WO2010026715A1 - 車両用電源装置 - Google Patents

車両用電源装置 Download PDF

Info

Publication number
WO2010026715A1
WO2010026715A1 PCT/JP2009/004156 JP2009004156W WO2010026715A1 WO 2010026715 A1 WO2010026715 A1 WO 2010026715A1 JP 2009004156 W JP2009004156 W JP 2009004156W WO 2010026715 A1 WO2010026715 A1 WO 2010026715A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power supply
layer capacitor
electric double
double layer
Prior art date
Application number
PCT/JP2009/004156
Other languages
English (en)
French (fr)
Inventor
服部久雄
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to JP2010527670A priority Critical patent/JP5214735B2/ja
Priority to DE112009002169T priority patent/DE112009002169A5/de
Priority to US13/059,155 priority patent/US8860244B2/en
Priority to CN200980135122.9A priority patent/CN102164780B/zh
Publication of WO2010026715A1 publication Critical patent/WO2010026715A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1438Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in combination with power supplies for loads other than batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a vehicular power supply apparatus that includes a battery that is charged by power generated by a generator linked to an engine, and that supplies power discharged from the battery and power generated by the generator to a plurality of loads. .
  • the power generated by the generator linked to the engine is supplied to each load mounted on the vehicle, and the battery is charged.
  • the power generated by the generator is insufficient, the engine is stopped. In this case, power is supplied from the battery to each load.
  • electric double layer capacitors that have a very large capacitance of several tens of farads or more and are excellent in charge / discharge cycle characteristics (lifetime) and rapid charge / discharge have become widespread. It has been proposed for use.
  • Patent Document 1 discloses an electric system for an engine vehicle configured such that a discharge current from a battery and a discharge current from an electric double layer capacitor flow into a starter by operating an engine start switch.
  • the electric double layer capacitor is arranged closer to the starter than the battery, and the wire harness through which the discharge current from the battery flows is connected to a power supply line through which the discharge current from the electric double layer capacitor to the starter flows.
  • the wire harness is selected so that the discharge current from the battery is smaller than the discharge current from the electric double layer capacitor.
  • the present invention has been made in view of the circumstances as described above, and includes an electric double layer capacitor.
  • the electric double layer capacitor and the battery are unlikely to affect each other, and even if an inrush current occurs, the power supply voltage
  • An object of the present invention is to provide a vehicular power supply device in which there is no risk that the load will not function normally due to a decrease in the load.
  • a power supply device for a vehicle includes a battery that is charged with power generated by a power generator linked to an engine, and supplies power discharged from the battery and power generated by the power generator to a plurality of loads.
  • An electric double layer capacitor connected in parallel to the battery, a connection circuit for connecting / disconnecting between the same-polarity side terminals of the battery and the electric double layer capacitor, and between both terminals of the connection circuit
  • a potential difference detecting means for detecting the potential difference of the electric double layer, and configured to connect the connection circuit to charge the electric double layer capacitor based on the potential difference detected by the potential difference detecting means.
  • the power output from the capacitor is configured to be applied to a load that generates an inrush current of a predetermined value or more among the loads.
  • the battery is charged with the power generated by the generator linked to the engine, and the power discharged from the battery and the power generated by the generator are supplied to a plurality of loads.
  • the electric double layer capacitor is connected in parallel to the battery, and a circuit for connecting / disconnecting connects / disconnects between the same-polarity side terminals of the battery and the electric double layer capacitor.
  • the detecting means detects a potential difference between both terminals of the circuit to be connected / cut off. Based on the detected potential difference, a circuit to be connected / disconnected is connected to charge the electric double layer capacitor.
  • the electric power output from the electric double layer capacitor is given to a load that generates an inrush current of a predetermined value or more among a plurality of loads.
  • the vehicular power supply apparatus is characterized in that a part of the load that generates the inrush current is configured to be directly supplied with electric power from the battery.
  • the vehicle power supply device is characterized in that the load that generates the inrush current includes an engine starter.
  • the vehicle power supply device further includes a switch for connecting / disconnecting the starter and the battery, and the switch is configured to be connected only when the starter is started. To do.
  • a power supply device for a vehicle includes a battery that is charged with power generated by a power generator linked to an engine, and supplies power discharged from the battery and power generated by the power generator to a plurality of loads.
  • An electric double layer capacitor connected through a backflow prevention circuit so that the battery is charged, and a second switch for connecting / cutting off the electric double layer capacitor and one or more loads, Voltage detecting means for detecting the output voltage of the battery, and means for determining whether or not the voltage detected by the voltage detecting means is lower than a predetermined voltage, and when it is determined that the means is lower than the predetermined voltage,
  • the second switch is configured to be connected.
  • the battery is charged by the power generated by the generator linked to the engine, and the power discharged from the battery and the power generated by the generator are supplied to a plurality of loads.
  • An electric double layer capacitor is connected through a backflow prevention circuit so that the battery is charged, and a second switch connects / disconnects between the electric double layer capacitor and one or more loads.
  • the voltage detection means detects the output voltage of the battery and the determination means determines whether or not the detected voltage is lower than a predetermined voltage. When the determination means determines that the voltage is lower than the predetermined voltage, the second switch is connected.
  • a vehicle power supply device comprising: a time measuring means for measuring a time from when the engine is started; a second voltage detecting means for detecting an output voltage of the electric double layer capacitor; and the second voltage detection. Determining means for determining whether or not the output voltage detected by the means is within a predetermined voltage range; and after the time measuring means has timed a predetermined time, when the determining means determines that it is within the predetermined voltage range, It further comprises display means for displaying the determination result.
  • the time measuring means measures the time after the engine is started, and the second voltage detecting means detects the output voltage of the electric double layer capacitor.
  • the determination means determines whether or not the output voltage detected by the second voltage detection means is within a predetermined voltage range. If the determination means determines that the time is within the predetermined voltage range after the time measuring means has counted the predetermined time, the display means displays the determination result.
  • the vehicular power supply device according to a seventh aspect is characterized in that the second switch is configured to be interlocked with the display means.
  • the vehicle power supply device is characterized in that the electric double layer capacitor is housed in an electrical junction box that houses a branch circuit and a fuse from the battery to the load.
  • the electric double layer capacitor is provided, and the electric double layer capacitor and the battery are unlikely to affect each other, and even if an inrush current occurs, the power supply voltage decreases and the load is reduced. It is possible to realize a vehicular power supply device that is unlikely to function normally.
  • FIG. 1 is a block diagram showing a schematic configuration of a first embodiment of a vehicle power supply device according to the present invention.
  • an alternator on-vehicle generator, AC generator
  • AC generator AC generator
  • the electric power generated by the alternator 1 is rectified in the alternator 1 and then charged to the battery B through the fuse F1.
  • the output voltage of the battery B is supplied to, for example, the engine ECU (load) 6 through the fuse F5, and is supplied to the headlamp (load) 7 through the fuse F6 and the switch S.
  • the fuses F3 and F4 are individually fed to the electric brake 5.
  • the output voltage of the battery B is also given to the starter (load) 2 of the engine.
  • the output voltage of the alternator 1 and the output voltage of the battery B through the fuse F1 are supplied to the electric double layer capacitor C through the semiconductor relay Ry1 and the resistor R and charged.
  • the control unit 3 is connected between both terminals of the semiconductor relay Ry1, and the control unit 3 detects a potential difference between the two terminals and turns on / off the semiconductor relay Ry1 based on the detected potential difference.
  • the resistor R prevents overcurrent when the electric double layer capacitor C is charged.
  • the electric double layer capacitor C is composed of six cells connected in series.
  • the output voltage of the electric double layer capacitor C is given to the electric power steering device (load) 4 through the fuse F2 and the semiconductor relay Ry2. Also, the fuse F7 and the semiconductor relay Ry3 (for example, for front wheels), and the fuse F8 and the semiconductor relay Ry4 (for example for rear wheels) are individually fed to the electric brake 5. The output voltage of the battery B is also given to other loads through the respective fuses.
  • a freewheeling diode is connected in antiparallel to the semiconductor relays Ry1 to Ry4.
  • the semiconductor relays Ry1 to Ry4 are turned on / off in conjunction with an ignition switch (ignition switch) (not shown).
  • FIG. 2A is an explanatory view showing a cross section viewed from the left side of an aspect in which the electric double layer capacitor C is housed in a junction box (electrical connection box) JB of the vehicle
  • FIG. 2B is a cross section viewed from the front of the aspect
  • FIG. 2C is an explanatory diagram illustrating a cross section viewed from the lower surface of the aspect
  • FIG. 2D is an explanatory diagram illustrating a cross section viewed from the right side of the aspect.
  • the casing 16 has a rectangular parallelepiped shape, and is screwed to the vehicle side by two holes 13 respectively provided in two flanges 12 extending on the bottom surface of the casing 16.
  • An insulating plate and wiring (power system) 8 are housed inside the housing 16 so as to cover the bottom surface, and the printed circuit board 10 covers the insulating plate and wiring 8 at a position slightly deeper than the middle in the housing 16. It is inserted and supported and fixed.
  • Electronic circuits 9 such as semiconductor relays Ry1 to Ry4, fuses F1 to F6, and a control unit 3 are disposed on the back surface side of the printed circuit board 10, and six cells are connected in series on the front surface side of the printed circuit board 10.
  • An electric double layer capacitor C is provided.
  • a connector 11 penetrating the right side surface is connected to the lower right side of the printed circuit board 13 in the front view.
  • the control unit 3 detects a potential difference between both terminals of the semiconductor relay Ry1, and turns on the semiconductor relay Ry1 when the potential difference becomes, for example, 1.0V.
  • the semiconductor relay Ry1 is turned off.
  • the control unit 3 turns off the semiconductor relay Ry1 except when the electric double layer capacitor C is charged.
  • the power source is the electric double layer capacitor C, and the electric double layer capacitor Since the internal resistance of C is very small, the voltage drop is small. At that time, even if the semiconductor relay Ry1 happens to be on, current flows more easily from the electric double layer capacitor C than from the battery B, so the voltage drop due to the internal resistance of the battery B is small.
  • the electric brake 5, which is an important load, is supplied with a double power source from the electric double layer capacitor C and from the battery B. Therefore, even when one of the two fails, the power from the other side is applied. Power is reliably supplied.
  • FIG. 3 is a block diagram showing a schematic configuration of Embodiment 2 of the vehicle power supply device according to the present invention.
  • the starter 2 is supplied with power from the electric double layer capacitor C, not from the battery B.
  • the control unit 3 detects the voltage difference between both terminals of the DCDC converter 14 instead of performing on / off control of the semiconductor relay Ry1 based on the potential difference between both terminals of the semiconductor relay Ry1, and DCDC based on the detected potential difference.
  • the converter 14 is turned on / off.
  • the DCDC converter 14 boosts the voltage from the battery B by, for example, +1.5 V (about 14 V) and supplies the boosted voltage to the electric double layer capacitor C through the resistor R.
  • the other configuration is the same as the configuration of the vehicle power supply device described in the first embodiment (FIGS. 1 and 2), and thus the description thereof is omitted.
  • the control unit 3 detects a potential difference between both terminals of the DCDC converter 14, and when the potential difference becomes, for example, 1.0 V (input side> output side), the DCDC converter 14 is turned on.
  • the DCDC converter 14 is turned off.
  • the controller 3 turns off the DCDC converter 14 except when charging the electric double layer capacitor C.
  • the power source is the electric double layer capacitor C, and the internal resistance of the electric double layer capacitor C is very small. Is small.
  • the DCDC converter 14 happens to be on, current flows more easily from the electric double layer capacitor C than from the battery B, so the voltage drop due to the internal resistance of the battery B is small. Thereby, since the frequency of large current discharge of the battery B falls, the lifetime extension of the battery B can be expected. Since other operations are the same as the operations of the vehicle power supply device described in the first embodiment, description thereof will be omitted.
  • FIG. 4 is a block diagram showing a schematic configuration of Embodiment 3 of the vehicle power supply device according to the present invention.
  • the starter 2 is supplied not only from the electric double layer capacitor C but also from the battery B through the semiconductor relay Ry5.
  • the semiconductor relay Ry5 is turned on when the starter switch 15 is turned on.
  • the starter switch 15 is turned off, and the starter switch 15 is turned off, and the starter 2 and the battery B are disconnected.
  • Other configurations are the same as the configuration of the vehicle power supply device described in the second embodiment (FIG. 3), and thus the description thereof is omitted.
  • the semiconductor relay Ry5 is also turned on. Therefore, power is supplied to the starter 2 from the electric double layer capacitor C and the battery B, but current flows more easily from the electric double layer capacitor C than to the battery B, so the voltage drop due to the internal resistance of the battery B Is small. Moreover, since the internal resistance of the electric double layer capacitor C is very small, the voltage drop in the electric double layer capacitor C is also small.
  • FIG. 5 is a block diagram showing a schematic configuration of the power supply device for a vehicle according to the fourth embodiment of the present invention.
  • the electric power generated by the alternator 1 is rectified in the alternator 1 and then charged to the battery B through the fuse F1 in the relay box RB.
  • the output voltage of the battery B is given to the capacitor unit 22 in the junction box (electrical connection box) JB through the switch S1 and the fuse F9 in the relay box RB interlocked with an ignition switch (including an accessory switch) (not shown).
  • the output voltage of the battery B is given to the electric brake (load) 5 through the switch S1, the fuse F9, and the fuse F10 in the junction box JB.
  • the output voltage of the battery B is also applied to a device (load) 17 disposed on a dashboard such as an audio device, meters, and a navigation device through the switch S1, the fuse F9, and the fuse F12 in the junction box JB.
  • the output voltage of the battery B is also given to the door ECU (load) 18 through the switch S1, the fuse F9, and the fuse F14 in the junction box JB.
  • the capacitor unit 22 is configured such that the electric double layer capacitor C is charged by the output voltage of the battery B applied through the resistor R1 and the reverse current prevention diode (reverse current prevention circuit) D1.
  • the accommodation state of the electric double layer capacitor C in the junction box JB is shown in FIG.
  • the output voltage of the electric double layer capacitor C is given to the electric brake (load) 5 through the switch S2 (second switch) in the capacitor unit 22 and the fuse F11 in the junction box JB.
  • the output voltage of the electric double layer capacitor C is also supplied via a switch S2 in the capacitor unit 22 and a fuse F13 in the junction box JB to a device (load) 17 disposed on a dashboard such as an audio device, meters, and a navigation device. Given to.
  • the output voltage of the electric double layer capacitor C is also supplied to the door ECU (load) 18 through the switch S2 in the capacitor unit 22 and the fuse F15 in the junction box JB.
  • the capacitor unit 22 includes a voltage detection unit (voltage detection means) 23.
  • the voltage detection unit 23 detects the output voltage of the given battery B, and connects / disconnects the switch S2 based on the detected voltage value.
  • the output voltage of the battery B is also applied to other loads through relays and fuses in the relay box RB or the junction box JB.
  • the switch S1 is connected in conjunction with the ignition switch, and the voltage detection unit 23 determines that the detected output voltage of the given battery B is equal to or higher than a predetermined voltage.
  • the switch S2 is off. In this state, the output voltage of the battery B is given to the electric brake 5, the device 17 arranged on the dashboard, and the door ECU (load) 18. Further, the electric double layer capacitor C is charged by the output voltage of the battery B.
  • the switch S2 When the output voltage of the battery B decreases and the voltage detection unit 23 determines that the detected output voltage of the given battery B is lower than the predetermined voltage, the switch S2 is connected. In this state, the output voltage of the electric double layer capacitor C is given to the electric brake 5, the device 17 arranged on the dashboard, and the door ECU (load) 18. When the switch S1 is cut off in conjunction with the ignition switch, the electric double layer capacitor C is cut off from the outside by the switch S2 and the diode D1 turned off.
  • FIG. 6 is a block diagram showing a schematic configuration of the fifth embodiment of the vehicle power source apparatus according to the present invention.
  • the output voltage of the battery B is also applied to the body control unit 24 in the junction box JB through the switch S1 and the fuse F9.
  • the body control unit 24 includes a microcomputer (voltage detection means) 25.
  • the microcomputer 25 detects the output voltage of the given battery B, and connects / disconnects the switch S2 based on the detected voltage value. Let Therefore, the voltage detection unit 23 shown in FIG. 5 does not exist in the capacitor unit 22a in the junction box JB.
  • the other configuration is the same as the configuration of the vehicle power supply device (FIG. 5) described in the fourth embodiment, and a description thereof will be omitted.
  • the switch S1 when the switch S1 is connected in conjunction with the ignition switch and the microcomputer 25 determines that the detected output voltage of the given battery B is equal to or higher than a predetermined voltage. Shuts off the switch S2. In this state, the output voltage of the battery B is given to the electric brake 5, the device 17 disposed on the dashboard, and the door ECU 18. Further, the electric double layer capacitor C is charged by the output voltage of the battery B.
  • the switch S2 When the output voltage of the battery B decreases and the microcomputer 25 determines that the detected output voltage of the battery B is lower than a predetermined voltage, the switch S2 is connected. In this state, the output voltage of the electric double layer capacitor C is given to the electric brake 5, the device 17 arranged on the dashboard, and the door ECU 18. When the switch S1 is cut off in conjunction with the ignition switch, the electric double layer capacitor C is cut off from the outside by the switch S2 and the diode D1 turned off.
  • FIG. 7 is a block diagram showing a schematic configuration of the sixth embodiment of the vehicle power supply device according to the present invention.
  • the electric power generated by the alternator 1 is rectified in the alternator 1 and then charged to the battery B through the fuse F1 in the relay box RB.
  • the output voltage of the battery B is given to the capacitor unit 22b in the junction box (electric connection box) JB through the switch S1 and the fuse F9 in the relay box RB interlocked with an ignition switch (including an accessory switch) (not shown).
  • the output voltage of the battery B is supplied to a device (load) 19 arranged on a dashboard such as an audio device and a navigation device through the switch S1, the fuse F9, and the fuse F16 in the junction box JB.
  • the output voltage of the battery B is also applied to meters (loads) 20 arranged on the dashboard through the switch S1, the fuse F9, and the fuse F18 in the junction box JB.
  • the output voltage of the battery B is also supplied to the body ECU (load) 21 through the switch S1, the fuse F9, and the fuse F20 in the junction box JB.
  • the output voltage of the electric double layer capacitor C is arranged on the dashboard through the switch (second switch) S2 in the capacitor unit 22b, the forward-connected diode D3 for preventing backflow, and the fuse F17 in the junction box JB. It is given to the device 19.
  • the output voltage of the electric double layer capacitor C is also supplied to the meters 20 arranged on the dashboard through the switch S2, the diode D3, and the fuse F19 in the junction box JB.
  • the output voltage of the electric double layer capacitor C is also supplied to the body ECU 21 through the switch S2, the diode D3, and the fuse F21 in the junction box JB.
  • FIG. 8 is a block diagram illustrating a configuration example of the capacitor unit 22b.
  • the capacitor unit 22b is configured such that the electric double layer capacitor C is charged by the output voltage of the given battery B through the semiconductor relay Ry6 and the backflow prevention diode D2.
  • the electric double layer capacitor C six cells C1 to C6 are connected in series.
  • the output voltage of the electric double layer capacitor C is output from the output terminal P1 of the capacitor unit 22b through the switch S2 in the capacitor unit 22b and the diode D3 connected in order.
  • the output voltage Vcap of the electric double layer capacitor C is also supplied to and detected by the voltage detection relay control unit 26 in the capacitor unit 22b.
  • the voltage detection relay control unit 26 takes in and detects the output voltage VIG of the battery B given to the input terminal P3 of the capacitor unit 22b. Based on the detected output voltage VIG of the battery B, the charging of the electric double layer capacitor C is controlled by the semiconductor relay Ry6. The voltage detection relay control unit 26 also controls the discharge of the electric double layer capacitor C by the switch S2 based on the detected output voltage Vcap of the electric double layer capacitor C. Further, a discharge signal indicating that the electric double layer capacitor C is discharged within a predetermined voltage range is output from the signal terminal P2 of the capacitor unit 22b. The output discharge signal lights the indicator lamp (display means) 20a included in the meters 20 arranged on the dashboard (FIG. 7).
  • FIG. 9 is a block diagram illustrating a configuration example of the voltage detection relay control unit 26.
  • the captured output voltage VIG of the battery B is supplied to the 5V power source 27, one input terminal of the comparison circuit CP1, and the other input terminal of the comparison circuit CP2.
  • the 5V voltage output from the 5V power supply 27 is used as a drive power supply for the comparison circuits CP1 and CP2 and the timer 28.
  • the timer 28 counts a predetermined time (more than the time required for charging the capacitor C) after 5 V drive power is supplied (after the engine is started), a positive signal to one input terminal of the AND gate 29 Starts output.
  • the output voltage Vcap of the electric double layer capacitor C is applied to the other input terminal of the comparison circuit CP1 and one input terminal of the comparison circuit CP2.
  • the output terminal of the comparison circuit (voltage detection means, second voltage detection means) CP1 is connected to the gate of the semiconductor relay Ry7. Further, it is connected to the other input terminal of the AND gate 29.
  • the output terminal of the AND gate 29 is connected to the signal terminal P3 of the capacitor unit 22b, and outputs the above-described discharge signal.
  • the source of the semiconductor relay Ry7 is grounded, and the drain is connected to one terminal of the coil of the switch 2 (relay).
  • the output voltage Vcap of the electric double layer capacitor C is given to the other terminal of the coil.
  • the switch S1 when the switch S1 is connected in conjunction with the ignition switch, the 5V power supply is activated, and the comparison circuits CP1 and CP2 and the timer 28 are activated.
  • the comparison circuit CP1 determines that the output voltage VIG of the detected output voltage VIG of the battery B and the output voltage Vcap of the electric double layer capacitor C is higher, the semiconductor relay Ry7 is turned off, and the switch S2 is shut off.
  • the comparison circuit CP2 determines that the output voltage VIG is higher in the detected output voltage VIG and output voltage Vcap, a positive signal is output to turn on the semiconductor relay Ry6, and from the battery B The electric double layer capacitor C is charged. In this state, the output voltage of the battery B is given to the device 19, the meters 20, and the body ECU 21 arranged on the dashboard.
  • the timer 28 starts to output a plus signal to one input terminal of the AND gate 29 when the timer 28 measures a predetermined time longer than the time required for charging the capacitor C after being activated.
  • the semiconductor relay Ry7 When the output voltage of the battery B decreases and the comparison circuit CP1 determines that the output voltage VIG of the battery B is lower and outputs a plus signal, the semiconductor relay Ry7 is turned on and the switch S2 is connected. is doing. In this state, the output voltage Vcap of the electric double layer capacitor C is given to the device 19, the meters 20 and the body ECU 21 arranged on the dashboard. At this time, the AND gate 29 is also given a plus signal to the other input terminal, outputs a plus discharge signal, and turns on the indicator lamp 20a (FIG. 7). Further, when the comparison circuit CP2 determines that the output voltage VIG is lower, the comparison circuit CP2 turns off the semiconductor relay Ry6.
  • the switch S1 When the switch S1 is cut off in conjunction with the ignition switch, the 5V power supply is turned off, and the comparison circuits CP1 and CP2 and the timer 28 are turned off. As a result, the semiconductor relay Ry7, the switch S2, and the semiconductor relay Ry6 are turned off, the electric double layer capacitor C is shut off from the outside, and the indicator lamp 20a is turned off.
  • the output voltage VIG of the battery B is relatively lower than the output voltage Vcap of the electric double layer capacitor C.
  • the detected output voltage Vcap may be equal to or higher than a fixed voltage value such as 11.5 V or higher. However, the conditions for discharging the electric double layer capacitor C are not changed.
  • the AND gate 29 is excluded from the configuration of the voltage detection relay control unit 26 (FIG. 9), and the voltage detection relay control unit 26a as shown in FIG.
  • the indicator lamp 20a may be turned on when a predetermined time equal to or longer than the predetermined time is counted. In this case, the discharge signal is a standby signal indicating that discharge is possible. Further, except for the timer 28 from the configuration of the voltage detection relay control unit 26a (FIG. 10), as the voltage detection relay control unit 26b as shown in FIG. 11, the semiconductor relay Ry7 is turned on, the switch S2 is connected, The indicator lamp 20a may be turned on when the double layer capacitor C is discharged.
  • the present invention can be applied to a power supply apparatus that includes a battery that is charged with power generated by a power generator that is linked to an engine, and that supplies power discharged from the battery and power generated by the power generator to a plurality of loads.

Abstract

 電気二重層キャパシタを備えて、電気二重層キャパシタ及びバッテリ間で互いに影響が及び難く、突入電流が発生しても、電源電圧が低下して負荷が正常に機能しなくなる虞が無い車両用電源装置を提供する。  発電機1により充電されるバッテリBを備え、バッテリBが放電した電力、及び発電機1が発電した電力を複数の負荷に供給する車両用電源装置。バッテリBに並列接続された電気二重層キャパシタCと、バッテリB及び電気二重層キャパシタCの各同極側端子間を接続/遮断する回路Ry1と、回路Ry1の両端子間の電位差を検出する手段3とを備え、その検出した電位差に基づき、電気二重層キャパシタCを充電する為に回路Ry1を接続するように構成してあり、電気二重層キャパシタCが出力する電力は、複数の負荷のうち、所定値以上の突入電流を発生させる負荷4,5に与える。

Description

車両用電源装置
 本発明は、エンジンに連動する発電機が発電した電力により充電されるバッテリを備え、バッテリが放電した電力、及び発電機が発電した電力を複数の負荷に供給する車両用電源装置に関するものである。
 車両用電源装置では、エンジンに連動する発電機が発電した電力を、車両に搭載された各負荷に供給すると共に、バッテリに充電し、発電機が発電した電力では不足するとき、又はエンジンが停止しているときには、バッテリから各負荷に電力を供給するように構成されている。
 近時、数十ファラッド以上の非常に大きな静電容量を有し、充放電サイクル特性(寿命)及び急速充放電に優れた電気二重層キャパシタが普及し、車両用電源装置においても、バッテリのバックアップ用などに提案されている。
 特許文献1には、エンジン始動スイッチの操作によって、電池からの放電電流及び電気二重層キャパシタからの放電電流がスタータに流れ込むように構成されたエンジン自動車の電気システムが開示されている。スタータに対して電気二重層キャパシタは電池より近接するように配置され、電池からの放電電流が流れるワイヤーハーネスは、電気二重層キャパシタからスタータへの放電電流が流れる給電線に接続される。スタータの始動時には、電池からの放電電流が、電気二重層キャパシタからの放電電流に比べて小さくなるようにワイヤーハーネスを選択する。
特開2007-253879号公報
 車両用電源装置では、モータ等の負荷が起動されると、瞬間的に過大な突入電流が発生し、バッテリの内部抵抗により一時的に電源電圧が低下して、ECU(Electronic Control Unit)等の負荷によっては正常に機能しなくなることがあるという問題がある。
 また、特許文献1に開示された電気システムでは、スタータで発生する突入電流を、内部抵抗が小さい電気二重層キャパシタから多く給電することにより、電源電圧の低下を小さくしているが、バッテリに異常が発生し電源電圧が低下した場合、電気二重層キャパシタの出力電圧も低下するという問題がある。
 本発明は、上述したような事情に鑑みてなされたものであり、電気二重層キャパシタを備えて、電気二重層キャパシタ及びバッテリ間で互いに影響が及び難く、突入電流が発生しても、電源電圧が低下して負荷が正常に機能しなくなる虞が無い車両用電源装置を提供することを目的とする。
 第1発明に係る車両用電源装置は、エンジンに連動する発電機が発電した電力により充電されるバッテリを備え、該バッテリが放電した電力、及び前記発電機が発電した電力を複数の負荷に供給する車両用電源装置において、前記バッテリに並列接続された電気二重層キャパシタと、前記バッテリ及び電気二重層キャパシタの各同極側端子間を接続/遮断する接続回路と、該接続回路の両端子間の電位差を検出する電位差検出手段とを備え、該電位差検出手段が検出した電位差に基づき、前記電気二重層キャパシタを充電する為に前記接続回路を接続するように構成してあり、前記電気二重層キャパシタが出力する電力は、前記負荷のうち、所定値以上の突入電流を発生させる負荷に与えるように構成してあることを特徴とする。
 この車両用電源装置では、エンジンに連動する発電機が発電した電力によりバッテリが充電され、バッテリが放電した電力、及び発電機が発電した電力を複数の負荷に供給する。電気二重層キャパシタが、バッテリに並列接続され、接続/遮断する回路が、バッテリ及び電気二重層キャパシタの各同極側端子間を接続/遮断する。検出する手段が、接続/遮断する回路の両端子間の電位差を検出する。その検出した電位差に基づき、電気二重層キャパシタを充電する為に、接続/遮断する回路を接続する。また、電気二重層キャパシタが出力する電力は、複数の負荷のうち、所定値以上の突入電流を発生させる負荷に与える。
 第2発明に係る車両用電源装置は、前記突入電流を発生させる負荷のうち、一部の負荷は、前記バッテリからも電力を直接与えられるように構成してあることを特徴とする。
 第3発明に係る車両用電源装置は、前記突入電流を発生させる負荷には、エンジンのスタータが含まれることを特徴とする。
 第4発明に係る車両用電源装置は、前記スタータ及びバッテリ間を接続/遮断するスイッチを更に備え、該スイッチは、前記スタータが始動するときにのみ接続するように構成してあることを特徴とする。
 第5発明に係る車両用電源装置は、エンジンに連動する発電機が発電した電力により充電されるバッテリを備え、該バッテリが放電した電力、及び前記発電機が発電した電力を複数の負荷に供給する車両用電源装置において、前記バッテリに充電されるように逆流防止回路を通じて接続された電気二重層キャパシタと、該電気二重層キャパシタ及び1又は複数の負荷間を接続/遮断する第2スイッチと、前記バッテリの出力電圧を検出する電圧検出手段と、該電圧検出手段が検出した電圧が所定電圧より低いか否かを判定する手段とを備え、該手段が所定電圧より低いと判定したときは、前記第2スイッチを接続するように構成してあることを特徴とする。
 この車両用電源装置では、エンジンに連動する発電機が発電した電力によりバッテリが充電され、バッテリが放電した電力、及び発電機が発電した電力を複数の負荷に供給する。電気二重層キャパシタが、バッテリに充電されるように逆流防止回路を通じて接続され、第2スイッチが、電気二重層キャパシタ及び1又は複数の負荷間を接続/遮断する。電圧検出手段が、バッテリの出力電圧を検出し、判定する手段が、その検出した電圧が所定電圧より低いか否かを判定する。判定する手段が、所定電圧より低いと判定したときは、第2スイッチを接続する。
 第6発明に係る車両用電源装置は、前記エンジンが始動してからの時間を計時する計時手段と、前記電気二重層キャパシタの出力電圧を検出する第2電圧検出手段と、該第2電圧検出手段が検出した出力電圧が所定電圧範囲内であるか否かを判定する判定手段と、前記計時手段が所定時間を計時した以降、前記判定手段が所定電圧範囲内であると判定したときは、判定結果を表示する表示手段とを更に備えることを特徴とする。
 この車両用電源装置では、計時手段が、エンジンが始動してからの時間を計時し、第2電圧検出手段が、電気二重層キャパシタの出力電圧を検出する。判定手段が、第2電圧検出手段が検出した出力電圧が所定電圧範囲内であるか否かを判定する。計時手段が所定時間を計時した以降、判定手段が所定電圧範囲内であると判定したときは、表示手段がその判定結果を表示する。
 第7発明に係る車両用電源装置は、前記第2スイッチは、前記表示手段に連動するように構成してあることを特徴とする。
 第8発明に係る車両用電源装置は、前記電気二重層キャパシタは、前記バッテリから負荷への分岐回路及びヒューズを収納する電気接続箱に収納されていることを特徴とする。
 本発明に係る車両用電源装置によれば、電気二重層キャパシタを備えて、電気二重層キャパシタ及びバッテリ間で互いに影響が及び難く、突入電流が発生しても、電源電圧が低下して負荷が正常に機能しなくなる虞が無い車両用電源装置を実現することができる。
本発明に係る車両用電源装置の実施例の概略構成を示すブロック図である。 本発明に係る車両用電源装置のジャンクションボックス内に電気二重層キャパシタを収納した態様の左側面から見た断面を示す説明図である。 本発明に係る車両用電源装置のジャンクションボックス内に電気二重層キャパシタを収納した態様の正面から見た断面を示す説明図である。 本発明に係る車両用電源装置のジャンクションボックス内に電気二重層キャパシタを収納した態様の下面から見た断面を示す説明図である。 本発明に係る車両用電源装置のジャンクションボックス内に電気二重層キャパシタを収納した態様の右側面から見た断面を示す説明図である。 本発明に係る車両用電源装置の実施例の概略構成を示すブロック図である。 本発明に係る車両用電源装置の実施例の概略構成を示すブロック図である。 本発明に係る車両用電源装置の実施例の概略構成を示すブロック図である。 本発明に係る車両用電源装置の実施例の概略構成を示すブロック図である。 本発明に係る車両用電源装置の実施例の概略構成を示すブロック図である。 キャパシタユニットの構成例を示すブロック図である。 電圧検知リレー制御部の構成例を示すブロック図である。 電圧検知リレー制御部の他の構成例を示すブロック図である。 電圧検知リレー制御部の他の構成例を示すブロック図である。
 1 オルタネータ(車載発電機、交流発電機)
 2 スタータ(負荷)
 3 制御部
 4 電動パワーステアリング装置(負荷)
 5 電動ブレーキ(負荷)
 6 エンジンECU(負荷)
 7 ヘッドランプ(負荷)
 14 双方向DCDCコンバータ
 15 スタータスイッチ
 16 筐体
 17,19 ダッシュボードに配置された機器(負荷)
 18 ドアECU(負荷)
 20 メータ類(負荷)
 20a 表示灯(表示手段)
 21 ボディECU(負荷)
 22,22a,22b キャパシタユニット
 23 電圧検知部(電圧検出手段)
 24 ボディ制御ユニット
 25 マイクロコンピュータ(電圧検出手段)
 26,26a,26b 電圧検知リレー制御部
 28 タイマ(計時手段)
 B バッテリ
 C 電気二重層キャパシタ
 CP1 比較回路(電圧検出手段、第2電圧検出手段)
 CP2 比較回路
 D1,D2,D3 ダイオード
 F1~F21 ヒューズ
 JB ジャンクションボックス(電気接続箱)
 R1 抵抗
 RB リレーボックス
 Ry1~Ry7 半導体リレー
 S,S1 スイッチ
 S2 スイッチ(第2スイッチ)
 以下に、本発明をその実施例を示す図面に基づいて説明する。
 図1は、本発明に係る車両用電源装置の実施例1の概略構成を示すブロック図である。
 この車両用電源装置は、オルタネータ(車載発電機、交流発電機)1が、図示しないエンジンに連動して発電する。オルタネータ1が発電した電力は、オルタネータ1内で整流された後、ヒューズF1を通じて、バッテリBに充電される。
 バッテリBの出力電圧は、ヒューズF5を通じて、例えばエンジンECU(負荷)6に与えられ、ヒューズF6及びスイッチSを通じて、ヘッドランプ(負荷)7に与えられる。また、ヒューズF3,F4(前輪用、後輪用)を個別に通じて電動ブレーキ5に与えられる。バッテリBの出力電圧は、また、エンジンのスタータ(負荷)2に与えられる。
 オルタネータ1の出力電圧、及びヒューズF1を通じたバッテリBの出力電圧は、半導体リレーRy1及び抵抗Rを通じて電気二重層キャパシタCに与えられ充電される。半導体リレーRy1の両端子間には制御部3が接続され、制御部3は、両端子間の電位差を検出し、検出した電位差に基づき、半導体リレーRy1をオン/オフにする。抵抗Rは、電気二重層キャパシタCに充電する際の過電流を防止する。
 電気二重層キャパシタCは、後述するように(図2)、直列接続された6個のセルにより構成されている。
 電気二重層キャパシタCの出力電圧は、ヒューズF2及び半導体リレーRy2を通じて、電動パワーステアリング装置(負荷)4に与えられる。また、ヒューズF7及び半導体リレーRy3(例えば前輪用),並びにヒューズF8及び半導体リレーRy4(例えば後輪用)を個別に通じて電動ブレーキ5に与えられる。
 バッテリBの出力電圧は、それぞれのヒューズを通じてその他の負荷へも与えられる。半導体リレーRy1~Ry4には、環流ダイオードが逆並列に接続されている。半導体リレーRy1~Ry4は、図示しないイグニッションスイッチ(点火スイッチ)に連動してオン/オフされる。
 図2Aは、車両のジャンクションボックス(電気接続箱)JB内に電気二重層キャパシタCを収納した態様の左側面から見た断面を示す説明図、図2Bは、その態様の正面から見た断面を示す説明図、図2Cは、その態様の下面から見た断面を示す説明図、図2Dは、その態様の右側面から見た断面を示す説明図である。
 このジャンクションボックスJBは、筐体16が直方体形状であり、筐体16の底面に延設された2つの鍔部12にそれぞれ2つ設けられた孔13により、車両側にビス止めされている。筐体16内部には、底面を覆うように絶縁板及び配線(電力系)8が収納され、筐体16内の中間より若干深い位置に、プリント基板10が絶縁板及び配線8を覆うように嵌め込まれて支持固定されている。
 プリント基板10の裏面側には、半導体リレーRy1~Ry4、ヒューズF1~F6、制御部3等の電子回路9が配設され、プリント基板10の表面側には6個のセルが直列接続された電気二重層キャパシタCが配設されている。プリント基板13の裏面の正面視右下部には、右側面を貫通したコネクタ11が接続されている。
 このような構成の車両用電源装置では、制御部3は、半導体リレーRy1の両端子間の電位差を検出し、電位差が例えば1.0Vになったときは、半導体リレーRy1をオンにする。電気二重層キャパシタCへの充電が進み、電位差が例えば0Vになったときは、半導体リレーRy1をオフにする。制御部3は、電気二重層キャパシタCへ充電するとき以外は、半導体リレーRy1をオフにしておく。
 図示しないエンジンが回転している場合に、電動パワーステアリング装置4又は電動ブレーキ5が作動して、そのモータに突入電流が発生したとき、その電源は電気二重層キャパシタCであり、電気二重層キャパシタCの内部抵抗は非常に小さいので、電圧低下は小さい。
 また、そのときに、たまたま半導体リレーRy1がオンであっても、バッテリBよりも電気二重層キャパシタCからの方が電流が流れ易いので、バッテリBの内部抵抗による電圧低下は小さい。
 重要な負荷である電動ブレーキ5には、電気二重層キャパシタCからと、バッテリBからとの二重の電源が与えられているので、何れか一方が故障した場合でも、他方からの電源が与えられ、確実に電源が供給される。
 図3は、本発明に係る車両用電源装置の実施例2の概略構成を示すブロック図である。
 この車両用電源装置では、スタータ2は、バッテリBからではなく、電気二重層キャパシタCから電源が与えられている。また、制御部3は、半導体リレーRy1の両端子間の電位差に基づき半導体リレーRy1をオン/オフ制御する代わりに、DCDCコンバータ14の両端子間の電圧差を検出し、検出した電位差に基づきDCDCコンバータ14をオン/オフ制御する。DCDCコンバータ14は、バッテリBからの電圧を例えば+1.5V(14V程度)昇圧し、抵抗Rを通じて、電気二重層キャパシタCに与える。その他の構成は、上述した実施例1で説明した車両用電源装置の構成(図1,2)と同様であるので、説明を省略する。
 このような構成の車両用電源装置では、制御部3は、DCDCコンバータ14の両端子間の電位差を検出し、電位差が例えば1.0V(入力側>出力側)になったときは、DCDCコンバータ14をオンにする。DCDCコンバータ14が昇圧した電圧により電気二重層キャパシタCへの充電が進み、電位差が例えば1.5V(入力側<出力側)になったときは、DCDCコンバータ14をオフにする。制御部3は、電気二重層キャパシタCへ充電するとき以外は、DCDCコンバータ14をオフにしておく。
 エンジンが始動するとき、スタータ2が始動して、そのモータに突入電流が発生したとき、その電源は電気二重層キャパシタCであり、電気二重層キャパシタCの内部抵抗は非常に小さいので、電圧低下は小さい。
 また、そのときに、たまたまDCDCコンバータ14がオンであっても、バッテリBよりも電気二重層キャパシタCからの方が電流が流れ易いので、バッテリBの内部抵抗による電圧低下は小さい。
 これにより、バッテリBの大電流放電の頻度が下がるので、バッテリBの長寿命化が期待できる。その他の動作は、上述した実施例1で説明した車両用電源装置の動作と同様であるので、説明を省略する。
 図4は、本発明に係る車両用電源装置の実施例3の概略構成を示すブロック図である。
 この車両用電源装置では、スタータ2は、電気二重層キャパシタCから電源が与えられる他、半導体リレーRy5を通じて、バッテリBからも与えられる。半導体リレーRy5は、スタータスイッチ15がオンのときにオンになる。また、スタータスイッチ15がオフのときにはオフになり、スタータ2及びバッテリB間を遮断する。その他の構成は、上述した実施例2で説明した車両用電源装置の構成(図3)と同様であるので、説明を省略する。
 このような構成の車両用電源装置では、スタータスイッチ15がオンになり、スタータ2が始動して、そのモータに突入電流が発生するとき、半導体リレーRy5もオンになっている。その為、スタータ2へは電気二重層キャパシタCとバッテリBとから電源が与えられるが、バッテリBよりも電気二重層キャパシタCからの方が電流が流れ易いので、バッテリBの内部抵抗による電圧低下は小さい。また、電気二重層キャパシタCの内部抵抗は非常に小さいので、電気二重層キャパシタCでの電圧低下も小さい。
 エンジンの始動時以外は、スタータ2及びバッテリB間を遮断するので、例えば、バッテリBが、故障により出力電圧が低下しても、電気二重層キャパシタCの出力電圧には影響が及ばない。
 これにより、バッテリBの大電流放電時の電流量が小さくなるので、バッテリBの長寿命化が期待できる。その他の動作は、上述した実施例2で説明した車両用電源装置の動作と同様であるので、説明を省略する。
 図5は、本発明に係る車両用電源装置の実施例4の概略構成を示すブロック図である。
 この車両用電源装置は、オルタネータ1が発電した電力は、オルタネータ1内で整流された後、リレーボックスRB内のヒューズF1を通じて、バッテリBに充電される。
 バッテリBの出力電圧は、図示しないイグニッションスイッチ(アクセサリスイッチも含む)に連動するリレーボックスRB内のスイッチS1及びヒューズF9を通じて、ジャンクションボックス(電気接続箱)JB内のキャパシタユニット22に与えられる。
 バッテリBの出力電圧は、スイッチS1、ヒューズF9及びジャンクションボックスJB内のヒューズF10を通じて、電動ブレーキ(負荷)5に与えられる。
 バッテリBの出力電圧は、また、スイッチS1、ヒューズF9及びジャンクションボックスJB内のヒューズF12を通じて、オーディオ装置、メータ類及びナビゲーション装置等のダッシュボードに配置された機器(負荷)17に与えられる。
 バッテリBの出力電圧は、また、スイッチS1、ヒューズF9及びジャンクションボックスJB内のヒューズF14を通じて、ドアECU(負荷)18に与えられる。
 キャパシタユニット22内では、与えられたバッテリBの出力電圧により、抵抗R1及び逆流防止用のダイオード(逆流防止回路)D1を通じて、電気二重層キャパシタCが充電されるように構成されている。ジャンクションボックスJB内の電気二重層キャパシタCの収納状態は図2に示す。
 電気二重層キャパシタCの出力電圧は、キャパシタユニット22内のスイッチS2(第2スイッチ)及びジャンクションボックスJB内のヒューズF11を通じて、電動ブレーキ(負荷)5に与えられる。
 電気二重層キャパシタCの出力電圧は、また、キャパシタユニット22内のスイッチS2及びジャンクションボックスJB内のヒューズF13を通じて、オーディオ装置、メータ類及びナビゲーション装置等のダッシュボードに配置された機器(負荷)17に与えられる。
 電気二重層キャパシタCの出力電圧は、また、キャパシタユニット22内のスイッチS2及びジャンクションボックスJB内のヒューズF15を通じて、ドアECU(負荷)18に与えられる。
 キャパシタユニット22には電圧検知部(電圧検出手段)23が内蔵されている。電圧検知部23は、与えられたバッテリBの出力電圧を検出し、検出した電圧値に基づき、スイッチS2を接続/遮断させる。
 バッテリBの出力電圧は、リレーボックスRB内又はジャンクションボックスJB内のリレー及びヒューズを通じて、その他の負荷へも与えられる。
 このような構成の車両用電源装置では、イグニッションスイッチに連動してスイッチS1が接続され、電圧検知部23が、検出した与えられたバッテリBの出力電圧が所定電圧以上であると判定しているときは、スイッチS2を遮断している。この状態で、バッテリBの出力電圧は、電動ブレーキ5、ダッシュボードに配置された機器17及びドアECU(負荷)18に与えられている。また、バッテリBの出力電圧により、電気二重層キャパシタCが充電される。
 バッテリBの出力電圧が低下して、電圧検知部23が、検出した与えられたバッテリBの出力電圧が所定電圧より低いと判定しているときは、スイッチS2を接続している。この状態で、電気二重層キャパシタCの出力電圧は、電動ブレーキ5、ダッシュボードに配置された機器17及びドアECU(負荷)18に与えられている。
 イグニッションスイッチに連動してスイッチS1が遮断されると、オフになったスイッチS2及びダイオードD1により、電気二重層キャパシタCが外部から遮断される。
 図6は、本発明に係る車両用電源装置の実施例5の概略構成を示すブロック図である。
 この車両用電源装置では、バッテリBの出力電圧が、スイッチS1及びヒューズF9を通じて、ジャンクションボックスJB内のボディ制御ユニット24へも与えられる。ボディ制御ユニット24は、マイクロコンピュータ(電圧検出手段)25を内蔵しており、マイクロコンピュータ25は、与えられたバッテリBの出力電圧を検出し、検出した電圧値に基づき、スイッチS2を接続/遮断させる。従って、ジャンクションボックスJB内のキャパシタユニット22aには、図5に示す電圧検知部23は存在しない。その他の構成は、上述した実施例4で説明した車両用電源装置(図5)の構成と同様であるので、説明を省略する。
 このような構成の車両用電源装置では、イグニッションスイッチに連動してスイッチS1が接続され、マイクロコンピュータ25が、検出した与えられたバッテリBの出力電圧が所定電圧以上であると判定しているときは、スイッチS2を遮断している。この状態で、バッテリBの出力電圧は、電動ブレーキ5、ダッシュボードに配置された機器17及びドアECU18に与えられている。また、バッテリBの出力電圧により、電気二重層キャパシタCが充電される。
 バッテリBの出力電圧が低下して、マイクロコンピュータ25が、検出したバッテリBの出力電圧が所定電圧より低いと判定しているときは、スイッチS2を接続している。この状態で、電気二重層キャパシタCの出力電圧は、電動ブレーキ5、ダッシュボードに配置された機器17及びドアECU18に与えられている。
 イグニッションスイッチに連動してスイッチS1が遮断されると、オフになったスイッチS2及びダイオードD1により、電気二重層キャパシタCが外部から遮断される。
 図7は、本発明に係る車両用電源装置の実施例6の概略構成を示すブロック図である。
 この車両用電源装置は、オルタネータ1が発電した電力は、オルタネータ1内で整流された後、リレーボックスRB内のヒューズF1を通じて、バッテリBに充電される。
 バッテリBの出力電圧は、図示しないイグニッションスイッチ(アクセサリスイッチも含む)に連動するリレーボックスRB内のスイッチS1及びヒューズF9を通じて、ジャンクションボックス(電気接続箱)JB内のキャパシタユニット22bに与えられる。
 バッテリBの出力電圧は、スイッチS1、ヒューズF9及びジャンクションボックスJB内のヒューズF16を通じて、オーディオ装置及びナビゲーション装置等のダッシュボードに配置された機器(負荷)19に与えられる。
 バッテリBの出力電圧は、また、スイッチS1、ヒューズF9及びジャンクションボックスJB内のヒューズF18を通じて、ダッシュボードに配置されたメータ類(負荷)20に与えられる。
 バッテリBの出力電圧は、また、スイッチS1、ヒューズF9及びジャンクションボックスJB内のヒューズF20を通じて、ボディECU(負荷)21に与えられる。
 電気二重層キャパシタCの出力電圧は、キャパシタユニット22b内のスイッチ(第2スイッチ)S2、逆流防止用の順接続されたダイオードD3、及びジャンクションボックスJB内のヒューズF17を通じて、ダッシュボードに配置された機器19に与えられる。
 電気二重層キャパシタCの出力電圧は、また、スイッチS2、ダイオードD3、及びジャンクションボックスJB内のヒューズF19を通じて、ダッシュボードに配置されたメータ類20に与えられる。
 電気二重層キャパシタCの出力電圧は、また、スイッチS2、ダイオードD3、及びジャンクションボックスJB内のヒューズF21を通じて、ボディECU21に与えられる。
 図8は、キャパシタユニット22bの構成例を示すブロック図である。
 キャパシタユニット22b内は、与えられたバッテリBの出力電圧により、半導体リレーRy6及び逆流防止用のダイオードD2を通じて、電気二重層キャパシタCが充電されるように構成されている。電気二重層キャパシタCは、6つのセルC1~C6が直列に接続されている。
 電気二重層キャパシタCの出力電圧は、キャパシタユニット22b内のスイッチS2、及び順接続されたダイオードD3を通じて、キャパシタユニット22bの出力端子P1から出力される。電気二重層キャパシタCの出力電圧Vcap は、また、キャパシタユニット22b内の電圧検知リレー制御部26に与えられ検出される。
 電圧検知リレー制御部26は、キャパシタユニット22bの入力端子P3に与えられたバッテリBの出力電圧VIGを取込み検出する。検出したバッテリBの出力電圧VIGに基づき、半導体リレーRy6により電気二重層キャパシタCへの充電制御を行う。
 電圧検知リレー制御部26は、また、検出した電気二重層キャパシタCの出力電圧Vcap に基づき、スイッチS2により電気二重層キャパシタCの放電制御を行う。また、電気二重層キャパシタCが所定電圧範囲内で放電していることを示す放電信号を、キャパシタユニット22bの信号端子P2から出力する。出力された放電信号は、ダッシュボードに配置されたメータ類20に含まれる表示灯(表示手段)20aを点灯させる(図7)。
 図9は、電圧検知リレー制御部26の構成例を示すブロック図である。
 電圧検知リレー制御部26は、取込んだバッテリBの出力電圧VIGが、5V電源27と、比較回路CP1の一方の入力端子と、比較回路CP2の他方の入力端子とに与えられる。5V電源27が出力した5V電圧は、比較回路CP1,CP2及びタイマ28の駆動電源として使用される。
 タイマ28は、5Vの駆動電源が与えられてから(エンジンが始動してから)、所定時間(キャパシタCの充電に要する時間以上)を計時すると、ANDゲート29の一方の入力端子へのプラス信号の出力を開始する。
 比較回路CP1の他方の入力端子、及び比較回路CP2の一方の入力端子には、電気二重層キャパシタCの出力電圧Vcap が与えられる。比較回路(電圧検出手段、第2電圧検出手段)CP1の出力端子は、半導体リレーRy7のゲートに接続されている。また、ANDゲート29の他方の入力端子に接続されている。ANDゲート29の出力端子は、キャパシタユニット22bの信号端子P3に接続され、上述した放電信号を出力する。
 半導体リレーRy7のソースは接地され、ドレインはスイッチ2(リレー)のコイルの一方の端子に接続されている。コイルの他方の端子には電気二重層キャパシタCの出力電圧Vcap が与えられている。半導体リレーRy7がオンにされると、コイルに電流が流れてスイッチ2がオンになり、電気二重層キャパシタCの出力電圧Vcap が、ダイオードD3を通じてキャパシタユニット22bの出力端子P1から出力される。
 比較回路CP2の出力端子は、半導体リレーRy6のゲートに接続されている。
 このような構成の車両用電源装置では、イグニッションスイッチに連動してスイッチS1が接続されると、5V電源が起動して、比較回路CP1,CP2及びタイマー28が起動する。
 比較回路CP1が、検出したバッテリBの出力電圧VIG、及び電気二重層キャパシタCの出力電圧Vcap の内、出力電圧VIGの方が高いと判定しているときは、半導体リレーRy7をオフにし、スイッチS2を遮断している。
 また、比較回路CP2が、検出した出力電圧VIG及び出力電圧Vcap の内、出力電圧VIGの方が高いと判定しているときは、プラス信号を出力して半導体リレーRy6をオンにし、バッテリBから電気二重層キャパシタCへの充電が行われる。
 この状態で、バッテリBの出力電圧は、ダッシュボードに配置された機器19、メータ類20及びボディECU21に与えられている。
 タイマ28は、起動してから、キャパシタCの充電に要する時間以上の所定時間を計時すると、ANDゲート29の一方の入力端子へのプラス信号の出力を開始する。
 バッテリBの出力電圧が低下して、比較回路CP1が、バッテリBの出力電圧VIGの方が低いと判定し、プラス信号を出力しているときは、半導体リレーRy7をオンにし、スイッチS2を接続している。この状態で、電気二重層キャパシタCの出力電圧Vcap は、ダッシュボードに配置された機器19、メータ類20及びボディECU21に与えられている。
 また、このとき、ANDゲート29は、他方の入力端子にもプラス信号が与えられて、プラスの放電信号を出力し、表示灯20aを点灯させる(図7)。
 また、比較回路CP2は、出力電圧VIGの方が低いと判定しているときは、半導体リレーRy6をオフにする。
 イグニッションスイッチに連動してスイッチS1が遮断されると、5V電源がオフになり、比較回路CP1,CP2及びタイマー28がオフになる。その結果、半導体リレーRy7、スイッチS2及び半導体リレーRy6がオフになって、電気二重層キャパシタCが外部から遮断され、表示灯20aは消灯する。
 尚、本実施例6では、表示灯20aを点灯させる条件の1つとして、バッテリBの出力電圧VIGが、電気二重層キャパシタCの出力電圧Vcap より相対的に低いこととしているが、この代わりとして、検出した出力電圧Vcap が、例えば11.5V以上等の固定された電圧値以上であることとしても良い。但し、電気二重層キャパシタCを放電させる条件は変更しない。
 また、電圧検知リレー制御部26の構成(図9)からANDゲート29を除き、図10に示すような電圧検知リレー制御部26aとして、タイマ28が、起動してから、キャパシタCの充電に要する時間以上の所定時間を計時したときに、表示灯20aを点灯させるようにしても良い。この場合、放電信号は、放電可能であることを示すスタンバイ信号となる。
 また、電圧検知リレー制御部26aの構成(図10)からタイマ28を除き、図11に示すような電圧検知リレー制御部26bとして、半導体リレーRy7がオンになり、スイッチS2が接続して、電気二重層キャパシタCが放電しているときに、表示灯20aを点灯させるようにしても良い。
 本発明は、エンジンに連動する発電機が発電した電力により充電されるバッテリを備え、バッテリが放電した電力、及び発電機が発電した電力を複数の負荷に供給する電源装置に適用できる。

Claims (8)

  1.  エンジンに連動する発電機が発電した電力により充電されるバッテリを備え、該バッテリが放電した電力、及び前記発電機が発電した電力を複数の負荷に供給する車両用電源装置において、
     前記バッテリに並列接続された電気二重層キャパシタと、前記バッテリ及び電気二重層キャパシタの各同極側端子間を接続/遮断する接続回路と、該接続回路の両端子間の電位差を検出する電位差検出手段とを備え、該電位差検出手段が検出した電位差に基づき、前記電気二重層キャパシタを充電する為に前記接続回路を接続するように構成してあり、前記電気二重層キャパシタが出力する電力は、前記負荷のうち、所定値以上の突入電流を発生させる負荷に与えるように構成してあることを特徴とする車両用電源装置。
  2.  前記突入電流を発生させる負荷のうち、一部の負荷は、前記バッテリからも電力を直接与えられるように構成してある請求項1記載の車両用電源装置。
  3.  前記突入電流を発生させる負荷には、エンジンのスタータが含まれる請求項1又は2記載の車両用電源装置。
  4.  前記スタータ及びバッテリ間を接続/遮断するスイッチを更に備え、該スイッチは、前記スタータが始動するときにのみ接続するように構成してある請求項3記載の車両用電源装置。
  5.  エンジンに連動する発電機が発電した電力により充電されるバッテリを備え、該バッテリが放電した電力、及び前記発電機が発電した電力を複数の負荷に供給する車両用電源装置において、
     前記バッテリに充電されるように逆流防止回路を通じて接続された電気二重層キャパシタと、該電気二重層キャパシタ及び1又は複数の負荷間を接続/遮断する第2スイッチと、前記バッテリの出力電圧を検出する電圧検出手段と、該電圧検出手段が検出した電圧が所定電圧より低いか否かを判定する手段とを備え、該手段が所定電圧より低いと判定したときは、前記第2スイッチを接続するように構成してあることを特徴とする車両用電源装置。
  6.  前記エンジンが始動してからの時間を計時する計時手段と、前記電気二重層キャパシタの出力電圧を検出する第2電圧検出手段と、該第2電圧検出手段が検出した出力電圧が所定電圧範囲内であるか否かを判定する判定手段と、前記計時手段が所定時間を計時した以降、前記判定手段が所定電圧範囲内であると判定したときは、判定結果を表示する表示手段とを更に備える請求項1乃至5の何れか1つに記載の車両用電源装置。
  7.  前記第2スイッチは、前記表示手段に連動するように構成してある請求項6記載の車両用電源装置。
  8.  前記電気二重層キャパシタは、前記バッテリから負荷への分岐回路及びヒューズを収納する電気接続箱に収納されている請求項1乃至7の何れか1つに記載の車両用電源装置。
PCT/JP2009/004156 2008-09-08 2009-08-27 車両用電源装置 WO2010026715A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010527670A JP5214735B2 (ja) 2008-09-08 2009-08-27 車両用電源装置
DE112009002169T DE112009002169A5 (de) 2008-09-08 2009-08-27 Energieversorgungsvorrichtung
US13/059,155 US8860244B2 (en) 2008-09-08 2009-08-27 Vehicle power supply apparatus
CN200980135122.9A CN102164780B (zh) 2008-09-08 2009-08-27 车辆用电源装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008229806 2008-09-08
JP2008-229806 2008-09-08
JP2008-307678 2008-12-02
JP2008307678 2008-12-02

Publications (1)

Publication Number Publication Date
WO2010026715A1 true WO2010026715A1 (ja) 2010-03-11

Family

ID=41796901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004156 WO2010026715A1 (ja) 2008-09-08 2009-08-27 車両用電源装置

Country Status (5)

Country Link
US (1) US8860244B2 (ja)
JP (2) JP5214735B2 (ja)
CN (1) CN102164780B (ja)
DE (1) DE112009002169A5 (ja)
WO (1) WO2010026715A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291889A (zh) * 2011-07-28 2011-12-21 宁波安迪光电科技有限公司 昼行灯系统及其控制方法
CN102291890A (zh) * 2011-07-28 2011-12-21 宁波安迪光电科技有限公司 昼行灯系统及其控制方法
JP2012080723A (ja) * 2010-10-05 2012-04-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源装置
JP2013521757A (ja) * 2010-04-01 2013-06-10 リ,デーキョ 高容量コンデンサを用いた車両電気負荷の電力補償装置及び方法
JP2013128381A (ja) * 2011-12-19 2013-06-27 Toyota Motor Corp 車両用電源装置
JP2014528874A (ja) * 2011-10-05 2014-10-30 ヴァレオ システム ドゥ コントロール モトゥール 作動可能な少なくとも1つの部品を有する、乗り物のための配電網
JP2016007993A (ja) * 2014-06-26 2016-01-18 株式会社オートネットワーク技術研究所 車両用電源システム
WO2017183512A1 (ja) * 2016-04-18 2017-10-26 株式会社オートネットワーク技術研究所 車載電源用のスイッチ装置および車載用電源システム
JP2018182936A (ja) * 2017-04-17 2018-11-15 株式会社今仙電機製作所 電源システムおよび電源ユニット

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553387B2 (ja) * 2011-03-15 2014-07-16 オムロンオートモーティブエレクトロニクス株式会社 電源制御装置および方法、並びに、電力管理システム
US8164228B1 (en) 2011-10-12 2012-04-24 Mechanical Energy Generating Systems, L.L.C. Systems, methods, and apparatus for a homopolar generator charger with integral rechargeable battery
FR2987180B1 (fr) * 2012-02-16 2014-12-05 Alstom Transport Sa Chaine de stockage d'energie pour vehicule, comprenant au moins un module de supercondensateurs, systeme de stockage d'energie comprenant une telle chaine et vehicule ferroviaire comprenant un tel systeme
US20130266826A1 (en) 2012-03-13 2013-10-10 Maxwell Technologies, Inc. Ultracapacitor/battery combination and bus bar system
DE102012206772A1 (de) * 2012-04-25 2013-10-31 Bayerische Motoren Werke Aktiengesellschaft Stützspeicher mit Mittenabgriff
US9118210B2 (en) * 2012-10-15 2015-08-25 GM Global Technology Operations LLC Electrical system and method for a hybrid-electric vehicle
KR101448774B1 (ko) * 2013-03-07 2014-10-08 현대자동차 주식회사 고전압 배터리용 충전기 전원 공급 시스템 및 그 방법
DE102013006254A1 (de) 2013-04-11 2014-10-16 Audi Ag Spannungsfreischaltung eines Hochvoltfahrzeugs
DE102014105040B4 (de) 2013-04-11 2023-11-30 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Vorrichtung und Verfahren zum Stabilisieren einer Fahrzeugspannung
US9803608B2 (en) * 2013-04-11 2017-10-31 GM Global Technology Operations LLC Apparatus and method for vehicle voltage stabilization
US9694769B2 (en) * 2013-06-21 2017-07-04 GM Global Technology Operations LLC Smart power distribution unit
JP6367805B2 (ja) * 2013-07-31 2018-08-01 三洋電機株式会社 車両用電源システム
JP6201750B2 (ja) * 2013-12-27 2017-09-27 株式会社オートネットワーク技術研究所 車輌用電源装置
EP3134641A1 (en) 2014-04-22 2017-03-01 Maxwell Technologies, Inc. System and methods for improved starting of combustion engines
JP2015209058A (ja) * 2014-04-25 2015-11-24 オムロンオートモーティブエレクトロニクス株式会社 電源装置
JP2015217920A (ja) * 2014-05-21 2015-12-07 オムロンオートモーティブエレクトロニクス株式会社 車両用電源装置、車両用回生システム
JP2015217919A (ja) * 2014-05-21 2015-12-07 オムロンオートモーティブエレクトロニクス株式会社 車両用電源装置、車両用回生システム
CN104071099B (zh) * 2014-07-21 2016-05-11 安徽江淮汽车股份有限公司 一种汽车电器盒
JP6304500B2 (ja) * 2015-07-31 2018-04-04 本田技研工業株式会社 車両用電源装置
DE102015012358A1 (de) * 2015-09-19 2017-03-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Stromversorgungssystem eines Kraftfahrzeugs, Kraftfahrzeug sowie Verfahren zum Betrieb eines Stromversorgungssystems
JP2017061240A (ja) * 2015-09-25 2017-03-30 株式会社オートネットワーク技術研究所 車載用電源装置及びその制御方法
DE102016123269A1 (de) * 2015-12-09 2017-06-14 FEV Europe GmbH Verfahren für eine elektrische Funktionsprüfung bei einem Fahrzeug
JP2017121864A (ja) * 2016-01-07 2017-07-13 株式会社オートネットワーク技術研究所 給電中継回路、副電池モジュール、電源システム
CN105914805B (zh) * 2016-03-02 2018-08-31 深圳市银盾科技开发有限公司 一种汽车智能蓄电池
JP6412039B2 (ja) * 2016-03-17 2018-10-24 矢崎総業株式会社 電力中継器
JP6690396B2 (ja) * 2016-05-13 2020-04-28 株式会社オートネットワーク技術研究所 リレー装置
JP6493314B2 (ja) * 2016-06-15 2019-04-03 トヨタ自動車株式会社 電気自動車
JP6614452B2 (ja) * 2016-06-17 2019-12-04 株式会社オートネットワーク技術研究所 リレー装置
JP6451708B2 (ja) * 2016-09-06 2019-01-16 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
US10250058B2 (en) * 2016-09-15 2019-04-02 Raytheon Company Charge management system
EP3518373B1 (en) * 2016-09-20 2020-11-18 Panasonic Intellectual Property Management Co., Ltd. Power source device and vehicle equipped with power source device
JP6705357B2 (ja) * 2016-10-14 2020-06-03 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
JP6642384B2 (ja) * 2016-11-17 2020-02-05 株式会社オートネットワーク技術研究所 車載電池用の電池監視装置
US9809123B1 (en) * 2017-07-24 2017-11-07 Premergy, Inc. Control schemes and intelligent battery selection for electric vehicles
JP7003706B2 (ja) * 2018-02-06 2022-01-21 トヨタ自動車株式会社 電源システム
PL424591A1 (pl) 2018-02-14 2018-12-17 Vers Produkcja Spółka Z Ograniczoną Odpowiedzialnością Spółka Komandytowa Sposób ładowania i rozładowania kondensatorów w pojeździe o napędzie spalinowym oraz układ ładowania i rozładowania kondensatorów w pojeździe o napędzie spalinowym
US11479080B2 (en) 2018-10-19 2022-10-25 Systematic Power Manufacturing, Llc Hybrid energy power module for mobile electrical devices
US11289974B2 (en) 2019-06-07 2022-03-29 Anthony Macaluso Power generation from vehicle wheel rotation
US11685276B2 (en) 2019-06-07 2023-06-27 Anthony Macaluso Methods and apparatus for powering a vehicle
US11837411B2 (en) 2021-03-22 2023-12-05 Anthony Macaluso Hypercapacitor switch for controlling energy flow between energy storage devices
US11615923B2 (en) * 2019-06-07 2023-03-28 Anthony Macaluso Methods, systems and apparatus for powering a vehicle
US11577606B1 (en) 2022-03-09 2023-02-14 Anthony Macaluso Flexible arm generator
US11472306B1 (en) 2022-03-09 2022-10-18 Anthony Macaluso Electric vehicle charging station
US11955875B1 (en) 2023-02-28 2024-04-09 Anthony Macaluso Vehicle energy generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116571A (ja) * 1991-10-25 1993-05-14 Isuzu Motors Ltd 車両用始動装置
JPH09275635A (ja) * 1996-04-04 1997-10-21 Harness Sogo Gijutsu Kenkyusho:Kk 電力分配システム
JP2008114678A (ja) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd 車両用電源装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563479A (en) * 1993-10-29 1996-10-08 Aisin Seiki Kabushiki Kaisha Power supply apparatus for electric vehicle
KR100247115B1 (ko) 1996-09-11 2000-03-15 정병천 자동차용 배터리 방전 방지장치
JP3400302B2 (ja) 1997-07-16 2003-04-28 日野自動車株式会社 過電流遮断回路
JP3596433B2 (ja) * 2000-06-29 2004-12-02 株式会社デンソー 車載用電子制御装置
US6624640B2 (en) * 2001-02-07 2003-09-23 Fluke Corporation Capacitance measurement
JP2002266730A (ja) 2001-03-08 2002-09-18 Nippon Avionics Co Ltd エンジン起動装置
JP4070641B2 (ja) 2003-03-13 2008-04-02 日産ディーゼル工業株式会社 車両のジャンクションボックス装置
JP4385664B2 (ja) * 2003-07-08 2009-12-16 パナソニック株式会社 車両用電源装置
JP2005145278A (ja) 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd 車両用電源装置
DE102004016292A1 (de) 2004-04-02 2005-10-20 Man Nutzfahrzeuge Ag Schaltungsanordnung und Verfahren zum Steuern einer Starter- und Energieversorgungsanlage eines Kraftfahrzeuges
JP2006029142A (ja) * 2004-07-13 2006-02-02 Toyota Motor Corp 車両のエンジン始動制御装置
DE102004038527A1 (de) 2004-08-07 2006-03-16 Audi Ag Schaltungsanordnung für Kraftfahrzeuge
JP4024814B2 (ja) * 2005-02-24 2007-12-19 シャープ株式会社 チャージポンプ方式dc/dcコンバータ回路
JP4797487B2 (ja) * 2005-07-26 2011-10-19 パナソニック株式会社 車両用電源装置
JP2007205496A (ja) 2006-02-02 2007-08-16 Toyota Motor Corp 電力供給装置
JP4709032B2 (ja) 2006-02-22 2011-06-22 株式会社オートネットワーク技術研究所 電気接続箱
JP2007253879A (ja) 2006-03-24 2007-10-04 Power System:Kk エンジン自動車の電気システム
WO2008053808A1 (fr) 2006-11-02 2008-05-08 Panasonic Corporation Dispositif d'alimentation électrique de véhicule
JP4735523B2 (ja) 2006-12-01 2011-07-27 パナソニック株式会社 蓄電装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116571A (ja) * 1991-10-25 1993-05-14 Isuzu Motors Ltd 車両用始動装置
JPH09275635A (ja) * 1996-04-04 1997-10-21 Harness Sogo Gijutsu Kenkyusho:Kk 電力分配システム
JP2008114678A (ja) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd 車両用電源装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521757A (ja) * 2010-04-01 2013-06-10 リ,デーキョ 高容量コンデンサを用いた車両電気負荷の電力補償装置及び方法
JP2012080723A (ja) * 2010-10-05 2012-04-19 Auto Network Gijutsu Kenkyusho:Kk 車両用電源装置
CN102291889A (zh) * 2011-07-28 2011-12-21 宁波安迪光电科技有限公司 昼行灯系统及其控制方法
CN102291890A (zh) * 2011-07-28 2011-12-21 宁波安迪光电科技有限公司 昼行灯系统及其控制方法
JP2014528874A (ja) * 2011-10-05 2014-10-30 ヴァレオ システム ドゥ コントロール モトゥール 作動可能な少なくとも1つの部品を有する、乗り物のための配電網
US9650000B2 (en) 2011-10-05 2017-05-16 Valeo Systemes De Controle Moteur Electrical network for a vehicle, having at least one component that can be activated
JP2013128381A (ja) * 2011-12-19 2013-06-27 Toyota Motor Corp 車両用電源装置
JP2016007993A (ja) * 2014-06-26 2016-01-18 株式会社オートネットワーク技術研究所 車両用電源システム
WO2017183512A1 (ja) * 2016-04-18 2017-10-26 株式会社オートネットワーク技術研究所 車載電源用のスイッチ装置および車載用電源システム
JP2018182936A (ja) * 2017-04-17 2018-11-15 株式会社今仙電機製作所 電源システムおよび電源ユニット

Also Published As

Publication number Publication date
JPWO2010026715A1 (ja) 2012-01-26
CN102164780B (zh) 2014-05-14
JP5617908B2 (ja) 2014-11-05
US20110140518A1 (en) 2011-06-16
US8860244B2 (en) 2014-10-14
CN102164780A (zh) 2011-08-24
DE112009002169A5 (de) 2012-03-08
DE112009002169A8 (de) 2012-05-16
DE112009002169T5 (de) 2012-01-12
JP2013063775A (ja) 2013-04-11
JP5214735B2 (ja) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2010026715A1 (ja) 車両用電源装置
KR101863737B1 (ko) 축전 시스템
US10029572B2 (en) Power source system for a vehicle
US7688023B2 (en) Battery pack management method for HEV and EV
JP5201273B2 (ja) 電源管理装置
US9694769B2 (en) Smart power distribution unit
JP5808678B2 (ja) 電動車両
US20190013692A1 (en) Apparatus for starting an electrically cranked engine
JP2012056357A (ja) 車両用電源制御装置
JP2001258174A (ja) 充電システム
JP2010058609A (ja) 車両用電源装置
JP5606488B2 (ja) 車載電源装置
EP2258579B1 (en) Additional autonomous power supply system for vehicle, especially for industrial or commercial vehicle
JP2013112303A (ja) ハイブリッドカーの電源装置
WO2018016091A1 (ja) 車両用電力供給装置、車両用電力供給システム、および、車両用電力供給装置の制御方法
CN116141974A (zh) 车辆供电装置、供电方法和车辆
CN110654251B (zh) 用于给牵引电网中的高压电池组充电的方法和牵引电网
JP2009051351A (ja) 車両用電源装置
KR101860107B1 (ko) 소형엔진 충전표시장치
JP2015107022A (ja) 車両の充放電制御装置
JP2016093085A (ja) 車載用始動補助電源装置
JP7378982B2 (ja) 充電制御装置
JP6862910B2 (ja) 電池パック
JP2014023192A (ja) キャパシタ充電装置及びこれを用いた車両用電源システム
KR20140004880U (ko) 자동차용 배터리상태 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980135122.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527670

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13059155

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09811245

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112009002169

Country of ref document: DE

Effective date: 20120308