WO2012160921A1 - 導電性ペースト及び太陽電池 - Google Patents

導電性ペースト及び太陽電池 Download PDF

Info

Publication number
WO2012160921A1
WO2012160921A1 PCT/JP2012/060826 JP2012060826W WO2012160921A1 WO 2012160921 A1 WO2012160921 A1 WO 2012160921A1 JP 2012060826 W JP2012060826 W JP 2012060826W WO 2012160921 A1 WO2012160921 A1 WO 2012160921A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
alkali metal
electrode
metal compound
solar cell
Prior art date
Application number
PCT/JP2012/060826
Other languages
English (en)
French (fr)
Inventor
頼宣 前田
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to TW101117446A priority Critical patent/TW201301528A/zh
Publication of WO2012160921A1 publication Critical patent/WO2012160921A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a conductive paste and a solar cell, and more particularly to a conductive paste suitable for forming an electrode of a solar cell, and a solar cell manufactured using this conductive paste.
  • a light receiving surface electrode having a predetermined pattern is usually formed on one main surface of a semiconductor substrate. Further, an antireflection film is formed on the semiconductor substrate excluding the light receiving surface electrode, and the reflection loss of incident sunlight is suppressed by the antireflection film, thereby converting the conversion efficiency of sunlight into electric energy. Has improved.
  • the light-receiving surface electrode is usually formed by applying a conductive paste on the surface of the antireflection film to form a conductive film having a predetermined pattern, and firing it. That is, the antireflection film under the conductive film is formed of an insulator such as silicon nitride (SiN x ). For this reason, the antireflection film is decomposed and removed in the baking process for forming the light receiving surface electrode.
  • the light receiving surface electrode is formed by sintering the light receiving surface electrode, and the light receiving surface electrode and the semiconductor substrate are adhered to each other to make them conductive.
  • This method of disassembling and removing the antireflection film in the firing process and bonding the semiconductor substrate and the light-receiving surface electrode is called fire-through, and the conversion efficiency of the solar cell is greatly increased in fire-through performance.
  • Dependent That is, if the fire-through property is insufficient, an antireflection film remains between the light-receiving surface electrode and the semiconductor substrate, so that the electrical conductivity between the light-receiving surface electrode and the semiconductor substrate is reduced. Conversion efficiency falls and it is inferior to the basic performance as a solar cell.
  • conductive powder such as Ag is inferior in the fire-through property, ZnO or the like has been conventionally used.
  • the inorganic oxide is added to the conductive paste to improve the fire-through property.
  • Patent Document 1 proposes a thick film conductive composition in which an Ag powder, a Zn-containing additive, and one or more glass frits that are lead-free are dispersed in an organic medium. Yes.
  • a good adhesive strength can be obtained by using a conductive paste (thick film conductive composition) containing 2 to 10% by weight of ZnO and 0.5 to 4% by weight of glass frit. It is trying to obtain a solar cell having good conversion efficiency.
  • Patent Document 2 contains Ag powder, ZnO powder, lead-free glass frit, and an organic solvent, and the lead-free glass frit is Bi 2 O 3 > 5 mol% based on the total glass frit, B 2. Thick film conductivity with O 3 ⁇ 15 mol%, BaO ⁇ 5 mol%, SrO ⁇ 5 mol%, Al 2 O 3 ⁇ 5 mol%, (ZnO content / Ag powder content) ⁇ 100 exceeds 2.5 Compositions have been proposed.
  • the content of ZnO and Ag powder is set to (ZnO content / silver powder content) ⁇ 100> 2.5.
  • ZnO in the composition is 0.5 to 15%.
  • Patent Document 3 discloses a solar cell including a contact made from a mixture, wherein the mixture includes a solid portion and an organic portion before firing, and the solid portion is electrically conductive such as Ag. There has been proposed a solar cell containing about 85 to about 99% by weight of a metal component and about 1 to about 15% by weight of a glass component, the glass component containing no lead.
  • Patent Document 3 discloses a solar cell contact in which the solid portion is a specific oxide such as SnO or ZnO or a specific composite oxide such as 2Li 2 O ⁇ 5V 2 O 5 added to a glass component. .
  • JP 2006-332032 A (refer to claim 1, paragraph numbers [0024], [0031], [0058] etc.)
  • JP 2010-524257 A (see claim 1, paragraph numbers [0026] to [0028], etc.)
  • JP 2008-543080 A see claim 1, paragraph number [0017])
  • Patent Documents 1 to 3 described above all contain an additive such as an inorganic oxide such as ZnO or glass frit in the conductive paste to improve the fire-through property, There is a problem that the specific resistance of the electrode is increased because the content is large and the content of the conductive powder is relatively reduced.
  • the present invention has been made in view of such circumstances, and a conductive paste for a solar cell electrode that has good fire-through properties, low specific resistance of the electrode, and can obtain good battery characteristics, and this conductive material. It aims at providing the solar cell manufactured using the adhesive paste.
  • the present inventor conducted intensive research to achieve the above-mentioned object, and as a result, an alkali metal compound having a melting point of 1000 ° C. or lower is simply contained in the conductive paste, and the fire can be efficiently produced even without containing an inorganic oxide. It was found that through can be generated, whereby the content ratio of the metal component derived from the conductive powder in the electrode can be increased, and the specific resistance of the electrode can be reduced.
  • the conductive paste according to the present invention is a conductive paste for forming an electrode of a solar cell, and includes a conductive powder, a binder resin, and a solvent. And an alkali metal compound having a melting point of 1000 ° C. or lower.
  • the melting point of the alkali metal compound is preferably as low as possible, preferably 800 ° C. or lower, and more preferably 400 ° C. or lower.
  • the alkali metal compound preferably has a melting point of 800 ° C. or lower.
  • the alkali metal compound preferably has a melting point of 400 ° C. or lower.
  • the alkali metal compound contains at least one of carboxylate and amines.
  • the alkali metal compound contains at least one of carbonate and borate.
  • the alkali metal element contained in the alkali metal compound is preferably lithium.
  • the alkali metal compound preferably has a content of 2% by weight or less (excluding 0% by weight).
  • the conductive powder is preferably Ag powder.
  • an antireflection film and an electrode penetrating the antireflection film are formed on one main surface of the semiconductor substrate, and the conductive paste according to any one of the above is baked. It is characterized by being connected.
  • the conductive paste of the present invention since the conductive paste (preferably Ag powder), the binder resin, and the solvent are contained and the alkali metal compound having a melting point of 1000 ° C. or less is contained, the inorganic oxidation is performed. Fire-through can be efficiently generated without adding a substance. Moreover, since the content ratio of the metal component derived from the conductive powder in the electrode can be increased, the specific resistance of the electrode can be reduced, thereby improving the conversion efficiency of the solar cell.
  • an antireflection film and an electrode penetrating the antireflection film are formed on one main surface of the semiconductor substrate, and the electrode is formed of the conductive paste according to any one of the above. Since it is sintered, a solar cell with good conductivity between the semiconductor substrate and the electrode, low specific resistance of the electrode, and good conversion efficiency can be obtained.
  • FIG. 1 is a cross-sectional view of an essential part showing an embodiment of a solar cell manufactured using a conductive paste according to the present invention.
  • an antireflection film 2 and a light receiving surface electrode 3 are formed on one main surface of a semiconductor substrate 1 containing Si as a main component, and a back electrode 4 is formed on the other main surface of the semiconductor substrate 1.
  • the semiconductor substrate 1 has a p-type semiconductor layer 1b and an n-type semiconductor layer 1a, and an n-type semiconductor layer 1a is formed on the upper surface of the p-type semiconductor layer 1b.
  • the semiconductor substrate 1 can be obtained, for example, by diffusing impurities on one main surface of a single-crystal or polycrystalline p-type semiconductor layer 1b to form a thin n-type semiconductor layer 1a.
  • the n-type semiconductor layer 1a is formed on the upper surface of the layer 1b, its structure and manufacturing method are not particularly limited.
  • the semiconductor substrate 1 has a structure in which a thin p-type semiconductor layer 1b is formed on one main surface of the n-type semiconductor layer 1a, or a p-type semiconductor layer 1b on a part of one main surface of the semiconductor substrate 1.
  • a structure in which both the n-type semiconductor layer 1a and the n-type semiconductor layer 1a are formed may be used.
  • the conductive paste according to the present invention can be used effectively as long as it is the main surface of the semiconductor substrate 1 on which the antireflection film 2 is formed.
  • the surface of the semiconductor substrate 1 is shown in a flat shape. However, in order to effectively confine sunlight to the semiconductor substrate 1, the surface is formed to have a micro uneven structure.
  • the antireflection film 2 is formed of an insulating material such as silicon nitride (SiN x ), suppresses reflection of light to the light receiving surface of sunlight indicated by an arrow A, and allows sunlight to be quickly and efficiently applied to the semiconductor substrate 1. Lead.
  • the material constituting the antireflection film 2 is not limited to the above-described silicon nitride, and other insulating materials such as silicon oxide (SiO 2 ) and titanium oxide (TiO 2 ) may be used. In addition, two or more kinds of insulating materials may be used in combination. In addition, as long as it is crystalline Si, either single crystal Si or polycrystalline Si may be used.
  • the light receiving surface electrode 3 is formed on the semiconductor substrate 1 through the antireflection film 2.
  • the light-receiving surface electrode 3 is formed by applying a conductive paste of the present invention, which will be described later, onto the semiconductor substrate 1 by using screen printing or the like to produce a conductive film and baking it. That is, in the baking process for forming the light receiving surface electrode 3, the antireflection film 2 under the conductive film is decomposed and removed and fired through, whereby the light receiving surface electrode is formed on the semiconductor substrate 1 so as to penetrate the antireflection film 2. 3 is formed.
  • the light-receiving surface electrode 3 has a large number of finger electrodes 5a, 5b,... 5n arranged in a comb-like shape and intersects with the finger electrodes 5a, 5b,.
  • Bus bar electrode 6 is provided, and finger electrodes 5a, 5b,... 5n and bus bar electrode 6 are electrically connected.
  • the antireflection film 2 is formed in the remaining region excluding the portion where the light receiving surface electrode 3 is provided. In this way, the electric power generated in the semiconductor substrate 1 is collected by the finger electrodes 5n and taken out to the outside by the bus bar electrodes 6.
  • the back electrode 4 is formed on the back surface of the current collecting electrode 7 and the current collecting electrode 7 made of Al or the like formed on the back surface of the p-type semiconductor layer 1b. It is comprised with the extraction electrode 8 which consists of Ag etc. which were electrically connected with the current collection electrode 7. FIG. Then, the electric power generated in the semiconductor substrate 1 is collected by the collecting electrode 7 and is taken out by the extracting electrode 8.
  • the conductive paste of the present invention contains conductive powder, a binder resin, and an organic solvent, and contains an alkali metal compound having a melting point of 1000 ° C. or lower.
  • the conductive paste according to the present invention includes an alkali metal compound, so that the conductive paste does not contain inorganic oxide such as ZnO or glass frit in the firing process at the time of manufacturing the solar cell. It is possible to cause through.
  • an alkali metal compound containing an alkali metal element and having a low melting point has a unique property that causes fire-through properties.
  • an alkali metal compound having a melting point of 1000 ° C. or lower is contained in the conductive paste, thereby causing fire-through properties.
  • the generation of fire-through property by the alkali metal compound may be added in a very small amount, and it is not necessary to add a considerable amount as in the case of a conventional inorganic oxide.
  • the fire-through property can be ensured only by containing a small amount of an alkali metal compound, so the content ratio of the metal component derived from the conductive powder in the light-receiving surface electrode 3 is increased. It becomes possible. Therefore, it is possible to reduce the specific resistance of the electrode, and the conversion efficiency of the solar cell can be further improved.
  • the content of the alkali metal compound contained in the conductive paste is not particularly limited, and a desired fire-through property can be secured with a very small amount as described above. However, since the specific resistance of the electrode tends to increase when the content of the alkali metal compound is excessive, it is preferably 2% by weight (not including 0% by weight) or less.
  • the alkali metal compound is not particularly limited as long as it has a low melting point and contains an alkali metal element.
  • the melting point is 1000 ° C. or lower, preferably 800 ° C. or lower, more preferably the melting point is lower.
  • an alkali metal compound of 400 ° C. or lower that is, when the melting point is lowered, the alkali metal compound flows to the interface with the n-type semiconductor layer 1a of the semiconductor substrate 1 during drying or firing. Therefore, a sufficient amount of alkali metal element is present on the surface of the n-type semiconductor layer 1a due to the inclusion of a small amount of alkali metal compound, and the fire-through property at the interface with the n-type semiconductor layer 1a is drastically improved. It becomes possible.
  • an alkali metal compound a dodecanoate, octadecanoate, acetate, ethanedioate or other carboxylate containing an alkali metal element, an amide or the like can be preferably used.
  • the alkali metal element is not particularly limited, and Li, K, Na, and the like can be used, but Li can be preferably used from the viewpoint of obtaining a smaller contact resistance Rc. .
  • the conductive powder is not particularly limited as long as it is a metal powder having good conductivity, but good conductivity without being oxidized even when the baking treatment is performed in the air. Ag powder that can maintain the viscosity can be preferably used.
  • the shape of the conductive powder is not particularly limited, and may be, for example, a spherical shape, a flat shape, an irregular shape, or a mixed powder thereof.
  • the average particle diameter of the conductive powder is not particularly limited, but from the viewpoint of securing a desired contact point between the conductive powder and the semiconductor substrate 1, in terms of spherical powder, 1. 0 to 5.0 ⁇ m is preferable.
  • the binder resin contained in the conductive paste is not particularly limited, and for example, ethyl cellulose resin, nitrocellulose resin, acrylic resin, alkyd resin, or a combination thereof can be used.
  • the organic solvent is not particularly limited, and ⁇ -terpineol, xylene, toluene, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, etc. alone or in combination thereof Can be used.
  • the binder resin and the organic solvent are prepared, for example, in a volume ratio of 1 to 3: 7 to 9, thereby producing an organic vehicle.
  • the conductive paste of the present invention can achieve the desired effects even if it does not contain glass frit.
  • glass frit is used in order to improve the adhesion between the light-receiving surface electrode 3 and the semiconductor substrate 1. You may make it contain.
  • the glass frit is not particularly limited, but it is preferable to use a lead-free glass frit such as a Si—B—Bi-based glass frit containing no lead in consideration of the environment.
  • an inorganic oxide may be added as long as the specific resistance of the electrode does not cause a problem.
  • the conductive paste is then weighed and mixed with a conductive powder, an organic vehicle, and if necessary various additives to a predetermined mixing ratio, and dispersed and kneaded using a three-roll mill or the like. Thus, it can be easily manufactured.
  • the present embodiment contains conductive powder such as Ag powder, binder resin, and solvent, and contains an alkali metal compound having a melting point of 1000 ° C. or lower, so an inorganic oxide is added. Without this, fire-through can occur. And since the content rate of the electroconductive powder in the light-receiving surface electrode 3 can be increased, the specific resistance of an electrode can be lowered
  • the melting point of the alkali metal compound is 800 ° C. or less, particularly 400 ° C. or less, the melting point of the alkali metal compound is low, so that it easily flows through the interface with the n-type semiconductor layer 1a during drying or firing. To do. Therefore, even if a very small amount is added, the fire-through property peculiar to the alkali metal can be sufficiently generated.
  • the alkali metal compound contains any of carboxylate and amines, it is possible to obtain better fire-through properties.
  • the alkali metal compound contains any one of carbonate and borate
  • a solar cell electrode having a desired fire-through property and low line resistance can be added with a small amount even when the melting point is relatively high. It is possible to realize a conductive paste for use.
  • the alkali metal element is lithium, it is possible to realize a conductive paste capable of even better fire-through and low specific resistance.
  • the present invention is not limited to the above embodiment.
  • a plasticizer such as di-2-ethylhexyl phthalate or dibutyl phthalate
  • a rheology modifier such as a fatty acid amide or a fatty acid, and a thixotropic agent, a thickener, a dispersant, etc. may be added.
  • the organic cellulose was prepared by mixing the ethyl cellulose resin and texanol so that the binder resin was 10% by weight of ethyl cellulose resin and the organic solvent was 90% by weight of texanol.
  • an organic vehicle was prepared in the same manner as described above.
  • Ag powder was 80.0 wt%
  • additive was 0.2 wt%
  • Si—B—Bi lead-free glass frit was 2 wt%
  • organic vehicle was After blending to 17.8% by weight and mixing with a planetary mixer, the mixture was kneaded with a three-roll mill, whereby a conductive paste of Sample No. 11 was produced.
  • Sample No. 12 Conductivity of Sample No. 12 was the same as described above except that the spherical Ag powder having an average particle size of 1.0 ⁇ m was blended to be 80% by weight and the organic vehicle was 20% by weight, and no alkali metal compound was added. A paste was prepared.
  • sample No. 14 Except for blending so that the spherical Ag powder having an average particle diameter of 1.0 ⁇ m is 80% by weight, the additive zinc oxide is 4.6% by weight, and the organic vehicle is 15.6% by weight. A conductive paste of sample number 14 was produced.
  • sample No. 17 Alkali metal is blended so that spherical Ag powder with an average particle size of 1.0 ⁇ m is 80 wt%, Si—B—Bi—Li lead-free glass frit is 2.0 wt%, and the organic vehicle is 18.0 wt%.
  • a conductive paste of sample number 17 was produced in the same manner as described above except that the compound was not added.
  • Sample No. 18 A spherical Ag powder having an average particle diameter of 1.0 ⁇ m is blended so as to be 80% by weight, Si—B—Bi-based lead-free glass frit is 2.0% by weight, and an organic vehicle is 18.0% by weight.
  • a conductive paste of Sample No. 18 was produced in the same manner as described above except that it was not added.
  • the additive used for the preparation of the sample was subjected to thermal analysis using a TG-DTA (thermogravimetric-differential thermal analyzer), and the melting point was measured. That is, 5 mg of a sample is accommodated in an alumina container, ⁇ alumina is used as a standard sample, and the measuring apparatus is heated at 20 ° C. per minute while supplying air into the measuring apparatus at a flow rate of 100 mL / min. It heated with the profile and the TG curve and the DTA curve were created from the weight change with respect to temperature. And melting
  • TG-DTA thermogravimetric-differential thermal analyzer
  • Example evaluation As shown in FIG. 4, a predetermined electrode pattern was produced on the antireflection film, and the contact resistance Rc was determined by a TLM (Transmission Line Model) method.
  • an antireflection film 12 having a film thickness of 0.1 ⁇ m is formed on the entire surface of a polycrystalline Si-based semiconductor substrate 11 having a width X of 50 mm, a length Y of 50 mm, and a thickness T of 0.2 mm by plasma enhanced chemical vapor deposition (PECVD). ).
  • PECVD plasma enhanced chemical vapor deposition
  • the Si-based semiconductor substrate 11 has an n-type Si-based semiconductor layer formed on the upper surface of a p-type Si-based semiconductor layer.
  • the distance L1 between the electrode 13a and the electrode 13b was 200 ⁇ m
  • the distance L2 between the electrode 13b and the electrode 13c was 400 ⁇ m
  • the electrode 13c and the electrode 13c was 1000 ⁇ m.
  • the length Z of each electrode was 30 mm.
  • the contact resistance Rc was obtained for each of the sample numbers 1 to 18 using the TLM method.
  • This TLM method is widely known as a method for evaluating the contact resistance of a thin film sample, and uses the transmission line theory to calculate the contact resistance Rc by regarding the electrode and the underlying semiconductor substrate as equivalent to a so-called transmission line circuit. . That is, Equation (1) is established among the length Z of the electrodes 13a to 13f, the sheet resistance R SH of the n-type Si-based semiconductor layer, the interelectrode distance L, and the interelectrode resistance R.
  • each resistance R at the interelectrode distance Ln was measured, and the contact resistance Rc was calculated for each of the sample numbers 1 to 18.
  • the sheet resistance R SH of the n-type Si-based semiconductor layer can be calculated from the slope when the horizontal axis is L and the vertical axis is R for the straight line derived from the above formula (1). Here, it was 30 ⁇ / cm.
  • the line resistance of the electrode having a length of 30 mm and a width of 200 ⁇ m was measured for each of the sample numbers 1 to 18. Then, the specific resistance of the electrode was measured by dividing the line resistance by the length and multiplying by the cross-sectional area. The line resistance was measured using a digital voltmeter, and the cross-sectional area of the electrode was measured using a contact type surface roughness measuring machine.
  • Table 1 shows the specifications of the conductive pastes of sample numbers 1 to 18, the contact resistance Rc, and the electrode specific resistance.
  • Sample No. 13 also could not measure the contact resistance Rc. This is presumably because fire-through did not occur because zinc oxide was contained as an additive but the content was 0.2% by weight.
  • Sample No. 14 had a low contact resistance Rc of 2.5 ⁇ but a high specific resistance of the electrode of 6.60 ⁇ ⁇ cm. Since the zinc oxide content was increased to 4.6% by weight, the fire-through property was good and the contact resistance Rc was low, but the Ag content was relatively low, and thus the specific resistance was high. It seems to have been.
  • Sample No. 15 had a good electrode resistivity of 5.28 ⁇ ⁇ cm, but the contact resistance Rc was extremely high at 4532 ⁇ . Although this includes a carboxylate as an additive, it seems that the carboxylate does not contain an alkali metal element, and therefore the fire-through property is poor.
  • Sample No. 16 had a good electrode specific resistance of 3.96 ⁇ ⁇ cm, but like Sample No. 15, the carboxylate did not contain an alkali metal element, and therefore the contact resistance Rc was 770 ⁇ . It became high.
  • Sample Nos. 1 to 11 are all as small as 0.2% by weight, but contain an alkali metal compound having a melting point of 1000 ° C. or lower, so that the contact resistance Rc is low and the fire-through property is good. And the specific resistance of the electrode was found to be low.
  • Sample numbers 17 and 18 were obtained by examining the content of Li as an alkali metal element.
  • the glass frit itself has a fire-through property, so both of them had a contact resistance Rc of 100 ⁇ or less, but the Si—B—Bi system lead-free
  • the glass frit had a lower contact resistance Rc than the Si—B—Bi—Li lead-free glass frit containing Li. That is, even if Li is contained in the glass frit, the effect of reducing the contact resistance Rc by Li does not occur, and the effect of reducing the contact resistance Rc may be produced by adding it as an additive to the conductive paste. confirmed.
  • FIG. 5 is a plot of the relationship between the melting point Tm and the contact resistance Rc for each of the sample numbers 4 to 9, with the horizontal axis representing the melting point Tm (° C.) and the vertical axis representing the contact resistance Rc ( ⁇ ). .
  • the melting point Tm is lowered, the contact resistance Rc is also lowered.
  • the melting point Tm is preferably 800 ° C. or lower, more preferably 400 ° C. or lower.
  • Sample number 22 is the same conductive paste as sample number 5 in Example 1.
  • Table 2 shows the melting point and content of lithium dodecanoate contained in each of the conductive pastes of sample numbers 21 to 24, and the measurement results.
  • the content of lithium dodecanoate is preferably 2% by weight or less in consideration of the specific resistance of the electrode.

Abstract

 導電性ペーストが、Ag粉末と、バインダ樹脂と、有機溶剤とを含有し、かつ融点が1000℃以下のアルカリ金属化合物を含んでいる。アルカリ金属としては、特にLiが好ましい。アルカリ金属化合物の化合物形態としては、融点が400℃以下のカルボン酸塩、アミド類が好ましく、また、炭酸塩やホウ酸塩も使用可能である。この導電性ペーストを使用して受光面電極3を形成する。これによりファイヤースルー性が良好で電極の比抵抗も低く、良好な電池特性を得ることができる太陽電池電極用の導電性ペーストを実現する。

Description

導電性ペースト及び太陽電池
 本発明は、導電性ペースト及び太陽電池に関し、より詳しくは太陽電池の電極形成に適した導電性ペースト、及びこの導電性ペーストを使用して製造された太陽電池に関する。
 太陽電池は、通常、半導体基板の一方の主面に所定パターンの受光面電極が形成されている。また、前記受光面電極を除く半導体基板上には反射防止膜が形成されており、入射される太陽光の反射損失を前記反射防止膜で抑制し、これにより太陽光の電気エネルギーへの変換効率を向上させている。
 前記受光面電極は、通常、反射防止膜の表面に導電性ペーストを塗布して所定パターンの導電膜を形成し、焼成して形成される。すなわち、導電膜下層の反射防止膜は、窒化ケイ素(SiN)等の絶縁体で形成されており、このため受光面電極を形成する焼成過程で前記反射防止膜を分解・除去し、導電膜を焼結させて受光面電極を形成すると共に、該受光面電極と半導体基板とを接着させ、両者を導通させている。
 このように焼成過程で反射防止膜を分解・除去し、半導体基板と受光面電極とを接着させる方法は、ファイヤースルー(焼成貫通)と呼ばれ、太陽電池の変換効率は、ファイヤースルー性に大きく依存する。すなわち、ファイヤースルー性が不十分であると、受光面電極と半導体基板との間に反射防止膜が残存することから、受光面電極と半導体基板との間の導通性が低下し、その結果、変換効率が低下し、太陽電池としての基本性能に劣る。
 したがって、太陽電池の特性を向上させるためには、ファイヤースルー性を向上させることが肝要であるが、Ag等の導電性粉末はファイヤースルー性に劣るとされていることから、従来は、ZnO等の無機酸化物を導電性ペースト中に添加させてファイヤースルー性を向上させている。
 例えば、特許文献1には、Ag粉末と、Zn含有添加剤と、鉛フリーである1種または複数のガラスフリットとが、有機媒体中に分散されている厚膜導電性組成物が提案されている。
 この特許文献1では、2~10重量%のZnOと0.5~4重量%のガラスフリットとを含有した導電性ペースト(厚膜導電性組成物)を使用することにより、良好な接着強度を有し、かつ変換効率が良好な太陽電池を得ようとしている。
 また、特許文献2には、Ag粉末と、ZnO粉末と、無鉛ガラスフリットと、有機溶剤とを含有し、無鉛ガラスフリットが、全ガラスフリットを基準にしてBi>5mol%、B<15mol%、BaO<5mol%、SrO<5mol%、Al<5mol%であり、(ZnOの含有量/Ag粉末の含有量)×100が2.5を超える厚膜導電性組成物が提案されている。
 この特許文献2では、ZnOとAg粉末の含有量を(ZnOの含有量/銀粉末の含有量)×100>2.5とし、典型的には、組成物中のZnOを0.5~15.0重量%とすることにより、太陽電池の電気的性能の向上を図っている。
 また、特許文献3には、混合物から作製されるコンタクトを含む太陽電池であって、焼成の前に、前記混合物が、固体部分と有機部分とを含み、前記固体部分が、Ag等の導電性金属成分:約85~約99重量%と、ガラス成分:約1~約15重量%とを含み、該ガラス成分が鉛を含まない太陽電池が提案されている。
 さらに、特許文献3には、前記固体部分が、SnO、ZnO等の特定酸化物や2LiO・5V等の特定複合酸化物をガラス成分に添加した太陽電池コンタクトが開示されている。
 そして、特許文献3では、上記組成の導電性ペーストを使用することにより、環境負荷の大きな鉛をガラス成分中に含まなくても受光面電極の焼成過程で反射防止膜の除去を促進させることができ、これにより受光面電極と半導体基板との間の接触抵抗の低減を可能としている。
特開2006-332032号公報(請求項1、段落番号〔0024〕、〔0031〕、〔0058〕等参照) 特表2010-524257号公報(請求項1、段落番号〔0026〕~〔0028〕等参照) 特表2008-543080号公報(請求項1、段落番号〔0017〕参照〕
 しかしながら、上述した特許文献1~3は、いずれもZnO等の無機酸化物やガラスフリットなどの添加物を導電性ペースト中に含有させてファイヤースルー性の向上を図っているものの、これら添加物の含有量が多く、導電性粉末の含有量が相対的に減少することから電極の比抵抗が高くなるという問題があった。
 本発明はこのような事情に鑑みなされたものであって、ファイヤースルー性が良好で電極の比抵抗も低く、良好な電池特性を得ることができる太陽電池電極用の導電性ペースト、及びこの導電性ペーストを使用して製造された太陽電池を提供することを目的とする。
 本発明者は上記目的を達成すべく鋭意研究を行ったところ、融点が1000℃以下のアルカリ金属化合物を導電性ペースト中に含ませるだけで、無機酸化物を含有しなくても効率的にファイヤースルーを生じさせることができ、これにより電極中において導電性粉末に由来する金属成分の含有比率を増加させることができ、電極の比抵抗を低減させることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであり、本発明に係る導電性ペーストは、太陽電池の電極を形成するための導電性ペーストであって、導電性粉末と、バインダ樹脂と、溶剤とを含有し、かつ、融点が1000℃以下のアルカリ金属化合物を含んでいることを特徴としている。
 これにより無機酸化物を添加しなくても効率的にファイヤースルーを生じさせることができる。しかも、電極中において導電性粉末に由来する金属成分の含有比率を増加させることができることから、電極の比抵抗の低下が可能となり、これにより太陽電池の変換効率を向上させることが可能となる。
 また、融点の低いアルカリ金属化合物は乾燥時乃至焼成時に容易に基板界面を流動する。したがって微少量の添加であってもアルカリ金属に特有のファイヤースルー性を十分に生じさせることが可能となる。したがって、アルカリ金属化合物の融点は低ければ低いほど良く、800℃以下である方が好ましく、さらに400℃以下である方が好ましい。
 すなわち、本発明の導電性ペーストは、前記アルカリ金属化合物は、融点が800℃以下であるのが好ましい。
 さらに、本発明の導電性ペーストは、前記アルカリ金属化合物は、融点が400℃以下であるのが好ましい。
 また、本発明の導電性ペーストは、前記アルカリ金属化合物が、カルボン酸塩及びアミン類のうちの少なくともいずれか一方を含むのが好ましい。
 この場合は、より一層良好なファイヤースルー性を確保することが可能となる。
 また、本発明の導電性ペーストは、前記アルカリ金属化合物が、炭酸塩及びホウ酸塩のうちの少なくともいずれか一方を含むのも好ましい。
 この場合は、比較的融点が高くても微少量の添加でもって所望のファイヤースルー性と電極の比抵抗が低い太陽電池電極用導電性ペーストを実現することが可能となる。
 また、本発明の導電性ペーストは、前記アルカリ金属化合物に含有されるアルカリ金属元素は、リチウムであるのが好ましい。
 この場合は、より一層良好なファイヤースルー性と低ライン抵抗の可能な導電性ペーストを実現することが可能となる。
 また、本発明の導電性ペーストは、前記アルカリ金属化合物は、含有量が2重量%以下(0重量%を含まず。)であるのが好ましい。
 これにより電極の比抵抗が増大することなく、良好なファイヤースルー性と低ライン抵抗の可能な導電性ペーストを実現することが可能となる。
 また、本発明の導電性ペーストは、前記導電性粉末が、Ag粉末であるのが好ましい。
 また、本発明に係る太陽電池は、半導体基板の一方の主面に反射防止膜及び該記反射防止膜を貫通する電極が形成され、前記電極が、上記いずれかに記載の導電性ペーストが焼結されてなることを特徴としている。
 本発明の導電性ペーストによれば、導電性粉末(好ましくはAg粉末)と、バインダ樹脂と、溶剤とを含有し、かつ、融点が1000℃以下のアルカリ金属化合物を含んでいるので、無機酸化物を添加しなくても効率的にファイヤースルーを生じさせることができる。しかも、電極中において導電性粉末に由来する金属成分の含有比率を増加させることができることから、電極の比抵抗の低下が可能となり、これにより太陽電池の変換効率を向上させることが可能となる。
 また、本発明の太陽電池によれば、半導体基板の一方の主面に反射防止膜及び該記反射防止膜を貫通する電極が形成され、前記電極が、上記いずれかに記載の導電性ペーストが焼結されてなるので、半導体基板と電極との導通性が良好で電極の比抵抗が低く、変換効率の良好な太陽電池を得ることができる。
本発明に係る導電性ペーストを使用して製造された太陽電池の一実施形態を示す要部断面図である。 受光面電極側を模式的に示した拡大平面図である。 裏面電極側を模式的に示した拡大平面図である。 実施例で作製された電極パターンを模式的に示した平面図である。 実施例で使用されたアルカリ金属化合物の融点Tmと接触抵抗Rcとの関係を示す図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る導電性ペーストを使用して製造された太陽電池の一実施の形態を示す要部断面図である。
 この太陽電池は、Siを主成分とした半導体基板1の一方の主面に反射防止膜2及び受光面電極3が形成されると共に、該半導体基板1の他方の主面に裏面電極4が形成されている。
 半導体基板1は、p型半導体層1bとn型半導体層1aとを有し、p型半導体層1bの上面にn型半導体層1aが形成されている。該半導体基板1は、例えば、単結晶又は多結晶のp型半導体層1bの一方の主面に不純物を拡散させ、薄いn型半導体層1aを形成することにより得ることができるが、p型半導体層1bの上面に、n型半導体層1aが形成されているのであれば、その構造及び製法は特に限定されるものではない。また、半導体基板1は、n型半導体層1aの一方の主面に薄いp型半導体層1bが形成された構造のものや、半導体基板1の一方の主面の一部にp型半導体層1bとn型半導体層1aの両方が形成されている構造のものを用いてもよい。いずれにしても、反射防止膜2が形成された半導体基板1の主面であれば、本発明に係る導電性ペーストを有効に用いることができる。尚、図1では、半導体基板1の表面はフラット状に記載しているが、太陽光を半導体基板1に効果的に閉じ込めるために、表面は微小凹凸構造を有するように形成されている。
 反射防止膜2は、窒化ケイ素(SiN)等の絶縁性材料で形成され、矢印Aに示す太陽光の受光面への光の反射を抑制し、太陽光を半導体基板1に迅速かつ効率よく導く。この反射防止膜2を構成する材料としては、上述した窒化ケイ素に限定されるものではなく、他の絶縁性材料、例えば酸化ケイ素(SiO)や酸化チタン(TiO)等を使用してもよく、2種類以上の絶縁性材料を併用してもよい。また、結晶Si系であれば単結晶Si及び多結晶Siのいずれを使用してもよい。
 受光面電極3は、半導体基板1上に反射防止膜2を貫通して形成されている。この受光面電極3は、スクリーン印刷等を使用し、後述する本発明の導電性ペーストを半導体基板1上に塗布して導電膜を作製し、焼成することによって形成される。すなわち、受光面電極3を形成する焼成過程で、導電膜下層の反射防止膜2が分解・除去されてファイヤースルーされ、これにより反射防止膜2を貫通する形態で半導体基板1上に受光面電極3が形成される。
 受光面電極3は、具体的には、図2に示すように、多数のフィンガー電極5a、5b、…5nが櫛歯状に並設されると共に、フィンガー電極5a、5b、…5nと交差状にバスバー電極6が設けられ、フィンガー電極5a、5b、…5nとバスバー電極6とが電気的に接続されている。そして、受光面電極3が設けられている部分を除く残りの領域に、反射防止膜2が形成されている。このようにして半導体基板1で発生した電力をフィンガー電極5nによって集電するとともにバスバー電極6によって外部へ取り出している。
 裏面電極4は、具体的には、図3に示すように、p型半導体層1bの裏面に形成されたAl等からなる集電電極7と、該集電電極7の裏面に形成されて該集電電極7と電気的に接続されたAg等からなる取出電極8とで構成されている。そして、半導体基板1で発生した電力は集電電極7に集電され、取出電極8によって電力を取り出している。
 次に、受光面電極3を形成するための本発明の導電性ペーストについて詳述する。
 本発明の導電性ペーストは、導電性粉末と、バインダ樹脂と、有機溶剤とを含有し、かつ融点が1000℃以下のアルカリ金属化合物を含んでいる。
 このように本発明の導電性ペーストは、アルカリ金属化合物を含ませることにより、導電性ペースト中にZnO等の無機酸化物やガラスフリットを含有させなくても、太陽電池作製時の焼成過程でファイヤースルーを生じさせることが可能となる。
 すなわち、従来では、ファイヤースルー性を向上させるためにZnO等の無機酸化物を相当量添加させていた。このため受光面電極3において導電性粉末に由来する金属成分の含有比率が低下し、その結果電極の比抵抗の増加を招いていた。
 しかるに、本発明者の研究結果により、アルカリ金属元素を含み、融点が低いアルカリ金属化合物にはファイヤースルー性を生じさせる特有の性質が存在することが判明した。
 そこで、本実施の形態では、融点が1000℃以下のアルカリ金属化合物を導電性ペースト中に含有させ、これによりファイヤースルー性を生じさせている。しかも、このアルカリ金属化合物によるファイヤースルー性の発生は、微少量の添加でよく、従来の無機酸化物のように相当量添加する必要はない。
 すなわち、本発明では、アルカリ金属化合物を微少量含有させるだけでファイヤースルー性を確保することが可能であることから、受光面電極3中における導電性粉末に由来する金属成分の含有比率を高くすることが可能となる。したがって、電極の比抵抗も低減することが可能となり、太陽電池の変換効率をより一層向上させることができる。
 導電性ペースト中に含まれるアルカリ金属化合物の含有量は、特に限定されるものではなく、上述したように微少量で所望のファイヤースルー性を確保することができる。ただし、アルカリ金属化合物の含有量が過剰になると電極の比抵抗が増加傾向になることから、2重量%(0重量%を含まず。)以下が好ましい。
 また、アルカリ金属化合物としては、融点が低く、アルカリ金属元素を含有していれば特に限定されるものではないが、融点が1000℃以下、好ましくは、融点が800℃以下、さらに好ましくは融点が400℃以下のアルカリ金属化合物を使用するのが好ましい。すなわち、融点が低くなると、アルカリ金属化合物は、乾燥時乃至焼成時に半導体基板1のn型半導体層1aとの界面に流動する。したがって微少量のアルカリ金属化合物の含有でn型半導体層1aの表面には十分な量のアルカリ金属元素が存在することとなり、n型半導体層1aとの界面におけるファイヤースルー性を飛躍的に向上させることが可能となる。
 そして、このようなアルカリ金属化合物としては、アルカリ金属元素を含有したドデカン酸塩、オクタデカン酸塩、酢酸塩、エタン二酸塩等のカルボン酸塩、アミド類等を好んで使用することができる。
 ただし、融点が400℃を超える場合であっても、アルカリ金属元素を含有した炭酸塩やホウ酸塩は、微少量含有させるだけで良好なファイヤースルー性を確保することが可能である。
 尚、アルカリ金属元素としては、特に限定されるものではなく、Li、K、Na等を使用することができるが、より小さな接触抵抗Rcを得る観点からは、Liを好んで使用することができる。
 また、導電性粉末としては、良好な導電性を有する金属粉であれば特に限定されるものではないが、焼成処理を大気中で行った場合であっても酸化されることなく良好な導電性を維持することができるAg粉末を好んで使用することができる。尚、この導電性粉末の形状も、特に限定されるものではなく、例えば、球形状、扁平状、不定形形状、或いはこれらの混合粉であってもよい。
 また、導電性粉末の平均粒径も、特に限定されるものではないが、導電性粉末と半導体基板1との間で、所望の接触点を確保する観点からは、球形粉換算で、1.0~5.0μmが好ましい。
 導電性ペーストに含有されるバインダ樹脂としては、特に限定されるものではなく、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アクリル樹脂、アルキド樹脂、又はこれらの組み合わせを使用することができる。
 また、有機溶剤についても特に限定されるものではなく、α―テルピネオール、キシレン、トルエン、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート等を単独、或いはこれらを組み合わせて使用することができる。
 そして、バインダ樹脂と有機溶剤とは、例えば体積比率で、1~3:7~9となるように調製され、これにより有機ビヒクルが作製される。
 尚、本発明の導電性ペーストは、ガラスフリットを含有しなくても所期の作用効果を奏することができるが、受光面電極3と半導体基板1との密着性を向上させるためにガラスフリットを含有させてもよい。この場合、ガラスフリットとしては、特に限定されるものではないが、環境面を考慮し、鉛を含まないSi-B-Bi系ガラスフリット等の無鉛ガラスフリットを使用するのが好ましい。
 また、電極の比抵抗が問題にならない範囲であれば、無機酸化物を添加してもよい。
 そして、この導電性ペーストは、導電性粉末、有機ビヒクル、必要に応じて各種添加剤を所定の混合比率となるように秤量して混合し、三本ロールミル等を使用して分散・混練することにより、容易に製造することができる。
 このように本実施の形態は、Ag粉末等の導電性粉末と、バインダ樹脂と、溶剤とを含有し、かつ、融点が1000℃以下のアルカリ金属化合物を含んでいるので、無機酸化物を添加しなくてもファイヤースルーを生じさせることができる。しかも、受光面電極3中の導電性粉末の含有比率を増加させることができることから、電極の比抵抗の低下が可能となり、これにより太陽電池の変換効率を向上させることが可能となる。
 また、アルカリ金属化合物は、融点が800℃以下、特に400℃以下とした場合は、アルカリ金属化合物の融点が低くなることから、乾燥時乃至焼成時に容易にn型半導体層1aとの界面を流動する。したがって微少量の添加であってもアルカリ金属に特有のファイヤースルー性を十分に生じさせることが可能となる。
 また、アルカリ金属化合物が、カルボン酸塩及びアミン類のうちのいずれかを含むことにより、より一層良好なファイヤースルー性を得ることが可能となる。
 また、アルカリ金属化合物が、炭酸塩及びホウ酸塩のうちのいずれか一方を含む場合は、比較的融点が高くなっても微少量の添加で所望のファイヤースルー性とライン抵抗の低い太陽電池電極用導電性ペーストを実現することが可能となる。
 また、アルカリ金属元素が、リチウムである場合は、より一層良好なファイヤースルー性と低比抵抗の可能な導電性ペーストを実現することが可能となる。
 そして、半導体基板1と受光面電極3との導通性が良好で比抵抗が低く、変換効率の良好な太陽電池を得ることができる。
 尚、本発明は上記実施の形態に限定されるものではない。また、導電性ペースト中には、必要に応じて少量のフタル酸ジ2-エチルヘキシル、フタル酸ジブチル等の可塑剤を1種又はこれらの組み合わせを添加するのも好ましい。また、脂肪酸アマイドや脂肪酸等のレオロジー調整剤を添加するのも好ましく、さらにはチクソトロピック剤、増粘剤、分散剤などを添加してもよい。
 次に、本発明の実施例を具体的に説明する。
〔導電性ペーストの作製〕
 (試料番号1~10、13、15、16)
 導電性粉末として平均粒径が1.0μmの球形Ag粉末を用意し、また表1に示す添加物を用意した。
 次いで、有機ビヒクルを作製した。すなわち、バインダ樹脂としてエチルセルロース樹脂10重量%、有機溶剤としてテキサノール90重量%となるようにエチルセルロース樹脂とテキサノールとを混合し、有機ビヒクルを作製した。
 そして、Ag粉末が80.0重量%、添加物が0.2重量%、有機ビヒクルが19.8重量%となるように配合し、プラネタリーミキサーで混合した後、三本ロールミルで混練し、これにより試料番号1~10、13、15、及び16の導電性ペーストを作製した。
 (試料番号11)
 平均粒径が1.0μmの球形Ag粉末、及び添加物としてのドデカン酸リチウムに加え、Si-B-Bi系無鉛ガラスフリットを用意した。
 そして、上述と同様にして有機ビヒクルを作製し、次いで、Ag粉末が80.0重量%、添加物が0.2重量%、Si-B-Bi系無鉛ガラスフリットが2重量%、有機ビヒクルが17.8重量%となるように配合し、プラネタリーミキサーで混合した後、三本ロールミルで混練し、これにより試料番号11の導電性ペーストを作製した。
 (試料番号12)
 平均粒径1.0μmの球形Ag粉末が80重量%、有機ビヒクルが20重量%となるように配合し、アルカリ金属化合物を添加しなかった以外は、上述と同様にして試料番号12の導電性ペーストを作製した。
 (試料番号14)
 平均粒径1.0μmの球形Ag粉末が80重量%、添加物である酸化亜鉛が4.6重量%、有機ビヒクルが15.6重量%となるように配合した以外は、上述と同様にして試料番号14の導電性ペーストを作製した。
 (試料番号17)
 平均粒径1.0μmの球形Ag粉末が80重量%、Si-B-Bi-Li系無鉛ガラスフリットが2.0重量%、有機ビヒクルが18.0重量%となるように配合し、アルカリ金属化合物を添加しなかった以外は、上述と同様にして試料番号17の導電性ペーストを作製した。
 (試料番号18)
 平均粒径1.0μmの球形Ag粉末が80重量%、Si-B-Bi系無鉛ガラスフリットが2.0重量%、有機ビヒクルが18.0重量%となるように配合し、アルカリ金属化合物を添加しなかった以外は、上述と同様にして試料番号18の導電性ペーストを作製した。
〔融点の測定〕
 試料の作製に使用した添加物について、TG-DTA(熱重量-示差熱分析装置)を使用して熱分析を行い、融点を測定した。すなわち、アルミナ製容器に試料5mgを収容し、標準試料にαアルミナを使用し、流量100mL/分で測定装置内に空気を供給しながら、該測定装置を1分間に20℃上昇するような焼成プロファイルで加熱し、温度に対する重量変化からTG曲線及びDTA曲線を作成した。そして斯かるTG曲線及びDTA曲線から各添加物の融点を測定した。
〔試料の評価〕
 図4に示すように反射防止膜上に所定の電極パターンを作製し、TLM(Transmission Line Model)法により接触抵抗Rcを求めた。
 すなわち、横Xが50mm、縦Yが50mm、厚みTが0.2mmの多結晶のSi系半導体基板11の表面全域に膜厚0.1μmの反射防止膜12をプラズマ化学気相成長法(PECVD)で形成した。
 ここで、反射防止膜12の材料種としては、試料番号10はTiO2、その他はSiNXを使用した。尚、このSi系半導体基板11は、p型Si系半導体層の上面にn型Si系半導体層が形成されている。
 次いで、試料番号1~18の各導電性ペーストを使用してスクリーン印刷を行い、所定パターンを有する膜厚20μmの導電膜を作製した。次いで、各試料を温度150℃に設定したオーブン中に入れて導電膜を乾燥させた。
 その後、ベルト式近赤外炉(デスパッチ社製、CDF7210)を使用し、試料が入口~出口間を約1分で搬送するように搬送速度を調整し、大気雰囲気下、焼成最高温度750℃で焼成し、電極13a~13fが形成された試料番号1~18の試料を作製した。
 ここで、各電極13a~13fの距離L1~L5を測定したところ、電極13aと電極13bとの間の距離L1は200μm、電極13bと電極13cとの間の距離L2は400μm、電極13cと電極13dとの間の距離L3は600μm、電極13dと電極13eとの間の距離L4は800μm、電極13eと電極13fとの間の距離L5は1000μmであった。また、電極の長さZはいずれも30mmであった。
 次いで、試料番号1~18の各試料について、TLM法を使用して接触抵抗Rcを求めた。
 このTLM法は、薄膜試料の接触抵抗を評価する方法として広く知られており、伝送線理論を使用し、電極と下層の半導体基板をいわゆる伝送線回路と等価と考えて接触抵抗Rcを算出する。すなわち、電極13a~13fの長さZ、n型Si系半導体層のシート抵抗RSH、電極間距離L、電極間抵抗Rとの間には、数式(1)が成立する。
 R=(L/Z)×RSH+2Rc・・・(1)
 数式(1)から明らかなように、電極間抵抗Rと電極間距離Lとは直線関係を有する。したがって、電極間距離Ln(n=1~5)における各抵抗Rを測定し、Lを0に外挿することによって2Rcを求め、この2Rcから接触抵抗Rcを算出することができる。
 そこで、本実施例では、電極間距離Lnにおける各抵抗Rを測定し、試料番号1~18の各試料について接触抵抗Rcを算出した。尚、n型Si系半導体層のシート抵抗RSHは、上記の数式(1)から導き出される直線について、横軸をL、縦軸をRとしたときの傾きから算出できる。ここでは30Ω/cmであった。
 また、試料番号1~18の各試料について、長さ30mm、幅200μmの電極のライン抵抗を測定した。そして、該ライン抵抗を、長さで除算し、断面積を乗算することにより、電極の比抵抗を測定した。尚、ライン抵抗は、デジタルボルトメーターを用いて測定し、電極の断面積は接触式表面粗さ測定機を用いて測定した。
 表1は、試料番号1~18の導電性ペーストの仕様、接触抵抗Rc及び電極の比抵抗を示している。
Figure JPOXMLDOC01-appb-T000001
 試料番号12は、電極13a~13fがAgのみで形成され、アルカリ金属化合物が含有されていないため、電極の比抵抗は低いものの、ファイヤースルーが生じず、接触抵抗Rcが過度に高くなり、接触抵抗Rcを測定することができなかった。
 試料番号13も、接触抵抗Rcを測定することができなかった。これは添加物として酸化亜鉛を含有しているものの、含有量が0.2重量%であるため、ファイヤースルーが生じなかったためと思われる。
 試料番号14は、接触抵抗Rcは2.5Ωと低いものの、電極の比抵抗が6.60μΩ・cmと高くなった。これは酸化亜鉛の含有量を4.6重量%に増量したため、ファイヤースルー性は良好で接触抵抗Rcは低くなったが、Agの含有量が相対的に低くなり、このため比抵抗が高くなったものと思われる。
 試料番号15は、電極の比抵抗は5.28μΩ・cmと良好であったが、接触抵抗Rcが4532Ωと極端に高くなった。これは添加物としてカルボン酸塩を含有させているものの、該カルボン酸塩にはアルカリ金属元素が含有されていないため、ファイヤースルー性に劣る結果になったものと思われる。
 試料番号16は、電極の比抵抗は3.96μΩ・cmと良好であったが、試料番号15と同様、カルボン酸塩にアルカリ金属元素を含有しておらず、このため接触抵抗Rcが770Ωと高くなった。
 これに対し試料番号1~11は、いずれも0.2重量%と微少量ではあるが、融点が1000℃以下のアルカリ金属化合物を含んでいるので、接触抵抗Rcは低く、ファイヤースルー性が良好で、かつ電極の比抵抗が低くなることが分かった。
 また、カルボン酸リチウムを含有した試料番号4~7、10、11は、接触抵抗Rcが7Ω以下となり、格別に良好な結果が得られることが分かった。
 また、試料番号7に示すように、リチウムを含有していればアミン類であっても、10Ω以下の良好な接触抵抗Rcが得られることが分かった。
 また、試料番号8、9に示すように、リチウムを含有していれば炭酸塩、ホウ酸塩であっても、30Ω以下の良好な接触抵抗Rcが得られることが分かった。
 また、試料番号5と試料番号10との対比から明らかなように、本発明の添加物を微少量含有させることにより、反射防止膜の種類とは無関係に、所望のファイヤースルーを行うことができ、良好な接触抵抗Rcが得られ、半導体基板-電極間は良好なオーミック接触が得られた。
 また、試料番号5と試料番号11との対比から明らかなように、半導体基板11との密着性を付与する為に導電性ペースト中にガラスフリットを含有させても、接触抵抗Rcや電極の比抵抗に殆ど影響を及ぼさず、所望の良好なオーミック接触が得られることが確認された。
 尚、試料番号17、18は、アルカリ金属元素としてのLiの含有形態を調べたものである。この試料番号17と試料番号18との対比から明らかなように、ガラスフリット自体がファイヤースルー性を有することから、両者共、接触抵抗Rcは100Ω以下になったが、Si-B-Bi系無鉛ガラスフリットの方が、Liを含有したSi-B-Bi-Li系無鉛ガラスフリットよりも接触抵抗Rcが低くなった。すなわち、ガラスフリット中にLiが含有されていても、Liによる接触抵抗Rcの低減効果は生じず、別途添加物として導電性ペースト中に添加することにより、接触抵抗Rcの低減効果が生じることが確認された。
 図5は、試料番号4~9の各試料について、融点Tmと接触抵抗Rcとの関係をプロットした図であり、横軸が融点Tm(℃)、縦軸が接触抵抗Rc(Ω)である。
 この図5から明らかなように、融点Tmが低くなると接触抵抗Rcも低くなり、特に、融点Tmは800℃以下、更には400℃以下が好ましいことが分かる。
 アルカリ金属化合物としてドデカン酸リチウムを使用し、ドデカン酸リチウムの含有量が異なる試料番号21~24の導電性ペーストを作製した。尚、試料番号22は、実施例1の試料番号5と同一の導電性ペーストである。
 次いで、試料番号21~24の各試料について、実施例1と同様の方法・手順で接触抵抗Rc及び電極の比抵抗を求めた。
 表2は試料番号21~24の各導電性ペーストに含有されるドデカン酸リチウムの融点と含有量、及び測定結果を示している。
Figure JPOXMLDOC01-appb-T000002
 この表2から明らかなように、ドデカン酸リチウムの含有量を増加させた場合、接触抵抗Rcは、殆ど変動しないが、電極の比抵抗は増加傾向となる。したがって、電極の比抵抗を考慮すると、ドデカン酸リチウムの含有量は2重量%以下が好ましいことが分かった。
 ファイヤースルー性が良好で電極の比抵抗が低い導電性ペーストを使用し、変換効率の高い太陽電池を実現する。
 1  半導体基板
 2  反射防止膜
 3  受光面電極(電極)

Claims (9)

  1.  太陽電池の電極を形成するための導電性ペーストであって、
     導電性粉末と、バインダ樹脂と、溶剤とを含有し、
     かつ、融点が1000℃以下のアルカリ金属化合物を含んでいることを特徴とする導電性ペースト。
  2.  前記アルカリ金属化合物は、融点が800℃以下であることを特徴とする請求項1記載の導電性ペースト。
  3.  前記アルカリ金属化合物は、融点が400℃以下であることを特徴とする請求項1又は請求項2記載の導電性ペースト。
  4.  前記アルカリ金属化合物は、カルボン酸塩及びアミン類のうちの少なくともいずれか一方を含むことを特徴とする請求項1乃至請求項3のいずれかに記載の導電性ペースト。
  5.  前記アルカリ金属化合物は、炭酸塩及びホウ酸塩のうちの少なくともいずれか一方を含むことを特徴とする請求項1記載の導電性ペースト。
  6.  前記アルカリ金属化合物に含有されるアルカリ金属元素は、リチウムであることを特徴とする請求項1乃至請求項5のいずれかに記載の導電性ペースト。
  7.  前記アルカリ金属化合物は、含有量が2重量%以下(0重量%を含まず。)であることを特徴とする請求項1乃至請求項6のいずれかに記載の導電性ペースト。
  8.  前記導電性粉末が、Ag粉末であることを特徴とする請求項1乃至請求項7のいずれかに記載の導電性ペースト。
  9.  半導体基板の一方の主面に反射防止膜及び該記反射防止膜を貫通する電極が形成され、
     前記電極が、請求項1乃至請求項8のいずれかに記載の導電性ペーストが焼結されてなることを特徴とする太陽電池。
PCT/JP2012/060826 2011-05-26 2012-04-23 導電性ペースト及び太陽電池 WO2012160921A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101117446A TW201301528A (zh) 2011-05-26 2012-05-16 導電性糊及太陽能電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-118074 2011-05-26
JP2011118074 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012160921A1 true WO2012160921A1 (ja) 2012-11-29

Family

ID=47217005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060826 WO2012160921A1 (ja) 2011-05-26 2012-04-23 導電性ペースト及び太陽電池

Country Status (2)

Country Link
TW (1) TW201301528A (ja)
WO (1) WO2012160921A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115873A (ja) * 2014-12-17 2016-06-23 京都エレックス株式会社 太陽電池電極形成用導電性ペースト、並びに、これを用いた太陽電池素子および太陽電池モジュール
JPWO2014098016A1 (ja) * 2012-12-18 2017-01-12 PVG Solutions株式会社 太陽電池セル及びその製造方法
US10458004B2 (en) 2013-04-25 2019-10-29 Dowa Electronics Materials Co., Ltd. Silver-bismuth powder, conductive paste and conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122806A1 (ja) * 2008-03-31 2009-10-08 三菱電機株式会社 低温焼成セラミック回路基板
WO2010016186A1 (ja) * 2008-08-07 2010-02-11 京都エレックス株式会社 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法
JP2010526414A (ja) * 2007-04-25 2010-07-29 フエロ コーポレーション 銀及びニッケル、もしくは、銀及びニッケル合金からなる厚膜導電体形成、及びそれから作られる太陽電池
JP2011077222A (ja) * 2009-09-30 2011-04-14 Hitachi Chem Co Ltd 太陽電池セル,電子部品及び導電性ペースト

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010526414A (ja) * 2007-04-25 2010-07-29 フエロ コーポレーション 銀及びニッケル、もしくは、銀及びニッケル合金からなる厚膜導電体形成、及びそれから作られる太陽電池
WO2009122806A1 (ja) * 2008-03-31 2009-10-08 三菱電機株式会社 低温焼成セラミック回路基板
WO2010016186A1 (ja) * 2008-08-07 2010-02-11 京都エレックス株式会社 太陽電池素子の電極形成用導電性ペースト及び太陽電池素子並びにその太陽電池素子の製造方法
JP2011077222A (ja) * 2009-09-30 2011-04-14 Hitachi Chem Co Ltd 太陽電池セル,電子部品及び導電性ペースト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014098016A1 (ja) * 2012-12-18 2017-01-12 PVG Solutions株式会社 太陽電池セル及びその製造方法
US10458004B2 (en) 2013-04-25 2019-10-29 Dowa Electronics Materials Co., Ltd. Silver-bismuth powder, conductive paste and conductive film
JP2016115873A (ja) * 2014-12-17 2016-06-23 京都エレックス株式会社 太陽電池電極形成用導電性ペースト、並びに、これを用いた太陽電池素子および太陽電池モジュール

Also Published As

Publication number Publication date
TW201301528A (zh) 2013-01-01

Similar Documents

Publication Publication Date Title
EP2903034B1 (en) Conductive paste and solar cell
JP5278707B2 (ja) Ag電極ペースト、太陽電池セルおよびその製造方法
JP6735046B2 (ja) 太陽電池電極形成用導電性ペースト
JP5590191B2 (ja) 導電性組成物の製造方法
WO2016111299A1 (ja) 導電性組成物、半導体素子および太陽電池素子
EP2742534A1 (en) Aluminium paste with no or poor fire -through capability and use thereof for back electrodes of passivated emitter and rear contact silicon solar cells
JP2013519243A (ja) Mwtシリコン太陽電池の製造方法
WO2014045900A1 (ja) 導電性ペースト及び太陽電池
JP5397793B2 (ja) 導電性ペースト及び太陽電池
CN102762509B (zh) 低熔点玻璃组合物及使用其的导电性糊剂材料
JP6067727B2 (ja) 導電性ペースト及び太陽電池
WO2012111478A1 (ja) 導電性ペースト及び太陽電池
WO2014178419A1 (ja) 太陽電池ならびに太陽電池のアルミニウム電極形成用ペースト組成物
WO2012160921A1 (ja) 導電性ペースト及び太陽電池
JP2017092253A (ja) 導電性組成物
JP2017092251A (ja) 導電性組成物
JP6084270B1 (ja) 導電性組成物
JP5403304B2 (ja) 導電性ペースト、太陽電池、及び太陽電池の製造方法
JP2011233548A (ja) 導電性ペースト及び太陽電池
WO2013080750A1 (ja) 太陽電池とこれに用いるペースト材料
JP2014060262A (ja) 導電性ペースト及び太陽電池
JP2014060260A (ja) 導電性ペースト及び太陽電池
JP2012074656A (ja) 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池
JP2015032645A (ja) 太陽電池モジュール
JP2015026718A (ja) 太陽電池セル用電極、及び太陽電池セル用電極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12788878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP