WO2009133936A1 - 変性重合体を含有するゴム組成物を使用したタイヤ - Google Patents
変性重合体を含有するゴム組成物を使用したタイヤ Download PDFInfo
- Publication number
- WO2009133936A1 WO2009133936A1 PCT/JP2009/058506 JP2009058506W WO2009133936A1 WO 2009133936 A1 WO2009133936 A1 WO 2009133936A1 JP 2009058506 W JP2009058506 W JP 2009058506W WO 2009133936 A1 WO2009133936 A1 WO 2009133936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- rubber composition
- conjugated diene
- silicic acid
- diene polymer
- Prior art date
Links
- 0 CC*(*)CCN([*+])[Si+](*)O Chemical compound CC*(*)CCN([*+])[Si+](*)O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/42—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
- C08C19/44—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/46—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
- C08F4/48—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium
- C08F4/482—Metallic lithium, rubidium, caesium or francium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/42—Introducing metal atoms or metal-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2666/00—Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
- C08L2666/02—Organic macromolecular compounds, natural resins, waxes or and bituminous materials
- C08L2666/04—Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
- C08L2666/08—Homopolymers or copolymers according to C08L7/00 - C08L21/00; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a rubber composition suitable for use in a member such as a tire. More specifically, a hydrous silicic acid having a specific structure is used as a reinforcing filler, the dispersibility of the filler can be improved, and low heat build-up can be achieved.
- the present invention relates to a tire using a rubber composition containing a modified conjugated diene polymer excellent in fracture characteristics and wear resistance.
- silica is known as a filler in order to improve low heat build-up (for example, Patent Documents 1 to 4), but silica is agglomerated between particles due to hydrogen bonding of silanol groups that are surface functional groups.
- the wettability with rubber molecules is poor, and the silica is not well dispersed in the rubber. In order to improve this, it is necessary to lengthen the kneading time. Further, if the silica is not sufficiently dispersed in the rubber, the Mooney viscosity of the rubber composition is increased, and the processability such as extrusion is inferior.
- the surface of the silica particles is acidic, when the rubber composition is vulcanized, the basic substance used as a vulcanization accelerator is adsorbed, vulcanization is not performed sufficiently, and the elastic modulus does not increase. There was also a problem.
- Patent Document 6 discloses the use of hydrophobic precipitated silicic acid. However, since silicic silicic acid that has been completely hydrophobized is used, there is a surface silanol group that reacts with the silane coupling agent. There was a problem that the rubber could not be sufficiently reinforced. Furthermore, in order to enhance low heat build-up, silica is increased in particle size. However, by increasing the particle size, the specific surface area of silica is reduced and the reinforcement is deteriorated. Patent Document 7 discloses the use of silica having a special shape, but the low heat build-up and wear resistance of the rubber composition are not sufficient.
- Patent Document 10 a method of adding a condensation accelerator to the reaction system when modifying the active terminal of the conjugated diene polymer with alkoxysilane has been proposed (for example, Patent Document 10).
- Patent Document 10 a method of adding a condensation accelerator to the reaction system when modifying the active terminal of the conjugated diene polymer with alkoxysilane.
- JP-A-6-248116 Japanese Patent Laid-Open No. 7-70369 JP-A-8-245838 JP-A-3-252431 JP-A-6-248116 JP-A-6-157825 JP 2006-37046
- the present invention has been made in view of such circumstances, and a rubber composition excellent in dispersibility of a reinforcing filler in a rubber component, having low rolling resistance, and excellent in low heat buildup, wear resistance, fracture characteristics, and the like.
- a tire using the tire is provided.
- the present invention improves both the rubber component and the reinforcing filler to improve the dispersibility of the reinforcing filler in the rubber component.
- the rubber component has an affinity for silica in the active site in the molecule. This is a tire using a rubber composition using a modified conjugated diene polymer introduced with a high functional group and hydrous silicic acid having a special structure as a filler.
- the modified conjugated diene polymer of the present invention is a modified polymer in which a functional group is introduced by reacting the active site of a conjugated diene polymer having an active site with a hydrocarbyloxysilane compound which may have a functional group.
- the hydrous silicic acid used in the present invention is usually represented by the following index, whereas the hydrous silicic acid is assembled by hydrogen bonding of silanol groups on the particle surface (secondary aggregation). It is characterized by having a structure (primary aggregation).
- cetyl trimethyl ammonium bromide adsorption specific surface area (m 2 / g ) and the mode A ac and the following formula of the diameter of the primary aggregates determined by an acoustic particle size distribution analyzer (nm) (A) A ac ⁇ ⁇ 0.76 ⁇ (CTAB) +274 (A) Further, the loss on ignition (mass loss% when heated at 750 ° C. for 3 hours) and the weight loss on heating (mass loss% when heated at 105 ° C. for 2 hours) are expressed by the following formula (B): (Loss on ignition)-(Loss on heating) ⁇ 3 ... (B) It is preferable to satisfy.
- the modified conjugated diene polymer as described above is excellent in interaction with fillers such as silica and carbon black, and the rubber composition used together with the hydrous silicic acid as described above has low heat buildup and wear resistance. And excellent destructive properties.
- a rubber excellent in the interaction between a rubber component and silica and / or carbon black can improve the dispersibility of these fillers, and has excellent low heat buildup, fracture characteristics, wear resistance, and the like.
- a tire having the above-described characteristics using the composition is provided.
- the modified conjugated diene polymer used in the present invention introduces a functional group by reacting the active site of the conjugated diene polymer having an active site in the molecule with a hydrocarbyloxysilane compound which may have a functional group.
- Modified polymer Further, a modification obtained by subjecting the functional group site to a condensation reaction in the presence of a condensation accelerator comprising a compound of an element belonging to at least one of groups 4, 12, 13, 14, and 15 of the periodic table. It may be a polymer.
- the condensation accelerator is usually added after the modification site of the active site of the conjugated diene polymer with the hydrocarbyloxysilane compound which may have a functional group and before the condensation reaction. After the addition (before the modification reaction), the hydrocarbyloxysilane compound may be added to perform the condensation reaction after the modification reaction.
- the conjugated diene polymer used in the present invention is obtained by copolymerizing a diene monomer alone or with another monomer, and the production method is not particularly limited. Either a polymerization method or a bulk polymerization method can be used, but a solution polymerization method is particularly preferable. Moreover, any of a batch type and a continuous type may be sufficient as the superposition
- the active site metal present in the molecule of the conjugated diene polymer is preferably one selected from alkali metals and alkaline earth metals, more preferably alkali metals, and particularly lithium.
- an alkali metal compound and / or an alkaline earth metal compound, particularly a lithium compound is used as a polymerization initiator, and a conjugated diene compound alone or a conjugated diene compound and an aromatic vinyl compound are subjected to anionic polymerization.
- the polymer can be produced.
- it is also effective to mix a halogen-containing monomer and activate the halogen atom in the polymer with an organometallic compound.
- the active site only needs to be present in the polymer molecule, and is not limited. However, when the polymer is based on anionic polymerization using an alkali metal compound and / or alkaline earth metal compound as a polymerization initiator, the active site is generally Polymers that come to the end of the molecule and thus have an active end are preferred.
- conjugated diene compound examples include 1,3-butadiene; isoprene; 1,3-pentadiene; 2,3-dimethyl-1,3-butadiene; 2-phenyl-1,3-butadiene; 1,3-hexadiene and the like. Can be mentioned. These may be used alone or in combination of two or more. Among these, 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are particularly preferred.
- aromatic vinyl compound used for copolymerization with these conjugated diene compounds examples include styrene; ⁇ -methylstyrene; 1-vinylnaphthalene; 3-vinyltoluene; ethylvinylbenzene; divinylbenzene; Xylstyrene; 2,4,6-trimethylstyrene and the like. These may be used alone or in combination of two or more, but among these, styrene is particularly preferred.
- the monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
- the content of the aromatic vinyl compound in the charged monomer mixture is in the range of 0 to 55% by mass, preferably 3 to 50, more preferably. It is in the range of 6 to 45% by mass.
- the alkali metal compound and / or alkaline earth metal compound of the polymerization initiator is not particularly limited, but hydrocarbyl lithium and lithium amide compounds are preferably used.
- hydrocarbyl lithium is used at the polymerization initiation terminal.
- a conjugated diene polymer having a group and the other terminal being a polymerization active site is obtained.
- lithium amide compound is used, a conjugated diene polymer having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site is obtained.
- hydrocarbyl lithium those having a hydrocarbyl group having 1 to 20 carbon atoms are preferable.
- n-butyllithium is particularly preferred.
- lithium amide compound for example, lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, lithium dodecamethylene imide, lithium dimethyl amide, lithium diethyl amide, lithium dibutyl amide, lithium dipropyl amide, Lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium-N-methylpiperazide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide, lithium methylphenethylamide Etc.
- cyclic lithium amides such as lithium hexamethylene imide, lithium pyrrolidide, lithium piperidide, lithium heptamethylene imide, and lithium dodecamethylene imide are preferable from the viewpoint of the interaction effect on carbon black and the ability to initiate polymerization.
- Particularly preferred are lithium hexamethylene imide and lithium pyrrolidide.
- lithium amide compounds those prepared in advance from secondary amines and lithium compounds can be used for polymerization, but they can also be prepared in-polymerization in situ.
- the amount of these polymerization initiators is preferably selected in the range of 0.2 to 20 mmol per 100 g of monomer.
- a conventionally well-known method can be used. Specifically, in an organic solvent inert to the reaction, for example, a hydrocarbon solvent such as an aliphatic, alicyclic or aromatic hydrocarbon compound, the conjugated diene compound or the conjugated diene compound and the aromatic vinyl compound are The target conjugated diene polymer is obtained by anionic polymerization using a lithium compound as a polymerization initiator in the presence of a randomizer used as desired.
- a hydrocarbon solvent such as an aliphatic, alicyclic or aromatic hydrocarbon compound
- the hydrocarbon solvent is preferably one having 3 to 8 carbon atoms.
- Randomizer used as desired means control of the microstructure of the conjugated diene polymer, such as an increase in 1,2 bonds in the butadiene moiety in the butadiene-styrene copolymer, an increase in 3,4 bonds in the isoprene polymer, or conjugation. It is a compound having an action of controlling the composition distribution of monomer units in a diene compound-aromatic vinyl compound copolymer, for example, randomizing butadiene units and styrene units in a butadiene-styrene copolymer.
- the randomizer is not particularly limited, and any one of known compounds generally used as a conventional randomizer can be appropriately selected and used.
- potassium salts such as potassium-t-amylate and potassium-t-butoxide
- sodium salts such as sodium-t-amylate can also be used.
- randomizers may be used alone or in combination of two or more.
- the amount used is preferably selected in the range of 0.01 to 1000 molar equivalents per mole of lithium compound.
- a potassium compound may be added together with the polymerization initiator.
- the potassium compound added together with the polymerization initiator include potassium isopropoxide, potassium-t-butoxide, potassium-t-amyloxide, potassium-n-heptaoxide, potassium benzyloxide, potassium alkoxide represented by potassium phenoxide, Potassium phenoxide; potassium salts such as isovaleric acid, caprylic acid, lauric acid, palmitic acid, stearic acid, oleic acid, linolenic acid, benzoic acid, phthalic acid, 2-ethylhexanoic acid; dodecylbenzenesulfonic acid, tetradecylbenzenesulfone Potassium salt of organic sulfonic acid such as acid,
- potassiumated bases can be added in an amount of 0.005 to 0.5 mole per gram atomic equivalent of alkali metal of the initiator. If the amount is less than 0.005 mol, the addition effect of the potassium compound (initiator reactivity improvement, aromatic vinyl compound randomization or single chain imparting) does not appear, while if it exceeds 0.5 mol, the polymerization activity decreases. The productivity is greatly reduced, and the modification efficiency in the reaction of modifying the polymer terminal with a functional group is lowered.
- the temperature in this polymerization reaction is preferably selected in the range of 0 to 150 ° C., more preferably 20 to 130 ° C.
- the polymerization reaction can be carried out under generated pressure, but it is usually desirable to operate at a pressure sufficient to keep the monomer in a substantially liquid phase. That is, the pressure depends on the particular material being polymerized, the polymerization medium used and the polymerization temperature, but higher pressures can be used if desired, such pressure being a gas that is inert with respect to the polymerization reaction. Can be obtained by an appropriate method such as pressurizing.
- the glass transition temperature (Tg) obtained by differential thermal analysis of the obtained polymer or copolymer is preferably -95 ° C to -15 ° C.
- a hydrocarboxysilane compound which may have a functional group at the active site. It is also denatured by reacting with an agent.
- the hydrocarbyloxysilane compound which may have a functional group is not particularly limited in its kind, but a compound having a functional group having an affinity for silica, for example, the general formula (I)
- R a and R b each independently represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and a represents 0 to an integer 2, if the OR b there are a plurality, the plurality of OR b may be the same or different from each other, also in the molecule active proton is not included.
- a 1 is at least one functional selected from epoxy, isocyanate, imine, cyano, carboxylic acid ester, carboxylic anhydride, cyclic tertiary amine, acyclic tertiary amine, pyridine, silazane, and sulfide.
- a monovalent group having a group R c is a single bond or a divalent hydrocarbon group, R d is a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, and a monovalent aromatic group having 6 to 18 carbon atoms.
- a hydrocarbon group or a reactive group R e represents a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 18 carbon atoms, and b represents 0 to 2 is an integer, R d, if the OR e is plural, R d, OR e may be the same or different from each other, also in the molecule active proton is not included.)
- the partial condensate refers to a product in which a part (not all) of the SiOR groups of the hydrocarbyloxysilane compound are bonded by SiOSi by condensation.
- the polymer to be used has at least 20% polymer chains having living properties.
- hydrocarbyloxysilane compound represented by the general formula (I) used for the reaction with the active site of the polymer include, for example, tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra Isopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane , Ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, ethyltriisopropoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltrieth
- hydrocarbyloxysilane compound represented by the general formula (II) used for the reaction with the active site of the polymer include, for example, 2-glycidoxy as an epoxy group-containing hydrocarbyloxysilane compound.
- Examples of the isocyanate group-containing hydrocarbyloxysilane compounds include 3-isocyanatepropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatepropyltriisopropoxysilane, and the like. Of these, 3-isocyanatopropyltrimethoxysilane is particularly preferred.
- Examples of the imine group-containing hydrocarbyloxysilane compound include N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1-methylethylidene) -3- (triethoxy Silyl) -1-propanamine, N-ethylidene-3- (triethoxysilyl) -1-propanamine, N- (1-methylpropylidene) -3- (triethoxysilyl) -1-propanamine, N- (4-N, N-dimethylaminobenzylidene) -3- (triethoxysilyl) -1-propanamine, N- (cyclohexylidene) -3- (triethoxysilyl) -1-propanamine and their triethoxy Trimethoxysilyl compounds, methyldiethoxysilyl compounds, ethyldimethoxysilylated compounds, etc.
- N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine N- (1-methylpropylidene) -3- (Triethoxysilyl) -1-propanamine is preferred.
- Examples of the imine (amidine) group-containing compound include 1- [3- (trimethoxysilyl) propyl] -4,5-dihydroimidazole, 3- (1-hexamethyleneimino) propyl (triethoxy) silane, (1- Hexamethyleneimino) methyl (trimethoxy) silane, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-isopropoxysilylpropyl) -4,5-dihydroimidazole, N- (3 -Methyldiethoxysilylpropyl) -4,5-dihydroimidazole and the like are preferred, among which N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole, N- (3-isopropoxysilylpropyl) ) -4,5-dihydroimidazole is preferred.
- Examples of the carboxylic acid ester-containing hydrocarbyloxysilane compound include 3-methacryloyloxypropyltriethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropylmethyldiethoxysilane, and 3-methacryloyloxy.
- Examples thereof include propyltriisopropoxysilane, among which 3-methacryloyloxypropyltriethoxysilane is preferable.
- carboxylic anhydride-containing hydrocarbyloxysilane compound examples include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-methyldiethoxysilylpropyl succinic anhydride, and the like. Among them, 3-triethoxysilylpropyl succinic anhydride is preferable.
- Examples of the cyano group-containing hydrocarbyloxysilane compound include 2-cyanoethylpropyltriethoxysilane.
- Examples of the cyclic tertiary amine-containing hydrocarbyloxysilane compounds include 3- (1-hexamethyleneimino) propyltriethoxysilane, 3- (1-hexamethyleneimino) propyltrimethoxysilane, and (1-hexamethyleneimino).
- Methyltriethoxysilane (1-hexamethyleneimino) methyltrimethoxysilane, 2- (1-hexamethyleneimino) ethyltriethoxysilane, 3- (1-hexamethyleneimino) ethyltrimethoxysilane, 3- (1- Pyrrolidinyl) propyltrimethoxysilane, 3- (1-pyrrolidinyl) propyltriethoxysilane, 3- (1-heptamethyleneimino) propyltriethoxysilane, 3- (1-dodecamethyleneimino) propyltriethoxysilane, 3- ( 1-hexamethyleneimino And propyldiethoxymethylsilane, 3- (1-hexamethyleneimino) propyldiethoxyethylsilane, 3- [10- (triethoxysilyl) decyl] -4-oxazoline, and the like.
- Preferable examples include 3-
- Examples of the acyclic tertiary amine-containing hydrocarbyloxysilanized base include 3-dimethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrimethoxysilane, 3-diethylaminopropyltriethoxysilane, 3-dimethylaminopropyltrisilane.
- Examples include methoxysilane, 2-dimethylaminoethyltriethoxysilane, 2-dimethylaminoethyltrimethoxysilane, 3-dimethylaminopropyldiethoxymethylsilane, and 3-dibutylaminopropyltriethoxysilane.
- 3 -Dimethylaminopropyltriethoxysilane and 3-diethylaminopropyltriethoxysilane are preferred.
- the pyridine-containing hydrocarbyloxysilane compound include 2-trimethoxysilylethylpyridine.
- silazane-containing hydrocarbyloxysilane compounds include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, N, N— Bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethyltri Methoxysilane, N, N-bis (trimethylsilyl) aminoethyltriethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldimethoxysilane and N, N-bis (trimethylsilyl) aminoethylmethyldiet Sisilane etc.
- N N-bis (trimethylsilyl) aminopropyltriethoxysilane
- N N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane
- 1-trimethylsilyl-2,2-dimethoxy- 1-aza-2-silacyclopentane preferably N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane or 1-trimethylsilyl-2,2-dimethoxy- 1-aza-2-silacyclopentane.
- Examples of the sulfide-containing hydrocarbyloxysilane compound include bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide.
- hydrocarbyloxysilane compounds that may have the above functional group
- the primary amino group is protected in the molecule, and one hydrocarbyloxy group and one reactive group are bonded to the same silicon atom.
- a compound containing a bifunctional silicon atom for example, at least one selected from compounds represented by general formula (III), general formula (IV) and general formula (V).
- R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms, R 3 to R 5 are each independently a hydrocarbon group having 1 to 20 carbon atoms, and R 6 is a carbon number 1)
- A represents a reactive group, and f represents an integer of 1 to 10.
- R 7 to R 11 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and R 12 represents a divalent hydrocarbon group having 1 to 12 carbon atoms.
- R 1 and R 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms, R 3 to R 5 are each independently a hydrocarbon group having 1 to 20 carbon atoms, and R 6 is a carbon number 1)
- specific examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms are, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl.
- a methyl group having 1 to 4 carbon atoms an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and the like are preferable.
- An ethyl group, a methyl group, and a tert-butyl group are preferable.
- a butyl group is more preferred.
- Examples of the divalent hydrocarbon group having 1 to 12 carbon atoms include an alkylene group having 1 to 12 carbon atoms, an arylene group having 6 to 12 carbon atoms, and an arylene alkylene group having 7 to 12 carbon atoms.
- the alkylene group having 1 to 12 carbon atoms may be linear or branched, and specifically includes a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a hexamethylene group, an octamethylene group.
- Linear alkylene groups such as decamethylene group, propylene group, isopropylene group, isobutylene group, 2-methyltrimethylene group, isopentylene group, isohexylene group, isooctylene group, 2-ethylhexylene group, isodecylene group, etc.
- a branched alkylene group may be mentioned.
- Examples of the arylene group having 6 to 12 carbon atoms include a phenylene group, a methylphenylene group, a dimethylphenylene group, and a naphthylene group.
- Examples of the arylene alkylene group having 7 to 12 carbon atoms include a phenylenemethylene group and a phenyleneethylene group. And a xylylene group. Of these, an alkylene group having 1 to 4 carbon atoms is preferable, and a trimethylene group is particularly preferable.
- the reactive group of A is preferably a halogen atom or a hydrocarbyloxy group having 1 to 20 carbon atoms, and examples of the halogen atom include fluorine, chlorine, bromine and iodine, with chlorine being preferred.
- Examples of the hydrocarbyloxy group having 1 to 20 carbon atoms include an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and an aralkyloxy group having 7 to 20 carbon atoms.
- Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, various hexoxy groups, various octoxy groups, and various types.
- Examples include a decyloxy group, various dodecyloxy groups, various tetradecyloxy groups, various hexadecyloxy groups, various octadecyloxy groups, and various icosyloxy groups.
- Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, methylphenoxy group, dimethylphenoxy group, and naphthoxy group.
- Examples of the aralkyloxy group having 7 to 20 carbon atoms include benzyloxy group, phenethyloxy group, A naphthyl methoxy group etc. are mentioned. Of these, 1 to 4 alkoxy groups are preferable, and an ethoxy group is particularly preferable.
- Examples of other reactive groups include groups containing a carbonyl group, an acid anhydride residue, each dihydroimidazolinyl group, an N-methylpyrrolidonyl group, an isocyanate group, and the like.
- Two of R 3 , R 4 and R 5 in formula (III) may be combined to form a 4- to 7-membered ring together with the silicon atom to which they are bonded.
- Two of R 9 , R 10 and R 11 in (IV) may be bonded to form a 4- to 7-membered ring together with the silicon atom to which they are bonded.
- Examples of the 4- to 7-membered ring include those having a methylene group having 4 to 7 carbon atoms.
- Examples of the compound containing a bifunctional silicon atom having a protected primary amino group and a hydrocarbyloxy group bonded to a silicon atom include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (Trimethylsilyl) aminopropylmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldiethoxysilane, and 1-trimethylsilyl-2-ethoxy-2- And methyl-1-aza-2-silacyclopentane.
- Examples of the compound in which A is a halogen atom include N, N-bis (trimethylsilyl) aminopropylmethylmethoxychlorosilane, N, N-bis (trimethylsilyl) aminopropylmethylethoxychlorosilane, and N, N-bis (trimethylsilyl) amino. Examples thereof include ethylmethylmethoxychlorosilane and N, N-bis (trimethylsilyl) aminoethylmethylethoxychlorosilane.
- N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane, 1-trimethylsilyl-2-ethoxy-2-methyl are preferable.
- the modifier may be used alone or in combination of two or more.
- the modifier may be a partial condensate.
- the partial condensate means a product in which a part (not all) of the modifier SiOR is SiOSi bonded by condensation.
- the polymer to be used has at least 10% of the polymer chain having a living property.
- the modifier may be bonded to any of the polymerization start terminal, the polymerization end terminal, the polymer main chain, and the side chain, but from the point that energy loss is suppressed from the polymer terminal and low exothermic property can be improved. It is preferably introduced at the polymerization initiation terminal or the polymerization termination terminal.
- P represents a conjugated diene compound or a (co) polymer chain of a conjugated diene compound and an aromatic vinyl compound.
- the amount of the modifying agent is preferably 0.5 to 200 mmol / kg ⁇ conjugated diene polymer. More preferred is a 1-100 mmol / kg conjugated diene polymer, and particularly preferred is a 2-50 mmol / kg conjugated diene polymer.
- the conjugated diene polymer means the mass of only a polymer not containing an additive such as an anti-aging agent added at the time of production or after production.
- the modification reaction in the present invention is preferably performed by a solution reaction (a solution containing an unreacted monomer used at the time of polymerization may be used).
- a solution reaction a solution containing an unreacted monomer used at the time of polymerization may be used.
- a solution reaction a solution containing an unreacted monomer used at the time of polymerization may be used.
- limiting in particular about the form of denaturation reaction You may carry out using a batch type reactor, and you may carry out by a continuous type using apparatuses, such as a multistage continuous type reactor and an in-line mixer.
- the polymerization temperature of the conjugated diene polymer can be used as it is. Specifically, a preferred range is 0 ° C to 120 ° C. More preferably, it is 20 to 100 ° C. If the temperature is low, the viscosity of the polymer tends to increase, and if the temperature is high, the polymerization active terminal tends to be deactivated.
- the denaturation reaction time is usually 1 minute to 5 hours, preferably 2 minutes to 1 hour.
- a known anti-aging agent or reaction terminator is added in the step after introducing a hydrocarbyloxy compound residue that may have a functional group at the active site of the polymer. can do.
- a polymer subjected to a condensation reaction involving the hydrocarbyloxysilane compound introduced by the above modification it is preferable to use a polymer subjected to a condensation reaction involving the hydrocarbyloxysilane compound introduced by the above modification.
- a specific condensation accelerator is used.
- the condensation accelerator used here can be added before the modification reaction, but it is preferable to add it after the modification reaction and before the start of the condensation reaction.
- a direct reaction with the active end may occur, and the hydrocarbyloxysilyl group may not be introduced into the active end.
- a condensation promoter may not disperse
- the addition time of the condensation accelerator is usually 5 minutes to 5 hours after the start of the modification reaction, preferably 15 minutes to 1 hour after the start of the modification reaction.
- the condensation accelerator used in the present invention is composed of a compound of an element belonging to at least one of groups 4, 12, 13, 14, and 15 of the periodic table.
- the condensation accelerator is composed of a compound of titanium (Ti), zirconium (Zr), bismuth (Bi), tin (Sn) or aluminum (Al), and alkoxides and carboxylic acids of these elements.
- a salt or an acetylacetonate complex salt is preferable, and among them, at least one selected from the following (a) to (h) is preferable.
- A titanium alkoxide (b); titanium carboxylate (c); titanium acetylacetonate complex (d); bismuth carboxylate (e): zirconium alkoxide (f); zirconium carboxylic acid Salt (g); Aluminum alkoxide (h); Aluminum carboxylate
- condensation accelerator examples include tetrakis (2-ethyl-1,3-hexanediolato) titanium, tetrakis (2-methyl-1,3-hexanediolato) titanium, tetrakis (2-propyl-) for titanium compounds.
- 1,3-hexanediolato) titanium tetrakis (2-butyl-1,3-hexanediolato) titanium, tetrakis (1,3-hexanediolato) titanium, tetrakis (1,3-pentanediolato) titanium, Tetrakis (2-methyl-1,3-pentanediolato) titanium, tetrakis (2-ethyl-1,3-pentanediolato) titanium, tetrakis (2-propyl-1,3-pentanediolato) titanium, tetrakis ( 2-butyl-1,3-pentanediolato) titanium, tetrakis (1,3-heptanediolato) titanium, tetrakis (2- Chill-1,3-heptanediolato) titanium, tetrakis (2-ethyl-1,3-heptanediolato) titanium, tetrakis (2-propy
- tetrakis (2-ethyl-1,3-hexanediolato) titanium, tetrakis (2-ethylhexoxy) titanium, and titanium di-n-butoxide (bis-2,4-pentanedionate) are preferable.
- specific examples of the above compounds other than titanium include tris (2-ethylhexanoate) bismuth, tris (laurate) bismuth, tris (naphthate) bismuth, tris (stearate) bismuth, tris (oleate) bismuth, tris (Linoleate) bismuth, tetraethoxyzirconium, tetra n-propoxyzirconium, tetra i-propoxyzirconium, tetra n-butoxyzirconium, tetrasec-butoxyzirconium, tetratert-butoxyzirconium, tetra (2-ethylhexoxy) zirconium, zirconium tributoxy Stearate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethylacetoacetate , Zircon
- the amount of the condensation accelerator used is preferably such that the number of moles of the above compound is 0.1 to 10, and particularly preferably 0.5 to 5, as the molar ratio to the total amount of hydrocarbyloxysilyl groups. If it is less than 0.1, the condensation reaction does not proceed sufficiently. On the other hand, even if it is used in excess of 10, the effect as a condensation accelerator is saturated, which is economically undesirable.
- the condensation reaction in the present invention is preferably performed in the presence of water.
- Water may be used in the form of a simple substance, a solution of alcohol or the like, or a dispersed micelle in a hydrocarbon solvent.
- the modified polymer or its solution may be brought into contact with water.
- water that is potentially contained in a compound capable of releasing water in the reaction system such as water adsorbed on a solid surface or hydrated water of a hydrate, can also be used effectively. Therefore, a compound that can easily release water, such as a solid having adsorbed water or a hydrate, can be used in combination with the organometallic compound.
- the temperature during the condensation reaction is preferably 20 to 180 ° C, more preferably 30 to 160 ° C, and particularly preferably 50 to 150 ° C.
- the temperature during the condensation reaction is less than 20 ° C., the progress of the condensation reaction is slow and the condensation reaction may not be completed, so that the resulting modified conjugated diene polymer undergoes a change over time, and the quality It may be a problem.
- it exceeds 180 ° C. the aging reaction of the polymer proceeds and the physical properties may be lowered, which is not preferable.
- the condensation reaction time is usually about 5 minutes to 10 hours, preferably about 15 minutes to 5 hours. If it is less than 5 minutes, the condensation reaction is not completed. On the other hand, if it exceeds 10 hours, the condensation reaction is saturated, which is not preferable.
- the pressure in the reaction system during the condensation reaction is usually 0.01 to 20 MPa, preferably 0.05 to 10 MPa.
- limiting in particular about the form of a condensation reaction You may carry out by a continuous type using apparatuses, such as a batch type reactor and a multistage continuous reactor. Moreover, you may perform this condensation reaction and a desolvent simultaneously. After the condensation treatment as described above, a conventionally modified post-treatment can be performed to obtain the desired modified conjugated diene polymer.
- the amino group derived from the modifier of the diene polymer may be protected or may be deprotected and converted to a primary amine.
- the following procedure is used when performing deprotection. That is, the silyl protecting group on the protected amino group is converted to a free amino group by hydrolysis. By removing the solvent from this, a dried polymer having a primary amino group is obtained.
- the deprotection treatment of the protected primary amino group derived from the modifier can be performed as necessary in any stage from the step including the condensation treatment to the solvent removal to the dry polymer.
- the target modified conjugated diene polymer can be obtained by converting the protected primary amino group in the group into an amino group of a free radical.
- the Mooney viscosity (ML 1 + 4/100 ° C.) of the modified conjugated diene polymer used in the present invention is preferably 10 to 150, more preferably 15 to 130. By setting the Mooney viscosity value within the above range, a rubber composition having excellent kneading workability and mechanical properties after vulcanization can be obtained.
- the rubber composition used in the tire of the present invention preferably contains at least 15% by mass of the modified conjugated diene polymer as a rubber component.
- the more preferable content of the modified conjugated diene polymer in the rubber component is 30% by mass or more, and particularly preferably 40% by mass or more.
- Other rubber components used in combination with the modified conjugated diene polymer include natural rubber, synthetic isoprene rubber, butadiene rubber, styrene-butadiene rubber, ethylene- ⁇ -olefin copolymer rubber, ethylene- ⁇ -olefin- Examples thereof include diene copolymer rubber, acrylonitrile-butadiene copolymer rubber, chlorobrene rubber, halogenated butyl rubber, and mixtures thereof. Further, some of them may have a branched structure by using a polyfunctional type, for example, a modifier such as tin tetrachloride or silicon tetrachloride.
- the rubber composition used for the tire of the present invention contains structural hydrous silicic acid (silica) as a filler.
- the hydrous silicic acid used in the present invention is a method for precipitating and precipitating hydrous silicic acid by neutralizing an aqueous alkali silicate salt solution such as sodium silicate with a mineral acid such as sulfuric acid, so-called precipitation method producing hydrous silicic acid. It is obtained by a method according to the method.
- the structural hydrous silicic acid used in the present invention has a characteristic value measured by a method generally measured with silica, carbon black, or the like that satisfies the following relationship. That is, the cetyltrimethylammonium bromide adsorption specific surface area (CTAB) (m 2 / g) and the diameter A ac (nm) of the mode of the number of primary aggregates determined by acoustic particle size distribution measurement are expressed by the following formula (A) A ac ⁇ ⁇ 0.76 ⁇ (CTAB) +274 (A)
- the loss on ignition mass loss% when heated at 750 ° C. for 3 hours
- the weight loss on heating mass loss% when heated at 105 ° C. for 2 hours
- B Hydrous silicic acid satisfying
- Cetyltrimethylammonium bromide adsorption specific surface area is the specific surface area (m 2 / g) of hydrous silicic acid calculated from the amount of cetyltrimethylammonium bromide adsorbed on the hydrous silicic acid surface.
- CTAB can be measured according to the method described in ASTM D3765-92. Since the method described in ASTM D3765-92 is a method for measuring CTAB of carbon black, it is slightly modified.
- CE-TRAB cetyltrimethylammonium bromide
- hydrous silicate sodium di-2-ethylhexylsulfosuccinate
- the hydrous silicic acid used in the present invention desirably has a CTAB of 50 to 250 m 2 / g, preferably 80 to 230 m 2 / g.
- CTAB a CTAB of 50 to 250 m 2 / g, preferably 80 to 230 m 2 / g.
- the CTAB is less than 50 m 2 / g, the storage elastic modulus of the rubber composition is remarkably lowered, and when it is more than 250 m 2 / g, the viscosity of the rubber composition when unvulcanized may be increased.
- the diameter (acoustic particle size distribution diameter) measured by an acoustic particle size distribution measuring device is an index of the development of the structure.
- the hydrous silicic acid particles include those in which finely sized particles are primary aggregated and those that are slightly secondary aggregated.
- the measurement with an acoustic particle size distribution measuring apparatus is carried out by dispersing a hydrous silicic acid 0.01 M KCl aqueous solution with ultrasonic waves for 5 minutes to remove bubbles and destroying secondary aggregates. The distribution of the particle size and the number of particles of hydrous silicic acid primary aggregates is obtained. Of these, the most frequently occurring particle diameter is A ac (nm).
- the difference between the decrease in mass when the hydrous silicic acid used in the present invention is heated (%) and the decrease in mass when heated (%) is, (Loss on ignition)-(Loss on heating) ⁇ 3 ... (B) It is preferable that The loss on heating and the loss on ignition are carried out in accordance with the test method of the compounding agent for JIS K6220-1 rubber. It is the% decrease in mass when ignited at 3 ° C. for 3 hours.
- the amount of hydrous silicic acid used in the present invention is 10 to 150 parts by mass with respect to 100 parts by mass of the rubber component.
- the hydrous silicic acid used in the present invention is produced according to the method for producing hydrous silicic acid by precipitation method.
- sodium silicate and sulfuric acid are placed in a reaction vessel in which a certain amount of warm water is previously filled while controlling pH and temperature, and a hydrous silicate slurry is obtained after a certain period of time.
- the hydrated silicate slurry is filtered and washed by a filter capable of cake washing such as a filter press to remove the by-product electrolyte, and then the obtained hydrated silicate cake is slurried, and a spray dryer or the like It is dried and manufactured using a dryer.
- hydrous silicic acid As a reinforcing filler, it is preferable to use hydrous silicic acid as a reinforcing filler, and to add a silane coupling agent for the purpose of further improving its reinforcing property and low heat build-up.
- the silane coupling agent reacts with the silanol group remaining on the surface of the hydrous silicic acid and the rubber component polymer to act as a bonding bridge between the hydrous silicic acid and the rubber to form a reinforcing phase.
- the silane coupling agent used in the present invention is preferably at least one selected from the group consisting of compounds represented by the following general formula.
- X is C n H 2n + 1 O (n is an integer of 1 to 3) or a chlorine atom
- Y is an alkyl group having 1 to 3 carbon atoms
- m is an integer of 1 to 3
- p is 1
- q may be an integer greater than or equal to 1.
- two Y may be the same or different
- two Or three X may be the same or different.
- X is C n H 2n + 1 O (n is an integer of 1 to 3) or a chlorine atom
- Y is an alkyl group having 1 to 3 carbon atoms
- W is a mercapto group, a vinyl group, an amino group, A glycidoxy group or an epoxy group
- m is an integer of 1 to 3
- r is an integer of 0 to 9.
- m is 1, two Ys may be the same or different, and m is 2 or 3 , Two or three X may be the same or different.
- X is C n H 2n + 1 O (n is an integer of 1 to 3) or a chlorine atom
- Y is an alkyl group having 1 to 3 carbon atoms
- Z is a benzothiazolyl group, N, N-dimethylthio A carbamoyl group or a methacryloyl group, wherein m is an integer of 1 to 3, p is an integer of 1 to 9, and q is an integer of 1 or more, provided that when m is 1, Y may be the same or different, and when m is 2 or 3, two or three Xs may be the same or different.)
- the silane coupling agent represented by the general formula (VI) includes bis- (3-triethoxysilylpropyl) tetrasulfide, bis- (3-trimethoxysilylpropyl) tetrasulfide, bis- ( 3-methyldimethoxysilylpropyl) tetrasulfide, bis- (3-triethoxysilylethyl) tetrasulfide, bis- (3-triethoxysilylpropyl) disulfide, bis- (3-trimethoxysilylpropyl) disulfide, bis- ( 3-triethoxysilylpropyl) trisulfide.
- silane coupling agent represented by the general formula (VII) examples include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, Examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -glycidoxypropylmethyldiethoxysilane.
- silane coupling agent represented by the general formula (VIII) examples include 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide, 3-trimethoxy And silylpropylmethacryloyl monosulfide.
- bis (3-triethoxysilylpropyl) polysulfide and 3-trimethoxysilylpropylbenzothiazolyl tetrasulfide are preferable from the viewpoint of reinforcing effect.
- One of these silane coupling agents may be used alone, or two or more thereof may be used in combination.
- a modified polymer having a functional group having a high affinity for hydrous silicic acid introduced in the molecular active site is used as a rubber component.
- the blending amount of can be reduced more than usual.
- a preferable amount of the silane coupling agent varies depending on the kind of the silane coupling agent, but is preferably selected in a range of 1 to 20% by mass with respect to the hydrous silicic acid. If this amount is less than 1% by mass, the effect as a coupling agent is not sufficiently exhibited, and if it exceeds 20% by mass, the rubber component may be gelled. From the viewpoint of the effect as a coupling agent and the prevention of gelation, the preferable amount of the silane coupling agent is in the range of 5 to 15% by mass.
- carbon black can be used as a reinforcing filler together with hydrous silicic acid.
- the wear resistance of the rubber composition can be improved.
- Carbon black is not particularly limited, and for example, SRF, GPF, FEF, HAF, ISAF, SAF, etc. are used, iodine adsorption amount (IA) is 60 mg / g or more, and dibutyl phthalate oil absorption amount (DBP) is 80 ml / 100 g.
- the above carbon black is preferable.
- carbon black By using carbon black, the effect of improving grip performance and fracture resistance is increased, but HAF, ISAF, and SAF, which are excellent in wear resistance, are particularly preferable.
- Carbon black may be used alone or in combination of two or more.
- the amount of carbon black used is preferably 80 parts by mass or less with respect to 100 parts by mass of the rubber component, and the total amount of carbon black and hydrous silicic acid combined is preferably 120 parts by mass or less.
- the rubber composition used in the tire of the present invention various chemicals usually used in the rubber industry, for example, a vulcanizing agent, a vulcanization accelerator, a process oil, as long as the purpose of the present invention is not impaired.
- An anti-aging agent, an anti-scorch agent, zinc white, stearic acid and the like can be contained.
- the rubber composition used in the tire of the present invention is obtained by kneading using a kneader such as an open kneader such as a roll or a closed kneader such as a Banbury mixer, and vulcanized after molding. It can be applied to various rubber products.
- tire treads for example, it can be used for tire applications such as tire treads, under treads, carcass, sidewalls, bead parts, anti-vibration rubber, fenders, belts, hoses and other industrial products. It is suitably used as a tread rubber for tires for low fuel consumption, large tires, and high performance tires that have an excellent balance of heat generation, wear resistance, and breaking strength.
- the tire of the present invention is characterized by applying the above rubber composition to a tread member.
- a tire using the rubber composition as a tread member has low rolling resistance and excellent wear resistance because the rubber composition has low heat generation.
- As the gas filled in the tire of the present invention normal or air with a changed oxygen partial pressure, or an inert gas such as nitrogen can be used.
- silicate OT sodium di-2-ethylhexylsulfosuccinate
- the rubber composition was evaluated by the following method.
- the comparative example is expressed as an index as 100, and the larger the value, the lower the heat generation.
- the wear resistance was obtained from the remaining groove depth when traveling in a domestic general urban area for 10,000 km with the same tire used for the evaluation of the rolling resistance of the tire.
- the comparative example was set to 100 and displayed as an index. The higher the index, the better the wear resistance.
- Production Example 3 (Synthesis of Polymer C) In Production Example 2, a polymer C was obtained in the same manner as in Production Example 2 except that tin tetrachloride as a modifier was replaced with tetraethoxysilane. Table 1 shows the polymerization formulation and analytical values of the polymer obtained.
- Production Example 4 (Synthesis of Polymer D) A polymer D was obtained in the same manner as in Production Example 2 except that tin tetrachloride as the modifier was replaced with N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole in Production Example 2. Table 1 shows the polymerization formulation and analytical values of the polymer obtained.
- Production Example 5 (Synthesis of Polymer E) In Production Example 2, the same procedure as in Production Example 2 was conducted except that tin tetrachloride as the modifier was replaced with N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine. Polymer E was obtained. Table 1 shows the polymerization formulation and analytical values of the polymer obtained.
- Production Example 6 (Synthesis of Polymer F) A polymer F was obtained in the same manner as in Production Example 2 except that tin tetrachloride as the modifier was replaced with N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane in Production Example 2. Table 1 shows the polymerization formulation and analytical values of the polymer obtained.
- Production Example 7 (Synthesis of Polymer G) A polymer G was obtained in the same manner as in Production Example 2 except that tin tetrachloride as the modifier was replaced with N, N-bis (trimethylsilyl) aminopropyltriethoxysilane in Production Example 2. Table 1 shows the polymerization formulation and analytical values of the polymer obtained.
- Production Example 9 (Synthesis of Polymer I) In Production Example 8, N- (3-triethoxysilylpropyl) -4,5-dihydroimidazole as a modifying agent was changed to N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane and bis ( A polymer I was obtained in the same manner as in Production Example 8 except that 2-ethylhexanoate) tin was replaced with tetrakis (2-ethyl-1,3-hexanediolato) titanium. Table 2 shows the polymerization prescription and analysis values of the obtained polymer.
- Production Example 10 (Synthesis of Polymer J) In Production Example 9, heavy hydrogenation was conducted in the same manner as in Production Example 9 except that tetrakis (2-ethylhexoxy) titanium was used instead of tetrakis (2-ethyl-1,3-hexanediolato) titanium, which is a condensation accelerator. Combined J was obtained. Table 2 shows the polymerization prescription and analysis values of the obtained polymer.
- Production Example 11 (Synthesis of Polymer K) In Production Example 9, the same procedure as in Production Example 9 except that bis (2-ethylhexanoate) tin was used instead of tetrakis (2-ethyl-1,3-hexanediolato) titanium, which is a condensation accelerator. Thus, a polymer K was obtained. Table 2 shows the polymerization prescription and analysis values of the obtained polymer.
- Production Example 12 (Synthesis of Polymer L) In Production Example 9, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxysilane as a modifier is changed to methyltriethoxysilane and tetrakis (2-ethyl-1,3-hexanediolato) titanium as a condensation accelerator Polymer L was obtained in the same manner as in Production Example 9, except that was replaced with bis (2-ethylhexanoate) zirconium oxide. Table 2 shows the polymerization prescription and analysis values of the obtained polymer.
- the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L. From the middle of the reaction, white turbidity started, and the viscosity increased at 47 minutes to form a gel solution. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 96 ° C. for 30 minutes. The silica concentration in the resulting solution was 55 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry.
- the obtained silicic acid slurry was filtered with a filter press and washed with water to obtain a wet cake.
- the wet cake was made into a slurry using an emulsifier and dried with a spray dryer to obtain a wet method hydrous silicate A.
- Table 3 shows the physical properties of the obtained hydrous silicic acid.
- Production example B Using the same container and raw materials as in Production Example A, 93 L of water and 0.6 L of an aqueous sodium silicate solution were added and heated to 90 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 90 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example C Using the same container and raw material as in Production Example A, 93 L of water and 0.6 L of sodium silicate aqueous solution were added and heated to 84 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 84 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example D Using the same container and raw materials as in Production Example A, 93 L of water and 0.6 L of an aqueous sodium silicate solution were added and heated to 90 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 90 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example E Using the same container and raw materials as in Production Example A, 93 L of water and 0.6 L of an aqueous sodium silicate solution were added and heated to 90 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 78 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- Production Example F Using the same container and raw material as in Production Example A, 93 L of water and 0.6 L of sodium silicate aqueous solution were added and heated to 65 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 65 ° C., the same sodium silicate aqueous solution as described above was simultaneously added dropwise at a flow rate of 540 ml / min and sulfuric acid (18 mol / L) at a flow rate of 24 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- reaction solution began to become cloudy, and the viscosity increased to a gel solution at 50 minutes. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 65 ° C. for 60 minutes. The silica concentration in the resulting solution was 55 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry. Thereafter, wet method hydrous silicic acid F was obtained in the same manner as in Production Example A. Table 3 shows the physical properties of the obtained hydrous silicic acid.
- Production example G Using the same container and raw material as in Production Example A, 86 L of water and 0.5 L of an aqueous sodium silicate solution were added and heated to 96 ° C. The Na 2 O concentration in the obtained solution was 0.005 mol / L. While maintaining the temperature of this solution at 96 ° C., the same aqueous sodium silicate solution as described above was simultaneously added dropwise at a flow rate of 615 ml / min and sulfuric acid (18 mol / L) at a flow rate of 27 ml / min. While adjusting the flow rate, the neutralization reaction was performed while maintaining the Na 2 O concentration in the reaction solution in the range of 0.00 to 0.01 mol / L.
- reaction solution started to become cloudy, and the viscosity increased to a gel solution at 40 minutes. Further addition was continued and the reaction was stopped in 90 minutes. After stopping the reaction, the reaction solution temperature was maintained at 96 ° C. for 30 minutes. The silica concentration in the resulting solution was 62 g / L. Subsequently, sulfuric acid having the above-mentioned concentration was added until the pH of the solution reached 3, to obtain a silicic acid slurry. Thereafter, wet method hydrous silicic acid G was obtained in the same manner as in Production Example A. Table 3 shows the physical properties of the obtained hydrous silicic acid.
- Examples 1 to 17 and Comparative Examples 1 to 8 Using the modified conjugated diene polymers A to L of Production Examples 1 to 7 shown in Table 1 and Production Examples 8 to 12 shown in Table 2 and hydrous silicic acids A to G shown in Table 3, the formulations shown in Tables 4 to 7 A rubber composition was prepared according to the above, vulcanized at 160 ° C. for 15 minutes, and the low heat build-up of each rubber composition and the rolling resistance and abrasion resistance of tires produced using each rubber composition by the above method. Sex was measured. The measurement results are shown in Tables 4-7. In Tables 4 to 7, all of the low heat generation properties, rolling resistance, and wear resistance are expressed as indexes with Comparative Examples 1, 3, 5, and 7 in each table as 100. It shows that it is so favorable that a numerical value is large.
- Tires (Examples 1 to 17) using rubber compositions containing a modified conjugated diene polymer modified by condensation with a hydrocarbyloxy compound and a condensation accelerator and structural hydrous silicic acid are shown in Comparative Examples 1 to 8. Compared with low exothermic property, rolling resistance and abrasion resistance, it is excellent.
- the rubber composition containing the modified copolymer used in the present invention is excellent in the interaction between the rubber component, hydrous silicic acid and carbon black, can improve the dispersibility of the hydrous silicic acid and carbon black, and has low heat generation.
- Tires excellent in durability, fracture characteristics, wear resistance, and the like can be provided. In particular, it can be effectively used as a tread rubber of a fuel-efficient tire for passenger cars.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
従来から、ゴム用補強充填剤としては、カーボンブラックが使用されている。これは、カーボンブラックがゴム組成物に高い耐摩耗性を付与し得るからである。カーボンブラックの単独使用で低発熱化を図ろうとする場合、カーボンブラックの充填量を減らす、あるいは、粒径の大きいものを使用することが考えられるが、いずれの場合も耐摩耗性、湿潤路面でのグリップ性が低下するのを避けられないことが知られている。一方、低発熱性を向上させるために充填剤としてシリカが知られているが(例えば、特許文献1~4)、シリカは、その表面官能基であるシラノール基の水素結合により粒子同士が凝集する傾向にあり、また、ゴム分子とのぬれ性も劣り、ゴム中へのシリカの分散は良くない。これをよくするためには混練時間を長くする必要がある。また、ゴム中へのシリカの分散が不十分であるとゴム組成物のムーニー粘度が高くなり、押出しなどの加工性に劣る。さらに、シリカ粒子の表面は酸性であることから、ゴム組成物を加硫する際に、加硫促進剤として使用される塩基性物質を吸着し、加硫が十分行われず、弾性率が上がらないという問題も有していた。
Aac≧-0.76×(CTAB)+274・・・(A)
を満たし、さらに灼熱減量(750℃で3時間加熱した時の質量減少%)と加熱減量(105℃で2時間加熱した時の質量減少%)とが下記式(B)
(灼熱減量)-(加熱減量)≦3・・・(B)
を満たすことが好ましい。
上記のような変性共役ジエン系重合体は、シリカ及びカーボンブラック等の充填剤との相互作用に優れ、上記のような含水ケイ酸と共に用いられたゴム組成物は、低発熱性、耐摩耗性及び破壊特性に優れている。
本発明の変性共役ジエン系重合体は、活性部位を分子内に有する共役ジエン系重合体の該活性部位に、官能基を有してもよいヒドロカルビロキシシラン化合物を反応させて官能基を導入した変性重合体である。さらに周期律表の4族、12族、13族、14族及び15族の少なくとも一つに属する元素の化合物からなる縮合促進剤の存在下、前記官能基部位に縮合反応を行なって得られる変性重合体でもよい。
また、共役ジエン系重合体の分子中に存在する活性部位の金属は、アルカリ金属及びアルカリ土類金属から選ばれる1種であることが好ましく、アルカリ金属がより好ましく、特にリチウムが好ましい。
さらには、ハロゲン含有モノマーを混在させ、ポリマー中のハロゲン原子を有機金属化合物によって活性化することも有効である。例えば、イソブチレン単位、パラメチルスチレン単位及びパラブロモメチルスチレン単位を含む共重合体の臭素部分をリチオ化して活性部位とすることも有効である。
活性部位は、重合体分子中に存在すればよく、限定されないが、重合体がアルカリ金属化合物及び/又はアルカリ土類金属化合物を重合開始剤としたアニオン重合によるものである場合、一般に活性部位は分子の末端に来るもので、このように活性末端を有する重合体が好ましい。
また、これらの共役ジエン化合物との共重合に用いられる芳香族ビニル化合物としては、例えばスチレン;α-メチルスチレン;1-ビニルナフタレン;3-ビニルトルエン;エチルビニルベンゼン;ジビニルベンゼン;4-シクロへキシルスチレン;2,4,6-トリメチルスチレンなどが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、スチレンが特に好ましい。
溶液重合法を用いた場合には、溶媒中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は0~55質量%の範囲、好ましくは3~50、より好ましくは6~45質量%の範囲である。
また、これらの重合開始剤の使用量は、好ましくは単量体100g当たり、0.2~20ミリモルの範囲で選定される。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物などの炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により用いられるランダマイザーの存在下にアニオン重合させることにより、目的の共役ジエン系重合体が得られる。
これらのカリウム化台物は、開始剤のアルカリ金属1グラム原子当量あたり、0.005~0.5モルの量で添加できる。0.005モル未満では、カリウム化合物の添加効果(開始剤の反応性向上、芳香族ビニル化合物のランダム化または単連鎖付与)が現れず、一方0.5モルを超えると、重合活性が低下し、生産性を大幅に低下させることになるとともに、重合体末端を官能基で変性する反応を行なう際の変性効率が低下する。
尚、エラストマーとして重合体を得る場合は、得られる重合体又は共重合体の示差熱分析法により求めたガラス転移温度(Tg)が-95℃~-15℃であることが好ましい。ガラス転移温度を上記範囲にすることによって、粘度が高くなるのを抑え、取り扱いが容易な重合体を得ることができる。
官能基を有してもよいヒドロカルビロキシシラン化合物としては、特にその種類を限定するものではないが、シリカと親和性のある官能基を有する化合物、例えば、一般式(I)
で表されるヒドロカルビロキシシラン化合物及び/又はその部分縮合物、
及び一般式(II)
で表されるヒドロカルビロキシシラン化合物及び/又はその部分縮合物、
を用いることができる。
上記の変性反応においては、使用する重合体は、少なくとも20%のポリマー鎖がリビング性を有するものが好ましい。
ピリジン含有ヒドロカルビロキシシラン化合物としては、例えば、2-トリメトキシシリルエチルピリジン等が挙げられる。
で表されるヒドロカルビロキシシラン化合物及び/又はその部分縮合物。
上記炭素数1~12アルキレン基は、直鎖状、分枝状のいずれであってもよく、具体的には、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等の直鎖状アルキレン基、プロピレン基、イソプロピレン基、イソブチレン基、2-メチルトリメチレン基、イソペンチレン基、イソへキシレン基、イソオクチレン基、2-エチルへキシレン基、イソデシレン基などの分枝状のアルキレン基が挙げられる。
中でも炭素数1~4のアルキレン基が好ましく、特にトリメチレン基が好ましい。
上記炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、各種ヘキソキシ基、各種オクトキシ基、各種デシロキシ基、各種ドデシロキシ基、各種テトラデシロキシ基、各種ヘキサデシロキシ基、各種オクタデシロキシ基、各種イコシロキシ基などが挙げられる。炭素数6~20のアリーロキシ基としては、例えばフェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基等が挙げられ、炭素数7~20のアラルキルオキシ基としては、例えば、ベンジロキシ基、フェネチロキシ基、ナフチルメトキシ基等が挙げられる。これらの中で1~4のアルコキシ基が好ましく、特にエトキシ基が好ましい。
また、式(III)のR3、R4およびR5の2つが結合して、それらが結合している珪素原子と一緒になって4~7員環を形成してもよく、同様に式(IV)のR9、R10およびR11の2つが結合してそれらが結合している珪素原子と一緒になって4~7員環を形成してもよい。この4~7員環としては炭素数4~7のメチレン基を有するものを挙げることができる。
これらの化合物の中で好ましいのは、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、1-トリメチルシリル-2-エトキシ-2-メチル-1-アザ-2-シラシクロペンタンである。
上記の変性反応においては、使用する重合体は、少なくとも10%のポリマー鎖がリビング性を有するものが好ましい。
リビング重合鎖末端、例えばP-Li+と一般式(III)でf=1のときの変性剤の反応は、下記反応式
なお、上記変性剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。
変性反応の形式については特に制限はなく、バッチ式反応器を用いて行ってもよく、多段連続式反応器やインラインミキサなどの装置を用いて連続式で行ってもよい。また、該変性反応は、重合反応終了後、脱溶媒処理、水処理、熱処理、重合体単離に必要な諸操作などを行う前に実施することが肝要である。
また、変性反応時間は,通常、1分~5時間、好ましくは2分~1時間である。
また、この変性反応時に、所望により、公知の老化防止剤や反応停止剤を、重合体の活性部位に官能基を有してもよいヒドロカルビロキシ化合物残基を導入した後の工程において、添加することができる。
ここで用いる縮合促進剤は、上記変性反応前に添加することもできるが、変性反応後、および縮合反応開始前に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端にヒドロカルビロキシシリル基が導入されない場合がある。
また、縮合反応開始後に添加した場合、縮合促進剤が均一に分散せず触媒性能が低下する場合がある。
縮合促進剤の添加時期としては、通常、変性反応開始5分~5時間後、好ましくは変性反応開始15分~1時間後である。
(a);チタンのアルコキシド
(b);チタンのカルボン酸塩
(c);チタンのアセチルアセトナート錯塩
(d);ビスマスのカルボン酸塩
(e):ジルコニウムのアルコキシド
(f);ジルコニウムのカルボン酸塩
(g);アルミニウムのアルコキシド
(h);アルミニウムのカルボン酸塩
この中でも、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン、テトラキス(2-エチルヘキソキシ)チタン、チタンジ-n-ブトキサイド(ビス-2,4-ペンタンジオネート)が好ましい。
これらの中で、トリス(2-エチルヘキサノエート)ビスマス、テトラn-プロポキシジルコニウム、テトラn-ブトキシジルコニウム、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、トリi-プロポキシアルミニウム、トリsec-ブトキシアルミニウム、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ステアレート)アルミニウム、ジルコニウムテトラキス(アセチルアセトネート)、アルミニウムトリス(アセチルアセトネート)が好適である。
縮合反応時の温度が20℃未満の場合は、縮合反応の進行が遅く、縮合反応を完結することができなくなるおそれがあるため、得られる変性共役ジエン系重合体に経時変化が発生し、品質上問題となる場合がある。一方、180℃を超えると、ポリマーの老化反応が進行し物性を低下させる場合があるので好ましくない。
なお、縮合反応時の反応系の圧力は、通常、0.01~20MPa、好ましくは0.05~10MPaである。
縮合反応の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器などの装置を用いて連続式で行ってもよい。また、この縮合反応と脱溶媒を同時に行っても良い。
上記のように縮合処理したのち、従来公知の後処理を行い、目的の変性共役ジエン系重合体を得ることができる。
すなわち、該保護アミノ基上のシリル保護基を加水分解することによって遊離したアミノ基に変換する。これを脱溶媒処理することにより、第一アミノ基を有する乾燥したポリマーが得られる。なお、上記縮合処理を含む段階から、脱溶媒して乾燥ポリマーまでのいずれかの段階において必要に応じて変性剤由来の保護第一アミノ基の脱保護処理を行うことができる。
この変性共役ジエン系重合体は1種用いてもよく、2種以上を組み合わせて用いてもよい。また、この変性共役ジエン系重合体と併用される他のゴム成分としては、天然ゴム、合成イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、エチレン-α-オレフィン共重合ゴム、エチレン-α-オレフィン-ジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、クロロブレンゴム、ハロゲン化ブチルゴムおよびこれらの混合物などが挙げられる。また、その一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでもよい。
本発明で使用する含水ケイ酸は、ケイ酸ナトリウム等のケイ酸アルカリ塩水溶液を硫酸等の鉱酸で中和することにより含水ケイ酸を析出、沈殿させる方法、いわゆる沈殿法含水ケイ酸の製造方法に準じた方法により得られる。
即ち、セチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)(m2/g)と音響式粒度分布測定によって求められる一次凝集体の数の最頻値の直径Aac(nm)とが下記式(A)
Aac≧-0.76×(CTAB)+274・・・(A)
を満たし、好ましくは灼熱減量(750℃で3時間加熱した時の質量減少%)と加熱減量(105℃で2時間加熱した時の質量減少%)とが下記式(B)
(灼熱減量)-(加熱減量)≦3・・・(B)
を満たす含水ケイ酸である。
CTABの測定は、ASTM D3765-92記載の方法に準拠して行うことができる。ASTM D3765-92記載の方法は、カーボンブラックのCTABを測定する方法であるので、若干の修正を加える。即ち、カーボンブラックの標準品を使用せず、セチルトリメチルアンムニウムブロミド(以下、CE-TRABと略記する)標準液を調製し、これによって含水ケイ酸OT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)溶液の標定を行い、含水ケイ酸表面に対するCE-TRAB1分子当たりの吸着断面積を0.35nm2としてCE-TRABの吸着量から、比表面積を算出する。
音響式粒度分布測定装置による測定は、含水ケイ酸の0.01M KCl水溶液を超音波で5分間分散処理し、泡を除去して二次凝集体を破壊した後、測定する。含水ケイ酸の一次凝集体の粒径と粒子数の分布が得られ、このうち、最も頻度が多く現われた粒子の直径をAac(nm)とすると、
Aac≧-0.76×(CTAB)+274・・・(A)
を満足することが必要である。Aacが、この条件を満たさない時、低発熱性と耐摩耗性のどちらか又は両方が低下する。さらに、Aacは、1μm以下であることが好ましい。1μmより大きいと含水ケイ酸が破壊核となり、ゴム組成物の力学的特性が損なわれる虞がある。
(灼熱減量)-(加熱減量)≦3・・・(B)
であることが好ましい。
加熱減量及び灼熱減量は、JIS K6220-1ゴム用配合剤の試験方法に準じて行い、加熱減量は通常105±2℃で2時間加熱した時の質量の減少%、灼熱減量は通常750±25℃で3時間強熱した時の質量の減少%である。
続いて、該含水ケイ酸スラリーをフィルタープレス等のケーキ洗浄が可能なろ過機により濾別、洗浄して副生電解質を除去した後、得られた含水ケイ酸ケーキをスラリー化し、噴霧乾燥機等の乾燥機を用いて乾燥し製造される。
シランカップリング剤は、含水ケイ酸表面に残存するシラノール基とゴム成分ポリマーと反応して、含水ケイ酸とゴムとの結合橋として作用し補強相を形成する。
本発明で用いられるシランカップリング剤は、好ましくは下記一般式で表される化合物よりなる群から選ばれた少なくとも一種である。
(式中、XはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Yは炭素数1~3のアルキル基であり、mは1~3の整数、pは1~9の整数、qは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのYは同一でも異なってもよく、mが2又は3の時、2つ又は3つのXは同一でも異なってもよい。)
(式中、XはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Yは炭素数1~3のアルキル基であり、Wはメルカプト基、ビニル基、アミノ基、グリシドキシ基又はエポキシ基であり、mは1~3の整数、rは0~9の整数である。但し、mが1の時、2つのYは同一でも異なってもよく、mが2又は3の時、2つ又は3つのXは同一でも異なってもよい。)
(式中、XはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Yは炭素数1~3のアルキル基であり、Zはベンゾチアゾリル基、N,N-ジメチルチオカルバモイル基又はメタクリロイル基であり、mは1~3の整数、pは1~9の整数、qは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのYは同一でも異なってもよく、mが2又は3の時、2つ又は3つのXは同一でも異なってもよい。)
これらの中で補強性改善効果などの点から、ビス(3-トリエトキシシリルプロピル)ポリスルフィドおよび3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
カーボンブラックとしては特に制限はなく、例えばSRF、GPF、FEF、HAF、ISAF、SAFなどが用いられ、ヨウ素吸着量(IA)が60mg/g以上、かつジブチルフタレート吸油量(DBP)が80ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、グリップ性能および耐破壊特性の改良効果は大きくなるが、耐摩耗性に優れるHAF、ISAF、SAFが特に好ましい。
カーボンブラックは、1種用いてもよく2種以上を組み合わせて用いてもよい。
本発明のタイヤに使用するゴム組成物は、ロールなどの開放式混練機、バンバリーミキサーなどの密閉式混練機などの混練り機を用いて混練りすることによって得られ、成形加工後に加硫を行ない、各種ゴム製品に適用可能である。例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部などのタイヤ用途を始め、防振ゴム、防舷材、ベルト、ホースその他の工業品などの用途に用いることができるが、特に、低発熱性、耐摩耗性、破壊強度のバランスに優れた、低燃費用タイヤ、大型タイヤ、高性能タイヤのトレッド用ゴムとして好適に使用される。
変性共役ジエン系重合体の物性
(1)共役ジオレフィン部分のビニル含量(ブタジエン部を100としたときの質量%)
270MHz 1H-NMRによって求めた。
(2)結合スチレン含量(ポリマー中の質量%)
270MHz 1H-NMRによって求めた。
(3)重量平均分子量(Mw)
ゲルパーミエーションクロマトグラフィー(GPC)(東ソー社製、HLC-8220GPC)を用いて、ポリスチレン換算で求めた。
(4)ムーニー粘度(ML1+4 /100℃)
JIS K6300に従って、Lロ一夕一、予熱1分、ローター作動時間4分、温度100℃で求めた。
(1)音響式粒度分布径の測定
各含水ケイ酸の0.01M KCl水溶液を超音波で5分間分散処理し、泡を除去した後、超音波式粒度分布測定装置DT1200(Dispertion Technology社製)を用いて、含水ケイ酸の1次凝集体の直径の最頻値Aac(nm)を測定した。
ASTM D3765-92記載の方法に準拠して実施した。ASTM D3765-92記載の方法は、カーボンブラックのCTABを測定する方法であるので、若干の修正を加えた。すなわち、カーボンブラックの標準品であるIRB#3(83.0m2/g)を使用せず、別途セチルトリメチルアンムニウムブロミド(以下、CE-TRABと略記する)標準液を調製し、これによって含水ケイ酸OT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)溶液の標定を行い、含水ケイ酸表面に対するCE-TRAB1分子当たりの吸着断面積を0.35nm2としてCE-TRABの吸着量から、比表面積(m2/g)を算出した。これは、カーボンブラックと含水ケイ酸とでは表面が異なるので、同一表面積でもCE-TRABの吸着量に違いがあると考えられるからである。
含水ケイ酸サンプルを秤量し、加熱減量の場合は105℃でサンプルを2時間加熱し、灼熱減量の場合は750℃でサンプルを3時間加熱した後、質量を測定し、加熱前のサンプル質量との差を加熱前の質量に対して%で表した。
ゴム組成物の評価は下記の方法により測定を行った。
(1)低発熱性
米国レオメトリックス社製の動的スペクトロメーターを使用し、引張動歪1%、周波数10Hz、50℃の条件でtanδ(50℃)を測定した。比較例を100として指数で表示し、数値が大きいほど低発熱性である。
タイヤサイズ185/70R14の空気入りタイヤに170kPaの内圧を充填したあと、395kgの荷重を負荷しながら、大型試験ドラム上を時速80km/hで所定時間走行させ、次に前記ドラムの駆動力を遮断して、タイヤを慣性走行させ、この時のタイヤの減速度から転がり抵抗を求め、比較例を100として指数表示した。指数が大きい程、転がり抵抗が小さい。
タイヤの転がり抵抗の評価に用いたのと同様のタイヤにて国内一般市街地を10,000km走行させた時の残溝深さより求めた。比較例を100として指数により表示した。指数が大きい程、耐摩耗性が良好である。
乾燥し、窒素置換された内容積800ミリリットルの耐圧ガラス容器に、ブタジエンのシクロヘキサン溶液(16%)、スチレンのシクロヘキサン溶液(21%)をブタジエン単量体40g、スチレン単量体10gとなるように注入し、2,2-ジテトラヒドロフリルプロパン0.34ミリモルを注入し、これにn-ブチルリチウム(BuLi)0.38ミリモルを加えた後、50℃の温水浴中で1.5時間重合を行った。重合転化率はほぼ100%であった。
この後、重合系にさらに2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5重量%溶液0.5ミリリットルを加えて反応の停止を行い、さらに常法に従い乾燥することにより重合体Aを得た。得られた重合体の重合処方及び分析値を表1に示す。
乾燥し、窒素置換された内容積800ミリリットルの耐圧ガラス容器に、ブタジエンのシクロヘキサン溶液(16%)、スチレンのシクロヘキサン溶液(21%)をブタジエン単量体40g、スチレン単量体10gとなるように注入し、2,2-ジテトラヒドロフリルプロパン0.34ミリモルを注入し、これにn-ブチルリチウム(BuLi)0.38ミリモルを加えた後、50℃の温水浴中で1.5時間重合を行った。重合転化率はほぼ100%であった。
この重合系に四塩化スズ0.33ミリモルを加えた後、さらに50℃で30分間変性反応を行った。この後、重合系にさらに2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5重量%溶液0.5ミリリットルを加えて反応の停止を行い、さらに常法に従い乾燥することにより重合体Bを得た。得られた重合体の重合処方及び分析値を表1に示す。
製造例2において、変性剤である四塩化スズをテトラエトキシシランに代えた以外は、製造例2と同様にして重合体Cを得た。得られた重合体の重合処方及び分析値を表1に示す。
製造例2において、変性剤である四塩化スズをN-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾールに代えた以外は、製造例2と同様にして重合体Dを得た。得られた重合体の重合処方及び分析値を表1に示す。
製造例2において、変性剤である四塩化スズをN-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミンに代えた以外は、製造例2と同様にして重合体Eを得た。得られた重合体の重合処方及び分析値を表1に示す。
製造例2において、変性剤である四塩化スズをN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランに代えた以外は、製造例2と同様にして重合体Fを得た。得られた重合体の重合処方及び分析値を表1に示す。
製造例2において、変性剤である四塩化スズをN,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシランに代えた以外は、製造例2と同様にして重合体Gを得た。得られた重合体の重合処方及び分析値を表1に示す。
乾燥し、窒素置換された内容積800ミリリットルの耐圧ガラス容器に、ブタジエンのシクロヘキサン溶液(16%)、スチレンのシクロヘキサン溶液(21%)をブタジエン単量体40g、スチレン単量体10gとなるように注入し、さらに2,2-ジテトラヒドロフリルプロパン0.34ミリモルを注入し、これにn-ブチルリチウム(BuLi)0.38ミリモルを加えた後、50℃の温水浴中で1.5時間重合を行った。重合転化率はほぼ100%であった。
この重合系にN-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール0.33ミリモルを加えた後、さらに50℃で30分間変性反応を行った。この後、重合系にビス(2-エチルヘキサノエート)スズ0.33ミリモル及び水1.26ミリモルを加えた後、50℃で30分間縮合反応を行った。この後、重合系にさらに2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5重量%溶液0.5ミリリットルを加えて反応の停止を行い、さらに常法に従い乾燥することにより重合体Hを得た。得られた重合体の重合処方及び分析値を表2に示す。
製造例8において、変性剤であるN-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾールをN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランに、縮合促進剤であるビス(2-エチルヘキサノエート)スズをテトラキス(2-エチル-1,3-ヘキサンジオラト)チタンに代えた以外は、製造例8と同様にして重合体Iを得た。得られた重合体の重合処方及び分析値を表2に示す。
製造例9において、縮合促進剤であるテトラキス(2-エチル-1,3-ヘキサンジオラト)チタンの代わりに、テトラキス(2-エチルヘキソキシ)チタンを用いた以外は、製造例9と同様にして重合体Jを得た。得られた重合体の重合処方及び分析値を表2に示す。
製造例9において、縮合促進剤であるテトラキス(2-エチル-1,3-ヘキサンジオラト)チタンの代わりに、ビス(2-エチルヘキサノエート)スズを用いた以外は、製造例9と同様にして重合体Kを得た。得られた重合体の重合処方及び分析値を表2に示す。
製造例9において、変性剤であるN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランをメチルトリエトキシシランに、縮合促進剤であるテトラキス(2-エチル-1,3-ヘキサンジオラト)チタンをビス(2-エチルヘキサノエート)酸化ジルコニウムに代えた以外は、製造例9と同様にして重合体Lを得た。得られた重合体の重合処方及び分析値を表2に示す。
*1:2,2-ジテトラヒドロフリルプロパン
*2:n-ブチルリチウム
*3:四塩化スズ
*4:テトラエトキシシラン
*5:N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール
*6:N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパ
ンアミン
*7:N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン
*8:N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン
*9:メチルトリエトキシシラン
*10:ビス(2-エチルヘキサノエート)スズ
*11:テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン
*12:テトラキス(2-エチルヘキソキシ)チタン
*13:ビス(2-エチルヘキサノエート)酸化ジルコニウム
製造例A
攪拌機を備えた容量180リットルのジャケット付ステンレス製反応槽に、水93Lとケイ酸ナトリウム水溶液(SiO2160g/L、SiO2/Na2Oモル比3.3)0.6Lを入れ96℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を96℃に維持しながら、上記と同じのケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を96℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。得られたケイ酸スラリーをフィルタープレスで濾過、水洗を行なって湿潤ケーキを得た。次いで、湿潤ケーキを乳化装置を用いてスラリーとして、噴霧式乾燥機で乾燥して湿式法含水ケイ酸Aを得た。得られた含水ケイ酸の物性を表3に示す。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、90℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を90℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を90℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Bを得た。得られた含水ケイ酸の物性を表3に示す。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、84℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を84℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、48分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を84℃に30分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Cを得た。得られた含水ケイ酸の物性を表3に示す。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、90℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を90℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、47分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を90℃に60分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Dを得た。得られた含水ケイ酸の物性を表3に示す。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、90℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を78℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から白濁をはじめ、49分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を78℃に60分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Eを得た。得られた含水ケイ酸の物性を表3に示す。
製造例Aと同じ容器および原料を使用し、水93Lとケイ酸ナトリウム水溶液0.6Lを入れ、65℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を65℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を540ml/分、硫酸(18mol/L)を24ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から反応溶液は白濁をはじめ、50分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を65℃に60分間維持した。生じた溶液中のシリカ濃度は55g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Fを得た。得られた含水ケイ酸の物性を表3に示す。
製造例Aと同じ容器および原料を使用し、水86Lとケイ酸ナトリウム水溶液0.5Lを入れ、96℃に加熱した。得られた溶液中のNa2O濃度は0.005mol/Lであった。
この溶液の温度を96℃に維持しながら、上記と同じケイ酸ナトリウム水溶液を615ml/分、硫酸(18mol/L)を27ml/分の流量で同時に滴下した。流量を調整しながら、反応溶液中のNa2O濃度を0.00~0.01mol/Lの範囲に維持して中和反応を行なった。反応途中から反応溶液は白濁をはじめ、40分目に粘度が上昇してゲル状溶液となった。さらに添加を続けて90分で反応を停止した。反応停止後、反応液温度を96℃に30分間維持した。生じた溶液中のシリカ濃度は62g/Lであった。引き続いて、上記濃度の硫酸を溶液のpHが3になるまで添加してケイ酸スラリーを得た。以下製造例Aと同様な方法で湿式法含水ケイ酸Gを得た。得られた含水ケイ酸の物性を表3に示す。
表1に示す製造例1~7及び表2に示す製造例8~12の変性共役ジエン系重合体A~Lと表3に示す含水ケイ酸A~Gを用い、表4~7に示す配合に従ってゴム組成物を調製し、160℃15分間の条件で加硫を行い、上記の方法で各ゴム組成物の低発熱性及び各ゴム組成物を使用して製造したタイヤの転がり抵抗、耐摩耗性を測定した。
測定結果を表4~7に示す。なお、表4~7においては、低発熱性、転がり抵抗、耐摩耗性のいずれも、表毎に各表にある比較例1、3、5、7を100とした指数で表した。数値の大なるほど良好であることを示している。
*1:宇部興産製 BR150L
*2:富士興産製 アロマックス#3
*3:N339、東海カーボン社製 シーストKH
*4:東ソーシリカ社製 NipsilAQ
*5:Degussa社製 Si75
*6:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*7:ジフェニルグアニジン
*8:N-t-ブチル-2-ベンゾチアジルスルフェンアミド
*1:JSR社製 BR01
*2:富士興産製 アロマックス#3
*3:N339、東海カーボン社製 シーストKH
*4:Degussa社製 Si75
*5:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*6:N-t-ブチル-2-ベンゾチアジルスルフェンアミド
*7:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
*1:ランクセス社製 溶液重合SBR BunaVSL5025-1
*2:N339、東海カーボン社製 シーストKH
*3:東ソーシリカ社製 NipsilAQ
*4:Degussa社製 Si75
*5:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*6:ジフェニルグアニジン
*7:N-t-ブチル-2-ベンゾチアジルスルフェンアミド
*8:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
*1:富士興産製 アロマックス#3
*2:N339、東海カーボン社製 シーストKH
*3:東ソーシリカ社製 NipsilAQ
*4:Degussa社製 Si75
*5:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン
*6:ジフェニルグアニジン
*7:N-t-ブチル-2-ベンゾチアジルスルフェンアミド
*8:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド
ヒドロカルビロキシ化合物及び縮合促進剤による縮合によって変性した変性共役ジエン系重合体及び構造性含水ケイ酸を配合したゴム組成物を用いたタイヤ(実施例1~17)は、比較例1~8に比べて低発熱性、転がり抵抗及び耐摩耗性のいずれにおいても優れている。
Claims (16)
- 含水ケイ酸との親和性の高い官能基を導入した変性共役ジエン系重合体及びセチルトリメチルアンモニウムブロミド吸着比表面積(CTAB)(m2/g)と音響式粒度分布測定によって求められる一次凝集体の直径の最頻値Aac(nm)とが下記式(A)
Aac≧-0.76×(CTAB)+274・・・(A)
を満たす含水ケイ酸を配合してなるゴム組成物を使用したタイヤ。 - 変性共役ジエン系重合体が、ジエン系モノマーを単独又は他のモノマーと併用し、炭化水素溶媒中でアルカリ金属又はアルカリ土類金属系開始剤を用いてアニオン重合させて得られる金属の活性部位を有する共役ジエン系重合体の該活性部位に、ヒドロカルビロキシシラン化合物を反応させて得た変性共役ジエン系重合体からなるゴム組成物を使用した請求項1記載のタイヤ。
- 変性共役ジエン系重合体に導入された官能基が、分子末端に導入されている変性共役ジエン系重合体を配合したゴム組成物を使用した請求項1又は2に記載のタイヤ。
- 変性共役ジエン系重合体に導入された官能基が、重合停止側の分子末端に導入されている変性共役ジエン系重合体を配合したゴム組成物を使用した請求項3に記載のタイヤ。
- 変性共役ジエン系重合体に導入された官能基が、ヒドロキシシリル基、アルコキシシリル基、アミノ基またはハロゲン原子の少なくとも1つである変性共役ジエン系重合体を配合したゴム組成物を使用した請求項1~4のいずれかに記載のタイヤ。
- 官能基として、アルコキシシリル基とアミノ基が同時に導入された変性共役ジエン系重合体を配合したゴム組成物を使用した請求項5に記載のタイヤ。
- アミノ基が、プロトン性アミノ基又は保護されたアミノ基である変性共役ジエン系重合体を配合したゴム組成物を使用した請求項5又は6に記載のタイヤ。
- アミノ基が、第一アミノ基又は保護された第一アミノ基である変性共役ジエン系重合体を配合したゴム組成物を使用した請求項5又は6に記載のタイヤ。
- 変性共役ジエン系重合体が、周期律表4族、12族、13族、14族及び15族に属する元素のうちの少なくとも一つの化合物からなる縮合促進剤の存在下で縮合反応を行って得た変性共役ジエン系重合体からなるゴム組成物を使用した請求項1~8のいずれかに記載のタイヤ。
- 含水ケイ酸が、その灼熱減量(750℃で3時間加熱した時の質量減少%)と加熱減量(105℃で2時間加熱した時の質量減少%)とが下記式(B)
(灼熱減量)-(加熱減量)≦3・・・(B)
を満たすことを特徴とする含水ケイ酸からなるゴム組成物を使用した請求項1に記載のタイヤ。 - 含水ケイ酸が、音響式粒度分布測定によって求められる一次凝集体の直径の最頻値が1μm以下であることを特徴とする含水ケイ酸からなるゴム組成物を使用した請求項1に記載のタイヤ。
- 含水ケイ酸が、CTABが50~250m2/gであることを特徴とする含水ケイ酸からなるゴム組成物を使用した請求項1に記載のタイヤ。
- ゴム組成物にゴム成分として、さらに天然ゴム及び/又はジエン系合成ゴムから選ばれる少なくとも1つ以上のゴムを含有し、全ゴム成分100質量部に対して含水ケイ酸を10~150質量部を配合してなる請求項1に記載のタイヤ。
- ゴム組成物にシランカップリング剤を含水ケイ酸の配合量の1~20質量%配合したことを特徴とする請求項1に記載のタイヤ。
- シランカップリング剤が、下記一般式(VI)で表される化合物:
XmY3-mSi-(CH2)pSq-(CH2)p-SiXmY3-m・・(VI)
[式中、XはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Yは炭素数1~3のアルキル基であり、mは1~3の整数、pは1~9の整数、qは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのYは同一でも異なってもよく、mが2又は3の時、2つ又は3つのXは同一でも異なってもよい。]、
下記一般式(VII)で表される化合物:
XmY3-mSi-(CH2)r-W・・・(VII)
[式中、XはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Yは炭素数1~3のアルキル基であり、Yはメルカプト基、ビニル基、アミノ基、グリシドキシ基又はエポキシ基であり、mは1~3の整数、rは0~9の整数である。但し、mが1の時、2つのYは同一でも異なってもよく、mが2又は3の時、2つ又は3つのXは同一でも異なってもよい。]、
および下記一般式(VIII)で表される化合物:
XmY3-mSi-(CH2)p-Sq-Z・・・(VIII)
[式中、XはCnH2n+1O(nは1~3の整数)又は塩素原子であり、Yは炭素数1~3のアルキル基であり、Zはベンゾチアゾリル基、N,N-ジメチルチオカルバモイル基又はメタクリロイル基であり、mは1~3の整数、pは1~9の整数、qは1以上の整数で分布を有していてもよい。但し、mが1の時、2つのYは同一でも異なってもよく、mが2又は3の時、2つ又は3つのXは同一でも異なってもよい。]、
からなる群から選択される少なくとも一種であることを特徴とする請求項14に記載のタイヤ。 - ゴム組成物に補強用充填剤としてカーボンブラックをゴム成分100質量部に対して80質量部以下含有し、カーボンブラックと含水ケイ酸との総配合量が120質量部以下であることを特徴とするゴム組成物を使用した請求項1に記載のタイヤ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/990,382 US9279045B2 (en) | 2008-04-30 | 2009-04-30 | Tire prepared by using rubber composition containing modified polymer |
KR1020107026689A KR101227313B1 (ko) | 2008-04-30 | 2009-04-30 | 변성 중합체를 함유하는 고무 조성물을 사용한 타이어 |
EP09738873.0A EP2272909B1 (en) | 2008-04-30 | 2009-04-30 | Tire prepared by using rubber composition containing modified polymer |
CN200980125055.2A CN102076757B (zh) | 2008-04-30 | 2009-04-30 | 使用含改性聚合物的橡胶组合物的轮胎 |
RU2010148736/05A RU2475368C2 (ru) | 2008-04-30 | 2009-04-30 | Покрышка, изготовленная с использованием каучуковой композиции, содержащей модифицированный полимер |
BRPI0912009-2A BRPI0912009B1 (pt) | 2008-04-30 | 2009-04-30 | Pneumático preparado com a utilização de composição de borracha que contém polímero modificado |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008118321 | 2008-04-30 | ||
JP2008-118321 | 2008-04-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009133936A1 true WO2009133936A1 (ja) | 2009-11-05 |
Family
ID=41255151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/058506 WO2009133936A1 (ja) | 2008-04-30 | 2009-04-30 | 変性重合体を含有するゴム組成物を使用したタイヤ |
Country Status (8)
Country | Link |
---|---|
US (1) | US9279045B2 (ja) |
EP (1) | EP2272909B1 (ja) |
JP (1) | JP5656366B2 (ja) |
KR (1) | KR101227313B1 (ja) |
CN (1) | CN102076757B (ja) |
BR (1) | BRPI0912009B1 (ja) |
RU (1) | RU2475368C2 (ja) |
WO (1) | WO2009133936A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010126095A1 (ja) * | 2009-04-28 | 2010-11-04 | 株式会社ブリヂストン | 空気入りタイヤ |
WO2011010662A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | タイヤ |
WO2011010665A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | 空気入りタイヤ |
CN103097450A (zh) * | 2010-07-09 | 2013-05-08 | 株式会社普利司通 | 橡胶组合物和使用其的充气轮胎 |
US20130345335A1 (en) * | 2011-02-09 | 2013-12-26 | Jsr Corporation | Rubber composition, method for producing same, and tire |
WO2017026288A1 (ja) * | 2015-08-10 | 2017-02-16 | Jsr株式会社 | 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8273820B2 (en) * | 2008-01-18 | 2012-09-25 | Bridgestone Corpopration | Rubber composition and tire |
JP2010241898A (ja) * | 2009-04-02 | 2010-10-28 | Bridgestone Corp | 空気入りタイヤ |
JP5759144B2 (ja) * | 2010-11-10 | 2015-08-05 | 株式会社ブリヂストン | ゴム組成物及びそれを用いた空気入りタイヤ |
JP5759118B2 (ja) * | 2010-07-09 | 2015-08-05 | 株式会社ブリヂストン | ゴム組成物及びそれを用いた空気入りタイヤ |
CN103635523B (zh) * | 2011-04-28 | 2016-06-15 | 株式会社普利司通 | 橡胶组合物 |
EP2703441B1 (en) * | 2011-04-28 | 2016-03-30 | Bridgestone Corporation | Rubber composition |
US9045620B2 (en) * | 2011-08-31 | 2015-06-02 | Bridgestone Corporation | Rubber composition, cross-linked rubber composition, and tire |
JP2013082778A (ja) * | 2011-10-06 | 2013-05-09 | Asahi Kasei Chemicals Corp | 変性共役ジエン系重合体組成物 |
JP5961382B2 (ja) * | 2012-01-10 | 2016-08-02 | 株式会社ブリヂストン | タイヤ用ゴム組成物、タイヤ用加硫ゴム組成物及びそれらを用いたタイヤ |
US10017625B2 (en) * | 2012-05-08 | 2018-07-10 | Bridgestone Corporation | Rubber composition, crosslinked rubber composition and tire |
KR102326285B1 (ko) * | 2014-09-12 | 2021-11-15 | 디아이씨 가부시끼가이샤 | 고무와 금속과의 접착촉진제, 고무 조성물 및 타이어 |
KR102261329B1 (ko) * | 2015-07-24 | 2021-06-04 | 엘지전자 주식회사 | 안테나, 차량용 레이더, 및 이를 구비하는 차량 |
CN107286296B (zh) * | 2016-03-30 | 2020-08-07 | 中国石油化工股份有限公司 | 一种丁二烯-b-异戊二烯聚合物的应用 |
US11203658B2 (en) | 2017-03-08 | 2021-12-21 | Bridgestone Corporation | Coupled polymer products, methods of making and compositions containing |
FR3068698A1 (fr) * | 2017-07-04 | 2019-01-11 | Compagnie Generale Des Etablissements Michelin | Polymere portant des groupes pendants fonctionnels particuliers imidazolidinone |
JP6705563B2 (ja) * | 2018-06-12 | 2020-06-03 | 横浜ゴム株式会社 | ゴム組成物 |
KR102035177B1 (ko) * | 2018-07-11 | 2019-11-08 | 주식회사 엘지화학 | 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6457825A (en) | 1987-08-27 | 1989-03-06 | Nippon Denki Home Electronics | 4/5 code conversion system |
JPH0245838A (ja) | 1988-08-08 | 1990-02-15 | Mitsubishi Electric Corp | プログラム実行状態監視方法 |
JPH0248116A (ja) | 1988-08-05 | 1990-02-16 | Sodick Co Ltd | ワイヤカット放電加工機 |
JPH0252431A (ja) | 1988-08-17 | 1990-02-22 | Nec Kyushu Ltd | 半導体装置の製造方法 |
JPH053763A (ja) | 1991-06-25 | 1993-01-14 | Fuji Oil Co Ltd | 気泡含有サラダの製造方法及び気泡含有サラダ |
JPH057767A (ja) | 1990-11-02 | 1993-01-19 | Sakura Color Prod Corp | 二重壁マイクロカプセル及びその製造法 |
JPH07369A (ja) | 1991-10-07 | 1995-01-06 | Agency Of Ind Science & Technol | 内部インピーダンス分布の高速画像化法 |
JPH11124474A (ja) * | 1997-05-26 | 1999-05-11 | Michelin & Cie | 転がり抵抗を改良したロードタイヤを製造するためのシリカベースのゴム組成物 |
WO2003046020A1 (fr) * | 2001-11-27 | 2003-06-05 | Bridgestone Corporation | Polymere dienique conjugue, procede de fabrication et compositions elastomeres contenant ce polymere |
WO2003087171A1 (fr) | 2002-04-12 | 2003-10-23 | Bridgestone Corporation | Procede de production de polymere modifie, polymere ainsi obtenu et composition elastomere |
JP2005500420A (ja) * | 2001-08-13 | 2005-01-06 | ソシエテ ド テクノロジー ミシュラン | 補強用充填剤として特定のシリカを含むタイヤ用ジエンゴム組成物 |
JP2006037046A (ja) | 2004-07-30 | 2006-02-09 | Yokohama Rubber Co Ltd:The | 鱗片状シリカを含むタイヤ用ゴム組成物 |
JP2007138069A (ja) * | 2005-11-21 | 2007-06-07 | Bridgestone Corp | ゴム組成物および空気入りタイヤ |
JP2008001743A (ja) * | 2006-06-20 | 2008-01-10 | Bridgestone Corp | トレッド用ゴム組成物及びそれを用いたタイヤ |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1310787C (en) * | 1986-12-01 | 1992-11-24 | Hiroyoshi Takao | Process for preparing modified diene polymer rubbers |
JP3021516B2 (ja) | 1990-03-02 | 2000-03-15 | 株式会社ブリヂストン | 空気入りタイヤ |
EP0447066B2 (en) * | 1990-03-02 | 2000-08-16 | Bridgestone Corporation | Pneumatic tyres |
JPH0653763A (ja) | 1992-07-28 | 1994-02-25 | Toshiba Corp | 自動利得制御装置 |
JPH0657767A (ja) | 1992-08-05 | 1994-03-01 | Fujita Corp | プレキャスト重力式擁壁の構築方法 |
JP3190146B2 (ja) | 1992-11-25 | 2001-07-23 | 日本シリカ工業株式会社 | 耐水性が改善された新規なゴム組成物 |
JP3403747B2 (ja) | 1993-02-23 | 2003-05-06 | 株式会社ブリヂストン | タイヤ用ゴム組成物 |
CA2105334C (en) * | 1993-04-02 | 2004-03-30 | Jean Bergh | Tire with silica reinforced tread |
CA2108772C (en) | 1993-08-09 | 2005-07-05 | David John Zanzig | Tire with silica reinforced tread |
US6022923A (en) * | 1995-01-13 | 2000-02-08 | Bridgestone Corporation | Pneumatic tires |
JP3454327B2 (ja) | 1995-01-13 | 2003-10-06 | 株式会社ブリヂストン | 空気入りタイヤ |
CA2255876A1 (en) * | 1997-12-26 | 1999-06-26 | Howard Allen Colvin | Rubber blend for tire tread compounds |
RU2266929C2 (ru) * | 1999-12-30 | 2005-12-27 | Сосьете Де Текноложи Мишлен | Резиновая композиция для пневматических шин и их полупродуктов, содержащая связующий агент (белая сажа/эластомер) со сложноэфирной функцией, и способ ее получения |
FR2821848A1 (fr) * | 2001-03-12 | 2002-09-13 | Michelin Soc Tech | Composition de caoutchouc pour bande de roulement de pneumatique et enveloppe de pneumatique l'incorporant |
JP3902107B2 (ja) | 2001-10-05 | 2007-04-04 | 株式会社ブリヂストン | ゴム組成物 |
RU2323230C2 (ru) * | 2002-07-09 | 2008-04-27 | Моментив Перформанс Матириалз Инк. | Смеси диоксид кремния-каучук, обладающие улучшенной твердостью |
DE102006024590A1 (de) * | 2006-05-26 | 2007-11-29 | Degussa Gmbh | Hydrophile Kieselsäure für Dichtungsmassen |
JP5170997B2 (ja) | 2006-08-11 | 2013-03-27 | 株式会社ブリヂストン | ゴム組成物及びそれを用いたタイヤ |
-
2009
- 2009-04-30 BR BRPI0912009-2A patent/BRPI0912009B1/pt active IP Right Grant
- 2009-04-30 JP JP2009110822A patent/JP5656366B2/ja active Active
- 2009-04-30 WO PCT/JP2009/058506 patent/WO2009133936A1/ja active Application Filing
- 2009-04-30 EP EP09738873.0A patent/EP2272909B1/en active Active
- 2009-04-30 US US12/990,382 patent/US9279045B2/en active Active
- 2009-04-30 RU RU2010148736/05A patent/RU2475368C2/ru active
- 2009-04-30 CN CN200980125055.2A patent/CN102076757B/zh active Active
- 2009-04-30 KR KR1020107026689A patent/KR101227313B1/ko active IP Right Grant
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6457825A (en) | 1987-08-27 | 1989-03-06 | Nippon Denki Home Electronics | 4/5 code conversion system |
JPH0248116A (ja) | 1988-08-05 | 1990-02-16 | Sodick Co Ltd | ワイヤカット放電加工機 |
JPH0245838A (ja) | 1988-08-08 | 1990-02-15 | Mitsubishi Electric Corp | プログラム実行状態監視方法 |
JPH0252431A (ja) | 1988-08-17 | 1990-02-22 | Nec Kyushu Ltd | 半導体装置の製造方法 |
JPH057767A (ja) | 1990-11-02 | 1993-01-19 | Sakura Color Prod Corp | 二重壁マイクロカプセル及びその製造法 |
JPH053763A (ja) | 1991-06-25 | 1993-01-14 | Fuji Oil Co Ltd | 気泡含有サラダの製造方法及び気泡含有サラダ |
JPH07369A (ja) | 1991-10-07 | 1995-01-06 | Agency Of Ind Science & Technol | 内部インピーダンス分布の高速画像化法 |
JPH11124474A (ja) * | 1997-05-26 | 1999-05-11 | Michelin & Cie | 転がり抵抗を改良したロードタイヤを製造するためのシリカベースのゴム組成物 |
JP2005500420A (ja) * | 2001-08-13 | 2005-01-06 | ソシエテ ド テクノロジー ミシュラン | 補強用充填剤として特定のシリカを含むタイヤ用ジエンゴム組成物 |
WO2003046020A1 (fr) * | 2001-11-27 | 2003-06-05 | Bridgestone Corporation | Polymere dienique conjugue, procede de fabrication et compositions elastomeres contenant ce polymere |
WO2003087171A1 (fr) | 2002-04-12 | 2003-10-23 | Bridgestone Corporation | Procede de production de polymere modifie, polymere ainsi obtenu et composition elastomere |
JP2006037046A (ja) | 2004-07-30 | 2006-02-09 | Yokohama Rubber Co Ltd:The | 鱗片状シリカを含むタイヤ用ゴム組成物 |
JP2007138069A (ja) * | 2005-11-21 | 2007-06-07 | Bridgestone Corp | ゴム組成物および空気入りタイヤ |
JP2008001743A (ja) * | 2006-06-20 | 2008-01-10 | Bridgestone Corp | トレッド用ゴム組成物及びそれを用いたタイヤ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2272909A4 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010126095A1 (ja) * | 2009-04-28 | 2010-11-04 | 株式会社ブリヂストン | 空気入りタイヤ |
US8450408B2 (en) | 2009-04-28 | 2013-05-28 | Bridgestone Corporation | Pneumatic tire |
WO2011010662A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | タイヤ |
WO2011010665A1 (ja) * | 2009-07-22 | 2011-01-27 | 株式会社ブリヂストン | 空気入りタイヤ |
US8754159B2 (en) | 2009-07-22 | 2014-06-17 | Bridgestone Corporation | Tire |
CN103097450A (zh) * | 2010-07-09 | 2013-05-08 | 株式会社普利司通 | 橡胶组合物和使用其的充气轮胎 |
RU2540629C2 (ru) * | 2010-07-09 | 2015-02-10 | Бриджстоун Корпорейшн | Резиновая смесь и ее применение в пневматической шине |
US9221962B2 (en) | 2010-07-09 | 2015-12-29 | Bridgestone Corporation | Rubber composition and pneumatic tire using the same |
US20130345335A1 (en) * | 2011-02-09 | 2013-12-26 | Jsr Corporation | Rubber composition, method for producing same, and tire |
WO2017026288A1 (ja) * | 2015-08-10 | 2017-02-16 | Jsr株式会社 | 共役ジエン系重合体及びその製造方法、重合体組成物、架橋重合体、並びにタイヤ |
Also Published As
Publication number | Publication date |
---|---|
RU2475368C2 (ru) | 2013-02-20 |
US20110046263A1 (en) | 2011-02-24 |
JP2009287019A (ja) | 2009-12-10 |
US9279045B2 (en) | 2016-03-08 |
BRPI0912009B1 (pt) | 2019-07-30 |
JP5656366B2 (ja) | 2015-01-21 |
EP2272909B1 (en) | 2015-11-25 |
KR20110003557A (ko) | 2011-01-12 |
EP2272909A4 (en) | 2012-07-18 |
KR101227313B1 (ko) | 2013-01-28 |
BRPI0912009A2 (pt) | 2015-10-06 |
CN102076757A (zh) | 2011-05-25 |
EP2272909A1 (en) | 2011-01-12 |
RU2010148736A (ru) | 2012-06-10 |
CN102076757B (zh) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5656366B2 (ja) | 変性重合体を含有するゴム組成物を使用したタイヤ | |
JP4159993B2 (ja) | 変性重合体の製造方法、その方法で得られた変性重合体及びゴム組成物 | |
JP5683070B2 (ja) | 変性共役ジエン系重合体の製造方法、その方法により得られた変性共役ジエン系重合体、ゴム組成物及びタイヤ | |
JP5069593B2 (ja) | ゴム組成物及びそれを用いたタイヤ | |
JP5745733B2 (ja) | 変性重合体の製造方法、その方法により得られた変性重合体とそのゴム組成物 | |
JP5611585B2 (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及びゴム組成物 | |
WO2009084667A1 (ja) | タイヤ | |
JPWO2009072650A1 (ja) | タイヤ | |
JP2010241983A (ja) | ゴム組成物の製造方法 | |
JP5580997B2 (ja) | ゴム組成物及びタイヤ | |
JP5424540B2 (ja) | ゴム組成物及びタイヤ | |
JP4151835B2 (ja) | 変性重合体及びその製造方法、並びにゴム組成物 | |
JP2010185053A (ja) | タイヤ | |
JP5086883B2 (ja) | 変性重合体の製造方法、変性重合体及びその変性重合体を用いたゴム組成物 | |
JP6431938B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP2009280805A (ja) | タイヤ | |
JP2009126360A (ja) | 重荷重用タイヤ | |
JP6092966B2 (ja) | タイヤトレッド用ゴム組成物 | |
JP2009280808A (ja) | タイヤ用ゴム組成物及びタイヤ | |
JP5965433B2 (ja) | タイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980125055.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09738873 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12990382 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009738873 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107026689 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010148736 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0912009 Country of ref document: BR Kind code of ref document: A2 Effective date: 20101103 |