WO2010016186A1 - 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 - Google Patents
太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 Download PDFInfo
- Publication number
- WO2010016186A1 WO2010016186A1 PCT/JP2009/003151 JP2009003151W WO2010016186A1 WO 2010016186 A1 WO2010016186 A1 WO 2010016186A1 JP 2009003151 W JP2009003151 W JP 2009003151W WO 2010016186 A1 WO2010016186 A1 WO 2010016186A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- conductive paste
- electrode
- cell element
- weight
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000011521 glass Substances 0.000 claims abstract description 51
- 239000002245 particle Substances 0.000 claims abstract description 46
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 42
- 229910052751 metal Inorganic materials 0.000 claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 35
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 26
- 239000002904 solvent Substances 0.000 claims abstract description 23
- 239000011230 binding agent Substances 0.000 claims abstract description 22
- 150000001875 compounds Chemical class 0.000 claims abstract description 13
- 238000002844 melting Methods 0.000 claims description 49
- 230000008018 melting Effects 0.000 claims description 48
- 239000000758 substrate Substances 0.000 claims description 45
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 41
- 239000004065 semiconductor Substances 0.000 claims description 40
- 238000009792 diffusion process Methods 0.000 claims description 39
- 150000002736 metal compounds Chemical class 0.000 claims description 20
- 238000010304 firing Methods 0.000 claims description 19
- 239000000344 soap Substances 0.000 claims description 16
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 10
- 229910052714 tellurium Inorganic materials 0.000 claims description 10
- 235000019359 magnesium stearate Nutrition 0.000 claims description 5
- 229910052711 selenium Inorganic materials 0.000 claims description 4
- 230000001965 increasing effect Effects 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 description 42
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 22
- 239000011777 magnesium Substances 0.000 description 22
- 229910052710 silicon Inorganic materials 0.000 description 22
- 239000010703 silicon Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 238000005245 sintering Methods 0.000 description 10
- 239000011669 selenium Substances 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 8
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 7
- 239000001856 Ethyl cellulose Substances 0.000 description 7
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 7
- 235000021355 Stearic acid Nutrition 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- -1 metal compound Organic compound Chemical class 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 7
- 238000007650 screen-printing Methods 0.000 description 7
- 239000008117 stearic acid Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 235000019325 ethyl cellulose Nutrition 0.000 description 6
- 229920001249 ethyl cellulose Polymers 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910007709 ZnTe Inorganic materials 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- JPJALAQPGMAKDF-UHFFFAOYSA-N selenium dioxide Chemical compound O=[Se]=O JPJALAQPGMAKDF-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 229920006352 transparent thermoplastic Polymers 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- SKJCKYVIQGBWTN-UHFFFAOYSA-N (4-hydroxyphenyl) methanesulfonate Chemical compound CS(=O)(=O)OC1=CC=C(O)C=C1 SKJCKYVIQGBWTN-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- KPAPHODVWOVUJL-UHFFFAOYSA-N 1-benzofuran;1h-indene Chemical compound C1=CC=C2CC=CC2=C1.C1=CC=C2OC=CC2=C1 KPAPHODVWOVUJL-UHFFFAOYSA-N 0.000 description 1
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- VXQBJTKSVGFQOL-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethyl acetate Chemical compound CCCCOCCOCCOC(C)=O VXQBJTKSVGFQOL-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- NQBXSWAWVZHKBZ-UHFFFAOYSA-N 2-butoxyethyl acetate Chemical compound CCCCOCCOC(C)=O NQBXSWAWVZHKBZ-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QDFKPRIYIWOREF-UHFFFAOYSA-N 3,5-dimethylhexane-2,4-diol 2-methylpropanoic acid Chemical compound CC(C)C(O)=O.CC(C)C(O)C(C)C(C)O QDFKPRIYIWOREF-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YRXWPCFZBSHSAU-UHFFFAOYSA-N [Ag].[Ag].[Te] Chemical compound [Ag].[Ag].[Te] YRXWPCFZBSHSAU-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- HPQRSQFZILKRDH-UHFFFAOYSA-M chloro(trimethyl)plumbane Chemical compound C[Pb](C)(C)Cl HPQRSQFZILKRDH-UHFFFAOYSA-M 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- VRLFOXMNTSYGMX-UHFFFAOYSA-N diphenyl ditelluride Chemical compound C=1C=CC=CC=1[Te][Te]C1=CC=CC=C1 VRLFOXMNTSYGMX-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- IAOQICOCWPKKMH-UHFFFAOYSA-N dithieno[3,2-a:3',2'-d]thiophene Chemical compound C1=CSC2=C1C(C=CS1)=C1S2 IAOQICOCWPKKMH-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- QPADTPIHSPAZLQ-UHFFFAOYSA-N ethyl 5-nitronaphthalene-1-carboxylate Chemical compound C1=CC=C2C(C(=O)OCC)=CC=CC2=C1[N+]([O-])=O QPADTPIHSPAZLQ-UHFFFAOYSA-N 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- GPMBECJIPQBCKI-UHFFFAOYSA-N germanium telluride Chemical compound [Te]=[Ge]=[Te] GPMBECJIPQBCKI-UHFFFAOYSA-N 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- VMINMXIEZOMBRH-UHFFFAOYSA-N manganese(ii) telluride Chemical compound [Te]=[Mn] VMINMXIEZOMBRH-UHFFFAOYSA-N 0.000 description 1
- VCEXCCILEWFFBG-UHFFFAOYSA-N mercury telluride Chemical compound [Hg]=[Te] VCEXCCILEWFFBG-UHFFFAOYSA-N 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- FXADMRZICBQPQY-UHFFFAOYSA-N orthotelluric acid Chemical compound O[Te](O)(O)(O)(O)O FXADMRZICBQPQY-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- JNKJTXHDWHQVDL-UHFFFAOYSA-N potassiotellanylpotassium Chemical compound [K][Te][K] JNKJTXHDWHQVDL-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229940082569 selenite Drugs 0.000 description 1
- MCAHWIHFGHIESP-UHFFFAOYSA-L selenite(2-) Chemical compound [O-][Se]([O-])=O MCAHWIHFGHIESP-UHFFFAOYSA-L 0.000 description 1
- 229910000338 selenium disulfide Inorganic materials 0.000 description 1
- JNMWHTHYDQTDQZ-UHFFFAOYSA-N selenium sulfide Chemical compound S=[Se]=S JNMWHTHYDQTDQZ-UHFFFAOYSA-N 0.000 description 1
- 229960005265 selenium sulfide Drugs 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- MQRWPMGRGIILKQ-UHFFFAOYSA-N sodium telluride Chemical compound [Na][Te][Na] MQRWPMGRGIILKQ-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910000059 tellane Inorganic materials 0.000 description 1
- HVFOPASORMIBOE-UHFFFAOYSA-N tellanylidenechromium Chemical compound [Te]=[Cr] HVFOPASORMIBOE-UHFFFAOYSA-N 0.000 description 1
- CXXKWLMXEDWEJW-UHFFFAOYSA-N tellanylidenecobalt Chemical compound [Te]=[Co] CXXKWLMXEDWEJW-UHFFFAOYSA-N 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical class [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WYUZTTNXJUJWQQ-UHFFFAOYSA-N tin telluride Chemical compound [Te]=[Sn] WYUZTTNXJUJWQQ-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/16—Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the present invention relates to a conductive paste for forming an electrode of a solar cell element, a solar cell element having an electrode formed using the conductive paste, and a method for manufacturing the solar cell element.
- the general solar cell element includes a semiconductor substrate 21, a diffusion layer 22, an antireflection layer 23, a back electrode 24, and a front electrode 25.
- This solar cell element is manufactured as follows, for example.
- An impurity diffusion layer 22 and an insulating antireflection layer 23 made of silicon nitride, silicon oxide, titanium oxide, or the like are sequentially formed on the light receiving surface side (surface side) of the semiconductor substrate 21 made of silicon.
- the semiconductor substrate 21 contains a semiconductor impurity such as boron in an amount of about 1 ⁇ 10 16 to 10 18 atoms / cm 3 so as to exhibit one conductivity type (eg, p-type) having a specific resistance of about 1.5 ⁇ cm. It is a thing.
- the semiconductor substrate 21 is obtained, for example, by slicing an ingot formed by a pulling method or a casting method to a thickness of about 100 to 300 ⁇ m.
- the diffusion layer 22 is a region exhibiting the opposite conductivity type (for example, n-type) of the semiconductor substrate 21 formed by diffusing impurities such as phosphorus on the light receiving surface of the semiconductor substrate 21.
- the diffusion layer 22 is formed, for example, by placing the semiconductor substrate 21 in a furnace and heating it in phosphorus oxychloride (POCl 3 ) or the like.
- the antireflection layer 23 is formed on the light receiving surface side of the diffusion layer 22 to protect the solar cell element together with the antireflection function.
- the antireflection layer 23 is a silicon nitride film, it is formed by, for example, a plasma CVD method in which a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) is converted into plasma by glow discharge decomposition and deposited.
- the antireflection layer 23 is formed so as to have a refractive index of about 1.8 to 2.3 and a thickness of about 0.05 ⁇ m to 1.0 ⁇ m in consideration of a difference in refractive index with the semiconductor substrate 21. Is done.
- a front surface electrode 25 is formed on the surface of the semiconductor substrate 21, and a back surface electrode 24 is formed on the back surface.
- the surface electrode 25 is formed by printing, drying, and baking a conductive paste containing conductive particles, an organic binder, a solvent, glass frit, and a substance added as necessary.
- the back electrode 24 is also formed by printing a conductive paste, drying, and firing, but it is not necessary to use the same conductive paste as the front electrode 25.
- the surface electrode 25 plays a role of fire-through, and selection of an appropriate composition and firing conditions is important for enhancing the characteristics of the solar cell. This fire-through means that during firing, the glass frit contained in the conductive paste acts on the antireflection layer 23 to dissolve and remove the layer.
- the surface electrode 25 and the diffusion layer 22 come into contact with each other, It means obtaining an ohmic connection between the surface electrode 25 and the diffusion layer 22. If a stable ohmic connection is not obtained between the surface electrode 25 and the diffusion layer 22, the series resistance of the solar cell increases and the fill factor (FF) tends to decrease. Since the conversion efficiency of the solar cell is obtained by multiplying the open circuit voltage, the short-circuit current density, and the FF, the conversion efficiency decreases when the FF becomes small.
- Patent Document 1 discloses an organic binder, a solvent, glass frit, conductive powder, and at least one metal selected from Ti, Bi, Zn, Y, In, and Mo.
- a conductive paste comprising a metal or a metal compound thereof is disclosed in which the average particle size of the metal or the metal compound is 0.001 ⁇ m or more and less than 0.1 ⁇ m.
- Patent Document 1 discloses a stable high conductivity and excellent adhesion between a semiconductor and a conductive paste existing through an antireflection layer by firing a conductive paste containing ultrafine metal or a metal compound thereof. It is described that a surface electrode having force can be formed.
- the composition of the conductive paste in particular, as in Patent Document 1, the conductive paste containing ultrafine metal or its metal compound is printed on the surface of the semiconductor substrate, dried, and then fired, the coating film (paste film) shrinks.
- the contact resistance increases, and in some cases, microcracks may be generated on the surface of the semiconductor substrate due to the difference in thermal contraction behavior (linear expansion coefficient) between the paste film and the semiconductor substrate. If the contact resistance increases, the FF becomes small as described above, and there is a disadvantage that the conversion efficiency is lowered.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2005-243500
- the present invention has been made in view of such problems of the prior art, and its purpose is to provide a conductive paste for forming an electrode of a solar cell element and its conductivity without causing an increase in contact resistance. It is providing the manufacturing method of the solar cell element which has the electrode formed using the paste, and the solar cell element.
- the conductive paste for forming an electrode of a solar cell element of the present invention contains conductive particles, an organic binder, a solvent, glass frit, and an organic compound containing an alkaline earth metal. It is characterized by that.
- the conductive paste for forming an electrode of the solar cell element of the present invention is characterized by containing conductive particles, an organic binder, a solvent, a glass frit, and a low melting point metal.
- the conductive paste for forming an electrode of the solar cell element of the present invention contains conductive particles, an organic binder, a solvent, a glass frit, an organic compound containing an alkaline earth metal, and a low melting point metal. It is characterized by that.
- the conductive paste for electrode formation of the solar cell element of the present invention is characterized by containing conductive particles, an organic binder, a solvent, glass frit, and a low-melting-point metal compound.
- the conductive paste for electrode formation of the solar cell element of the present invention comprises conductive particles, an organic binder, a solvent, glass frit, an organic compound containing an alkaline earth metal, and a low melting point metal compound. It is characterized by containing.
- the organic compound containing an alkaline earth metal is preferably an alkaline earth metal soap.
- the alkaline earth metal soap is preferably magnesium stearate.
- the low melting point metal is preferably Te or Se.
- Low-melting-point metal compound is preferably a TeO 2.
- the conductive paste for forming an electrode of the solar cell element of the present invention preferably contains an organic compound containing 0.1 to 5% by weight of an alkaline earth metal.
- the conductive paste for forming an electrode of the solar cell element of the present invention preferably contains 0.1 to 5% by weight of a low melting point metal.
- the conductive paste for forming an electrode of a solar cell element of the present invention contains an organic compound containing 0.1 to 5% by weight of an alkaline earth metal and 0.1 to 5% by weight of a low melting point metal. preferable.
- the conductive paste for forming an electrode of the solar cell element of the present invention contains 0.01 to 10% by weight of a low melting point metal compound.
- the conductive paste for forming an electrode of the solar cell element of the present invention contains an organic compound containing 0.1 to 5% by weight of an alkaline earth metal and 0.01 to 10% by weight of a low melting point metal compound. It is preferable.
- the solar cell element of the present invention is a solar cell in which a diffusion layer is formed on the light receiving surface side of a semiconductor substrate, an antireflection layer and a surface electrode are provided on the diffusion layer, and a back electrode is provided on the side opposite to the light receiving surface of the semiconductor substrate.
- the surface electrode is formed by printing the conductive paste on the antireflection layer and baking it.
- a diffusion layer is formed on the light receiving surface side of a semiconductor substrate, an antireflection layer is formed on the diffusion layer, and the conductive paste is printed on the antireflection layer,
- a back surface electrode conductive paste is printed on the side opposite to the light receiving surface of the semiconductor substrate, and the back surface electrode is formed by conducting the conductive paste printed on the antireflective layer to be electrically connected to the diffusion layer.
- the back electrode is formed by firing the conductive paste for use.
- the electroconductive paste for electrode formation of the solar cell element which does not cause the increase in contact resistance, the solar cell element which has an electrode formed using the conductive paste, and the manufacturing method of the solar cell element Can be provided.
- FIG. 2 (a) is a plan view on the light receiving surface side of one embodiment of the solar cell element of the present invention
- FIG. 2 (b) is a plan view on the side opposite to the light receiving surface of one embodiment of the solar cell element of the present invention.
- Conductive particles examples include silver powder, silver oxide powder, silver carbonate powder, silver acetate powder, silver coat powder, silver-containing alloy powder, nickel powder, and copper powder. These can be used individually or in mixture of 2 or more types.
- the conductive particles preferably contain 70 to 100% by mass of silver.
- the conductive paste printed on the antireflective layer is baked to make it conductive with the diffusion layer, it is baked at about 750 to 950 ° C.
- the conductive property is obtained by surface oxidation without using a reducing atmosphere. This is because there is no decline.
- the blending amount of the conductive particles is preferably 65 to 95% by weight with respect to the entire conductive paste. If it is less than 65% by weight, the amount of the conductive particles is too small, and the specific resistance of the light-receiving surface electrode obtained by firing is disadvantageously increased. If it exceeds 95% by weight, the printability is deteriorated and physical adhesion is caused. This is because there is a disadvantage that the strength is insufficient.
- the shape of the conductive particles may be a scale shape, a spherical shape, a flake shape, an indefinite shape, or a mixture thereof.
- the average particle size of the conductive particles affects the sintering characteristics (the conductive particles having a large particle size are sintered at a slower rate than the conductive particles having a small particle size), 0.1 to 15 ⁇ m is preferred. If it is less than 0.1 ⁇ m, the sintering speed is too high, and there is a disadvantage that the physical adhesive strength is insufficient. If it exceeds 15 ⁇ m, the sintering speed is somewhat slow, but the dispersibility and printability in the paste are deteriorated, and it is difficult to print thin lines.
- the average particle size means a particle size of 50% cumulative from the small diameter side when the particle size is measured by the microtrack type particle size distribution measuring method.
- the specific surface area of the conductive particles is preferably 0.05 to 5 m 2 / g. If it is less than 0.05 m 2 / g, the particle size is large and thin lines cannot be drawn. When it exceeds 5 m 2 / g, there is a disadvantage that workability is deteriorated, for example, a large amount of solvent is required for viscosity adjustment.
- (2) Glass frit The glass frit that can be used in the present invention is such that when the conductive paste is baked at 750 to 950 ° C., the antireflection layer is eroded and appropriately adhered to the semiconductor substrate. Those having a softening point of 300 to 550 ° C are preferred.
- the softening point When the softening point is lower than 300 ° C., there is a disadvantage that the firing is advanced and the effect of the present invention cannot be sufficiently obtained. On the other hand, if the softening point is higher than 550 ° C., sufficient melt flow does not occur at the time of firing, so that there is a disadvantage that sufficient adhesive strength cannot be obtained.
- glass frit Bi glass, Bi 2 O 3 —B 2 O 3 —ZnO glass, Bi 2 O 3 —B 2 O 3 glass, Bi 2 O 3 —B 2 O 3 —SiO 2 glass are used. Glass, Ba glass, BaO—B 2 O 3 —ZnO glass, or the like can be used.
- the shape of the glass frit is not limited and may be spherical or indefinite.
- the blending amount of the glass frit is preferably 0.1 to 10% by weight with respect to the entire conductive paste. If it is less than 0.1% by weight, the adhesive strength may be insufficient. If it exceeds 10% by weight, glass floating and soldering failure in the subsequent process may occur.
- the glass frit include, for example, Bi glass frit of 1 to 10% by weight of B 2 O 3 , 1 to 10% by weight of BaO, 70 to 80% by weight of Bi 2 O 3 , Sb 2 Examples thereof include a composition in which O 3 is 1% by weight or less, and other components (excluding the aforementioned substances and ZnO and CaO) are 10% by weight or less, and the softening point is about 430 ° C.
- the Ba glass frit has a composition in which B 2 O 3 is 20% by weight or more, ZnO is 20% by weight or less, BaO is 40% by weight or more, and CaO is 10% by weight or more, and the softening point is about 530 ° C.
- Organic compound containing alkaline earth metal, low melting point metal and low melting point metal compound Organic compound containing alkaline earth metal and low melting point metal act as a sintering inhibitor.
- the low melting point metal refers to a metal having a melting point of 500 ° C. or lower, for example, zinc (melting point 419.6 ° C.), lead (melting point 327.5 ° C.), tin (melting point 231.97 ° C.), bismuth (melting point 271.degree. 3 ° C.), tellurium (melting point: 449.5 ° C.), and selenium (melting point: 217 ° C.).
- tellurium which is a semiconductor having a specific resistance of 0.436 ⁇ cm
- a substance having a melting point equal to or lower than the firing temperature of the conductive paste for example, tellurium dioxide (melting point: 732.6 ° C.) can be used instead of the low melting point metal.
- a chemical reaction (physical change) at a temperature lower than the firing temperature of the conductive paste substrate having a melting point lower than the firing temperature of the conductive paste (low melting point metal compound such as tellurium dioxide)
- conductive paste can be used instead of the low melting point metal.
- an alkaline earth metal soap is preferable.
- the alkaline earth metal soap include Ca stearate, Mg stearate, Sr stearate, Mg gluconate and the like.
- This alkaline earth metal soap has a high surface activity and uniformly disperses the conductive particles like a kind of protective colloid and suppresses excessive sintering of the conductive particles when fired in the atmosphere. As a result, it can be expected that the heat shrinkage behavior is not significantly different from the metalloid element Si which is the main component of the semiconductor substrate.
- the conductive paste contains a low melting point metal or a low melting point metal-based compound, when the conductive paste is fired in the atmosphere, the low melting point metal or the low melting point metal-based compound is easily oxidized.
- the oxide film naturally forms during the firing process of the conductive paste, excessive sintering of the conductive particles is suppressed, and the heat shrinkage behavior is not significantly different from the semi-metal element Si, which is the main component of the semiconductor substrate. Can be expected. In this way, after the conductive paste of the present invention is printed / dried on the surface of the semiconductor substrate, the occurrence of microcracks and an increase in contact resistance during firing are not caused.
- the conductive paste is made of an organic compound containing an appropriate amount of alkaline earth metal, an appropriate amount of low melting point metal, an organic compound containing an appropriate amount of alkaline earth metal, and a low melting point metal. It is preferable to contain an appropriate amount of a low melting point metal compound, or an organic compound containing an appropriate amount of an alkaline earth metal and a low melting point metal compound.
- the conductive paste preferably contains an organic compound containing 0.1 to 5% by weight of an alkaline earth metal.
- the conductive paste preferably contains 0.1 to 5% by weight of a low melting point metal.
- the conductive paste preferably contains an organic compound containing 0.1 to 5% by weight of an alkaline earth metal and 0.1 to 5% by weight of a low melting point metal.
- the conductive paste contains 0.01 to 10% by weight, more preferably 0.1 to 8% by weight, and still more preferably 0.1 to 4% by weight of a low melting metal compound.
- the conductive paste comprises an organic compound containing 0.1 to 5% by weight of an alkaline earth metal and 0.01 to 10% by weight, more preferably 0.1 to 8% by weight, still more preferably 0.8. 1 to 4% by weight of a low melting point metal compound is contained. This is because if it is less than the lower limit of the numerical range, the effect of suppressing the sintering of the conductive particles cannot be obtained, and if it exceeds the upper limit of the numerical range, the resistance increases and the FF value decreases.
- Se compounds such as ferroselen, selenide alloy, selenium dioxide, selenite, selenate, selenium disulfide, selenium organometallic compound can be contained in the conductive paste.
- any one of the Se compound and the Te compound selected from the above, or both the Se compound and the Te compound can be contained in the conductive paste.
- ZnTe is a direct transition type compound semiconductor having a minimum energy gap (energy difference between a valence band and a vacant band) of 2.26 eV, and the impurity level when silver is added is from the top of the valence band. It is relatively close to 0.11 eV. If electrons in the valence band are not given enough energy to move over the forbidden band between the valence band and the vacant band and move to the vacant band, the electrons remain in the valence band and no electrical conduction occurs. However, electrical conduction occurs when electrons jump from the valence band or impurity level due to heat or light absorption.
- Organic binder is not limited, but cellulose derivatives such as methyl cellulose and ethyl cellulose, acrylic resins, alkyd resins, polypropylene resins, polyvinyl chloride resins, polyurethane resins, rosin resins, Terpene resin, phenol resin, aliphatic petroleum resin, acrylate resin, xylene resin, coumarone indene resin, styrene resin, dicyclopentadiene resin, polybutene resin, polyether resin, urea Resin, melamine resin, vinyl acetate resin, polyisobutyl resin and the like can be used.
- cellulose derivatives such as methyl cellulose and ethyl cellulose, acrylic resins, alkyd resins, polypropylene resins, polyvinyl chloride resins, polyurethane resins, rosin resins, Terpene resin, phenol resin, aliphatic petroleum resin, acrylate resin, xylene resin, coumarone indene
- the blending amount of the organic binder is preferably 0.1 to 30% by weight with respect to the entire conductive paste. If it is less than 0.1% by weight, sufficient adhesive strength cannot be ensured. On the other hand, if it exceeds 30% by weight, the printability deteriorates due to the increase in viscosity of the paste.
- Solvent solvents include, but are not limited to, hexane, toluene, ethyl cellosolve, cyclohexanone, butyl cellosolve, butyl cellosolve acetate, butyl carbitol, butyl carbitol acetate, diethylene glycol diethyl ether, diacetone alcohol, terpineol, methyl ethyl ketone , Benzyl alcohol and the like.
- the amount of the solvent is preferably 1 to 40% by weight based on the entire conductive paste. It is because the printability of a paste falls that it is out of those ranges.
- Dispersant A dispersant such as stearic acid, palmitic acid, myristic acid, oleic acid or lauric acid can be blended in the conductive paste.
- a dispersing agent is a general thing, it will not be limited to an organic acid.
- the blending amount of these dispersants is preferably 0.05 to 10% by weight with respect to the entire conductive paste.
- FIG. 1 is a schematic view showing a cross-sectional structure of an embodiment of the solar cell element of the present invention.
- 2A and 2B are diagrams showing an example of the electrode shape of the present invention.
- FIG. 2A is a plan view of the light receiving surface side (front surface) of the solar cell element, and
- FIG. 2B is an anti-light receiving surface of the solar cell element. It is a top view of the side (back surface).
- the silicon substrate 1 is made of single crystal or polycrystalline silicon.
- the silicon substrate 1 contains one conductivity type semiconductor impurity such as boron, and the specific resistance is, for example, about 1.0 to 2.0 ⁇ cm.
- a single crystal silicon substrate it is formed by a pulling method or the like, and in the case of a polycrystalline silicon substrate, it is formed by a casting method or the like.
- a silicon ingot formed by a pulling method or casting is sliced to a thickness of 200 ⁇ m or less, preferably 150 ⁇ m or less to obtain a silicon substrate 1.
- a p-type silicon substrate is used for explanation, but an n-type silicon substrate may be used.
- the surface thereof is etched by a small amount with NaOH, KOH, hydrofluoric acid, or hydrofluoric acid.
- an uneven surface (rough surface) having a light reflectivity reducing function on the silicon substrate surface (light receiving surface) side that is a light incident surface by using dry etching, wet etching, or the like.
- the n-type diffusion layer 2 is formed.
- the n-type doping element phosphorus is preferably used, and an n + type having a sheet resistance of about 40 to 100 ⁇ / ⁇ is used. Thereby, a pn junction is formed between the p-type silicon substrate 1 and the p-type silicon substrate 1.
- the n-type diffusion layer 2 is formed on the light-receiving surface of the silicon substrate, and a coating thermal diffusion method in which P 2 O 5 in a paste state is applied and thermally diffused, and POCl 3 in a gas state is used as a diffusion source. It is formed by a gas phase thermal diffusion method, an ion implantation method for directly diffusing P + ions, or the like.
- the n-type diffusion layer 2 is formed to a depth of about 0.3 to 0.5 ⁇ m.
- a diffusion region is also formed at a site where diffusion is not planned, it may be removed later by etching.
- the BSF region on the back surface anti-light-receiving surface
- aluminum which is a p-type dopant, can be diffused to a sufficient depth at a sufficient concentration. Since the influence of the layer can be ignored, it is not particularly necessary to remove the n-type diffusion layer formed on the back surface side.
- the method for forming the n-type diffusion layer 2 is not limited to the above.
- a hydrogenated amorphous silicon film, a crystalline silicon film including a microcrystalline silicon film, or the like may be formed using thin film technology.
- an i-type silicon region (not shown) may be formed between the p-type silicon substrate 1 and the n-type diffusion layer 2.
- the antireflection layer 3 is formed.
- the material of the antireflection layer 3 include a SiNx film (the composition x has a width centering on Si 3 N 4 ), a TiO 2 film, a SiO 2 film, a MgO film, an ITO film, a SnO 2 film, a ZnO film, and the like. Can be used.
- the thickness can be appropriately selected for the semiconductor material so that non-reflection conditions can be reproduced with respect to appropriate incident light.
- the silicon substrate 1 may have a refractive index of about 1.8 to 2.3 and a thickness of about 500 to 1000 mm.
- a CVD method As a manufacturing method of the antireflection layer 3, a CVD method, a vapor deposition method, a sputtering method, or the like can be used.
- the BSF layer refers to a region where one conductivity type semiconductor impurity is diffused at a high concentration on the back side of the silicon substrate 1, and plays a role of preventing a decrease in conversion efficiency due to carrier recombination.
- the impurity element boron or aluminum can be used, and an ohmic connection can be obtained between the back electrode 6 to be described later by increasing the impurity element concentration to be p + type.
- the BSF layer 4 As a manufacturing method of the BSF layer 4, it can be formed at about 800 to 10000 ° C. using a thermal diffusion method using BBr 3 as a diffusion source. When the thermal diffusion method is used, it is preferable to previously form a diffusion barrier such as an oxide film in the already formed n-type diffusion layer 2.
- a method of spreading aluminum toward the silicon substrate 1 by applying an aluminum paste containing an aluminum powder and an organic vehicle and firing at about 600 to 850 ° C. can be used. According to this method, it is possible to form a desired diffusion region on the coated surface, and it is not necessary to remove an unnecessary diffusion layer on the back surface side.
- the baked aluminum can be used as a collecting electrode for the back electrode as it is.
- the front surface electrode 5 including the bus bar electrode 5a and the finger electrode 5b illustrated in FIG. 2A and the back surface electrode 6 including the bus bar electrode 6a and the current collecting electrode 6b illustrated in FIG. Formed on the front side and the back side.
- the surface electrode 5 is formed by applying a conductive paste for forming a solar cell element of the present invention on the silicon substrate 1 using a known coating method, and having a peak temperature of about 750 to 950 ° C. for several tens of seconds to several tens of minutes. It can be formed by baking.
- the back electrode 6 includes a bus bar electrode 6a formed by applying and baking a silver-aluminum paste containing silver powder, aluminum powder, an organic binder, a solvent, and glass frit, and aluminum powder.
- the collector electrode 6b formed by applying and baking an aluminum paste containing an organic binder, a solvent, and glass frit on substantially the entire surface of the silicon substrate 1 may be configured to partially overlap.
- each paste for electrode formation, and to bake simultaneously, since a manufacturing process can be reduced.
- the order of applying each paste is not particularly limited.
- the electrode formation pattern using the conductive paste is a pattern generally used, for example, in the case of a surface electrode, as shown in FIG. A comb pattern can be employed.
- (9) Method for Manufacturing Solar Cell Module An example of a method for manufacturing a solar cell module using the solar cell element manufactured as described above will be described.
- the front and back electrodes of the adjacent solar cell elements 12 are connected by the wiring 11, and the front side filler 13 made of a transparent thermoplastic resin or the like and the transparent thermoplastic resin or the like are used.
- the solar cell element 12 is sandwiched between the backside filler 14 and a transparent member 15 made of glass is disposed on the upper side of the front side filler 13, and a sheet of polyethylene terephthalate or the like having excellent mechanical properties on the lower side of the backside filler 14
- the terminal box 17 that is an output extraction portion by the output extraction wiring 18. It is preferable. Furthermore, since the solar cell module is usually left outdoors for a long period of time, it is preferable to protect the periphery with a frame made of aluminum or the like.
- An n-type diffusion layer is formed on the surface of a p-type silicon substrate made of polycrystalline silicon having a semiconductor wafer preparation thickness of 200 ⁇ m, an outer shape of 20 mm ⁇ 20 mm, and a specific resistance of 1.5 ⁇ cm; A semiconductor wafer having an SiNx antireflection layer formed on an n-type diffusion layer was prepared.
- a paste is prepared by mixing 28 parts by weight of diol monoisobutyrate (solvent) and 1 part by weight of Bi 2 O 3 —B 2 O 3 —ZnO-based glass frit having a softening point of about 405 ° C. with a three-roll mill.
- a conductive paste for forming the BSF layer and the back collector electrode was obtained.
- Conductive paste for forming surface bus bar electrode and surface finger electrode ⁇ Composition of Examples 1 to 17 (conductive paste containing Bi-based glass frit) >> Examples 1 to 7 include 86 parts by weight of conductive particles (Ag powder having an average particle size of 0.4 ⁇ m) and Bi glass frit (B 2 O 3 of 1 to 10% by weight) having a softening point of about 430 ° C. BaO is 1 to 10% by weight, Bi 2 O 3 is 70 to 80% by weight, Sb 2 O 3 is 1% by weight or less, and other components (excluding the aforementioned substances and ZnO and CaO) are 10% by weight or less.
- Example 14 only Te was mix
- Example 16 only Se was blended with the first main paste composition as shown in Table 1 below.
- Example 17 only ZnTe was blended as shown in Table 1 below with respect to the first main paste composition.
- compositions of Examples 1 to 17 were mixed with a three-roll mill to form a paste, and the organic solvent was appropriately added so that the viscosity of the paste at the time of screen printing described later was about 300 Pa ⁇ s. Prepared. Thus, a conductive paste for forming the surface bus bar electrode and the surface finger electrode was obtained.
- ⁇ Composition of Examples 18 to 32 conductive paste containing Ba glass frit
- 86 parts by weight of conductive particles Ag powder having an average particle diameter of 0.4 ⁇ m
- a Ba-based glass frit having a softening point of about 530 ° C.
- B 2 O 3 of 20% by weight or more, ZnO Of 20 wt% or less, BaO 40 wt% or more, and CaO 10 wt% or more
- ethyl cellulose 1 part by weight (organic binder), 2,2,4-trimethyl-1 As shown in Table 2 below, Mg stearate and TeO 2 were blended with 11 parts by weight (solvent) of 3-pentanediol monoisobutyrate and 0.5 parts by weight of stearic acid (dispersant).
- composition comprising the conductive particles, Ba-based glass frit, ethyl cellulose, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, and stearic acid is described below.
- the two main paste composition The two main paste composition.
- Example 32 only Te was mix
- composition of Examples 18 to 32 was made into a paste by mixing with a three-roll mill, and the organic solvent was appropriately added so that the viscosity of the paste at the time of screen printing described later was about 300 Pa ⁇ s. Prepared. Thus, a conductive paste for forming the surface bus bar electrode and the surface finger electrode was obtained.
- ⁇ Compositions of Comparative Examples 1 to 6 conductive paste containing Bi glass frit
- Comparative Examples 1 to 5 as shown in Table 3 below, other compounds were added to the first main paste composition in place of alkaline earth metal soap in addition to 1 part by weight of Te.
- compositions of Comparative Examples 1 to 6 were mixed with a three-roll mill to form a paste, and the organic solvent was added as appropriate so that the viscosity of the paste during screen printing to be described later was about 300 Pa ⁇ s. Prepared. In this way, a conductive paste for forming a surface bus bar electrode and a surface finger electrode as a comparative example was obtained.
- Composition of Comparative Example 7 conductive paste containing Ba glass frit
- Comparative Example 7 nothing was added to the second main paste composition as shown in Table 4 below.
- Comparative Example 7 was mixed with a three-roll mill to make a paste, and further prepared by adding the above-mentioned organic solvent as appropriate so that the viscosity of the paste during screen printing to be described later was about 300 Pa ⁇ s. did. In this way, a conductive paste for forming a surface bus bar electrode and a surface finger electrode as a comparative example was obtained.
- Reference Examples 1 to 9 Composition of Reference Examples 1 to 9
- Reference Examples 1 to 3 with respect to the first main paste composition, as shown in Table 5 below, a large amount of Mg stearate was blended, and as Reference Example 4, the first main paste composition, As shown in Table 5 below, a large amount of Te is blended, and as Reference Example 5, a large amount of Se is blended as shown in Table 5 below with respect to the first main paste composition as Reference Example 6.
- TeO 2 As shown in Table 5 below, a large amount of TeO 2 is blended with respect to the first main paste composition, and as Reference Example 7, with respect to the first main paste composition, as shown in Table 5 below, ZnTe was blended in a large amount, and as Reference Examples 8 and 9, TeO 2 was blended in a large amount as shown in Table 5 below with respect to the second main paste composition. Then, the compositions of Reference Examples 1 to 9 were mixed with a three-roll mill to form a paste, and the organic solvent was appropriately added so that the viscosity of the paste during screen printing described later was about 300 Pa ⁇ s. Prepared. Thus, a conductive paste for forming a surface bus bar electrode and a surface finger electrode as a reference example was obtained.
- the conductive paste prepared as described in (2) a above is applied to substantially the entire back surface of the semiconductor wafer prepared as described in (1) by screen printing.
- the conductive paste prepared as shown in (2) b so as to have a shape as shown in 6a of FIG. 2 (b) is applied by screen printing and dried at 150 ° C. for 5 minutes. It cooled to room temperature by natural cooling.
- the conductive paste prepared as in (2) c so as to have the shape shown in 5a and 5b of FIG. 2 (a) is screened. After applying by printing and drying at 150 ° C. for 5 minutes, it was cooled to room temperature by natural cooling. (4) Firing The semiconductor wafer coated with the conductive paste as described above is inserted into a high-speed firing furnace having a 4-zone heating zone with a model PV309 manufactured by BTU, and the surface of the semiconductor wafer is coated with a Datapaq temperature logger. While confirming the maximum temperature, the maximum surface temperature was set as the baking temperature, and baking was performed at a baking temperature of 800 ° C. for 1 minute.
- the FF value of the solar cell element test piece produced as described above was obtained. Specifically, the FF value is obtained from the voltage-current curve using a tester with a trade name of KST-15Ce-1s manufactured by Kyojin Electric Co., Ltd. and a solar simulator with a trade name of XES-502S manufactured by Kansai Scientific Instruments. It was. Table 1, Table 2, Table 3, Table 4, and Table 5 show FF values of Examples, Comparative Examples, and Reference Examples. It shows that conversion efficiency is so high that the numerical value of FF value is large.
- the amount of Mg stearate added to 1 part by weight of Te is preferably about 1 to 5 parts by weight in order to achieve a sintering suppressing effect and increase the FF value. Furthermore, from Table 1, in order to maximize the FF value in such an addition amount range of Mg stearate, the addition amount of Mg stearate with respect to 1 part by weight of Te is 2 parts by weight and its vicinity (1.5%). To about 2.5 parts by weight).
- Example 20 Compared to Example 12, Example 20, Example 13, Example 21, Example 15, and Example 28, the FF value tends to be larger when Ba glass frit is used than Bi glass frit. I understand that.
- the evaluation results relating to the FF values of the examples, comparative examples, and reference examples are summarized as follows.
- (1) The FF value is increased by adding an appropriate amount of Mg stearate, a low melting point metal or a low melting point metal compound to the conductive paste.
- (2) The FF value of a conductive paste containing an appropriate amount of alkaline earth metal soap in addition to the appropriate amount of Te is based on the FF value of a conductive paste containing only alkaline earth metal soap without containing Te. growing.
- Mg stearate is preferable.
- the FF of the conductive paste in the blend can be the largest.
- the FF value is increased by containing TeO 2 in the conductive paste. In that case, the FF value is further increased by using Ba glass frit as the glass frit.
- the FF value of the conductive paste containing Mg stearate and TeO 2 is larger than the FF value of the conductive paste containing Mg stearate and Te.
- the FF value may be maximized.
- TeO 2 is contained in an amount of about 1 to 4 parts by weight with respect to 1 part by weight of Mg stearate.
- the present invention is suitable as a conductive paste for forming an electrode of a solar cell element and a solar cell element.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
この太陽電池素子は、例えば、以下のように製造される。シリコンからなる半導体基板21の受光面側(表面側)に、不純物の拡散層22と、窒化シリコン、酸化シリコンまたは酸化チタンなどからなる絶縁性の反射防止層23とが順次形成される。ここで、半導体基板21は、例えば、ホウ素などの半導体不純物を1×1016~1018原子/cm3程度含有することにより、比抵抗1.5Ωcm程度の一導電型(例えば、p型)を呈するようにしたものである。単結晶シリコンの場合は引き上げ法などによって形成され、多結晶シリコンの場合は鋳造法などによって形成される。多結晶シリコンは、大量生産が可能で製造コスト面で単結晶シリコンよりも有利である。半導体基板21は、例えば、引き上げ法や鋳造法によって形成されたインゴットを100ないし300μm程度の厚みにスライスすることにより得られる。
拡散層22は、半導体基板21の受光面に、リンなどの不純物を拡散させることにより形成される、半導体基板21の逆の導電型(例えば、n型)を呈する領域である。この拡散層22は、例えば、半導体基板21を炉中に配置して、オキシ塩化リン(POCl3)などの中で加熱することによって形成される。
反射防止層23は、反射防止機能と併せて太陽電池素子の保護のために拡散層22の受光面側に形成されるものである。反射防止層23が窒化シリコン膜の場合、例えば、シラン(SiH4)とアンモニア(NH3)の混合ガスをグロー放電分解でプラズマ化して堆積させるプラズマCVD法などで形成される。例えば、反射防止層23は半導体基板21との屈折率差などを考慮して、屈折率が1.8~2.3程度になるようにされ、0.05μmないし1.0μm程度の厚みに形成される。
低融点金属系化合物はTeO2であることが好ましい。
導電性粒子としては、銀粉末、酸化銀粉末、炭酸銀粉末、酢酸銀粉末、銀コート粉末、銀含有合金粉末、ニッケル粉末、銅粉末などを挙げることができる。これらを単独または2種以上混合して使用することができる。
導電性粒子の比表面積は、0.05ないし5m2/gであるのが好ましい。0.05m2/g未満であると、粒径が大きく、細いラインを描くことができない。5m2/gを超えると粘度調整に多量の溶剤が必要になるなど、作業性が悪くなるという不都合がある。
(2)ガラスフリット
本発明で使用可能なガラスフリットは、導電性ペーストが750ないし950℃で焼成されたときに、反射防止層を浸食し、適切に半導体基板への接着が行われるように、300ないし550℃の軟化点を有するものが好ましい。軟化点が300℃より低いと、焼成が進んで本発明の効果を十分に得ることができないという不都合がある。一方、軟化点が550℃より高いと、焼成時に十分な溶融流動が起こらないため、十分な接着強度が得られないという不都合がある。例えば、ガラスフリットとしては、Bi系ガラス、Bi2O3-B2O3-ZnO系ガラス、Bi2O3-B2O3系ガラス、Bi2O3-B2O3-SiO2系ガラス、Ba系ガラス、BaO-B2O3-ZnO系ガラスなどを用いることができる。
ガラスフリットに関するより詳しい性状としては、例えば、Bi系ガラスフリットとしては、B2O3が1ないし10重量%、BaOが1ないし10重量%、Bi2O3が70ないし80重量%、Sb2O3が1重量%以下、その他(前記物質およびZnO、CaOを除くもの)が10重量%以下である組成を有し、軟化点が約430℃のものを挙げることができる。Ba系ガラスフリットとしては、B2O3が20重量%以上、ZnOが20重量%以下、BaOが40重量%以上、CaOが10重量%以上である組成を有し、軟化点が約530℃のものを挙げることができる。
(3)アルカリ土類金属を含む有機化合物と低融点金属と低融点金属系化合物
アルカリ土類金属を含む有機化合物と低融点金属は、焼結抑制剤として作用する。低融点金属とは、融点が500℃以下の金属をいい、例えば、亜鉛(融点419.6℃)、鉛(融点327.5℃)、スズ(融点231.97℃)、ビスマス(融点271.3℃)、テルル(融点449.5℃)、セレン(融点217℃)を挙げることができる。この中で比抵抗が0.436Ωcmの半導体であるテルルを好ましく用いることができる。さらに、低融点金属に代えて導電性ペーストの焼成温度以下の融点を有する物質、例えば、二酸化テルル(融点732.6℃)を用いることもできる。要するに、低融点金属に代えて、導電性ペーストの焼成温度以下の融点を有する物質(二酸化テルルのような低融点金属系化合物)または導電性ペーストの焼成温度以下の温度において化学反応(物理変化)を起こす物質を用いることができる。
(4)有機バインダ
有機バインダとしては、限定されるものではないが、メチルセルロース、エチルセルロース等のセルロース誘導体、アクリル樹脂、アルキド樹脂、ポリプロピレン系樹脂、ポリ塩化ビニル系樹脂、ポリウレタン系樹脂、ロジン系樹脂、テルペン系樹脂、フェノール系樹脂、脂肪族系石油樹脂、アクリル酸エステル系樹脂、キシレン系樹脂、クマロンインデン系樹脂、スチレン系樹脂、ジシクロペンタジエン系樹脂、ポリブテン系樹脂、ポリエーテル系樹脂、ユリア系樹脂、メラミン系樹脂、酢酸ビニル系樹脂、ポリイソブチル系樹脂等を用いることができる。
(5)溶剤
溶剤としては、限定されるものではないが、ヘキサン、トルエン、エチルセロソルブ、シクロヘキサノン、ブチルセロソルブ、ブチルセロソルブアセテート、ブチルカルビトール、ブチルカルビトールアセテート、ジエチレングリコールジエチルエーテル、ジアセトンアルコール、ターピネオール、メチルエチルケトン、ベンジルアルコール等を挙げることができる。
(6)分散剤
ステアリン酸、パルミチン酸、ミリスチン酸、オレイン酸、ラウリン酸などの分散剤を導電性ペーストに配合することができる。なお、分散剤は一般的なものであれば、有機酸に限定されるものではない。これら分散剤の配合量は導電性ペースト全体に対して0.05ないし10重量%であるのが好ましい。0.05重量%未満であるとペーストの分散性が悪くなるという不都合があり、10重量%を超えると焼成によって得られる受光面電極の固有抵抗が上昇するという不都合がある。
(7)その他の添加剤
本発明においては、安定剤、酸化防止剤、紫外線吸収剤、シランカップリング剤、消泡剤、粘度調整剤などの各種添加剤を本発明の効果を妨げない範囲において配合することができる。
(8)太陽電池素子の製造方法
本発明の太陽電池素子の製造方法について詳しく説明する。
次に、n型拡散層2を形成する。n型化ドーピング元素としては、リンを用いるのが好ましく、シート抵抗が40ないし100Ω/□程度のn+型とする。これにより、p型シリコン基板1との間にpn接合部が形成される。
n型拡散層2はシリコン基板の受光面に形成されるものであり、ペースト状態にしたP2O5を塗布して熱拡散させる塗布熱拡散法、ガス状態にしたPOCl3を拡散源とした気相熱拡散法、およびP+イオンを直接拡散させるイオン打ち込み法などによって形成される。このn型拡散層2は、0.3ないし0.5μm程度の深さに形成される。
次に、反射防止層3を形成する。反射防止層3の材料としては、SiNx膜(Si3N4を中心にして組成xには幅がある)、TiO2膜、SiO2膜、MgO膜、ITO膜、SnO2膜、ZnO膜などを用いることができる。その厚さは、適当な入射光に対して無反射条件を再現できるよう、半導体材料に対して適宜選択することができる。例えば、シリコン基板1に対しては、屈折率は1.8ないし2.3程度、厚みは500ないし1000Å程度にすればよい。
次に、BSF(Back Surface Field)層4を形成することが好ましい。ここで、BSF層とは、シリコン基板1の裏面側に一導電型半導体不純物が高濃度に拡散されてなる領域をいい、キャリヤの再結合による変換効率の低下を防ぐ役割を果たすものである。不純物元素としては、ボロンやアルミニウムを用いることができ、不純物元素濃度を高濃度にしてp+型とすることによって後記する裏面電極6との間にオーミック接続を得ることができる。
BSF層4の製法としては、BBr3を拡散源とした熱拡散法を用いて800ないし10000℃程度で形成することができる。熱拡散法を用いる場合は、すでに形成してあるn型拡散層2には酸化膜などの拡散バリアをあらかじめ形成しておくことが好ましい。他の製法として、アルミニウムを用いる場合、アルミニウム粉末および有機ビヒクルを含むアルミニウムペーストを塗布した後、600ないし850℃程度で焼成してアルミニウムをシリコン基板1に向けて拡散する方法を用いることができ、この方法によると塗布面への所望の拡散領域を形成できるとともに、裏面側の不要な拡散層の除去を必要としない。しかも、焼成されたアルミニウムはそのまま裏面電極の集電電極として利用することもできる。
(9)太陽電池モジュールの製造方法
上記のようにして製造した太陽電池素子を用いて太陽電池モジュールを製造する方法の一例について説明する。
以下に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではなく、本発明の技術的範囲を逸脱しない範囲において適宜変更や修正が可能である。
(1)半導体ウエハの準備
厚さが200μmで、外形が20mm×20mmの大きさで、比抵抗が1.5Ωcmの多結晶シリコンのp型シリコン基板の表面にn型拡散層が形成され、さらに、n型拡散層の上にSiNxの反射防止層が形成された半導体ウエハを準備した。
(2)導電性ペーストの調製
a.BSF層と裏面集電電極形成用の導電性ペースト
平均粒径が約3μmのアルミニウム粉末70重量部と、エチルセルロース(有機バインダ)1重量部と、2,2,4-トリメチル-1,3-ペンタンジオール モノイソブチレート(溶剤)28重量部と、軟化点が約405℃のBi2O3-B2O3-ZnO系ガラスフリット1重量部とを3本ロールミルで混合することによりペースト状にして、BSF層と裏面集電電極形成用の導電性ペーストを得た。
b.裏面バスバー電極形成用の導電性ペースト
平均粒径が約1μmの銀粉末80重量部と、平均粒径が約3μmのアルミニウム粉末2.4重量部と、エチルセルロース(有機バインダ)1重量部と、2,2,4-トリメチル-1,3-ペンタンジオール モノイソブチレート(溶剤)15重量部と、軟化点が約405℃のBi2O3-B2O3-ZnO系ガラスフリット1.5重量部と、ステアリン酸0.1重量部とを3本ロールミルで混合することによりペースト状にして、裏面バスバー電極形成用の導電性ペーストを得た。
c.表面バスバー電極と表面フィンガー電極形成用の導電性ペースト
《実施例1ないし17(Bi系ガラスフリットを含有する導電性ペースト)の組成》
実施例1ないし7としては、導電性粒子(平均粒径0.4μmのAg粉末)86重量部と、軟化点が約430℃のBi系ガラスフリット(B2O3が1ないし10重量%、BaOが1ないし10重量%、Bi2O3が70ないし80重量%、Sb2O3が1重量%以下、その他(前記物質およびZnO、CaOを除くもの)が10重量%以下である組成のもの)1重量部と、エチルセルロース1重量部(有機バインダ)と、2,2,4-トリメチル-1,3-ペンタンジオール モノイソブチレート11重量部(溶剤)と、ステアリン酸0.5重量部(分散剤)に対して、以下の表1に示すように、アルカリ土類金属せっけんとTeを配合した。なお、上記導電性粒子と、Bi系ガラスフリットと、エチルセルロースと、2,2,4-トリメチル-1,3-ペンタンジオール モノイソブチレートと、ステアリン酸との配合からなるものを、以下、第一主ペースト組成という。
また、実施例12および13としては、第一主ペースト組成に対して、以下の表1に示すように、ステアリン酸MgとTeO2を配合した。
また、実施例15としては、第一主ペースト組成に対して、以下の表1に示すように、TeO2のみを配合した。
そして、実施例1ないし17の組成を3本ロールミルで混合することによりペースト状にし、さらに、後記するスクリーン印刷時のペーストの粘度が約300Pa・sとなるように、上記有機溶剤を適宜添加して調製した。このようにして、表面バスバー電極と表面フィンガー電極形成用の導電性ペーストを得た。
《実施例18ないし32(Ba系ガラスフリットを含有する導電性ペースト)の組成》
実施例18ないし24としては、導電性粒子(平均粒径0.4μmのAg粉末)86重量部と、軟化点が約530℃のBa系ガラスフリット(B2O3が20重量%以上、ZnOが20重量%以下、BaOが40重量%以上、CaOが10重量%以上である組成のもの)1重量部と、エチルセルロース1重量部(有機バインダ)と、2,2,4-トリメチル-1,3-ペンタンジオール モノイソブチレート11重量部(溶剤)と、ステアリン酸0.5重量部(分散剤)に対して、以下の表2に示すように、ステアリン酸MgとTeO2を配合した。なお、上記導電性粒子と、Ba系ガラスフリットと、エチルセルロースと、2,2,4-トリメチル-1,3-ペンタンジオール モノイソブチレートと、ステアリン酸との配合からなるものを、以下、第二主ペースト組成という。
また、実施例25ないし31としては、第二主ペースト組成に対して、以下の表2に示すように、TeO2のみを配合した。
《比較例1ないし6(Bi系ガラスフリットを含有する導電性ペースト)の組成》
また、比較例1ないし5として、第一主ペースト組成に対して、以下の表3に示すように、1重量部のTeに加えてアルカリ土類金属せっけんに代えて他の化合物を配合した。
《比較例7(Ba系ガラスフリットを含有する導電性ペースト)の組成》
また、比較例7として、第二主ペースト組成に対して、以下の表4に示すように、何も配合しなかった。
そして、比較例7の組成を3本ロールミルで混合することによりペースト状にし、さらに、後記するスクリーン印刷時のペーストの粘度が約300Pa・sとなるように、上記有機溶剤を適宜添加して調製した。このようにして、比較例としての表面バスバー電極と表面フィンガー電極形成用の導電性ペーストを得た。
《参考例1ないし9の組成》
また、参考例1ないし3として、第一主ペースト組成に対して、以下の表5に示すように、ステアリン酸Mgを多量に配合し、参考例4として、第一主ペースト組成に対して、以下の表5に示すように、Teを多量に配合し、参考例5として、第一主ペースト組成に対して、以下の表5に示すように、Seを多量に配合し、参考例6として、第一主ペースト組成に対して、以下の表5に示すように、TeO2を多量に配合し、参考例7として、第一主ペースト組成に対して、以下の表5に示すように、ZnTeを多量に配合し、参考例8、9として、第二主ペースト組成に対して、以下の表5に示すように、TeO2を多量に配合した。そして、参考例1ないし9の組成を3本ロールミルで混合することによりペースト状にし、さらに、後記するスクリーン印刷時のペーストの粘度が約300Pa・sとなるように、上記有機溶剤を適宜添加して調製した。このようにして、参考例としての表面バスバー電極と表面フィンガー電極形成用の導電性ペーストを得た。
上記(2)aのように調製した導電性ペーストを、(1)のように準備した半導体ウエハの裏面側の略全面にスクリーン印刷により塗布し、その導電性ペーストの上に、図2(b)の6aに示すような形状となるように(2)bのように調製した導電性ペーストをスクリーン印刷により塗布し、150℃で5分間乾燥を行った後、自然放冷により室温まで冷却した。
以上のように導電性ペーストを塗布した半導体ウエハを、BTU社製のモデルPV309で4ゾーンの加熱ゾーンがある高速焼成炉に挿入して、Datapaq社の温度ロガーで半導体ウエハ表面の最高温度を確認しながら、その表面最高温度を焼成温度として、800℃の焼成温度で1分間焼成した。この焼成過程において、半導体ウエハの裏面側に塗布したアルミニウムが半導体ウエハ側に拡散することにより、図1の4に示すようなBSF層が形成され、同時に図1の6bに示すような集電電極が形成されるのである。
(5)電気特性の評価
以上のようにして作製した太陽電池素子試験片のFF値を求めた。具体的には、共進電機株式会社製の商品名KST-15Ce-1sのテスターと、関西科学機器社製の商品名XES-502Sのソーラーシミュレーターとを用いて、電圧-電流曲線からFF値を求めた。表1、表2、表3、表4、表5には、各実施例、比較例および参考例のFF値を示す。FF値の数値が大きいほど変換効率が高いことを示している。
また、実施例4と実施例12の比較より、ステアリン酸Mgに加えてTeO2を配合したもののFF値は、ステアリン酸マグネシウムに加えてTeを配合したもののFF値より大きくなることが分かる。
さらに、Ba系ガラスフリットを用いた場合において、実施例25ないし31の比較より、TeO2を2ないし4重量部配合することにより、0.75より高いFF値が得られることが分かる。また、Ba系ガラスフリットを用いた場合、実施例18ないし24の比較より、TeO2と1重量部のステアリン酸Mgをともに含有する場合、TeO2が0.5重量部でも0.75より高いFF値が得られ、1重量部のステアリン酸Mgと1ないし4重量部のTeO2を含有すると、FF値は最も大きくなることが分かる。さらに、Ba系ガラスフリットを用いた場合、実施例32より、ステアリン酸Mgを含有しなくても、Teを4重量部含有すると、0.75より高いFF値が得られることが分かる。
なお、Te粉末、Se粉末、TeO2粉末またはZnTe粉末を多量に配合した参考例4ないし9は、ファイヤースルーによる反射防止層の導通効果が大き過ぎて、表面電極とp型シリコンのシャント(短絡)が発生し、FF値の測定ができなかった。
以上の実施例と比較例と参考例のFF値に関する評価結果をまとめると、以下のようになる。
(1)適正量のステアリン酸Mg、低融点金属または低融点金属系化合物を導電性ペーストに配合することによりFF値は増加する。
(2)適正量のTeに加えて適正量のアルカリ土類金属石鹸を含有する導電性ペーストのFF値は、Teを含有せずアルカリ土類金属石鹸のみを含有する導電性ペーストのFF値より大きくなる。このアルカリ土類金属石鹸としてはステアリン酸Mgが好ましい。
(3)ステアリン酸MgとTeを導電性ペースト中に含有する場合、Te1重量部に対して、ステアリン酸Mgを1.5ないし2.5重量部程度含有すると、その配合における導電性ペーストのFF値は最も大きくなる可能性がある。
(4)アルカリ土類金属を含む有機化合物を含有しなくてもTeO2を導電性ペースト中に含有することによりFF値は大きくなる。その場合、ガラスフリットとしてBa系ガラスフリットを用いることにより、FF値はさらに大きくなる。
(5)ステアリン酸MgとTeを含有する導電性ペーストのFF値より、ステアリン酸MgとTeO2を含有する導電性ペーストのFF値の方が大きくなる。その場合、ガラスフリットとしてBa系ガラスフリットを用い、ステアリン酸Mg1重量部に対してTeO2を1ないし4重量部程度含有すると、FF値は最も大きくなる可能性がある。
(6)Teを含有しても、アルカリ土類金属を含む有機化合物以外の物質を含有する導電性ペーストのFF値は低い。
2 n型拡散層
3 反射防止層
4 BSF層
5 表面電極
5a 表面バスバー電極
5b 表面フィンガー電極
6 裏面電極
6a 裏面バスバー電極
6b 裏面集電電極
11 配線
12 太陽電池素子
13 表側充填材
14 裏側充填材
15 透明部材
16 裏面保護材
17 端子ボックス
18 出力取出配線
21 半導体基板
22 拡散層
23 反射防止層
24 裏面電極
25 表面電極
Claims (16)
- 導電性粒子と、有機バインダと、溶剤と、ガラスフリットと、アルカリ土類金属を含む有機化合物とを含有することを特徴とする太陽電池素子の電極形成用導電性ペースト。
- 導電性粒子と、有機バインダと、溶剤と、ガラスフリットと、低融点金属とを含有することを特徴とする太陽電池素子の電極形成用導電性ペースト。
- 導電性粒子と、有機バインダと、溶剤と、ガラスフリットと、アルカリ土類金属を含む有機化合物と、低融点金属とを含有することを特徴とする太陽電池素子の電極形成用導電性ペースト。
- 導電性粒子と、有機バインダと、溶剤と、ガラスフリットと、低融点金属系化合物とを含有することを特徴とする太陽電池素子の電極形成用導電性ペースト。
- 導電性粒子と、有機バインダと、溶剤と、ガラスフリットと、アルカリ土類金属を含む有機化合物と、低融点金属系化合物とを含有することを特徴とする太陽電池素子の電極形成用導電性ペースト。
- アルカリ土類金属を含む有機化合物はアルカリ土類金属せっけんであることを特徴とする請求項1、3または5記載の太陽電池素子の電極形成用導電性ペースト。
- アルカリ土類金属せっけんはステアリン酸マグネシウムであることを特徴とする請求項6記載の太陽電池素子の電極形成用導電性ペースト。
- 低融点金属はTeまたはSeであることを特徴とする請求項2、3または6記載の太陽電池素子の電極形成用導電性ペースト。
- [規則91に基づく訂正 08.10.2009]
低融点金属系化合物はTeO2であることを特徴とする請求項4、5、6または7記載の太陽電池素子の電極形成用導電性ペースト。 - 0.1ないし5重量%のアルカリ土類金属を含む有機化合物を含有することを特徴とする請求項1または6記載の太陽電池素子の電極形成用導電性ペースト。
- 0.1ないし5重量%の低融点金属を含有することを特徴とする請求項2または8記載の太陽電池素子の電極形成用導電性ペースト。
- 0.1ないし5重量%のアルカリ土類金属を含む有機化合物と、0.1ないし5重量%の低融点金属とを含有することを特徴とする請求項3、6または8記載の太陽電池素子の電極形成用導電性ペースト。
- 0.01ないし10重量%の低融点金属系化合物を含有することを特徴とする請求項4または9記載の太陽電池素子の電極形成用導電性ペースト。
- 0.1ないし5重量%のアルカリ土類金属を含む有機化合物と、0.01ないし10重量%の低融点金属系化合物とを含有することを特徴とする請求項5、6または9記載の太陽電池素子の電極形成用導電性ペースト。
- 半導体基板の受光面側に拡散層を形成し、この拡散層上に反射防止層と表面電極を有し、半導体基板の反受光面側に裏面電極を有する太陽電池素子において、表面電極は請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の導電性ペーストを反射防止層上に印刷して焼成することにより形成されたものであることを特徴とする太陽電池素子。
- 半導体基板の受光面側に拡散層を形成し、この拡散層上に反射防止層を形成し、この反射防止層上に請求項1、2、3、4、5、6、7、8、9、10、11、12、13または14記載の導電性ペーストを印刷し、半導体基板の反受光面側に裏面電極用導電性ペーストを印刷し、さらに、反射防止層上に印刷された導電性ペーストを焼成することによって拡散層と導通させて表面電極を形成し、裏面電極用導電性ペーストを焼成することによって裏面電極を形成することを特徴とする太陽電池素子の製造方法。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127005188A KR101225909B1 (ko) | 2008-08-07 | 2009-07-07 | 태양전지소자의 전극형성용 도전성 페이스트, 태양전지소자 및 그 태양전지소자의 제조방법 |
EP13170794.5A EP2637215B1 (en) | 2008-08-07 | 2009-07-07 | Conductive paste for formation of a solar cell element electrode, solar cell element, and manufacturing method for said solar cell element |
CN2009801007645A CN101828267B (zh) | 2008-08-07 | 2009-07-07 | 太阳能电池元件的电极形成用导电性糊料及太阳能电池元件以及该太阳能电池元件的制造方法 |
EP09804673.3A EP2323171B1 (en) | 2008-08-07 | 2009-07-07 | Conductive paste for formation of a solar cell element electrode, solar cell element, and manufacturing method for said solar cell element |
KR1020107011529A KR101135337B1 (ko) | 2008-08-07 | 2009-07-07 | 태양전지소자의 전극형성용 도전성 페이스트, 태양전지소자 및 그 태양전지소자의 제조방법 |
US13/057,744 US8852465B2 (en) | 2008-08-07 | 2009-07-07 | Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device |
JP2010516096A JP4754655B2 (ja) | 2008-08-07 | 2009-07-07 | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 |
US14/471,205 US9461188B2 (en) | 2008-08-07 | 2014-08-28 | Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008204294 | 2008-08-07 | ||
JP2008-204294 | 2008-08-07 | ||
JP2008323940 | 2008-12-19 | ||
JP2008-323940 | 2008-12-19 | ||
JP2009-104088 | 2009-04-22 | ||
JP2009104088 | 2009-04-22 | ||
JP2009-113475 | 2009-05-08 | ||
JP2009113475 | 2009-05-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/057,744 A-371-Of-International US8852465B2 (en) | 2008-08-07 | 2009-07-07 | Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device |
US14/471,205 Continuation US9461188B2 (en) | 2008-08-07 | 2014-08-28 | Electro-conductive paste for forming an electrode of a solar cell device, a solar cell device and method for producing the solar cell device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016186A1 true WO2010016186A1 (ja) | 2010-02-11 |
Family
ID=41663415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003151 WO2010016186A1 (ja) | 2008-08-07 | 2009-07-07 | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8852465B2 (ja) |
EP (3) | EP2637215B1 (ja) |
JP (4) | JP4754655B2 (ja) |
KR (2) | KR101135337B1 (ja) |
CN (1) | CN101828267B (ja) |
TW (1) | TWI485866B (ja) |
WO (1) | WO2010016186A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011096747A (ja) * | 2009-10-28 | 2011-05-12 | Shoei Chem Ind Co | 太陽電池電極形成用導電性ペースト |
JP2011096748A (ja) * | 2009-10-28 | 2011-05-12 | Shoei Chem Ind Co | 太陽電池素子及びその製造方法 |
JP2011171673A (ja) * | 2010-02-22 | 2011-09-01 | Kyoto Elex Kk | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 |
JP2011168873A (ja) * | 2010-02-22 | 2011-09-01 | Dowa Electronics Materials Co Ltd | 銀粉及びその製造方法 |
JP2011181538A (ja) * | 2010-02-26 | 2011-09-15 | Kyoto Elex Kk | 太陽電池素子の電極形成用導電性ペースト |
JP2011204872A (ja) * | 2010-03-25 | 2011-10-13 | Kyoto Elex Kk | 太陽電池素子の受光面電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 |
WO2012147378A1 (ja) * | 2011-04-25 | 2012-11-01 | 横浜ゴム株式会社 | 太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル |
WO2012160921A1 (ja) * | 2011-05-26 | 2012-11-29 | 株式会社 村田製作所 | 導電性ペースト及び太陽電池 |
WO2013105601A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | マスク形成用組成物、太陽電池用基板の製造方法および太陽電池素子の製造方法 |
WO2013105599A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | マスク形成用組成物、太陽電池用基板の製造方法および太陽電池素子の製造方法 |
WO2013105604A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | バリア層形成用組成物、太陽電池用基板の製造方法及び太陽電池素子の製造方法 |
JP2013196954A (ja) * | 2012-03-21 | 2013-09-30 | Kyoto Elex Kk | 加熱硬化型導電性ペースト組成物 |
JP2013207054A (ja) * | 2012-03-28 | 2013-10-07 | Kyoto Elex Kk | 太陽電池素子の電極形成用導電性ペースト |
WO2013161996A3 (ja) * | 2012-04-26 | 2013-12-19 | 国立大学法人大阪大学 | 透明導電性インク及び透明導電パターン形成方法 |
JP2013254726A (ja) * | 2012-01-23 | 2013-12-19 | Heraeus Precious Metals North America Conshohocken Llc | 太陽電池の接点のための導電性厚膜ペースト |
JP2014022194A (ja) * | 2012-07-18 | 2014-02-03 | Noritake Co Ltd | Ag電極形成用ペースト組成物とその製造方法ならびに太陽電池 |
WO2014045900A1 (ja) * | 2012-09-18 | 2014-03-27 | 株式会社村田製作所 | 導電性ペースト及び太陽電池 |
JP2014078594A (ja) * | 2012-10-10 | 2014-05-01 | Noritake Co Ltd | ペースト組成物と太陽電池 |
JP2014515161A (ja) * | 2011-04-06 | 2014-06-26 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 太陽電池の電極の製造方法 |
JP2014207262A (ja) * | 2013-04-10 | 2014-10-30 | 株式会社ノリタケカンパニーリミテド | 太陽電池用導電性ペースト組成物 |
WO2014185537A1 (ja) * | 2013-05-17 | 2014-11-20 | 株式会社カネカ | 太陽電池およびその製造方法、ならびに太陽電池モジュール |
JP2015528178A (ja) * | 2012-06-12 | 2015-09-24 | ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー | 接着促進剤を有する導電性ペースト |
JP2016519838A (ja) * | 2013-04-02 | 2016-07-07 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | 導電性ペースト及び太陽電池調製物におけるAl、Si及びMgを含む粒子 |
US20180062007A1 (en) * | 2010-05-04 | 2018-03-01 | E I Du Pont De Nemours And Company | Thick-film pastes containing lead-tellurium-lithium- oxides, and their use in the manufacture of semiconductor devices |
US10030156B2 (en) | 2013-12-10 | 2018-07-24 | Kyoto Elex Co., Ltd. | Conductive paste for forming conductive film for semiconductor devices, semiconductor device, and method for producing semiconductor device |
US10141459B2 (en) | 2012-12-28 | 2018-11-27 | Heraeus Deutschland GmbH & Co. KG | Binary glass frits used in n-type solar cell production |
JP2018190967A (ja) * | 2017-04-28 | 2018-11-29 | 碩禾電子材料股▲ふん▼有限公司 | 太陽電池用の導電ペースト、太陽電池及びその製造方法、並びに太陽電池モジュール |
WO2021193736A1 (ja) | 2020-03-26 | 2021-09-30 | Dowaエレクトロニクス株式会社 | 銀粉およびその製造方法、並びに導電性ペースト |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9947809B2 (en) | 2009-11-11 | 2018-04-17 | Samsung Electronics Co., Ltd. | Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste |
CN102456427A (zh) * | 2010-10-30 | 2012-05-16 | 比亚迪股份有限公司 | 一种导电浆料及其制备方法 |
US8691612B2 (en) * | 2010-12-10 | 2014-04-08 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method of creating micro-scale silver telluride grains covered with bismuth nanoparticles |
RU2570814C2 (ru) * | 2010-12-24 | 2015-12-10 | Син-Эцу Кемикал Ко., Лтд. | Способ изготовления солнечного элемента и солнечный элемент |
JP5884077B2 (ja) | 2010-12-29 | 2016-03-15 | パナソニックIpマネジメント株式会社 | 太陽電池及び太陽電池モジュール |
US20120222738A1 (en) * | 2011-03-02 | 2012-09-06 | Electronics And Telecommunications Research Institute | Conductive composition, silicon solar cell including the same, and manufacturing method thereof |
KR101814014B1 (ko) | 2011-03-25 | 2018-01-03 | 삼성전자주식회사 | 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지 |
US8512463B2 (en) | 2011-04-05 | 2013-08-20 | E I Du Pont De Nemours And Company | Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices |
CN102185001B (zh) * | 2011-04-18 | 2013-04-17 | 西安交通大学 | 硅基纳米氧化锌粉体薄膜异质结太阳能的结构及其制备 |
CN105489662A (zh) * | 2011-07-19 | 2016-04-13 | 日立化成株式会社 | n型扩散层形成用组合物、n型扩散层的制造方法以及太阳能电池元件的制造方法 |
US8696948B2 (en) | 2011-08-11 | 2014-04-15 | E I Du Pont De Nemours And Company | Thick film paste containing lead—tellurium—lithium—titanium—oxide and its use in the manufacture of semiconductor devices |
US8691119B2 (en) | 2011-08-11 | 2014-04-08 | E I Du Pont De Nemours And Company | Thick film paste containing lead-tellurium-lithium-titanium-oxide and its use in the manufacture of semiconductor devices |
WO2013062549A1 (en) * | 2011-10-27 | 2013-05-02 | Wuxi Calex Science And Technology Co., Ltd. | Electro-conductive composition for forming semiconductor electrodes |
KR20130064659A (ko) * | 2011-12-08 | 2013-06-18 | 제일모직주식회사 | 태양전지 전극용 페이스트 조성물 및 이로부터 제조된 전극 |
KR101985929B1 (ko) | 2011-12-09 | 2019-06-05 | 삼성전자주식회사 | 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지 |
KR101363344B1 (ko) | 2012-01-10 | 2014-02-19 | 주식회사 젠스엔지니어링 | 전도성 페이스트를 전극으로 사용하는 실리콘 태양전지 모듈 및 그 제조 방법. |
KR101909143B1 (ko) * | 2012-01-20 | 2018-10-17 | 엘지전자 주식회사 | 양면 수광형 태양전지 |
US20130248777A1 (en) * | 2012-03-26 | 2013-09-26 | Heraeus Precious Metals North America Conshohocken Llc | Low silver content paste composition and method of making a conductive film therefrom |
TWI594268B (zh) * | 2012-04-17 | 2017-08-01 | 賀利氏貴金屬北美康舍霍肯有限責任公司 | 用於導電膏組成物之無機反應系統 |
BR102013009357A2 (pt) | 2012-04-17 | 2015-06-23 | Heraeus Precious Metals North America Conshohocken Llc | Sistema de reação inorgânica para uma pasta eletrocondutora, composição de pasta eletrocondutora, célula solar |
US8845932B2 (en) | 2012-04-26 | 2014-09-30 | E I Du Pont De Nemours And Company | Thick film paste containing bismuth-tellurium-oxide and its use in the manufacture of semiconductor devices |
JP2013243279A (ja) * | 2012-05-22 | 2013-12-05 | Namics Corp | 太陽電池の電極形成用導電性ペースト |
KR101999795B1 (ko) | 2012-06-27 | 2019-07-12 | 삼성전자주식회사 | 도전성 페이스트, 상기 도전성 페이스트를 사용하여 형성된 전극을 포함하는 전자 소자 및 태양 전지 |
TW201407635A (zh) * | 2012-08-09 | 2014-02-16 | Darfon Materials Corp | 銀漿及其用於製造光伏元件之用途 |
US8900488B2 (en) | 2012-09-06 | 2014-12-02 | E I Du Pont De Nemours And Company | Conductive paste composition and semiconductor devices made therewith |
CN102956283B (zh) * | 2012-10-25 | 2016-08-03 | 上海玻纳电子科技有限公司 | 一种新型高效晶硅太阳能电池用无铅化银浆及其制备与应用 |
CN103000249B (zh) * | 2012-12-28 | 2016-09-28 | 上海匡宇科技股份有限公司 | 一种太阳能电池正面银浆及其制备方法 |
KR20140092744A (ko) | 2012-12-29 | 2014-07-24 | 제일모직주식회사 | 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 |
EP2763141B1 (en) * | 2013-02-01 | 2016-02-03 | Heraeus Precious Metals North America Conshohocken LLC | Low fire silver paste |
KR101587683B1 (ko) * | 2013-02-15 | 2016-01-21 | 제일모직주식회사 | 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 |
KR102032280B1 (ko) * | 2013-04-25 | 2019-10-15 | 엘지전자 주식회사 | 태양 전지의 전극용 페이스트 조성물 |
TWM512217U (zh) | 2013-06-20 | 2015-11-11 | Plant PV | 太陽能電池 |
US9159864B2 (en) | 2013-07-25 | 2015-10-13 | First Solar, Inc. | Back contact paste with Te enrichment and copper doping control in thin film photovoltaic devices |
CN104347735A (zh) * | 2013-07-25 | 2015-02-11 | 比亚迪股份有限公司 | 一种太阳能电池片和太阳能电池组件 |
US9793025B2 (en) | 2013-12-03 | 2017-10-17 | E I Du Pont De Nemours And Company | Conductive paste composition and semiconductor devices made therewith |
US9761742B2 (en) | 2013-12-03 | 2017-09-12 | E I Du Pont De Nemours And Company | Conductive paste composition and semiconductor devices made therewith |
TWI517430B (zh) | 2013-12-31 | 2016-01-11 | 東旭能興業有限公司 | 太陽能電池單元及其製造方法 |
CN104752556A (zh) * | 2013-12-31 | 2015-07-01 | 东旭能兴业有限公司 | 太阳能电池单元及其制造方法 |
US9218979B2 (en) * | 2014-01-16 | 2015-12-22 | Phononic Devices, Inc. | Low resistivity ohmic contact |
KR101600874B1 (ko) * | 2014-05-16 | 2016-03-09 | 덕산하이메탈(주) | 은 페이스트 조성물 및 이를 이용하여 제조된 태양전지 |
CN104021841B (zh) * | 2014-06-25 | 2016-09-28 | 西安工程大学 | 一种碳纳米管复合铜厚膜导电浆料及其制备方法 |
TWI505294B (zh) * | 2014-12-08 | 2015-10-21 | Giga Solar Materials Corp | 一種含無鉛玻璃熔塊之導電漿(六) |
JP2016115873A (ja) * | 2014-12-17 | 2016-06-23 | 京都エレックス株式会社 | 太陽電池電極形成用導電性ペースト、並びに、これを用いた太陽電池素子および太陽電池モジュール |
KR101696985B1 (ko) * | 2014-12-30 | 2017-01-17 | 삼성에스디아이 주식회사 | 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극 |
KR20170014734A (ko) | 2015-07-31 | 2017-02-08 | 엘지전자 주식회사 | 태양 전지 및 이의 제조 방법 |
US10784383B2 (en) | 2015-08-07 | 2020-09-22 | E I Du Pont De Nemours And Company | Conductive paste composition and semiconductor devices made therewith |
JP2018525832A (ja) | 2015-08-14 | 2018-09-06 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA | 太陽光電池において使用される焼結性組成物 |
WO2017035103A1 (en) | 2015-08-25 | 2017-03-02 | Plant Pv, Inc | Core-shell, oxidation-resistant particles for low temperature conductive applications |
WO2017035102A1 (en) | 2015-08-26 | 2017-03-02 | Plant Pv, Inc | Silver-bismuth non-contact metallization pastes for silicon solar cells |
CN108028187B (zh) * | 2015-09-24 | 2022-06-07 | 东洋铝株式会社 | 膏状组合物及硅锗层的形成方法 |
US9741878B2 (en) | 2015-11-24 | 2017-08-22 | PLANT PV, Inc. | Solar cells and modules with fired multilayer stacks |
JP2016122840A (ja) * | 2015-12-18 | 2016-07-07 | 日立化成株式会社 | 素子及び太陽電池並びに電極用ペースト組成物 |
GB201601034D0 (en) | 2016-01-20 | 2016-03-02 | Johnson Matthey Plc | Conductive paste,electrode and solar cell |
JP6714275B2 (ja) * | 2016-08-23 | 2020-06-24 | ナミックス株式会社 | 導電性ペースト及び太陽電池 |
TWI745562B (zh) | 2017-04-18 | 2021-11-11 | 美商太陽帕斯特有限責任公司 | 導電糊料組成物及用其製成的半導體裝置 |
CN107274965B (zh) * | 2017-07-03 | 2019-07-05 | 云南科威液态金属谷研发有限公司 | 基于低熔点金属微纳米粉末的电子浆料及其制造方法 |
CN107879635B (zh) * | 2017-08-31 | 2021-05-04 | 无锡帝科电子材料股份有限公司 | 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池 |
JP6877750B2 (ja) * | 2017-12-06 | 2021-05-26 | ナミックス株式会社 | 導電性ペースト |
RU2690091C1 (ru) * | 2018-11-08 | 2019-05-30 | Общество с ограниченной ответственностью "Научное Предприятие Монокристалл Пасты" | Алюминиевая паста для изготовления тыльного контакта кремниевых солнечных элементов c тыльной диэлектрической пассивацией |
WO2021159499A1 (zh) * | 2020-02-14 | 2021-08-19 | 硕禾电子材料股份有限公司 | 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构 |
KR102455164B1 (ko) * | 2020-03-13 | 2022-10-17 | 주식회사 헤드솔라 | 페이스트, 이의 제조방법 및 이를 이용한 태양전지 광전극용 차단층 제조방법 |
CN112909128A (zh) * | 2021-02-07 | 2021-06-04 | 宣城睿晖宣晟企业管理中心合伙企业(有限合伙) | 异质结太阳能电池片的制造方法及异质结太阳能电池片 |
AU2022264427A1 (en) * | 2021-04-30 | 2023-11-09 | Arkion Life Sciences, Llc | Insect, bacterial, and/or fungal control composition |
US12055737B2 (en) * | 2022-05-18 | 2024-08-06 | GE Precision Healthcare LLC | Aligned and stacked high-aspect ratio metallized structures |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05128910A (ja) * | 1991-11-07 | 1993-05-25 | Sumitomo Metal Mining Co Ltd | 導体ペースト |
JP2001284754A (ja) * | 2000-03-30 | 2001-10-12 | Kyocera Corp | ガラスセラミック回路基板 |
JP2005243500A (ja) | 2004-02-27 | 2005-09-08 | Kyocera Chemical Corp | 導電性ペースト、太陽電池及び太陽電池の製造方法 |
WO2007032151A1 (ja) * | 2005-09-13 | 2007-03-22 | Toyo Aluminium Kabushiki Kaisha | アルミニウムペースト組成物およびそれを用いた太陽電池素子 |
WO2007125879A1 (ja) * | 2006-04-25 | 2007-11-08 | Sharp Corporation | 太陽電池電極用導電性ペースト |
WO2008001518A1 (fr) * | 2006-06-30 | 2008-01-03 | Mitsubishi Materials Corporation | Composition de fabrication d'une électrode dans une cellule solaire, procédé de fabrication de l'électrode, et cellule solaire utilisant une électrode obtenue par le procédé de fabrication |
JP2009099781A (ja) * | 2007-10-17 | 2009-05-07 | Central Glass Co Ltd | 導電性ペースト材料 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5066621A (en) * | 1990-06-21 | 1991-11-19 | Johnson Matthey Inc. | Sealing glass composition and electrically conductive formulation containing same |
BR9610739A (pt) | 1995-10-05 | 1999-07-13 | Ebara Sola Inc | Célula solar e processo para sua fabricação |
JP2001313400A (ja) * | 2000-04-28 | 2001-11-09 | Kyocera Corp | 太陽電池素子の形成方法 |
US6599446B1 (en) * | 2000-11-03 | 2003-07-29 | General Electric Company | Electrically conductive polymer composite compositions, method for making, and method for electrical conductivity enhancement |
KR20060007011A (ko) | 2003-04-01 | 2006-01-23 | 아길라 테크놀로지스, 인코포레이티드 | 열 전도성 접착제 조성물 및 장치 부착 방법 |
US7556748B2 (en) * | 2005-04-14 | 2009-07-07 | E. I. Du Pont De Nemours And Company | Method of manufacture of semiconductor device and conductive compositions used therein |
JP2007134387A (ja) * | 2005-11-08 | 2007-05-31 | Sharp Corp | 光電変換素子およびその電極形成方法 |
US8721931B2 (en) * | 2005-12-21 | 2014-05-13 | E I Du Pont De Nemours And Company | Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell |
JP4948876B2 (ja) * | 2006-04-03 | 2012-06-06 | 京セラ株式会社 | 太陽電池素子用導電性ペースト及びそれを用いた太陽電池素子の製造方法。 |
CN101164943A (zh) | 2006-10-19 | 2008-04-23 | 北京印刷学院 | 一种用作电子浆料组成中粘接相的无铅碲酸盐低熔玻璃 |
CN102037573A (zh) * | 2008-06-11 | 2011-04-27 | E.I.内穆尔杜邦公司 | 形成硅太阳能电池的方法 |
-
2009
- 2009-07-07 CN CN2009801007645A patent/CN101828267B/zh not_active Expired - Fee Related
- 2009-07-07 EP EP13170794.5A patent/EP2637215B1/en not_active Not-in-force
- 2009-07-07 KR KR1020107011529A patent/KR101135337B1/ko active IP Right Grant
- 2009-07-07 US US13/057,744 patent/US8852465B2/en not_active Expired - Fee Related
- 2009-07-07 JP JP2010516096A patent/JP4754655B2/ja not_active Expired - Fee Related
- 2009-07-07 EP EP09804673.3A patent/EP2323171B1/en not_active Not-in-force
- 2009-07-07 WO PCT/JP2009/003151 patent/WO2010016186A1/ja active Application Filing
- 2009-07-07 EP EP13170799.4A patent/EP2637216B1/en not_active Not-in-force
- 2009-07-07 KR KR1020127005188A patent/KR101225909B1/ko active IP Right Grant
- 2009-07-15 TW TW098123847A patent/TWI485866B/zh not_active IP Right Cessation
-
2010
- 2010-04-26 JP JP2010101472A patent/JP2010283340A/ja active Pending
-
2014
- 2014-01-29 JP JP2014014189A patent/JP5870124B2/ja not_active Expired - Fee Related
- 2014-08-28 US US14/471,205 patent/US9461188B2/en active Active
- 2014-12-26 JP JP2014264627A patent/JP2015122506A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05128910A (ja) * | 1991-11-07 | 1993-05-25 | Sumitomo Metal Mining Co Ltd | 導体ペースト |
JP2001284754A (ja) * | 2000-03-30 | 2001-10-12 | Kyocera Corp | ガラスセラミック回路基板 |
JP2005243500A (ja) | 2004-02-27 | 2005-09-08 | Kyocera Chemical Corp | 導電性ペースト、太陽電池及び太陽電池の製造方法 |
WO2007032151A1 (ja) * | 2005-09-13 | 2007-03-22 | Toyo Aluminium Kabushiki Kaisha | アルミニウムペースト組成物およびそれを用いた太陽電池素子 |
WO2007125879A1 (ja) * | 2006-04-25 | 2007-11-08 | Sharp Corporation | 太陽電池電極用導電性ペースト |
WO2008001518A1 (fr) * | 2006-06-30 | 2008-01-03 | Mitsubishi Materials Corporation | Composition de fabrication d'une électrode dans une cellule solaire, procédé de fabrication de l'électrode, et cellule solaire utilisant une électrode obtenue par le procédé de fabrication |
JP2009099781A (ja) * | 2007-10-17 | 2009-05-07 | Central Glass Co Ltd | 導電性ペースト材料 |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8962981B2 (en) | 2009-10-28 | 2015-02-24 | Shoei Chemical Inc. | Solar cell device and manufacturing method therefor |
JP2011096748A (ja) * | 2009-10-28 | 2011-05-12 | Shoei Chem Ind Co | 太陽電池素子及びその製造方法 |
JP2011096747A (ja) * | 2009-10-28 | 2011-05-12 | Shoei Chem Ind Co | 太陽電池電極形成用導電性ペースト |
US8551368B2 (en) | 2009-10-28 | 2013-10-08 | Shoei Chemical Inc. | Conductive paste for forming a solar cell electrode |
US10347787B2 (en) | 2009-10-28 | 2019-07-09 | Shoei Chemical Inc. | Method for forming a solar cell electrode with conductive paste |
JP2011168873A (ja) * | 2010-02-22 | 2011-09-01 | Dowa Electronics Materials Co Ltd | 銀粉及びその製造方法 |
JP2011171673A (ja) * | 2010-02-22 | 2011-09-01 | Kyoto Elex Kk | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 |
JP2011181538A (ja) * | 2010-02-26 | 2011-09-15 | Kyoto Elex Kk | 太陽電池素子の電極形成用導電性ペースト |
JP2011204872A (ja) * | 2010-03-25 | 2011-10-13 | Kyoto Elex Kk | 太陽電池素子の受光面電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 |
US20180062007A1 (en) * | 2010-05-04 | 2018-03-01 | E I Du Pont De Nemours And Company | Thick-film pastes containing lead-tellurium-lithium- oxides, and their use in the manufacture of semiconductor devices |
US10468542B2 (en) * | 2010-05-04 | 2019-11-05 | Dupont Electronics, Inc. | Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices |
US20200013910A1 (en) * | 2010-05-04 | 2020-01-09 | Dupont Electronics, Inc. | Thick-film pastes containing lead-tellurium-lithium- oxides, and their use in the manufacture of semiconductor devices |
US10559703B2 (en) | 2010-05-04 | 2020-02-11 | Dupont Electronics, Inc. | Thick-film pastes containing lead-tellurium-boron-oxides, and their use in the manufacture of semiconductor devices |
US11158746B2 (en) * | 2010-05-04 | 2021-10-26 | Solar Paste, Llc | Thick-film pastes containing lead-tellurium-lithium-oxides, and their use in the manufacture of semiconductor devices |
JP2014515161A (ja) * | 2011-04-06 | 2014-06-26 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 太陽電池の電極の製造方法 |
JP2012230950A (ja) * | 2011-04-25 | 2012-11-22 | Yokohama Rubber Co Ltd:The | 太陽電池集電電極形成方法、太陽電池セルおよび太陽電池モジュール |
WO2012147378A1 (ja) * | 2011-04-25 | 2012-11-01 | 横浜ゴム株式会社 | 太陽電池集電電極形成方法、太陽電池集電電極形成用導電性組成物のセットおよび太陽電池セル |
WO2012160921A1 (ja) * | 2011-05-26 | 2012-11-29 | 株式会社 村田製作所 | 導電性ペースト及び太陽電池 |
JP5339011B1 (ja) * | 2012-01-10 | 2013-11-13 | 日立化成株式会社 | 太陽電池用基板の製造方法及び太陽電池素子の製造方法 |
JP5339014B1 (ja) * | 2012-01-10 | 2013-11-13 | 日立化成株式会社 | バリア層形成用組成物、太陽電池用基板の製造方法及び太陽電池素子の製造方法 |
JP5339012B1 (ja) * | 2012-01-10 | 2013-11-13 | 日立化成株式会社 | 太陽電池用基板の製造方法および太陽電池素子の製造方法 |
JP5339013B1 (ja) * | 2012-01-10 | 2013-11-13 | 日立化成株式会社 | 太陽電池用基板の製造方法および太陽電池素子の製造方法 |
WO2013105604A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | バリア層形成用組成物、太陽電池用基板の製造方法及び太陽電池素子の製造方法 |
WO2013105599A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | マスク形成用組成物、太陽電池用基板の製造方法および太陽電池素子の製造方法 |
WO2013105603A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | バリア層形成用組成物、バリア層、太陽電池用基板の製造方法及び太陽電池素子の製造方法 |
WO2013105601A1 (ja) * | 2012-01-10 | 2013-07-18 | 日立化成株式会社 | マスク形成用組成物、太陽電池用基板の製造方法および太陽電池素子の製造方法 |
JP2013254726A (ja) * | 2012-01-23 | 2013-12-19 | Heraeus Precious Metals North America Conshohocken Llc | 太陽電池の接点のための導電性厚膜ペースト |
JP2017141156A (ja) * | 2012-01-23 | 2017-08-17 | ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー | 太陽電池の接点のための導電性厚膜ペースト |
JP2013196954A (ja) * | 2012-03-21 | 2013-09-30 | Kyoto Elex Kk | 加熱硬化型導電性ペースト組成物 |
JP2013207054A (ja) * | 2012-03-28 | 2013-10-07 | Kyoto Elex Kk | 太陽電池素子の電極形成用導電性ペースト |
US9236162B2 (en) | 2012-04-26 | 2016-01-12 | Osaka University | Transparent conductive ink and transparent conductive pattern forming method |
JP5706998B2 (ja) * | 2012-04-26 | 2015-04-22 | 国立大学法人大阪大学 | 透明導電性インク及び透明導電パターン形成方法 |
WO2013161996A3 (ja) * | 2012-04-26 | 2013-12-19 | 国立大学法人大阪大学 | 透明導電性インク及び透明導電パターン形成方法 |
JPWO2013161996A1 (ja) * | 2012-04-26 | 2015-12-24 | 国立大学法人大阪大学 | 透明導電性インク及び透明導電パターン形成方法 |
JP2015528178A (ja) * | 2012-06-12 | 2015-09-24 | ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー | 接着促進剤を有する導電性ペースト |
JP2014022194A (ja) * | 2012-07-18 | 2014-02-03 | Noritake Co Ltd | Ag電極形成用ペースト組成物とその製造方法ならびに太陽電池 |
JP5937689B2 (ja) * | 2012-09-18 | 2016-06-22 | ヘレウス プレシャス メタルズ ノース アメリカ コンショホーケン エルエルシー | 導電性ペースト及び太陽電池 |
WO2014045900A1 (ja) * | 2012-09-18 | 2014-03-27 | 株式会社村田製作所 | 導電性ペースト及び太陽電池 |
JP2014078594A (ja) * | 2012-10-10 | 2014-05-01 | Noritake Co Ltd | ペースト組成物と太陽電池 |
US10141459B2 (en) | 2012-12-28 | 2018-11-27 | Heraeus Deutschland GmbH & Co. KG | Binary glass frits used in n-type solar cell production |
JP2016519838A (ja) * | 2013-04-02 | 2016-07-07 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | 導電性ペースト及び太陽電池調製物におけるAl、Si及びMgを含む粒子 |
JP2014207262A (ja) * | 2013-04-10 | 2014-10-30 | 株式会社ノリタケカンパニーリミテド | 太陽電池用導電性ペースト組成物 |
CN104854708B (zh) * | 2013-05-17 | 2016-05-18 | 株式会社钟化 | 太阳能电池及其制造方法和太阳能电池模块 |
WO2014185537A1 (ja) * | 2013-05-17 | 2014-11-20 | 株式会社カネカ | 太陽電池およびその製造方法、ならびに太陽電池モジュール |
US9553228B2 (en) | 2013-05-17 | 2017-01-24 | Kaneka Corporation | Solar cell, production method therefor, and solar cell module |
JP5695283B1 (ja) * | 2013-05-17 | 2015-04-01 | 株式会社カネカ | 太陽電池およびその製造方法、ならびに太陽電池モジュール |
CN104854708A (zh) * | 2013-05-17 | 2015-08-19 | 株式会社钟化 | 太阳能电池及其制造方法和太阳能电池模块 |
US10030156B2 (en) | 2013-12-10 | 2018-07-24 | Kyoto Elex Co., Ltd. | Conductive paste for forming conductive film for semiconductor devices, semiconductor device, and method for producing semiconductor device |
JP2018190967A (ja) * | 2017-04-28 | 2018-11-29 | 碩禾電子材料股▲ふん▼有限公司 | 太陽電池用の導電ペースト、太陽電池及びその製造方法、並びに太陽電池モジュール |
US10923608B2 (en) | 2017-04-28 | 2021-02-16 | Giga Solar Materials Corp. | Conductive paste for solar cell, solar cell and manufacturing method thereof, and solar cell module |
WO2021193736A1 (ja) | 2020-03-26 | 2021-09-30 | Dowaエレクトロニクス株式会社 | 銀粉およびその製造方法、並びに導電性ペースト |
KR20220153572A (ko) | 2020-03-26 | 2022-11-18 | 도와 일렉트로닉스 가부시키가이샤 | 은 분말 및 그 제조 방법, 그리고 도전성 페이스트 |
US11819914B2 (en) | 2020-03-26 | 2023-11-21 | Dowa Electronics Materials Co., Ltd. | Silver powder, method for producing the same, and conductive paste |
Also Published As
Publication number | Publication date |
---|---|
EP2637216B1 (en) | 2014-12-17 |
JP2015122506A (ja) | 2015-07-02 |
EP2637215A1 (en) | 2013-09-11 |
EP2323171A4 (en) | 2012-12-05 |
US20110192457A1 (en) | 2011-08-11 |
KR20100075661A (ko) | 2010-07-02 |
JP4754655B2 (ja) | 2011-08-24 |
CN101828267A (zh) | 2010-09-08 |
CN101828267B (zh) | 2013-10-23 |
EP2323171B1 (en) | 2019-07-03 |
KR101135337B1 (ko) | 2012-04-17 |
JP2010283340A (ja) | 2010-12-16 |
JPWO2010016186A1 (ja) | 2012-01-12 |
US20150020880A1 (en) | 2015-01-22 |
TWI485866B (zh) | 2015-05-21 |
JP2014116627A (ja) | 2014-06-26 |
EP2637215B1 (en) | 2019-02-27 |
US8852465B2 (en) | 2014-10-07 |
US9461188B2 (en) | 2016-10-04 |
JP5870124B2 (ja) | 2016-02-24 |
EP2637216A1 (en) | 2013-09-11 |
EP2323171A1 (en) | 2011-05-18 |
KR20120032573A (ko) | 2012-04-05 |
KR101225909B1 (ko) | 2013-01-24 |
TW201007957A (en) | 2010-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5870124B2 (ja) | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 | |
US10030156B2 (en) | Conductive paste for forming conductive film for semiconductor devices, semiconductor device, and method for producing semiconductor device | |
US8962981B2 (en) | Solar cell device and manufacturing method therefor | |
US8551368B2 (en) | Conductive paste for forming a solar cell electrode | |
TWI660369B (zh) | 太陽電池電極用的組成物、使用該組成物製造的電極以及具有該電極的太陽電池 | |
JP6487842B2 (ja) | 導電性ペースト及び結晶系シリコン太陽電池の製造方法 | |
JP5113710B2 (ja) | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 | |
WO2016084915A1 (ja) | 導電性組成物 | |
JP5285639B2 (ja) | 太陽電池素子の電極形成用導電性ペースト | |
JP6137852B2 (ja) | 太陽電池の電極形成用導電性ペースト | |
TW202326759A (zh) | 導電漿料組合物及其製備方法和應用、晶矽太陽能電池 | |
JP2011204872A (ja) | 太陽電池素子の受光面電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 | |
JP5297123B2 (ja) | 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法 | |
JP2019106524A (ja) | 太陽電池 | |
WO2016193209A1 (en) | Conductive paste and process for forming an electrode on a p-type emitter on an n-type base semiconductor substrate | |
JP2016115873A (ja) | 太陽電池電極形成用導電性ペースト、並びに、これを用いた太陽電池素子および太陽電池モジュール | |
CN111183491B (zh) | 太阳能电池电极形成用导电性糊剂 | |
KR20190066157A (ko) | 태양전지 | |
KR20200094555A (ko) | 태양전지 전극 형성 방법, 이로부터 제조된 태양전지 전극 및 태양전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980100764.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09804673 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010516096 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20107011529 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009804673 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13057744 Country of ref document: US |