26 has a stacked structure of a first layer 31 made of aluminum oxide and a second layer 32 made of an insulating material containing silicon (Si). Accordingly, in this display device, oxygen and the like are prevented from being desorbed from the oxide semiconductor layer 23, and the film formation time of the gate insulating film 22, the channel protective layer 24, and the passivation film 26 can be shortened. It has become.
- the first layer 31 suppresses the release of oxygen or the like from the oxide semiconductor layer 23 due to the excellent gas barrier resistance of aluminum oxide, and suppresses the change in the carrier concentration in the oxide semiconductor, thereby reducing the electrical characteristics of the TFT 20. It is for stabilizing.
- the second layer 32 is for shortening the film formation time of the gate insulating film 22, the channel protective layer 24, and the passivation film 26 without causing deterioration of the characteristics of the TFT 20.
- the second layer 32 preferably includes at least one of a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
- the carrier concentration in the semiconductor changes greatly due to the influence of oxygen and moisture.
- the electrical characteristics of the TFT 20 often change due to long-time driving of the TFT 20 or in the manufacturing process of the TFT 20. Therefore, by sandwiching the oxide semiconductor layer 23 between the first layer 31 of the gate insulating film 22 and the first layer 31 of the channel protective layer 24, the influence of a gas such as oxygen is reduced, and the electrical characteristics of the TFT 20 are reduced. Stabilization and reliability can be improved.
- the first layer 31 and the second layer 32 are preferably laminated with the first layer 31 facing the oxide semiconductor layer 23 side. This is because the oxide semiconductor layer 23 can be directly sandwiched between the first layer 31 of the gate insulating film 22 and the first layer 31 of the channel protective layer 24, and a higher effect can be obtained.
- the stability and reliability of the TFT 20 can be further improved, and higher effects can be obtained.
- the thickness of the first layer 31 of the gate insulating film 22 is preferably 10 nm to 100 nm, for example, and the thickness of the second layer 32 is preferably 100 nm to 600 nm, for example.
- the thickness of the first layer 31 of the channel protective layer 24 is preferably, for example, 10 nm or more and 100 nm or less, and the thickness of the second layer 32 is, for example, 100 nm or more and 600 nm or less.
- the thickness of the first layer 31 of the passivation film 26 is preferably 10 nm or more and 100 nm or less, for example, and the thickness of the second layer 32 is preferably 100 nm or more and 600 nm or less, for example.
- the oxide semiconductor layer 23 has a thickness of 20 nm to 100 nm, for example, and is made of indium gallium zinc oxide (IGZO).
- IGZO indium gallium zinc oxide
- the source / drain electrode 25 is made of a metal such as molybdenum, aluminum, titanium, or a multilayer film thereof.
- a specific configuration of the source / drain electrode 25 for example, from the side of the oxide semiconductor layer 23, a laminated film of a molybdenum layer 25A having a thickness of 50 nm, an aluminum layer 25B having a thickness of 500 nm, and a titanium layer 25C having a thickness of 50 nm. Is preferred. The reason is as follows.
- the anode 52 of the organic light emitting elements 10R, 10G, and 10B described later is made of a metal mainly composed of aluminum
- the anode 52 needs to be wet-etched using a mixed solution containing phosphoric acid, nitric acid, acetic acid, and the like.
- the etching rate of the titanium layer 25C is very low, it can be left on the substrate 10 side.
- the source / drain electrodes 25 may be composed of a laminated film of a molybdenum layer, an aluminum layer, and a molybdenum layer, or a laminated film of a titanium layer, an aluminum layer, and a titanium layer, depending on the use / application of the TFT 20. .
- FIG. 4 shows a cross-sectional configuration of the display area 110.
- an organic light emitting element 10R that generates red light
- an organic light emitting element 10G that generates green light
- an organic light emitting element 10B that generates blue light are sequentially formed in a matrix.
- the organic light emitting elements 10R, 10G, and 10B have a rectangular planar shape, and a combination of adjacent organic light emitting elements 10R, 10G, and 10B constitutes one pixel.
- the organic light emitting devices 10R, 10G, and 10B are respectively provided on the TFT substrate 1 with a planarization insulating film 51 therebetween, an anode (anode) 52, an interelectrode insulating film 54, an organic layer 53 including a light emitting layer described later, And a cathode (cathode) 55 are stacked in this order.
- Such organic light emitting devices 10R, 10G, and 10B are covered with a protective layer 56 such as silicon nitride (SiN) or silicon oxide (SiO) as necessary, and further, a thermosetting resin is formed on the protective layer 56.
- a protective layer 56 such as silicon nitride (SiN) or silicon oxide (SiO) as necessary, and further, a thermosetting resin is formed on the protective layer 56.
- sealing is performed by bonding a sealing substrate 71 made of glass or the like across the entire surface with an adhesive layer 60 such as an ultraviolet curable resin in between.
- the sealing substrate 71 may be provided with a color filter 72 and a light shielding film (not shown) as a black matrix as necessary.
- the planarization insulating film 51 is for planarizing the surface of the TFT substrate 1 on which the pixel driving circuit 140 including the sampling transistor 3A and the driving transistor 3B made of the TFT 20 is formed.
- the planarization insulating film 51 is preferably made of a material having a high pattern accuracy because a fine connection hole 51A is formed.
- Examples of the constituent material of the planarization insulating film 51 include an organic material such as polyimide or an inorganic material such as silicon oxide (SiO 2 ).
- the driving transistor 3B shown in FIG. 2 is electrically connected to the anode 52 through a connection hole 51A provided in the planarization insulating film 51.
- the anode 52 is formed corresponding to each of the organic light emitting elements 10R, 10G, and 10B. Further, the anode 52 has a function as a reflective electrode that reflects light generated in the light emitting layer, and it is desirable to increase the luminous efficiency to have as high a reflectance as possible.
- the anode 52 has, for example, a thickness of 100 nm to 1000 nm, and includes silver (Ag), aluminum (Al), chromium (Cr), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), It is composed of a single element or an alloy of a metal element such as molybdenum (Mo), copper (Cu), tantalum (Ta), tungsten (W), platinum (Pt), or gold (Au).
- a metal element such as molybdenum (Mo), copper (Cu), tantalum (Ta), tungsten (W), platinum (Pt), or gold (Au).
- the interelectrode insulating film 54 is used to ensure insulation between the anode 52 and the cathode 55 and to accurately form a light emitting region in a desired shape.
- an organic material such as polyimide or silicon oxide (SiO 2).
- the interelectrode insulating film 54 has an opening corresponding to the light emitting region of the anode 52.
- the organic layer 53 and the cathode 55 may be provided not only on the light emitting region but also on the interelectrode insulating film 54, but light emission occurs only in the opening of the interelectrode insulating film 54. is there.
- the organic layer 53 has, for example, a structure in which a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer (all not shown) are stacked in this order from the anode 52 side. Other layers may be provided as necessary.
- the organic layer 53 may have a different configuration depending on the emission color of the organic light emitting elements 10R, 10G, and 10B.
- the hole injection layer is a buffer layer for improving hole injection efficiency and preventing leakage.
- the hole transport layer is for increasing the efficiency of transporting holes to the light emitting layer. In the light emitting layer, recombination of electrons and holes occurs when an electric field is applied to generate light.
- the electron transport layer is for increasing the efficiency of electron transport to the light emitting layer.
- the constituent material of the organic layer 53 should just be a general low molecular or high molecular organic material, and is not specifically limited.
- the cathode 55 has a thickness of 5 nm to 50 nm, for example, and is made of a single element or alloy of a metal element such as aluminum (Al), magnesium (Mg), calcium (Ca), or sodium (Na). Among these, an alloy of magnesium and silver (MgAg alloy) or an alloy of aluminum (Al) and lithium (Li) (AlLi alloy) is preferable.
- the cathode 55 may be made of ITO (indium / tin composite oxide) or IZO (indium / zinc composite oxide).
- This display device can be manufactured, for example, as follows.
- a sputtering method is used to form a two-layer structure of, for example, a molybdenum (Mo) layer having a thickness of 50 nm and an aluminum (Al) layer or an aluminum alloy layer having a thickness of 400 nm.
- Mo molybdenum
- Al aluminum
- the gate electrode 21 is formed as shown in FIG. 5A by subjecting this two-layer structure to photolithography and etching.
- the gate insulating film 22 made of the above-described thickness and material is formed on the entire surface of the substrate 10 by, for example, a plasma CVD (Chemical Vapor Deposition) method. Two layers 32 are formed.
- a plasma CVD Chemical Vapor Deposition
- the first layer 31 of the gate insulating film 22 made of the above-described thickness and material is formed by, for example, atomic layer deposition or sputtering.
- an oxide made of the above-described thickness and material is formed by sputtering using an oxide target such as zinc oxide.
- a semiconductor layer 23 is formed.
- the oxide semiconductor layer 23 is formed of IGZO, a DC sputtering method using an IGZO ceramic as a target is used, and plasma discharge is performed by a mixed gas of argon (Ar) and oxygen (O 2 ).
- An oxide semiconductor layer 23 is formed over the substrate 10.
- the vacuum vessel is evacuated until the degree of vacuum is 1 ⁇ 10 ⁇ 4 Pa or less, and then a mixed gas of argon and oxygen is introduced.
- the oxide semiconductor layer 23 is made of zinc oxide
- DC sputtering is performed by RF sputtering using a zinc oxide ceramic target or in a gas atmosphere containing argon and oxygen using a zinc metal target.
- An oxide semiconductor layer 23 is formed by a sputtering method.
- the first layer 31 of the channel protective layer 24 made of the above-described thickness and material is formed by, for example, atomic layer deposition or sputtering. Form.
- the first layer 31 of the gate insulating film 22, the oxide semiconductor layer 23, and the first layer 31 of the channel protective layer 24 are continuously formed by a sputtering method.
- the oxide semiconductor layer 23 can be formed in a vacuum without being exposed to the atmosphere, and the junction interface between the oxide semiconductor layer 23 and the first layer 31 of the gate insulating film 22 and the oxidation can be formed. It is possible to form a favorable interface with few defects and fixed charges at the junction interface between the physical semiconductor layer 23 and the first layer 31 of the channel protective layer 24. Therefore, good transistor characteristics and reliability can be obtained.
- the second layer 32 of the channel protective layer 24 made of the above-described thickness and material is formed by, for example, CVD,
- the first layer 31 and the second layer 32 of the channel protective layer 24 are formed into a predetermined shape by photolithography and etching.
- the oxide semiconductor layer 23 is formed into a predetermined shape by photolithography and etching.
- a titanium layer 25A having a thickness of 50 nm, an aluminum layer 25B having a thickness of 500 nm, and a molybdenum layer 25C having a thickness of 50 nm are formed by sputtering, for example, and formed into a predetermined shape by photolithography and etching.
- the molybdenum layer 25C and the aluminum layer 25B are etched by wet etching using a mixed solution containing phosphoric acid, nitric acid and acetic acid, and then the titanium layer 25A is etched by dry etching using a chlorine-based gas. .
- source / drain electrodes 25 are formed.
- the first layer 31 of the passivation film 26 made of the above-described thickness and material is formed by, for example, atomic layer deposition or sputtering.
- atomic layer deposition method trimethylaluminum gas serving as a source gas is introduced into a vacuum chamber, and an atomic layer aluminum film is formed on the surface of the substrate 10. Subsequently, oxygen radicals obtained by exciting ozone gas or oxygen gas with plasma are introduced to the surface of the substrate 10 to oxidize the aluminum film.
- the aluminum film formed first has an atomic layer thickness, it can be easily oxidized by ozone or oxygen radicals, and a uniform aluminum oxide film can be formed on the entire surface of the substrate 10.
- the first layer 31 made of an aluminum oxide film having a desired thickness can be formed by repeating the formation of the aluminum film and the oxidation process. With this method, it is possible to obtain a composition that achieves a stoichiometric ratio without deteriorating the oxygen concentration in the aluminum oxide film. Therefore, the composition ratio of aluminum and oxygen can be ideal 2: 3, and the first layer 31 having excellent electrical characteristics and gas barrier resistance can be formed.
- the atomic layer deposition method it is possible to form the first layer 31 made of dense aluminum oxide in a state where generation of hydrogen that deteriorates the electrical characteristics of the oxide semiconductor layer 23 is suppressed. .
- the second layer 32 of the passivation film 26 made of the above-described thickness and material is formed by, eg, CVD.
- the TFT substrate 1 having the TFT 20 shown in FIG. 3 is formed.
- Step of forming organic light emitting elements 10R, 10G, 10B First, a photosensitive resin is applied to the entire surface of the TFT substrate 1, exposed and developed to form the planarization insulating film 51 and the connection hole 51 ⁇ / b> A, and is baked. Next, the anode 52 made of the above-described material is formed by, for example, direct current sputtering, and selectively etched using, for example, a lithography technique and patterned into a predetermined shape. Subsequently, the interelectrode insulating film 54 made of the above-described thickness and material is formed by, for example, a CVD method, and an opening is formed by using, for example, a lithography technique.
- the organic layer 53 and the cathode 55 made of the above-described materials are sequentially formed by, for example, vapor deposition to form the organic light emitting elements 10R, 10G, and 10B. Subsequently, the organic light emitting elements 10R, 10G, and 10B are covered with the protective film 56 made of the above-described material.
- an adhesive layer 60 is formed on the protective film 56.
- a color filter 72 is provided, a sealing substrate 71 made of the above-described material is prepared, and the TFT substrate 1 and the sealing substrate 71 are bonded together with the adhesive layer 60 in between.
- the display device shown in FIG. 4 is completed.
- the sampling transistor 3A is turned on in response to the control signal supplied from the scanning line WSL, and the signal potential of the video signal supplied from the signal line DTL is sampled and held in the holding capacitor 3C. Further, a current is supplied to the driving transistor 3B from the power supply line DSL at the first potential, and the driving current is changed to the light emitting element 3D (organic light emitting elements 10R, 10G, and 10B) according to the signal potential held in the holding capacitor 3C. To be supplied.
- the light emitting element 3D (organic light emitting elements 10R, 10G, and 10B) emits light with luminance according to the signal potential of the video signal by the supplied drive current. This light passes through the cathode 55, the color filter 72, and the sealing substrate 71 and is extracted.
- each of the gate insulating film 22, the channel protective layer 24, and the passivation film 26 has a stacked structure of a first layer 31 made of aluminum oxide and a second layer 32 made of an insulating material containing silicon (Si).
- the oxide semiconductor layer 23 is sandwiched from both sides by the first layer 31 made of aluminum oxide. Therefore, desorption of oxygen or the like from the oxide semiconductor layer 23 is suppressed, the threshold voltage of the TFT 20 is stabilized, and an increase in off current is suppressed. Therefore, the leakage current of the TFT 20 is reduced, and a bright display with high luminance is possible.
- the second layer 32 is made of an insulating material containing silicon (Si)
- the film formation time is shorter than that of a conventional aluminum oxide single-layer gate insulating layer.
- the characteristics of the TFT 20 are also uniform, it is possible to obtain a uniform display quality without roughness. In addition, the reliability by driving the TFT 20 for a long time is also improved.
- the gate insulating film 22, the channel protective layer 24, and the passivation film 26 are respectively formed of the first layer 31 made of aluminum oxide and the second layer 32 made of an insulating material containing silicon (Si).
- the oxide semiconductor layer 23 can be sandwiched from both sides by the first layer 31 made of aluminum oxide. Therefore, it is possible to suppress the desorption of oxygen or the like from the oxide semiconductor layer 23 and stabilize the electrical characteristics of the TFT 20.
- the second layer 32 with an insulating material containing silicon (Si)
- the film formation time can be shortened as compared with a conventional gate insulating layer of an aluminum oxide single layer.
- the oxide semiconductor layer 23 is connected to the first layer 31 of the gate insulating film 22. Further, it can be directly sandwiched between the first layer 31 of the channel protective layer 24, and a higher effect can be obtained.
- the gate insulating film 22, the channel protective layer 24, and the passivation film 26 each have a laminated structure of a first layer 31 made of aluminum oxide and a second layer 32 made of an insulating material containing silicon (Si). Therefore, the oxide semiconductor layer 23 can be sandwiched between the first layer 31 of the gate insulating film 22 and the first layer 31 of the channel protective layer 24 and can be covered with the first layer 31 of the passivation film 26. It is possible to improve the stability and reliability of the device, and a higher effect can be obtained.
- the gate insulating film 22, the channel protective layer 24, and the passivation film 26 are each formed of the first layer 31 made of aluminum oxide and the second layer made of an insulating material containing silicon (Si).
- the case where a laminated structure with 32 is used has been described. However, as shown in FIG. 7, only the gate insulating film 22 and the channel protective layer 24 are laminated with the first layer 31 made of aluminum oxide and the second layer 32 made of an insulating material containing silicon (Si), respectively. It is good also as a structure. Also in this case, the influence of a gas such as oxygen can be reduced by sandwiching the oxide semiconductor layer 23 between the first layer 31 of the gate insulating film 22 and the first layer 31 of the channel protective layer 24. Thus, the electrical characteristics of the TFT 20 can be stabilized and the reliability can be improved.
- the passivation film 26 has a thickness of about 300 nm, for example, and is composed of at least one of an aluminum oxide film, a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
- Modification 2 Further, as shown in FIG. 8, only the gate insulating film 22 and the passivation film 26 are respectively laminated structures of a first layer 31 made of aluminum oxide and a second layer 32 made of an insulating material containing silicon (Si). It is good. Also in this case, the influence of a gas such as oxygen can be reduced by sandwiching the oxide semiconductor layer 23 between the first layer 31 of the gate insulating film 22 and the first layer 31 of the passivation film 26. In addition, the electrical characteristics of the TFT 20 can be stabilized and the reliability can be improved.
- the channel protective layer 24 has a thickness of, for example, 300 nm and is composed of at least one of an aluminum oxide film, a silicon oxide film, a silicon nitride film, and a silicon oxynitride film.
- FIG. 10 shows a cross-sectional configuration of a thin film transistor (TFT) 20B according to the second embodiment of the present invention.
- the TFT 20B has the same configuration as the TFT 20 of the first embodiment except that the configuration of the passivation film 26B is different. Accordingly, the corresponding components will be described with the same reference numerals.
- the substrate 10, the gate electrode 21 and the source / drain electrode 25 are configured in the same manner as in the first embodiment.
- the gate insulating film 22B is formed of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a hafnium oxide film, an aluminum oxide film, a tantalum oxide film, a zirconium oxide film, or at least one of these oxynitride films. It is formed of an insulating film. Further, by providing a stacked structure of these two or more types of insulating films 31B and 32B, the interface characteristics with the oxide semiconductor layer 23B are improved, and impurities contained in the substrate 10 are diffused into the oxide semiconductor layer 23B. It becomes possible to prevent this.
- the oxide semiconductor layer 23B may be made of indium gallium zinc oxide (IGZO) as in the first embodiment, or may contain elements such as tin (Sn) and titanium. .
- the thickness of the oxide semiconductor layer 23B is, for example, about 20 nm to 100 nm.
- the channel protective layer 24B is formed of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a hafnium oxide film, an aluminum oxide film, a tantalum oxide film, a zirconium oxide film, or at least one kind of these oxynitride films. It is formed of an insulating film.
- the passivation film 26B is made of an oxide, nitride, or oxynitride containing at least one of aluminum (Al), titanium (Ti), and tantalum (Ta). Thereby, in this TFT 20B, it is possible to suppress the reduction of oxygen in the oxide semiconductor by hydrogen in the atmosphere and to suppress the desorption of oxygen and the like from the oxide semiconductor layer.
- the passivation film 26B is preferably made of oxynitride or nitride of aluminum, among others. This is because a higher effect can be obtained.
- the density of the passivation film 26B is preferably, for example, 3.0 g / cm 3 or more and 4.0 g / cm 3 or less. This is because it is possible to enhance a barrier function that prevents the oxide semiconductor from being reduced by hydrogen in the manufacturing process or in the atmosphere, and desorption of oxygen in the oxide semiconductor by heat treatment. In general, a passivation film having a higher density can be used as a protective film because oxygen and hydrogen permeability can be reduced.
- the ideal aluminum oxide (Al 2 O 3 ) bulk density is 4.0 g / cm 3 .
- the passivation film 26B is, for example, a single layer film.
- the thickness of the passivation film 26B is preferably, for example, not less than 10 nm and not more than 1000 nm, specifically about 50 nm.
- the TFT 20B can be manufactured as follows, for example.
- FIG. 11A a substrate 10 similar to that of the first embodiment is prepared, and, for example, sputtering is performed on the entire surface of the substrate 10 as shown in FIG.
- the gate electrode 21 made of the above-described material is formed by CVD.
- a film 32B of the gate insulating film 22B made of the above-described material is formed on the entire surface of the substrate 10 and the gate electrode 21.
- a film 32B of the gate insulating film 22B made of the above-described material is formed on the entire surface of the substrate 10 and the gate electrode 21.
- the film 31B of the gate insulating film 22B made of the above-described thickness and material, the oxide semiconductor layer 23B, and the channel protective layer 24B.
- the oxide semiconductor film 23B is formed of indium gallium zinc oxide (IGZO)
- IGZO indium gallium zinc oxide
- a DC sputtering method using a ceramic of indium gallium zinc oxide as a target is used, and a mixed gas of argon (Ar) and oxygen (O 2 ) is used.
- An oxide semiconductor is formed on the substrate 10 by plasma discharge.
- the vacuum vessel Before the plasma discharge, the vacuum vessel is evacuated until the degree of vacuum becomes 1 ⁇ 10 ⁇ 4 Pa or less, and then a mixed gas of argon and oxygen is introduced.
- a mixed gas of argon and oxygen is introduced.
- zinc oxide is used as the material of the oxide semiconductor layer 23B
- a zinc oxide film to be the oxide semiconductor layer 23B can be formed.
- the channel protective layer 24B is patterned by, for example, photolithography and etching, and formed into a predetermined shape.
- a titanium layer 25A, an aluminum layer 25B, and a titanium layer 25C are formed in this order in thicknesses of about 50 nm, 500 nm, and 50 nm, for example, by sputtering.
- the titanium layer 25A, the aluminum layer 25B, and the titanium layer 25C are patterned by dry etching using a chlorine-based gas, thereby forming the source / drain electrodes 25 as shown in FIG. .
- the source / drain electrode 25 may be a laminated film of molybdenum and aluminum when applied to a thin film transistor for driving a liquid crystal panel.
- a passivation film 26B made of the above-described thickness and material is formed.
- the passivation film 26B is preferably formed by a sputtering method. The reason will be described below.
- ALD atomic layer deposition method
- problems such as slow throughput in mass production due to the time required for film formation and the need to use an organic metal of aluminum.
- the formed aluminum oxide film has many oxygen defects, and thus cannot be as reliable as the aluminum oxide formed by ALD. Therefore, it is preferable to add nitrogen gas when forming the aluminum oxide film (passivation film 26B). Thus, it is possible to form a dense passivation film 26B having a higher density by compensating oxygen defects with nitrogen.
- nitrogen gas addition conditions for example, it is preferable to add 0.1 to 70% of nitrogen or ammonia (NH 3 ) gas to a total pressure of 0.1 to 5 Pa.
- FIG. 13 shows the results of investigating the correlation between the amount of nitrogen added and the density of aluminum oxynitride.
- nitrogen is not added, when the amount of nitrogen added is small, and when the amount of nitrogen added is large.
- the results for each of the 9 samples and the average of them are shown.
- the addition of nitrogen increases the density of the aluminum oxynitride film by about 0.2 g / cm 3 . Further, the density can be further improved by increasing the concentration of nitrogen to be added.
- the TFT 20B can constitute a display device as in the first embodiment.
- the manufacturing method of the display device is the same as that of the first embodiment.
- the passivation film 26B of the TFT 20B is made of an oxide, nitride, or oxynitride containing at least one of aluminum (Al), titanium (Ti), and tantalum (Ta). For this reason, permeation of hydrogen to the oxide semiconductor layer 23B is suppressed, and reduction of oxygen in the oxide semiconductor layer 23B by hydrogen in the atmosphere is suppressed. Further, desorption of oxygen and the like from the oxide semiconductor layer 23B is suppressed, the threshold voltage of the TFT 20B is stabilized, and an increase in off-state current is suppressed. Therefore, the leakage current of the TFT 20B is reduced, and bright display with high luminance is possible. In addition, since the characteristics of the TFT 20B become uniform, uniform display quality without unevenness can be obtained. In addition, the reliability by driving the TFT 20 is also improved.
- the passivation film 26B is made of an oxide, nitride, or oxynitride containing at least one of aluminum (Al), titanium (Ti), and tantalum (Ta). Yes.
- Al aluminum
- Ti titanium
- Ta tantalum
- FIG. 14 shows a cross-sectional configuration of a thin film transistor (TFT) 20C according to the third embodiment of the present invention.
- the TFT 20C has the same configuration as that of the TFT 20B of the second embodiment except that the passivation film 26C is a laminated film, and can be manufactured in the same manner. Therefore, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
- the passivation film 26C is a laminated film having a lower layer 35C made of an oxide containing aluminum (Al) and an upper layer 36C made of an oxynitride or nitride containing aluminum (Al).
- Al oxide containing aluminum
- Al oxynitride or nitride containing aluminum
- the passivation film 26C is the above-described oxide single-layer film
- oxygen desorption of the oxide semiconductor layer 23B is suppressed by performing the treatment in an oxygen atmosphere when the sputtering film formation is performed, and the transistor characteristics are improved.
- the process can be performed in a stable state.
- the passivation film 26C is a single-layer film of oxynitride or nitride described above
- nitrogen is added during the sputtering film formation as described in the second embodiment, so that the oxygen atmosphere described above The effect may be weakened and the transistor characteristics may be deteriorated.
- the passivation film 26C By forming the passivation film 26C as the above-described laminated film, oxygen lowering of the oxide semiconductor layer 23B is suppressed by the lower layer 35C made of an oxide containing aluminum (Al), and oxynitride or nitride containing aluminum (Al) is used. Permeation of hydrogen can be suppressed by the upper layer 36C made of a material.
- FIG. 15 shows the threshold voltage shift after BTS (Bias TemperatureStress) when the passivation film is a single layer film of aluminum oxide and when the passivation film is a laminated film of an aluminum oxide lower layer 35B and an aluminum oxynitride upper layer 36C. It shows the result of examining the amount.
- BTS Bias TemperatureStress
- the shift amount of the threshold voltage is smaller than when the passivation film 26B is a single layer film. That is, by using the above-described laminated film as the passivation film 26B, it is possible to further stabilize the threshold voltage of the TFT 20C and suppress an increase in off current. In addition, reliability by driving the thin film transistor is also improved.
- the TFT 20C can constitute a display device as in the first and second embodiments.
- action, and an effect it is the same as that of the said 1st and 2nd embodiment.
- the passivation film 26C is a laminated film, specifically, a lower layer 35C made of an oxide containing aluminum (Al) and an upper layer 36C made of an oxynitride containing aluminum (Al). To have.
- oxygen desorption of the oxide semiconductor layer 23B is suppressed by the lower layer 35C made of an oxide containing aluminum (Al), and hydrogen permeation is suppressed by the upper layer 36C made of an oxynitride containing aluminum (Al). It becomes possible.
- the passivation film 26C is a laminated film of a lower layer 35C made of aluminum oxide and an upper layer 36C containing aluminum oxynitride has been described.
- a metal oxide film other than aluminum and a metal An oxynitride film may be stacked.
- it is good also as a multilayer film of two or more layers.
- the display device is an image signal that is input from the outside or is generated internally, such as a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera.
- the present invention can be applied to display devices for electronic devices in various fields that display images.
- the display device of the above embodiment is incorporated into various electronic devices such as application examples 1 to 5 to be described later, for example, as a module shown in FIG.
- a region 210 exposed from the sealing substrate 71 and the adhesive layer 60 is provided on one side of the substrate 10, and wirings of the signal line driving circuit 120 and the scanning line driving circuit 130 are provided in the exposed region 210.
- An external connection terminal (not shown) is formed by extending.
- the external connection terminal may be provided with a flexible printed circuit (FPC) 220 for signal input / output.
- FPC flexible printed circuit
- FIG. 17 illustrates an appearance of a television device to which the display device of the above embodiment is applied.
- the television apparatus has, for example, a video display screen unit 300 including a front panel 310 and a filter glass 320, and the video display screen unit 300 is configured by the display device according to each of the above embodiments. .
- FIG. 18 shows the appearance of a digital camera to which the display device of the above embodiment is applied.
- the digital camera includes, for example, a flash light emitting unit 410, a display unit 420, a menu switch 430, and a shutter button 440.
- the display unit 420 is configured by the display device according to each of the above embodiments. Yes.
- FIG. 19 illustrates an appearance of a notebook personal computer to which the display device of the above embodiment is applied.
- the notebook personal computer has, for example, a main body 510, a keyboard 520 for inputting characters and the like, and a display unit 530 for displaying an image.
- the display unit 530 is a display according to each of the above embodiments. It is comprised by the apparatus.
- FIG. 20 shows the appearance of a video camera to which the display device of the above embodiment is applied.
- This video camera has, for example, a main body 610, a subject photographing lens 620 provided on the front side surface of the main body 610, a start / stop switch 630 at the time of photographing, and a display 640.
- Reference numeral 640 denotes the display device according to each of the above embodiments.
- FIG. 21 illustrates an appearance of a mobile phone to which the display device of the above embodiment is applied.
- the mobile phone is obtained by connecting an upper housing 710 and a lower housing 720 with a connecting portion (hinge portion) 730, and includes a display 740, a sub-display 750, a picture light 760, and a camera 770.
- the display 740 or the sub-display 750 is configured by the display device according to each of the above embodiments.
- the present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made.
- all or part of the gate insulating film 22, the channel protective layer 24, and the passivation film 26 are made of an insulating material containing a first layer 31 made of aluminum oxide and silicon (Si), respectively.
- the case where the laminated structure with the second layer 32 is formed has been described.
- the first layer 31 made of aluminum oxide and silicon (Si) are formed on the gate electrode 21 side and the opposite side of the gate electrode 21 of the oxide semiconductor layer 23.
- a laminated film with the second layer 32 made of an insulating material including
- each layer described in the above embodiment and the like, or the film formation method and film formation conditions are not limited, and other materials and thicknesses may be used, or other film formation methods. Alternatively, film forming conditions may be used.
- the configuration of the organic light emitting elements 10R, 10B, and 10G has been specifically described. However, it is not necessary to include all layers, and other layers may be further included. .
- the present invention can be applied to display devices using other display elements such as liquid crystal display elements, inorganic electroluminescence elements, or electrodeposition type or electrochromic type display elements in addition to organic light emitting elements. It is.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
1.第1の実施の形態(第1の薄膜トランジスタにおいてゲート絶縁膜,チャネル保護層およびパッシベーション膜を積層膜とした例)
2.第2の実施の形態(第2の薄膜トランジスタにおいて単層のパッシベーション膜の例)
3.第3の実施の形態(第2の薄膜トランジスタにおいて積層のパッシベーション膜の例)
4.変形例1(第1の薄膜トランジスタにおいてゲート絶縁膜およびチャネル保護層を積層膜とした例)
5.変形例2(第1の薄膜トランジスタにおいてゲート絶縁膜およびパッシベーション膜を積層膜とした例)
図1は、本発明の第1の実施の形態に係る表示装置の構成を表すものである。この表示装置は、極薄型の有機発光カラーディスプレイ装置などとして用いられるものであり、例えば、後述するTFT基板1に、表示素子として後述する複数の有機発光素子10R,10G,10Bよりなる画素PXLCがマトリクス状に配置されてなる表示領域110が形成されると共に、この表示領域110の周辺に、信号部である水平セレクタ(HSEL)121と、スキャナ部であるライトスキャナ(WSCN)131および電源スキャナ(DSCN)132とが形成されたものである。
まず、ガラスよりなる基板10上に、例えばスパッタリング法により、例えば、厚みが50nmのモリブデン(Mo)層と、厚みが400nmのアルミニウム(Al)層またはアルミニウム合金層との二層構造を形成する。次いで、この二層構造に対して、フォトリソグラフィおよびエッチングを施すことにより、図5(A)に示したように、ゲート電極21を形成する。
まず、TFT基板1の全面に感光性樹脂を塗布し、露光および現像することにより、平坦化絶縁膜51および接続孔51Aを形成し、焼成する。次いで、例えば直流スパッタリングにより、上述した材料よりなるアノード52を成膜し、例えばリソグラフィ技術を用いて選択的にエッチングし、所定の形状にパターニングする。続いて、例えばCVD法により上述した厚みおよび材料よりなる電極間絶縁膜54を形成し、例えばリソグラフィ技術を用いて開口部を形成する。そののち、例えば蒸着法により、上述した材料よりなる有機層53およびカソード55を順次成膜し、有機発光素子10R,10G,10Bを形成する。続いて、有機発光素子10R,10G,10Bを、上述した材料よりなる保護膜56で覆う。
なお、上記第1の実施の形態では、ゲート絶縁膜22,チャネル保護層24およびパッシベーション膜26を、それぞれ、酸化アルミニウムよりなる第1層31とシリコン(Si)を含む絶縁材料よりなる第2層32との積層構造とした場合について説明した。しかしながら、図7に示したように、ゲート絶縁膜22およびチャネル保護層24のみを、それぞれ、酸化アルミニウムよりなる第1層31とシリコン(Si)を含む絶縁材料よりなる第2層32との積層構造としてもよい。このようにした場合も、酸化物半導体層23を、ゲート絶縁膜22の第1層31と、チャネル保護層24の第1層31とで挟み込むことにより、酸素等のガスの影響を低減することができ、TFT20の電気特性の安定化や信頼性の向上が可能となる。
また、図8に示したように、ゲート絶縁膜22およびパッシベーション膜26のみを、それぞれ、酸化アルミニウムよりなる第1層31とシリコン(Si)を含む絶縁材料よりなる第2層32との積層構造としてもよい。このようにした場合も、酸化物半導体層23を、ゲート絶縁膜22の第1層31と、パッシベーション膜26の第1層31とで挟み込むことにより、酸素等のガスの影響を低減することができ、TFT20の電気特性の安定化や信頼性の向上が可能となる。
また、例えば、上記実施の形態では、パッシベーション膜26の第1層31および第2層32を、第1層31を酸化物半導体層23側にして積層するようにした場合について説明したが、図9に示したように、第2層32を酸化物半導体層23側にして積層するようにしてもよい。ゲート絶縁膜22およびチャネル保護層24についても、第1層31および第2層32を、第2層32を酸化物半導体層23側にして積層するようにしてもよい。
図10は、本発明の第2の実施の形態に係る薄膜トランジスタ(TFT)20Bの断面構成を表すものである。このTFT20Bは、パッシベーション膜26Bの構成が異なることを除いては、上記第1の実施の形態のTFT20と同様の構成を有している。よって、対応する構成要素には同一の符号を付して説明する。
ことが可能となる。
図14は、本発明の第3の実施の形態に係る薄膜トランジスタ(TFT)20Cの断面構成を表すものである。このTFT20Cは、パッシベーション膜26Cが積層膜であることを除いては、上記第2の実施の形態のTFT20Bと同様の構成を有し、同様にして製造することができる。よって、対応する構成要素には同一の符号を付して、その説明を省略する。
以下、上記実施の形態で説明した表示装置の適用例について説明する。上記実施の形態の表示装置は、テレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラなど、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器の表示装置に適用することが可能である。
上記実施の形態の表示装置は、例えば、図16に示したようなモジュールとして、後述する適用例1~5などの種々の電子機器に組み込まれる。このモジュールは、例えば、基板10の一辺に、封止用基板71および接着層60から露出した領域210を設け、この露出した領域210に、信号線駆動回路120および走査線駆動回路130の配線を延長して外部接続端子(図示せず)を形成したものである。外部接続端子には、信号の入出力のためのフレキシブルプリント配線基板(FPC;Flexible Printed Circuit)220が設けられていてもよい。
図17は、上記実施の形態の表示装置が適用されるテレビジョン装置の外観を表したものである。このテレビジョン装置は、例えば、フロントパネル310およびフィルターガラス320を含む映像表示画面部300を有しており、この映像表示画面部300は、上記各実施の形態に係る表示装置により構成されている。
図18は、上記実施の形態の表示装置が適用されるデジタルカメラの外観を表したものである。このデジタルカメラは、例えば、フラッシュ用の発光部410、表示部420、メニュースイッチ430およびシャッターボタン440を有しており、その表示部420は、上記各実施の形態に係る表示装置により構成されている。
図19は、上記実施の形態の表示装置が適用されるノート型パーソナルコンピュータの外観を表したものである。このノート型パーソナルコンピュータは、例えば、本体510,文字等の入力操作のためのキーボード520および画像を表示する表示部530を有しており、その表示部530は、上記各実施の形態に係る表示装置により構成されている。
図20は、上記実施の形態の表示装置が適用されるビデオカメラの外観を表したものである。このビデオカメラは、例えば、本体部610,この本体部610の前方側面に設けられた被写体撮影用のレンズ620,撮影時のスタート/ストップスイッチ630および表示部640を有しており、その表示部640は、上記各実施の形態に係る表示装置により構成されている。
図21は、上記実施の形態の表示装置が適用される携帯電話機の外観を表したものである。この携帯電話機は、例えば、上側筐体710と下側筐体720とを連結部(ヒンジ部)730で連結したものであり、ディスプレイ740,サブディスプレイ750,ピクチャーライト760およびカメラ770を有している。そのディスプレイ740またはサブディスプレイ750は、上記各実施の形態に係る表示装置により構成されている。
Claims (15)
- ゲート電極と酸化物半導体層との間にゲート絶縁膜を有し、
前記酸化物半導体層の前記ゲート電極側および前記ゲート電極と反対側に、酸化アルミニウムよりなる第1層とシリコン(Si)を含む絶縁材料よりなる第2層との積層膜が設けられている
薄膜トランジスタ。 - 前記第1層および前記第2層が、前記第1層を前記酸化物半導体層側にして積層されている
請求項1記載の薄膜トランジスタ。 - 基板上に、前記ゲート電極,前記ゲート絶縁膜,前記酸化物半導体層,チャネル保護膜,ソース・ドレイン電極およびパッシベーション膜を順に備え、
前記ゲート絶縁膜と、前記チャネル保護膜および前記パッシベーション膜のうちの少なくとも一方とが、前記積層膜である
請求項1または2記載の薄膜トランジスタ。 - 前記第2層は、シリコン酸化膜,シリコン窒化膜およびシリコン酸窒化膜のうち少なくとも一つを含む
請求項1記載の薄膜トランジスタ。 - 基板上に、ゲート電極,ゲート絶縁膜,酸化物半導体層,チャネル保護膜,ソース・ドレイン電極およびパッシベーション膜を順に備え、
前記パッシベーション膜が、アルミニウム(Al)、チタン(Ti)およびタンタル(Ta)のうち少なくとも1種を含む酸化物、窒化物あるいは酸窒化物により構成されている
薄膜トランジスタ。 - 前記パッシベーション膜が、アルミニウムの酸窒化物あるいは窒化物により構成されている
請求項5記載の薄膜トランジスタ。 - 前記パッシベーション膜の密度は、3.0g/cm3以上4.0g/cm3以下である
請求項5記載の薄膜トランジスタ。 - 前記パッシベーション膜は単層膜である
請求項5記載の薄膜トランジスタ。 - 前記パッシベーション膜は積層膜である
請求項6記載の薄膜トランジスタ。 - 前記積層膜は、アルミニウム(Al)を含む酸化物よりなる下層と、アルミニウム(Al)を含む酸窒化物または窒化物よりなる上層とを有する
請求項9記載の薄膜トランジスタ。 - 前記パッシベーション膜は、スパッタリング法により形成された
請求項5記載の薄膜トランジスタ。 - 薄膜トランジスタおよび表示素子を備え、
前記薄膜トランジスタは、
ゲート電極と酸化物半導体層との間にゲート絶縁膜を有し、
前記酸化物半導体層の前記ゲート電極側および前記ゲート電極と反対側に、酸化アルミニウムよりなる第1層とシリコン(Si)を含む絶縁材料よりなる第2層との積層膜が設けられている
表示装置。 - 前記表示素子は、前記薄膜トランジスタの側から順に、アノードと、発光層を含む有機層と、カソードとを有する有機発光素子である
請求項12記載の表示装置。 - 薄膜トランジスタおよび表示素子を備え、
前記薄膜トランジスタは、
基板上に、ゲート電極,ゲート絶縁膜,酸化物半導体層,チャネル保護膜,ソース・ドレイン電極およびパッシベーション膜を順に備え、
前記パッシベーション膜が、アルミニウム(Al)、チタン(Ti)およびタンタル(Ta)のうち少なくとも1種を含む酸化物、窒化物あるいは酸窒化物により構成されている
表示装置。 - 前記表示素子は、前記薄膜トランジスタの側から順に、アノードと、発光層を含む有機層と、カソードとを有する有機発光素子である
請求項14記載の表示装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/122,307 US8461594B2 (en) | 2008-10-08 | 2009-10-07 | Thin film transistor and display device |
CN2009801390331A CN102171833A (zh) | 2008-10-08 | 2009-10-07 | 薄膜晶体管和显示器件 |
BRPI0920797A BRPI0920797A2 (pt) | 2008-10-08 | 2009-10-07 | transistor de película fina, e , dispositivo de exibição |
US13/888,878 US8742418B2 (en) | 2008-10-08 | 2013-05-07 | Thin film transistor and display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008261831 | 2008-10-08 | ||
JP2008-261831 | 2008-10-08 | ||
JP2009-107732 | 2009-04-27 | ||
JP2009107732A JP5552753B2 (ja) | 2008-10-08 | 2009-04-27 | 薄膜トランジスタおよび表示装置 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/122,307 A-371-Of-International US8461594B2 (en) | 2008-10-08 | 2009-10-07 | Thin film transistor and display device |
US13/888,878 Continuation US8742418B2 (en) | 2008-10-08 | 2013-05-07 | Thin film transistor and display device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010041686A1 true WO2010041686A1 (ja) | 2010-04-15 |
Family
ID=42100634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/067492 WO2010041686A1 (ja) | 2008-10-08 | 2009-10-07 | 薄膜トランジスタおよび表示装置 |
Country Status (8)
Country | Link |
---|---|
US (2) | US8461594B2 (ja) |
JP (1) | JP5552753B2 (ja) |
KR (1) | KR20110069042A (ja) |
CN (1) | CN102171833A (ja) |
BR (1) | BRPI0920797A2 (ja) |
RU (1) | RU2011113550A (ja) |
TW (1) | TWI429085B (ja) |
WO (1) | WO2010041686A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011258939A (ja) * | 2010-05-14 | 2011-12-22 | Semiconductor Energy Lab Co Ltd | 半導体装置の作製方法 |
JP2012099757A (ja) * | 2010-11-05 | 2012-05-24 | Sony Corp | 薄膜トランジスタおよびその製造方法 |
CN102610652A (zh) * | 2011-01-20 | 2012-07-25 | 元太科技工业股份有限公司 | 金属氧化物半导体结构及其制造方法 |
CN102870221A (zh) * | 2010-06-08 | 2013-01-09 | 夏普株式会社 | 薄膜晶体管基板、具有它的液晶显示装置和薄膜晶体管基板的制造方法 |
JP2013138196A (ja) * | 2011-11-30 | 2013-07-11 | Semiconductor Energy Lab Co Ltd | 半導体装置および半導体装置の作製方法 |
JP2013147738A (ja) * | 2011-12-22 | 2013-08-01 | Kobe Steel Ltd | Taを含有する酸化アルミニウム薄膜 |
JP2013153148A (ja) * | 2011-12-27 | 2013-08-08 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
US8916865B2 (en) | 2010-06-18 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8981370B2 (en) | 2012-03-08 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9064853B2 (en) | 2011-08-19 | 2015-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9123817B2 (en) * | 2010-10-12 | 2015-09-01 | Samsung Electronics Co., Ltd. | Transistors and electronic devices including the same |
US9252279B2 (en) | 2011-08-31 | 2016-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20160111552A1 (en) * | 2009-11-13 | 2016-04-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device And Manufacturing Method Thereof |
US9502434B2 (en) | 2014-04-18 | 2016-11-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
US9978878B2 (en) | 2010-04-23 | 2018-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
TWI626691B (zh) * | 2011-03-30 | 2018-06-11 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
US10373984B2 (en) | 2017-03-29 | 2019-08-06 | Japan Display Inc. | Display device |
US10453965B2 (en) | 2017-03-29 | 2019-10-22 | Japan Display Inc. | Display device |
US11348948B2 (en) | 2018-01-26 | 2022-05-31 | Japan Display Inc. | Manufacturing method of a display device |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5552753B2 (ja) * | 2008-10-08 | 2014-07-16 | ソニー株式会社 | 薄膜トランジスタおよび表示装置 |
WO2011027723A1 (en) * | 2009-09-04 | 2011-03-10 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
CN102511082B (zh) * | 2009-09-16 | 2016-04-27 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
KR20180031077A (ko) | 2009-09-24 | 2018-03-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제조 방법 |
CN107195328B (zh) * | 2009-10-09 | 2020-11-10 | 株式会社半导体能源研究所 | 移位寄存器和显示装置以及其驱动方法 |
US8610180B2 (en) * | 2010-06-11 | 2013-12-17 | Semiconductor Energy Laboratory Co., Ltd. | Gas sensor and method for manufacturing the gas sensor |
WO2011155302A1 (en) * | 2010-06-11 | 2011-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2012004371A (ja) * | 2010-06-17 | 2012-01-05 | Sony Corp | 薄膜トランジスタおよび表示装置 |
CN102959713B (zh) * | 2010-07-02 | 2017-05-10 | 株式会社半导体能源研究所 | 半导体装置 |
US20120001179A1 (en) * | 2010-07-02 | 2012-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8785241B2 (en) * | 2010-07-16 | 2014-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
TWI405335B (zh) | 2010-09-13 | 2013-08-11 | Au Optronics Corp | 半導體結構及其製造方法 |
KR101932576B1 (ko) * | 2010-09-13 | 2018-12-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 그 제작 방법 |
JP5636867B2 (ja) * | 2010-10-19 | 2014-12-10 | 富士通株式会社 | 半導体装置及び半導体装置の製造方法 |
WO2012063614A1 (ja) * | 2010-11-10 | 2012-05-18 | 株式会社日立製作所 | 半導体装置 |
JP5707914B2 (ja) | 2010-12-13 | 2015-04-30 | ソニー株式会社 | 酸化物半導体を用いる装置、表示装置、及び、電子機器 |
TWI570809B (zh) * | 2011-01-12 | 2017-02-11 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
JP5685989B2 (ja) * | 2011-02-28 | 2015-03-18 | ソニー株式会社 | 表示装置および電子機器 |
US9023684B2 (en) * | 2011-03-04 | 2015-05-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
TWI658516B (zh) | 2011-03-11 | 2019-05-01 | 日商半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
JP5615744B2 (ja) | 2011-03-14 | 2014-10-29 | 富士フイルム株式会社 | 電界効果型トランジスタ、表示装置、センサ及び電界効果型トランジスタの製造方法 |
US9082860B2 (en) * | 2011-03-31 | 2015-07-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US8541266B2 (en) * | 2011-04-01 | 2013-09-24 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US9012905B2 (en) * | 2011-04-08 | 2015-04-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including transistor comprising oxide semiconductor and method for manufacturing the same |
US9117920B2 (en) * | 2011-05-19 | 2015-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device using oxide semiconductor |
US8901554B2 (en) * | 2011-06-17 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including channel formation region including oxide semiconductor |
US9627439B2 (en) | 2011-07-13 | 2017-04-18 | Rutgers, The State University Of New Jersey | ZnO-based system on glass (SOG) for advanced displays |
US9660092B2 (en) * | 2011-08-31 | 2017-05-23 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor thin film transistor including oxygen release layer |
KR101506303B1 (ko) * | 2011-09-29 | 2015-03-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 및 반도체 장치의 제작 방법 |
WO2013054823A1 (en) * | 2011-10-14 | 2013-04-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
TWI567985B (zh) * | 2011-10-21 | 2017-01-21 | 半導體能源研究所股份有限公司 | 半導體裝置及其製造方法 |
JP6226518B2 (ja) * | 2011-10-24 | 2017-11-08 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2013097195A (ja) * | 2011-11-01 | 2013-05-20 | Tokyo Institute Of Technology | 表示装置とその製造方法 |
CN102646676B (zh) * | 2011-11-03 | 2015-06-10 | 京东方科技集团股份有限公司 | 一种tft阵列基板 |
KR102072244B1 (ko) * | 2011-11-30 | 2020-01-31 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
US8785258B2 (en) * | 2011-12-20 | 2014-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US8796683B2 (en) | 2011-12-23 | 2014-08-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
CN202423298U (zh) * | 2011-12-31 | 2012-09-05 | 京东方科技集团股份有限公司 | 一种tft、阵列基板以及显示器件 |
US9099560B2 (en) * | 2012-01-20 | 2015-08-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
KR102097171B1 (ko) * | 2012-01-20 | 2020-04-03 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
TWI642193B (zh) * | 2012-01-26 | 2018-11-21 | 半導體能源研究所股份有限公司 | 半導體裝置及半導體裝置的製造方法 |
US8916424B2 (en) * | 2012-02-07 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP2013183001A (ja) * | 2012-03-01 | 2013-09-12 | Semiconductor Energy Lab Co Ltd | 半導体装置 |
TWI463670B (zh) | 2012-03-28 | 2014-12-01 | E Ink Holdings Inc | 主動元件 |
US9349849B2 (en) * | 2012-03-28 | 2016-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device including the semiconductor device |
JP6175740B2 (ja) * | 2012-03-30 | 2017-08-09 | 株式会社Joled | 薄膜トランジスタおよびその製造方法並びに表示装置および電子機器 |
JP6059566B2 (ja) * | 2012-04-13 | 2017-01-11 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP5838119B2 (ja) * | 2012-04-24 | 2015-12-24 | 株式会社ジャパンディスプレイ | 薄膜トランジスタ及びそれを用いた表示装置 |
JP5636392B2 (ja) * | 2012-05-24 | 2014-12-03 | 株式会社東芝 | 表示装置 |
US8995607B2 (en) | 2012-05-31 | 2015-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Pulse signal output circuit and shift register |
CN104428901B (zh) * | 2012-07-12 | 2017-11-03 | 日立化成株式会社 | 太阳能电池元件及其制造方法 |
US20150214375A1 (en) * | 2012-09-12 | 2015-07-30 | Sharp Kabushiki Kaisha | Circuit substrate, manufacturing method thereof and display device |
JP5779161B2 (ja) * | 2012-09-26 | 2015-09-16 | 株式会社東芝 | 薄膜トランジスタおよび表示装置 |
CN203085533U (zh) * | 2012-10-26 | 2013-07-24 | 京东方科技集团股份有限公司 | 阵列基板和显示装置 |
KR101976133B1 (ko) * | 2012-11-20 | 2019-05-08 | 삼성디스플레이 주식회사 | 표시 장치 |
CN103000628B (zh) * | 2012-12-14 | 2015-04-22 | 京东方科技集团股份有限公司 | 显示装置、阵列基板及其制作方法 |
JP6142331B2 (ja) * | 2013-04-19 | 2017-06-07 | 株式会社Joled | 薄膜半導体装置、有機el表示装置、及びそれらの製造方法 |
US9893088B2 (en) | 2013-05-29 | 2018-02-13 | Joled Inc. | Thin film transistor device, method for manufacturing same and display device |
JP6264090B2 (ja) * | 2013-07-31 | 2018-01-24 | 株式会社リコー | 電界効果型トランジスタ、及び電界効果型トランジスタの製造方法 |
KR20150033155A (ko) * | 2013-09-23 | 2015-04-01 | 삼성디스플레이 주식회사 | 박막 트랜지스터 및 그 제조 방법 |
CN103681717B (zh) * | 2013-09-24 | 2017-04-26 | 徐廷贵 | α‑IGZO薄膜传感阵列的影像传感器及其制备方法 |
JP6104775B2 (ja) | 2013-09-24 | 2017-03-29 | 株式会社東芝 | 薄膜トランジスタ及びその製造方法 |
JP6394171B2 (ja) * | 2013-10-30 | 2018-09-26 | 株式会社リコー | 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム |
CN103762178A (zh) * | 2013-12-25 | 2014-04-30 | 深圳市华星光电技术有限公司 | 一种低温多晶硅薄膜晶体管及其制造方法 |
US20150187956A1 (en) * | 2013-12-26 | 2015-07-02 | Intermolecular Inc. | IGZO Devices with Increased Drive Current and Methods for Forming the Same |
KR102188690B1 (ko) * | 2014-01-20 | 2020-12-09 | 삼성디스플레이 주식회사 | 박막트랜지스터, 그의 제조방법 및 박막트랜지스터를 구비하는 평판 표시장치 |
KR102194823B1 (ko) | 2014-03-06 | 2020-12-24 | 삼성디스플레이 주식회사 | 박막 트랜지스터, 박막 트랜지스터 기판, 표시 장치 및 박막 트랜지스터 제조 방법 |
KR102437450B1 (ko) | 2014-06-13 | 2022-08-30 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 및 반도체 장치를 포함하는 전자 기기 |
KR20150146409A (ko) | 2014-06-20 | 2015-12-31 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치, 표시 장치, 입출력 장치, 및 전자 기기 |
DE102014111140B4 (de) * | 2014-08-05 | 2019-08-14 | Infineon Technologies Austria Ag | Halbleitervorrichtung mit Feldeffektstrukturen mit verschiedenen Gatematerialien und Verfahren zur Herstellung davon |
KR20160017795A (ko) | 2014-08-05 | 2016-02-17 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판, 이의 제조 방법, 및 박막 트랜지스터 기판을 포함하는 표시 장치 |
KR102279884B1 (ko) * | 2014-12-05 | 2021-07-22 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 그 제조 방법 |
CN104465670B (zh) * | 2014-12-12 | 2018-01-23 | 京东方科技集团股份有限公司 | 一种阵列基板及其制作方法、显示装置 |
KR102333759B1 (ko) * | 2015-01-07 | 2021-12-01 | 삼성디스플레이 주식회사 | 박막 트랜지스터 어레이 기판 및 그 제조방법 |
CN105552133A (zh) | 2016-02-24 | 2016-05-04 | 深圳市华星光电技术有限公司 | 一种薄膜晶体管及其制备方法 |
US10816865B2 (en) * | 2016-03-15 | 2020-10-27 | Sharp Kabushiki Kaisha | Active matrix substrate |
US11302717B2 (en) * | 2016-04-08 | 2022-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Transistor and method for manufacturing the same |
CN106531768A (zh) * | 2016-12-07 | 2017-03-22 | 厦门天马微电子有限公司 | 一种有机电致发光显示面板及其制备方法 |
KR102676341B1 (ko) * | 2016-12-30 | 2024-06-17 | 엘지디스플레이 주식회사 | 박막 트랜지스터, 그의 제조방법, 및 그를 포함한 표시장치 |
CN106847932B (zh) * | 2017-04-13 | 2019-10-22 | 上海天马微电子有限公司 | 一种薄膜晶体管、阵列基板、显示装置及薄膜晶体管制造方法 |
WO2019025893A1 (ja) | 2017-07-31 | 2019-02-07 | 株式会社半導体エネルギー研究所 | 半導体装置、および半導体装置の作製方法 |
JP6782211B2 (ja) * | 2017-09-08 | 2020-11-11 | 株式会社東芝 | 透明電極、それを用いた素子、および素子の製造方法 |
JP6930885B2 (ja) * | 2017-09-21 | 2021-09-01 | 株式会社東芝 | 半導体装置 |
WO2019125496A1 (en) * | 2017-12-22 | 2019-06-27 | Intel Corporation | Sealant layers for thin film transistors |
JP7475282B2 (ja) * | 2018-11-02 | 2024-04-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2021045759A1 (en) * | 2019-09-05 | 2021-03-11 | Hewlett-Packard Development Company, L.P. | Semiconductor composite layers |
CN111799281A (zh) * | 2020-08-12 | 2020-10-20 | 成都中电熊猫显示科技有限公司 | 金属氧化物阵列基板的制造方法、阵列基板及显示面板 |
CN111816668A (zh) * | 2020-08-12 | 2020-10-23 | 成都中电熊猫显示科技有限公司 | 金属氧化物阵列基板的制造方法、阵列基板及显示面板 |
CN114743992A (zh) * | 2022-04-24 | 2022-07-12 | 广州华星光电半导体显示技术有限公司 | 阵列基板及其制备方法、显示面板 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005033172A (ja) * | 2003-06-20 | 2005-02-03 | Sharp Corp | 半導体装置およびその製造方法ならびに電子デバイス |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06188265A (ja) * | 1992-12-22 | 1994-07-08 | Matsushita Electric Ind Co Ltd | 半導体装置およびその製造方法 |
KR100223153B1 (ko) * | 1996-05-23 | 1999-10-15 | 구자홍 | 액티브 매트릭스 액정표시장치의 제조방법 및 액티브매트릭스액정표시장치 |
TW543206B (en) * | 1999-06-28 | 2003-07-21 | Semiconductor Energy Lab | EL display device and electronic device |
CN100530754C (zh) * | 1999-09-03 | 2009-08-19 | 株式会社半导体能源研究所 | 显示装置 |
KR100701555B1 (ko) | 2002-05-22 | 2007-03-30 | 마사시 카와사키 | 반도체 장치 및 그것을 이용하는 표시 장치 |
CN1806322A (zh) * | 2003-06-20 | 2006-07-19 | 夏普株式会社 | 半导体装置及其制造方法以及电子设备 |
KR100539623B1 (ko) * | 2003-06-25 | 2005-12-28 | 엘지.필립스 엘시디 주식회사 | 버텀 게이트형 폴리 실리콘 박막트랜지스터 소자의 제조방법 |
KR100721555B1 (ko) * | 2004-08-13 | 2007-05-23 | 삼성에스디아이 주식회사 | 박막트랜지스터 및 그 제조 방법 |
JP4761981B2 (ja) * | 2005-01-28 | 2011-08-31 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US7858415B2 (en) * | 2005-04-28 | 2010-12-28 | Sharp Kabushiki Kaisha | Production methods of pattern thin film, semiconductor element, and circuit substrate, and resist material, semiconductor element, and circuit substrate |
EP3614442A3 (en) * | 2005-09-29 | 2020-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having oxide semiconductor layer and manufactoring method thereof |
JP5064747B2 (ja) * | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法 |
JP5127183B2 (ja) * | 2006-08-23 | 2013-01-23 | キヤノン株式会社 | アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法 |
KR101410926B1 (ko) * | 2007-02-16 | 2014-06-24 | 삼성전자주식회사 | 박막 트랜지스터 및 그 제조방법 |
JP5552753B2 (ja) * | 2008-10-08 | 2014-07-16 | ソニー株式会社 | 薄膜トランジスタおよび表示装置 |
-
2009
- 2009-04-27 JP JP2009107732A patent/JP5552753B2/ja active Active
- 2009-10-07 KR KR1020117007563A patent/KR20110069042A/ko not_active Application Discontinuation
- 2009-10-07 TW TW098134019A patent/TWI429085B/zh active
- 2009-10-07 US US13/122,307 patent/US8461594B2/en active Active
- 2009-10-07 WO PCT/JP2009/067492 patent/WO2010041686A1/ja active Application Filing
- 2009-10-07 RU RU2011113550/28A patent/RU2011113550A/ru not_active Application Discontinuation
- 2009-10-07 BR BRPI0920797A patent/BRPI0920797A2/pt not_active IP Right Cessation
- 2009-10-07 CN CN2009801390331A patent/CN102171833A/zh active Pending
-
2013
- 2013-05-07 US US13/888,878 patent/US8742418B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005033172A (ja) * | 2003-06-20 | 2005-02-03 | Sharp Corp | 半導体装置およびその製造方法ならびに電子デバイス |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160111552A1 (en) * | 2009-11-13 | 2016-04-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device And Manufacturing Method Thereof |
US11955557B2 (en) | 2009-11-13 | 2024-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US11456385B2 (en) | 2009-11-13 | 2022-09-27 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US10944010B2 (en) | 2009-11-13 | 2021-03-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US20200127139A1 (en) * | 2009-11-13 | 2020-04-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor Device And Manufacturing Method Thereof |
US10516055B2 (en) | 2009-11-13 | 2019-12-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US10056494B2 (en) * | 2009-11-13 | 2018-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US9978878B2 (en) | 2010-04-23 | 2018-05-22 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
JP2011258939A (ja) * | 2010-05-14 | 2011-12-22 | Semiconductor Energy Lab Co Ltd | 半導体装置の作製方法 |
CN102870221A (zh) * | 2010-06-08 | 2013-01-09 | 夏普株式会社 | 薄膜晶体管基板、具有它的液晶显示装置和薄膜晶体管基板的制造方法 |
US9947799B2 (en) | 2010-06-18 | 2018-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
TWI627755B (zh) * | 2010-06-18 | 2018-06-21 | 半導體能源研究所股份有限公司 | 半導體裝置 |
US8916865B2 (en) | 2010-06-18 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9590112B2 (en) | 2010-06-18 | 2017-03-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9123817B2 (en) * | 2010-10-12 | 2015-09-01 | Samsung Electronics Co., Ltd. | Transistors and electronic devices including the same |
US8906738B2 (en) | 2010-11-05 | 2014-12-09 | Sony Corporation | Oxide semiconductor thin film transistor with an aluminum oxide protective film made using a continuous deposition process of aluminum oxide laminated with an aluminum film |
JP2012099757A (ja) * | 2010-11-05 | 2012-05-24 | Sony Corp | 薄膜トランジスタおよびその製造方法 |
CN102610652A (zh) * | 2011-01-20 | 2012-07-25 | 元太科技工业股份有限公司 | 金属氧化物半导体结构及其制造方法 |
US10008588B2 (en) | 2011-03-30 | 2018-06-26 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing oxide semiconductor device |
TWI626691B (zh) * | 2011-03-30 | 2018-06-11 | 半導體能源研究所股份有限公司 | 半導體裝置的製造方法 |
JP2018157224A (ja) * | 2011-08-19 | 2018-10-04 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9064853B2 (en) | 2011-08-19 | 2015-06-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
US9252279B2 (en) | 2011-08-31 | 2016-02-02 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2013138196A (ja) * | 2011-11-30 | 2013-07-11 | Semiconductor Energy Lab Co Ltd | 半導体装置および半導体装置の作製方法 |
JP2013147738A (ja) * | 2011-12-22 | 2013-08-01 | Kobe Steel Ltd | Taを含有する酸化アルミニウム薄膜 |
JP2013153148A (ja) * | 2011-12-27 | 2013-08-08 | Semiconductor Energy Lab Co Ltd | 半導体装置及びその作製方法 |
US8981370B2 (en) | 2012-03-08 | 2015-03-17 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US9502434B2 (en) | 2014-04-18 | 2016-11-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and electronic device |
US10373984B2 (en) | 2017-03-29 | 2019-08-06 | Japan Display Inc. | Display device |
US11177363B2 (en) | 2017-03-29 | 2021-11-16 | Japan Display Inc. | Display device |
US11355520B2 (en) | 2017-03-29 | 2022-06-07 | Japan Display Inc. | Display device |
US10804297B2 (en) | 2017-03-29 | 2020-10-13 | Japan Display Inc. | Display device |
US11855102B2 (en) | 2017-03-29 | 2023-12-26 | Japan Display Inc. | Display device |
US10453965B2 (en) | 2017-03-29 | 2019-10-22 | Japan Display Inc. | Display device |
US11348948B2 (en) | 2018-01-26 | 2022-05-31 | Japan Display Inc. | Manufacturing method of a display device |
Also Published As
Publication number | Publication date |
---|---|
TWI429085B (zh) | 2014-03-01 |
US8461594B2 (en) | 2013-06-11 |
BRPI0920797A2 (pt) | 2015-12-22 |
JP5552753B2 (ja) | 2014-07-16 |
KR20110069042A (ko) | 2011-06-22 |
RU2011113550A (ru) | 2012-10-20 |
US20110180802A1 (en) | 2011-07-28 |
CN102171833A (zh) | 2011-08-31 |
US20130240878A1 (en) | 2013-09-19 |
US8742418B2 (en) | 2014-06-03 |
TW201025614A (en) | 2010-07-01 |
JP2010114413A (ja) | 2010-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5552753B2 (ja) | 薄膜トランジスタおよび表示装置 | |
JP4752925B2 (ja) | 薄膜トランジスタおよび表示装置 | |
JP5515281B2 (ja) | 薄膜トランジスタ、表示装置、電子機器および薄膜トランジスタの製造方法 | |
US8426851B2 (en) | Thin film transistor and display device | |
JP4844617B2 (ja) | 薄膜トランジスタ基板および表示装置 | |
JP4752927B2 (ja) | 薄膜トランジスタおよび表示装置 | |
US8378351B2 (en) | Thin film transistor, display device, and electronic unit | |
JP5679143B2 (ja) | 薄膜トランジスタならびに表示装置および電子機器 | |
JP5668917B2 (ja) | 薄膜トランジスタおよびその製造方法 | |
US9362312B2 (en) | Semiconductor device, display unit, and electronic apparatus | |
JP2010205987A (ja) | 薄膜トランジスタおよびその製造方法並びに表示装置 | |
JP6175740B2 (ja) | 薄膜トランジスタおよびその製造方法並びに表示装置および電子機器 | |
JP6019330B2 (ja) | 薄膜トランジスタ、薄膜トランジスタの製造方法、表示装置および電子機器 | |
JP2013080769A (ja) | 薄膜トランジスタならびに表示装置および電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980139033.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09819220 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117007563 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13122307 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011113550 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09819220 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: PI0920797 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110401 |