WO2010001598A1 - 結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法 - Google Patents

結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法 Download PDF

Info

Publication number
WO2010001598A1
WO2010001598A1 PCT/JP2009/003038 JP2009003038W WO2010001598A1 WO 2010001598 A1 WO2010001598 A1 WO 2010001598A1 JP 2009003038 W JP2009003038 W JP 2009003038W WO 2010001598 A1 WO2010001598 A1 WO 2010001598A1
Authority
WO
WIPO (PCT)
Prior art keywords
binding assay
solid phase
porous solid
measurement sample
surfactant
Prior art date
Application number
PCT/JP2009/003038
Other languages
English (en)
French (fr)
Inventor
吉水美和子
近藤万友美
丹野眞志
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to CA2728963A priority Critical patent/CA2728963C/en
Priority to MX2010013964A priority patent/MX2010013964A/es
Priority to EP15157371.4A priority patent/EP2902786B1/en
Priority to JP2010518922A priority patent/JP5474784B2/ja
Priority to CN200980125124.XA priority patent/CN102077091B/zh
Priority to AU2009264774A priority patent/AU2009264774B2/en
Priority to US13/000,110 priority patent/US9110058B2/en
Priority to BRPI0914128A priority patent/BRPI0914128B8/pt
Priority to EP09773176A priority patent/EP2317319A4/en
Publication of WO2010001598A1 publication Critical patent/WO2010001598A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
    • G01N33/538Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody by sorbent column, particles or resin strip, i.e. sorbent materials

Definitions

  • the present invention relates to a binding assay method for measuring sample components in which detection is performed using a porous solid phase such as a membrane, in which the measurement sample is poorly developed in the porous solid phase, the sensitivity is poor, or the measurement waveform disturbance is improved. It relates to a porous solid phase for assay.
  • the present invention also relates to a binding assay method using the porous solid phase for binding assay. Specifically, (A) a sugar-containing surfactant comprising a compound represented by the general formula (I), and (B) a sugar-containing surfactant comprising a sucrose fatty acid ester having 5 to 14 carbon atoms in the constituent fatty acid.
  • one or more surfactants selected from the group consisting of steroidal surfactants are contained in the porous solid phase before addition of the measurement sample, and a porous solid phase for binding assay, A binding assay using the porous solid phase for binding assay is provided.
  • the measurement sample on the porous solid phase in the binding assay method for example, immunochromatography
  • a porous solid phase such as a membrane
  • a substance that is difficult to move or pass through the pores because it is larger than the pores of the porous solid phase for example, blood cells, etc.
  • the solubilized components become insoluble during the assay and cause clogging.
  • a method of adding a surfactant to the incubation medium for example, Patent Document 1 is widely used.
  • the capture reagent such as the antibody bound to the solid phase carrier may be detached from the carrier, or the binding reaction itself between the solid phase carrier and the antibody may be inhibited. Signal may be extremely reduced, and the required detection sensitivity may not be ensured.
  • this method is applied to a binding assay method using a porous solid phase, even if the surfactant does not affect the detection sensitivity like the glycoside surfactant in Patent Document 1, the measurement sample is diluted by dilution of the measurement sample.
  • the absolute amount of the component in the assay system may be reduced, and the required detection sensitivity may not be ensured. Further, in Patent Document 1, the problem is to avoid nonspecific interference exclusively, and there is no mention or suggestion about the poor development of the measurement sample, and there is no recognition as a problem.
  • a blood cell separation pad is provided between the whole blood supply part and the porous solid phase (membrane) in the binding assay strip.
  • the blood cell component is held on the separation pad so that the blood cell component does not flow out from the separation pad to the porous solid phase in a short time, while the plasma component is preceded by the immunochromatographic development before the blood cell component.
  • the development may be defective due to reasons other than clogging due to the size of the contaminants.
  • Such causes include the high viscosity of the measurement sample and the drying of the porous solid phase generated during the measurement.
  • Highly viscous measurement samples that is, measurement samples that contain a lot of solid components such as blood cells, measurement samples that contain a high amount of protein, or measurement samples that have evaporated moisture, are developed in a porous solid phase due to their poor fluidity. It took a long time, and it did not develop evenly, which was a cause of lack of measurement reproducibility.
  • the measurement sample is preliminarily diluted with an appropriate diluent (incubation medium).
  • an appropriate diluent incubation medium
  • phosphate buffered saline PBS
  • BSA bovine serum albumin
  • the problem in the case where a surfactant is included in the diluted solution is as described above, and the first problem of the method to be solved by devising the composition of the diluted solution is provided to the assay by dilution. As described above, the content or concentration of the measurement object in the measurement sample decreases.
  • Patent Document 2 When the membrane is laminated for the purpose of increasing the mechanical strength of the porous membrane (membrane) for chromatographic assay and preventing the evaporation (drying) of the fluid during the chromatograph, it is caused by the components of the laminating adhesive. It has been reported that the hydrophilicity of the porous membrane is reduced and the development of the measurement sample is poor (Patent Document 2). The poor development in Patent Document 2 is overcome by increasing the hydrophilicity of the membrane by selecting a component of the adhesive and laminating the membrane after treating it with an alkylsulfonic acid surfactant. However, poor development of a measurement sample containing a solid component or having a high viscosity has not been recognized as a problem, and no solution has been shown.
  • a solid phase washing solution for enzyme immunoassay containing an alkylglycoside surfactant or a steroid surfactant is disclosed (patent) Reference 3).
  • This washing solution is a non-specific reaction in a measurement sample that has remained on the membrane because it cannot pass through or move through the porous membrane after adding a labeling substance that immunologically binds to the measurement sample or measurement target. It is used for the purpose of washing away causative substances and free labeling substances.
  • the washing liquid of the method of Patent Document 3 is added separately from the addition of the measurement sample on the solid phase carrier to wash away substances remaining on the membrane after the immune reaction on the porous membrane, After the preparation step and the measurement sample are added to the measurement system, a step of further adding a cleaning liquid is necessary, and the operation becomes complicated.
  • the method of Patent Document 3 is based on the premise that the substance remaining on the membrane is washed away, and there is no idea of preventing clogging of the membrane, and the development of the measurement sample, which is the subject of the present invention. Defects cannot be improved.
  • the flow-through type as described in the example of Patent Document 3 may have a cleaning process.
  • auxiliary means such as pressurization and suction (for example, increasing the capacity of the water-absorbing pad under the membrane) are necessary, which is disadvantageous in terms of simplicity and cost.
  • Patent Document 4 a method of using a nonionic surfactant for cleaning a substrate (array) on which a physiologically active substance is immobilized is also disclosed (Patent Document 4), and an alkylglucoside surfactant is cited as a nonionic surfactant. It has been. However, the invention of this cited reference prevents the non-specific adsorption of the components in the lysate on the surface of the array substrate when the protein or peptide is immobilized on the array and the protein kinase activity in the lysate prepared from the cultured cells is detected. Therefore, it is assumed that the array is washed before measurement, and a washing solution containing a surfactant is added to the array and allowed to flow. Thus, the purpose of this cited document is exclusively to prevent non-specific reactions, and as with the above-mentioned Patent Document 1, there is no mention or suggestion of the problem of poor development of the measurement sample, and there is no recognition as a problem.
  • a method of detecting a complex of a measurement object and a detection reagent in an immunochromatography method there is a method of measuring the intensity of reflected light and calculating the absorbance (reflected absorbance) based on the intensity.
  • the reflected absorbance is calculated by measuring the reflected light intensity in the vicinity of the measurement line and using the ratio.
  • the upstream and downstream sides of the measurement line where the complex is detected may increase and the measurement waveform may be disturbed.
  • a specific signal (peak) can be detected accurately because the baseline cannot be drawn ignoring the disturbance of the measurement waveform. It may not be possible and measurement itself may be impossible.
  • the disturbance in the measured waveform is a phenomenon in which the color of the relevant part of the membrane is whiter than the surrounding color and the color appears to be missing. It can be seen visually.
  • a method for solving the problem has not been known so far.
  • An object of the present invention is to analyze a sample quickly, simply, accurately and inexpensively without collecting a measurement sample such as whole blood and then requiring a special pretreatment operation such as centrifugation or an additional operation after adding the measurement sample.
  • An object of the present invention is to provide a porous solid phase for a binding assay and a binding assay using the porous solid phase.
  • the present inventors have developed a measurement sample component in a binding assay method of a measurement sample component that is detected using a porous solid phase such as a membrane, poor development of the measurement sample in the porous solid phase, poor sensitivity, poor reproducibility, or measurement waveform. As a result of intensive studies on how to improve the disturbance, the present invention has been completed.
  • the present invention relates to (A) a sugar-containing surfactant comprising a compound represented by the general formula (I), and (B) a sugar-containing interface comprising a sucrose fatty acid ester having 5 to 14 carbon atoms
  • a sugar-containing interface comprising a sucrose fatty acid ester having 5 to 14 carbon atoms
  • One or more surfactants selected from the group consisting of an active agent and (C) a steroidal surfactant are included in the porous solid phase before addition of the measurement sample,
  • This is a binding assay method using a phase and a porous solid phase for binding assay, and is specifically described in the following [1] to [24].
  • R 1 represents a linear or branched alkyl group having 5 to 10 carbon atoms which may have a substituent
  • G is a residue derived from a reducing sugar having 5 or 6 carbon atoms.
  • X is a value indicating the degree of condensation of the reducing sugar, and represents a number of 1 to 3.
  • R 1 and G are linked by an ether bond via an oxygen atom or a sulfur atom) A sugar-containing surfactant
  • (C) A steroidal surfactant A porous solid phase for a binding assay comprising at least one surfactant selected from the group consisting of the above (A) to (C) before addition of a measurement sample .
  • a binding assay strip comprising the porous solid phase for binding assay according to any one of [1] to [8].
  • the binding assay strip according to [9] further comprising a conjugate release pad containing a detection reagent.
  • the label is a label with two types of gold colloids having different particle diameters.
  • a strip for conducting a lateral flow binding assay comprising: a porous solid phase for binding assay according to any one of [1] to [8]. strip.
  • X is a value indicating the degree of condensation of the reducing sugar, and represents a number of 1 to 3.
  • R 1 and G are linked by an ether bond via an oxygen atom or a sulfur atom)
  • a sugar-containing surfactant (B) a sugar-containing surfactant comprising a sucrose fatty acid ester having 5 to 14 carbon atoms in the constituent fatty acid, (C) a steroidal surfactant, characterized by using a porous solid phase for binding assay containing at least one surfactant selected from the group consisting of the above (A) to (C) before addition of a measurement sample.
  • R 1 and G are linked by an ether bond via an oxygen atom or a sulfur atom)
  • a sugar-containing surfactant (B) a sugar-containing surfactant comprising a sucrose fatty acid ester having 5 to 14 carbon atoms in the constituent fatty acid, (C) a steroidal surfactant, characterized by using a porous solid phase for binding assay containing at least one surfactant selected from the group consisting of the above (A) to (C) before addition of a measurement sample.
  • a method for improving measurement waveform disturbance of a measurement sample in a lateral flow type or dipstick type binding assay method is characterized by using a porous solid phase for binding assay containing at least one surfactant selected from the group consisting of the above (A) to (C) before addition of a measurement sample.
  • the present invention relates to a binding assay method for a measurement sample component to be detected using a porous solid phase, wherein (A) a sugar-containing surfactant comprising a compound represented by the general formula (I), (B) Before adding a measurement sample, one or more surfactants selected from the group consisting of a sugar-containing surfactant comprising a sucrose fatty acid ester having 5 to 14 carbon atoms and (C) a steroid-based surfactant are added.
  • a novel binding assay porous solid phase and a novel binding assay using the binding assay porous solid phase are provided.
  • the poor development of the measurement sample in the porous solid phase for the binding assay is improved, and in particular, false negative / false positive when measuring a measurement sample containing a solid component or having a high viscosity is avoided. Measurement with good reproducibility becomes possible. Further, since the pretreatment of the measurement sample including preparation of the diluting solution and the cleaning solution and the cleaning step after the addition of the measurement sample are not required, the operation is simple. Furthermore, according to the present invention, it is possible to realize good measurement with high measurement sensitivity and no disturbance of the measurement waveform.
  • FIG. 3 is a schematic structural diagram of a binding assay strip (test strip). It is the figure which showed the test result which confirmed the development defect improvement effect of this invention by making high Ht value simulation whole blood into a measurement sample (Example 3). (Example 4) which is the figure which showed the test result which confirmed the development defect improvement effect of this invention by measurement reproducibility by making high Ht value simulation whole blood into a measurement sample. It is the figure which showed the test result which confirmed the development defect improvement effect of this invention by the measurement reproducibility by changing the density
  • Example 10 It is the figure which showed the test result which confirmed the expansion defect improvement effect at the time of using the porous solid phase of this invention using the gold colloid of two types of particle sizes (Example 10).
  • Example 11 which is the figure which showed the test result which confirmed the development defect improvement effect of this invention by measurement reproducibility by changing the sodium cholate density
  • Example 12 which is the figure which showed the test result which confirmed the presence or absence of the disorder improvement effect of the measurement waveform at the time of pre-processing with the surfactant of this invention, and other surfactants by using concentrated plasma as a measurement sample. .
  • Example 12 It is the figure which showed the test result which confirmed the reproducibility improvement effect of the measurement sensitivity at the time of pre-processing with the surfactant of this invention, and other surfactants by using concentrated plasma as a measurement sample (Example 12). It is the figure which showed the test result which confirmed the disturbance improvement effect of the measurement waveform at the time of using concentrated plasma as a measurement sample and using the surfactant of this invention and other surfactant other than the method of this invention. Example 13). It is the figure which showed the test result which confirmed the reproducibility improvement effect of the measurement sensitivity at the time of using concentrated plasma as a measurement sample and using the surfactant of this invention and other surfactant other than the method of this invention ( Example 13).
  • measurement sample refers to blood (whole blood), serum, plasma, lymph, urine, feces, ascites, pleural effusion, tissues / cells, and the like. And measurement sample components separated and fractionated from the whole blood etc. by means such as centrifugation, filtration, purification, measurement sample components extracted by organic solvents, etc., measurement sample components solubilized by surfactants, etc. It includes a measurement sample component diluted with a buffer solution, a measurement sample component modified or modified by a chemical reaction, and the like, and can be used for measurement using the porous solid phase for binding assay of the present invention.
  • the measurement sample of the present invention is a liquid (fluid) when added to the porous solid phase for binding assay of the present invention and developed.
  • “development” means “movement” in which the liquid flows in the horizontal direction, that is, the longest side of the porous solid phase when the porous solid phase is placed with the widest surface facing upward, It includes “passing” in which the liquid flows in the vertical direction when the porous solid phase is placed with the surface having the largest area facing upward, that is, in the shortest side direction of the porous solid phase.
  • the “measurement sample component” is a component contained in the above “measurement sample” and includes, for example, fibrin degradation products (for example, D dimer), soluble fibrin, TAT (thrombin-antithrombin complex), PIC (plasmin-plasmin).
  • Coagulation / fibrinolytic markers such as inhibitor complex), oxidative LDL, circulation related markers such as BNP (brain natriuretic peptide), metabolism related markers such as adiponectin, CEA (carcinoembryonic antigen), AFP ( ⁇ -fetoprotein), Tumor markers such as CA19-9, CA125, PSA (prostate specific antigen), inflammation-related markers such as CRP (C-reactive protein), IgA, IgG, IgM, influenza, HIV (human immunodeficiency virus), HBV (type B) Hepatitis virus), HCV (hepatitis C virus), ibis
  • markers related to infectious diseases such as plasma, chlamydia, syphilis, allergen-specific IgE (immunoglobulin E), hormones, drugs, nucleic acid strands and fragments thereof related to SNPs (single nucleotide polymorphisms), and complementary strands of the nucleic acid strands.
  • Examples of the measurement sample that can achieve the best effect of improving poor development in the porous solid phase when measuring a measurement sample containing a solid component or having a high viscosity according to the present invention include, for example, a lot of blood cells and plasma volume Measurement samples lacking fluidity due to whole blood with a high hematocrit (Ht) value less than normal or high protein content, such as “samples with high Ht values” or “measurement samples with high viscosity”. These are measurement samples having a low moisture (liquid) content in the measurement sample. Examples of the sample having a high Ht value include a sample having an Ht value of 50% or more exceeding the reference range.
  • Ht hematocrit
  • the “capture reagent” refers to a substance capable of causing a specific binding reaction with a measurement sample component and forming a complex with the measurement sample component.
  • Antigens to antibodies are included.
  • the “specific capture substance” includes a receptor for a ligand, a complementary strand or aptamer for a nucleic acid chain, a lectin for a substance containing a specific sugar, and the like.
  • antigens against antibodies those listed as measurement sample components in the above-mentioned correspondence can be the capture reagent of the present invention. Will be readily understood by those skilled in the art.
  • these capture reagents may be of any kind and contain the whole substance and functional fragments thereof, for example, when the capture reagent is an antibody, as long as it can form a complex with the measurement sample component.
  • the capture reagent is an antibody
  • polyclonal antibodies, types of monoclonal antibodies, functional fragments thereof Fab, Fab ′, F (ab ′) 2 , Fv, etc. are included.
  • detection reagent is synonymous with “conjugate” and has the same characteristics as a capture reagent or a measurement target labeled with a labeling substance for detection or equivalent in a binding assay. Specifically, it includes a labeled antibody, a labeled specific capture substance, a labeled antigen, and the like.
  • Labeling substances include metal colloid particles (gold colloid, etc.) and fine particles that can be visualized such as colored latex particles, horseradish peroxidase, alkaline phosphatase, enzymes such as ⁇ -D-galactosidase, radioactive isotopes such as iodine 125 , acridinium Compounds, luminescent substances such as luminol, and fluorescent substances such as fluorescein isothiocyanate or europium (III) chelate are known, and there are no limitations on the known methods for labeling antibodies (introduction / binding methods of labeled substances) Can be used.
  • metal colloid particles gold colloid, etc.
  • fine particles that can be visualized such as colored latex particles, horseradish peroxidase, alkaline phosphatase, enzymes such as ⁇ -D-galactosidase, radioactive isotopes such as iodine 125 , acridinium Compounds, lumi
  • a “sample pad” is a part that receives a measurement sample that may contain a measurement sample component to be measured, absorbs a liquid measurement sample in a state of being molded into a pad, and includes a liquid, a measurement sample component, and Includes any substance and form that can be passed through.
  • materials suitable for the sample pad include, but are not limited to, glass fiber (glass fiber), acrylic fiber, hydrophilic polyethylene material, dry paper, paper pulp, and fabric.
  • a glass fiber pad (Lydall) is used.
  • the sample pad can be combined with the function of a conjugate release pad or a blood cell separation pad that receives the supply of the measurement sample as the sample pad itself or via the sample pad.
  • the sample pad can contain a blocking reagent or the like usually used in a binding assay for the purpose of preventing / suppressing nonspecific reaction (adsorption) in the porous solid phase for binding assay.
  • a blocking reagent or the like usually used in a binding assay for the purpose of preventing / suppressing nonspecific reaction (adsorption) in the porous solid phase for binding assay.
  • examples of such a reagent include HETERO BLOCK (Omega Biologicals Co., Ltd., 500-11-001).
  • one or more types of sample pads are used for the purpose of avoiding blood coagulation during measurement (especially before the measurement target reaches the porous solid phase for binding assay) and suppressing non-specific reactions resulting from blood coagulation. Of anticoagulants.
  • heparin As the anticoagulant, heparin, citric acid, sodium fluoride (NaF), and chelating agents (salts and hydrates, which are usually used as anticoagulants, are used as long as they do not impair the effects of the present invention. Can be used.
  • the chelating agent include EDTA, CyDTA, DTPA and the like.
  • the “conjugate release pad” includes a detection reagent that specifically reacts with a measurement sample component.
  • the detection reagent and the measurement sample component are specific.
  • the conjugate release pad may be placed in contact with the porous solid phase for binding assay alone, or placed in contact with the sample pad and measured through the sample pad by capillary flow. It may be arranged to receive the sample and subsequently transfer the measurement sample to the “blood cell separation pad”, which will be described later, in contact with a surface different from the sample pad by capillary flow.
  • Suitable materials for the conjugate release pad include, but are not limited to, paper, cellulose blend, nitrocellulose, polyester, acrylonitrile copolymer, glass fiber or non-woven fiber such as rayon.
  • a glass fiber pad (Nippon Pole Co., No. 8964) is preferably used.
  • the conjugate release pad includes a “control reagent” for ensuring the reliability of the assay, for example, an antibody that does not react with a measurement sample component labeled with a labeling substance or KLH (Scacia hemocyanin) labeled with a labeling substance. And high antigenic proteins such as These control reagents are components (substances) that are unlikely to be present in the measurement sample, and can be appropriately selected as long as there is an appropriate correspondence with a “control capture reagent” described later.
  • the conjugate release pad keeps the detection reagent (and the control reagent, if present) in a stable state, and dissolves and fluidizes the sample quickly and effectively when it comes into contact with the measurement sample.
  • one or more stabilizers, solubilizers, and the like may be included for the purpose of promoting specific reaction with a measurement target that may be contained therein.
  • the stabilizer and solubilizing agent include bovine serum albumin (BSA), sucrose, casein, amino acids and the like.
  • BSA bovine serum albumin
  • sucrose sucrose
  • casein amino acids
  • amino acids glycine or serine is particularly preferably used.
  • the “blood cell separation pad” is disposed in contact with the conjugate release pad, receives a measurement sample that has passed through the conjugate release pad by capillary flow, and subsequently passes the measurement sample to the conjugate flow by capillary flow. This is the site for transfer to a “porous solid phase” that contacts on a different surface than the release pad.
  • the blood cell separation pad has an inherent ability to filter a part of cellular components in a measurement sample, and can separate a part of cellular components in whole blood from plasma or serum when the measurement sample is whole blood. It consists of a hydrophilic and absorbent material. Even if the measurement sample does not contain a cell component, if the sample contains a solid component larger than the pores of the blood cell separation pad, the solid component can be separated in the same manner as the separation of the cell component. It should be understood by those skilled in the art that the term blood cell separation pad does not refer to those used only for blood cell separation, but widely refers to those used for separation of solid components in a measurement sample. is there.
  • Suitable materials for blood cell separation pads include water-absorbing or non-water-absorbing, fibrous or non-fibrous matrices such as hydrophilic inorganic powders such as silica gel, alumina, diatomaceous earth, etc .; sponge materials; clayey materials; Natural polymeric materials, especially cellulosic materials such as cellulosic porous beads, and especially fiber-containing papers such as filter papers or chromatography papers; and cellulose acetate, polyvinyl chloride, polyacrylamide, polyacrylates, polyurethanes, crosslinks Examples include, but are not limited to, synthetic or modified natural polymers such as dextran, agarose, and other such crosslinked or non-crosslinked water-insoluble hydrophilic polymers.
  • suitable materials include, but are not limited to, fibrous or non-fibrous matrices such as glass fiber matrices; and synthetic polymers such as polypropylene, polyethylene, nylon, polyvinylidene fluoride, and polysulfone.
  • a rigid porous plastic can also separate blood cells in whole blood, and as long as it is porous enough to allow plasma or serum to permeate and contact a porous solid phase, blood cell separation Useful as a pad.
  • a polysulfone pad Nippon Pole, BTS-SP300 Is used.
  • the “absorber” is a portion having liquid absorbency that controls the development of a measurement sample by absorbing the measurement sample that has moved and passed through the capture reagent carrying part of the porous solid phase for the binding assay. It is. In the lateral flow type and the dipstick type, it may be provided at the most downstream side of the strip configuration, and in the flow-through type, for example, it may be provided in the lower part of the membrane on which the capture reagent is immobilized.
  • the absorber for example, filter paper can be used, but is not limited thereto. Preferably, Whatman, 740-E is used.
  • the “porous solid phase” is usually a porous membrane (membrane) used in a binding assay method, and a measurement sample is developed and finally a measurement sample component is detected.
  • a porous membrane membrane
  • Any material may be used, for example, polyethylene, polyethylene terephthalate, nylons, glass, polysaccharides such as cellulose and cellulose derivatives, or ceramics. Specific examples include glass fiber filter paper and cellulose filter paper sold by Millipore, Toyo Roshi, Whatman and the like.
  • a capture reagent is immobilized on the porous solid phase.
  • the method for immobilizing the capture reagent on the porous solid phase may be any method as long as it is a commonly used method, and the capture reagent is directly or indirectly attached to the porous solid phase by physical adsorption or chemical bonding. It only needs to be fixed.
  • the antibody or antigen can be adsorbed and immobilized on the membrane by applying or spotting a solution containing the antibody or antigen to the membrane and drying.
  • the “control capture reagent” mentioned in the section of the conjugate release pad can be immobilized on the porous solid phase in the same manner.
  • the “control capture reagent” is a reagent for ensuring the reliability of the assay.
  • the labeled antibody when the labeled antibody is derived from a mouse, an anti-mouse antibody (specificity for the mouse antibody is selected as desired), etc.
  • the conjugate release pad also contains a control reagent such as labeled KLH, for example, an anti-KLH antibody corresponds to the control capture reagent.
  • the position at which the control capture reagent is immobilized on the porous solid phase can be appropriately selected to suit the design of the assay system. For example, in the lateral flow method or dipstick method, when the labeled antibody is derived from a mouse and the anti-mouse antibody is immobilized as a control capture reagent, it is generally immobilized downstream of the capture reagent for the measurement sample component.
  • the flow-through type In the case of the flow-through type, it is fixed at an appropriate distance (interval in the case of detecting a plurality of measurement sample components) with respect to the position where the capture reagent is fixed to the measurement sample component. Is common. In short, considering the design of the assay system and the combination of the control reagent and the control capture reagent, it may be immobilized at the optimal position.
  • the “strip” means one in which one or more of a sample pad, a conjugate release pad, a blood cell separation pad, and an absorber are appropriately arranged and mounted on a porous solid phase for binding assay. Assuming that measurement is performed without diluting the measurement sample and including steps other than the addition of the measurement sample, a strip in which at least a conjugate release pad is mounted on a porous solid phase for binding assay is used as a strip. It can be illustrated.
  • the strips are usually arranged on a solid support such as a plastic adhesive sheet.
  • the solid support is not only composed of a substance that does not hinder the capillary flow of the measurement sample, but also is the same that the component of the adhesive is a substance that does not hinder the capillary flow of the measurement sample.
  • the porous solid phase As described in Patent Document 2, it is naturally possible to laminate the porous solid phase for the purpose of increasing the mechanical strength of the porous solid phase and preventing evaporation (drying) of moisture during the assay.
  • the development speed of the measurement sample is improved. May be confirmed.
  • the strip can be stored and mounted in an appropriate container (housing) taking into account the size of the strip, the method and position of adding the measurement sample, the immobilization position of the capture reagent, the signal detection method, etc. Such a state is called a “device”.
  • One of the “surfactants” used in the present invention is: (A) The following general formula (I) R 1- (G) x (I) (In the formula, R 1 represents a linear or branched alkyl group having 5 to 10 carbon atoms which may have a substituent, and G is a residue derived from a reducing sugar having 5 or 6 carbon atoms. , X is a value indicating the degree of condensation of the reducing sugar, and represents a number of 1 to 3. R 1 and G are linked by an ether bond via an oxygen atom or a sulfur atom) A sugar-containing surfactant.
  • Examples of the linear or branched alkyl group having 5 to 10 carbon atoms used in the present invention include pentyl group, 3-methylbutyl group, hexyl group, methylpentyl group, heptyl group, 4-methylhexyl group, 5-methylhexyl. Group, 4-ethylpentyl group, octyl group, 6-methylheptyl group, 5-methylheptyl group, 5,5-dimethylhexyl group, nonyl group, decyl group, etc., but are not limited thereto. Absent. As the substituent that may be present on the alkyl group, any substituent can be selected as long as the effects of the present invention are not impaired.
  • halogen atoms such as chlorine atom, fluorine atom and iodine atom, and hydroxy group.
  • a linear alkyl group having 7 or 8 carbon atoms n-heptyl group or n-octyl group is preferably used.
  • reducing sugars having 5 or 6 carbon atoms include glucose, galactose, and fructose, and either ⁇ -form or ⁇ -form can be used, but ⁇ -form is preferred.
  • These reducing sugars may form a condensate by the same or different reducing sugars.
  • Specific examples of the condensate include maltose (bimolecular condensate of glucose) and sucrose (sucrose: condensate of one molecule of glucose and one molecule of fructose).
  • x is a value indicating the degree of condensation of the reducing sugar condensate and is a number from 1 to 3. The x means an average value and can be measured by a proton NMR method. The preferred value of x is 1-2.
  • R 1 and G form a so-called glycosidic bond or thioglycoside bond linked by an ether bond via an oxygen atom or a sulfur atom.
  • bonded with carbon of the 5-position of glucose can be illustrated.
  • the compound examples include n-heptyl- ⁇ -D-glucoside (n-heptyl- ⁇ -D-glucopyranoside), n-octyl- ⁇ -D-glucoside (n-octyl- ⁇ -D-glucopyranoside) Alkyl glucoside derivatives such as n-nonyl- ⁇ -D-maltopyranoside, n-decyl- ⁇ -D-glucopyranoside, n-decyl- ⁇ -D-maltopyranoside, n-heptyl- ⁇ -D-thioglucoside (n-heptyl) - ⁇ -D-thioglucopyranoside), n-octyl- ⁇ -D-thioglucoside (n-octyl- ⁇ -D-thioglucopyranoside), n-nonyl- ⁇ -D-thiomaltopyranoside, octyl- ⁇ - ⁇ - Examples thereof include alky
  • n-octyl- ⁇ -D-glucoside or n-heptyl- ⁇ -D-thioglucoside is particularly preferred for improving poor development and improving sensitivity.
  • n-octyl- ⁇ -D-glucoside, n-heptyl- ⁇ -D-thioglucoside or n-dodecyl- ⁇ -D-maltoside is preferable for improving the disturbance of the measured waveform.
  • Another surfactant used in the present invention is: (B) A sugar-containing surfactant comprising a sucrose fatty acid ester having 5 to 14 carbon atoms in the constituent fatty acid.
  • fatty acids having 5 to 14 carbon atoms examples include pentanoic acid (valeric acid), hexanoic acid (caproic acid), heptanoic acid (enanthic acid), octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), and decanoic acid.
  • Capric acid dodecanoic acid (lauric acid), tetradencanic acid (myristic acid) can be mentioned.
  • fatty acids having 6 or 12 carbon atoms that is, hexanoic acid (caproic acid) or dodecanoic acid (lauric acid) can be mentioned as suitable examples.
  • sucrose fatty acid esters in which one molecule of fatty acid is ester-bonded to one molecule of sucrose are preferred.
  • Specific examples of the compound include sucrose monocaproate and sucrose monolaurate.
  • sugar-containing in the “sugar-containing surfactant” used in the present invention means that, as described above, (A) the compound represented by the general formula (I) and (B) the constituent fatty acid has 5 carbon atoms. It is used to mean that sugar or a sugar-derived component is contained in the structure of a surfactant selected from the group consisting of sucrose fatty acid esters of ⁇ 14.
  • Still another surfactant used in the present invention is: (C) A steroidal surfactant.
  • the steroidal surfactant used in the present invention refers to a surfactant having a steroid skeleton in a hydrophobic group regardless of whether it is ionic or nonionic.
  • sodium cholate, CHAPS, and the like are particularly preferable for improving development failure and improving sensitivity.
  • sodium cholate, CHAPS, and digitonin are preferable for improving the disturbance of the measurement waveform.
  • the above surfactants may be used alone or in combination of two or more.
  • the above surfactant can be used usually in a concentration range of 0.001 (w / v)% to 2.0 (w / v)%.
  • a person skilled in the art will determine the optimum concentration experimentally so that the effects of the present invention can be maximized, taking into consideration the presence of components / elements other than the above-mentioned surfactants in the binding assay to be performed, the material of the membrane, etc. be able to.
  • An example of a preferable concentration range is 0.001 to 0.5%, more preferably 0.01 to 0.5%, and still more preferably 0.01 to 0.1%. it can.
  • the surfactant of the present invention is used as a solution.
  • a method for incorporating the surfactant in the porous solid phase in advance before adding the measurement sample a method in which the porous solid phase is immersed in the surfactant solution of the present invention and dried can be used.
  • a surfactant is contained in a porous solid phase
  • there is no need for pretreatment of the measurement sample there is no problem of a decrease in detection sensitivity due to dilution of the measurement sample, and there is no problem with the conjugate.
  • a gate release pad is provided, a detection reagent addition step is not required after the measurement sample is added, so that a binding assay can be easily performed.
  • the measurement results varied depending on the timing of the addition of the cleaning solution, etc., but by using the porous solid phase previously containing the surfactant of the present invention, the pretreatment time is reduced.
  • the surfactant of the present invention is a part that is immobilized on a porous solid phase. If a lateral flow type or a dipstick type is described as an example, at least a measurement sample in a porous solid phase is immobilized on a moving region. It is necessary to keep. The moving area of the measurement sample starts from the part of the porous solid phase where the measurement sample is introduced directly or via a conjugate release pad, and the capture reagent is immobilized in the direction of movement of the measurement sample.
  • the measurement sample is included up to the end of the porous solid phase. Further, it is important that the surfactant is uniformly fixed to the moving region so that the measurement sample can be moved uniformly.
  • the porous solid phase for binding assay of the present invention even if the measurement sample is highly viscous, it can be uniformly developed (moved and passed) in the porous solid phase and reproduced. It is possible to realize an assay that has excellent performance and does not affect the detection sensitivity.
  • the concentration of the surfactant described above is mainly assumed in the case of adopting the above-described method of inclusion in the porous solid phase by immersion.
  • the concentration suitable for the method to be employed may be determined using the effect to be controlled as a control.
  • “Surfactant is immobilized on a porous solid phase and used in a dry state” means that the surfactant is easily detached from the porous solid phase when the porous solid phase contains the surfactant. It means a state in which it does not fall off, and does not require it to be physically adsorbed or chemically bonded to fix it. Therefore, the immobilization mentioned here can be achieved by immersing the porous solid phase in the surfactant solution and drying it. In short, it is sufficient that the porous solid phase holds the surfactant in a dry state in some form before the assay.
  • the surfactant solution of the present invention is usually bound as a component of a blocking solution, a cleaning solution, or a diluent, such as a phosphate buffer, a Tris buffer, or a Good buffer. It may contain a buffer used in the assay method.
  • the pH of the buffer solution in this case is not particularly limited, but is preferably in the range of pH 5-9.
  • salts such as sodium chloride and additives such as preservatives usually added to these buffers may be added as appropriate.
  • the surfactant solution of the present invention includes a surfactant (polyoxysorbitan monosaccharide) that is usually used in a binding assay and does not adversely affect the measurement system.
  • a surfactant polyoxysorbitan monosaccharide
  • Laurate, polyoxyethylene-based nonionic surfactants such as polyoxyethylene mono-p-isooctylphenyl ether, etc. may be added at a concentration within the range normally used in this field.
  • the binding assay method using the porous solid phase for binding assay of the present invention will be described as follows using an immunoassay as an example.
  • a sample pad as a measurement sample receiving site, a conjugate release pad containing a labeled antibody as a detection reagent, a blood cell separation pad for separating cell components, and an interface of the present invention on which an antibody as a capture reagent is immobilized
  • a measurement sample is added to a binding assay strip consisting of a porous solid phase containing an active agent.
  • the conjugate release pad the labeled antibody reacts with the measurement sample component (measurement target) to form a specific complex.
  • the complex is developed (moved / passed) on the membrane by capillary action, and a signal derived from the labeling substance of the specific complex captured by the antibody immobilized on the membrane is measured.
  • the surfactant is previously dried and immobilized on the moving part of the measurement sample in the porous solid phase, so that it contains a solid component or has a high viscosity. Even when measuring a sample, the fluidity of the measurement sample is good, and the measurement sample can move uniformly in the porous solid phase. In addition, it has become possible to reduce the frequency of occurrence of a phenomenon in which the vicinity of the capture reagent line (upstream and downstream) is whitened.
  • immunoassay methods include “flow-through type”, “dipstick type”, and “lateral flow type”.
  • “Lateral flow” is a method in which a measurement sample in a liquid state is dropped onto a device, and a porous solid phase coated with a capture reagent that specifically binds the measurement sample component to be measured is spread (moved) horizontally.
  • a ternary complex of a detection reagent that specifically binds to the measurement target, a measurement target, and a capture reagent immobilized on the porous solid phase is formed on the porous solid phase and is included in the detection reagent.
  • This is a method for detecting or quantifying the labeling substance.
  • the “flow-through type” is different from the “lateral flow type” in that a measurement sample in a liquid state develops (passes) a porous solid phase in the vertical direction, but the measurement principle is the same.
  • the “dipstick type” is different from the above two methods in that a part of the strip is immersed in a measurement sample in a predetermined amount of liquid state, and the measurement sample is developed (moved) in a porous solid phase. Is achieved by raising the measurement sample (liquid).
  • Production of a porous solid phase, a conjugate release pad and the like containing the surfactant of the present invention can be carried out by appropriately modifying and modifying the methods described in the examples.
  • the reaction between the measurement sample and the labeling substance in the assay may be performed in any order as long as the porous solid phase for binding assay of the present invention can be used.
  • a method for measuring a signal derived from a labeling substance a known method may be used. For example, when the labeling substance is a gold colloid, the absorbance or the intensity of reflected light may be measured. When the labeling substance is a radioisotope, the radiation dose may be counted with a counter.
  • conjugate release pad Conjugate solution prepared by mixing the conjugate prepared in (1) above with 1.33% casein, 4% sucrose solution (pH 7.5) so as to be 4 OD / mL.
  • sample pad 20 mmol / L Tris-HCl buffer (pH 7.) containing 25 mmol / L NaCl, 0.5% sucrose and 0.25 mg / mL HETERO BLOCK (Omega Biologicals, 500-11-001). 2) The sample pad impregnating solution consisting of 2) bleeds 1.15 times the volume of the pad against a glass fiber pad (Lydall) cut into 16 mm ⁇ 254 mm ⁇ 0.55 mm (short side ⁇ long side ⁇ thickness). I did it. The sample pad was dried at 70 ° C. for 45 minutes in a dry oven.
  • binding assay strip (test strip)
  • the anti-DD antibody-immobilized membrane (d) is attached to a plastic adhesive sheet (g), and the side opposite to the side on which the anti-DD antibody (e) is applied.
  • a blood cell separation pad (c) (Nippon Pole, BTS-SP300) was placed on the end, and an absorber (f) (Whatman, 740-E) was placed on the end on which the anti-DD antibody was applied.
  • the conjugate release pad (b) prepared in the above (2) is arranged and mounted so as to overlap the blood cell separation pad, and the sample pad (a) prepared in the above (4) so as to overlap the conjugate release pad.
  • FIG. 1 shows a schematic configuration diagram of a test strip.
  • Example 1 Production of immunochromatography device using test strip of the present invention (1) Production of anti-DD antibody-immobilized membrane of the present invention (porous solid phase for binding assay) First, nitrocellulose membrane (Millipore, HF240) Were immersed in a 10 mmol / L phosphate buffer (pH 7.2) each containing a surfactant of the present invention shown in Table 1 at a concentration of 0.05% (w / v) and shaken at room temperature for 30 minutes. . After removing excess liquid, it was dried in a 37 ° C. dry oven for 1 hour. About the obtained membrane containing a surfactant, the operation described in Comparative Example 1 (3) was performed to produce the anti-DD antibody-immobilized membrane of the present invention.
  • Example 2 Confirmation of improvement effect of poor development of porous solid phase for binding assay of the present invention
  • (1) Preparation of high Ht value simulated whole blood Plasma obtained from the same whole blood is added to a blood cell layer obtained by centrifuging whole blood, and a high Ht value simulation in which the Ht value after reconstitution shows 70% Whole blood was prepared.
  • n-octyl- ⁇ -D-glucoside, n-heptyl- ⁇ -D-thioglucoside, and sucrose monocaproate had an effect of improving poor development of the measurement sample in the porous solid phase for binding assay ( (Displayed with a circle in the column of effect in Table 1).
  • Example 3 Confirmation of improvement effect of poor development of porous solid phase for binding assay of the present invention (2) (1) Preparation of purified D dimer (DD) -added high Ht value simulated whole blood (DD simulated whole blood) 10 mmol / L Tris-HCl buffer solution containing purified DD (for blood cell layer obtained by centrifuging whole blood) pH 8.0) and plasma obtained from the same whole blood were added, and DD simulated whole blood was prepared so that the final concentration of DD was 1.0 ⁇ g / mL and the Ht value after reconstitution was 70%.
  • DD D dimer
  • Test method 100 ⁇ L of DD simulated whole blood was added to the sample pad portion of the immunochromatography device containing the porous solid phase for binding assay of the present invention (containing n-octyl- ⁇ -D-glucoside) prepared in Example 1.
  • an immunochromatographic reader ICA-1000 Hamamatsu Photonics
  • the change in reflection absorbance at the detection window of the test device was changed from 1 minute after addition to 15 minutes after addition. Measured over time at intervals.
  • the measurement of the light absorbency in each Example was performed using the same measuring apparatus as the above.
  • the test strip of the present invention can be measured with good reproducibility even when whole blood (for example, Ht value 70%) having an extremely small liquid component is used as a measurement sample. It was confirmed that the improvement effect of the development failure of the measurement sample in the porous solid phase for binding assay was remarkable.
  • Example 4 Confirmation of improvement effect of poor development of porous solid phase for binding assay of the present invention (3)
  • Preparation of DD simulated whole blood DD simulated whole blood was prepared in the same manner as in Example 3.
  • (2) Production of immunochromatography device of the present invention n-octyl- ⁇ -D-glucoside, n-heptyl- ⁇ -D-thioglucoside, sucrose monolaurate were used as the surfactant, and the procedure described in Example 1 was performed.
  • Test Method DD simulated whole blood 100 ⁇ L was added to the sample pad portion of the immunochromatography device of the present invention prepared in (2) above, and the absorbance at the detection window portion of the test device 15 minutes after the addition was measured.
  • Test Results The test strip of the present invention showed a significantly smaller CV (%) than the conventional test strip (FIG. 3).
  • the porous solid phase for binding assay of the present invention is used, even a measurement sample having an extremely high Ht value can be measured with good reproducibility, and the present invention is for binding assay. It was confirmed that the measurement failure of the measurement sample in the porous solid phase was improved and accurate measurement was possible.
  • Example 2 Production of anti-DD antibody-immobilized membrane (porous solid phase for binding assay) Production method of anti-DD antibody-immobilized membrane (porous solid phase for binding assay) of the present invention described in Example 1 (1) Except that the concentration of each surfactant added to 10 mmol / L phosphate buffer (pH 7.2) was 0, 0.01, 0.05, 0.075, and 0.10% (w / v). The same method as in Example 1 was used. (3) Test method Measurement was performed in the same manner as in Example 4 (3). The optimum concentration range was determined by calculating CV (%) of the measured value. (4) Test results As shown in FIG. 4, at any of the concentrations tested this time, any surfactant exhibited better reproducibility than the conventional method.
  • the CV value satisfies 15% or less which is half of the conventional method, was determined to be effective.
  • the surfactants in this test example all had a CV value of less than 15% in the range of 0.01 to 0.10%, and it was confirmed that the surfactants exhibited a sufficient effect as compared with the conventional method.
  • Example 6 Preparation of immunochromatographic device including control line (1) Preparation of gold colloid-labeled KLH (KLH conjugate) for control line Potassium carbonate buffer (pH 8) containing 1 OD / mL gold colloid (particle size 40 nm). 0) To 200 mL, 10 mL of 2 mmol / L phosphate buffer solution (pH 6.1) in which KLH powder was dissolved to 620 ⁇ g / mL was added, and stirred at room temperature for 10 minutes.
  • Example 5 shows a schematic configuration diagram of the test strip.
  • the test line is detected when the measurement sample reaches the position where the anti-DD antibody (e) of the anti-DD antibody-immobilized membrane (d) is immobilized.
  • Line (appears at the position shown in FIG. 5 (e)).
  • the control line is a line that is detected when the measurement sample reaches the position where the control capture reagent (anti-KLH polyclonal antibody) is immobilized on the membrane. (Appears at the position of FIG. 5 (j)).
  • Example 7 Confirmation of improvement effect of poor development of porous solid phase for binding assay of the present invention (5)
  • DD D-dimer
  • DD-concentrated plasma Lyophilized 0.5 mL of healthy human plasma was dissolved in 0.25 mL of purified water to prepare a 2-fold concentrated plasma. Thereto was added 10 mmol / L Tris salt buffer (pH 8.0) containing purified DD, and DD-added concentrated plasma was prepared so as to have a final concentration of 1.0 ⁇ g / mL.
  • Test results FIG. 6 shows the test line detection results, and FIG. 7 shows the control line detection results. When any of the surfactants of the present invention was used, CV (%) was reduced as compared with the measurement using a conventional immunochromatographic device.
  • the conventional method had poor reproducibility because the tip of the developing solution did not reach the test line, but when using the porous solid phase for binding assay of the present invention, the measurement sample The reproducibility has been greatly improved by improving the development failure of.
  • the porous solid phase for binding assay of the present invention can be measured with good reproducibility even in the case of a measurement sample in which the plasma component is twice as thick, and the present invention is capable of binding. It was confirmed that the poor development of the measurement sample in the porous solid phase for assay was improved and accurate measurement was possible.
  • Example 8 Confirmation of improvement effect of poor development of porous solid phase for binding assay of the present invention (6)
  • Materials and Test Methods The materials and test methods described in Example 2 were used except that the surfactants used were sodium cholate and CHAPS.
  • Example 9 Confirmation of improvement effect of poor development of porous solid phase for binding assay of the present invention (7)
  • (1) Material and Test Method The same method as in Example 4 was used except that the surfactant was sodium cholate or CHAPS.
  • FIG. 8 shows the test line detection results
  • FIG. 9 shows the control line detection results.
  • the test strip of the present invention treated with sodium cholate or CHAPS showed significantly lower CV (%) compared to the conventional test strip (FIGS. 8 and 9).
  • the CV (%) of the conventional method was remarkably high. This is because the measurement sample did not reach the control line due to poor development.
  • sodium cholate or CHAPS was used, a measurement sample having an extremely high Ht value could be measured with good reproducibility.
  • Example 10 Use of two colloidal gold colloids (1) Addition of 60 nm gold colloid-labeled anti-D dimer antibody Potassium carbonate buffer (pH 8. 0) To 200 mL, 10 mL of 2 mmol / L borate buffer solution (pH 8.0) containing 46.2 ⁇ g / mL anti-D dimer monoclonal antibody (anti-DD antibody) was added and stirred at room temperature for 10 minutes. 10 mL of 10% bovine serum albumin (BSA) aqueous solution was added to the gold colloid-anti-DD antibody mixed solution, and the mixture was further stirred for 5 minutes, and then centrifuged at 10,000 rpm for 45 minutes at 10 ° C. Gate).
  • BSA bovine serum albumin
  • Conjugate Dilution Buffer manufactured by Scripts
  • Conjugate Dilution Buffer was added and diluted to 17 OD / mL to suspend the conjugate. Absorbance was measured at 531 nm (the maximum absorption wavelength of the colloidal gold used).
  • conjugate release pad A 40 nm gold colloid-labeled anti-D dimer antibody and a 60 nm gold colloid-labeled D-dimer antibody were respectively added to 1.33% casein, 4% sucrose solution (pH 7.5) so as to be 4 OD / mL.
  • the concentrations tested this time showed significantly better reproducibility than the conventional method at any surfactant concentration.
  • the surfactants of this test example all had a CV value of less than 10% in the range of 0.01 to 0.5%, and it was confirmed that the surfactants exhibited a sufficient effect as compared with the conventional method.
  • Example 12 Comparison of measurement waveform disturbance improvement effect when pre-treating porous solid phase for binding assay with surfactant of the present invention and other surfactants (1) Concentration with addition of D dimer (DD) Preparation of plasma (DD-enriched plasma) Lyophilized 0.5 mL of healthy human plasma was dissolved in 0.25 mL of purified water to prepare 2-fold concentrated plasma. Then, 10 mmol / L Tris-HCl buffer (pH 8.0) containing purified DD was added to a final concentration of 1.0 ⁇ g / mL of 10 mmol / L Tris-HCl buffer (pH 8.0) containing purified DD. Then, DD-added concentrated plasma was prepared.
  • DD D dimer
  • FIG. 12 shows the shape of the measurement waveform under each test condition. The left side of the figure is the upstream side, the right side of the figure is the downstream side, and the peak detected downward is the signal.
  • the peak that appears first is a peak derived from the test line, and the peak that appears later is a peak derived from the control line.
  • the reflected absorbance is calculated by measuring the reflected light intensity in the vicinity of the peak and using the ratio, so the change in the reflected light intensity in the vicinity of the peak affects the measurement accuracy. Therefore, the reflected light intensity around the peak is ideally constant.
  • an upward reflected light intensity change was observed before and after the peak.
  • an extreme change in reflected light intensity (FIG. 12 (d)) was observed.
  • the porous solid phase (FIG. 12 (b)) pretreated with the surfactant of the present invention did not show a change in reflected light intensity before and after the peak.
  • the distribution of reflected absorbance at the test line is shown in FIG.
  • the measured dispersion of the reflected absorbance was small and showed good reproducibility and high sensitivity. In some cases, the reflection absorbance could not be calculated (become impossible to measure) with Tween20.
  • Example 13 Comparison of measurement waveform disturbance improvement effect due to difference in surfactant addition method to porous solid phase (1) Preparation of D-dimer (DD) -added concentrated plasma (DD-enriched plasma) Example 12 By the same operation, DD concentrated plasma was prepared. (2) Preparation of solid phase washing solution In 10 mmol / L phosphate buffer (pH 7.2), n-heptyl- ⁇ -D-thioglucoside or Tween 20, Triton X-100 was added to a final concentration of 0.05% (w / v). Was added to prepare a solid phase washing solution. (3) Test Method DD concentrated plasma (120 ⁇ L) was added to the sample pad portion of the test strip of the present invention and the test strip prepared by the conventional method.
  • FIG. 14 (a) shows the distribution of reflected absorbance in the test line.
  • Example 14 Confirmation of reproducibility improvement effect by addition of anticoagulant to sample pad (1) Preparation of purified D dimer (DD) added whole blood (DD whole blood) Final concentration of DD is 1.0 ⁇ g / mL Then, 10 mmol / L Tris-HCl buffer solution (pH 8.0) containing purified DD was added to whole blood of healthy persons to prepare DD whole blood. (2) Production of immunochromatographic device using sample pad containing anticoagulant An immunochromatographic device was produced in the same manner as in the comparative example, except that a sample pad was produced by adding an anticoagulant to the sample pad impregnating solution. The types and final concentrations of anticoagulants are as follows.
  • EDTA-2Na (hereinafter, EDTA: 1 or 5 mmol / L), Diethylentriamine-N, N, N ′, N ′′, N ′′ -pentaacetic acid (hereinafter referred to as DTPA: 1 mmol / L), trans-1,2-Diaminocyclohexane-N, N, N ′, N′-tetraacetic acid (hereinafter referred to as CyDTA: 1 mmol / L) (3) Test Method DD Whole blood 120 ⁇ L was added to the sample pad portion of an immunochromatographic device having a sample pad containing each anticoagulant, and after 15 minutes, the absorbance of the detection window portion of each test device was measured. (4) Test results A test strip using a sample pad treated with an anticoagulant is reproducible compared to a test strip using any anticoagulant compared to a test strip using an untreated sample pad. Improved (FIG. 16).
  • Example 15 Confirmation of reproducibility improvement effect by addition of various amino acids to conjugate release pad (1) Preparation of plasma added with D-dimer (DD) (DD plasma) The final concentration of DD becomes 1.0 ⁇ g / mL In this way, 10 mmol / L Tris-HCl buffer (pH 8.0) containing purified DD was added to the plasma of healthy subjects to prepare DD-added plasma. (2) Addition of various amino acids to conjugate release pad An immunochromatographic device was prepared in the same manner as in the comparative example, except that a conjugate release pad was prepared by adding various amino acids to the conjugate solution.
  • the types of added amino acids were serine, glycine, glutamine, arginine, and alanine, and the final concentration of addition was 10 mmol / L.
  • Test Method DD Plasma 120 ⁇ L was added to the sample pad portion of an immunochromatography device having a conjugate release pad containing each amino acid, and after 15 minutes, the absorbance of the detection window portion of each test device was measured.
  • Test results The reproducibility was improved by using a conjugate release pad to which an amino acid was added, and particularly remarkably improved by the addition of serine and glycine (FIG. 17).
  • a measurement sample is prepared on a porous solid phase for a binding assay using one or more surfactants selected from the group consisting of a sugar-containing surfactant comprising a certain sucrose fatty acid ester and (C) a steroid surfactant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

【課題】全血などの測定試料採取後、特段の前処理操作を必要とせず、迅速、簡便、正確かつ安価に分析することのできる結合アッセイ法用の多孔性固相、及び該多孔性固相を使用した結合アッセイ法の提供を課題とする。 【解決手段】下記(A)~(C);(A)一般式(I)で表される化合物からなる糖含有界面活性剤、(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、及び(C)ステロイド系界面活性剤、からなる群から選ばれる一種以上の界面活性剤を測定試料の添加前に含むことを特徴とする、結合アッセイ用多孔性固相、及び該結合アッセイ用多孔性固相を用いる結合アッセイ法を提供する。

Description

結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法
本発明は、メンブレンなどの多孔性固相を用いて検出を行う測定試料成分の結合アッセイ法において、多孔性固相における測定試料の展開不良、感度不良、又は測定波形の乱れが改善された結合アッセイ用多孔性固相に関する。また該結合アッセイ用多孔性固相を用いる結合アッセイ法に関する。詳細には、(A)一般式(I)で表される化合物からなる糖含有界面活性剤、(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、及び(C)ステロイド系界面活性剤からなる群、から選ばれる一種以上の界面活性剤を、測定試料添加前の多孔性固相に含むことを特徴とする、結合アッセイ用多孔性固相及び該結合アッセイ用多孔性固相を用いる結合アッセイ法を提供するものである。
メンブレンなどの多孔性固相を用いて検出を行う測定試料成分の結合アッセイ法(例えば、イムノクロマト法)における測定試料の多孔性固相での展開不良には様々な原因が考えられる。例えば、多孔性固相の細孔よりも大きいために細孔内を移動・通過することが困難な物質(例えば、血球等)が測定試料中に混在している場合や、測定試料中で可溶化していた成分がアッセイ中に不溶化して目詰まりを起こす場合などがあげられる。このような場合、本来は多孔性固相を移動・通過するべき測定対象物、遊離状態の標識抗体あるいは測定対象物と標識抗体との複合体や、検出試薬中の標識物質と同様の活性をもつ測定試料中の物質(例えば、酸化酵素)などが多孔性固相を移動・通過せずに所望の位置以外に滞留してしまうという問題が生じる。その結果、測定対象の存在と関連付けられる本来のシグナル強度が得られず検出が困難になったり(測定不能あるいは偽陰性として表われる)、シグナルの検出を妨害する非特異反応が起きたりして(測定不能あるいは偽陽性として表われる)、測定信頼性の低下や再現性不良の一因になると考えられる。
従来、多孔性固相における目詰まりを回避する方法として、測定試料を多孔性固相に展開する前に、測定試料中の夾雑物(多孔性固相の細孔より大きい物質(血球等)や不溶化しやすい成分など)を遠心分離やフィルターを用いて分離除去する方法や、夾雑物を特定の条件で沈殿、吸着等させて除去する方法が用いられている。しかし、いずれの方法も操作に時間がかかる上、操作中の測定試料のロスを避けることができず、操作のために更なるコストも必要となる。また、測定試料が感染性の病原微生物を含む場合、測定を行う医師や研究者などの試験実施者への感染リスクが高くなるという問題もある。
結合アッセイ法における非特異的干渉の回避を目的として、インキュベーション媒体中に界面活性剤を添加する方法(例えば特許文献1)が広く用いられている。しかし、添加する界面活性剤の種類によっては、固相担体に結合させている抗体などの捕捉試薬が該担体より脱離したり、固相担体と抗体の結合反応そのものが阻害されることにより、特異的なシグナルが極端に低下し必要な検出感度を確保できないことがある。また、この方法を多孔性固相を用いる結合アッセイ法に適用すると、特許文献1におけるグリコシド型界面活性剤などのように界面活性剤が検出感度へ影響しない場合でも、測定試料の希釈によって測定試料成分のアッセイ系中での絶対量が低下し、必要な検出感度を確保できない場合がある。また、特許文献1では専ら非特異的干渉の回避を課題としており、測定試料の展開不良については言及も示唆もされておらず、課題としての認識はない。
全血を測定試料とする免疫測定法において、遠心分離による測定試料の前処理を省略する方法として、結合アッセイ用ストリップにおける全血供給部と多孔性固相(メンブレン)との間に血球分離パッドを設置する方法がある。該方法によれば、血球成分を分離パッドに保持させ、短時間では血球成分が該分離パッドから多孔性固相に流出しないようにする一方で、血漿成分を血球成分に先行してイムノクロマトグラフ展開膜へ展開させることにより、血球成分が測定に影響しないようにすることができる。
しかしながら、上記のように血球分離パッドを設置する構造を採用した場合でも、夾雑物の大きさに由来する目詰まり以外の原因で展開(移動・通過)不良となることがある。そのような原因としては、測定試料の粘性の高さや測定中に生じる多孔性固相の乾燥があげられる。高粘性の測定試料、つまり、血球のような固体成分を多く含む測定試料やタンパク質高含有の測定試料、あるいは水分が蒸発した測定試料は、そもそも流動性が悪いために多孔性固相での展開に時間を要し、均等に展開せず測定再現性を欠く原因となっていた。
従来、血液(全血)、血漿、血清、唾液、喀痰、糞など固形成分を含有するかあるいは粘性が高い測定試料を、イムノクロマト法で測定する場合、予め測定試料を適当な希釈液(インキュベーション媒体)で希釈する必要があった。該希釈液としては、リン酸緩衝化生理食塩液(PBS)などが用いられており、測定試料の分散性を高めるために、ウシ血清アルブミン(BSA)などを希釈液に添加することも一般的に行われている。しかしながら、市販のBSAには免疫グロブリン等の不純物が混入していることがあり、非特異反応を惹起することもあった。また、希釈液に界面活性剤を含有させようとした場合の問題は先述したとおりであり、希釈液の組成を工夫して解決しようとする方法の一番の問題が、希釈によってアッセイに供される測定試料中の測定対象物の含量あるいは濃度が低下してしまう点にあることも先述したとおりである。
一方、クロマトグラフアッセイ用多孔質膜(メンブレン)の機械的強度を上げ且つクロマトグラフ実行中の流体の蒸発(乾燥)を防ぐ目的でメンブランをラミネートした場合、ラミネート用接着剤の成分に起因して多孔質膜の親水性が低下し測定試料の展開不良が生じることが報告されている(特許文献2)。該特許文献2における展開不良は、接着剤の成分を選択し、かつメンブレンをアルキルスルホン酸系の界面活性剤で処理した上でラミネートする方法を採用してメンブレンの親水性を高めることにより克服しているが、固形成分を含有するかあるいは粘性の高い測定試料の展開不良については課題として認識されておらず、解決策は示されていない。
また、多孔性膜を固相担体として用いる酵素免疫測定の構成要素のひとつとして、アルキルグリコシド系界面活性剤またはステロイド系界面活性剤を含有する酵素免疫測定用固相洗浄液が開示されている(特許文献3)。この洗浄液は、測定試料あるいは測定対象と免疫学的に結合する標識物質を固相担体に添加した後、多孔性膜を通過・移動できず膜上に留まってしまった測定試料中の非特異反応の原因物質や遊離の標識物質を洗い流す目的で使用されている。特許文献3の方法の洗浄液は、多孔性膜上における免疫反応後、膜上に残った物質を洗い流すため、固相担体上に測定試料の添加とは別に添加されるものであるから、洗浄液の準備工程及び測定試料を測定系に添加した後、洗浄液をさらに添加する工程が必要であり、操作が煩雑になる。そもそも、特許文献3の方法は、膜上に残った物質を洗い流すことを前提としており、膜の目詰まりを未然に防止するという発想は存在せず、本発明の課題である、測定試料の展開不良を改善することはできない。
また、特許文献3の実施例に記載されるようなフロースルー式では洗浄工程を具備する場合もあるが、例えば、多数の測定試料を一度に測定しようとする場合、実用的時間内に再現性良く測定するためには、加圧や吸引(メンブレン下の吸水パッドの容量を増やすなど)などの補助手段が必要となり、簡便性やコストの面で不利益なものとなる。
さらにまた、生理活性物質を固定化した基板(アレイ)の洗浄に非イオン界面活性剤を用いる方法も開示されており(特許文献4)、非イオン界面活性剤としてアルキルグルコシド系界面活性剤が挙げられている。しかし、本引用文献発明は、アレイ上に蛋白質やペプチドを固定し、培養細胞から調整したライセート中のプロテインキナーゼ活性を検出するに際し、ライセート中の成分がアレイ基板表面に非特異吸着するのを防ぐため測定前にアレイを洗浄するもので、界面活性剤を含む洗浄液をアレイ上に添加して流すことを想定している。このように本引用文献の目的はもっぱら非特異反応防止であり、上記特許文献1と同様に、測定試料の展開不良の問題については言及も示唆もされておらず、課題としての認識はない。
さらにまた、イムノクロマト法において測定対象物と検出試薬との複合体を検出する方法として、反射光の強度を測定し、それを元に吸光度(反射吸光度)を算出する方法がある。反射吸光度は、測定ラインとその近傍の反射光強度を測定して、その比を用いて算出するが、該方法を使用する際、複合体が検出される測定ラインの上流側および下流側(特に下流側)付近の反射光強度が上昇して測定波形に乱れがみられることがある。測定対象物が低濃度の測定試料(検体)における該複合体の検出時には、測定波形の乱れを無視してベースラインを引くことができないため、特異的シグナル(ピーク)を正確に検出することができず、測定自体が不可能となることがある。このような測定波形の乱れの発生頻度と程度は一定ではないため、測定の再現性が低下したり、測定の都度適切な測定値の補正を行うこと(いいかえれば測定波形の確認)が必要であった。
なお、白色のメンブレンを用い光学的に検出する通常のイムノクロマト法において、該測定波形の乱れは、メンブレンにおける該当部位の色がその周辺の色よりも白く、色が抜けているように見える現象として目視でもとらえることができる。
このような測定波形の乱れを問題としてとらえた従来技術はなく、該問題を解消する方法は今までに知られていない。
特開平6-235730公報 特開平3-120468公報 特開平10-332697公報 特開2008-92905号公報
本発明の課題は、全血などの測定試料採取後、遠心分離などの測定試料に対する特段の前処理操作や測定試料添加後の追加操作を必要とせず、迅速、簡便、正確かつ安価に分析することのできる、結合アッセイ法用の多孔性固相及び該多孔性固相を使用した結合アッセイ法を提供することにある。
本発明者らは、メンブレンなどの多孔性固相を用いて検出を行う測定試料成分の結合アッセイ法における多孔性固相での測定試料の展開不良、感度不良、再現性不良、又は測定波形の乱れを改善する方法について鋭意検討を行い、本発明を完成するに至った。
すなわち、本発明は、(A)一般式(I)で表される化合物からなる糖含有界面活性剤、(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、及び(C)ステロイド系界面活性剤からなる群、から選ばれる一種以上の界面活性剤を、測定試料添加前の多孔性固相に含むことを特徴とする、結合アッセイ用多孔性固相及び該結合アッセイ用多孔性固相を用いる結合アッセイ法であり、詳細には、以下の[1]~[24]に記載のものである。
[1](A)下記一般式(I)
1-(G)x     (I)
(式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤、
(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、
(C)ステロイド系界面活性剤
上記(A)~(C)からなる群から選ばれる一種以上の界面活性剤を、測定試料の添加前に含むことを特徴とする、結合アッセイ用多孔性固相。
[2](A)からなる群が、n-オクチル-β-D-グルコシド及び/又はn-ヘプチル-β-D-チオグルコシドである、[1]に記載の結合アッセイ用多孔性固相。
[3](B)からなる群が、モノカプロン酸スクロース及び/又はモノラウリン酸スクロースである、[1]に記載の結合アッセイ用多孔性固相。
[4](C)からなる群が、コール酸ナトリウム及び/又は3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホン酸(CHAPS)である、[1]に記載の結合アッセイ用多孔性固相。
[5]結合アッセイが、免疫測定法である、[1]~[4]のいずれかに記載の結合アッセイ用多孔性固相。
[6]結合アッセイが、ラテラルフロー式、ディップスティック式又はフロースルー式メンブレンアッセイ法である[1]~[5]のいずれかに記載の結合アッセイ用多孔性固相。
[7]捕捉試薬が固定化されている、[1]~[6]のいずれかに記載の結合アッセイ用多孔性固相。
[8]捕捉試薬が、抗体、特異的捕捉物質又は抗原である、[7]に記載の結合アッセイ用多孔性固相。
[9][1]~[8]のいずれかに記載の結合アッセイ用多孔性固相を含むことを特徴とする結合アッセイ用ストリップ。
[10]検出試薬を含有するコンジュゲートリリースパッドをさらに含む、[9]に記載の結合アッセイ用ストリップ。
[11]検出試薬が、標識された抗体、標識された特異的捕捉物質又は標識された抗原である、[10]に記載の結合アッセイ用ストリップ。
[12]標識が、粒径の異なる2種類の金コロイドによる標識である、[11]に記載の結合アッセイ用ストリップ。
[13]コンジュゲートリリースパッドがアミノ酸類を含む、[10]~[12]のいずれかに記載の結合アッセイ用ストリップ。
[14]サンプルパッド及び/又は血球分離パッドをさらに含む、[9]に記載の結合アッセイ用ストリップ。
[15]サンプルパッドが抗凝固剤を含む、[14]に記載の結合アッセイ用ストリップ。
[16]以下の(1)~(4)
(1)サンプルパッド
(2)サンプルパッドの下にサンプルパッドに接して配置された、検出試薬を含有するコンジュゲートリリースパッド
(3)コンジュゲートリリースパッドと下記(4)の多孔性固相の間に配置された血球分離パッド
(4)捕捉試薬が固定化された多孔性固相、
からなるラテラルフロー式結合アッセイ法を行うためのストリップにおいて、多孔性固相が[1]~[8]のいずれかに記載の結合アッセイ用多孔性固相であることを特徴とする結合アッセイ用ストリップ。
[17][9]~[16]のいずれかに記載の結合アッセイ用ストリップを搭載したデバイス。
[18][1]~[8]のいずれかに記載の多孔性固相を使用することを特徴とする結合アッセイ法。
[19][9]~[16]のいずれかに記載の結合アッセイ用ストリップを使用することを特徴とする結合アッセイ法。
[20]測定試料が[1]に記載の結合アッセイ用多孔性固相を移動及び/又は通過する際に形成される、該多孔性固相上に固定化された捕捉試薬によって捕捉された測定試料中の測定対象物と検出試薬との複合体、を測定する結合アッセイ法。
[21]測定試料が、全血である[18]~[20]のいずれかに記載の結合アッセイ法。
[22]
(A)下記一般式(I)
1-(G)x     (I)
(式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤、
(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、
(C)ステロイド系界面活性剤
上記(A)~(C)からなる群から選ばれる一種以上の界面活性剤を、測定試料の添加前に含む結合アッセイ用多孔性固相を用いることを特徴とする、ラテラルフロー式あるいはディップスティック式結合アッセイ方法における測定試料の展開不良を改善する方法。
[23]測定試料が、Ht値が50%以上の試料である[22]に記載の方法。
[24]
(A)下記一般式(I)
1-(G)x     (I)
(式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤、
(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、
(C)ステロイド系界面活性剤
上記(A)~(C)からなる群から選ばれる一種以上の界面活性剤を、測定試料の添加前に含む結合アッセイ用多孔性固相を用いることを特徴とする、ラテラルフロー式あるいはディップスティック式結合アッセイ方法における測定試料の測定波形の乱れを改善する方法。
本発明は、多孔性固相を用いて検出を行う測定試料成分の結合アッセイ法において、(A)一般式(I)で表される化合物からなる糖含有界面活性剤、(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、及び(C)ステロイド系界面活性剤からなる群、から選ばれる一種以上の界面活性剤を、測定試料の添加前に含む新規な結合アッセイ用多孔性固相及び該結合アッセイ用多孔性固相を用いる新規な結合アッセイ法を提供する。本発明により、結合アッセイ用多孔性固相での測定試料の展開不良が改善され、特に、固形成分を含有するかあるいは粘性の高い測定試料を測定する際の偽陰性・偽陽性を回避した、再現性の良好な測定が可能になる。また、希釈液や洗浄液の準備を含めた測定試料の前処理および、測定試料添加後の洗浄工程を必要としないので、操作が簡便である。さらに、本発明により、測定感度が高く、また測定波形の乱れもない、良好な測定を実現できる。
結合アッセイ用ストリップ(テストストリップ)の模式構造図である。 高Ht値模擬全血を測定試料とし、本発明の展開不良改善効果を確認した試験成績を示した図である(実施例3)。 高Ht値模擬全血を測定試料とし、本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例4)。 高Ht値模擬全血を測定試料とし、各界面活性剤の濃度を変更して本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例5)。 コントロールラインを含むテストストリップの模式構造図である(実施例6)。 濃縮血漿を測定試料とし、テストラインにおける本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例7)。 濃縮血漿を測定試料とし、コントロールラインにおける本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(同上)。 濃縮血漿を測定試料とし、テストラインにおける本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例9)。 濃縮血漿を測定試料とし、コントロールラインにおける本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(同上)。 2種類の粒径の金コロイドを使用した本発明の多孔性固相を用いた場合の展開不良改善効果を確認した試験成績を示した図である(実施例10)。 高Ht値模擬全血を測定試料とし、コール酸ナトリウムの濃度を変更して本発明の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例11)。 濃縮血漿を測定試料とし、本発明の界面活性剤とそれ以外の界面活性剤で前処理した場合の測定波形の乱れ改善効果の有無を確認した試験成績を示した図である(実施例12)。 濃縮血漿を測定試料とし、本発明の界面活性剤とそれ以外の界面活性剤で前処理した場合の測定感度の再現性改善効果を確認した試験成績を示した図である(実施例12)。 濃縮血漿を測定試料とし、本発明の界面活性剤とそれ以外の界面活性剤を本発明の方法以外で使用した場合の測定波形の乱れ改善効果を確認した試験成績を示した図である(実施例13)。 濃縮血漿を測定試料とし、本発明の界面活性剤とそれ以外の界面活性剤を本発明の方法以外で使用した場合の測定感度の再現性改善効果を確認した試験成績を示した図である(実施例13)。 健常人全血を測定試料とし、各種抗凝固剤を添加したサンプルパッドを用いた場合の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例14)。 健常人血漿を測定試料とし、各種アミノ酸を添加したコンジュゲートリリースパッドを用いた場合の展開不良改善効果を測定再現性で確認した試験成績を示した図である(実施例15)。
本発明において、「測定試料」とは、血液(全血)、血清、血漿、リンパ液、尿、糞便、腹水、胸水、組織・細胞などを指す。そして、前記全血などから遠心分離、ろ過、精製などの手段により分離・分画された測定試料成分、有機溶媒などにより抽出された測定試料成分、界面活性剤などにより可溶化された測定試料成分、緩衝液などにより希釈された測定試料成分、化学反応などにより修飾・改変された測定試料成分などを含み、本発明の結合アッセイ用多孔性固相を用いた測定に供し得るものを指す。本発明の測定試料は、本発明の結合アッセイ用多孔性固相に添加、展開する時点で液体(流体)である。場合によって植物、河川、土壌なども本発明の測定試料に含まれる。なお、本発明において「展開」とは、多孔性固相を面積が最も広い面を上に向けて置いたときの水平方向すなわち多孔性固相の最長辺方向へ液体が流れる「移動」と、多孔性固相を面積が最も広い面を上に向けて置いたときの垂直方向すなわち多孔性固相の最短辺方向へ液体が流れる「通過」とを含む。
以下、測定試料が全血である場合を中心に本発明を実施するための最良の形態について説明する。
「測定試料成分」とは、上記「測定試料」に含まれる成分であって、例えば、フィブリン分解産物(例えばDダイマー)、可溶性フィブリン、TAT(トロンビン-アンチトロンビン複合体)、PIC(プラスミン-プラスミンインヒビター複合体)などの凝固・線溶マーカー、酸化LDL、BNP(脳性ナトリウム利尿ペプチド)などの循環関連マーカー、アディポネクチンなどの代謝関連マーカー、CEA(癌胎児性抗原)、AFP(α-フェトプロテイン)、CA19-9、CA125、PSA(前立腺特異抗原)などの腫瘍マーカー、CRP(C反応性蛋白)、IgA、IgG、IgMなどの炎症関係マーカー、インフルエンザ、HIV(ヒト免疫不全ウイルス)、HBV(B型肝炎ウイルス)、HCV(C型肝炎ウイルス)、トキソプラズマ、クラミジア、梅毒などの感染症関連マーカー、アレルゲン特異IgE(免疫グロブリンE)、ホルモン、薬物、SNPs(一塩基多型)に係わる核酸鎖及びその断片、該核酸鎖の相補鎖、などが例示される。なお本明細書において、「測定試料成分」の語は「測定対象」あるいは「測定対象物」と表記する場合もある。
本発明が奏する、固形成分を含有するかあるいは粘性の高い測定試料を測定する際の多孔性固相における展開不良を改善する効果を最も享受できる測定試料としては、例えば、血球を多く含み血漿量が正常より少ないヘマトクリット(Ht)値が高い全血やタンパク質高含有などにより流動性を欠く測定試料、すなわち「Ht値が高い試料」あるいは「粘性の高い測定試料」が挙げられる。これらは、測定試料中における水分(液体)含量が低い測定試料である。Ht値が高い試料としては、例えば基準範囲を超えるHt値50%以上の試料が挙げられる。これらは、何らかの疾患に起因して赤血球が増加している場合や脱水症状により単位全血あたりの血漿量が正常より少ない場合を含む。また、測定試料採取の後あるいは結合アッセイ開始後に何らかの理由により測定試料中の水分が蒸発し、乾燥・濃縮されてしまった測定試料も含まれる。
本発明において、「捕捉試薬」とは、測定試料成分と特異的な結合反応を生起し、測定試料成分との間で複合体を形成し得るものをいい、抗原に対する抗体、「特異的捕捉物質」、抗体に対する抗原が含まれる。該「特異的捕捉物質」には、リガンドに対するレセプター、核酸鎖に対する相補鎖やアプタマー、特定の糖を含有する物質に対するレクチンなどが含まれる。さらに、測定対象をいずれとするか、アッセイ系をどのように設計するか等により、例えば抗体に対する抗原など、前述した対応関係において測定試料成分として挙げたものが本発明の捕捉試薬になり得ることは、当業者であれば容易に理解されよう。また、これらの捕捉試薬は、測定試料成分との間で複合体を形成し得ることを限度として、種類を問わず、また物質全体とその機能断片を含むこと、例えば捕捉試薬が抗体である場合、ポリクローナル抗体、モノクローナル抗体の種類、それらの機能断片(Fab、Fab’、F(ab’)2、Fv等)などが含まれることも当業者であれば容易に理解されよう。
本発明において、「検出試薬」とは「コンジュゲート」と同義であり、検出のための標識物質で標識された捕捉試薬または標識された測定対象物と同一特性を有するか、結合アッセイにおいて等価なものをいい、具体的には標識された抗体、標識された特異的捕捉物質、標識された抗原などである。標識物質としては、金属コロイド粒子(金コロイドなど)や着色ラテックス粒子などの可視化可能な微小粒子、西洋ワサビペルオキシダーゼ、アルカリ性ホスファターゼ、β-D-ガラクトシダーゼなどの酵素、ヨウ素125などの放射性同位元素、アクリジニウム化合物、ルミノールなどの発光物質、フルオレセインイソチオシアネートあるいはユーロピウム(III)キレートなどの蛍光物質などが知られており、抗体等への標識方法(標識物質の導入・結合方法)も公知の方法を制限なく使用することができる。
本発明において、「サンプルパッド」とは、測定対象となる測定試料成分を含み得る測定試料を受け入れる部位であり、パッドに成型された状態で液体の測定試料を吸収し、液体と測定試料成分とが通り抜けることができるどんな物質及び形態をも含む。サンプルパッドに適した材料の具体例として、ガラス繊維(グラスファイバー)、アクリル繊維、親水性ポリエチレン材、乾燥紙、紙パルプ、織物等が含まれるが、これらに限定されない。好適には、グラスファイバー製パッド(Lydall社)が用いられる。該サンプルパッドは、サンプルパッドそれ自体として、あるいはサンプルパッドを経由して測定試料の供給を受けるコンジュゲートリリースパッドや血球分離パッドの機能を併せもたせることもできる。
サンプルパッドには、結合アッセイ用多孔性固相における非特異的反応(吸着)を防止・抑制する目的で、結合アッセイ法に通常使用されるブロッキング試薬等を含むことができる。このような試薬としては、HETERO BLOCK(オメガバイオロジカルス社、500-11-001)等をあげることができる。さらにサンプルパッドには、測定中(特に、結合アッセイ用多孔性固相への測定対象物到達前)の血液凝固の回避及び血液凝固に由来する非特異反応の抑制を目的として、例えば1種類以上の抗凝固剤を含み得る。該抗凝固剤としては、本発明の効果を損なわないことを限度として、通常抗凝固剤として使用されるヘパリン、クエン酸、フッ化ナトリウム(NaF)、およびキレート剤(それぞれ塩や水和物を含む)を用いることができる。キレート剤としては、EDTA、CyDTA、DTPAなどをあげることができる。
本発明において、「コンジュゲートリリースパッド」とは、測定試料成分と特異的に反応する検出試薬を内在し、測定試料が該コンジュゲートリリースパッドを通過する際、検出試薬と測定試料成分が特異的な反応によって複合体を形成する機能を有する部位をいう。該コンジュゲートリリースパッドは、それ単独で結合アッセイ用多孔性固相に接するように配置されていてもよいし、あるいは、前記サンプルパッドと接触して配置され、毛管流によってサンプルパッドを通過した測定試料を受入れ、引き続き該測定試料を毛管流によって前記サンプルパッドとは異なる面で接触する後記「血球分離パッド」へ移送するように配置してもよい。なお、サンプルパッド、コンジュゲートリリースパッド、血球分離パッドの一種以上の部位の選択や、選択された部位を結合アッセイ用多孔性固相にどのように配置するかは、ストリップを設計する意図等により適宜に変更可能であることは当業者であれば容易に理解されよう。
該コンジュゲートリリースパッドに適した材料として、紙、セルロース混合物、ニトロセルロース、ポリエステル、アクリロニトリルコポリマー、ガラス繊維またはレーヨンのような不織繊維が挙げられるが、これらに限定されない。好適には、グラスファイバー製パッド(日本ポール社、No.8964)が用いられる。
該コンジュゲートリリースパッドには、アッセイの信頼性を担保するための「コントロール試薬」、例えば、標識物質で標識された測定試料成分と反応しない抗体や標識物質で標識されたKLH(スカシ貝ヘモシアニン)などの高抗原性タンパク質などを含み得る。これらコントロール試薬は、測定試料中に存在する可能性が考えられない成分(物質)であり、後述する「コントロール捕捉試薬」との適切な対応があれば適宜に選択可能である。また、該コンジュゲートリリースパッドは、検出試薬(存在する場合にはコントロール試薬も)を安定な状態に保ち、測定試料と接した際に、これらを迅速かつ効果的に溶解、流動化し、測定試料中に含まれる可能性のある測定対象物と特異的に反応するのを促進する目的で、例えば1種類以上の安定化剤、溶解補助剤等を含み得る。該安定化剤、溶解補助剤等としては、例えばウシ血清アルブミン(BSA)、スクロース、カゼイン、アミノ酸類などをあげることができる。アミノ酸類は、特に好ましくはグリシンあるいはセリンが用いられる。
本発明において、「血球分離パッド」とは、前記コンジュゲートリリースパッドと接触して配置され、毛管流によってコンジュゲートリリースパッドを通過した測定試料を受入れ、引き続き該測定試料を毛管流によって該コンジュゲートリリースパッドとは異なる面で接触する「多孔性固相」へ移送する部位である。
血球分離パッドは、測定試料中の細胞成分の一部をろ過する固有の能力を有し、測定試料が全血である場合、血漿又は血清から全血中の細胞成分の一部を分離し得る親水性かつ吸収性の材料からなる。なお、測定試料が細胞成分を含有しないものであっても、血球分離パッドの細孔より大きな固形成分を含有する場合には、細胞成分の分離と同様に該固形成分を分離することができるので、血球分離パッドの語が、血球の分離のみに用いられるものを指すのではなく、広く測定試料中の固形成分の分離に用いられるものを指すことは当業者には当然に理解されるものである。
血球分離パッドに適した材料として、吸水性又は非吸水性の、繊維性又は非繊維性マトリックス、例えばシリカゲル、アルミナ、珪藻土等のような親水性無機粉末;スポンジ物質;粘土質物質;布;親水性天然重合体物質、特にセルロース系多孔性ビーズのようなセルロース系物質、及び特にろ紙又はクロマトグラフィー紙のような繊維含有紙;並びに酢酸セルロース、ポリ塩化ビニル、ポリアクリルアミド、ポリアクリレート、ポリウレタン、架橋デキストラン、アガロース、及びその他のこのような架橋又は非架橋水不溶性親水性ポリマーのような合成又は修飾天然ポリマーが挙げられるがこれらに限定されない。同様に、他の好適な材料としては、繊維性又は非繊維性マトリックス、例えばガラス繊維マトリックス;並びに合成ポリマー、例えばポリプロピレン、ポリエチレン、ナイロン、フッ化ポリビニリデン、及びポリスルホンが挙げられるがこれらに限定されない。硬質多孔性プラスチックも、全血中の血球成分を分離することができ、かつ、血漿又は血清を透過させて多孔性固相と接触させるのに十分な程度に多孔性である限りは、血球分離パッドとして有用である。好適には、ポリスルホン製パッド(日本ポール社、BTS-SP300)
が用いられる。
本発明にいて、「吸収体」とは、結合アッセイ用多孔性固相の捕捉試薬担持部を移動・通過した測定試料を吸収することにより、測定試料の展開を制御する液体吸収性を有する部位である。ラテラルフロー式およびディップスティック式においては、ストリップ構成の最下流に設ければよく、フロースルー式においては、例えば捕捉試薬を固定化した膜の下部に設ければよい。該吸収体としては、例えば、ろ紙を用いることができるが、これに限定されない。好適には、ワットマン社、740-Eが用いられる。
本発明において、「多孔性固相」とは、通常、結合アッセイ法で用いられている多孔性膜(メンブレン)であって、測定試料が展開され最終的に測定試料成分の検出が行われる。その素材は何れであってもよく、例えば、ポリエチレン、ポリエチレンテレフタレート、ナイロン類、ガラス、セルロースやセルロース誘導体などの多糖類あるいはセラミックス等より製造する。具体的には、ミリポア社、東洋濾紙社、ワットマン社などより販売されているガラス繊維ろ紙やセルロースろ紙などをあげることができる。
多孔性固相には捕捉試薬が固定化されている。多孔性固相に捕捉試薬を固定化する方法は、通常用いられる方法であれば、どのようなものでもよく、捕捉試薬が多孔性固相に物理吸着あるいは化学結合等により、直接または間接的に固定化されていればよい。例えば、抗体あるいは抗原を含む溶液をメンブレンに塗布あるいは点着し、乾燥させることで抗体あるいは抗原をメンブレンに吸着・固定化させることができる。また、前記コンジュゲートリリースパッドの項で言及した「コントロール捕捉試薬」も同様の方法で多孔性固相に固定化することができる。「コントロール捕捉試薬」は、アッセイの信頼性を担保するための試薬であって、例えば標識抗体がマウス由来である場合には、抗マウス抗体(マウス抗体に対する特異性は所望により選択)などであり、コンジュゲートリリースパッドに、例えば標識されたKLHなどのコントロール試薬も含む場合には、抗KLH抗体などがコントロール捕捉試薬に該当する。コントロール捕捉試薬を多孔性固相に固定化する位置は、アッセイ系の設計に適合するよう適宜選択することができる。例えば、ラテラルフロー式あるいはディップスティック式において、標識抗体がマウス由来であり、抗マウス抗体をコントロール捕捉試薬として固定化する場合には、測定試料成分に対する捕捉試薬よりも下流に固定化させるのが一般的であるし、フロースルー式の場合、測定試料成分に対する捕捉試薬の固定化位置に対して適当な距離(複数の測定試料成分を検出するような場合には間隔)をとって固定化させるのが一般的である。要は、アッセイ系の設計とコントロール試薬及びコントロール捕捉試薬の組み合わせを考慮し、最適と考える位置に固定化すればよい。
本発明において、「ストリップ」とは、結合アッセイ用多孔性固相に、サンプルパッド、コンジュゲートリリースパッド、血球分離パッド、吸収体の一以上が適宜に配置装着されたものをいう。測定試料を希釈せず、かつ測定試料の添加以外の工程を含まずに測定を実行する場合を想定すると、結合アッセイ用多孔性固相に少なくともコンジュゲートリリースパッドを配置装着したものが、ストリップとして例示できる。該ストリップは、通常、プラスチック製粘着シートのような固相支持体上に配列させる。該固相支持体は、測定試料の毛管流を妨げない物質で構成されることはもとより、接着剤の成分が測定試料の毛管流を妨げない物質であることも同様である。なお、特許文献2にあるように、多孔性固相の機械的強度を上げ且つアッセイ中の水分の蒸発(乾燥)を防ぐ目的で多孔性固相をラミネートすることも当然に可能である。また、多孔性固相を被覆するように多孔性固相の上面にポリエス・BR>Eルフィルムなどを配置装着してラミネートした場合、測定試料の展開速度が向上するなど、測定試料の展開に関して有利な効果が確認される場合がある。該ストリップは、ストリップの大きさや、測定試料の添加方法・位置、捕捉試薬の固定化位置、シグナルの検出方法などを考慮した適当な容器(ハウジング)に格納・搭載して使用することができ、このような状態を「デバイス」という。
本発明に用いる「界面活性剤」の一つは、
(A)下記一般式(I)
1-(G)x     (I)
(式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤である。
本発明において用いられる直鎖又は分岐鎖の炭素数5~10のアルキル基としては、ペンチル基、3-メチルブチル基、ヘキシル基、メチルペンチル基、ヘプチル基、4-メチルヘキシル基、5-メチルヘキシル基、4-エチルペンチル基、オクチル基、6-メチルヘプチル基、5-メチルヘプチル基、5,5-ジメチルヘキシル基、ノニル基、デシル基などをあげることができるがこれらに限定されるものではない。アルキル基上に存在しうる置換基としては、本発明の効果を損ねないこと限度として、任意の置換基を選ぶことができる。塩素原子、フッ素原子及びヨウ素原子などのハロゲン原子、ヒドロキシ基などを例示することができる。これらのうち、炭素数7又は8の直鎖アルキル基(n-ヘプチル基又はn-オクチル基)が好適に用いられる。
炭素数5又は6の還元糖としては、特にグルコース、ガラクトース、フルクトースをあげることができ、α体、β体のいずれでも用いることができるが、β体が好適である。これらの還元糖は、同一又は異なる還元糖による縮合物を形成していてもよい。該縮合物の具体例としては、マルトース(グルコースの2分子縮合物)、スクロース(ショ糖:グルコース1分子とフルクトース1分子の縮合物)などをあげることができる。xは該還元糖縮合物の縮合度を示す値であって1~3の数を示す。該xは平均値を意味し、プロトンNMR法により測定することができる。好適なxの値は1~2である。
1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結された、いわゆるグリコシド結合又はチオグリコシド結合を形成している。具体的には、グルコースの5位の炭素に結合している酸素原子やイオウ原子を介したエーテル結合により連結されている構造を例示することができる。
化合物の具体的な例としては、n-ヘプチル-β-D-グルコシド(n-ヘプチル-β-D-グルコピラノシド)、n-オクチル-β-D-グルコシド(n-オクチル-β-D-グルコピラノシド)、n-ノニル-β-D-マルトピラノシド、n-デシル-β-D-グルコピラノシド、n-デシル-β-D-マルトピラノシドなどのアルキルグルコシド誘導体、n-ヘプチル-β-D-チオグルコシド(n-ヘプチル-β-D-チオグルコピラノシド)、n-オクチル-β-D-チオグルコシド(n-オクチル-β-D-チオグルコピラノシド)、n-ノニル-β-D-チオマルトピラノシド、オクチル-β-D-チオガラクトピラノシド、n-ドデシル-β-D-マルトシドなどのアルキルチオグルコシド誘導体などを挙げることができる。これらのうち、展開不良の改善及び感度向上には、特に、n-オクチル-β-D-グルコシド又はn-ヘプチル-β-D-チオグルコシドが好ましい。また、測定波形の乱れ改善には、n-オクチル-β-D-グルコシド、n-ヘプチル-β-D-チオグルコシド又はn-ドデシル-β-D-マルトシドが好ましい。
本発明に用いる界面活性剤のもう一つは、
(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤である。
ここで炭素数が5~14の脂肪酸としては、ペンタン酸(吉草酸)、ヘキサン酸(カプロン酸)、ヘプタン酸(エナント酸)、オクタン酸(カプリル酸)、ノナン酸(ペラルゴン酸)、デカン酸(カプリン酸)、ドデカン酸(ラウリン酸)、テトラデンカン酸(ミリスチン酸)を挙げることができる。このうち炭素数6あるいは12の脂肪酸、すなわちヘキサン酸(カプロン酸)あるいはドデカン酸(ラウリン酸)を好適な例としてあげることができる。
ショ糖1分子に対しエステル結合する脂肪酸分子の数としては、1~3分子を例示することできる。このうちショ糖1分子に対し脂肪酸1分子がエステル結合したショ糖脂肪酸エステルが好適である。具体的な化合物としては、モノカプロン酸スクロースやモノラウリン酸スクロースを好適な例としてあげることができる。
なお、本発明で用いる「糖含有界面活性剤」の「糖含有」とは、前述のとおり、(A)一般式(I)で表される化合物、及び(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステル、からなる群から選ばれる界面活性剤の構造中に糖または糖由来成分を含む意味で用いられる。
本発明に用いる界面活性剤のさらにもう一つは、
(C)ステロイド系界面活性剤である。
ここで、本発明に用いられるステロイド系界面活性剤とは、イオン性、非イオン性にかかわらず、疎水基にステロイド骨格を有する界面活性剤のことを指す。具体的には、コール酸塩、デオキシコール酸塩、デヒドロコール酸塩、タウロコール酸塩、グリココール酸塩、3-[(3-コールアミドプロピル)ジメチルアンモニオ]プロパンスルホン酸、3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホン酸(CHAPS)、N,N-ビス(3-D-グルコンアミドプロピル)コールアミドや、ジギトニン等のステロイドサポニンなどが挙げられ、その中でも展開不良の改善及び感度向上には、特に、コール酸ナトリウム、及びCHAPSなどが好ましい。また、測定波形の乱れ改善には、コール酸ナトリウム、CHAPS及びジギトニンが好ましい。
上記界面活性剤は単独で用いても、2種類以上組み合わせて用いてもよい。上記界面活性剤は、通常、0.001(w/v)%~2.0(w/v)%の濃度範囲で用いることができる。当業者であれば、実施する結合アッセイ法における上記界面活性剤以外の成分・要素の存在、メンブレンの材質などを考慮し、本発明の効果を最大発揮できるよう実験的に最適の濃度を決定することができる。好ましい濃度範囲の一例として、0.001~0.5%であり、より好適には0.01~0.5%、さらに好適には0.01~0.1%の濃度範囲を挙げることができる。
本発明の界面活性剤は、溶液にして使用する。界面活性剤を測定試料添加前にあらかじめ多孔性固相に含有させる方法としては、多孔性固相を本発明の界面活性剤溶液に浸漬し、乾燥させる方法などを使用することができる。
界面活性剤を多孔性固相に含有させる本発明の方法によれば、測定試料を前処理する手間がかからず、測定試料の希釈に伴う検出感度低下のおそれの問題もなく、また、コンジュゲートリリースパッドを具備させれば測定試料の添加後に検出試薬の添加工程も必要としないため、簡易に結合アッセイを行うことができる。従来行っていた測定試料の前処理は、洗浄液添加のタイミング等により測定結果にバラツキが生じていたが、本発明のあらかじめ界面活性剤が含有された多孔性固相を用いることにより前処理の手間が省けるだけでなく洗浄液添加のタイミングの調整など試験実施者の習熟が不要となり、測定精度も向上する。また、ストリップにロット間の差がある場合にも、洗浄液添加のタイミングの調整が必要であったが、本発明によれば前述のとおり改善される。
本発明の効果をさらに発揮させ、最も実用的な形態とするためには、界面活性剤を多孔性固相に固定化して、乾燥状態にして用いることが重要である。また、本発明の界面活性剤を多孔性固相に固定化する部分であるが、ラテラルフロー式あるいはディップスティック式を例に説明すると、少なくとも多孔性固相における測定試料の移動領域に固定化しておく必要がある。測定試料の移動領域としては、多孔性固相のうち、直接あるいはコンジュゲートリリースパッドなどを介して測定試料が導入される部分を開始点とし、測定試料の移動方向に、捕捉試薬が固定化された部分を終点として測定試料の移動する経路が含まれていればよいが、多孔性固相の終端まで含まれていることがより好ましい。また、界面活性剤は、測定試料の移動が均一に行われるようにするために、前記移動領域に対して均一に固定化されることが重要である。このように、本発明の結合アッセイ用多孔性固相によれば、測定試料が粘性の高いものであっても、多孔性固相中を均一に展開(移動・通過)することができ、再現性に優れ、検出感度にも影響しないアッセイが実現できる。なお、前記した界面活性剤の濃度は、上記した浸漬により多孔性固相に含ませる方法を採用した場合を主として想定している。従って、例えば、噴霧して浸透させたり、多孔性固相の材料それ自体を修飾・加工して含ませるなど別の方法を採用する場合には、浸漬により多孔性固相に含ませる方法で得られる効果を対照として、採用する方法に適した濃度を決定すればよい。
前記「界面活性剤を多孔性固相に固定化して、乾燥状態にして用いる」とは、多孔性固相が界面活性剤を含有した状態で、容易に多孔性固相から界面活性剤が剥離、脱落等しない状態をいい、物理的に吸着又は化学的に結合等して固定化されていることまでは要求しない。したがって、界面活性剤溶液に多孔性固相を浸漬させ乾燥させることにより、ここでいう固定化は達成されうる。要は、アッセイ前に、多孔性固相がなんらかの形で界面活性剤を乾燥状態で保持していればよい。
上記、本発明の界面活性剤溶液には、本発明の界面活性剤のほかに、例えばリン酸緩衝剤、トリス緩衝剤やグッド緩衝剤など、通常、ブロッキング液、洗浄液、希釈液の成分として結合アッセイ法に用いられる緩衝剤を含有していてもよい。この場合の緩衝液のpHは特に限定されないが、pH5~9の範囲内であることが望ましい。さらには、通常、これらの緩衝液に添加される塩化ナトリウム等の塩類、防腐剤等の添加物を適宜添加してもよい。
また、上記、本発明の界面活性剤溶液には、本発明の界面活性剤の他に、通常、結合アッセイ法において用いられ、かつ、測定系に悪影響を及ぼさない界面活性剤(ポリオキシソルビタンモノラウレート、ポリオキシエチレンモノ-p-イソオクチルフェニルエーテルなどのポリオキシエチレン系非イオン界面活性剤等)が、この分野で通常用いられている範囲の濃度で添加されていてもよい。
本発明の結合アッセイ用多孔性固相を用いる結合アッセイ法を、免疫測定法を例として説明すると以下のとおりである。測定試料受け入れ部位であるサンプルパッドと、検出試薬としての標識抗体を含むコンジュゲートリリースパッドと、細胞成分を分離するための血球分離パッドと、捕捉試薬としての抗体が固定化された本発明の界面活性剤を含む多孔性固相よりなる結合アッセイ用ストリップに対し、測定試料を添加する。測定試料がコンジュゲートリリースパッドを通過する際、標識抗体と測定試料成分(測定対象物)が反応し特異複合体を形成する。該複合体は毛細管現象によりメンブレンで展開(移動・通過)し、メンブレン上に固定化された抗体に捕捉された特異複合体の標識物質に由来するシグナルを測定する。このような本発明の結合アッセイ法において、界面活性剤があらかじめ多孔性固相のうち、測定試料の移動部分に乾燥・固定化されていることから、固形成分を含有するかあるいは粘性の高い測定試料を測定する場合でも測定試料の流動性が良く、測定試料が多孔性固相を均一に移動することが可能となった。また、捕捉試薬のライン近傍(上流側、下流側)が白く抜けるという現象の出現頻度を低減することも可能となった。
このような免疫測定法の具体的な例としては、「フロースルー式」、「ディップスティック式」、及び「ラテラルフロー式」が挙げられる。
「ラテラルフロー式」は、液体の状態の測定試料をデバイスに滴下し、測定対象である測定試料成分を特異的に結合する捕捉試薬が塗布された多孔性固相を水平方向に展開(移動)させ、測定対象に特異的に結合する検出試薬、測定対象物、多孔性固相上に固定化された捕捉試薬の三元複合体を多孔性固相上に形成させて、検出試薬に含まれる標識物質を検出あるいは定量する方法である。「フロースルー式」は液体の状態の測定試料が多孔性固相を垂直方向に展開(通過)する点で「ラテラルフロー式」とは異なるが、測定原理は同様である。
「ディップスティック式」は、予め決められた量の液体の状態の測定試料にストリップの一部を浸漬させる点が前記2種の方法と異なり、測定試料の多孔性固相での展開(移動)は測定試料(液体)が上昇することにより達成される。
測定試料の展開距離が長いほど本発明の多孔性固相における展開不良の改善効果をより享受することができる。すなわち測定試料が多孔性固相の最長辺方向に移動する「ラテラルフロー式」または「ディップスティック式」と本発明を組み合わせることによって、再現性良好な結合アッセイを行うことができる。また、本発明の界面活性剤を含む多孔性固相は展開不良が改善されているので、洗浄工程を用いない結合アッセイ法において有用であり、特にラテラルフロー式あるいはディップスティック式に好適である。
本発明の界面活性剤を含む多孔性固相やコンジュゲートリリースパッドなどの作製は実施例に記載の方法を適宜、修飾・改変して行うことができる。また、アッセイにおける測定試料と標識物質の反応は、本発明の結合アッセイ用多孔性固相が使用できることを限度としてどのような順番で行ってもよい。標識物質に由来するシグナルを測定する方法としては、公知の方法に従って行えばよく、例えば標識物質が金コロイドの場合は、吸光度あるいは反射光の強度を測定すればよい。また、標識物質が放射性同位元素の場合は、放射線の線量をカウンターにてカウントすればよい。
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
〔比較例1〕従来の結合アッセイ用多孔性固相を使用したイムノクロマトデバイスの作製
(1)金コロイド標識抗Dダイマー抗体(抗DD抗体コンジュゲート)の作製1OD/mLの金コロイド(粒径40nm)を含む炭酸カリウム緩衝液(pH8.0)200mLに対し、92.4μg/mLの抗Dダイマーモノクローナル抗体(抗DD抗体)を含む2mmol/Lホウ酸緩衝液(pH8.0)10mLを加え、室温で10分間撹拌した。該金コロイド-抗DD抗体混合液に対し、10%ウシ血清アルブミン(BSA)水溶液を20mL添加し、さらに5分間撹拌の後、10℃にて、10,000rpmで45分間遠心し、沈渣(コンジュゲート)を得た。得られたコンジュゲートに対し、Conjugate Dilution Buffer(Scripps社製)を添加し、17OD/mLとなるように希釈し、コンジュゲートを懸濁させた。吸光度は、524nm(使用した金コロイドの最大吸収波長)で測定した。
(2)コンジュゲートリリースパッドの作製
上記(1)で調製したコンジュゲートを、4OD/mLとなるように、1.33%カゼイン、4%スクロース溶液(pH7.5)と混合してコンジュゲート溶液を作製し、13.0mm×254mm×0.56mm(幅×長さ×厚さ)のグラスファイバー製パッド(日本ポール社、No.8964)に該パッド体積の1.2倍容量滲みこませた。ドライオーブン内で70℃、30分間加温することにより乾燥させ、コンジュゲートリリースパッドとした。
(3)抗DD抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製
25mm×254mm×0.235mm(短辺×長辺×厚さ)のニトロセルロースメンブレン(ミリポア社、HF240)の長辺の一端から11mm内側の位置に、長辺と並行して1mg/mL抗DD抗体及び2.5%スクロースを含む10mmol/Lリン酸緩衝液(pH7.2)を、イムノクロマト用ディスペンサー「XYZ3050」(BIO DOT社)を用いて1μL/cm幅でライン状に塗布した。ドライオーブン内で70℃、45分乾燥し、抗DD抗体固定化メンブレンとした。
(4)サンプルパッドの作製
25mmol/L NaCl、0.5%スクロース及び0.25mg/mL HETERO BLOCK(オメガバイオロジカルス社、500-11-001)を含む20mmol/Lトリス塩酸緩衝液(pH7.2)よりなるサンプルパッド含浸液を、16mm×254mm×0.55mm(短辺×長辺×厚さ)に切断したグラスファイバー製パッド(Lydall社)に対し該パッド体積の1.15倍容量滲みこませた。ドライオーブン内で70℃、45分乾燥し、サンプルパッドとした。
(5)結合アッセイ用ストリップ(テストストリップ)の作製
プラスチック製粘着シート(g)に上記抗DD抗体固定化メンブレン(d)を貼り、該メンブレンの抗DD抗体(e)を塗布した側と反対の端に血球分離パッド(c)(日本ポール社、BTS-SP300)を配置装着し、抗DD抗体を塗布した側の端には吸収体(f)(ワットマン社、740-E)を配置装着した。また該血球分離パッドに重なるように上記(2)で作製したコンジュゲートリリースパッド(b)を配置装着し、さらにこのコンジュゲートリリースパッドに重なるように上記(4)で作製したサンプルパッド(a)を配置装着して、最後に多孔性固相および吸収体を被覆するように上面にポリエステルフィルム(h)を配置装着しラミネートした。このように各構成要素を重ね合わせた構造物を6mm幅に切断してテストストリップを作製した。該テストストリップの外寸は、6mm×70mm(幅×長さ)であり、アッセイの際、プラスチック性の専用のハウジング(サンプル添加窓部及び検出窓部を有する、図1中図示せず)に格納・搭載し、イムノクロマトデバイスの形態にした。図1にテストストリップの模式構成図を示した。
〔実施例1〕本発明のテストストリップを使用したイムノクロマトデバイスの作製
(1)本発明の抗DD抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製
先ずニトロセルロースメンブレン(ミリポア社、HF240)を、表1に示した本発明の界面活性剤をそれぞれ0.05%(w/v)の濃度で含む10mmol/Lリン酸緩衝液(pH7.2)に浸漬し、室温で30分間振盪した。余分な液を取り除いた後、37℃ドライオーブンで1時間乾燥した。得られた界面活性剤を含むメンブレンについて、比較例1(3)に記載の操作を行い、本発明の抗DD抗体固定化メンブレンを作製した。
(2)本発明のイムノクロマトデバイスの組み立て
比較例1(2)のコンジュゲートリリースパッド、同(4)のサンプルパッド、上記本発明の抗DD抗体固定化メンブレンを用い、比較例1(5)に記載の操作により、本発明のテストデバイスを作製した。
〔実施例2〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(1)
(1)高Ht値模擬全血の作製
全血を遠心分離して得た血球層に対し同一全血から得た血漿を添加し、再構成後のHt値が70%を示す高Ht値模擬全血を作製した。
(2)試験方法
高Ht値模擬全血100μLを、実施例1で作製した本発明のデバイスのテストストリップのサンプルパッド部に添加し、添加15分後に展開された液体の先端を示すコンジュゲートに由来する赤紫色ラインが、テストストリップ終端の吸収紙まで到達するか否かを目視により確認した。テストストリップ終端の吸収紙まで赤紫色ラインが到達した場合には、展開不良の改善効果ありと判定した。結果を表1に示した。なお、比較例1の抗DD抗体固定化メンブレンに、コンジュゲート溶液を直接添加し、展開を確認した試験において、プラスチック製粘着シートの有無による展開時間の変動は観察されなかった。
Figure JPOXMLDOC01-appb-T000001
(3)試験結果
比較例1のテストストリップでは、抗DD抗体の塗布ラインより手前までしか赤紫色ラインは移動しなかった。一方、n-オクチル-β-D-グルコシド、n-ヘプチル-β-D-チオグルコシド及びモノカプロン酸スクロースを含有する本発明のテストストリップでは、テストストリップ終端の吸収紙まで赤紫色ラインの移動が確認された。
以上より、n-オクチル-β-D-グルコシド、n-ヘプチル-β-D-チオグルコシド及びモノカプロン酸スクロースは、結合アッセイ用多孔性固相における測定試料の展開不良の改善効果ありと判定した(表1効果の欄に○印で表示)。
〔実施例3〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(2)
(1)精製Dダイマー(DD)添加高Ht値模擬全血(DD模擬全血)の作製全血を遠心分離して得た血球層に対し、精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)および同一全血から得た血漿を添加し、DDの終濃度が1.0μg/mLかつ再構成後のHt値が70%を示すようにDD模擬全血を作製した。
(2)試験方法
DD模擬全血100μLを、実施例1で作製した本発明の結合アッセイ用多孔性固相(n-オクチル-β-D-グルコシド含有)含むイムノクロマトデバイスのサンプルパッド部に添加し、イムノクロマトリーダーICA-1000(浜松ホトニクス社)を用いてテストデバイスの検出窓部の反射吸光度(以下、各実施例において単に吸光度という)の変化を、添加1分後から添加15分後まで1分間隔で経時的に測定した。なお、各実施例における吸光度の測定は、前記と同じ測定装置を用いて行った。
(3)試験結果
本発明の結合アッセイ用多孔性固相を使用したテストストリップでは、DD模擬全血添加10分後に吸光度の増加が観察されると共に、DD模擬全血添加15分後まで吸光度の直線的増加が認められた。この結果は二回の測定でほぼ同様であった(以上、図2中の実施例)。一方、従来の結合アッセイ用多孔性固相を使用したテストストリップでは、一回目の測定では、DD模擬全血添加14分後まで吸光度の増加が観察されず、吸光度増加が観察された添加15分後の吸光度も本発明のテストストリップの10分後の吸光度よりも低い吸光度であった。また、二回目の測定ではDD模擬全血添加11分後に吸光度の増加が確認されたが、DD模擬全血添加15分後まで測定しても本発明のテストストリップにおいて示された吸光度と同レベルの吸光度に達することはなかった(以上、図2中の比較施例)。
以上のように、本発明のテストストリップでは、極端に液体成分の少ない全血(例えばHt値70%)を測定試料とする場合であっても、良好な再現性で測定可能であり、本発明は結合アッセイ用多孔性固相における測定試料の展開不良の改善効果が顕著であることが確認された。
〔実施例4〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(3)
(1)DD模擬全血の作製
実施例3と同様の操作により、DD模擬全血を作製した。
(2)本発明のイムノクロマトデバイスの作製
界面活性剤としてn-オクチル-β-D-グルコシド、n-ヘプチル-β-D-チオグルコシド、モノラウリン酸スクロースを使用し、実施例1に記載の操作により作製した。
(3)試験方法
DD模擬全血100μLを上記(2)で作製した本発明のイムノクロマトデバイスのサンプルパッド部に添加し、添加15分後のテストデバイスの検出窓部の吸光度を測定した。測定はn=5で行い、測定値のCV(%)を算出し、従来の結合アッセイ用多孔性固相からなるテストストリップを搭載したイムノクロマトデバイスと比較した。
(4)試験結果
本発明のテストストリップは、従来のテストストリップと比較して顕著に小さいCV(%)を示した(図3)。このように、本発明の結合アッセイ用多孔性固相を使用すると、Ht値が極端に高い測定試料であっても良好な再現性での測定が可能であること、及び本発明は結合アッセイ用多孔性固相における測定試料の展開不良を改善し、正確な測定を可能にすることが確認された。
〔実施例5〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(4)
(1)精製Dダイマー(DD)添加高Ht値模擬全血(DD模擬全血)の作製全血を遠心分離して得た血球層に対し、精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)および同一全血から得た血漿を添加し、DDの終濃度が1.0μg/mLかつ再構成後のHt値が62%を示すようにDD模擬全血を作製した。
(2)抗DD抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製
実施例1(1)に記載の本発明の抗DD抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製方法において、10mmol/Lリン酸緩衝液(pH7.2)に添加した各界面活性剤の濃度を0、0.01、0.05、0.075、0.10%(w/v)とした以外は、実施例1と同じ方法を用いた。
(3)試験方法
実施例4(3)と同じ方法で測定を行った。測定値のCV(%)を算出して至適濃度範囲を決定した。
(4)試験結果
図4に示すように、今回試験した濃度においては、いずれの界面活性剤でも従来法と比較して良好な再現性を示した。ここでは、CV値が従来法の半分である15%以下を満たす場合を効果ありと判断した。本試験例の界面活性剤は0.01~0.10%の範囲でいずれもCV値が15%未満であり、従来法に比べ十分な効果を発揮することが確認された。
〔実施例6〕コントロールラインを含むイムノクロマトデバイスの作製
(1)コントロールライン用金コロイド標識KLH(KLHコンジュゲート)の作製
1OD/mLの金コロイド(粒径40nm)を含む炭酸カリウム緩衝液(pH8.0)200mLに対し、620μg/mLとなるようKLH粉末を溶解した2mmol/Lリン酸緩衝液(pH6.1)10mLを加え、室温で10分間撹拌した。該金コロイド-KLH混合液に対し、10%ウシ血清アルブミン(BSA)水溶液を20mL添加し、さらに5分間撹拌の後、10℃にて、10,000rpmで45分間遠心し、沈渣(コンジュゲート)を得た。得られたコンジュゲートに対し、Conjugate Dilution Buffer(Scripps社製)を添加し、17OD/mLとなるように希釈し、コンジュゲートを懸濁させた。吸光度は、531nm(使用した金コロイドの最大吸収波長)で測定した。
(2)コンジュゲートリリースパッドの作製
比較例1(1)で調製した抗DD抗体コンジュゲートを4OD/mLとなるように、上記(1)で調製したKLHコンジュゲートを4.5OD/mLとなるように、1.33%カゼイン、4%スクロース溶液(pH7.5)と混合してコンジュゲート溶液を作製し、13.0mm×254mm×0.56mm(幅×長さ×厚さ)のグラスファイバー製パッド(日本ポール社、No.8964)に該パッド体積の1.2倍容量滲みこませた。ドライオーブン内で70℃、30分間加温することにより乾燥させ、コンジュゲートリリースパッドとした。
(3)抗DD抗体および抗KLHポリクローナル抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製
実施例1(1)と同様に、ニトロセルロースメンブレンを、本発明の各界面活性剤を所定の濃度で含む10mmol/Lリン酸緩衝液(pH7.2)に浸漬し、室温で30分間振盪した。余分な液を取り除いた後、37℃ドライオーブンで1時間乾燥した。25mm×254mm×0.235mm(短辺×長辺×厚さ)のニトロセルロースメンブレン(ミリポア社、HF240)の長辺の一端から内側11mmの位置に、長辺と並行して、1mg/mL抗DD抗体及び2.5%スクロースを含む10mmol/Lリン酸緩衝液(pH7.2)を、同様に同一端から15mmの位置に、長辺と並行して、0.5mg/mL抗KLHポリクローナル抗体及び2.5%スクロースを含む10mmol/Lリン酸緩衝液(pH7.2)を、イムノクロマト用ディスペンサー「XYZ3050」(BIO DOT社)を用いて1μL/cm幅でライン状に塗布した。ドライオーブン内で70℃、45分乾燥し、抗DD抗体固定化メンブレンとした。
(4)サンプルパッドの作製
比較例1(4)と同様にサンプルパッドを作製した。
(5)イムノクロマトデバイスの作製
上記(2)のコンジュゲートリリースパッド、同(3)のメンブレン、同(4)のサンプルパッドを用いて、比較例1(5)記載の操作により、コントロールラインを含むテストストリップおよび、イムノクロマトデバイスを作製した。図5にテストストリップの模式構成図を示した。
後述する実施例7及び実施例9において、テストラインとは、上記抗DD抗体固定化メンブレン(d)の抗DD抗体(e)が固定化されている位置に測定試料が到達して検出されるライン(図5(e)の位置に現れる)をいい、コントロールラインとは、同メンブレンにコントロール捕捉試薬(抗KLHポリクローナル抗体)が固定化されている位置に測定試料が到達して検出されるライン(図5(j)の位置に現れる)をいう。
〔実施例7〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(5)
(1)Dダイマー(DD)添加濃縮血漿(DD濃縮血漿)の作製
凍結乾燥した0.5mLの健常人血漿を、0.25mLの精製水で溶解することにより2倍濃縮した血漿を調製した。そこへ、精製DDを含む10mmol/Lトリス塩緩衝液(pH8.0)を添加し、終濃度DD1.0μg/mLとなるようにDD添加濃縮血漿を作製した。
(2)試験方法
DD濃縮血漿100μLを実施例6で作製したイムノクロマトデバイスのサンプルパッド部に添加し、DD濃縮血漿添加15分後のテストデバイスの検出窓部の吸光度を測定した。測定はn=5で行い、測定値のCV(%)を算出し、従来法のイムノクロマトデバイス(本発明の界面活性剤を含まない以外は実施例6のイムノクロマトデバイスと同じ)と比較した。
(3)試験結果
テストラインの検出結果を図6に、コントロールラインの検出結果を図7に示す。本発明の界面活性剤のいずれを用いた場合においても、従来のイムノクロマトデバイスでの測定と比較してCV(%)が減少した。コントロールラインの検出においては、従来法では展開液の先端がテストラインに到達しないために再現性不良になっていたところ、本発明の結合アッセイ用多孔性固相を用いた場合には、測定試料の展開不良の改善によって再現性が大幅に向上した。以上より、本発明の結合アッセイ用多孔性固相は、血漿成分が2倍濃厚になった状態の測定試料であっても良好な再現性での測定が可能であること、および本発明は結合アッセイ用多孔性固相における測定試料の展開不良を改善し、正確な測定を可能にすることが確認された。
〔実施例8〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(6)
(1)材料及び試験方法
使用した界面活性剤がコール酸ナトリウムとCHAPSであること以外は実施例2に記載の材料及び試験方法を用いた。
Figure JPOXMLDOC01-appb-T000002
(2)試験結果
コール酸ナトリウムを含有する本発明のテストストリップでも、実施例2に示した界面活性剤と同様にテストストリップ終端の吸収紙まで赤紫色ラインが移動した。
よって、コール酸ナトリウムおよびCHAPSは、結合アッセイ用多孔性固相における測定試料の展開不良の改善効果ありと判定した(表2効果の欄に○印で表示)。
〔実施例9〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(7)
(1)材料及び試験方法
界面活性剤の種類がコール酸ナトリウムあるいはCHAPSである以外は、実施例4と同じ方法を用いた。
(2)試験結果
テストラインの検出結果を図8に、コントロールラインの検出結果を図9に示す。テストライン及びコントロールラインの検出において、コール酸ナトリウムあるいはCHAPSで処理した本発明のテストストリップは、従来法のテストストリップと比較して顕著に低いCV(%)を示した(図8、図9)。特にコントロールラインの検出では、従来法のCV(%)が著しく高かったが、これは展開不良のため測定試料がコントロールラインまで到達していないことに起因する。このように、コール酸ナトリウムあるいはCHAPSを使用した場合も、Ht値が極端に高い測定試料を再現性良く測定できた。
〔実施例10〕2種類の粒径の金コロイドの使用
(1)粒径60nm金コロイド標識抗Dダイマー抗体の添加
1OD/mLの金コロイド(粒径60nm)を含む炭酸カリウム緩衝液(pH8.0)200mLに対し、46.2μg/mLの抗Dダイマーモノクローナル抗体(抗DD抗体)を含む2mmol/Lホウ酸緩衝液(pH8.0)10mLを加え、室温で10分間撹拌した。該金コロイド-抗DD抗体混合液に対し、10%ウシ血清アルブミン(BSA)水溶液を10mL添加し、さらに5分間撹拌の後、10℃にて、10,000rpmで45分間遠心し、沈渣(コンジュゲート)を得た。得られたコンジュゲートに対し、Conjugate Dilution Buffer(Scripps社製)を添加し、17OD/mLとなるように希釈し、コンジュゲートを懸濁させた。吸光度は、531nm(使用した金コロイドの最大吸収波長)で測定した。
(2)コンジュゲートリリースパッドの作製
40nm金コロイド標識抗Dダイマー抗体と60nm金コロイド標識Dダイマー抗体を、各々4OD/mLとなるように、1.33%カゼイン、4%スクロース溶液(pH7.5)と混合してコンジュゲート溶液を作製し、13.0mm×254mm×0.56mm(幅×長さ×厚さ)のグラスファイバー製パッド(日本ポール社、No.8964)に該パッド体積の1.2倍容量滲みこませた。ドライオーブン内で70℃、30分間加温することにより乾燥させ、コンジュゲートリリースパッドとした。
(3)本発明のイムノクロマトデバイスの作製
コンジュゲートリリースパッドが上記(2)で作製したものであること以外、実施例1と同様に行った。使用した界面活性剤はn-ヘプチル-β-D-チオグルコシドである。
(3)精製Dダイマー(DD)添加高Ht値模擬全血(DD模擬全血)の作製全血を遠心分離して得た血球層に対し、精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)および同一全血から得た血漿を添加し、再構成後のHt値が60%を示すようにDD模擬全血を作製した。DD濃度は0、3.0、15μg/mLになるように調整した。
(4)試験結果
2種類の粒径の金コロイドを用いた測定系において、従来法(単一粒径の金コロイド使用)と比較して本発明の多孔性固相を用いた場合では、検出感度が向上し、測定対象物が高濃度の測定試料においてもより定量的な測定が可能になった(図10)。
〔実施例11〕本発明の結合アッセイ用多孔性固相の展開不良改善効果の確認(8)
(1)精製Dダイマー(DD)添加高Ht値模擬全血(DD模擬全血)の作製全血を遠心分離して得た血球層に対し、精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)および同一全血から得た血漿を添加し、DDの終濃度が1.0μg/mLかつ再構成後のHt値が60%を示すようにDD模擬全血を作製した。
(2)抗DD抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製
実施例1(1)に記載の本発明の抗DD抗体固定化メンブレン(結合アッセイ用多孔性固相)の作製方法において、用いた界面活性剤がコール酸ナトリウムであり、10mmol/Lリン酸緩衝液(pH7.2)に添加した界面活性剤の濃度を0、0.01、0.05、0.075、0.1、0.5%(w/v)とした以外は、実施例1と同じ方法を用いた。
(3)試験方法
実施例4(3)と同じ方法で測定を行った。測定値のCV(%)を算出して至適濃度範囲を決定した。
(4)試験結果
図11に示すように、今回試験した濃度においては、いずれの界面活性剤濃度でも従来法と比較して顕著に良好な再現性を示した。ここでは、CV値が従来法の半分である10%以下を満たす場合を効果ありと判断した。本試験例の界面活性剤は0.01~0.5%の範囲でいずれもCV値が10%未満であり、従来法に比べ十分な効果を発揮することが確認された。
〔実施例12〕本発明の界面活性剤とそれ以外の界面活性剤で結合アッセイ用多孔性固相を前処理した場合の測定波形の乱れ改善効果の比較
(1)Dダイマー(DD)添加濃縮血漿(DD濃縮血漿)の作製
凍結乾燥した0.5mLの健常人血漿を、0.25mLの精製水で溶解することにより2倍濃縮した血漿を調製した。そこへ、精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)を終濃度1.0μg/mLとなるように精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)を添加し、DD添加濃縮血漿を作製した。
(2)イムノクロマトデバイスの作製方法
10mmol/Lリン酸緩衝液(pH7.2)中に含まれる界面活性剤として、0.05%n-ヘプチル-β-D-チオグルコシドあるいは0.05%Tween20、0.05%TritonX-100を用いた以外は、実施例6(3)と同様の方法で抗DD抗体および抗KLHポリクローナル抗体固定化メンブレンを作製した。上記メンブレンを用いて実施例6(5)と同様の方法でイムノクロマトデバイスを作製した。
(3)試験方法
DD濃縮血漿120μLを上記(2)で作製したイムノクロマトデバイスのサンプルパッド部に添加し、DD濃縮血漿添加15分後のテストデバイスの検出窓部の吸光度を測定した。測定はn=5で行い、それぞれ測定波形の形状を確認した。
本発明のイムノクロマトデバイス(n-ヘプチル-β-D-チオグルコシド前処理)と、界面活性剤を含浸させないニトロセルロースメンブレンを用いたイムノクロマトデバイス(従来法)及び固相に含浸させる界面活性剤にTritonX-100、Tween20を用いたイムノクロマトデバイス(TritonX-100前処理、Tween20前処理)とを比較した。
(4)試験結果
図12に、各試験条件における測定波形の形状を示した。図左側が上流側、図右側が下流側であり、下向きに検出されるピークがシグナルである。最初に現れるピークがテストラインに由来するピークであり、後に現れるピークがコントロールラインに由来するピークである。先述したように反射吸光度は、ピークとその近傍の反射光強度を測定し、その比を用いて算出するのでピーク付近の反射光強度の変化は測定精度に影響を与える。従ってピーク前後の反射光強度は一定であることが理想である。
図12の(a)従来法、(c)TritonX-100前処理、(d)Tween20前処理のいずれにおいても、ピークの前後に上向きの反射光強度の変化が認められた。特にTween20で前処理した多孔性固相では、極端な反射光強度の変化(図12(d))が観察された。
これに対し、本発明の界面活性剤で前処理した多孔性固相(図12(b))は、ピーク前後で反射光強度の変化を認めなかった。
テストラインにおける反射吸光度の分布を図13に示した。本発明の界面活性剤で前処理した多孔性固相を用いた場合には、測定される反射吸光度の分散が少なく良好な再現性を示し、かつ高感度であったが、その他の条件では分散が大きく、Tween20では反射吸光度を算出できない(測定不可能になる)場合さえあった。
〔実施例13〕多孔性固相への界面活性剤の添加方法の違いによる測定波形の乱れ改善効果の比較
(1)Dダイマー(DD)添加濃縮血漿(DD濃縮血漿)の作製
実施例12と同様の操作により、DD濃縮血漿を作製した。
(2)固相洗浄液の調製
10mmol/Lリン酸緩衝液(pH7.2)に、n-ヘプチル-β-D-チオグルコシドあるいはTween20、TritonX-100を終濃度0.05%(w/v)になるよう添加し、固相洗浄液を調製した。
(3)試験方法
DD濃縮血漿120μLを、本発明のテストストリップ、および従来法で作製されたテストストリップの、サンプルパッド部に添加した。15分後、本発明のテストストリップのテストデバイスの検出窓部の吸光度を測定した。従来法で作成されたテストデバイスには、DD濃縮血漿添加から5分後に、50μLの固相洗浄液を添加し、DD濃縮血漿添加から15分後のテストデバイスの検出窓部の吸光度を測定した。
(4)試験結果
本発明の界面活性剤の多孔性固相への添加方法を固相洗浄液とした場合、測定波形の乱れは改善されなかった(図14(c)の矢印部分)。同様に、図14の(b)従来法、(d)TritonX-100を含む固相洗浄液、(e)Tween20を含む固相洗浄液のいずれでも測定波形の乱れは改善されなかった。
これに対し、本発明の界面活性剤で前処理した多孔性固相(図14(a))は、ピーク前後で反射光強度の変化を認めなかった。
テストラインにおける反射吸光度の分布を図15に示した。本発明の界面活性剤で前処理した多孔性固相を用いた場合には、測定される反射吸光度の分散が少なく良好な再現性を示し、かつ高感度であったが、その他の条件では分散が大きかった。
これより本発明の多孔性固相を用いることで、展開不良のみならず測定波形の乱れが改善されて、従来法や固相洗浄液を用いた場合よりも感度の良い測定を再現良く行えることが確認できた(図15)。
〔実施例14〕抗凝固剤のサンプルパッドへの添加による再現性改善効果の確認
(1)精製Dダイマー(DD)添加全血(DD全血)の作製
DDの終濃度が1.0μg/mLとなるように精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)を健常人全血に添加し、DD全血を作製した。
(2)抗凝固剤を含むサンプルパッドを用いたイムノクロマトデバイスの作製
サンプルパッド含浸液に抗凝固剤を添加してサンプルパッドを作製した以外は、比較例と同じ方法でイムノクロマトデバイスを作製した。抗凝固剤の種類と終濃度については次の通りである。
EDTA-2Na(以下、EDTA:1又は5mmol/L)、
Diethylenetriamine-N,N,N’,N”,N”-pentaacetic acid(以下DTPA:1mmol/L)、
trans-1,2-Diaminocyclohexane-N,N,N’,N’-tetraacetic acid(以下CyDTA:1mmol/L)
(3)試験方法
DD全血120μLを、各抗凝固剤を含むサンプルパッドを具備するイムノクロマトデバイスの、サンプルパッド部に添加し、15分後、各テストデバイスの検出窓部の吸光度を測定した。
(4)試験結果
抗凝固剤で処理されたサンプルパッドを用いたテストストリップは、いずれの抗凝固剤で処理されたものでも、未処理のサンプルパッドを用いたテストストリップと比較して再現性が向上した(図16)。
〔実施例15〕各種アミノ酸のコンジュゲートリリースパッドへの添加による再現性改善効果の確認
(1)Dダイマー(DD)添加血漿(DD血漿)の作製
DDの終濃度が1.0μg/mLとなるように精製DDを含む10mmol/Lトリス塩酸緩衝液(pH8.0)を健常人血漿に添加し、DD添加血漿を作製した。
(2)各種アミノ酸のコンジュゲートリリースパッドへの添加コンジュゲート溶液に各種アミノ酸を添加してコンジュゲートリリースパッドを作製した以外は、比較例と同様にイムノクロマトデバイスを作製した。添加したアミノ酸の種類は、セリン、グリシン、グルタミン、アルギニン、アラニンで、添加終濃度はそれぞれ10mmol/Lとした。
(3)試験方法
DD血漿120μLを、各アミノ酸を含むコンジュゲートリリースパッドを具備するイムノクロマトデバイスの、サンプルパッド部に添加し、15分後、各テストデバイスの検出窓部の吸光度を測定した。
(4)試験結果
アミノ酸を添加したコンジュゲートリリースパッドを使用することにより再現性が向上し、特にセリン、グリシン添加によって著しく向上した(図17)。
以下、各実施例の成績をまとめると、各試験結果より、本発明の界面活性剤で処理した結合アッセイ多孔性固相を用いれば、粘性の高い測定試料であっても、該多孔性固相において良好に測定試料が展開され、測定波形の乱れも抑えられ、また感度の高い再現性に優れた測定が可能となる。また、本発明の結合アッセイ多孔性固相に抗凝固剤処理を施したサンプルパッド及び/又はアミノ酸処理を施したコンジュゲートリリースパッドを組み合わせることにより、さらに、再現性が向上した測定が可能となる。
本発明によれば、下記、(A)~(C);(A)一般式(I)で表される化合物からなる糖含有界面活性剤、(B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、及び(C)ステロイド系界面活性剤、からなる群から選ばれる一種以上の界面活性剤を用いて結合アッセイ用多孔性固相上で測定試料を展開することにより、粘性の高い測定試料であっても、該多孔性固相上で良好に展開され、偽陰性・偽陽性を回避して再現性の高い測定が可能となった。
(a)サンプルパッド
(b)コンジュゲートリリースパッド
(c)血球分離パッド
(d)多孔性固相(メンブレン)
(e)捕捉試薬(抗体)
(f)吸収体
(g)プラスチック製粘着シート
(h)ポリエステルフィルム
(j)コントロール捕捉試薬

Claims (24)

  1. (A)下記一般式(I)
    1-(G)x     (I)
    (式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤、
    (B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、
    (C)ステロイド系界面活性剤
    上記(A)~(C)からなる群から選ばれる一種以上の界面活性剤を、測定試料の添加前に含むことを特徴とする、結合アッセイ用多孔性固相。
  2. (A)からなる群が、n-オクチル-β-D-グルコシド及び/又はn-ヘプチル-β-D-チオグルコシドである、請求項1に記載の結合アッセイ用多孔性固相。
  3. (B)からなる群が、モノカプロン酸スクロース及び/又はモノラウリン酸スクロースである、請求項1に記載の結合アッセイ用多孔性固相。
  4. (C)からなる群が、コール酸ナトリウム及び/又は3-[(3-コールアミドプロピル)ジメチルアンモニオ]-2-ヒドロキシプロパンスルホン酸(CHAPS)である、請求項1に記載の結合アッセイ用多孔性固相。
  5. 結合アッセイが、免疫測定法である、請求項1~4のいずれかに記載の結合アッセイ用多孔性固相。
  6. 結合アッセイが、ラテラルフロー式、ディップスティック式又はフロースルー式メンブレンアッセイ法である請求項1~5のいずれかに記載の結合アッセイ用多孔性固相。
  7. 捕捉試薬が固定化されている、請求項1~6のいずれかに記載の結合アッセイ用多孔性固相。
  8. 捕捉試薬が、抗体、特異的捕捉物質又は抗原である、請求項7に記載の結合アッセイ用多孔性固相。
  9. 請求項1~8のいずれかに記載の結合アッセイ用多孔性固相を含むことを特徴とする結合アッセイ用ストリップ。
  10. 検出試薬を含有するコンジュゲートリリースパッドをさらに含む、請求項10に記載の結合アッセイ用ストリップ。
  11. 検出試薬が、標識された抗体、標識された特異的捕捉物質又は標識された抗原である、請求項10に記載の結合アッセイ用ストリップ。
  12. 標識が、粒径の異なる2種類の金コロイドによる標識である、請求項11に記載の結合アッセイ用ストリップ。
  13. コンジュゲートリリースパッドがアミノ酸類を含む、請求項10~13のいずれかに記載の結合アッセイ用ストリップ。
  14. サンプルパッド及び/又は血球分離パッドをさらに含む、請求項8に記載の結合アッセイ用ストリップ。
  15. サンプルパッドが抗凝固剤を含む、請求項14に記載の結合アッセイ用ストリップ。
  16. 以下の(1)~(4)
    (1)サンプルパッド
    (2)サンプルパッドの下にサンプルパッドに接して配置された、検出試薬を含有するコンジュゲートリリースパッド
    (3)コンジュゲートリリースパッドと下記(4)の多孔性固相の間に配置された血球分離パッド
    (4)捕捉試薬が固定化された多孔性固相、
    からなるラテラルフロー式結合アッセイ法を行うためのストリップにおいて、多孔性固相が請求項1~8のいずれかに記載の結合アッセイ用多孔性固相であることを特徴とする結合アッセイ用ストリップ。
  17. 請求項9~16のいずれかに記載の結合アッセイ用ストリップを搭載したデバイス。
  18. 請求項1~8のいずれかに記載の多孔性固相を使用することを特徴とする結合アッセイ法。
  19. 請求項9~16のいずれかに記載の結合アッセイ用ストリップを使用することを特徴とする結合アッセイ法。
  20. 測定試料が請求項1に記載の結合アッセイ用多孔性固相を移動及び/又は通過する際に形成される、該多孔性固相上に固定化された捕捉試薬によって捕捉された測定試料中の測定対象物と検出試薬との複合体、を測定する結合アッセイ法。
  21. 測定試料が、全血である請求項18~20のいずれかに記載の結合アッセイ法。
  22. (A)下記一般式(I)
    1-(G)x     (I)
    (式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤、
    (B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、
    (C)ステロイド系界面活性剤
    上記(A)~(C)からなる群から選ばれる一種以上の界面活性剤を、測定試料の添加前に含む結合アッセイ用多孔性固相を用いることを特徴とする、ラテラルフロー式あるいはディップスティック式結合アッセイ方法における測定試料の展開不良を改善する方法。
  23. 測定試料が、Ht値が50%以上の試料である請求項22に記載の方法。
  24. (A)下記一般式(I)
    1-(G)x     (I)
    (式中、R1は置換基を有していてもよい直鎖又は分岐鎖の炭素数5~10のアルキル基を表し、Gは炭素数5又は6の還元糖に由来する残基であり、xは還元糖の縮合度を示す値であって1~3の数を示す。R1とGとは、酸素原子又はイオウ原子を介するエーテル結合により連結されている)で表される化合物からなる糖含有界面活性剤、
    (B)構成脂肪酸の炭素数が5~14であるショ糖脂肪酸エステルからなる糖含有界面活性剤、
    (C)ステロイド系界面活性剤
    上記(A)~(C)からなる群から選ばれる一種以上の界面活性剤を、測定試料の添加前に含む結合アッセイ用多孔性固相を用いることを特徴とする、ラテラルフロー式あるいはディップスティック式結合アッセイ方法における測定試料の測定波形の乱れを改善する方法。
     
     
PCT/JP2009/003038 2008-06-30 2009-06-30 結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法 WO2010001598A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2728963A CA2728963C (en) 2008-06-30 2009-06-30 Porous solid phase for binding assay, and binding assay method using the same
MX2010013964A MX2010013964A (es) 2008-06-30 2009-06-30 Fase solida porosa para ensayo de union, y metodo de ensayo de union que utiliza la misma.
EP15157371.4A EP2902786B1 (en) 2008-06-30 2009-06-30 Porous solid phase for binding assay, and binding assay method using the same
JP2010518922A JP5474784B2 (ja) 2008-06-30 2009-06-30 結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法
CN200980125124.XA CN102077091B (zh) 2008-06-30 2009-06-30 用于结合测定的多孔性固相和使用所述多孔性固相的结合测定法
AU2009264774A AU2009264774B2 (en) 2008-06-30 2009-06-30 Porous solid phase for binding assay, and binding assay method using the same
US13/000,110 US9110058B2 (en) 2008-06-30 2009-06-30 Porous solid phase for binding assay, and binding assay method using the same
BRPI0914128A BRPI0914128B8 (pt) 2008-06-30 2009-06-30 tira de ensaio de ligação, dispositivo compreendendo a tira de ensaio de ligação, e, método de ensaio de ligação
EP09773176A EP2317319A4 (en) 2008-06-30 2009-06-30 POROUS SOLID PHASE FOR BINDING TEST, AND BINDING TEST METHOD USING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008171367 2008-06-30
JP2008-171367 2008-06-30
JP2009-086378 2009-03-31
JP2009086378 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010001598A1 true WO2010001598A1 (ja) 2010-01-07

Family

ID=41465705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003038 WO2010001598A1 (ja) 2008-06-30 2009-06-30 結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法

Country Status (10)

Country Link
US (1) US9110058B2 (ja)
EP (2) EP2902786B1 (ja)
JP (1) JP5474784B2 (ja)
KR (1) KR20110033256A (ja)
CN (1) CN102077091B (ja)
AU (1) AU2009264774B2 (ja)
BR (1) BRPI0914128B8 (ja)
CA (1) CA2728963C (ja)
MX (1) MX2010013964A (ja)
WO (1) WO2010001598A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125877A1 (ja) 2010-03-31 2011-10-13 積水メディカル株式会社 イムノクロマトグラフィーを利用した測定方法、イムノクロマトグラフィー用テストストリップ及びイムノクロマトグラフィー用測定試薬キット
CN102713625A (zh) * 2010-01-08 2012-10-03 田中贵金属工业株式会社 免疫层析用试剂组合物
WO2012133615A1 (ja) * 2011-03-31 2012-10-04 積水メディカル株式会社 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
JP2012211849A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 高感度なイムノクロマトグラフ方法
WO2013002403A1 (ja) * 2011-06-30 2013-01-03 積水メディカル株式会社 免疫学的測定方法に用いられるコンジュゲート
JP2013181870A (ja) * 2012-03-02 2013-09-12 Tanaka Kikinzoku Kogyo Kk イムノクロマトグラフィー用試験ストリップ
JP2013539029A (ja) * 2010-09-24 2013-10-17 グライフォルス・セラピューティクス・インコーポレーテッド イムノクロマトグラフィー装置、方法およびキット
KR101353930B1 (ko) * 2012-02-20 2014-01-27 주식회사 나노엔텍 신규한 항원의 검출방법 및 그를 이용한 장치
CN104220043A (zh) * 2012-04-30 2014-12-17 金伯利-克拉克环球有限公司 包含硅氧烷聚酯的发泡制剂和清洁产品
US20150004624A1 (en) * 2012-01-16 2015-01-01 Koninklijke Philips N.V. Determining a presence of target molecules in a body fluid comprising cells
JP2016028241A (ja) * 2010-03-31 2016-02-25 積水メディカル株式会社 多価抗原測定用コンジュゲート、これを用いた多価抗原測定用イムノクロマトテストストリップおよびイムノクロマト測定方法
WO2016031892A1 (ja) * 2014-08-29 2016-03-03 積水メディカル株式会社 イムノクロマトグラフィー用テストストリップ
JP2017120193A (ja) * 2015-12-28 2017-07-06 株式会社特殊免疫研究所 クロマト分析用ストリップ
WO2017163341A1 (ja) * 2016-03-23 2017-09-28 デンカ生研株式会社 イムノクロマト法検査デバイスの試料添加部の形成方法及びイムノクロマト法検査デバイス
US9903864B2 (en) 2009-04-09 2018-02-27 Arkray, Inc. Sample analysis tool, method for producing sample analysis tool, and method for inhibiting decrease in liquid permeability of development member
WO2019031514A1 (ja) * 2017-08-10 2019-02-14 株式会社Jvcケンウッド 分析方法及び分析装置
JP2019536056A (ja) * 2016-10-10 2019-12-12 バング ドンハBHANG, Dongha 犬の癌を検出するための装置および方法
WO2020067233A1 (ja) 2018-09-27 2020-04-02 積水メディカル株式会社 イムノクロマト用試験片
WO2020166699A1 (ja) * 2019-02-15 2020-08-20 東洋紡株式会社 イムノクロマト試験片およびそれを用いた測定方法
JP2020148580A (ja) * 2019-03-13 2020-09-17 東ソー株式会社 添加剤によるdダイマー測定での偽高値の抑制
CN113588958A (zh) * 2021-08-17 2021-11-02 合肥工业大学智能制造技术研究院 具有多浓度检测线的拉莫三嗪侧向层析试纸条及其应用
WO2022131208A1 (ja) * 2020-12-14 2022-06-23 株式会社堀場製作所 脂質二重層を有する膜構造体の検出方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2673642B1 (en) 2011-02-11 2018-12-26 FZMB GmbH Forschungszentrum für Medizintechnik und Biotechnologie Process for detecting cells from a sample
JP5992703B2 (ja) * 2012-03-22 2016-09-14 田中貴金属工業株式会社 イムノクロマトグラフィー検出方法
CN105283761B (zh) * 2013-06-10 2018-02-09 旭化成株式会社 免疫层析诊断试剂盒
JP5775197B1 (ja) * 2014-04-30 2015-09-09 田中貴金属工業株式会社 免疫クロマト分析キット及び免疫クロマト分析方法
CN107209179B (zh) * 2014-12-16 2019-12-20 积水医疗株式会社 用于检测含红细胞的样品中的对象物的免疫色谱用测试条、及使用该测试条的免疫色谱
CN106918707B (zh) * 2015-12-25 2019-05-21 广州瑞博奥生物科技有限公司 一种检测细胞粘附分子的抗体芯片试剂盒
CN106918698B (zh) * 2015-12-25 2019-11-22 广州瑞博奥生物科技有限公司 一种检测人受体酪氨酸激酶的磷酸化抗体芯片试剂盒
CN106918706B (zh) * 2015-12-25 2019-05-21 广州瑞博奥生物科技有限公司 一种检测牙周病相关蛋白的抗体芯片试剂盒
CN106918696B (zh) * 2015-12-25 2019-10-29 广州瑞博奥生物科技有限公司 一种检测骨代谢相关细胞因子的抗体芯片试剂盒
JP6635897B2 (ja) * 2016-08-30 2020-01-29 シスメックス株式会社 試料分析用カートリッジ及びその製造方法、並びにその利用
CN107091925B (zh) * 2017-06-24 2020-06-23 浙江玉安康瑞生物科技有限公司 一种检测牙周炎相关蛋白的试剂盒
TWI649563B (zh) * 2018-03-31 2019-02-01 長庚醫療財團法人林口長庚紀念醫院 生物檢測晶片
CN109142795B (zh) * 2018-10-31 2021-05-28 国网山东省电力公司电力科学研究院 一种基于原子力显微镜的粘滞力比较方法
CN109957139A (zh) * 2019-03-14 2019-07-02 天韧膜科技(苏州)有限公司 一种用于硝化纤维素膜的后处理方法
CN113614533A (zh) * 2019-03-25 2021-11-05 积水医疗株式会社 免疫层析测定方法和用于所述方法的测试条
US20230026491A1 (en) * 2019-12-18 2023-01-26 Rapid Pathogen Screening, Inc. Selective white blood cell lysis for immunoassay systems
WO2024054852A1 (en) * 2022-09-06 2024-03-14 Access Medical Systems, Ltd. Addressing light absorbance during interferometric testing through algorithmic deconvolution and computation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194459A (ja) * 1986-02-21 1987-08-26 Sankyo Co Ltd 固相化試薬の安定化剤
JPH03120468A (ja) 1989-09-27 1991-05-22 Abbott Lab クロマトグラフアッセイ用多孔質膜装置およびその製法
JPH06235730A (ja) 1992-06-26 1994-08-23 Boehringer Mannheim Gmbh グリコシド型界面活性剤を含むアナライトの検出 方法、及び当該検出試薬
JPH09184837A (ja) * 1995-10-30 1997-07-15 Kdk Corp 試験片
JPH10332697A (ja) 1997-06-03 1998-12-18 Toyobo Co Ltd 免疫学的測定用試薬
JP2000502451A (ja) * 1995-12-22 2000-02-29 ユニバーサル ヘルスウォッチ,インコーポレーテッド 血漿分離をもたらす診断分析
JP2007051979A (ja) * 2005-08-19 2007-03-01 Sunstar Inc 歯周疾患診断用具および歯周疾患原因細菌の検出方法
JP2007187664A (ja) * 2006-01-14 2007-07-26 F Hoffmann La Roche Ag 改良された対照区画を有する免疫学的試験素子
JP2008092905A (ja) 2006-10-16 2008-04-24 Toyobo Co Ltd 細胞抽出液測定方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726960B2 (ja) * 1988-04-05 1995-03-29 富士写真フイルム株式会社 乾式全血分析要素
US5756362A (en) * 1993-10-12 1998-05-26 Cornell Research Foundation, Inc. Liposome-enhanced immunoaggregation assay and test device
US6605444B1 (en) * 1993-10-20 2003-08-12 Securetec Detektions-Systems Ag Method and device for obtaining and detecting immunologically active substances from the gas phase
US5547833A (en) 1994-01-04 1996-08-20 Intracel Corporation Radial flow assay, delivering member, test kit, and methods
CN1103919C (zh) * 1995-10-30 2003-03-26 株式会社京都第一科学 物质的测定方法及试片
US5871905A (en) * 1996-09-04 1999-02-16 Epitope, Inc. Reduction of false positives in oral-fluid based immunoassays
US6306642B1 (en) * 1997-11-24 2001-10-23 Quidel Corporation Enzyme substrate delivery and product registration in one step enzyme immunoassays
JP4472823B2 (ja) * 2000-02-04 2010-06-02 パナソニック株式会社 クロマトグラフィー試験片、及びその製造方法
DE10009503A1 (de) 2000-02-29 2001-08-30 Roche Diagnostics Gmbh Verfahren zur Immobilisierung von Konjugaten in diagnostischen Tests
JP4474010B2 (ja) * 2000-03-15 2010-06-02 アークレイ株式会社 固体成分分離能を有する試験片
US6699722B2 (en) * 2000-04-14 2004-03-02 A-Fem Medical Corporation Positive detection lateral-flow apparatus and method for small and large analytes
NO314206B1 (no) * 2001-04-30 2003-02-10 Erling Sundrehagen Kvantitativt kjemisk analysemetode, anordning/innretning, samt anvendelse av nevnte metode og analysesett
GB0130947D0 (en) * 2001-12-24 2002-02-13 Lee Helen Improved sample preparation for the detection of infectious agents
EP1333582B1 (en) 2002-01-30 2006-11-29 Koninklijke Philips Electronics N.V. Averaging amplifier array
JP4214271B2 (ja) * 2002-10-15 2009-01-28 アークレイ株式会社 クレアチニン測定用試験片
US6900058B2 (en) * 2003-03-11 2005-05-31 Bionostics, Inc. Control solution for photometric analysis
JP2005077301A (ja) * 2003-09-02 2005-03-24 Asahi Kasei Corp 免疫学的検出担体および測定法
US20050130177A1 (en) 2003-12-12 2005-06-16 3M Innovative Properties Company Variable valve apparatus and methods
JP4729264B2 (ja) * 2004-04-19 2011-07-20 アルフレッサファーマ株式会社 ホモシステインチオラクトン加水分解酵素活性の測定法
US20080003692A1 (en) 2004-04-21 2008-01-03 Mitsuyasu Kawano Immunoassay and Reagent
US7319032B2 (en) * 2004-04-22 2008-01-15 Medtox Non-sugar sweeteners for use in test devices
WO2006035873A1 (ja) 2004-09-30 2006-04-06 Fujifilm Corporation 多層分析要素
CN101133328A (zh) * 2004-12-31 2008-02-27 健泰科生物技术公司 检测非人血清中的人抗体
US8445293B2 (en) * 2005-02-09 2013-05-21 Rapid Pathogen Screening, Inc. Method to increase specificity and/or accuracy of lateral flow immunoassays
JP4382746B2 (ja) * 2005-04-18 2009-12-16 三洋化成工業株式会社 溶菌剤
DE212006000036U1 (de) 2005-04-30 2008-02-21 Oakville Hong Kong Co., Ltd. Vorrichtungen zum Probensammeln und zur Analyse
JP5012507B2 (ja) 2005-07-14 2012-08-29 パナソニック株式会社 分析装置、及び分析方法
US8617366B2 (en) * 2005-12-12 2013-12-31 Nova Biomedical Corporation Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device
JP5361191B2 (ja) 2005-12-14 2013-12-04 デンカ生研株式会社 多剤耐性ブドウ球菌のイムノクロマトグラフィー検出法および診断キット
JP2008139297A (ja) 2006-11-08 2008-06-19 Fujifilm Corp イムノクロマトグラフキット
US20080145940A1 (en) * 2006-12-18 2008-06-19 3M Innovative Properties Company Chemical indicator test strip
JP4865588B2 (ja) 2007-02-21 2012-02-01 デンカ生研株式会社 検査デバイスの標識体部の形成方法及びラテラルフロー免疫測定用検査デバイス
JP2009003038A (ja) 2007-06-19 2009-01-08 Canon Inc 画像投射光学ユニット及び画像投射装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194459A (ja) * 1986-02-21 1987-08-26 Sankyo Co Ltd 固相化試薬の安定化剤
JPH03120468A (ja) 1989-09-27 1991-05-22 Abbott Lab クロマトグラフアッセイ用多孔質膜装置およびその製法
JPH06235730A (ja) 1992-06-26 1994-08-23 Boehringer Mannheim Gmbh グリコシド型界面活性剤を含むアナライトの検出 方法、及び当該検出試薬
JPH09184837A (ja) * 1995-10-30 1997-07-15 Kdk Corp 試験片
JP2000502451A (ja) * 1995-12-22 2000-02-29 ユニバーサル ヘルスウォッチ,インコーポレーテッド 血漿分離をもたらす診断分析
JPH10332697A (ja) 1997-06-03 1998-12-18 Toyobo Co Ltd 免疫学的測定用試薬
JP2007051979A (ja) * 2005-08-19 2007-03-01 Sunstar Inc 歯周疾患診断用具および歯周疾患原因細菌の検出方法
JP2007187664A (ja) * 2006-01-14 2007-07-26 F Hoffmann La Roche Ag 改良された対照区画を有する免疫学的試験素子
JP2008092905A (ja) 2006-10-16 2008-04-24 Toyobo Co Ltd 細胞抽出液測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2317319A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903864B2 (en) 2009-04-09 2018-02-27 Arkray, Inc. Sample analysis tool, method for producing sample analysis tool, and method for inhibiting decrease in liquid permeability of development member
CN102713625A (zh) * 2010-01-08 2012-10-03 田中贵金属工业株式会社 免疫层析用试剂组合物
WO2011125877A1 (ja) 2010-03-31 2011-10-13 積水メディカル株式会社 イムノクロマトグラフィーを利用した測定方法、イムノクロマトグラフィー用テストストリップ及びイムノクロマトグラフィー用測定試薬キット
US9903865B2 (en) 2010-03-31 2018-02-27 Sekisui Medical Co., Ltd. Assay, immunochromatographic test strip, and assay reagent kit for measuring an analyte, using a hematocrit correction
JP5914326B2 (ja) * 2010-03-31 2016-05-11 積水メディカル株式会社 イムノクロマトグラフィーを利用した測定方法、イムノクロマトグラフィー用テストストリップ及びイムノクロマトグラフィー用測定試薬キット
EP2554990A1 (en) * 2010-03-31 2013-02-06 Sekisui Medical Co., Ltd. Measurement method using immunochromatography, test strip for immunochromatography, and measurement reagent kit for immunochromatography
JP2016028241A (ja) * 2010-03-31 2016-02-25 積水メディカル株式会社 多価抗原測定用コンジュゲート、これを用いた多価抗原測定用イムノクロマトテストストリップおよびイムノクロマト測定方法
JPWO2011125877A1 (ja) * 2010-03-31 2013-07-11 積水メディカル株式会社 イムノクロマトグラフィーを利用した測定方法、イムノクロマトグラフィー用テストストリップ及びイムノクロマトグラフィー用測定試薬キット
EP2554990A4 (en) * 2010-03-31 2013-09-11 Sekisui Medical Co Ltd MEASURING METHODS WITH IMMUNCHROMATOGRAPHY, TEST STRIPS FOR IMMUNCHROMATOGRAPHY AND MEASURING REAGENT KIT FOR IMMUNCHROMATOGRAPHY
JP2013539029A (ja) * 2010-09-24 2013-10-17 グライフォルス・セラピューティクス・インコーポレーテッド イムノクロマトグラフィー装置、方法およびキット
US9121857B2 (en) 2010-09-24 2015-09-01 Grifols Therapeutics Inc. Immunochromatography devices, methods and kits
US9921229B2 (en) 2010-09-24 2018-03-20 Grifols Therapeutics Inc. Immunochromatography devices, methods, and kits
JP2017049270A (ja) * 2011-03-31 2017-03-09 積水メディカル株式会社 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
JP6061843B2 (ja) * 2011-03-31 2017-01-18 積水メディカル株式会社 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
JP2012211849A (ja) * 2011-03-31 2012-11-01 Fujifilm Corp 高感度なイムノクロマトグラフ方法
JPWO2012133615A1 (ja) * 2011-03-31 2014-07-28 積水メディカル株式会社 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
WO2012133615A1 (ja) * 2011-03-31 2012-10-04 積水メディカル株式会社 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
CN103477226A (zh) * 2011-03-31 2013-12-25 积水医疗株式会社 能将不含试样的样品确定为不当操作样品的免疫层析检测方法及其使用的测试条
EP2506013A3 (en) * 2011-03-31 2013-02-27 FUJIFILM Corporation Highly sensitive immunochromatography method
WO2013002403A1 (ja) * 2011-06-30 2013-01-03 積水メディカル株式会社 免疫学的測定方法に用いられるコンジュゲート
JPWO2013002403A1 (ja) * 2011-06-30 2015-02-23 積水メディカル株式会社 免疫学的測定方法に用いられるコンジュゲート
US20150004624A1 (en) * 2012-01-16 2015-01-01 Koninklijke Philips N.V. Determining a presence of target molecules in a body fluid comprising cells
KR101353930B1 (ko) * 2012-02-20 2014-01-27 주식회사 나노엔텍 신규한 항원의 검출방법 및 그를 이용한 장치
JP2013181870A (ja) * 2012-03-02 2013-09-12 Tanaka Kikinzoku Kogyo Kk イムノクロマトグラフィー用試験ストリップ
CN104220043B (zh) * 2012-04-30 2017-03-01 金伯利-克拉克环球有限公司 包含硅氧烷聚酯的发泡制剂和清洁产品
CN104220043A (zh) * 2012-04-30 2014-12-17 金伯利-克拉克环球有限公司 包含硅氧烷聚酯的发泡制剂和清洁产品
JP5936797B1 (ja) * 2014-08-29 2016-06-22 積水メディカル株式会社 イムノクロマトグラフィー用テストストリップ
WO2016031892A1 (ja) * 2014-08-29 2016-03-03 積水メディカル株式会社 イムノクロマトグラフィー用テストストリップ
JP2017120193A (ja) * 2015-12-28 2017-07-06 株式会社特殊免疫研究所 クロマト分析用ストリップ
WO2017163341A1 (ja) * 2016-03-23 2017-09-28 デンカ生研株式会社 イムノクロマト法検査デバイスの試料添加部の形成方法及びイムノクロマト法検査デバイス
JP2019536056A (ja) * 2016-10-10 2019-12-12 バング ドンハBHANG, Dongha 犬の癌を検出するための装置および方法
WO2019031514A1 (ja) * 2017-08-10 2019-02-14 株式会社Jvcケンウッド 分析方法及び分析装置
JPWO2019031514A1 (ja) * 2017-08-10 2020-07-30 株式会社Jvcケンウッド 分析方法及び分析装置
WO2020067233A1 (ja) 2018-09-27 2020-04-02 積水メディカル株式会社 イムノクロマト用試験片
KR20210064268A (ko) 2018-09-27 2021-06-02 세키스이 메디칼 가부시키가이샤 면역 크로마토그래피용 시험편
WO2020166699A1 (ja) * 2019-02-15 2020-08-20 東洋紡株式会社 イムノクロマト試験片およびそれを用いた測定方法
JP2020148580A (ja) * 2019-03-13 2020-09-17 東ソー株式会社 添加剤によるdダイマー測定での偽高値の抑制
WO2022131208A1 (ja) * 2020-12-14 2022-06-23 株式会社堀場製作所 脂質二重層を有する膜構造体の検出方法
CN113588958A (zh) * 2021-08-17 2021-11-02 合肥工业大学智能制造技术研究院 具有多浓度检测线的拉莫三嗪侧向层析试纸条及其应用
CN113588958B (zh) * 2021-08-17 2023-11-10 合肥工业大学智能制造技术研究院 具有多浓度检测线的拉莫三嗪侧向层析试纸条及其应用

Also Published As

Publication number Publication date
AU2009264774B2 (en) 2016-01-28
BRPI0914128B1 (pt) 2019-08-20
EP2317319A4 (en) 2011-09-07
US9110058B2 (en) 2015-08-18
CN102077091B (zh) 2016-08-17
CA2728963A1 (en) 2010-01-07
AU2009264774A1 (en) 2010-01-07
EP2902786A3 (en) 2015-08-12
EP2902786B1 (en) 2018-12-19
KR20110033256A (ko) 2011-03-30
US20110104709A1 (en) 2011-05-05
JP5474784B2 (ja) 2014-04-16
BRPI0914128A2 (pt) 2015-10-20
JPWO2010001598A1 (ja) 2011-12-15
EP2902786A2 (en) 2015-08-05
MX2010013964A (es) 2011-05-02
CN102077091A (zh) 2011-05-25
BRPI0914128B8 (pt) 2021-07-27
EP2317319A1 (en) 2011-05-04
CA2728963C (en) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5474784B2 (ja) 結合アッセイ用多孔性固相及びこれを用いた結合アッセイ法
US6306665B1 (en) Covalent bonding of molecules to an activated solid phase material
JP6247741B2 (ja) 検体不添加サンプルを操作不適サンプルと判定できるイムノクロマトグラフィーに基づく検出方法及びこれに用いるテストストリップ
JP4382866B1 (ja) クロマトグラフ媒体
PL196464B1 (pl) Analityczne urządzenie chromatograficzne oraz sposób wykrywania obecności przedmiotu analizy w próbce krwi
JP5416159B2 (ja) 高感度なイムノクロマトグラフ方法
EP2290367A1 (en) Method for detecting objective substance and kit for detecting objective substance
EP3339862A1 (en) Immunological detection method and test strip used therefor
WO2020045524A1 (ja) クロマトグラフキットおよびクロマトグラフ方法
EP3872491B1 (en) Test specimen for immunochromatography
JP6426872B1 (ja) イムノクロマト用試験片及びイムノクロマト検出キット
KR102593963B1 (ko) 면역학적 측정용 시약 조성물 및 이의 용도
JP7153545B2 (ja) イムノクロマトグラフィー試験片、並びに、それを用いる被験物質測定方法及びイムノクロマトグラフィー試験キット
JP2010101673A (ja) イムノクロマトグラフ法による高感度測定キット
EP3885767B1 (en) Test piece for immunochromatography and immunochromatographic detection kit
JP3408751B2 (ja) 免疫クロマトグラフィー装置
JP2022046827A (ja) イムノクロマト用試験片及びイムノクロマト検出キット
JP2020020687A (ja) イムノクロマト用展開液
JP2005010001A (ja) 免疫測定法
MXPA00006963A (en) Neutralization of polycations in a chromatographic device for whole blood use

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125124.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773176

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010518922

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/013964

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2728963

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009264774

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13000110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009773176

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009264774

Country of ref document: AU

Date of ref document: 20090630

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117002215

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0914128

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101229