WO2021159499A1 - 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构 - Google Patents

用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构 Download PDF

Info

Publication number
WO2021159499A1
WO2021159499A1 PCT/CN2020/075351 CN2020075351W WO2021159499A1 WO 2021159499 A1 WO2021159499 A1 WO 2021159499A1 CN 2020075351 W CN2020075351 W CN 2020075351W WO 2021159499 A1 WO2021159499 A1 WO 2021159499A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
solar cell
heterojunction solar
metal salt
cell according
Prior art date
Application number
PCT/CN2020/075351
Other languages
English (en)
French (fr)
Inventor
陈星君
郭怀仁
Original Assignee
硕禾电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 硕禾电子材料股份有限公司 filed Critical 硕禾电子材料股份有限公司
Priority to CN202080092972.1A priority Critical patent/CN114946039A/zh
Priority to EP20918202.1A priority patent/EP4106013A4/en
Priority to PCT/CN2020/075351 priority patent/WO2021159499A1/zh
Publication of WO2021159499A1 publication Critical patent/WO2021159499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer

Definitions

  • the invention relates to a conductive paste, in particular to a conductive paste used in a heterojunction (HJT) solar cell, a heterojunction solar cell and an electrode structure.
  • HJT heterojunction
  • a solar cell is a device that converts sunlight energy into electrical energy. It generates electrons and holes by irradiating visible light on a substrate, and directs the electrons and holes through the positive and negative electrodes on both sides of the substrate to form an electric current.
  • Heterojunction solar cells are formed on the surface of the substrate with a transparent conductive oxide (TCO) on the entire surface, and then through the collector (metal) electrode to complete the current transmission and transportation, so how to further reduce the resistance of the electrode itself and increase its conductivity And reducing the contact resistance between the electrode and the TCO has become an important subject of current research.
  • TCO transparent conductive oxide
  • the present invention is directed to a conductive paste for heterojunction (HJT) solar cells, which contains IA or IIA metal salts, which can improve the conductivity of the electrode made from this paste and the relationship between the electrode and the TCO. Adhesion.
  • HJT heterojunction
  • the present invention is also directed to a heterojunction solar cell with electrodes with low resistivity and low contact resistivity, thereby improving the electrical connection of the electrodes and providing a high-efficiency solar cell.
  • the present invention is further directed to an electrode structure with excellent conductivity and adhesion.
  • a conductive paste for a heterojunction (HJT) solar cell includes: 75wt% to 97wt% of conductive particles, 2wt% to 20wt% of polymerizable resin, and 0.05wt% to 5wt% Metal salt.
  • the metal salt includes a group IA metal salt, a group IIA metal salt, or a combination thereof.
  • the above-mentioned metal salt includes an organic metal salt or an inorganic metal salt.
  • the organic metal salt includes a saturated aliphatic metal salt or an unsaturated aliphatic metal salt.
  • the above-mentioned saturated aliphatic metal salt includes cesium 2-ethylhexanoate, barium 2-ethylhexanoate, calcium 2-ethylhexanoate, cesium stearate, Potassium 2-ethylhexanoate or a combination thereof.
  • the above-mentioned unsaturated aliphatic metal salt includes cesium oleate, potassium oleate, lithium oleate, sodium oleate, cesium crotonate or a combination thereof.
  • the above-mentioned inorganic metal salt includes metal hydroxide, metal chloride, metal carbonate, or a combination thereof.
  • the above-mentioned metal hydroxide includes lithium hydroxide, potassium hydroxide, cesium hydroxide, barium hydroxide, or a combination thereof.
  • the above-mentioned metal chloride includes cesium chloride.
  • the aforementioned metal carbonate includes lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, barium carbonate, calcium carbonate, or a combination thereof.
  • the weight ratio of the metal salt to the polymerizable resin is 1.5-25.
  • the above-mentioned conductive particles include silver, copper, platinum, palladium, gold, tin, indium, aluminum, bismuth, nickel, zinc, or a combination thereof.
  • the above-mentioned conductive particles have an average particle diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the above-mentioned polymerizable resin includes a resin having a single or multiple epoxy groups, a resin having a hydroxyl group, or a combination thereof.
  • a solvent may be further included, and based on the total weight of the conductive paste, the content of the solvent is 1 wt% to 10 wt%.
  • the conductive paste according to an embodiment of the present invention may further include additives, and based on the total weight of the conductive paste, the content of the additives is less than 5 wt%.
  • the above-mentioned additives include a sensitizing agent, a coupling agent, a dispersant, a levelling agent, and a viscosity regulator. (viscosity adjuster), defoaming agent, thixotropic agent, stabilizer, surfactant, curing agent, rheology additive, Resin diluent or a combination thereof.
  • a heterojunction solar cell includes a substrate and an electrode.
  • the substrate includes at least one transparent conductive layer, the electrode is formed on the transparent conductive layer, and the electrode is formed by curing the conductive paste.
  • the electrode structure is formed by curing the aforementioned conductive paste.
  • the above-mentioned electrode structure is suitable for devices such as heterojunction solar cells and touch panels.
  • the curing temperature is, for example, 100°C to 350°C.
  • the curing time is, for example, 1 minute to 2 hours.
  • the conductive paste of the present invention contains specific components in a specific ratio range, and therefore can reduce the electrical resistivity of the electrode obtained by curing the conductive paste, thereby increasing the electrical conductivity. Furthermore, the contact resistance between the above-mentioned electrode and the transparent conductive layer can also be reduced. In addition, it is found through experiments that some conductive pastes also have the property of increasing the adhesion between the electrode and the transparent conductive layer.
  • the heterojunction solar cell having electrodes with the aforementioned low resistivity and low contact resistivity can also improve its efficiency.
  • the above-mentioned electrode structure can also be applied to other fields, such as touch panels.
  • FIG. 1 is a schematic cross-sectional view of a heterojunction solar cell according to an embodiment of the invention.
  • 104a, 104b transparent conductive layer
  • 106a, 106b electrodes
  • 110a, 110b i-type amorphous silicon layer
  • the conductive paste for heterojunction (HJT) solar cells includes: 75wt% to 97wt% of conductive particles, 2wt% to 20wt% of polymerizable resin and 0.05wt% to 5wt% of metal salt.
  • the metal salt includes a group IA metal salt, a group IIA metal salt, or a combination thereof.
  • the metal salt includes a group IA metal salt, a group IIA metal salt, or a combination thereof. Therefore, the metal ions contained in the metal salt include lithium (Li + ), sodium (Na + ), potassium (K + ), rubidium (Rb + ), cesium (Cs + ), francium (Fr + ), beryllium (Be 2 + ), magnesium (Ma 2+ ), calcium (Ca 2+ ), strontium (Sr 2+ ), barium (Ba 2+ ), radium (Ra 2+ ).
  • the metal ions contained in the metal salt include lithium (Li + ), sodium (Na + ), potassium (K + ), rubidium (Rb + ), cesium (Cs + ), francium (Fr + ), beryllium (Be 2 + ), magnesium (Ma 2+ ), calcium (Ca 2+ ), strontium (Sr 2+ ), barium (Ba 2+ ), radium (Ra 2+ ).
  • the aforementioned metal salt may include an organic metal salt or an inorganic metal salt. If the organic metal salt is taken as an example, it can be exemplified but not limited to saturated aliphatic metal salt or unsaturated aliphatic metal salt, wherein the unsaturated aliphatic metal salt contains unit unsaturated aliphatic metal salt or polyunsaturated aliphatic metal Salt, in terms of the stability of the conductive paste, the saturated aliphatic metal salt has fewer reactive functional groups than the unsaturated aliphatic metal salt, and has more stable characteristics and a longer shelf life.
  • Saturated aliphatic metal salts include but are not limited to sodium acetate (Sodium Acetate), potassium acetate (Potassium Acetate), cesium acetate (Cesium Acetate), calcium acetate (Calcium Acetate), barium acetate (Barium Acetate), 2-ethylhexyl Cesium 2-Ethylhexanoate, Barium 2-Ethylhexanoate, Potassium 2-Ethylhexanoate, Calcium 2-Ethylhexanoate, Sodium Palmitate, Potassium Palmitate, Cesium Palmitate, Calcium Palmitate, Barium Palmitate, Cesium Stearate, Hard Calcium Stearate, Barium Stearate, Sodium Stearate, Potassium Stearate, etc.
  • saturated aliphatic metal salts Preferably, it is cesium 2-ethylhexanoate, barium 2-ethylhexanoate, calcium 2-ethylhexanoate, cesium stearate, potassium 2-ethylhexanoate, or a combination thereof.
  • Unsaturated aliphatic metal salts include, but are not limited to, Cesium Oleate, Potassium Oleate, Lithium Oleate, Magnesium Oleate, Sodium Oleate , Linoleic acid Cesium, Linoleic acid Potassium, Linoleic acid Lithium, Linoleic acid Magnesium, Linoleic acid Sodium , ⁇ -Linoleic acid Cesium, ⁇ -Linoleic acid Potassium, ⁇ -Linoleic acid Lithium, ⁇ -Linoleic acid ( ⁇ -Linoleic acid) Magnesium, ⁇ -Linoleic acid Sodium, Cesium Crotonate, Sodium Crotonate, etc. and their derivatives; more specifically, unsaturated aliphatic metal salts are preferred It is cesium oleate, potassium oleate, lithium oleate, sodium oleate, cesium crotonate or a combination thereof.
  • the above-mentioned inorganic metal salts may include, but are not limited to, metal hydroxides (M X OH), metal chlorides (M X Cl), metal carbonates (M X CO 3 ), or combinations thereof, where M is a group IA metal or IIA For group metals, x is 0.5-2.
  • Metal hydroxides include, but are not limited to, lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, francium hydroxide, beryllium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, hydrogen Barium oxide, radium hydroxide, etc.
  • the metal hydroxide is preferably lithium hydroxide, potassium hydroxide, cesium hydroxide, barium hydroxide or a combination thereof.
  • Metal chlorides include, but are not limited to, lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, francium chloride, beryllium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, Radium chloride, etc. and its derivatives; more specifically, the metal chloride is preferably cesium chloride.
  • Metal carbonates include, but are not limited to, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate, francium carbonate, beryllium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, radium carbonate, etc. and their derivatives; More specifically, the metal carbonate is preferably lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, barium carbonate, calcium carbonate, or a combination thereof.
  • Inorganic metal salts are not limited to aqueous solutions, but can also be dissolved in other solvents such as alcohols.
  • the organic metal salt can be obtained by directly using a commercially available product or by mixing and reacting the above-mentioned inorganic metal salt with an organic acid, and a solvent can be added and mixed at an appropriate time.
  • the organic acid may be an organic acid containing 2 to 26 carbons, and more preferably an organic acid containing 8 to 20 carbons.
  • the aforementioned organic acids include, but are not limited to, palmitic acid, acetic acid, and stearic acid of saturated fatty acids; or 2-ethylhexanoic acid, oleic acid, linoleic acid, ⁇ -linolenic acid, and crotonic acid of unsaturated fatty acids.
  • the content of the metal salt is between 0.05 wt% and 5 wt%, for example, the organic metal salt is between 0.1 wt% and 2 wt% or the inorganic metal salt is between 0.05 wt% and 1 wt%.
  • the weight ratio of the metal salt to the polymerizable resin ie, PHR
  • it is, for example, between 1.5-25.
  • the polymerizable resin will still exist in the cured product after the conductive paste is cured, and can be used as an adhesive for bonding the conductive particles and the conductive particles and/or the conductive particles and the underlying substrate.
  • the content of the polymerizable resin is between 2 wt% and 20 wt%, preferably between 2.5 wt% and 10 wt%, for example between 3 wt% and 5 wt%.
  • the polymerizable resin includes, but is not limited to, a resin having a single or multiple epoxy groups, a resin having a hydroxyl group, or a combination thereof.
  • thermosetting resins including but not limited to bisphenol A epoxy resins, bisphenol F epoxy resins, bisphenol A novolac epoxy resins, and phenol novolac epoxy resins.
  • O-cresol epoxy resin polyfunctional epoxy resin, polyurethane modified epoxy resin, silicon modified epoxy resin, etc.; if commercially available products are used, they can be selected from the BE series, BFE series, and BNE of Changchun Chemical Series, PNE series, CNE series, TFE series, etc.; or selected from Nanya Chemical's NPEL series, NPEF series, NPPN series, NPPN series, NPCN series, etc.
  • the above-mentioned resins with hydroxyl groups include but are not limited to polyvinyl butyral resin (PVB), polyvinyl alcohol (PVA), polymethyl methacrylate resin (PMMA), methyl methacrylate (MMA), phenol formaldehyde Resin (PF), terpene phenol resin, aldehyde ketone resin, etc.; if commercially available products are used, they can be selected from ⁇ PVB resin; or selected from the PF series of Changchun Chemical. Adding a resin with a hydroxyl group can increase the stability and conductivity of the conductive paste.
  • the conductive particles are, for example, silver, copper, platinum, palladium, gold, tin, indium, aluminum, bismuth, nickel, zinc or a combination thereof; preferably silver particles.
  • the conductive particles have, for example, an average particle diameter of 0.1 ⁇ m to 10 ⁇ m.
  • the shape of the conductive particles may include flakes, spheres, columnars, blocks, or unspecified shapes corresponding to the size. Based on the total weight of the conductive paste, the content of conductive particles is, for example, between 75 wt% and 97 wt%, preferably between 85 wt% and 95 wt%.
  • the conductive paste may further include a solvent, and based on the total weight of the conductive paste, the content of the solvent is, for example, 1 wt% to 10 wt%.
  • the role of the solvent is to dissolve the polymerizable resin and the metal salt, so that the conductive paste is uniformly mixed and has viscosity.
  • the solvent can include but is not limited to alcohol solvents, ether solvents, ester solvents, ether alcohol solvents, etc., such as diethyl Diethylene Glycol Monobutyl Ether (DB), Triethylene Glycol Monobutyl Ether (TB), Butyl Carbitol Acetate (BCA), Terpineol ( Terpineol, Texanol, Butyl Acetate, Diethylene glycol diethyl ether, 2-Butoxyethanol, or a combination thereof.
  • alcohol solvents such as diethyl Diethylene Glycol Monobutyl Ether (DB), Triethylene Glycol Monobutyl Ether (TB), Butyl Carbitol Acetate (BCA), Terpineol ( Terpineol, Texanol, Butyl Acetate, Diethylene glycol diethyl ether, 2-Butoxyethanol, or a combination thereof.
  • DB Diethyl Diethylene Glycol Monobutyl Ether
  • TB Triethylene Glycol Monobuty
  • the conductive paste may further include additives.
  • the role of the additive is to improve the properties of the conductive paste, and based on the total weight of the conductive paste, the content of the additive is, for example, below 5 wt%, such as 1 wt% to 5 wt%.
  • Additives include, but are not limited to, sensitizers, coupling agents, dispersants, leveling agents, viscosity regulators, defoamers, thixotropic agents, stabilizers, surfactants, hardeners, rheology additives, resin dilution Agent or a combination thereof.
  • Examples of the above coupling agent include, but are not limited to, silane coupling agents containing vinyl groups, epoxy groups, styrene, methacryloxy groups, acryloxy groups, amino groups, isocyanates, and the like. If you are using commercially available products, you can choose more confident KBM-1003, KBE-1003, KBM-403, KBE-403, KBM-503, KBE-502, etc.; or choose from Dow Corning's OFS-6300, OFS-6020, OFS-6030, OFS-6040, OFS-6011, etc.
  • the above-mentioned surfactants include, but are not limited to, fatty acids such as oleic acid, linoleic acid, ⁇ -linolenic acid, linseed oil, 2-ethylhexanoic acid, hydrogenated castor oil, castor oil, stearic acid, palmitic acid, and the like.
  • fatty acids such as oleic acid, linoleic acid, ⁇ -linolenic acid, linseed oil, 2-ethylhexanoic acid, hydrogenated castor oil, castor oil, stearic acid, palmitic acid, and the like.
  • the above-mentioned hardeners include, but are not limited to, imidazole hardeners, amine hardeners, anhydrides hardeners, and other epoxy hardeners; if commercially available products are used, they can be selected from Shikoku Formed 2E4MZ-CN, dicyandiamide, etc.
  • resin diluent examples include, but are not limited to, epoxy resin diluents such as hexanediol diglycidyl ether.
  • FIG. 1 is a schematic cross-sectional view of a heterojunction solar cell according to an embodiment of the present invention. Moreover, the drawings are for illustrative purposes only, and are not drawn in accordance with the original scale.
  • the heterojunction solar cell 100 includes a substrate 102 and electrodes 106 a and 106 b on both sides of the substrate 102.
  • the substrate 102 for example, is centered on an n-type single crystal silicon substrate 108, which has i-type amorphous silicon layers 110a and 110b on the upper and lower sides, and has a p+-type amorphous silicon layer 112 on the surface of the i-type amorphous silicon layer 110a.
  • the amorphous silicon layer 110b has an n+ type amorphous silicon layer 114 on the surface, a transparent conductive layer 104a on the surface of the p+ type amorphous silicon layer 112, and a transparent conductive layer 104b on the surface of the n+ type amorphous silicon layer 114.
  • the substrate 102 may also be composed of semiconductor materials with different conductivity or crystalline states, or the transparent conductive layer may be provided on only one side of the substrate 102, for example, used for back contact solar cells. Cell).
  • the transparent conductive layers 104a, 104b refer to films made of materials with excellent transparency and conductivity, such as metal particles, metal nanowires, conductive polymers, or carbon materials.
  • the metal particles are indium tin oxide ( ITO) or other suitable materials
  • the metal nanowires are, for example, silver nanowires or other suitable materials
  • the carbon materials are, for example, carbon nanotubes or other suitable materials such as graphene.
  • other functional film layers such as a passivation layer or an anti-reflection layer, can be added between the transparent conductive layer 104a and the n-type single crystal silicon substrate 108 as required.
  • the electrodes 106a and 106b are formed on the transparent conductive layers 104a and 104b, respectively.
  • the electrodes 106a and 106b are formed by curing the conductive paste in the previous embodiment, and the curing temperature may be about 100°C to 350°C, preferably 150°C to 300°C; The time can be from 1 minute to 2 hours, for example from 30 minutes to 1 hour.
  • the curing method may include, but is not limited to, hot air circulation curing or infrared curing. If it is hot-air circulation curing, the process parameters can be 150°C ⁇ 250°C and 20 minutes to 60 minutes; if it is infrared curing, the process parameters can be 200°C ⁇ 300°C and 1 minute to 10 minutes.
  • the transparent conductive layers 104a, 104b and the electrodes 106a, 106b can also be formed on the surface of other devices as electrode structures, such as touch panels. Since the electrodes 106a and 106b are formed by curing the conductive paste in the above embodiment, the resistivity of the electrodes 106a and 106b can be reduced, thereby increasing the conductivity. Moreover, the contact resistance between the electrode 106a and the transparent conductive layer 104a/the electrode 106b and the transparent conductive layer 104b will be reduced. Moreover, the adhesion between the transparent conductive layers 104a of the electrodes 106a and the transparent conductive layers 104b of the electrodes 106b may also be improved.
  • Polymeric resin 1 Novolac epoxy resin CNE200ELF sold by Changchun Chemical Industry.
  • Polymerizable resin 2 Novolac resin PF-5090 sold by Changchun Chemical Industry.
  • Conductive particles 1 Silver flake powder with an average particle size of 3 ⁇ m ⁇ 5 ⁇ m
  • Conductive particles 2 Spherical silver powder with an average particle size of 2 ⁇ m
  • Conductive particles 3 Spherical silver powder with an average particle size of 0.8 ⁇ m ⁇ 1 ⁇ m
  • Organometallic salt If the following organometallic salt is not added with isopropyl alcohol (IPA), it can be obtained by mixing with Thinky ARM-310 planetary mixer at 2000rpm for 5 minutes; if the selected fatty acid is solid at room temperature , Add isopropanol to dissolve it to promote the reaction, and after stirring at room temperature magnet for 4 hours, place it in a hot air circulating oven at 60°C for 48 hours to remove the isopropanol)
  • FAS-13 10 grams of silver acetate + 20 grams of stearic acid + 40 grams of isopropanol
  • the above-mentioned raw materials are mixed in advance with a planetary mixer for solvents, resins, metal salts and additives, and then conductive particles are added to the planetary mixer for uniform mixing, and then dispersed and ground with three drums.
  • Different conductive pastes are obtained.
  • the metal ion concentration of the mixed conductive paste the carbon dioxide and water that may be generated are included.
  • the metal ion concentration calculated according to the above conditions is slightly lower than the actual value, and it is recorded in Table 1.
  • the PHR in Tables 1 to 6 is the weight part of the metal salt per 100 parts by weight of the resin.
  • the conductive paste prepared in the above experimental example was screen-printed and coated on a single crystal silicon wafer substrate with SiNx on the surface and dried, and then cured by circulating hot air at a temperature of 200° C. for 30 minutes to obtain a thin wire electrode.
  • the pattern specification of the thin wire electrode is 50 ⁇ m in the middle of the line and 4.6cm in length, and the contact pads are 2mm ⁇ 2mm in size. Then use the HIOKI 3540 micro-resistance meter to measure the resistance of the thin wire electrode, and use the Zeta 20 3D stereo microscope.
  • the conductive paste prepared in the above experimental example was coated on the TCO of the substrate and dried, and then cured by circulating hot air at a temperature of 200° C. for 30 minutes to obtain an electrode pattern.
  • the electrode pattern is composed of 5 linear electrodes with a line width of 0.7mm and a length of 40mm, and the line spacing is 3.3mm. Then the resistance between the line electrodes of different spacings is measured with a HIOKI 3540 micro-resistance meter, and the resistance value is matched with the line
  • the distance between the type electrodes was determined by the transmission line model method (TLM) to obtain the contact resistivity ( ⁇ C ) with the substrate, and it is described in Table 7 below. Since the contact resistivity will have different values depending on the size and spacing of the test pattern, it tends to be presented here as relative values rather than actual values.
  • test electrode After the conductive paste prepared in the above experimental example was coated on the substrate and dried, it was cured by circulating hot air at a temperature of 200° C. for 30 minutes to obtain a test electrode.
  • the pattern specification of the test electrode is 5 cm in length and 0.2 cm in width, and then a tin-plated copper solder tape with a width of 0.9 mm is welded to the test electrode.
  • the model of the tension meter is AIKOH RX-20 electronic push-pull meter.
  • the test condition is to peel off the solder tape at an angle of 180° at a speed of 300mm/min and obtain a tensile force value, every 0.2 Record a value every second.
  • the obtained tensile force is the average value of 5 cm length electrodes, and the results are also described in Table 7 below.
  • the obtained tensile force value is greater than the minimum test value of the tensile machine (0.1N) is expressed by the measured value; the welding tape does not fall off directly during the tensile test, and the average peel strength is less than the minimum test value of the tensile machine is expressed by "+"; once pulled That is to say, those who fall off the entire welding strip are indicated by "-".
  • Comparative Example 2 has extremely poor adhesion to ITO, so the degree of contact resistivity cannot be measured.
  • the conductive paste containing the IA group metal salt or the IIA group metal salt can significantly reduce the resistivity ( ⁇ ) and contact resistivity ( ⁇ C ), even some conductive pastes containing IA or IIA metal salts can increase the adhesion of the electrodes made by them.
  • the conductive pastes of Experimental Examples 14 and 17 were coated on the surface of the ITO layer and cured by hot air circulation at a temperature of 200°C for 0.5 hours to form electrodes on the surface of the substrate.
  • the front electrode is composed of 5 main grids with a width of 0.7mm and 101 thin grids with a width of 28 ⁇ m;
  • the back electrode is composed of 5 main grids with a width of 0.9mm and 180 thin grids with a width of 70 ⁇ m.
  • the conductive paste of the present invention can make HJT solar cells have high open circuit voltage, high short circuit current, high fill factor and high photoelectric conversion efficiency.
  • the present invention provides a conductive paste for HJT solar cells, which contains components in a specific content range. Therefore, it is formed on the surface of the transparent conductive layer to improve the electrical properties of the electrode structure, thereby enhancing HJT solar cells.
  • the photoelectric conversion efficiency of the battery is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种用于异质结(HJT)太阳能电池的导电糊膏、异质结太阳能电池与电极结构。所述导电糊膏包括导电粒子、聚合性树脂与金属盐。以所述导电糊膏的总重量计,导电糊膏的含量为75 wt%~97 wt%、聚合性树脂的含量为2 wt%~20 wt%、金属盐的含量为0.05 wt%~5 wt%。所述金属盐包括IA族金属盐、IIA族金属盐或其组合。

Description

用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构 技术领域
本发明涉及一种导电糊膏,尤其涉及一种用于异质结(HJT)太阳能电池的导电糊膏、异质结太阳能电池与电极结构。
背景技术
太阳能电池是一种将太阳光能转换为电能的装置,其通过照射可见光于基板来产生电子与电洞,并通过基板两侧的正、负电极分别引导电子与电洞来形成电流。
异质结太阳能电池是在基板的表面形成有整面透明导电氧化物(TCO),再经由集线(金属)电极完成电流的传递与输送,因此如何进一步降低电极本身的电阻、增加其导电率并降低电极与TCO之间的接触电阻,已成为目前所需研究的重要课题。
发明内容
本发明是针对一种用于异质结(HJT)太阳能电池的导电糊膏,其中包含IA族或IIA族金属盐,能提高由此种浆料制得的电极的导电性质及电极与TCO的附着力。
本发明还针对一种异质结太阳能电池,具有低电阻率与低接触电阻率的电极,进而提高电极的电性连结并提供高效率的太阳能电池。
本发明进一步针对一种电极结构,具有优异的导电性及附着力。
根据本发明的一实施例,用于异质结(HJT)太阳能电池的导电糊膏,包括:75wt%~97wt%的导电粒子、2wt%~20wt%的聚合性树脂与0.05wt%~5wt%的金属盐。所述金属盐包括IA族金属盐、IIA族金属盐或其组合。
在根据本发明的一实施例的导电糊膏中,上述金属盐包括有机金属盐或无机金属盐。
在根据本发明的一实施例的导电糊膏中,上述有机金属盐包括饱和脂族金属盐或不饱和脂族金属盐。
在根据本发明的一实施例的导电糊膏中,上述饱和脂族金属盐包括2-乙基己酸铯、2-乙基己酸钡、2-乙基己酸钙、硬脂酸铯、2-乙基己酸钾或其组合。
在根据本发明的一实施例的导电糊膏中,上述不饱和脂族金属盐包括油酸铯、油酸钾、油酸锂、油酸钠、巴豆酸铯或其组合。
在根据本发明的一实施例的导电糊膏中,上述无机金属盐包括金属氢氧化物、金属氯化物、金属碳酸盐或其组合。
在根据本发明的一实施例的导电糊膏中,上述金属氢氧化物包括氢氧化锂、氢氧化钾、氢氧化铯、氢氧化钡或其组合。
在根据本发明的一实施例的导电糊膏中,上述金属氯化物包括氯化铯。
在根据本发明的一实施例的导电糊膏中,上述金属碳酸盐包括碳酸锂、碳酸钠、碳酸钾、碳酸铯、碳酸钡、碳酸钙或其组合。
在根据本发明的一实施例的导电糊膏中,上述金属盐与上述聚合性树脂的重量比为1.5~25。
在根据本发明的一实施例的导电糊膏中,上述导电粒子包括银、铜、铂、钯、金、锡、铟、铝、铋、镍、锌或其组合。
在根据本发明的一实施例的导电糊膏中,上述导电粒子具有0.1μm~10μm的平均粒径。
在根据本发明的一实施例的导电糊膏中,上述聚合性树脂包括具有单个或多个环氧基团的树脂、具有羟基的树脂或其组合。
在根据本发明的一实施例的导电糊膏中,还可包括溶剂,且以导电糊膏的总重量计,所述溶剂的含量为1wt%~10wt%。
在根据本发明的一实施例的导电糊膏中,还可包括添加剂,且以导电糊膏的总重量计,所述添加剂的含量在5wt%以下。
在根据本发明的一实施例的导电糊膏中,上述添加剂包括敏化剂(sensitizing agent)、偶联剂(coupling agent)、分散剂(dispersant)、均化剂(levelling agent)、黏度调节剂(viscosity adjuster)、消泡剂(defoaming agent)、触变剂(thixotropic agent)、稳定剂(stabilizer)、表面活性剂(surfactant)、硬化剂(curing agent)、流变助剂(Rheology additive)、树脂稀释剂或其组合。
根据本发明的另一实施例,异质结太阳能电池包括基板与电极。基板包括至少一透明导电层,电极则形成于透明导电层上,且所述电极为固化上述导电糊膏所形成。
根据本发明的再一实施例,电极结构是由上述导电糊膏固化所形成。
在根据本发明的再一实施例的电极结构中,上述电极结构适用于异质结太阳能电池、触控面板等装置。
在根据本发明的再一实施例的电极结构中,所述固化的温度例如100℃~350℃。
在根据本发明的再一实施例的电极结构中,所述固化的时间例如1分钟至2小时。
基于上述,本发明的导电糊膏包含特定比例范围的特定成分,因此能降低以此种导电糊膏固化得到的电极的电阻率,进而增加导电率。而且,在上述电极与透明导电层之间的接触电阻也能被降低。此外,经实验发现部分导电糊膏还具有增加电极与透明导电层之间的附着性的特性。具有上述低电阻率与低接触电阻率的电极的异质结太阳能电池也因此能提高其效率。另外,上述电极结构也可应用于其他领域中,如触控面板等。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1为依照本发明的一实施例的一种异质结太阳能电池的剖面示意图。
附图标号说明
100:异质结太阳能电池;
102:基板;
104a、104b:透明导电层;
106a、106b:电极;
108:n型单晶硅基板;
110a、110b:i型非晶硅层;
112:p+型非晶硅层;
114:n+型非晶硅层。
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。
的用于异质结(HJT)太阳能电池的导电糊膏,包括:75wt%~97wt%的导电粒子、2wt%~20wt%的聚合性树脂与0.05wt%~5wt%的金属盐。所述金属盐包括IA族金属盐、IIA族金属盐或其组合。以下将针对本发明的用于HJT太阳能电池的导电糊膏中的各成分进行详细说明。
〈金属盐〉
在本实施例中,金属盐包括IA族金属盐、IIA族金属盐或其组合。因此,金属盐内所含金属离子包括锂(Li +)、钠(Na +)、钾(K +)、铷(Rb +)、铯(Cs +)、钫(Fr +)、铍(Be 2+)、镁(Ma 2+)、钙(Ca 2+)、锶(Sr 2+)、钡(Ba 2+)、镭(Ra 2+)。
上述金属盐可包括有机金属盐或无机金属盐。若以有机金属盐为例,则可列举但不限于饱和脂族金属盐或不饱和脂族金属盐,其中不饱和脂族金属盐又包含单元不饱和脂族金属盐或多元不饱和脂族金属盐,从导电糊膏的安定性来说,饱和脂族金属盐相较于不饱和脂族金属盐少了反应性官能基,拥有较稳定的特质及较长的保存期。饱和脂族金属盐可列举但不限于醋酸钠(Sodium Acetate)、醋酸钾(Potassium Acetate)、醋酸铯(Cesium Acetate)、醋酸钙(Calcium Acetate)、醋酸钡(Barium Acetate)、2-乙基己酸铯(Cesium2-Ethylhexanoate)、2-乙基己酸钡(Barium 2-Ethylhexanoate)、2-乙基己酸钾(Potassium 2-Ethylhexanoate)、2-乙基己酸钙(Calcium 2-Ethylhexanoate)、棕榈酸钠(Sodium Palmitate)、棕榈酸钾(Potassium Palmitate)、棕榈酸铯(Cesium Palmitate)、棕榈酸钙(Calcium Palmitate)、棕榈酸钡(Barium Palmitate)、硬脂酸铯(Cesium Stearate)、硬脂酸钙(Calcium Stearate)、硬脂酸钡(Barium Stearate)、硬脂酸钠(Sodium Stearate)、硬脂酸钾(Potassium Stearate)等及其衍生物;更具体而言,饱和脂族金属盐较佳为2-乙基己酸铯、2-乙基己酸钡、2-乙基己酸钙、硬脂酸铯、2-乙基己酸钾或其组合。不饱和脂族金属盐可列举但不限于油酸铯(Cesium Oleate)、油酸钾(Potassium Oleate)、油酸锂(Lithium Oleate)、油酸镁(Magnesium Oleate)、油酸钠(Sodium  Oleate)、亚油酸铯(Linoleic acid Cesium)、亚油酸钾(Linoleic acid Potassium)、亚油酸锂(Linoleic acid Lithium)、亚油酸镁(Linoleic acid Magnesium)、亚油酸钠(Linoleic acid Sodium)、α-亚麻酸铯(α-Linoleic acid Cesium)、α-亚麻酸钾(α-Linoleic acid Potassium)、α-亚麻酸锂(α-Linoleic acid Lithium)、α-亚麻酸镁(α-Linoleic acid Magnesium)、α-亚麻酸钠(α-Linoleic acid Sodium)、巴豆酸铯(Cesium Crotonate)、巴豆酸钠(Sodium Crotonate)等及其衍生物;更具体而言,不饱和脂族金属盐较佳为油酸铯、油酸钾、油酸锂、油酸钠、巴豆酸铯或其组合。
上述无机金属盐可列举但不限于金属氢氧化物(M XOH)、金属氯化物(M XCl)、金属碳酸盐(M XCO 3)或其组合,其中M为IA族金属或IIA族金属,x则为0.5~2。金属氢氧化物可列举但不限于氢氧化锂、氢氧化钠、氢氧化钾、氢氧化铷、氢氧化铯、氢氧化钫、氢氧化铍、氢氧化镁、氢氧化钙、氢氧化锶、氢氧化钡、氢氧化镭等及其衍生物;更具体而言,金属氢氧化物较佳为氢氧化锂、氢氧化钾、氢氧化铯、氢氧化钡或其组合。金属氯化物可列举但不限于氯化锂、氯化钠、氯化钾、氯化铷、氯化铯、氯化钫、氯化铍、氯化镁、氯化钙、氯化锶、氯化钡、氯化镭等及其衍生物;更具体而言,金属氯化物较佳为氯化铯。金属碳酸盐可列举但不限于碳酸锂、碳酸钠、碳酸钾、碳酸铷、碳酸铯、碳酸钫、碳酸铍、碳酸镁、碳酸钙、碳酸锶、碳酸钡、碳酸镭等及其衍生物;更具体而言,金属碳酸盐较佳为碳酸锂、碳酸钠、碳酸钾、碳酸铯、碳酸钡、碳酸钙或其组合。无机金属盐不限于水溶液,也能溶于醇类等其他溶剂。
而且,有机金属盐可直接使用市售品或者利用上述无机金属盐与有机酸混合反应得到,且可适时添加溶剂进行混合。在一实施例中,有机酸可含2~26个碳的有机酸,更佳是含有8~20个碳的有机酸。前述有机酸可列举但不限于饱和脂肪酸类的棕榈酸、醋酸、硬脂酸;或者不饱和脂肪酸类的2-乙基己酸、油酸、亚油酸、α-亚麻酸、巴豆酸等。
以导电糊膏的总重量计,金属盐的含量是在0.05wt%~5wt%之间,例如有机金属盐是0.1wt%~2wt%之间或无机金属盐是0.05wt%~1wt%之间。若是以金属盐与聚合性树脂的重量比(即PHR)来看,例如是在1.5~25之间。
〈聚合性树脂〉
在本实施例中,聚合性树脂在导电糊膏固化后仍会存在于固化物中,其可作为黏结导电粒子与导电粒子以及/或者导电粒子与其下方基板的黏合剂。以导电糊膏的总重量计,聚合性树脂的含量是2wt%~20wt%之间,较佳是2.5wt%~10wt%之间,例如是3wt%~5wt%之间。更详细而言,聚合性树脂可列举但不限于具有单个或多个环氧基团的树脂、具有羟基的树脂或其组合。
上述具有单个或多个环氧基团的树脂是热固性树脂,可列举但不限于双酚A型环氧树脂、双酚F型环氧树脂、双酚A酚醛环氧树脂、苯酚醛环氧树脂、邻甲酚醛环氧树脂、多官能基环氧树脂、聚氨酯改性环氧树脂、硅改性环氧树脂等;若是使用市售品,则可选自长春化工的BE系列、BFE系列、BNE系列、PNE系列、CNE系列、TFE系列等;或选自南亚化工的NPEL系列、NPEF系列、NPPN系列、NPPN系列、NPCN系列等。
上述具有羟基的树脂可列举但不限于聚乙烯醇缩丁醛树脂(PVB)、聚乙烯醇(PVA)、聚甲基丙烯酸甲酯树脂(PMMA)、甲基丙烯酸甲酯(MMA)、苯酚甲醛树脂(PF)、萜烯酚醛树脂、醛酮树脂等;若是使用市售品,则可选自
Figure PCTCN2020075351-appb-000001
的PVB树脂;或选自长春化工的PF系列。添加具有羟基的树脂能增加导电糊膏的稳定性与导电性。
此外,除上述聚合性树脂之外,还可添加其他树脂,如三聚氰胺树脂、尿素甲醛树脂、聚酯树脂、醇酸树脂等,但本发明并不限于此。
〈导电粒子〉
在本实施例中,导电粒子例如银、铜、铂、钯、金、锡、铟、铝、铋、镍、锌或其组合;较佳为银粒子。导电粒子例如具有0.1μm~10μm的平均粒径。导电粒子的形状可包含片状、球形、柱状、块状或符合尺寸的无特定形状。以导电糊膏的总重量计,导电粒子的含量例如75wt%~97wt%之间,较佳是85wt%~95wt%之间。
〈溶剂〉
在本实施例中,导电糊膏还可包括溶剂,且以导电糊膏的总重量计,溶剂的含量例如1wt%~10wt%。溶剂的作用为溶解聚合性树脂与金属盐,以使导电糊膏均匀混合并具有粘度,溶剂可列举但不限于醇类溶剂、醚类溶剂、酯类溶剂、醚醇类溶剂等,例如二乙二醇单丁醚(Diethylene Glycol Monobutyl Ether,DB)、三乙二醇单丁醚(Triethylene glycol monobutyl ether,TB)、二 乙二醇丁醚醋酸酯(Butyl Carbitol Acetate,BCA)、松油醇(Terpineol)、Texanol、乙酸丁酯(Butyl Acetate)、二甘醇二乙醚(Diethylene glycol diethyl ether)、乙二醇单丁醚(2-Butoxyethanol)或其组合。
〈添加剂〉
在本实施例中,导电糊膏还可包括添加剂。添加剂的作用为改善导电糊膏的性质,且以导电糊膏的总重量计,添加剂的含量例如在5wt%以下,如1wt%~5wt%。添加剂可列举但不限于敏化剂、偶联剂、分散剂、均化剂、黏度调节剂、消泡剂、触变剂、稳定剂、表面活性剂、硬化剂、流变助剂、树脂稀释剂或其组合。
上述偶联剂可列举但不限于含乙烯基、环氧基、苯乙烯、甲基丙烯酰氧基、丙烯酰氧基、氨基、异氰酸盐等的硅烷偶联剂。若是使用市售品,则可选自信越的KBM-1003、KBE-1003、KBM-403、KBE-403、KBM-503、KBE-502等;或者选自道康宁的OFS-6300、OFS-6020、OFS-6030、OFS-6040、OFS-6011等。
上述表面活性剂可列举但不限于脂肪酸类的油酸、亚油酸、α-亚麻酸、亚麻油、2-乙基己酸、氢化蓖麻油、蓖麻油、硬脂酸、棕榈酸等。
上述硬化剂可列举但不限于咪唑(imidazole)型硬化剂、胺(amine)型硬化剂、酐类(anhydrides)硬化剂等的环氧树脂硬化剂;若是使用市售品,则可选自四国化成的2E4MZ-CN、双氰胺等。
上述树脂稀释剂可列举但不限于己二醇二缩水甘油醚等的环氧树脂稀释剂。
图1是依照本发明的一实施例的一种异质结太阳能电池的剖面示意图。而且,图式仅以说明为目的,并未依照原尺寸比例作图。
请参照图1,异质结太阳能电池100包括基板102与在基板102两面的电极106a、106b。基板102例如以n型单晶硅基板108为中心,其上下分别具有i型非晶硅层110a与110b,并在i型非晶硅层110a表面具有p+型非晶硅层112、在i型非晶硅层110b表面具有n+型非晶硅层114、在p+型非晶硅层112表面具有透明导电层104a、在n+型非晶硅层114表面具有透明导电层104b。然而,本发明并不限于此,基板102也可以由不同导电态或结晶态的半导体材料构成,或透明导电层可仅设置在基板102的一面,例如用于背接 触式太阳能电池(Back Contact Solar Cell)。
透明导电层104a、104b,指具有优异透明性及导电性材料所制成的薄膜,例如金属粒子、金属纳米线、导电性聚合物、或碳材料,具体范例例如金属粒子为铟锡氧化物(ITO)或其他适合的材料,金属纳米线例如为银纳米线或其他适合材料,碳材料例如为纳米碳管或石墨烯等其他适合材料。在另一实施例中,透明导电层104a与n型单晶硅基板108之间还可根据需求增加其他功能性膜层,譬如钝化层或抗反射层等。
电极106a和106b则分别形成于透明导电层104a与104b上。在本实施例中,电极106a和106b是经由固化上一实施例中的导电糊膏所形成的,且固化的温度可约为100℃~350℃,较佳为150℃~300℃;固化的时间可为1分钟至2小时,例如30分钟至1小时。另外,固化的方式可列举但不限于热风循环式固化或红外线固化。若为热风循环式固化,制程参数可为150℃~250℃以及20分钟至60分钟;若为红外线固化,制程参数可为200℃~300℃以及1分钟至10分钟。
在其他实施例中,上述透明导电层104a、104b与电极106a、106b也可形成于其他装置的表面作为电极结构,例如触控面板等。由于电极106a、106b是经由固化上述实施例中的导电糊膏所形成的,所以能降低电极106a、106b的电阻率,进而增加导电率。而且,在电极106a与透明导电层104a/电极106b与透明导电层104b之间的接触电阻都会被降低。而且,电极106a透明导电层104a之间以及电极106b透明导电层104b之间的附着性也有改善的机会。
以下列举实验来验证本发明的功效,但本发明并不局限于以下的内容。
〈原料〉
1.聚合性树脂
聚合性树脂1:长春化工所售的酚醛环氧树脂CNE200ELF。
聚合性树脂2:长春化工所售的线性酚醛树脂PF-5090。
2.导电粒子
导电粒子1:平均粒径为3μm~5μm的片状银粉
导电粒子2:平均粒径为2μm的球状银粉
导电粒子3:平均粒径为0.8μm~1μm的球状银粉
3-1.无机金属盐
AQS-1:10wt%的氢氧化钾水溶液
AQS-2:10wt%的氢氧化铯水溶液
AQS-3:10wt%的氢氧化钡水溶液
AQS-4:22.5wt%的氢氧化钾水溶液
AQS-5:22.5wt%的氢氧化铯水溶液
AQS-6:0.5wt%的氯化铯水溶液
AQS-7:40wt%的碳酸铯水溶液
3-2.有机金属盐(以下有机金属盐若未加异丙醇(IPA),则以Thinky ARM-310行星式搅拌机,转速2000rpm进行5分钟混合得到;若所选脂肪酸于室温下为固体时,另加异丙醇将其溶解以促进反应,并在室温磁石搅拌4小时后,置于热风循环烘箱60℃烘干48小时,以去除异丙醇)
FAS-1:10克碳酸锂+80克油酸
FAS-2:10克碳酸钾+40克油酸
FAS-3:10克碳酸铯+20克油酸
FAS-4:20克碳酸铯+10克油酸
FAS-5:20克碳酸铯+10克硬脂酸+30克异丙醇
FAS-6:20克碳酸铯+10克2-乙基己酸
FAS-7:10克碳酸铯+20克巴豆酸+30克异丙醇
FAS-8:10克碳酸钾+20克2-乙基己酸
FAS-9:30克碳酸钡+40克2-乙基己酸
FAS-10:10克碳酸钙+20克2-乙基己酸
FAS-11:油酸钠(97%),售自Sigma Aldrich
FAS-12:10克碳酸钠+50克油酸
FAS-13:10克醋酸银+20克硬脂酸+40克异丙醇
〈实验例〉
将上述原料根据表1~表6的比例先将溶剂、树脂、金属盐及添加剂以行星式搅拌机预先混合,再加入导电粒子重新以行星式搅拌机均匀混合,然后以三滚筒进行分散研磨,即可得到不同的导体浆料。计算混合后的导体浆料的金属离子浓度时,包含其可能产生的二氧化碳与水。而且,有添加异丙醇配制的导体浆料,计算金属离子浓度时,包含其可能产生的二氧化碳与水但 不含异丙醇。因此,据以上条件计算所得的金属离子浓度略低于实际值,一并将其记载于表1。
表1
Figure PCTCN2020075351-appb-000002
表1~6中的PHR是每100重量份的树脂所含的金属盐重量份。
表2
Figure PCTCN2020075351-appb-000003
Figure PCTCN2020075351-appb-000004
表3
Figure PCTCN2020075351-appb-000005
表4
Figure PCTCN2020075351-appb-000006
Figure PCTCN2020075351-appb-000007
表5
Figure PCTCN2020075351-appb-000008
表6
Figure PCTCN2020075351-appb-000009
〈电性分析〉
将上述实验例制备的导电糊膏网印涂布于表面为SiNx的单晶硅晶圆基板上并干燥后,再以热风循环200℃的温度持续30分钟进行固化得到细线电极。细线电极的图案规格是中间线段宽度50μm长度4.6cm,头尾接触垫(contact pad)为2mm×2mm大小,然后使用HIOKI 3540微电阻计测量细线电极电阻,并使用Zeta 20 3D立体显微镜量测细线电极截面积,以便通过“电阻率=细线电极电阻×细线电极截面积÷细线电极长度”的公式得到电阻率(ρ),并记载于下表7。
另外,将上述实验例制备的导电糊膏涂布于基板的TCO上并干燥后,再以热风循环200℃的温度持续30分钟进行固化得到电极图案。电极图案是由5条线宽为0.7mm长度为40mm的线型电极组成,且线距为3.3mm,然后以HIOKI 3540微电阻计测量不同间距线型电极之间的电阻后,电阻值搭配线型电极间距离,以传输线模型法(TLM)求得与基板的接触电阻率(ρ C),并记载于下表7。因接触电阻率会随测试图案的大小、间距等而有不同数值,所以此处 倾向以相对值而非实际值来呈现。
〈附着性分析〉
将上述实验例制备的导电糊膏涂布于基板上并干燥后,再以热风循环200℃的温度持续30分钟进行固化得到测试电极。测试电极的图案规格是长度5cm宽度0.2cm,然后将宽度为0.9mm的镀锡铜焊带焊接到测试电极上。将基板固定于拉力计平台上进行剥离强度的测试,其中拉力计型号是AIKOH RX-20电子式推拉力计,测试条件是以角度180°速度300mm/min剥离焊带并取得拉力值,每0.2秒纪录一个数值。所得拉力为5cm长度电极的平均值,结果同样记载于下表7。其中,所得拉力值大于拉力机最小测试值(0.1N)者以所测得数值表示;拉力测试时焊带未直接脱落,平均剥离强度小于拉力机最小测试值者以“+”表示;一经拉动即整条焊带脱落者以“-”表示。
表7
Figure PCTCN2020075351-appb-000010
Figure PCTCN2020075351-appb-000011
比较例2因对ITO的附着力极差,致无法量测其接触电阻率的程度。
从表7可得到,与不含金属盐或含其他族金属盐的导电糊膏相比,含有IA族金属盐或IIA族金属盐的导电糊膏能明显降低电阻率(ρ)与接触电阻率(ρ C),甚至有部分含有IA或IIA族金属盐的导电糊膏能增加其所制得的电极的附着性。
〈HJT太阳能电池效率〉
制作一个6英寸N型HJT太阳能基板,是将实验例14和17的导电糊膏涂布于ITO层表面,经由温度为200℃、时间为0.5小时的热风循环固化,于基板表面形成电极。正面电极是由5条宽0.7mm的主栅加上101条宽28μm的细栅所组成;背面电极是由5条宽0.9mm的主栅加上180条宽70μm的细栅所组成。
然后,进行光电转换效率的测试,并将测得的开路电压(V OC,open circuit voltage)、短路电流(I SC,short circuit current)、填充因子(FF,fill factor)以及光电转换效率(NCell)的结果记载于下表8。
表8
导电糊膏 V OC(V) I SC(A) FF(%) NCell
实验例14 0.7371 9.2944 81.73 22.92%
实验例17 0.7379 9.3321 82.06 23.13%
从表8可得到,本发明的导电糊膏可使HJT太阳能电池具有高开路电压、 高短路电流、高填充因子及高光电转换效率。
综上所述,本发明提供一种用于HJT太阳能电池的导电糊膏,其中包含特定含量范围的成分,因此将其形成于透明导电层表面,可改善电极结构的电性,进而提升HJT太阳能电池的光电转换效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (23)

  1. 一种用于异质结太阳能电池的导电糊膏,其特征在于,包括:
    75wt%~97wt%的导电粒子;
    2wt%~20wt%的聚合性树脂;以及
    0.05wt%~5wt%的金属盐,包括IA族金属盐、IIA族金属盐或其组合。
  2. 根据权利要求1所述的异质结太阳能电池的导电糊膏,其中所述金属盐包括有机金属盐或无机金属盐。
  3. 根据权利要求2所述的异质结太阳能电池的导电糊膏,其中所述有机金属盐包括饱和脂族金属盐或不饱和脂族金属盐。
  4. 根据权利要求3所述的异质结太阳能电池的导电糊膏,其中所述饱和脂族金属盐包括2-乙基己酸铯、2-乙基己酸钡、2-乙基己酸钙、硬脂酸铯、2-乙基己酸钾或其组合。
  5. 根据权利要求3所述的异质结太阳能电池的导电糊膏,其中所述不饱和脂族金属盐包括油酸铯、油酸钾、油酸锂、油酸钠、巴豆酸铯或其组合。
  6. 根据权利要求2所述的异质结太阳能电池的导电糊膏,其中所述无机金属盐包括金属氢氧化物、金属氯化物、金属碳酸盐或其组合。
  7. 根据权利要求6所述的异质结太阳能电池的导电糊膏,其中所述金属氢氧化物包括氢氧化锂、氢氧化钾、氢氧化铯、氢氧化钡或其组合。
  8. 根据权利要求6所述的异质结太阳能电池的导电糊膏,其中所述金属氯化物包括氯化铯。
  9. 根据权利要求6所述的异质结太阳能电池的导电糊膏,其中所述金属碳酸盐包括碳酸锂、碳酸钠、碳酸钾、碳酸铯、碳酸钡、碳酸钙或其组合。
  10. 根据权利要求1所述的异质结太阳能电池的导电糊膏,其中所述金属盐与所述聚合性树脂的重量比为1.5~25。
  11. 根据权利要求1所述的异质结太阳能电池的导电糊膏,其中所述导电粒子包括银、铜、铂、钯、金、锡、铟、铝、铋、镍、锌或其组合。
  12. 根据权利要求1所述的异质结太阳能电池的导电糊膏,其中所述导电粒子具有0.1μm~10μm的平均粒径。
  13. 根据权利要求1所述的异质结太阳能电池的导电糊膏,其中所述聚合性树脂包括具有单个或多个环氧基团的树脂、具有羟基的树脂或其组合。
  14. 根据权利要求1所述的异质结太阳能电池的导电糊膏,还包括溶剂,且以所述导电糊膏的总重量计,所述溶剂的含量为1wt%~10wt%。
  15. 根据权利要求1所述的异质结太阳能电池的导电糊膏,还包括添加剂,且以所述导电糊膏的总重量计,所述添加剂的含量在5wt%以下。
  16. 根据权利要求15所述的异质结太阳能电池的导电糊膏,其中所述添加剂包括敏化剂、偶联剂、分散剂、均化剂、粘度调节剂、消泡剂、触变剂、稳定剂、表面活性剂、硬化剂、流变助剂、树脂稀释剂或其组合。
  17. 一种异质结太阳能电池,其特征在于,包括:
    基板,所述基板包括至少一透明导电层;以及
    电极,形成于所述透明导电层上,且所述电极为固化根据权利要求1~16中任一所述的导电糊膏所形成。
  18. 根据权利要求17所述的异质结太阳能电池,其中所述固化的温度为100℃~350℃。
  19. 根据权利要求17所述的异质结太阳能电池,其中所述固化的时间为1分钟至2小时。
  20. 一种电极结构,其特征在于,是由根据权利要求1~16中任一所述的导电糊膏固化所形成。
  21. 根据权利要求20所述的电极结构,适用于异质结太阳能电池或触控面板。
  22. 根据权利要求20所述的电极结构,其中所述固化的温度为100℃~350℃。
  23. 根据权利要求20所述的电极结构,其中所述固化的时间为1分钟至2小时。
PCT/CN2020/075351 2020-02-14 2020-02-14 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构 WO2021159499A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080092972.1A CN114946039A (zh) 2020-02-14 2020-02-14 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构
EP20918202.1A EP4106013A4 (en) 2020-02-14 2020-02-14 CONDUCTIVE PASTE FOR HETEROJUNCTION SOLAR CELL, HETEROJUNCTION SOLAR CELL AND ELECTRODE STRUCTURE
PCT/CN2020/075351 WO2021159499A1 (zh) 2020-02-14 2020-02-14 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075351 WO2021159499A1 (zh) 2020-02-14 2020-02-14 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构

Publications (1)

Publication Number Publication Date
WO2021159499A1 true WO2021159499A1 (zh) 2021-08-19

Family

ID=77293115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075351 WO2021159499A1 (zh) 2020-02-14 2020-02-14 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构

Country Status (3)

Country Link
EP (1) EP4106013A4 (zh)
CN (1) CN114946039A (zh)
WO (1) WO2021159499A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530278A (zh) * 2022-03-22 2022-05-24 合肥中南光电有限公司 一种hjt电池用导电浆料及其生产工艺
CN116189958A (zh) * 2023-02-10 2023-05-30 河北光兴半导体技术有限公司 低温导电浆料组合物、低温导电浆料、导电涂层、电极和异质结太阳能电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226989A (zh) * 2012-01-30 2013-07-31 比亚迪股份有限公司 腐蚀性载体及制备方法、晶体硅太阳能电池正/背面银导电浆料及制备方法
US20130255766A1 (en) * 2012-03-30 2013-10-03 Jung-hwan Shin Conductive paste compositions and solar cells using the same
CN103915131A (zh) * 2013-01-04 2014-07-09 硕禾电子材料股份有限公司 用于太阳能电池的导电组合物
CN104599741A (zh) * 2015-01-30 2015-05-06 江苏欧耐尔新型材料有限公司 高方阻硅太阳能电池正面银电极浆料
CN104868011A (zh) * 2015-03-30 2015-08-26 无锡帝科电子材料科技有限公司 N型全铝背发射极太阳能电池的制作方法和该方法制备的太阳能电池
CN104882187A (zh) * 2015-03-23 2015-09-02 江西九鹏科技股份有限公司 一种聚噻吩基低密度复合导电浆料及其制备方法
CN105047253A (zh) * 2015-06-29 2015-11-11 青岛恩高运动控制技术有限公司 一种太阳能电池用浆料
CN109036622A (zh) * 2017-06-09 2018-12-18 硕禾电子材料股份有限公司 导电浆组成物及使用导电浆组成物的物件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239901B1 (en) * 1986-03-31 1992-11-11 Tatsuta Electric Wire & Cable Co., Ltd Conductive copper paste composition
EP2637215B1 (en) * 2008-08-07 2019-02-27 Kyoto Elex Co., Ltd. Conductive paste for formation of a solar cell element electrode, solar cell element, and manufacturing method for said solar cell element
JP2013500571A (ja) * 2009-07-28 2013-01-07 ドンジン セミケム カンパニー リミテッド 低温焼成用熱硬化性電極ペースト{thermosettingelectrodepastecompositionforlowtemperature}
JPWO2015118760A1 (ja) * 2014-02-06 2017-03-23 横浜ゴム株式会社 導電性組成物、太陽電池セルおよび太陽電池モジュール
CN107216041B (zh) * 2017-05-04 2020-09-25 无锡帝科电子材料股份有限公司 用于制备太阳能电池电极的玻璃粉料、包括其的糊剂组合物、太阳能电池电极及太阳能电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103226989A (zh) * 2012-01-30 2013-07-31 比亚迪股份有限公司 腐蚀性载体及制备方法、晶体硅太阳能电池正/背面银导电浆料及制备方法
US20130255766A1 (en) * 2012-03-30 2013-10-03 Jung-hwan Shin Conductive paste compositions and solar cells using the same
CN103915131A (zh) * 2013-01-04 2014-07-09 硕禾电子材料股份有限公司 用于太阳能电池的导电组合物
CN104599741A (zh) * 2015-01-30 2015-05-06 江苏欧耐尔新型材料有限公司 高方阻硅太阳能电池正面银电极浆料
CN104882187A (zh) * 2015-03-23 2015-09-02 江西九鹏科技股份有限公司 一种聚噻吩基低密度复合导电浆料及其制备方法
CN104868011A (zh) * 2015-03-30 2015-08-26 无锡帝科电子材料科技有限公司 N型全铝背发射极太阳能电池的制作方法和该方法制备的太阳能电池
CN105047253A (zh) * 2015-06-29 2015-11-11 青岛恩高运动控制技术有限公司 一种太阳能电池用浆料
CN109036622A (zh) * 2017-06-09 2018-12-18 硕禾电子材料股份有限公司 导电浆组成物及使用导电浆组成物的物件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530278A (zh) * 2022-03-22 2022-05-24 合肥中南光电有限公司 一种hjt电池用导电浆料及其生产工艺
CN116189958A (zh) * 2023-02-10 2023-05-30 河北光兴半导体技术有限公司 低温导电浆料组合物、低温导电浆料、导电涂层、电极和异质结太阳能电池

Also Published As

Publication number Publication date
CN114946039A (zh) 2022-08-26
EP4106013A4 (en) 2023-10-25
EP4106013A1 (en) 2022-12-21

Similar Documents

Publication Publication Date Title
JP6112187B2 (ja) 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
CN104449377B (zh) 一种石墨烯导电涂料及其制备方法
TWI432551B (zh) 太陽能電池用之導電膠組成物及其應用
CN108565041B (zh) 一种高电导耐焊接型低温银浆及其制备方法
WO2021159499A1 (zh) 用于异质结太阳能电池的导电糊膏、异质结太阳能电池与电极结构
KR101497038B1 (ko) 전극 형성용 은 페이스트 조성물 및 이의 제조 방법
KR101590228B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
CN111145934B (zh) 一种可室温存储的异质结(hit)太阳能电池用银浆及制备方法
CN106816200A (zh) 一种硅太阳能电池正面电极银浆及其制备方法
WO2012102077A1 (ja) 導電性接着剤組成物、接続体及び太陽電池モジュール
CN103000248B (zh) 一种适应高方阻浅结的太阳能电池正银浆料用粉体料
TW201721890A (zh) 形成電極的方法、由其製造的電極以及太陽能電池
KR101600659B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TWI743683B (zh) 用於hjt太陽能電池的導電漿料、hjt太陽能電池與電極結構
KR101716549B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
TW201513135A (zh) 太陽能電池電極用組成物以及使用該組成物製造的電極
WO2012153553A1 (ja) 太陽電池集電電極形成用導電性組成物および太陽電池セル
TW201638968A (zh) 電極組成物、使用其製造的電極以及太陽電池
TWI657119B (zh) 用於太陽能電池之背面電極糊料組成物
JP2012023084A (ja) 太陽電池電極用ペーストおよび太陽電池セル
CN109300574A (zh) Hit太阳能电池用透明低温银浆及制备方法
JP2012023082A (ja) 太陽電池電極用ペーストおよび太陽電池セル
KR101994368B1 (ko) 태양전지의 전극 패턴을 형성하는 방법, 이를 이용하여 제조된 전극 및 태양전지
KR101693078B1 (ko) 태양전지 전극 형성용 조성물 및 이로부터 제조된 전극
JP6357599B1 (ja) 導電性ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918202

Country of ref document: EP

Effective date: 20220914