WO2010031270A1 - 生产高纯颗粒硅的反应器和方法 - Google Patents

生产高纯颗粒硅的反应器和方法 Download PDF

Info

Publication number
WO2010031270A1
WO2010031270A1 PCT/CN2009/072688 CN2009072688W WO2010031270A1 WO 2010031270 A1 WO2010031270 A1 WO 2010031270A1 CN 2009072688 W CN2009072688 W CN 2009072688W WO 2010031270 A1 WO2010031270 A1 WO 2010031270A1
Authority
WO
WIPO (PCT)
Prior art keywords
granular silicon
purity
purity granular
silicon
reactor
Prior art date
Application number
PCT/CN2009/072688
Other languages
English (en)
French (fr)
Inventor
储晞
Original Assignee
Chu Xi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chu Xi filed Critical Chu Xi
Priority to KR1020167034217A priority Critical patent/KR101830856B1/ko
Priority to KR1020117008622A priority patent/KR101688442B1/ko
Priority to KR1020187004261A priority patent/KR20180019758A/ko
Priority to EP09813991.8A priority patent/EP2338835A4/en
Publication of WO2010031270A1 publication Critical patent/WO2010031270A1/zh
Priority to US13/043,155 priority patent/US8535614B2/en
Priority to US13/969,563 priority patent/US9662625B2/en
Priority to US15/694,792 priority patent/US10576438B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/087Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/16Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with particles being subjected to vibrations or pulsations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • C01B33/025Preparation by reduction of silica or free silica-containing material with carbon or a solid carbonaceous material, i.e. carbo-thermal process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • This invention relates to high purity silicon production techniques, and more particularly to a reactor and method for producing high purity particulate silicon. Background technique
  • high-purity silicon materials were mainly used to produce semiconductor components. With the development of semiconductor integrated circuit technology, circuit integration is getting higher and higher. Although electronic devices are used more and more widely, the consumption of high-purity silicon is not. A big increase. Since high-purity silicon is also an important raw material for the production of solar photovoltaic cells, in recent years, with the development of the solar photovoltaic industry, the demand for high-purity silicon is increasing, and its demand has now exceeded the consumption of the semiconductor industry and is growing at a high speed. On the other hand, the solar photovoltaic industry is a small profit margin industry, requiring low production costs of high-purity silicon materials, which poses a great challenge to traditional production methods.
  • the Siemens method is: a purified high-purity silicon-containing gas such as trichlorosilane (SiHCl 3 ) or silane (SiH 4 ) is mixed with hydrogen and then introduced into the reactor to thermally decompose on the surface of the electrically heated silicon core rod.
  • High-purity silicon is continuously deposited on the surface of the hot silicon core rod to make it thicker, and the reacted gas is returned to the exhaust gas treatment system for separation and recycling.
  • the silicon mandrel grows to a certain diameter, the reaction must be terminated, the silicon core rod replaced, and the next round of reaction.
  • the process is batch-operated and consumes a large amount of electricity.
  • the average power consumption per kilogram of high-purity silicon is about 150kwh (kWh) or even higher.
  • the process has the disadvantages of low conversion efficiency. Therefore, the Siemens process for producing high-purity silicon has low yields and high costs, which cannot meet the growing industrial needs.
  • the fluidized bed method is: using high-purity granular silicon as a "seed" to form a fluidized state in a heated reactor, and then introducing a high-purity silicon-containing gas, so that a thermal decomposition reaction occurs on the surface of the heated seed, thereby making it high.
  • the pure granular silicon grows so long that it cannot be floated and falls into the collection box.
  • Fluidized bed In the method a large amount of high-purity granular silicon is used as a "seed", and the entire surface area is greatly increased relative to the Siemens method, so that the reaction efficiency and the conversion efficiency are greatly improved compared with the Siemens method, and the power consumption is also reduced.
  • the high-purity silicon particles are separated from each other in a suspended state to form a space of more than 80%, and the silicon-containing gas is decomposed to generate a large amount of powdered silicon, which is taken out of the reactor with the gas, thereby reducing the utilization ratio of the raw material (gas) and increasing the cost. , causing waste, and the downstream of the silicon powder increases the difficulty of handling the reaction tail gas and the cost of the production equipment, which is easy to cause pollution.
  • the reactor is large in size, the effective use space is small, the production scale is small, and the construction cost and construction difficulty of the production equipment are increased.
  • the present invention provides a reactor for producing high purity granular silicon, comprising: a reactor chamber;
  • the reactor chamber is provided with a solid feed port, an auxiliary gas inlet, a raw material gas inlet and a tail gas outlet;
  • a gas distributor is disposed inside the reactor chamber, and the gas distributor is configured to disperse an auxiliary gas and a raw material gas in the reactor cavity;
  • the reactor chamber is provided with a built-in or external preheating mechanism; the reactor chamber is disposed outside the chamber;
  • the reactor chamber is connected to a built-in or external surface finishing mechanism; the surface finishing mechanism is used for surface treatment of the produced high-purity granular silicon;
  • the reactor chamber is provided with a built-in or external heating mechanism and a dynamic generating mechanism for making the high-purity granular silicon in the high-purity granular silicon bed located in the reactor cavity relatively Movement state.
  • the present invention also provides a method for producing high-purity granular silicon, comprising: forming a high-purity granular silicon bed, wherein the high-purity granular silicon in the high-purity granular silicon bed is densely distributed, and the filling ratio is 10 %the above;
  • the auxiliary gas is a high purity 3 ⁇ 4 and/or an inert gas, the raw material gas is a silicon-containing gas, or the raw material gas is a silicon-containing gas and a reducing gas 3 ⁇ 4;
  • reaction tail gas exchanges heat with the supplemented high-purity granular silicon, is separated by gas component through the exhaust gas treatment mechanism, and is circulated into the reactor cavity through the auxiliary gas inlet or the raw material gas inlet; the supplemented high-purity granular silicon After heating, entering the reactor cavity;
  • the package After surface treatment of the produced high-purity granular silicon, the package is cooled and collected.
  • the reactor and method for producing high-purity granular silicon use a densely packed high-purity granular silicon bed in a moving state to avoid bonding between granular silicon, reduce reactor volume, and pass dense
  • the high-purity granular silicon bed accumulated in the trap captures the high-purity powder silicon in the reaction tail gas as a seed, and also uses the residual heat of the reaction tail gas to supplement the granular silicon heating; realizes ultra-large, high-efficiency, energy-saving, continuous, low-cost production of high-purity particles. silicon.
  • FIG. 1 is a schematic view of an embodiment of a reactor for producing high purity granular silicon according to the present invention
  • FIG. 2 is a schematic view of a reactor chamber in an embodiment of a reactor for producing high-purity granular silicon according to the present invention
  • FIG. 3 is a schematic view of a vertical multi-stage reactor in an embodiment of a reactor for producing high-purity granular silicon according to the present invention
  • FIG. 4 and 5 are cross-sectional optical micrographs of high purity granular silicon produced in accordance with an embodiment of the present invention.
  • Fig. 6 is an X-ray diffraction pattern of high purity granular silicon produced in an embodiment of the present invention.
  • FIG. 1 is a schematic view of an embodiment of a reactor for producing high-purity granular silicon according to the present invention
  • FIG. 2 is a schematic view showing a reactor cavity in a reactor embodiment for producing high-purity granular silicon according to the present invention, see FIG. 1 and FIG.
  • the reactor chamber 10, the preheating mechanism 20, the exhaust gas treatment mechanism 40, the surface finishing mechanism 60, and the force are included. Thermal mechanism, dynamic generation mechanism.
  • the interior of the reactor chamber 10 may be square, cylindrical or rectangular in shape, and the space may be layered, and the partitions may be split; the reactor chamber 10 may be placed upright, leaning or lying flat. A downstream or countercurrent operation can be performed during the reaction.
  • the height of the reactor chamber may be 1-100 meters, preferably 1-50 meters, for example: when the height of the reactor chamber is 1 meter, the reactor It can be 1 or more, each of which has a height of at least 10-20 cm.
  • the reactor can be 1 or more, and the heights of the stages can be different.
  • the height of each stage is at least 10 - 20cm; when the height of the reactor is a determined value, for example: 50 meters, it is also possible to set each level according to the number of stages required for the reaction. Height; if the reactor is level 1, the height of the first stage is 50 meters; if the reactor is level 5, the height of each stage is about 10 meters; similarly, when the height of the reactor chamber is 70 meters or 100 When the meter is used, the reactor can also be of 1 or more stages, and the height of each stage can be set according to the number of stages required for the reaction.
  • a small-sized reactor (such as a reactor chamber height of 1 m or 50 m) can be scaled up, or it can be a stack of multiple small-sized reactors.
  • the size of the reactor chamber is determined by the actual conditions of the reaction, and the conversion efficiency is highest and the energy is most efficient when the reaction gas passes through the reaction bed.
  • the present invention does not limit the height of the reactor chamber, such as the height of the reactor chamber may be from 1 to 1000 meters.
  • the length of the reactor chamber may be 1-100 meters, preferably 1-50 meters, and the description of the length of the reactor chamber is similar to the height of the reactor chamber. , but it can be two-dimensionally distributed and then three-dimensionally superimposed, that is, a plurality of lying reactor chambers are longitudinally superposed.
  • the reaction for generating high-purity granular silicon in the present invention is an endothermic reaction.
  • the casing of the reactor chamber 10 may be composed of three layers, the inner layer is a refractory inner liner, and the intermediate layer is made of fire resistant. Insulation layer composed of insulation materials such as fiber and slag cotton, the outermost layer is supported by steel shell.
  • a reactor feed port 101 is provided on the reactor chamber 10 for introducing high-purity granular silicon as a seed into the reactor chamber 10.
  • the auxiliary gas is a high-purity reducing gas 3 ⁇ 4 and/or an inert gas (such as Ar or He), the raw material gas is a high-purity silicon-containing gas, or the raw material gas is a high-purity silicon-containing gas and a reducing gas 3 ⁇ 4, and the silicon-containing gas may be Si.
  • the silicon-containing gas may be Si.
  • the gas (including the material gas and the auxiliary gas) used in the present invention has a purity of 99.99% or more.
  • the content of the silicon-containing gas in the material gas is from 1% to 100%.
  • the auxiliary gas inlet 102 leads to a gas distributor 103 located inside the reactor chamber 10, and the raw material gas inlet 105 leads to the raw material gas nozzle 104; the auxiliary gas and the raw material gas are dispersed in the reactor chamber through the gas distributor 103 and the raw material gas nozzle 104.
  • the high-purity granular silicon as a seed added through the solid feed port 101 is closely packed on the gas distributor 103 to form a high-purity granular silicon bed (or the high-purity granular silicon bed may not be deposited on the gas distributor, and It depends on the diameter of the reaction chamber and the circulation speed of the material to control the residence time of the material in each reaction chamber.
  • the particle size distribution of the high-purity granular silicon as the seed and the particle size distribution of the high-purity granular silicon produced by the production can be There is overlap, that is, a part of the high-purity granular silicon as a seed may have a particle size greater than or equal to that of a high-purity particle.
  • the particle size of the granular silicon product preferably, the particle size of the high-purity granular polycrystalline silicon as a seed is 10-30% of the particle size of the produced high-purity granular silicon product, wherein the particle size of the produced high-purity granular silicon product is different according to the particle size. Depending on the application, it is usually between 1-20 mm.
  • the gas distributor 103 is composed of a flower plate (or a sieve plate) and a hood, and may have only one flower plate (porous sieve plate) without a hood; the gas distributor 103 may be a direct current, a side flow, a dense hole or Filled type distributor. Due to the dense packing of the high purity granular silicon bed, the volume of the reactor in the embodiment of the present invention is small, and the throughput can be increased while reducing the reactor volume as compared with the existing fluidized bed process.
  • the preheating mechanism 20 is disposed inside or outside the reactor chamber 10. As shown in FIG. 1, the preheating mechanism 20 is disposed outside the reactor cavity 10 in the present embodiment; the preheating mechanism 20 has a solid inlet for replenishing high-purity granular silicon as a seed because the present invention produces high purity.
  • the process of granular silicon is a process of consuming seeds, so it is necessary to continuously replenish high-purity granular silicon as a seed; the reaction tail gas is heated by a preheating mechanism 20 to supplement high-purity granular silicon as a seed.
  • the exhaust gas treatment mechanism 40 is disposed outside the reactor chamber 10 and is connected between the preheating mechanism 20 and the auxiliary gas inlet 102 and the raw material gas inlet 105. After the reaction tail gas passes through the preheating mechanism 20,
  • High-purity powdered silicon will be carried in the reaction tail gas because: 1. During the operation of the reactor, strong disturbance of particles in the high-purity granular silicon and/or high-purity granular silicon bed may cause particle wear; 2. In the present invention The silicon-containing gas pyrolysis itself produces powdered silicon. Since the high-purity granular silicon bed in the present invention is densely packed, when the reaction tail gas is recycled to the reactor chamber after being treated by the preheater and the exhaust gas treatment mechanism, the densely packed high-purity granular silicon bed in the reactor is captured. The powder silicon in the reaction tail gas acts as a dust trap.
  • the surface finishing mechanism 60 is disposed inside or outside the reactor chamber 10 for surface treatment of the produced high-purity granular silicon.
  • the surface of the high-purity granular silicon produced by the reaction is generally loose and easily generates dust, which may affect downstream production applications, thereby requiring the surface of the high-purity granular silicon to be subjected to Processed to make it more dense.
  • the surface finishing mechanism 60 is preferably a reaction chamber containing a low concentration of reactive gas at a concentration of from 0 to 10%, and the surface finishing mechanism 60 can be in several sections in the reactor.
  • the surface of the high-purity granular silicon forms a dense silicon structure, thereby achieving surface treatment, and the surface by this method
  • the processing process does not introduce impurities and other processing steps, which reduces production costs.
  • the surface treatment process can also be carried out using conventional pickling, washing and drying processes.
  • the heating mechanism is disposed inside or outside the reactor chamber 10. In order to bring the reaction to the reaction temperature, it is necessary to heat the reactants.
  • the heating mechanism is preferably a power source electrically connected to the high-purity granular silicon bed layer, that is, a voltage is applied to the high-purity granular silicon bed layer. Due to the semiconductor properties of the silicon, the high-purity granular silicon bed layer generates heat to cause the temperature of the high-purity granular silicon bed layer. Raise.
  • the method is direct heating, high thermal efficiency, high heat utilization rate, and high-purity granular silicon is used as a heating element to avoid contamination and ensure product purity.
  • the heating mechanism can also adopt other various existing heating methods: 1) direct heating of the resistance wire (silicon rod, high purity SiC, high purity SiN or graphite); 2) indirect heating such as microwave, plasma, laser or induction; 3) Indirect heating or rotary kiln heating provided by the flame heat radiant tube; 4) Using an outer jacket and an in-bed heat exchanger, the outer jacket heat exchanger can be an inductor heating and a heat carrier converter.
  • the heat exchange in the bed can be carried out by means of heating of the heat medium, electric induction heating and heating of the electrode rod; 5) the heat of the mouth is used, for example, the reactants required in the reaction (such as the suspended gas and the silicon particles themselves) are externally After heating, the reactor is introduced; 6) The coupling reaction is heated, and a chemical reaction such as chlorine (Cl 2 ) or hydrogen chloride (HC1 ) is added to the system.
  • a chemical reaction such as chlorine (Cl 2 ) or hydrogen chloride (HC1 ) is added to the system.
  • the reactor of the present invention further includes a dynamic generating mechanism for causing high-purity granular silicon in the high-purity granular silicon bed to be in a relative motion state.
  • the dynamic generation mechanism is disposed inside or outside the reactor chamber 10.
  • the dynamic generating mechanism is an auxiliary gas nozzle and/or a material gas nozzle; the auxiliary gas nozzle and the material gas nozzle are disposed in the reactor chamber 10, and are respectively connected to the auxiliary gas inlet and the raw material gas inlet for using the auxiliary gas And the raw material gas is injected into the reactor cavity 10 to agitate the high-purity granular silicon bed, so that the high-purity granular silicon in the high-purity granular silicon bed is in a relative motion state, thereby avoiding the bonding between the high-purity granular silicon; And since the raw material gas is injected into the high-purity granular silicon bed, the high-purity granular silicon seed which is in contact with and close to the gas distributor in the high-purity granular silicon bed is less likely to react, thereby preventing the gas distributor 103 from being Blocked.
  • the dynamic generating mechanism can also realize the dynamics of the high-purity granular silicon bed by: 1) introducing an external force such as spouting, rotating, agitating, stirring, vibrating or flowing the high-purity granular silicon bed under gravity. Through the interlaced bar structure installed on the inner wall, etc.; 2) the reactor is placed under other gravitational fields (such as centrifugal force field, etc.); 3) using agitated fluidized bed; 4) using a vibrating fluidized bed (including mechanical vibration, sound waves or ultrasonic waves) Vibration, plug-in vibration, etc.).
  • the reactor of the present invention further includes a gas-solid separation mechanism 30.
  • the gas-solid separation mechanism 30 is disposed inside or outside the reactor chamber 10 and is connected to the preheating mechanism 20.
  • the reaction off-gas discharged from the reactor chamber 10 captures high-purity powdered silicon through the gas-solid separation mechanism 30, and returns the high-purity powdered silicon to the reactor chamber 10 as a seed to re-enter the reaction or be kneaded to a high-purity granular form. On the silicon particles.
  • the gas-solid separation mechanism 30 is preferably a high-purity granular silicon particle layer which is densely stacked (filling rate is more than 50%, preferably 50-80%).
  • the high-purity granular silicon particle layer may specifically be: high-purity granular silicon.
  • the particles are densely packed in a plurality of drilled silicon tubes (or ceramic tubes) and coated with glass cloth, which are suspended in an array suspended at the top of the enlarged section of the reactor or outside the reactor.
  • the filling ratio is the ratio of the filling space of the high-purity granular silicon to the space occupied by it, and the filling rate is related to the particle shape and the particle size distribution; the filling rate is not for the entire reaction chamber, for example, when the filling ratio is 70 At %, only 20% of the reaction chamber can be filled.
  • gas-solid separation mechanism 30 can also take other forms to achieve the effect of gas-solid separation, such as: 1) changing the escape velocity of the small particles by changing the inner diameter of the reactor to enlarge the top of the reactor. Degree, achieve settlement capture; 2) use cyclone separator; 3) use filter or dust collector.
  • the reactor of the present invention may further comprise a screening mechanism 50.
  • the screening mechanism 50 is disposed inside or outside the reactor chamber 10 and is connected between the reactor chamber 10 and the surface finishing mechanism 60.
  • the high-purity granular silicon formed by the reaction is introduced into the screening mechanism 50 for screening, and the oversized particles are ground and sent back to the preheating mechanism 20 together with the super small particles, and returned to the reactor cavity after heating to continue to grow.
  • the high-purity granular silicon that meets the particle size requirement is selected and sent to the next processing section, thereby controlling the size of the product particles within the optimal size range required, thereby not only reducing possible surface contamination (when the particles are relatively In hours, it is easy to receive pollution due to its large surface area, and it is also more conducive to downstream production.
  • direct contact between high-purity granular silicon and other non-silicon materials, especially metals, should be avoided to prevent product quality degradation due to impurity contamination.
  • the reactor of the present invention may further comprise a blaster 70 connected between the screening mechanism 50 and the preheating mechanism 20 for a portion of the screen
  • the separated high-purity granular silicon is pulverized.
  • the high-purity granular silicon seed is in constant consumption, and the amount of high-purity powder silicon separated by the gas-solid separation mechanism 30 is insufficient to supplement the high-purity granular silicon seed in the reactor.
  • the sieved high-purity granular silicon large particles are pulverized by the pulverizer 70, and the pulverized small particles are further heated by the preheating mechanism 20 and returned to the reactor chamber 10.
  • the crusher can also cause high-purity granular silicon to burst into small particles by rapidly heating the hydrogen-containing high-purity granular silicon.
  • the sifter 70 can also be an existing pulverizer such as a high speed gas breaker, a sonic breaker or a dust collector for milling (cyclone, bag).
  • the reactor chamber of the present invention may further be provided with an air curtain (with or without an inner wall) tangential to the inner wall of the reactor chamber, the air curtain mechanism for generating The air curtain covering the inner wall of the reaction chamber;
  • the air curtain mechanism may specifically be: on the wall of the reactor cavity, cut into a plurality of strip vents having an angle as small as possible with the inner wall surface, the strip vent It can be horizontal or vertical, and after the silicon-free gas (inert gas) is introduced from the outside of the reactor chamber, the silicon-free gas enters the inside of the reactor chamber through a plurality of strip vents, and a cover can be formed.
  • the air curtain can block the deposition of silicon on the inner wall of the reactor chamber by the silicon-containing gas in the reactor chamber;
  • the air curtain mechanism may specifically be at the bottom of the reactor chamber or
  • the top is provided with an annular tube connected to the external silicon-free gas (inert gas), and a plurality of strip-shaped pores parallel to the inner wall of the reactor chamber are opened on the annular tube, and the annular tube is formed without a silicon gas.
  • An air curtain covering the inner wall of the reaction chamber and tangential to the inner wall surface the air curtain can block the deposition of silicon on the inner wall of the reactor chamber by the silicon-containing gas in the reactor chamber.
  • the reactor provided by the embodiment of the invention may further comprise a monitoring and central control system, and record specific process parameters of each link of the reaction device, and issue a warning and provide automatic adjustment when the specific process parameter exceeds the normal range, wherein the reactor needs
  • the parameters measured are: bed bottom temperature (including gas and solid temperature), outlet gas (reaction tail gas) composition, pressure, solid particle size, bed density, heat and mass transfer, direction of movement of solid particles, and the like.
  • the reactor cavity and the preheating mechanism in the embodiment of the present invention may adopt a multi-level multi-dimensional structure in a lateral or longitudinal direction (the gas nozzles in FIG. 2 may be a plurality of gas nozzles distributed in a two-dimensional array), and the reaction order may be It is from 1 to 50, preferably from 1 to 20, more preferably from 3 to 10, to increase effective reaction time and heat exchange efficiency, reduce powder silicon being taken out, and reduce reactor size and construction cost.
  • the reaction tail gas in each stage can use the remaining heat to heat the high-purity granular silicon in the next stage, so that the heat exchange efficiency is increased and the effective reaction time is increased; for example, when the reaction is At the third stage, the heat exchange efficiency is increased by 60%, and the effective reaction time is increased by three times.
  • the heat exchange efficiency is increased by 80%, and the effective reaction time is increased by nearly six times.
  • FIG. 3 is a schematic diagram of a vertical multistage reactor in the embodiment of the reactor for producing high purity granular silicon of the present invention.
  • the process for the reaction using a multi-stage reactor is described as follows: High-purity granular silicon seed is heated stepwise from the top preheater 201 of the reactor by the exhaust gas in the multi-stage reactor, when high-purity granular silicon After the seed is heated by the preheater and the first stage heater 2031 to a desired temperature, it enters the first stage reactor 2021 and reacts with the silicon-containing gas to make the surface of the high-purity granular silicon seed itself.
  • the high-purity silicon layer is grown, and argon gas can be used to reduce the dangerous auxiliary gas.
  • the temperature of the high-purity granular silicon seed is lowered due to participation in the endothermic decomposition reaction, and the high-purity granular silicon seed is lowered to the second-stage heating.
  • the heater 2032 is heated and then enters the second-stage reactor 2022 for reaction.
  • the high-purity granular silicon seed is lowered to the third-stage heater 2033 for heating, and then enters the third-stage reactor 2023 for reaction, and the multi-stage reaction is passed.
  • the particle size of high-purity granular silicon gradually grows.
  • the flow direction of the reaction gas may be perpendicular to the flow direction of the particles, or may be at any angle with the flow direction of the particles.
  • the residence time of the material in each reaction chamber is controlled by the diameter of the reaction chamber and the circulation speed of the material;
  • the silicon-containing gas will produce powdered silicon in all kinds of reactions. A part of these powdered silicon enters the final preheater with the reaction tail gas, and then rises step by step.
  • the gas-solid separation mechanism in the preheater (highly packed high purity)
  • the granular silicon particle layer completely blocks the powdered silicon and descends together with the high-purity granular silicon as a new seed particle for the reaction; fourth, a part of the powdered silicon is continuously descended to the kneading reactor 204 along with the high-purity granular silicon, thereby The powdered silicon is kneaded onto the surface of the large high-purity granular silicon in the absence of the silicon-containing gas (ie, the powdered silicon is present in the presence of an inert gas), so that the particles of the high-purity granular silicon are further grown and spheroidized.
  • the high-purity granular silicon is sieved After the splitter 205 is sieved, the large particles enter the surface finisher 206, where the surface of the high-purity granular silicon is densely coated by the lower concentration silicon-containing gas, so that the surface of each high-purity granular silicon is bright and clean.
  • the surface-finished high-purity granular silicon is cooled by the cooler 207, it is packaged in the packaging machine 210; the small particles filtered by the sifter 205 are returned to the primary preheater 201 by the transport mechanism 208, thereby completing The entire cycle.
  • the exhaust gas from the primary preheater 201 has been cooled to a lower temperature, such as 100-200 ° C. Due to the filtration of each preheater powder, the exhaust gas contains a lower degree of powdered silicon, and after entering the exhaust gas separator 209, It is divided into a high purity gas and mixed with the material gas to be further injected back into the reactor, thereby completing another cycle; wherein the first passage 200 is a feed gas inlet and the second passage 220 is an auxiliary gas inlet.
  • the materials of each part may be selected from the following materials: high-purity silicon, high-purity silicon carbide, high-purity silicon nitride, quartz or graphite, etc., do not diffuse impurities into the reactor at high temperature. s material.
  • the reactor and the preheating mechanism may be organically combined for direct connection, that is, the preheater, the filter, the reactor, the kneading, the surface finishing, etc. may be different sections of one integral cavity, and also
  • the reactor and the preheating mechanism can be separated, in particular, a set of preheating mechanisms corresponds to a plurality of reactors, so that when one of the reactors is repaired, the other reactors can continue to operate, reducing the downtime.
  • high-purity granular silicon seeds are added through the solid feed port 101, and the high-purity granular silicon seeds are naturally deposited to form a dense high-purity granular silicon bed, and the high-purity granular silicon bed is heated to the reaction temperature by the heating mechanism.
  • the high-purity reaction gas (silicon-containing gas and reducing gas 3 ⁇ 4) is injected from the material gas nozzle 104 into the high-purity granular silicon bed by pumping by mixing, while assisting the suspension gas hydrogen and/or inert gas is also blown by the air.
  • a pump is introduced from the auxiliary gas inlet 102 through the gas distributor 103 into the reactor chamber 10; the reaction gas is reacted in the reactor chamber 10, and the silicon-containing gas undergoes thermal decomposition to form silicon wrapped in the high-purity granular silicon seed.
  • the surface of the high-purity granular silicon seed is continuously grown; the reaction tail gas discharged from the reactor chamber 10 enters the preheating mechanism 20 and the gas-solid separation mechanism 30, and the gas-solid separation mechanism 30 separates and collects the powder silicon carried in the reaction tail gas. And the reaction tail gas is heated by the preheating mechanism 20 by using the residual heat to the particles and the powder silicon, and the heated high-purity silicon is returned to the reactor chamber 10 to re-enter the reaction; the reaction tail gas discharged from the preheating mechanism 20 enters the exhaust gas treatment mechanism. 40.
  • the exhaust gas treatment mechanism 40 separates the reaction tail gas according to the gas component, and then passes the separated gas through the reaction gas inlet or the auxiliary gas inlet.
  • the reactor cavity is recycled; the high-purity silicon particles (relative size and particle size) generated in the reactor chamber 10 are brought to the screening mechanism 50 by the lifting mechanism 35, and the high-purity size is selected after screening by the screening mechanism 50.
  • the granular silicon enters the surface finishing mechanism 60
  • the surface treatment is then cooled by the cooling mechanism 80 and then introduced into the packaging mechanism 90 for packaging to complete the entire production process.
  • the high-purity granular silicon small particles sieved by the screening mechanism 50 are heated by the preheating mechanism 20 and returned to the reactor chamber. Re-react in 10 times.
  • the high-purity granular silicon seed when the high-purity granular silicon seed is insufficient, a part of the high-purity silicon large particles selected by the screening mechanism 50 may be added to the pulverizer 70, and the high-purity granular silicon pulverized by the pulverizer 70 is heated by the preheating mechanism. Thereafter, it is returned to the reactor chamber as a high-purity granular silicon seed.
  • the reactor cavity, the gas-solid separation mechanism, the preheating mechanism, the screening mechanism, the surface finishing mechanism, and the like are respectively described in the embodiment of the present invention, and in the actual generation process, the above components may be Integrated in a reactor chamber.
  • the reactor for producing high-purity granular silicon uses a densely packed high-purity granular silicon bed in a moving state to avoid bonding between particles, reduce reactor volume, and densely accumulate
  • the high-purity granular silicon bed captures the high-purity powdered silicon in the reaction tail gas as a seed, and also uses the waste heat of the reaction tail gas to supplement the high-purity granular silicon seed; achieving ultra-large, high-efficiency, energy-saving, continuous, low-cost production. Pure granular silicon.
  • an embodiment of a method for producing high purity granular silicon using the reactor provided by the present invention includes:
  • the high-purity granular silicon seed is added into the reactor cavity 10 from the solid feed port 101 to form a high-purity granular silicon bed, and the high-purity granular silicon seed in the high-purity granular silicon bed is densely distributed, and the filling rate is more than 10%. Preferably it is greater than 50%.
  • operations such as pressurization, spouted bed and descending moving bed may be adopted.
  • Specific measures may also include: 1) increasing the gas velocity by controlling the valve, adopting more Fine-grained particles convert the bubble bed into a turbulent bed; 2) Improve the particle size structure, optimize the particle size and particle size distribution of high-purity granular silicon, and disperse the gas-solid polymerized fluidized bed to reduce the average Particle size, widening the particle size distribution or increasing the fine particle content can improve the fluidization quality, such as increasing the degree of bed expansion, improving the two-phase exchange capacity, reducing the short circuit phenomenon, and possibly eliminating internal components; 3) using pressure, At pressures above one atmosphere, not only can the throughput be increased, Moreover, the difference between the solid density and the gas density is reduced; 4) the use of fast fine particles can reduce the back mixing, improve the two-phase contact efficiency, enhance the heat transfer, and increase the production capacity; 5) the inner circulation air phase spray, The reactor has a self-circulating system to make the particles and bed dense and not tubeded. 6) Moving bed (vertical and horizontal, inclined) increases the particle packing density, reduces free space
  • the high-purity granular silicon bed is heated to have a high-purity granular silicon bed temperature of from 100 ° C to 1400 ° C, preferably from 300 ° C to 1200 ° C.
  • the heating method may be to electrically connect the high-purity granular silicon bed to the power source, that is, to apply a voltage to the high-purity granular silicon bed, and heat the silicon by using its own resistance heat release. Similarly, it can be used to heat up with a high-purity silicon rod similar to the Siemens method.
  • the high-purity granular silicon can be in a relative motion state by the following methods: 1) injecting the auxiliary gas and/or the material gas into the reactor chamber 10 to make the high-purity granular silicon bed in motion; 2) introducing an external force Such as spouting, turning, agitation, mixing, vibration or gravity flow; 3 HJ is in other gravitational fields (such as centrifugal force field, etc.); 4) using a stirring bed; 5) using a vibrating bed (including mechanical vibration, Acoustic or ultrasonic vibration, plug-in vibration, etc.).
  • the auxiliary gas inlet 102 and the raw material gas inlet 105 pass through the gas distributor 103 to feed the auxiliary gas and the raw material gas
  • the auxiliary gas is 3 ⁇ 4 and/or an inert gas
  • the raw material gas may be a silicon-containing gas
  • the raw material gas may also be a silicon-containing gas.
  • the reaction pressure in the reactor chamber 10 is from 0.1 to 100 atmospheres, preferably from 0.1 to 50 atmospheres.
  • the flow rate of the auxiliary gas and the raw material gas is not limited by the minimum floating flow rate of the conventional fluidized bed, and the gas flow rate can be controlled at a critical fluidization velocity (Umf), and the gas flow velocity can be controlled between 0.01 Umf and 10 Umf. Therefore, the following advantages can be obtained: saving airflow, reducing heating and energy loss, reducing exhaust gas treatment amount, and reducing pollution; making the operating range of the invention large in production, gas can be more or less, and not due to temporary reduction of raw materials. Discontinued.
  • the reaction tail gas is heated by the preheating mechanism 20 to supplement the high-purity granular silicon as a seed;
  • the supplemental high purity granular silicon is returned to the reactor chamber 10.
  • the gas component is then circulated into the reactor chamber 10 through the auxiliary gas inlet 102 or the feed gas inlet 105 for recycling.
  • the exhaust gas is recycled to the reactor chamber 10, it passes through a bed of high-purity granular silicon, in which the gas usually carries high-purity powdered silicon, and the high-purity granular silicon bed can act as a dust collector. That is, when the gas passes through the high-purity granular silicon bed, the high-purity powder silicon carried therein is trapped and remains in the high-purity granular silicon bed as the high-purity granular silicon seed.
  • the high-purity granular silicon product obtained by the reaction is subjected to surface treatment by the surface finishing mechanism 60, and then collected after cooling; wherein the surface treatment process may be a process in which the high-purity granular silicon product is subjected to a low concentration of the raw material gas having a concentration of 0 - 10%.
  • the reaction chamber produces a dense silicon structure on the surface of the high purity particulate silicon product.
  • the method for producing high-purity granular silicon of the present invention may further include: the reaction tail gas passes through the gas-solid separation mechanism 30. Separating the high-purity powder silicon carried in the reaction tail gas, the process can separate the high-purity powder silicon from the high-purity granular silicon particle layer which is densely stacked (filling rate is more than 50%); the process can not only prevent high-purity powder Silicon enters the downstream of the reaction and can produce high purity granular silicon seeds simply and without contamination.
  • the method for producing high-purity granular silicon of the present invention may further include: the larger high-purity granular silicon particles after the reaction are transported to the screening mechanism 50 via a hoist or a conveying passage.
  • the high-purity granular silicon large particles having the particle size meet the requirements are obtained by sieving, and the high-purity granular silicon whose particle size is not satisfactory is heated by the preheating mechanism and returned to the reactor cavity to continue the reaction.
  • the particle size of the high-purity granular silicon particles produced by the embodiment of the present invention is between 1 mm and 20 cm.
  • the preferred particle size is between 3 mm and 5 mm, the crystallinity is no more than 30% of the particle size, and the preferred crystallinity is from 1 to 500 nm. Crystallinity is the measure of small single crystal blocks in a particle.
  • a polycrystalline particle with a particle size of 2 mm can be composed of many small single crystal particles with different crystallinity (between 1-500 nm).
  • the density of the high-purity granular silicon particles produced by the embodiment of the present invention is preferably from 1 to 2.4 g/cm 3 .
  • the high-purity granular silicon seed in the reactor chamber 10 is still insufficient after the high-purity granular silicon seed is replenished by the gas-solid separation mechanism 30, the high-purity granular silicon seed can be supplemented by: sieving a part The high-purity granular silicon large particles are pulverized into the high-purity granular silicon particles by passing through the cracker 70, and then the high-purity granular silicon particles are heated by the preheating mechanism 20 and returned to the reactor chamber 10 as high-purity granular silicon seeds. .
  • the reaction series for producing high-purity granular silicon in the embodiment of the present invention is from 1 to 50, preferably from 1 to 20, more preferably from 3 to 10.
  • the material is transported or handled by the following methods: 1) a gravity flow method, that is, a method of flowing into the bed and flowing out of the bed by the gravity of the solid particles themselves, wherein To make the solid particles flow smoothly, a small amount of gas can be introduced at the appropriate point of the pipeline to loosen the solid particles for flow; 2) Mechanical transport method, commonly used machines are: screw conveyor, belt feeder, disc Feeder, star feeder and bucket elevator; 3) aerodynamic conveying method.
  • the method for producing high-purity granular silicon using the reactor of the present invention uses a densely packed high-purity granular silicon bed in a moving state to avoid bonding between particles and reduce reactor volume. And capturing high-purity powdered silicon in the reaction tail gas as a seed through a densely packed high-purity granular silicon bed layer, and also heating the high-purity granular silicon supplemented by the waste heat of the reaction tail gas; achieving ultra-large, high-efficiency, energy-saving, continuous, High-purity granular silicon is produced at low cost.
  • Table 1 gives a comparison of specific experimental data for the production of high purity granular silicon using two different reactors. Among them, Experiment 2 is an experiment conducted by applying the embodiment of the present invention.
  • FIG. 4 and 5 are cross-sectional optical micrographs of high purity granular silicon produced in accordance with an embodiment of the present invention.
  • a first seed 401 and a second seed 501 located at the center of the high purity granular silicon, and a first growth layer 403 and a second growth layer 503 wrapped around the periphery of the seed can be seen.
  • a large number of granular wraps 402 between the first growth layer 403 and the first seed 401 are clearly visible.
  • These granular wraps 402 are gas-formed powdered silicon, and in the reaction, these powdered silicon are deposited to a large size.
  • this is the kneading effect of kneading the powdered silicon into the granular silicon as described in the embodiment of the present invention; dropping part of the powdered silicon into the granular silicon, thereby accelerating the reaction speed, improving the efficiency, and reducing the overall energy. Consumption.
  • FIG. 6 is an X-ray diffraction pattern of high-purity granular silicon produced according to an embodiment of the present invention. Referring to FIG. 6, a characteristic line of a sharper silicon (half-peak width at 0.12 degrees) can be seen, which indicates that the silicon produced by the present invention
  • the crystal grains are larger than 1.0 ⁇ m.
  • the neutron activation analysis was performed on the high-purity granular silicon and the commercial electronic-grade granular silicon produced by the embodiment of the present invention, and Table 2 shows the composition analysis of the high-purity granular silicon product produced by the embodiment of the present invention and the heavy metal in the commercial electronic-grade granular silicon. , the unit is one in a million.
  • the high-purity granular silicon product produced in the examples of the present invention is equivalent to the content of impurities in the commercial electronic grade granular silicon, that is, the high-purity granular silicon product produced by the embodiment of the present invention meets the commercial electronic grade granular silicon standard.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

生产高纯颗粒硅的反应器和方法 技术领域
本发明涉及高纯硅生产技术, 尤其涉及一种生产高纯颗粒硅的反应器和 方法。 背景技术
过去高纯硅材料主要是用于生产半导体元器件, 随着半导体集成电路技 术的发展, 电路集成度越来越高, 虽然电子器件的应用越来越广, 但高纯硅 的消耗量却没有大的增加。由于高纯硅还是生产太阳能光伏电池的重要原料, 而近年来随着太阳能光伏产业的发展, 对高纯硅的需求就越来越大, 其需求 量现已超过半导体产业的用量并以高速增长; 另一方面, 太阳能光伏行业属 于利润空间小的产业, 要求高纯硅材料的生产成本低, 这给传统的生产方法 提出了很大的挑战。
传统的生产高纯多晶硅的方法有西门子法和流化床法。
西门子法为: 将提纯后的高纯含硅气体如三氯氢硅 (SiHCl3)或硅烷 (SiH4) 与氢气混合后通入反应器中, 在电加热的硅芯棒表面发生热分解反应, 高纯 硅不断地沉积在炽热的硅芯棒表面, 使之不断增粗, 反应后的气体则返回到 尾气处理系统进行分离处理和循环再利用。 当硅芯棒生长到一定直径后, 就 必须终止反应, 更换硅芯棒然后再进行下一轮反应。 该工艺为间歇式操作, 并且耗电量高, 平均每生产一公斤高纯硅需耗电 150kwh (千瓦时)左右甚至 更高。 此外该工艺还存在转换效率低等缺点。 因此, 西门子法生产高纯硅产 量低, 成本高, 不能满足日益增长的工业需要。
流化床法为: 将高纯粒状硅作为 "种子" 在加热的反应器内形成流化状 态, 然后引入高纯含硅气体, 这样在被加热的种子表面就发生热分解反应, 从而使高纯粒状硅越长越大以至于无法被浮起而落入收集箱中。 由于流化床 法中利用大量的高纯粒状硅为 "种子" , 整个表面积相对于西门子法有较大 增加, 因此反应效率和转换效率都较西门子法有较大提高, 而耗电量也随之 减少。
发明人经研究发现传统的流化床法生产高纯硅存在以下主要问题:
1、 高纯硅颗粒在悬浮态彼此分离形成 80%以上的空间,使含硅气体分解 生成大量的粉末硅随气体被带出反应器, 由此减少了原料(气体)利用率, 增加了成本, 造成浪费, 而且硅粉末进入下游增加了对反应尾气的处理难度 和生产设备的成本, 易造成污染。
2、 悬浮反应器内所有的硅颗粒需消耗大量气体而造成气体回收困难, 并 且反应余热利用率低, 增加了运营成本。
3、 由于在反应温度(200°C -1400°C )下,粒状硅表面形成半熔化的状态, 颗粒之间的黏连性^ ί艮强, 由此会造成颗粒间的相互聚团, 从而堵塞反应器进 气孔和通道, 造成停产事故。
4、 反应器体积大, 有效利用空间小, 生产规模小, 增加生产设备的建设 成本与施工难度。
5、作为种子的高纯粒状硅的制备比较困难,且在制备过程中易混入杂质。 发明内容
本发明的目的在于提供一种生产高纯颗粒硅的反应器和方法, 用于实现 超大型、 高效、 节能、 连续、 低成本生产高纯颗粒硅。
为了实现上述目的, 本发明提供一种生产高纯颗粒硅的反应器, 包括: 反应器腔体;
所述反应器腔体上设置有固体加料口、 辅助气体入口、 原料气体入口和 尾气出口;
所述反应器腔体内部设置有气体分布器, 所述气体分布器用于使辅助气 体和原料气体分散于所述反应器腔体中; 所述反应器腔体设有内置或外置的预热机构; 所述反应器腔体外部设置 之间;
所述反应器腔体连接内置或外置的表面整理机构; 所述表面整理机构用 于对生产得到的高纯颗粒硅进行表面处理;
所述反应器腔体设有内置或外置的加热机构和动态发生机构, 所述动态 发生机构用于使位于所述反应器腔体内的高纯粒状硅床层中的高纯粒状硅处 于相对运动状态。
为了实现上述目的, 本发明还提供一种生产高纯颗粒硅的方法, 包括: 形成高纯粒状硅床层, 所述高纯粒状硅床层中的高纯粒状硅密集分布, 填充率为 10%以上;
加热所述高纯粒状硅床层,使所述高纯粒状硅床层的温度为 100°C - 1400 °c; 使所述高纯粒状硅床层中的高纯粒状硅处于相对运动状态;
通入辅助气体和原料气体, 所述辅助气体为高纯 ¾和 /或惰性气体, 所 述原料气体为含硅气体, 或者所述原料气体为含硅气体和还原气体 ¾;
反应尾气与补充的高纯粒状硅换热后, 经尾气处理机构按气体成份进行 分离后, 通过辅助气体入口或原料气体入口通入反应器腔体中循环利用; 所 述补充的高纯粒状硅经加热后, 进入所述反应器腔体中;
对生产得到的高纯颗粒硅进行表面处理后, 冷却收集包装。
本发明提供的生产高纯颗粒硅的反应器和方法, 使用处于运动状态的密 集堆积的高纯粒状硅床层, 避免了粒状硅之间的粘结, 减小了反应器体积, 并且通过密集堆积的高纯粒状硅床层捕获反应尾气中的高纯粉末硅作为种 子, 还利用反应尾气的余热为补充的粒状硅加热; 实现了超大型、 高效、 节 能、 连续、 低成本生产高纯颗粒硅。 附图说明
图 1为本发明生产高纯颗粒硅的反应器实施例的示意图;
图 2为本发明生产高纯颗粒硅的反应器实施例中反应器腔体的示意图; 图 3为本发明生产高纯颗粒硅的反应器实施例中一立式多级反应器示意 图;
图 4和图 5为本发明实施例生产的高纯颗粒硅的截面光学显微照片; 图 6为本发明实施例生产的高纯颗粒硅的 X射线衍射图谱。 具体实施方式
下面结合附图和具体实施例进一步说明本发明实施例的技术方案。
生产高纯颗粒硅的反应器实施例
图 1为本发明生产高纯颗粒硅的反应器实施例的示意图, 图 2为本发明 生产高纯颗粒硅的反应器实施例中反应器腔体的示意图, 参见图 1和图 2, 该装置包括有: 反应器腔体 10、 预热机构 20、 尾气处理机构 40、 表面整理 机构 60、 力。热机构、 动态发生机构。
反应器腔体 10内部可以是方形、 圓柱形或矩形等多种形状的空间, 且空 间可以分层, 隔段可以拆分; 反应器腔体 10可以设置为直立、 斜靠或平躺放 置, 在反应时可以进行顺流或逆流操作。 当反应器腔体为直立或斜靠放置时, 反应器腔体的高度可以为 1-100米, 优选的为 1-50米, 例如: 当反应器腔体 的高度为 1米时, 反应器可以为 1级, 也可以为多级, 其中每一级的高度至 少为 10-20cm; 当反应器腔体的高度为 50米时, 反应器可以为 1级或多级, 各级高度可以不同, 当反应器为多级时, 每一级的高度至少为 10 - 20cm; 当 反应器的高度为已确定值, 例如: 50米, 还可以根据反应所需的级数, 设置 每一级的高度;如果反应器为 1级,一级的高度为 50米;如果反应器为 5级, 则每一级的高度为 10米左右; 同样的, 当反应器腔体的高度为 70米或者 100 米时, 反应器也可以为 1级或多级, 可根据反应所需的级数设置每一级的高 度,也可以将小尺寸反应器(如反应器腔体高度为 1米或 50米)同比例放大, 还可以是多个小尺寸反应器的叠加。 反应器腔体的尺寸由反应的实际情况来 定, 要使反应气体通过反应床层时转换效率最高同时最节能。 在此, 本发明 并不限制反应器腔体的高度, 比如反应器腔体的高度还可以为 1-1000米。 当 反应器腔体为平躺时, 则上述反应器腔体的长度可以为 1-100米, 优选的为 1-50米, 具体对反应器腔体长度的描述与上述反应器腔体高度类似, 但可以 是二维分布然后三维叠加, 即将多个平躺的反应器腔体进行纵向叠加。
本发明中生成高纯颗粒硅的反应为吸热反应, 为了保证热量不散失或少 散失, 反应器腔体 10的壳体可以由三层组成, 内层为耐火内胆, 中间层为由 耐火纤维和矿渣棉等保温材料构成的保温层, 最外层为钢壳起支持作用。
如图 2所示, 反应器腔体 10上设置有固体加料口 101 , 用于将作为种子 的高纯粒状硅加入到反应器腔体 10中。
反应器腔体 10上还设置有辅助气体入口 102、 原料气体入口 105和尾气 出口。 其中辅助气体为高纯还原气体 ¾和 /或惰性气体(如 Ar或 He ) , 原料 气体为高纯含硅气体, 或者原料气体为高纯含硅气体和还原气体 ¾, 含硅气 体可以是 Si 、 SiHCl3、 SiCl4、 Si¾Cl2— SiBr4等中的一种或几种。 本发明中 使用的气体 (包括原料气体和辅助气体)纯度在 99.99%以上。 原料气体中含 硅气体成份在 1%至 100%。
辅助气体入口 102通向位于反应器腔体 10内部的气体分布器 103 , 原料 气体入口 105通向原料气体喷嘴 104; 辅助气体和原料气体通过气体分布器 103和原料气体喷嘴 104分散于反应器腔体 10中。 经固体加料口 101加入的 作为种子的高纯粒状硅紧密堆积在气体分布器 103上, 形成高纯粒状硅床层 (或者, 高纯粒状硅床层也可以不堆积在气体分布器上, 而是依靠反应腔体 直径和物料循环速度来控制物料在每一级反应腔体中的停留时间) ; 作为种 子的高纯粒状硅的粒度大小分布与生产得到的高纯颗粒硅产品粒度大小分布 可以有重叠, 即一部分作为种子的高纯粒状硅的粒度可以大于或等于高纯颗 粒硅产品的粒度, 优选的, 作为种子的高纯颗粒多晶硅的粒度大小为生产得 到的高纯颗粒硅产品粒度大小的 10-30 %,其中生产得到的高纯颗粒硅产品粒 度大小是根据不同的应用情况而定的, 一般在 1-20毫米之间。 具体的, 气体 分布器 103由花板(或称为筛板)和风帽组成, 也可以只有一块花板(多孔 筛板) 而没有风帽; 气体分布器 103可以为直流、 侧流、 密孔或填充型分布 器。 由于高纯粒状硅床层的密集堆积, 使得本发明实施例中反应器的体积较 小, 与现有的流化床工艺相比, 可以在减小反应器体积的同时增加产量。
预热机构 20设置在反应器腔体 10的内部或外部。 如图 1所示, 本实施 例中预热机构 20设置在反应器腔体 10的外部; 预热机构 20中有固体入口, 用于补充作为种子的高纯粒状硅, 因为本发明生产高纯颗粒硅的过程是一个 消耗种子的过程, 所以需要不断的补充作为种子的高纯粒状硅; 反应尾气经 过预热机构 20给补充作为种子的高纯粒状硅进行加热。
尾气处理机构 40设置在反应器腔体 10的外部,且连接在预热机构 20与 辅助气体入口 102和原料气体入口 105之间。 反应尾气经过预热机构 20后,
环利用。
反应尾气中会携带高纯粉末硅, 因为: 1、 在反应器运行过程中, 高纯颗 粒硅和 /或高纯粒状硅床层中的颗粒强烈的扰动会导致颗粒磨损; 2、 本发明 中含硅气体热解本身可生成粉末硅。 由于本发明中高纯粒状硅床层为密集堆 积的 ,所以当反应尾气经预热器和尾气处理机构处理后循环至反应器腔体时, 反应器中密集堆积的高纯粒状硅床层会捕获反应尾气中的粉末硅, 由此起到 捕尘器的作用。
表面整理机构 60设置在反应器腔体 10的内部或外部, 用于对生产得到 的高纯颗粒硅进行表面处理。 反应生成的高纯颗粒硅的表面一般比较疏松, 易产生粉尘, 这会影响下游生产应用, 由此需要对该高纯颗粒硅的表面进行 处理以使其变得比较致密。 表面整理机构 60优选为含有浓度为 0 - 10%的低 浓度反应气体的反应腔体, 该表面整理机构 60可以^ 应器中的若干区段。 在一个含有低浓度(浓度为 0-10 % )反应气体的喷动床中, 高纯颗粒硅的表 面会形成致密的硅结构, 由此达到了表面处理的作用, 而且通过该方式进行 的表面处理过程, 不会引入杂质和其它处理工序, 降低了生产成本。 当然, 表面处理过程也可以采用传统的酸洗、 清洗和烘干过程。
加热机构设置在反应器腔体 10内部或外部。 为了使反应达到反应温度, 需要对反应物进行加热。 加热机构优选为与高纯粒状硅床层电连接的电源, 即对高纯粒状硅床层加上电压, 由于硅的半导体性能, 高纯粒状硅床层发热 致使高纯粒状硅床层的温度升高。 使用该方法为直接加热, 热效率高, 热利 用率高, 采用高纯粒状硅作为发热体还可避免污染, 保证产品纯度。
加热机构还可以采用其它多种现有的加热方式: 1 )电阻丝(硅棒、 高纯 SiC、 高纯 SiN或石墨等材料) 直接加热; 2 )微波、 等离子、 激光或感应等 间接加热; 3 ) 间接由隔焰热辐射管所提供的燃烧加热或回转炉窑加热; 4 ) 采用外夹套和床内换热器, 外夹套换热器可以采用电感加热和载热体换器, 床内换热可以采用载热体加热、 电感应加热和电极棒加热等方式; 5 )夕卜部力口 热方式, 比如将反应中所需的反应物 (如悬浮气体和硅颗粒本身)在外部加 热后再引入反应器; 6 )偶合式反应加热, 采用化学反应如氯气(Cl2 )或氯 化氢(HC1 )加入到系统。
为了在生产高纯颗粒硅时, 使高纯粒状硅不容易粘结, 本发明的反应器 还包括用于使高纯粒状硅床层中的高纯粒状硅处于相对运动状态的动态发生 机构, 动态发生机构设置在反应器腔体 10内部或外部。 优选的, 动态发生机 构为辅助气体喷嘴和 /或原料气体喷嘴; 该辅助气体喷嘴和原料气体喷嘴设置 在反应器腔体 10内, 分别与辅助气体入口和原料气体入口相连, 用于将辅助 气体和原料气体喷射入反应器腔体 10内搅动高纯粒状硅床层,使高纯粒状硅 床层中的高纯粒状硅处于相对运动状态, 避免了高纯粒状硅之间的粘结; 并 且由于原料气体经喷射进入高纯粒状硅床层, 致使在高纯粒状硅床层中接触 和靠近气体分布器的高纯粒状硅种子不容易发生反应, 由此, 可以避免气体 分布器 103被堵塞。
该动态发生机构还可以通过以下方式来实现使高纯粒状硅床层处于动 态: 1 ) 引入外力进行如喷动、 转动、 搅动、 拌动、 振动或使高纯粒状硅床层 在重力下流动通过内壁上安装的交错梳篦结构等; 2 )使反应器处于其他引力 场 (如离心力场等) 下; 3 )使用搅拌流化床; 4 )使用振动流化床(包括机 械振动、 声波或超声波振动、 插入式振动等) 。
进一步的, 为了更好的捕获反应尾气中的高纯粉末硅并将其作为补充的 高纯粒状硅种子, 本发明的反应器还包括气固分离机构 30。 气固分离机构 30 设置在反应器腔体 10的内部或者外部, 并与预热机构 20连接。 从反应器腔 体 10中排出的反应尾气经气固分离机构 30捕获高纯粉末硅, 并将该高纯粉 末硅返回到反应器腔体 10中作为种子重新参加反应或被捏合到高纯粒状硅 颗粒上。
其中气固分离机构 30优选为密集堆放(填充率大于 50 % , 优选为 50-80 % ) 的高纯粒状硅颗粒层, 例如, 该高纯粒状硅颗粒层具体可以为: 将高纯 粒状硅颗粒密集的堆放在多根带有钻孔的硅管 (或陶瓷管) 内, 并在其外包 覆玻璃布, 这些硅管分为数组悬挂于反应器扩大段的顶部或者反应器外部。 反应尾气通过气固分离机构即通过致密的高纯粒状硅颗粒层时, 反应尾气中 携带的高纯粉末硅可以被捕获, 使用该气固分离机构, 不仅可以防止高纯粉 末硅进入反应下游, 而且可以简单、 无污染的产生高纯粒状硅种子。 其中, 填充率为高纯粒状硅的填充空间与其所占空间的比, 填充率与颗粒形状和颗 粒尺寸分布有关; 填充率并不是针对整个反应腔体而言的, 例如, 当填充率 为 70%时, 反应腔体可以只有 20%被填充。
当然, 气固分离机构 30也可以采用其它形式以达到气固分离的效果, 比 如: 1 )通过改变反应器内径尺寸, 使反应器顶部放大来改变小颗粒的逃逸速 度, 实现沉降捕获; 2 )使用旋风分离器; 3 )使用过滤器或除尘器。
为了使生产出的高纯颗粒硅的颗粒大小均匀, 本发明的反应器还可以包 括筛分机构 50。 筛分机构 50设置于反应器腔体 10的内部或外部, 连接在反 应器腔体 10和表面整理机构 60之间。 将反应生成的高纯颗粒硅引入到筛分 机构 50中进行筛选,将过大颗粒经过研碎后与过小颗粒一起送回到预热机构 20, 经加热后返回到反应器腔体内继续生长, 将达到颗粒大小要求的高纯颗 粒硅选出送入下一处理工段, 由此可以将产品颗粒的大小控制在所需要的最 佳尺寸范围内, 不仅可以减少可能的表面污染(当颗粒较小时, 会由于其较 大的表面积而易收到污染) , 也更有利于下游生产中的应用。 在筛分和循环 过程中要尽量避免高纯颗粒硅与其它非硅元素材料特别是金属的直接接触, 以防止因杂质污染而降^^产品质量。
为了提供其它的方式补充作为种子的高纯粒状硅, 本发明的反应器还可 以包括研碎器 70, 研碎器 70连接在筛分机构 50和预热机构 20之间, 用于 将一部分筛分出的高纯颗粒硅进行粉碎。
本发明中生产高纯颗粒硅的过程中, 高纯粒状硅种子是处于不断的消耗 中, 当通过气固分离机构 30分离出的高纯粉末硅量不足以补充反应器中高纯 粒状硅种子的消耗时, 通过研碎器 70将筛分出的高纯颗粒硅大颗粒进行粉 碎, 粉碎生成的小颗粒再经过预热机构 20加热后返回反应器腔体 10中。 由 于本发明中生成的高纯颗粒硅中含有氢, 因此研碎器也可以通过迅速加热含 氢高纯颗粒硅, 使高纯颗粒硅爆裂形成小颗粒作为种子。 该研碎器 70还可以 是高速气体破碎器、 超声破碎器或碾碎用收尘器(旋风, 布袋)等现有的研 碎器。
为了减小反应器腔体内壁上的硅沉积, 本发明所述反应器腔体内还可以 设有与反应器腔体内壁相切的气帘 (通过或不通过内壁)机构, 该气帘机构 用于产生覆盖于反应腔体内壁的气帘; 该气帘机构具体可以为: 在反应器腔 体壁上, 切入多个与内壁表面的夹角尽可能小的条形通气口, 该条形通气口 可以是横向或纵向的, 由反应器腔体外部通入不含硅气体(惰性气体)后, 该不含硅气体通过多个条形通气口进入反应器腔体内部后, 就可以形成一个 覆盖于反应腔体内壁并与内壁表面相切的气帘, 该气帘可以阻挡反应器腔体 内含硅气体在反应器腔体内壁上沉积硅; 该气帘机构具体还可以为在反应器 腔体内的底部或顶部设置与外部不含硅气体(惰性气体)相连的一环形管, 在环形管上开出与反应器腔体内壁平行的数个条形气孔, 在环形管通入不含 硅气体后, 形成一个覆盖于反应腔体内壁并与内壁表面相切的气帘, 该气帘 可以阻挡反应器腔体内含硅气体在反应器腔体内壁上沉积硅。
本发明实施例提供的反应器还可以包括监测和中心控制系统, 对反应装 置每一环节的具体工艺参数进行记录, 当具体工艺参数超过正常范围后会发 出警告并提供自动调节, 其中反应器需要测定的参数有: 床底温度(包括气 体和固体温度) 、 出口气体(反应尾气)组成、 压力、 固体粒度、 床层密度、 传热和传质、 固体颗粒的运动方向等。
本发明实施例中的反应器腔体和预热机构可以采用横向或者纵向的多级 多维结构 (图 2中的气体喷嘴可以是多个且呈二维阵列分布的气体喷嘴) , 反应级数可以为 1 - 50级, 优选为 1-20级, 更优的为 3 - 10级, 以增加有效 反应时间和换热效率, 减少粉末硅被带出, 减少反应器尺度和建造成本。 当 反应为多级时, 每一级中的反应尾气都可以利用其余热给下一级中的高纯粒 状硅进行加热, 使得换热效率增加, 并增加了有效反应时间; 例如, 当反应 为 3级时, 换热效率提高了 60%, 有效反应时间增加了 3倍; 当反应为 6级 时, 换热效率提高了 80%, 有效反应时间增加了近 6倍。
图 3为本发明生产高纯颗粒硅的反应器实施例中一立式多级反应器示意 图。 参见图 3 , 对使用多级反应器进行反应时的过程描述如下: 高纯粒状硅 种子自反应器顶部初级预热器 201起逐级由多级反应器中的尾气加热, 当高 纯粒状硅种子被预热器和第一级加热器 2031加热到所需温度之后,进入到第 一级反应器 2021中,并与含硅气体发生反应从而使高纯粒状硅种子自身表面 生长上高纯硅层, (为了减少危险辅助气体可以使用氩气) , 该高纯粒状硅 种子的温度因为参与了吸热分解反应而变低, 该高纯粒状硅种子下降到第二 级加热器 2032进行加热后进入第二级反应器 2022进行反应, 同样的, 该高 纯粒状硅种子下降到第三级加热器 2033进行加热后进入第三级反应器 2023 进行反应, 经过该多级反应, 高纯颗粒硅的粒度逐渐长大。
需要说明的有以下几点:
第一, 反应气体流向可以与粒子流向垂直, 也可以与粒子流向呈任何角 度; 第二, 依靠反应腔体的直径和物料循环速度来控制物料在每一级反应腔 体中的停留时间; 第三, 含硅气体在各级反应中都会产生粉末硅, 这些粉末 硅一部分随反应尾气进入末级预热器, 然后逐级上升最终被预热器中的气固 分离机构 (密集堆积的高纯粒状硅颗粒层)将粉末硅全部拦下与高纯粒状硅 一起下行作为反应的新种子颗粒; 第四, 有一部分粉末硅会随着高纯粒状硅 一起一直下行到捏合反应器 204中, 从而使粉末硅在没有含硅气体存在的情 况下 (即粉末硅在惰性气体存在的情况下 )被捏合到大的高纯粒状硅表面上, 使得高纯粒状硅的颗粒进一步长大、 球型化, 从而避免在高纯颗粒硅进入筛 分器 205后有大量粉尘, 以致操作困难影响后续工序; 高纯颗粒硅经筛分器 205筛分之后, 大的颗粒进入到表面整理器 206, 在其中由浓度较低的含硅气 体对高纯颗粒硅表面进行致密涂层,从而使每个高纯颗粒硅的表面光亮整洁; 将进行表面整理后的高纯颗粒硅经冷却器 207冷却后, 进入包装机 210进行 包装; 由筛分器 205筛选后的小颗粒被输送机构 208返回到初级预热器 201 , 从而完成了整个循环。 由初级预热器 201出来的尾气已经被冷却至较低温度 如 100-200°C , 由于各预热器粉末过滤作用, 尾气中含粉末硅的程度较低, 进 入尾气分离器 209后, 可被分成高纯气体而与原料气体混合进一步注入回到 反应器之中, 从而完成了另一个循环; 其中第一通道 200为原料气体入口, 第二通道 220为辅助气体入口。
为减少或避免反应器材质对硅的污染和在高温条件下有足够的机械强 度, 本发明实施例提供的反应器中, 各部分的材料可选用以下材料: 高纯硅、 高纯凝化硅、 高纯氮化硅、 石英或石墨等在高温下不会扩散杂质进入反应器 内的材料。
在本发明实施例中, 可以把反应器和预热机构等有机结合做直接连接, 即预热器、 过滤器、 反应器、 捏合和表面整理等可以为一个整体腔体的不同 区段, 也可以把反应器和预热机构等分开, 尤其是一套预热机构对应若干反 应器, 由此可以实现在其中一个反应器进行维修时, 其他的反应器可以继续 运转, 减少了停产时间。
下面结合图 1和图 2, 描述本发明生产高纯颗粒硅的反应器实施例的操 作流程。
在首次启动反应前, 通过固体加料口 101加入高纯粒状硅种子, 高纯粒 状硅种子自然堆积形成密集的高纯粒状硅床层, 高纯粒状硅床层被加热机构 加热至反应温度。
高纯反应气体(含硅气体和还原气体 ¾ )经由混合由泵 (pump)加压从原 料气体喷嘴 104喷射入高纯粒状硅床层, 同时辅助悬浮气体氢气和 /或惰性气 体也由鼓风设备 (pump)从辅助气体入口 102通过气体分布器 103通入反应器 腔体 10内; 反应气体在反应器腔体 10内反应, 含硅气体发生热分解反应生 成硅包裹在高纯粒状硅种子的表面, 使得高纯粒状硅种子不断长大; 从反应 器腔体 10排出的反应尾气进入预热机构 20和气固分离机构 30, 气固分离机 构 30分离收集出反应尾气中携带的粉末硅, 并且反应尾气通过预热机构 20 利用余热给颗粒和粉末硅加热,加热后的高纯硅被返回到反应器腔体 10中重 新参加反应; 从预热机构 20中排出的反应尾气进入尾气处理机构 40, 尾气 处理机构 40依据气体成份对反应尾气进行分离,然后将分离后的气体再通过 反应气体入口或者辅助气体入口通入反应器腔体中循环利用; 反应器腔体 10 中生成的高纯硅颗粒(相对尺寸粒度较大)被提升机构 35带到筛分机构 50, 经过筛分机构 50筛选后尺寸合适的高纯颗粒硅后进入表面整理机构 60进行 表面处理, 然后经冷却机构 80冷却后进入包装机构 90进行包装而完成整个 生产过程, 经筛分机构 50筛分下的高纯颗粒硅小颗粒则经预热机构 20加热 后返回反应器腔体 10中重新进行反应。 其中, 在高纯粒状硅种子不足时, 可 以将筛分机构 50筛选出的一部分高纯硅大颗粒加入研碎器 70中, 经过研碎 器 70粉碎生成的高纯粒状硅经由预热机构加热后,返回到反应器腔体中作为 高纯粒状硅种子。
为了便于理解, 本发明实施例中对反应器腔体、 气固分离机构、 预热机 构、 筛分机构、 表面整理机构等进行了分别描述, 而在实际的生成过程中, 上述各个部件可以是一体设置在一个反应器腔体内。
本发明实施例提供的生产高纯颗粒硅的反应器, 使用处于运动状态的密 集堆积的高纯粒状硅床层, 避免了颗粒之间的粘结, 减小了反应器体积, 并 且通过密集堆积的高纯粒状硅床层捕获反应尾气中的高纯粉末硅作为种子, 还利用反应尾气的余热为补充的高纯粒状硅种子加热; 实现了超大型、 高效、 节能、 连续、 低成本生产高纯颗粒硅。
利用本发明提供的反应器生产高纯颗粒硅的方法实施例
参见图 1和图 2, 利用本发明提供的反应器生产高纯颗粒硅的方法实施 例, 包括:
将高纯粒状硅种子从固体加料口 101加入反应器腔体 10内形成高纯粒状 硅床层, 高纯粒状硅床层中的高纯粒状硅种子呈密集态分布, 填充率大于 10 % ,优选的为大于 50 %。为了使高纯粒状硅床层中颗粒之间的自由空间较小, 可以采取加压、 喷动床和下行移动床等操作, 具体措施还可以包括: 1 )通过 控制阀门提高气速, 采用更细粒度的颗粒, 使鼓泡床转化为湍动床; 2 )改善 颗粒粒度结构, 对高纯粒状硅的粒度和粒度分布进行优化选择, 使气固聚式 流化床散式化, 减少平均粒径, 加宽粒径分布或增加细颗含量能改善流化质 量, 如增加床层膨胀程度, 提高两相交换能力, 减轻短路现象, 并有可能省 去内部构件; 3 )采用加压,在压力高于一个大气压下, 不但可以增加处理量, 而且由于减少了固体密度与气体密度之差; 4 )采用快速细颗粒,可减小返混, 提高两相接触效率, 强化传热, 使用生产能力提高; 5 ) 内循环空相喷动, 在 反应器内置自循环系统, 使颗粒、 床层密集而不结管; 6 )移动床(竖直和水 平, 倾斜)增加颗粒堆积密度, 减少自由空间从而减少了气相粉末生成和加 速粉末向颗粒的聚合。
加热高纯粒状硅床层, 使高纯粒状硅床层温度为 100°C - 1400°C , 优选 为 300°C - 1200°C。 该加热方法可以是将高纯粒状硅床层与电源电连接, 即 给高纯粒状硅床层加电压, 利用硅自身电阻放热来进行加热。 同样, 也可用 类似于西门子法中用高纯硅棒通电加热。
在生产高纯颗粒硅时, 为了使硅颗粒不容易粘结, 需要使高纯粒状硅床 层中的高纯粒状硅处于相对运动状态。 可以通过以下方法实现使高纯粒状硅 处于相对运动状态: 1 )将辅助气体和 /或原料气体喷射入反应器腔体 10内, 使高纯粒状硅床层处于运动状态; 2 )引入外力进行如喷动、 转动、 搅动、 拌 动、振动或重力下流动等; 3 H J 应器处于其他引力场(如离心力场等)下; 4 )使用搅拌床; 5 )使用振动床(包括机械振动、 声波或超声波振动、 插入 式振动等) 。
由辅助气体入口 102和原料气体入口 105经气体分布器 103通入辅助气 体和原料气体, 辅助气体为 ¾和 /或惰性气体, 原料气体可以为含硅气体, 或者原料气体也可以为含硅气体和还原气体 ¾。 反应器腔体 10内的反应压 力为 0.1-100个大气压, 优选的为 0.1-50个大气压。
辅助气体和原料气体的流量不受传统流化床最低浮起流速的限制, 气流 可以 '〗、于临界流化速度 ( Umf ) ,气流速度可以控制在 0.01 Umf- 10 Umf之间。 由此可以带来如下好处: 节约气流, 减少加热和能量损失, 减少尾气处理量, 减少污染; 使本发明的在生产时操作范围大, 气体可多可少, 不会因为原料 的临时减少而停产。
反应尾气经过预热机构 20给补充作为种子的高纯粒状硅加热;经过加热 的补充的高纯粒状硅返回到反应器腔体 10中。 照气体成份再通过辅助气体入口 102或原料气体入口 105通入反应器腔体 10 中循环利用。 当尾气经过循环又回到反应器腔体 10中时, 要经过高纯粒状硅 床层, 此时气体中通常携带有高纯粉末硅, 而高纯粒状硅床层则可以作为捕 尘器, 即当气体通过高纯粒状硅床层时, 其中携带的高纯粉末硅会被捕获而 留在高纯粒状硅床层中作为高纯粒状硅种子。
反应得到的高纯颗粒硅产品经表面整理机构 60进行表面处理后,冷却后 收集; 其中, 该表面处理的过程可以是高纯颗粒硅产品经过含有浓度为 0 - 10 %的低浓度原料气体的反应腔体, 使得在高纯颗粒硅产品的表面生成致密 的硅结构。
进一步的, 为了更好的捕获反应尾气中的高纯粉末硅, 并将其作为补充 的高纯粒状硅种子, 本发明生产高纯颗粒硅的方法还可以包括: 反应尾气经 过气固分离机构 30分离出反应尾气中携带的高纯粉末硅,该过程可以^ 应 尾气经过密集堆放 (填充率大于 50 % ) 的高纯粒状硅颗粒层分离出高纯粉末 硅; 该过程不仅可以防止高纯粉末硅进入反应下游, 而且可以简单、 无污染 的产生高纯粒状硅种子。
为了使生产出的高纯颗粒硅颗粒的大小均匀, 本发明生产高纯颗粒硅的 方法还可以包括: 反应后的较大的高纯颗粒硅颗粒经提升机或输送通道输送 至筛分机构 50中, 通过筛分得到颗粒大小符合要求的高纯颗粒硅大颗粒, 并 将颗粒大小不符合要求的高纯颗粒硅经预热机构加热后返回到反应器腔体内 继续反应。 由此可以将产品颗粒的大小控制在所需要的最佳尺寸范围内, 不 仅可以减少可能的表面污染 (当颗粒较小时, 会由于其较大的表面积而易收 到污染) , 也更有利于下游生产中的应用。 在筛分和循环过程中要尽量避免 硅粒与其它元素材料特别是金属的直接接触, 以防止因杂质污染而降低产品 质量。 本发明实施例生产得到的高纯颗粒硅颗粒的粒度在 lmm-20cm之间, 优选的粒度在 3mm-5mm之间, 晶体度不大于粒度的 30%, 优选的晶体度为 1-500纳米。 晶体度是颗粒中小单晶块的尺度, 例: 一个粒度为 2mm的多晶 颗粒可以由很多晶体度不相同( 1-500纳米之间)的小单晶颗粒组成。 本发明 实施例生产得到的高纯颗粒硅颗粒的密度优选为 1-2.4 g/cm3
进一步, 当通过气固分离机构 30补充高纯粒状硅种子后, 反应器腔体 10中的高纯粒状硅种子仍然不足时,可以通过以下方式补充高纯粒状硅种子: 将一部分筛分得到的高纯颗粒硅大颗粒通入研碎器 70中粉碎为高纯粒状硅 颗粒,然后将该高纯粒状硅颗粒通过预热机构 20进行加热后返回反应器腔体 10中作为高纯粒状硅种子。
本发明实施例生产高纯颗粒硅的反应级数为 1 - 50级,优选为 1 - 20级, 更优的为 3 - 10级。
在本发明实施例生成高纯颗粒硅的过程中, 通过以下方法对物料进行传 输或装卸: 1 )重力流动法, 即靠固体粒子自身的重力流入床层和自床层流出 的方法, 其中为了使固体粒子顺利地流动, 可以在管道的适当点通入少量的 气体, 使固体粒子松动以便于流动; 2 )机械输送法, 通常采用的机械有: 螺 杆输送机、 皮带给料机、 圓盘给料机、 星形给料机和斗式提升机等; 3 )气动 力输送法。
本发明提供的利用本发明的反应器生产高纯颗粒硅的方法实施例, 使用 处于运动状态的密集堆积的高纯粒状硅床层, 避免了颗粒之间的粘结, 减小 了反应器体积, 并且通过密集堆积的高纯粒状硅床层捕获反应尾气中的高纯 粉末硅作为种子, 还利用反应尾气的余热为补充的高纯粒状硅加热; 实现了 超大型、 高效、 节能、 连续、 低成本生产高纯颗粒硅。
下面给出本发明生产高纯颗粒硅的一实验例
将 10公斤直径在 0.1 -2 mm的高纯粒状硅种子置于直径为 15cm的圓桶状 反应器内, 同时用中频电炉对反应器进行加热。 由一多叶片搅拌器对反应器 中高纯粒状硅种子进行搅拌, 使整个高纯粒状硅床层处于密集堆积但颗粒间 有相互运动的状态, 在温度为 600°C-680°C时, 通入了浓度为 50% - 75%的含 硅气体硅烷, 实验时间为 6.5小时, 实验结束称重反应器中颗粒, 全部重量 增加了 4.35公斤, 平均生长一公斤硅耗电量为 3.45千瓦, 硅烷转换效率为 98%。
表 1给出了应用两种不同的反应器生产高纯颗粒硅的具体实验数据的比 较。 其中, 实验 2为应用本发明实施例进行的实验。
表 1 应用两种不同反应器的实验数据
Figure imgf000019_0001
图 4和图 5为本发明实施例生产的高纯颗粒硅的截面光学显微照片。 参 见图 4和图 5可以看出位于高纯颗粒硅中心的第一种子 401和第二种子 501 , 以及包裹在种子外围的第一生长层 403和第二生长层 503。 在图 4中, 在第 一生长层 403和第一种子 401之间的大量粒状包裹物 402清晰可见, 这些粒 状包裹物 402是气相生成的粉末硅, 在反应中, 这些粉末硅被沉积到大的粒 状硅之中, 这就是本发明实施例中所述的将粉末硅捏合到粒状硅之中的捏合 效果; 将部分粉末硅落入粒状硅中, 从而加快反应速度, 提高效率, 减少整 体能耗。
图 6为本发明实施例生产的高纯颗粒硅的 X射线衍射图谱, 参见图 6, 可 以看出较尖锐的硅的特征谱线(半峰宽在 0.12度) , 这表明本发明生产的硅 的晶粒大于 1.0μιη。
对本发明实施例生产的高纯颗粒硅和商业电子级颗粒硅进行中子活化分 析, 表 2给出了应用本发明实施例生产的高纯颗粒硅产品与商业电子级颗粒 硅中重金属的成份分析, 单位为百万分之一。 由表 2可知, 本发明实施例生 产的高纯颗粒硅产品与商业电子级颗粒硅中杂质的含量相当, 即本发明实施 例生产的高纯颗粒硅产品达到了商业电子级颗粒硅的标准。
表 2 商业电子级颗粒硅与本发明实验产品杂质成份比较
Figure imgf000020_0001
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种生产高纯颗粒硅的反应器, 包括: 反应器腔体; 其特征在于, 所述反应器腔体上设置有固体加料口、 辅助气体入口、 原料气体入口和 尾气出口;
所述反应器腔体内部设置有气体分布器, 所述气体分布器用于使辅助气 体和原料气体分散于所述反应器腔体中;
所述反应器腔体设有内置或外置的预热机构; 所述反应器腔体外部设置 之间;
所述反应器腔体连接内置或外置的表面整理机构; 所述表面整理机构用 于对生产得到的高纯颗粒硅进行表面处理;
所述反应器腔体设有内置或外置的加热机构和动态发生机构, 所述动态 发生机构用于使位于所述反应器腔体内的高纯粒状硅床层中的高纯粒状硅处 于相对运动状态。
2、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 还包 括与所述预热机构连接的气固分离机构, 所述气固分离机构用于分离和收集 反应尾气中的高纯粉末硅。
3、 根据权利要求 2所述的生产高纯颗粒硅的反应器, 其特征在于: 所述 气固分离机构为密集堆积的高纯粒状硅层, 所述密集堆积的高纯粒状硅层的 填充率为 50 %以上。
4、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 还包 括筛分机构,所述筛分机构连接在所述反应器腔体和所述表面整理机构之间。
5、 根据权利要求 4所述的生产高纯颗粒硅的反应器, 其特征在于, 还包 括: 与所述筛分机构相连接用于将筛分出的颗粒硅进行粉碎的研碎器, 所述 研碎器的出口与所述预热机构的固体入口相连接。
6、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所述 表面整理机构为含有浓度为 0-10 %的低浓度原料气体的反应腔体。
7、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所述 动态发生机构为辅助气体喷嘴和 /或原料气体喷嘴 , 所述辅助气体喷嘴和原料 气体喷嘴设置在所述反应器腔体内, 分别与辅助气体入口和原料气体入口相 连。
8、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所述 加热机构为与所述高纯粒状硅床层电连接的电源。
9、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所述 反应器腔体还包括与反应腔体内壁相切的气帘机构。
10、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所 述反应器的材料为高纯硅、 高纯碳化硅、 高纯氮化硅、 石英或石墨。
11、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所 述反应器腔体的高度为 1 - 100米;或者,所述反应器腔体的高度为 1 - 50米。
12、 根据权利要求 1所述的生产高纯颗粒硅的反应器, 其特征在于: 所 述反应器腔体和预热机构的反应级数为 1 - 50级; 或者, 所述反应器腔体和 预热机构的反应级数为 1 - 20级。
13、 一种生产高纯颗粒硅的方法, 其特征在于, 包括:
形成高纯粒状硅床层, 所述高纯粒状硅床层中的高纯粒状硅密集分布, 填充率为 10 %以上;
加热所述高纯粒状硅床层,使所述高纯粒状硅床层的温度为 100°C - 1400 °c; 使所述高纯粒状硅床层中的高纯粒状硅处于相对运动状态;
通入辅助气体和原料气体, 所述辅助气体为高纯 ¾和 /或惰性气体, 所 述原料气体为含硅气体, 或者所述原料气体为含硅气体和还原气体 ¾;
反应尾气与补充的高纯粒状硅换热后, 经尾气处理机构按气体成份进行 分离后, 通过辅助气体入口或原料气体入口通入反应器腔体中循环利用; 所 述补充的高纯粒状硅经加热后, 进入所述反应器腔体中;
对生产得到的高纯颗粒硅进行表面处理后, 冷却收集包装。
14、 根据权利要求 13所述的生产高纯颗粒硅的方法, 其特征在于, 还包 括:
从所述反应尾气中分离出高纯粉末硅, 将所述高纯粉末硅加入所述高纯 粒状硅床层; 或者
将部分所述生产得到的高纯颗粒硅爆裂成小颗粒高纯硅, 将所述小颗粒 高纯硅加入所述高纯粒状硅床层。
15、 根据权利要求 14所述的生产高纯颗粒硅的方法, 其特征在于: 所述从反应尾气中分离出高纯粉末硅的过程具体为: 使所述反应尾气经 过密集堆积的高纯粒状硅层, 分离出高纯粉末硅, 所述密集堆积的高纯粒状 硅层的填充率为 50 %以上。
16、 根据权利要求 13所述的生产高纯颗粒硅的方法, 其特征在于, 还包 括: 将生产得到的高纯颗粒硅大颗粒经过筛分得到粒度均匀的高纯颗粒硅产 口口
17、 根据权利要求 13所述的生产高纯颗粒硅的方法, 其特征在于, 所述 使所述高纯粒状硅床层中的高纯粒状硅处于相对运动状态的方法为: 将辅助 气体和 /或原料气体喷射入所述反应器腔体内搅动高纯粒状硅床层。
18、 根据权利要求 13所述的生产高纯颗粒硅的方法, 其特征在于: 所述 对生产得到的高纯颗粒硅进行表面处理的过程为: 将所述高纯颗粒硅经过含 有浓度为 0 - 10 %的低浓度原料气体的反应腔体。
19、 根据权利要求 13所述的生产高纯颗粒硅的方法, 其特征在于: 所述 加热所述高纯粒状硅床层的方法为: 使所述高纯粒状硅床层与电源电连接。
PCT/CN2009/072688 2008-09-16 2009-07-08 生产高纯颗粒硅的反应器和方法 WO2010031270A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167034217A KR101830856B1 (ko) 2008-09-16 2009-07-08 고순도의 입상 실리콘을 제조하기 위한 방법
KR1020117008622A KR101688442B1 (ko) 2008-09-16 2009-07-08 고순도의 입상 실리콘을 제조하기 위한 반응기 및 방법
KR1020187004261A KR20180019758A (ko) 2008-09-16 2009-07-08 고순도의 입상 실리콘을 제조하기 위한 방법
EP09813991.8A EP2338835A4 (en) 2008-09-16 2009-07-08 REACTOR AND METHOD FOR PRODUCING HIGH-PURITY SILICONE GRANULATE
US13/043,155 US8535614B2 (en) 2008-09-16 2011-03-08 Reactor and method for producing high-purity granular silicon
US13/969,563 US9662625B2 (en) 2008-09-16 2013-08-17 Method for producing high-purity granular silicon
US15/694,792 US10576438B2 (en) 2008-09-16 2017-09-02 System for producing high-purity granular silicon

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN200810160997 2008-09-16
CN200810160997.1 2008-09-16
CN200810187430 2008-12-28
CN200810187430.3 2008-12-28
CN200910149144.2A CN101676203B (zh) 2008-09-16 2009-06-17 生产高纯颗粒硅的方法
CN200910149144.2 2009-06-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/043,155 Continuation US8535614B2 (en) 2008-09-16 2011-03-08 Reactor and method for producing high-purity granular silicon

Publications (1)

Publication Number Publication Date
WO2010031270A1 true WO2010031270A1 (zh) 2010-03-25

Family

ID=42028945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072688 WO2010031270A1 (zh) 2008-09-16 2009-07-08 生产高纯颗粒硅的反应器和方法

Country Status (5)

Country Link
US (4) US8535614B2 (zh)
EP (1) EP2338835A4 (zh)
KR (3) KR101688442B1 (zh)
CN (3) CN101676203B (zh)
WO (1) WO2010031270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154963A (zh) * 2016-08-11 2016-11-23 大工(青岛)新能源材料技术研究院有限公司 一种送料机构的变频控制系统

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676203B (zh) * 2008-09-16 2015-06-10 储晞 生产高纯颗粒硅的方法
JP5449187B2 (ja) * 2008-11-14 2014-03-19 ジェイパワー・エンテック株式会社 ロックホッパ
CN101869981B (zh) * 2010-06-19 2012-01-25 太原理工大学 一种微波加热喷动流化脱碳装置
CN102530951B (zh) * 2010-12-24 2016-01-20 江苏中能硅业科技发展有限公司 生产粒状多晶硅的方法及装置
DE102011003875A1 (de) * 2011-02-09 2012-08-09 Wacker Chemie Ag Verfahren und Vorrichtung zum Dosieren und Verpacken von Polysiliciumbruchstücken sowie Dosier- und Verpackungseinheit
KR101538205B1 (ko) * 2011-09-16 2015-07-24 주식회사 엘지화학 히터 기능을 구비한 가스 공급 노즐 및 이를 포함하는 폴리실리콘 제조 장치
CN102730694A (zh) * 2012-06-11 2012-10-17 江苏双良新能源装备有限公司 还原炉钟罩气帘隔热节能结构
CN105026029B (zh) 2012-12-31 2017-12-22 爱迪生太阳能公司 借助粒度分布控制使温度梯度最佳化而改进流化床反应器的操作
CN103183324B (zh) * 2013-01-23 2014-12-31 青海拓海新材料有限公司 用晶体硅加工废砂浆回收硅粉制备氮化硅产品的机组
DE102013206236A1 (de) 2013-04-09 2014-10-09 Wacker Chemie Ag Gasverteiler für Siemens-Reaktor
DE102013209076A1 (de) * 2013-05-16 2014-11-20 Wacker Chemie Ag Reaktor zur Herstellung von polykristallinem Silicium und Verfahren zur Entfernung eines Silicium enthaltenden Belags auf einem Bauteil eines solchen Reaktors
DE102013210039A1 (de) 2013-05-29 2014-12-04 Wacker Chemie Ag Verfahren zur Herstellung von granularem Polysilicium
US10525430B2 (en) 2013-12-26 2020-01-07 Bruce Hazeltine Draft tube fluidized bed reactor for deposition of granular silicon
US9724703B2 (en) 2014-06-06 2017-08-08 LLT International (Ireland) Ltd. Systems and methods for processing solid materials using shockwaves produced in a supersonic gaseous vortex
US9050604B1 (en) * 2014-06-06 2015-06-09 LLT International (Ireland) Ltd. Reactor configured to facilitate chemical reactions and/or comminution of solid feed materials
DE102014221928A1 (de) 2014-10-28 2016-04-28 Wacker Chemie Ag Wirbelschichtreaktor und Verfahren zur Herstellung von polykristallinem Siliciumgranulat
DE102015206849A1 (de) 2015-04-16 2016-10-20 Wacker Chemie Ag Vorrichtung und Verfahren zur Klassierung und Entstaubung von Polysiliciumgranulat
US9452434B1 (en) 2015-04-17 2016-09-27 LLT International (Ireland) Ltd. Providing wear resistance in a reactor configured to facilitate chemical reactions and/or comminution of solid feed materials using shockwaves created in a supersonic gaseous vortex
US10427129B2 (en) 2015-04-17 2019-10-01 LLT International (Ireland) Ltd. Systems and methods for facilitating reactions in gases using shockwaves produced in a supersonic gaseous vortex
KR101579134B1 (ko) 2015-07-02 2015-12-21 주식회사쎄인텍 고순도 나노 분말 생성장치
US10434488B2 (en) 2015-08-11 2019-10-08 LLT International (Ireland) Ltd. Systems and methods for facilitating dissociation of methane utilizing a reactor designed to generate shockwaves in a supersonic gaseous vortex
DE102015215858B4 (de) * 2015-08-20 2019-01-24 Siltronic Ag Verfahren zur Wärmebehandlung von Granulat aus Silizium, Granulat aus Silizium und Verfahren zur Herstellung eines Einkristalls aus Silizium
CN105819449B (zh) * 2016-03-21 2018-07-20 中国成达工程有限公司 硅烷移动床反应器以及采用该反应器生产颗粒多晶硅的方法
WO2017172745A1 (en) * 2016-03-30 2017-10-05 Sitec Gmbh Mechanically vibrated packed bed reactor and related methods
US9962672B1 (en) 2016-11-09 2018-05-08 Rec Silicon Inc Reactor component placement inside liner wall
US10550731B2 (en) 2017-01-13 2020-02-04 LLT International (Ireland) Ltd. Systems and methods for generating steam by creating shockwaves in a supersonic gaseous vortex
US20180208470A1 (en) * 2017-01-26 2018-07-26 Rec Silicon Inc Method for annealing granular silicon with agglomeration control
US10407310B2 (en) 2017-01-26 2019-09-10 Rec Silicon Inc System for reducing agglomeration during annealing of flowable, finely divided solids
US11203725B2 (en) 2017-04-06 2021-12-21 LLT International (Ireland) Ltd. Systems and methods for gasification of carbonaceous materials
CN108821292B (zh) * 2017-05-05 2021-07-23 储晞 一种生产氧化亚硅的方法及装置
CN107601510B (zh) * 2017-09-21 2018-05-04 亚洲硅业(青海)有限公司 一种制备颗粒硅籽晶的装置及方法
CN107745464A (zh) * 2017-10-25 2018-03-02 天津市万丰化工设备有限公司 明胶颗粒生产方法
CN107715815A (zh) * 2017-11-01 2018-02-23 宁波工程学院 一种声波辅助的粒状多晶硅流化床生产装置
CN107792857B (zh) * 2017-11-28 2018-09-11 亚洲硅业(青海)有限公司 一种颗粒硅的生产方法及装置
CN108083287B (zh) * 2017-12-27 2019-07-05 杨松 一种制备高岭土生产线使用方法
CN108002401B (zh) * 2017-12-27 2019-05-21 杨松 一种制备高岭土生产线
CN109487337A (zh) * 2018-11-02 2019-03-19 大连理工大学 一种激光辅助提纯金刚线切割硅粉废料的设备和方法
WO2020118482A1 (zh) * 2018-12-10 2020-06-18 储晞 用于制备颗粒的反应装置及制备颗粒的方法
CN109607545A (zh) * 2019-01-02 2019-04-12 河南硅烷科技发展股份有限公司 一种高纯硅烷cvd法连续制备纳米硅粉的工业化方法
CN110182771B (zh) * 2019-06-10 2020-07-03 宁夏秦氏新材料有限公司 回转窑法合成硅氮化物的方法
US10717061B1 (en) * 2019-06-26 2020-07-21 X Energy, Llc Fluidized bed reactor system allowing particle sampling during an ongoing reaction
CN110355360B (zh) * 2019-07-10 2020-06-16 中国科学院过程工程研究所 一种制备锆包覆层的系统和方法
CN110850278A (zh) * 2019-09-04 2020-02-28 上海卓电电气有限公司 机电一体化气体密度继电器
CN111888848B (zh) * 2020-09-03 2021-10-15 清华大学 一种包覆颗粒制备生产线及其气固分离装置
CN113008622B (zh) * 2021-03-09 2022-07-26 亚洲硅业(青海)股份有限公司 一种颗粒硅区熔检测采样装置
CN113275121A (zh) * 2021-06-11 2021-08-20 四川敏田科技发展有限公司 一种高纯石英砂制造系统及制造方法
CN115385338A (zh) * 2022-08-01 2022-11-25 亚洲硅业(青海)股份有限公司 一种硅材料的制备方法及装置
CN115212801B (zh) * 2022-08-30 2024-05-03 中国农业科学院草原研究所 一种农作物秸秆颗粒燃料加工用压缩成型装置
CN116036657B (zh) * 2023-03-16 2023-08-18 安徽瑞柏新材料有限公司 一种节能式乙酸丁酯生产用分离设备
CN117181138B (zh) * 2023-11-06 2024-03-26 上海氢田新材料科技有限公司 一种低功耗高效高适应性的气体加热装置及加热方法
CN117205848A (zh) * 2023-11-07 2023-12-12 上海氢田新材料科技有限公司 一种基于气相分解法制备纳米硅的系统及方法
CN117323920B (zh) * 2023-11-29 2024-01-26 山东金特安全科技有限公司 一种碳化硅连续流反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0258027A2 (en) 1986-08-25 1988-03-02 Ethyl Corporation Preparation of polysilicon by silane pyrolysis
US4786477A (en) * 1985-12-28 1988-11-22 Korea Research Institute Of Chemical Technology Fluidized bed reactor with microwave heating system for preparing high-purity polycrystalline silicon
US4883687A (en) * 1986-08-25 1989-11-28 Ethyl Corporation Fluid bed process for producing polysilicon
US5798137A (en) * 1995-06-07 1998-08-25 Advanced Silicon Materials, Inc. Method for silicon deposition
CN1663911A (zh) * 2003-12-18 2005-09-07 瓦克化学有限公司 无粉尘且无微孔的高纯度粒状多晶硅

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020129A (en) * 1958-07-25 1962-02-06 Gen Electric Production of silicon of improved purity
US3012861A (en) 1960-01-15 1961-12-12 Du Pont Production of silicon
US3012862A (en) 1960-08-16 1961-12-12 Du Pont Silicon production
US3647377A (en) * 1968-08-29 1972-03-07 Titan Gmbh Process for the manufacture of fine particle size titanium dioxide by reacting titanium tetrachloride with oxygen
US3963838A (en) * 1974-05-24 1976-06-15 Texas Instruments Incorporated Method of operating a quartz fluidized bed reactor for the production of silicon
US4154870A (en) * 1974-11-01 1979-05-15 Texas Instruments Incorporated Silicon production and processing employing a fluidized bed
US3993450A (en) 1975-02-19 1976-11-23 The United States Of America As Represented By The United States Energy Research And Development Administration Electrode assembly for a fluidized bed apparatus
US4207360A (en) * 1975-10-31 1980-06-10 Texas Instruments Incorporated Silicon seed production process
US4084024A (en) * 1975-11-10 1978-04-11 J. C. Schumacher Co. Process for the production of silicon of high purity
US4213937A (en) * 1976-09-22 1980-07-22 Texas Instruments Incorporated Silicon refinery
US4298423A (en) 1976-12-16 1981-11-03 Semix Incorporated Method of purifying silicon
US4289572A (en) * 1976-12-27 1981-09-15 Dow Corning Corporation Method of closing silicon tubular bodies
US4170667A (en) * 1977-01-31 1979-10-09 Motorola, Inc. Process for manufacturing pure polycrystalline silicon
DE2704975C2 (de) 1977-02-07 1982-12-23 Wacker-Chemie GmbH, 8000 München Wärmeaustauschvorrichtung für Wirbelbettreaktoren zur Durchführung von Gas/Feststoff-Reaktionen, insbesondere zur Herstellung von Siliciumhalogenverbindungen mittels Silicium-enthaltender Kontaktmassen
US4318942A (en) * 1978-08-18 1982-03-09 J. C. Schumacher Company Process for producing polycrystalline silicon
US4676967A (en) * 1978-08-23 1987-06-30 Union Carbide Corporation High purity silane and silicon production
US4292344A (en) * 1979-02-23 1981-09-29 Union Carbide Corporation Fluidized bed heating process and apparatus
JPS55142538A (en) * 1979-04-26 1980-11-07 Mitsui Toatsu Chem Inc Device used in reaction of vapor and solid
DE3016807A1 (de) * 1980-05-02 1981-11-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur herstellung von silizium
US4314525A (en) * 1980-03-03 1982-02-09 California Institute Of Technology Fluidized bed silicon deposition from silane
US4444811A (en) * 1980-03-03 1984-04-24 California Institute Of Technology Fluidized bed silicon deposition from silane
US4321246A (en) * 1980-05-09 1982-03-23 Motorola, Inc. Polycrystalline silicon production
JPS57145021A (en) * 1981-02-27 1982-09-07 Shin Etsu Chem Co Ltd Preparation of silicon granule
US4354987A (en) * 1981-03-31 1982-10-19 Union Carbide Corporation Consolidation of high purity silicon powder
US4341749A (en) * 1981-08-14 1982-07-27 Union Carbide Corporation Heating method for silane pyrolysis reactor
US4424199A (en) * 1981-12-11 1984-01-03 Union Carbide Corporation Fluid jet seed particle generator for silane pyrolysis reactor
JPS58185426A (ja) * 1982-04-20 1983-10-29 Hitachi Ltd 高純度シリコンの製造方法
US4668493A (en) * 1982-06-22 1987-05-26 Harry Levin Process for making silicon
DE3223821A1 (de) * 1982-06-25 1983-12-29 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum herstellen von hochreinnem siliciumgranulat
FR2530607B1 (fr) * 1982-07-26 1985-06-28 Rhone Poulenc Spec Chim Silicium pur, en poudre dense et son procede de preparation
US4642227A (en) * 1982-08-20 1987-02-10 California Institute Of Technology Reactor for producing large particles of materials from gases
US4416913A (en) 1982-09-28 1983-11-22 Motorola, Inc. Ascending differential silicon harvesting means and method
US4684513A (en) * 1982-11-05 1987-08-04 Union Carbide Corporation Zone heating for fluidized bed silane pyrolysis
US4818495A (en) * 1982-11-05 1989-04-04 Union Carbide Corporation Reactor for fluidized bed silane decomposition
JPS605013A (ja) * 1983-06-22 1985-01-11 Denki Kagaku Kogyo Kk シリコン粉末の製法及びその装置
JPS6077116A (ja) * 1983-09-30 1985-05-01 Sumitomo Metal Ind Ltd シリコン粒の製造方法
US4806317A (en) * 1985-08-01 1989-02-21 Ethyl Corporation Fluidized bed reactor
US5059410A (en) * 1985-08-01 1991-10-22 Ethyl Corporation Production of silicon
US4691866A (en) * 1985-11-08 1987-09-08 Ethyl Corporation Generation of seed particles
US4857173A (en) * 1986-01-31 1989-08-15 Ethyl Corporation Particle classifier and method
US4784840A (en) * 1986-08-25 1988-11-15 Ethyl Corporation Polysilicon fluid bed process and product
US4748052A (en) * 1987-08-21 1988-05-31 Ethyl Corporation Fluid bed reactor and process
US4868013A (en) * 1987-08-21 1989-09-19 Ethyl Corporation Fluidized bed process
US4906441A (en) * 1987-11-25 1990-03-06 Union Carbide Chemicals And Plastics Company Inc. Fluidized bed with heated liners and a method for its use
US4789596A (en) 1987-11-27 1988-12-06 Ethyl Corporation Dopant coated bead-like silicon particles
US5139762A (en) * 1987-12-14 1992-08-18 Advanced Silicon Materials, Inc. Fluidized bed for production of polycrystalline silicon
US4904452A (en) * 1988-03-31 1990-02-27 Union Carbide Chemicals And Plastics Company Inc. Inner core heating in fluidized bed
DE3824065A1 (de) * 1988-07-15 1990-01-18 Bayer Ag Verfahren zur herstellung von solarsilicium
US5242671A (en) * 1988-10-11 1993-09-07 Ethyl Corporation Process for preparing polysilicon with diminished hydrogen content by using a fluidized bed with a two-step heating process
NO165288C (no) * 1988-12-08 1991-01-23 Elkem As Silisiumpulver og fremgangsmaate for fremstilling av silisiumpulver.
JPH02233514A (ja) 1989-03-06 1990-09-17 Osaka Titanium Co Ltd 多結晶シリコンの製造方法
JPH02279512A (ja) * 1989-04-20 1990-11-15 Osaka Titanium Co Ltd 高純度多結晶シリコンの製造方法
US5165548A (en) 1990-04-23 1992-11-24 Hemlock Semiconductor Corporation Rotary silicon screen
US5284676A (en) * 1990-08-17 1994-02-08 Carbon Implants, Inc. Pyrolytic deposition in a fluidized bed
JPH04306354A (ja) * 1991-04-03 1992-10-29 Hitachi Rubber Kako Kk 遮音支持ユニット及びそれを用いた二重床遮音構造物
JPH05246786A (ja) * 1991-07-02 1993-09-24 L'air Liquide コア粉体の存在下で化学蒸着法により珪素ベース超微粒子をコア粉に均一に塗布する方法
JPH0680412A (ja) * 1992-08-31 1994-03-22 Toagosei Chem Ind Co Ltd 多結晶シリコンの製造方法
JPH06127923A (ja) * 1992-10-16 1994-05-10 Tonen Chem Corp 多結晶シリコン製造用流動層反応器
GB2271518B (en) * 1992-10-16 1996-09-25 Korea Res Inst Chem Tech Heating of fluidized bed reactor by microwave
US5382412A (en) 1992-10-16 1995-01-17 Korea Research Institute Of Chemical Technology Fluidized bed reactor heated by microwaves
JPH06127927A (ja) * 1992-10-20 1994-05-10 Tonen Chem Corp 粒状多結晶シリコンの製造方法
JPH06127926A (ja) * 1992-10-20 1994-05-10 Tonen Chem Corp 粒状多結晶シリコンの製造方法
JPH06191817A (ja) * 1992-12-22 1994-07-12 Tonen Chem Corp 粒状多結晶シリコンの製造方法
JPH08119787A (ja) * 1994-10-14 1996-05-14 Komatsu Electron Metals Co Ltd 連続チャージ法におけるドーパント供給方法およびドーパント組成物
US6090360A (en) * 1995-02-15 2000-07-18 Dow Corning Corporation Method for recovering particulate silicon from a by-product stream
JPH11510560A (ja) * 1995-06-07 1999-09-14 アドバンスド シリコン マテリアルズ インコーポレーテツド 流動床反応炉におけるシリコン沈積方法及び装置
US5843234A (en) 1996-05-10 1998-12-01 Memc Electronic Materials, Inc. Method and apparatus for aiming a barrel reactor nozzle
US5791493A (en) * 1996-07-26 1998-08-11 Memc Electronic Materials, Inc. Polysilicon particle classifying apparatus
DE19735378A1 (de) 1997-08-14 1999-02-18 Wacker Chemie Gmbh Verfahren zur Herstellung von hochreinem Siliciumgranulat
US6086678A (en) * 1999-03-04 2000-07-11 Memc Electronic Materials, Inc. Pressure equalization system for chemical vapor deposition reactors
DE19948395A1 (de) 1999-10-06 2001-05-03 Wacker Chemie Gmbh Strahlungsbeheizter Fliessbettreaktor
US6444027B1 (en) * 2000-05-08 2002-09-03 Memc Electronic Materials, Inc. Modified susceptor for use in chemical vapor deposition process
ES2350591T3 (es) * 2000-05-11 2011-01-25 Tokuyama Corporation Aparato para la producción de silicio policristalino.
JP4561944B2 (ja) * 2000-06-16 2010-10-13 株式会社サタケ 粒状物選別装置
US6450346B1 (en) * 2000-06-30 2002-09-17 Integrated Materials, Inc. Silicon fixtures for supporting wafers during thermal processing
US6455395B1 (en) * 2000-06-30 2002-09-24 Integrated Materials, Inc. Method of fabricating silicon structures including fixtures for supporting wafers
US6454851B1 (en) * 2000-11-09 2002-09-24 Memc Electronic Materials, Inc. Method for preparing molten silicon melt from polycrystalline silicon charge
DE10057481A1 (de) * 2000-11-20 2002-05-23 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium
DE10060469A1 (de) * 2000-12-06 2002-07-04 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium
DE10061682A1 (de) * 2000-12-11 2002-07-04 Solarworld Ag Verfahren zur Herstellung von Reinstsilicium
DE10062419A1 (de) * 2000-12-14 2002-08-01 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium
DE10063862A1 (de) * 2000-12-21 2002-07-11 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularen Silizium
US6827786B2 (en) * 2000-12-26 2004-12-07 Stephen M Lord Machine for production of granular silicon
KR100411180B1 (ko) * 2001-01-03 2003-12-18 한국화학연구원 다결정실리콘의 제조방법과 그 장치
DE10124848A1 (de) * 2001-05-22 2002-11-28 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularem Silizium in einer Wirbelschicht
US7033561B2 (en) * 2001-06-08 2006-04-25 Dow Corning Corporation Process for preparation of polycrystalline silicon
CA2451618A1 (en) * 2001-06-25 2003-01-03 Jott Australia Pty Ltd Fluid/solid interaction apparatus
US6609870B2 (en) * 2001-10-23 2003-08-26 Memc Electronic Materials, Inc. Granular semiconductor material transport system and process
WO2004013044A1 (en) * 2002-07-22 2004-02-12 Lord Stephen M Methods for heating a fluidized bed silicon manufacture apparatus
NO20033207D0 (no) * 2002-07-31 2003-07-15 Per Kristian Egeberg Fremgangsmåte og reaktor for fremstilling av höyrent silisium, samt anvendelse av fremgangsmåten og reaktoren ved fremstilling av höyrentsilisium fra uraffinert silisium
DE10243022A1 (de) * 2002-09-17 2004-03-25 Degussa Ag Abscheidung eines Feststoffs durch thermische Zersetzung einer gasförmigen Substanz in einem Becherreaktor
US7993455B2 (en) * 2003-08-22 2011-08-09 Tokuyama Corporation Silicon manufacturing apparatus
NO333319B1 (no) 2003-12-29 2013-05-06 Elkem As Silisiummateriale for fremstilling av solceller
DE102004010055A1 (de) 2004-03-02 2005-09-22 Degussa Ag Verfahren zur Herstellung von Silicium
TWI255734B (en) * 2004-03-30 2006-06-01 Ind Tech Res Inst Thermal regenerative granular-moving bed apparatus
EP1786730A2 (en) 2004-07-16 2007-05-23 Institutt For Energiteknikk Method and reactor for continuous production of semiconductor grade silicon
US20080041309A1 (en) * 2004-08-11 2008-02-21 Tokuyama Corporation Silicon Manufacturing Apparatus
DE102004048948A1 (de) * 2004-10-07 2006-04-20 Wacker Chemie Ag Vorrichtung und Verfahren zum kontaminationsarmen, automatischen Brechen von Siliciumbruch
US20060105105A1 (en) * 2004-11-12 2006-05-18 Memc Electronic Materials, Inc. High purity granular silicon and method of manufacturing the same
US7323047B2 (en) * 2005-03-25 2008-01-29 Kyocera Corporation Method for manufacturing granular silicon crystal
US7790129B2 (en) * 2005-07-29 2010-09-07 Lord Ltd., Lp Set of processes for removing impurities from a silcon production facility
US7622803B2 (en) * 2005-08-30 2009-11-24 Cree, Inc. Heat sink assembly and related methods for semiconductor vacuum processing systems
DE102005041137A1 (de) * 2005-08-30 2007-03-01 Degussa Ag Reaktor, Anlage und großtechnisches Verfahren zur kontinuierlichen Herstellung von hochreinem Siliciumtetrachlorid oder hochreinem Germaniumtetrachlorid
KR100756310B1 (ko) * 2006-02-07 2007-09-07 한국화학연구원 입자형 다결정실리콘 제조용 고압 유동층반응기
KR100661284B1 (ko) * 2006-02-14 2006-12-27 한국화학연구원 유동층 반응기를 이용한 다결정실리콘 제조 방법
KR100813131B1 (ko) 2006-06-15 2008-03-17 한국화학연구원 유동층 반응기를 이용한 다결정 실리콘의 지속 가능한제조방법
US20080029020A1 (en) * 2006-07-28 2008-02-07 Kyocera Corporation Method and apparatus for producing granular crystal
KR100783667B1 (ko) * 2006-08-10 2007-12-07 한국화학연구원 입자형 다결정 실리콘의 제조방법 및 제조장치
US7935327B2 (en) 2006-08-30 2011-05-03 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor integrated into a siemens-type process
US20080128099A1 (en) * 2006-12-05 2008-06-05 Amrani Aviv Ltd. Fabric for use as a lining material
DE102007021003A1 (de) 2007-05-04 2008-11-06 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von polykristallinem hochreinen Siliciumgranulat
US20080299015A1 (en) 2007-06-04 2008-12-04 Stephen Michael Lord Apparatus and method for top removal of granular material from a fluidized bed deposition reactor
US7736614B2 (en) * 2008-04-07 2010-06-15 Lord Ltd., Lp Process for removing aluminum and other metal chlorides from chlorosilanes
JP2011526239A (ja) 2008-06-27 2011-10-06 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド シリコン微粒子のリサイクルにより多結晶シリコン反応炉の生産性を向上させる方法
MY169283A (en) 2008-06-30 2019-03-21 Corner Star Ltd Methods for producing polycrystalline silicon that reduce the deposition of silicon on reactor walls
US20100061912A1 (en) * 2008-09-08 2010-03-11 Stephen Michael Lord Apparatus for high temperature hydrolysis of water reactive halosilanes and halides and process for making same
CN101676203B (zh) * 2008-09-16 2015-06-10 储晞 生产高纯颗粒硅的方法
US7927984B2 (en) * 2008-11-05 2011-04-19 Hemlock Semiconductor Corporation Silicon production with a fluidized bed reactor utilizing tetrachlorosilane to reduce wall deposition
US8178051B2 (en) * 2008-11-05 2012-05-15 Stephen Michael Lord Apparatus and process for hydrogenation of a silicon tetrahalide and silicon to the trihalosilane
US8168123B2 (en) 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
JP5627703B2 (ja) 2009-11-18 2014-11-19 アールイーシー シリコン インコーポレイテッド 流動床反応器
US8449848B2 (en) 2010-10-22 2013-05-28 Memc Electronic Materials, Inc. Production of polycrystalline silicon in substantially closed-loop systems
US9156705B2 (en) 2010-12-23 2015-10-13 Sunedison, Inc. Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
US8452547B2 (en) 2010-12-29 2013-05-28 Memc Electronic Materials, Inc. Systems and methods for particle size determination and control in a fluidized bed reactor
WO2013049325A1 (en) 2011-09-30 2013-04-04 Memc Electronic Materials, Inc. Production of polycrystalline silicon by the thermal decomposition of silane in a fluidized bed reactor
WO2013049314A2 (en) 2011-09-30 2013-04-04 Memc Electronic Materials, Inc. Production of polycrystalline silicon by the thermal decomposition of silane in a fluidized bed reactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786477A (en) * 1985-12-28 1988-11-22 Korea Research Institute Of Chemical Technology Fluidized bed reactor with microwave heating system for preparing high-purity polycrystalline silicon
EP0258027A2 (en) 1986-08-25 1988-03-02 Ethyl Corporation Preparation of polysilicon by silane pyrolysis
US4883687A (en) * 1986-08-25 1989-11-28 Ethyl Corporation Fluid bed process for producing polysilicon
US5798137A (en) * 1995-06-07 1998-08-25 Advanced Silicon Materials, Inc. Method for silicon deposition
CN1663911A (zh) * 2003-12-18 2005-09-07 瓦克化学有限公司 无粉尘且无微孔的高纯度粒状多晶硅

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2338835A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154963A (zh) * 2016-08-11 2016-11-23 大工(青岛)新能源材料技术研究院有限公司 一种送料机构的变频控制系统

Also Published As

Publication number Publication date
US20130337186A1 (en) 2013-12-19
EP2338835A4 (en) 2013-07-17
KR101688442B1 (ko) 2016-12-21
EP2338835A1 (en) 2011-06-29
KR20110076930A (ko) 2011-07-06
US20170361292A1 (en) 2017-12-21
US20130336845A1 (en) 2013-12-19
US20110212011A1 (en) 2011-09-01
US9662625B2 (en) 2017-05-30
CN103058194A (zh) 2013-04-24
CN103787336B (zh) 2016-09-14
US8535614B2 (en) 2013-09-17
CN103787336A (zh) 2014-05-14
KR20160144512A (ko) 2016-12-16
CN101676203B (zh) 2015-06-10
CN103058194B (zh) 2015-02-25
US9751066B2 (en) 2017-09-05
CN101676203A (zh) 2010-03-24
KR20180019758A (ko) 2018-02-26
US10576438B2 (en) 2020-03-03
KR101830856B1 (ko) 2018-02-21

Similar Documents

Publication Publication Date Title
WO2010031270A1 (zh) 生产高纯颗粒硅的反应器和方法
RU2428377C2 (ru) Получение кремния посредством реактора с псевдоожиженным слоем, встроенного в сименс-процесс
CN102671581B (zh) 生产颗粒材料的方法和反应器
CN109277057A (zh) 一种生产颗粒材料的反应器系统和方法
CN101143723A (zh) 制备三氯氢硅和多晶硅的改进方法和装置
CN101696013B (zh) 等离子体辅助流化床工艺生产多晶硅的方法及装置
CN101780956A (zh) 采用流化床反应器制备高纯度多晶硅颗粒的方法及装置
JP2004531450A (ja) 流動床における高純度粒子状珪素の製造法
CN104803386B (zh) 用于制备高纯度多晶硅颗粒的流化床提升管反应器及方法
CN103213989B (zh) 一种多晶硅颗粒制备系统及制备方法
CN114130341A (zh) 一种常压下输送床连续合成氮化铝粉末装置及方法
CN103449442B (zh) 一种流化床多晶硅颗粒的制备系统及利用该系统制备多晶硅的工艺
WO2011009390A1 (zh) 硅气转化的反应器和方法
KR101739370B1 (ko) 입자형 다결정 폴리실리콘 제조용 원료 시드의 제조방법
CN109879287B (zh) 一种用于颗粒多晶硅的制备装置及方法
CN109264724B (zh) 一种生产硅的装置和方法
CN206985723U (zh) 一种生产硅的装置
CN107973300B (zh) 液态硅生产装置及方法
WO2020118482A1 (zh) 用于制备颗粒的反应装置及制备颗粒的方法
JPH01239013A (ja) 多結晶シリコンの製造方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009813991

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117008622

Country of ref document: KR

Kind code of ref document: A