WO2009131012A1 - 導電性組成物の分散液、導電性組成物および固体電解コンデンサ - Google Patents

導電性組成物の分散液、導電性組成物および固体電解コンデンサ Download PDF

Info

Publication number
WO2009131012A1
WO2009131012A1 PCT/JP2009/057242 JP2009057242W WO2009131012A1 WO 2009131012 A1 WO2009131012 A1 WO 2009131012A1 JP 2009057242 W JP2009057242 W JP 2009057242W WO 2009131012 A1 WO2009131012 A1 WO 2009131012A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
conductive composition
water
solid electrolytic
electrolytic capacitor
Prior art date
Application number
PCT/JP2009/057242
Other languages
English (en)
French (fr)
Inventor
良介 杉原
兄 廣田
Original Assignee
テイカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイカ株式会社 filed Critical テイカ株式会社
Priority to JP2009528940A priority Critical patent/JP4454042B2/ja
Priority to US12/811,342 priority patent/US7990684B2/en
Priority to CN2009801039684A priority patent/CN101932653B/zh
Priority to EP09733736.4A priority patent/EP2270092B1/en
Publication of WO2009131012A1 publication Critical patent/WO2009131012A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a dispersion of a conductive composition, particularly a dispersion of a conductive composition suitable for use as a solid electrolyte of a solid electrolytic capacitor, and a conductive obtained by drying the dispersion of the conductive composition.
  • the present invention relates to a composition and a solid electrolytic capacitor using the conductive composition as a solid electrolyte.
  • Conductive polymers are used as solid electrolytes for solid electrolytic capacitors such as tantalum solid electrolytic capacitors, niobium solid electrolytic capacitors, and aluminum solid electrolytic capacitors because of their high conductivity.
  • conductive polymer in this application for example, those synthesized by oxidative polymerization of a polymerizable monomer such as thiophene or a derivative thereof are used.
  • organic sulfonic acid is mainly used, and among them, aromatic sulfonic acid is said to be suitable.
  • Transition metals are used as oxidants, among which ferric iron is said to be suitable.
  • ferric salts of aromatic sulfonic acids are chemically oxidative polymerization of polymerizable monomers such as thiophene or its derivatives. It is used as an oxidant and dopant agent in the process.
  • ferric salts of aromatic sulfonic acids it is said that ferric salts of toluene sulfonic acid and ferric salts of methoxybenzene sulfonic acid are particularly useful, and conductive polymers using them. It can be synthesized by mixing those oxidizing agent / dopant with a polymerizable monomer such as thiophene or a derivative thereof, and is reported to be simple and suitable for industrialization (Patent Documents 1 and 2). .
  • the conductive polymer obtained using ferric toluenesulfonate as an oxidizing agent and dopant does not have sufficiently satisfactory characteristics in terms of initial resistance and heat resistance, and methoxybenzenesulfonic acid.
  • the conductive polymer obtained using ferric salt as an oxidant and dopant has lower initial resistance and excellent heat resistance than the conductive polymer using ferric toluenesulfonate. Even so, satisfactory characteristics were not obtained.
  • toluenesulfonic acid ferric salt and methoxybenzenesulfonic acid ferric salt are solid, so they are generally used in a state of being dissolved in alcohol, but these solutions are precipitated during storage. This is because.
  • the conductive polymer synthesized by a chemical oxidation polymerization method is usually not soluble in a solvent, so tantalum, niobium, aluminum, etc. It is necessary to form a conductive polymer directly on an element having an anode made of a porous body of the valve metal and a dielectric layer made of an oxide film of the valve metal.
  • Patent Document 3 solubilized conductive polymers have been actively studied.
  • Patent Document 3 it is reported that a dispersion of a conductive polymer can be obtained by mixing and reacting polystyrene sulfonic acid, ammonium persulfate, iron salt, ethylenedioxythiophene, and the like.
  • the conductivity of the conductive polymer obtained thereby is required to be further improved for use as a solid electrolyte of a solid electrolytic capacitor.
  • Patent Document 6 a conductive polymer obtained by doping polyaniline with a solvent-soluble polyester sulfonic acid has been reported (Patent Document 6).
  • the conductive polymer obtained thereby cannot be said to have sufficiently high conductivity, and further improvement in conductivity is required for use as a solid electrolyte of a solid electrolytic capacitor.
  • the present invention provides a conductive composition suitable for use as a solid electrolyte of a solid electrolytic capacitor and makes use of the excellent characteristics of the conductive composition.
  • An object of the present invention is to provide a solid electrolytic capacitor that is small and highly reliable under high temperature conditions.
  • the present inventors are composed of polystyrene sulfonic acid, a phenol sulfonic acid novolak resin having a repeating unit represented by the following general formula (I), and a sulfonated polyester.
  • a conductive composition obtained by drying a dispersion of a conductive composition containing a high-boiling solvent is suitable for achieving the above object, and based on this, the present invention has been completed. .
  • the present invention provides thiophene or sulfonic acid in the presence of polystyrene sulfonic acid and at least one selected from the group consisting of a phenolsulfonic acid novolak resin having a repeating unit represented by formula (I) and a sulfonated polyester.
  • a conductive composition comprising a conductive polymer obtained by oxidative polymerization of the derivative in water or an aqueous liquid comprising a mixture of water and a water-miscible solvent, and a high-boiling solvent. Relates to a dispersion liquid.
  • the present invention also relates to a conductive polymer obtained by oxidative polymerization of thiophene or a derivative thereof in water or in an aqueous liquid composed of a mixture of water and a water-miscible solvent in the presence of polystyrene sulfonic acid.
  • a conductive polymer obtained by oxidative polymerization of thiophene or a derivative thereof in water or in an aqueous liquid composed of a mixture of water and a water-miscible solvent in the presence of polystyrene sulfonic acid.
  • a phenolsulfonic acid novolak resin having a repeating unit represented by formula (I) and a sulfonated polyester thiophene or a derivative thereof is miscible with water or water.
  • the present invention relates to a dispersion of a conductive composition comprising a conductive polymer obtained by oxidative polymerization in an aqueous liquid composed of a mixture with a solvent
  • the present invention relates to a conductive composition obtained by drying a dispersion of the conductive composition and a solid electrolytic capacitor using the conductive composition as a solid electrolyte.
  • the conductive composition of the present invention has high conductivity and excellent heat resistance, and is suitable for use as a solid electrolyte of a solid electrolytic capacitor. By using it as a solid electrolyte of a solid electrolytic capacitor, the ESR is small. In addition, a solid electrolytic capacitor having high reliability under high temperature conditions can be provided.
  • At least one selected from the group consisting of polystyrenesulfonic acid, a phenolsulfonic acid novolak resin having a repeating unit represented by the general formula (I), and a sulfonated polyester; are used as dopants, but these function as an excellent dispersant during the synthesis of a conductive polymer, and thiophene or a derivative thereof as an oxidizing agent or a polymerizable monomer is uniformly dispersed in water or an aqueous liquid.
  • the conductive polymer obtained is made into what has the high electroconductivity suitable for using as a solid electrolyte of a solid electrolytic capacitor.
  • the dopant functions as an excellent dispersant so that the obtained conductive polymer has excellent heat resistance suitable for use as a solid electrolyte of a solid electrolytic capacitor, and also has transparency. It is considered to be high.
  • the polystyrene sulfonic acid having a number average molecular weight of 10,000 to 1,000,000 is preferable.
  • the number average molecular weight of the polystyrene sulfonic acid is smaller than 10,000, the conductivity of the obtained conductive polymer is lowered, and the transparency may be deteriorated.
  • the number average molecular weight of the said polystyrene sulfonic acid is larger than 1,000,000, there exists a possibility that the viscosity of the dispersion liquid of an electroconductive composition may become high, and it may become difficult to use in preparation of a solid electrolytic capacitor.
  • the polystyrene sulfonic acid has a number average molecular weight within the above range, preferably 20,000 or more, more preferably 40,000 or more, and preferably 800,000 or less, 300 More preferable is 1,000 or less.
  • the phenolsulfonic acid novolak resin having a repeating unit represented by the above general formula (I) preferably has a number average molecular weight of 5,000 to 500,000.
  • the resulting conductive polymer has low conductivity and may have poor transparency.
  • the number average molecular weight of the said phenolsulfonic acid novolak resin is larger than 500,000, there exists a possibility that the viscosity of the dispersion liquid of an electroconductive composition may become high, and it may become difficult to use in preparation of a solid electrolytic capacitor.
  • the phenol sulfonic acid novolak resin has a number average molecular weight of preferably 10,000 or more, more preferably 400,000 or less, and more preferably 80,000 or less within the above range. .
  • the sulfonated polyester is a mixture of dicarboxybenzene sulfonic acid such as sulfoisophthalic acid and sulfoterephthalic acid or dicarboxybenzene sulfonic acid diester such as sulfoisophthalic acid ester and sulfoterephthalic acid ester and alkylene glycol. Or a mixture of the above dicarboxybenzene sulfonic acid or dicarboxybenzene sulfonic acid diester, alkylene glycol, and terephthalic acid or dimethyl terephthalate.
  • the polycondensation is carried out in the presence of a catalyst such as zinc, and the sulfonated polyester preferably has a number average molecular weight of 5,000 to 300,000.
  • the water-soluble polyester preferably has a number average molecular weight within the above range of 10,000 or more, more preferably 20,000 or more, and preferably 100,000 or less. More preferable is 1,000 or less.
  • the polystyrene sulfonic acid serving as a dopant, the phenol sulfonic acid novolak resin having a repeating unit represented by the general formula (I), and the sulfonated polyester are converted into the polystyrene sulfonic acid, the phenol sulfonic acid novolak resin, and the sulfone.
  • This polystyrene sulfonic acid is mixed with at least one selected from the group consisting of phenolsulfonic acid novolak resin and sulfonated polyester, and the presence of the mixture is used in combination with at least one selected from the group consisting of sulfonated polyester
  • the thiophene or its derivative may be subjected to oxidative polymerization under the condition, or the thiophene or its derivative may be oxidatively polymerized in the presence of polystyrene sulfonic acid to be incorporated into the polymer.
  • polystyrene sulfonic acid By incorporating thiophene or a derivative thereof into the polymer by oxidative polymerization in the presence of at least one member consisting of an acid novolak resin and a sulfonated polyester, and mixing these polymers, polystyrene sulfonic acid is consequently obtained. And at least one selected from the group consisting of the phenolsulfonic acid novolak resin and the sulfonated polyester may be used in combination.
  • the ratio of the polystyrene sulfonic acid to at least one selected from the group consisting of the phenolsulfonic acid novolak resin and the sulfonated polyester is preferably 1: 0.05 to 1:10 by mass ratio.
  • the ratio of the phenolsulfonic acid novolak resin and the sulfonated polyester to the polystyrenesulfonic acid is preferably at least 1: 0.1 within the above range, and is preferably 1: 0.3.
  • the above is more preferable, 1: 5 or less is preferable, and 1: 3 or less is more preferable.
  • the dispersion liquid of the present invention contains a high-boiling solvent, but adding a high-boiling solvent in this way improves the film forming property of the resulting conductive composition, thereby improving the conductivity.
  • This is to improve the ESR when used as a solid electrolyte of a solid electrolytic capacitor.
  • a high boiling point solvent is also escaped.
  • the boiling solvent escapes, the layer density in the thickness direction of the conductive composition is increased, thereby reducing the interplanar spacing between the conductive polymers and increasing the conductivity of the conductive polymers.
  • the high boiling point solvent preferably has a boiling point of 150 ° C. or higher.
  • a high boiling point solvent include dimethyl sulfoxide (boiling point: 189 ° C.), ⁇ -butyrolactone (boiling point: 204 ° C.), Examples include sulfolane (boiling point: 285 ° C.), N-methylpyrrolidone (boiling point: 202 ° C.), dimethyl sulfone (boiling point: 233 ° C.), ethylene glycol (boiling point: 198 ° C.), diethylene glycol (boiling point: 244 ° C.), and the like. Particularly preferred is dimethyl sulfoxide.
  • the content of the high-boiling solvent is 5 to 3,000% on a mass basis with respect to the conductive polymer in the dispersion (that is, the high-boiling solvent is 5% with respect to 100 parts by mass of the conductive polymer). To 3,000 parts by mass), particularly 20 to 700%.
  • the content of the high-boiling solvent is less than the above, the film-forming property of the conductive composition is lowered, and as a result, the action of improving the conductivity of the conductive composition may be reduced.
  • the content is higher than the above, it takes time to dry the dispersion, and on the contrary, there is a risk of causing a decrease in conductivity.
  • the content of the conductive polymer in the dispersion is preferably about 1 to 10% by mass because it affects workability when the capacitor element is immersed in the dispersion of the conductive composition and taken out. .
  • the content of the conductive polymer is less than the above, it may take time to dry, and if the content of the conductive polymer is more than the above, the viscosity of the dispersion is high. Thus, workability in producing the solid electrolytic capacitor may be reduced.
  • the dried product obtained by drying a dispersion containing a conductive polymer and a high-boiling point solvent is considered to contain a high-boiling point solvent and a conductive polymer as the main component. What is obtained by drying a dispersion of the product is expressed as a conductive composition. However, since the high-boiling point solvent is also a solvent, it may almost evaporate if it is dried at a higher temperature. In the present invention, the dispersion of the conductive composition containing the conductive polymer and the high-boiling point solvent may be used. The dried product obtained by drying the liquid is expressed as a conductive composition even if it contains almost no high-boiling solvent.
  • thiophene or a derivative thereof is used as a polymerizable monomer for synthesizing a conductive polymer by oxidative polymerization.
  • the thiophene derivative in the thiophene or a derivative thereof for example, 3,4-ethylenediene is used.
  • examples include oxythiophene, 3-alkylthiophene, 3-alkoxythiophene, 3-alkyl-4-alkoxythiophene, 3,4-alkylthiophene, and 3,4-alkoxythiophene. 1 to 16 is preferable, and 1 to 4 is particularly suitable, and 3,4-ethylenedioxythiophene having 2 carbon atoms is particularly preferable.
  • Polystyrene sulfonic acid, phenol sulfonic acid novolak resin, and sulfonated polyester as dopants are all soluble in aqueous liquids consisting of water or a mixture of water and water-miscible solvents. Is carried out in water or in an aqueous liquid.
  • water-miscible solvent constituting the aqueous liquid examples include methanol, ethanol, propanol, acetone, acetonitrile, and the like.
  • the mixing ratio of these water-miscible solvents with water is 50 in the entire aqueous liquid. The mass% or less is preferable.
  • oxidative polymerization for synthesizing the conductive polymer, either chemical oxidative polymerization or electrolytic oxidative polymerization can be employed.
  • persulfate is used as an oxidizing agent in performing chemical oxidative polymerization.
  • the persulfate include ammonium persulfate, sodium persulfate, potassium persulfate, calcium persulfate, and barium persulfate. Is used.
  • the amount of dopant, polymerizable monomer, and oxidizing agent used is not particularly limited.
  • a dopant a phenol sulfone having a polystyrene sulfonic acid and a repeating unit represented by the general formula (I) is used.
  • an acid novolak resin is used, 3,4-ethylenedioxythiophene is used as a polymerizable monomer, and ammonium persulfate is used as an oxidizing agent, the use ratio thereof is a mass ratio of dopant: 3,4-ethylene.
  • the temperature during chemical oxidative polymerization is preferably 5 to 95 ° C., more preferably 10 to 30 ° C., and the polymerization time is preferably 1 to 72 hours, more preferably 8 to 24 hours.
  • Electrolytic oxidation polymerization is be carried out even at a constant voltage at a constant current, for example, when performing electrolytic oxidation polymerization at a constant current, preferably 0.05mA / cm 2 ⁇ 10mA / cm 2 as the current value, 0.2 mA / cm 2 to 4 mA / cm 2 is more preferable.
  • the voltage is preferably 0.5 V to 10 V, more preferably 1.5 V to 5 V.
  • the temperature during the electrolytic oxidation polymerization is preferably 5 to 95 ° C, particularly preferably 10 to 30 ° C.
  • the polymerization time is preferably 1 hour to 72 hours, more preferably 8 hours to 24 hours.
  • ferrous sulfate or ferric sulfate may be added as a catalyst.
  • the conductive polymer obtained as described above is obtained immediately after polymerization in a state of being dispersed in water or an aqueous liquid, and includes persulfate as an oxidizing agent, iron sulfate used as a catalyst, and decomposition products thereof. Contains. Therefore, the conductive polymer aqueous dispersion containing the impurity is dispersed in an dispersing machine such as an ultrasonic homogenizer or a planetary ball mill, and then the metal component is removed with a cation exchange resin.
  • the particle size of the conductive polymer at this time is preferably 100 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the sulfuric acid produced by the decomposition of the oxidizing agent and the catalyst is removed by ethanol precipitation, ultrafiltration, anion exchange resin, etc., and a high boiling point solvent is added.
  • the conductive composition of the present invention is suitable for use as a solid electrolyte of a solid electrolytic capacitor, and is suitably used as a solid electrolyte for solid electrolytic capacitors such as aluminum solid electrolytic capacitors, tantalum solid electrolytic capacitors, and niobium solid electrolytic capacitors. It is possible to provide a solid electrolytic capacitor that is used and has low ESR and high reliability under high temperature conditions.
  • the conductive composition of the present invention when used as a solid electrolyte of a solid electrolytic capacitor, it can be used as it is, but a dispersion in which the conductive composition is dispersed in water or an aqueous liquid. It is more suitable to use the conductive composition obtained by drying and then drying as a solid electrolyte. At that time, in order to improve the adhesion between the conductive composition and the capacitor element, it is preferable to add a binder resin to the dispersion of the conductive composition.
  • binder resins examples include polyurethane, polyester, acrylic resin, polyamide, polyimide, epoxy resin, polyacrylonitrile resin, polymethacrylonitrile resin, polystyrene resin, novolac resin, silane coupling agent, etc. Polyester, polyurethane, acrylic resin and the like are preferable. Moreover, since the electroconductivity of an electroconductive composition can be improved when the sulfone group is added like sulfonated polyallyl, sulfonated polyvinyl, and sulfonated polystyrene, it is more preferable.
  • the conductive composition of the present invention when used as a solid electrolyte such as a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, or an aluminum laminated solid electrolytic capacitor, an anode made of a porous body of a valve metal such as tantalum, niobium, or aluminum
  • a valve metal such as tantalum, niobium, or aluminum
  • the capacitor element having a dielectric layer made of an oxide film of the valve metal is immersed in the dispersion liquid of the conductive composition of the present invention, taken out, dried, and immersed in the dispersion liquid and dried.
  • a tantalum solid electrolytic capacitor, a niobium solid electrolytic capacitor, and an aluminum laminated solid are coated with a carbon paste and a silver paste, dried and then packaged.
  • An electrolytic capacitor or the like can be manufactured.
  • the capacitor element is immersed in a liquid containing a polymerizable monomer and an oxidizing agent, taken out, polymerized, immersed in water, pulled up and washed. Then, after the conductive polymer is synthesized by drying, the solid electrolyte layer may be formed by repeatedly immersing the whole in the dispersion of the conductive composition of the present invention, and lifting and drying. Moreover, you may make it the reverse form.
  • the device covered with the conductive composition is covered with carbon paste and silver paste, and then packaged to produce a tantalum solid electrolytic capacitor, niobium solid electrolytic capacitor, aluminum laminated solid electrolytic capacitor, etc. You can also
  • the lead terminal is connected to the anode on which the dielectric layer is formed by performing a chemical treatment after etching the surface of the aluminum foil.
  • a capacitor element prepared by attaching a lead terminal to a cathode made of aluminum foil and winding the anode and cathode with the lead terminal through a separator is immersed in the dispersion of the conductive composition of the present invention.
  • the aluminum wound solid electrolytic capacitor can be produced by packaging with an exterior material.
  • the conductive composition of the present invention has high conductivity suitable for use as a solid electrolyte of a solid electrolytic capacitor and excellent heat resistance, and also has high transparency. Besides being used as a solid electrolyte of a capacitor, it can also be used as a conductor of an antistatic material such as an antistatic film, an antistatic cloth, or an antistatic resin. Moreover, the conductive composition of the present invention can be used as a positive electrode active material for batteries, a base resin for anti-corrosion paints, etc., in addition to these uses, utilizing such properties.
  • a dispersion liquid of the conductive composition is applied to a base sheet, or the base sheet is used as a conductive composition. It is sufficient to immerse it in the dispersion liquid, lift it up, and dry it to form an antistatic film, and peel the film from the base sheet. Rather, the charge formed on one or both sides of the base sheet is used. In some cases, it is more suitable for use as an antistatic sheet using the base sheet as a support material without peeling off the protective film from the base sheet.
  • a dispersion of the conductive composition is applied to the cloth or the cloth is dispersed in a conductive composition. What is necessary is just to dry, after dipping in, pulling up.
  • the binder resin is added to the dispersion liquid of the conductive composition, the adhesion of the conductive composition to the base sheet or the cloth is determined. Can be improved.
  • Example 1 Polystyrene sulfonic acid (manufactured by Teika Co., Ltd., number average molecular weight 500,000) and sulfonated polyester [Kaiyo Chemical Co., Ltd. Plus Coat Z-561 (trade name), number average molecular weight 27,000] in a mass ratio of 1: 1. 200 g of a 3% aqueous solution of the mixed mixture was put in a container having an internal volume of 1 L, 2 g of ammonium persulfate was added as an oxidizing agent, and then dissolved by stirring with a stirrer.
  • the ratio of the dopant (mixture of polystyrene sulfonic acid and sulfonated polyester in a mass ratio of 1: 1), the polymerizable monomer (3,4-ethylenedioxythiophene) and the oxidizing agent (ammonium persulfate) is the mass ratio.
  • the mixture was diluted 4 times with water, and then subjected to a dispersion treatment for 30 minutes with an ultrasonic homogenizer [manufactured by Nippon Seiki Co., Ltd., US-T300 (trade name)]. Thereafter, 100 g of Organo cation exchange resin Amberlite 120B (trade name) was added and stirred with a stirrer for 1 hour. The mixture was filtered through 131, and the treatment with this cation exchange resin and filtration were repeated three times to remove all cation components in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment was diluted with water to adjust the concentration to 3%, and 4 g of dimethyl sulfoxide as a high boiling point solvent was added to 40 g of the 3% liquid and stirred to obtain a dispersion of the conductive composition. Obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • a tantalum solid electrolytic capacitor is produced using the dispersion liquid of the above conductive composition and evaluated. Details are as follows. However, the evaluation method and evaluation results will be described after the description of other examples and comparative examples.
  • the tantalum sintered body In a state where the tantalum sintered body is immersed in a phosphoric acid solution having a concentration of 0.1%, chemical conversion treatment is performed by applying a voltage of 20 V, and an oxide film is formed on the surface of the tantalum sintered body to form a dielectric layer. Configured. Next, the tantalum sintered body was immersed in an ethanol solution of 3,4-ethylenedioxythiophene solution having a concentration of 35%, taken out after 1 minute, and left for 5 minutes.
  • an oxidizer / dopant solution consisting of a mixture prepared by mixing a 50% phenol butylamine sulfonate aqueous solution (pH 5) and a 30% ammonium persulfate aqueous solution prepared in advance at a mass ratio of 1: 1. It was immersed, taken out after 30 seconds, allowed to stand at room temperature for 30 minutes, and then heated at 50 ° C. for 10 minutes for polymerization.
  • the above tantalum sintered body was immersed in water and allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. This operation was repeated 6 times, and then immersed in the dispersion liquid of the conductive composition prepared as described above in Example 1, taken out after 30 seconds, and dried at 70 ° C. for 30 minutes. This operation was repeated twice, and then allowed to stand at 150 ° C. for 60 minutes to form a solid electrolyte layer made of a conductive composition. Thereafter, the solid electrolyte layer was covered with carbon paste and silver paste to produce a tantalum solid electrolytic capacitor.
  • Phenolsulfonic acid novolak resin having a repeating unit represented by general formula (I) and polystyrenesulfonic acid (manufactured by Teika Co., Ltd., number average molecular weight 100,000) [lotEG0727 (trade name) manufactured by Konishi Chemical Industry Co., Ltd., number average molecular weight 60
  • 600 g of a 4% aqueous solution of a mixture of 3: 1 in a mass ratio is placed in a 1 L stainless steel container, and ferrous sulfate heptahydrate is used as a catalyst. 0.3 g was added and dissolved. 4 mL of 3,4-ethylenedioxythiophene was slowly added dropwise thereto.
  • the mixture was stirred with a stainless steel stirring spring, an anode was attached to the container, a cathode was attached to the stirring spring, and electrolytic oxidation polymerization was performed at a constant current of 1 mA / cm 2 for 18 hours.
  • electrolytic oxidation polymerization it was diluted 4 times with water, and then subjected to a dispersion treatment with an ultrasonic homogenizer [manufactured by Nippon Seiki Co., Ltd., US-T300 (trade name)] for 30 minutes. Thereafter, the treatment with cation exchange resin and filtration were repeated three times in the same manner as in Example 1 to remove the cation component in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment was diluted with water to adjust the concentration to 3%, and 4 g of dimethyl sulfoxide as a high boiling point solvent was added to 40 g of the 3% liquid and stirred to obtain a dispersion of the conductive composition. Obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • Example 2 the same operation as in Example 1 was performed except that the dispersion liquid of the conductive composition obtained as described above was used instead of the dispersion liquid of the conductive composition prepared in Example 1. A tantalum solid electrolytic capacitor was produced.
  • Example 3 600 g of 4% aqueous solution of polystyrene sulfonic acid (manufactured by Teika Co., Ltd., number average molecular weight 100,000) is placed in a 1 L stainless steel container, and 0.3 g of ferrous sulfate heptahydrate is added and dissolved. Into this, 4 mL of 3,4-ethylenedioxythiophene was slowly added dropwise. The mixture was stirred with a stainless steel stirring blade, an anode was attached to the container, a cathode was attached to the base of the stirring blade, and electrolytic oxidation polymerization was performed at a constant current of 1 mA / cm 2 for 18 hours.
  • polystyrene sulfonic acid manufactured by Teika Co., Ltd., number average molecular weight 100,000
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name), molecular weight fraction 50,000, manufactured by Sartorius Co., Ltd.). Ingredients were removed.
  • the liquid after this treatment was diluted with water to adjust the concentration to 3%, and 4 g of dimethyl sulfoxide as a high boiling point solvent was added to 40 g of the 3% liquid to obtain a dispersion A of the conductive composition. .
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • phenol sulfonic acid novolak resin having a repeating unit represented by the general formula (I) Konishi Chemical Co., Ltd. lotEG0727 (trade name), number average molecular weight 60,000, R in the formula is hydrogen] 200 g of a 3% aqueous solution was put in a container having an internal volume of 1 L, 2 g of ammonium persulfate was added as an oxidizing agent, and then dissolved by stirring with a stirrer.
  • the mixture was diluted 4 times with water, and then subjected to a dispersion treatment for 30 minutes with an ultrasonic homogenizer (US-T300, manufactured by Nippon Seiki Co., Ltd.). Thereafter, 100 g of Cation Exchange Resin Amberlite 120B (trade name) manufactured by Organo Corporation was added and stirred with a stirrer for 1 hour. Subsequently, filter paper No. manufactured by Toyo Filter Paper Co., Ltd. Filtered on 131. This cation exchange resin treatment and filtration were repeated three times to remove all cation components in the liquid.
  • the treated liquid is passed through a filter having a pore size of 1 ⁇ m, and the passing liquid is treated with an ultrafiltration apparatus (Vivaflow 200 (trade name) manufactured by Sartorius, molecular weight fraction 50,000) to give free low molecules in the liquid. Ingredients were removed.
  • the liquid after this treatment was diluted with water to adjust the concentration to 3%, and 4 g of dimethyl sulfoxide as a high boiling point solvent was added to 40 g of the 3% liquid, and stirred to obtain a dispersion of the conductive composition. B was obtained.
  • the dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • Example 2 the same operation as in Example 1 was performed except that the dispersion liquid of the conductive composition obtained as described above was used instead of the dispersion liquid of the conductive composition prepared in Example 1. A tantalum solid electrolytic capacitor was produced.
  • Example 4 The electrolytic oxidation polymerization of 3,4-ethylenedioxythiophene was carried out in the presence of polystyrene sulfonic acid in the same manner as in Example 3, and the same purification treatment as in Example 3 was performed to obtain a conductive composition having a concentration of 3%. Dispersion C was obtained. That is, this dispersion C has the same contents as the dispersion A in Example 3.
  • the chemical oxidation polymerization of 3,4-ethylenedioxythiophene was carried out in the presence of a modified polyester in the same manner as in Example 1 and the same purification treatment and addition of dimethyl sulfoxide as in Example 1 were carried out. A dispersion D of the composition was obtained. The dimethyl sulfoxide content was 330% with respect to the conductive polymer.
  • Example 2 the same operation as in Example 1 was performed except that the dispersion liquid of the conductive composition obtained as described above was used instead of the dispersion liquid of the conductive composition prepared in Example 1. A tantalum solid electrolytic capacitor was produced.
  • Example 5 The conductive composition of Example 5 was mixed with the dispersion C of the conductive composition prepared in Example 3 and the dispersion D of the conductive composition prepared in Example 4 at a mass ratio of 1: 2. A dispersion of the composition was obtained.
  • Example 2 the same operation as in Example 1 was performed except that the dispersion liquid of the conductive composition obtained as described above was used instead of the dispersion liquid of the conductive composition prepared in Example 1. A tantalum solid electrolytic capacitor was produced.
  • Comparative Example 1 Instead of polystyrene sulfonic acid (number average molecular weight 500,000) and sulfonated polyester (number average molecular weight 27,000) in Example 1 in a mass ratio of 1: 1, 200 g of a 3% aqueous solution was used instead of polystyrene sulfone. A dispersion of the conductive composition was obtained in the same manner as in Example 1 except that 200 g of a 3% aqueous solution of acid (manufactured by Teika Co., Ltd., number average molecular weight 100,000) was used.
  • Example 2 the same operation as in Example 1 was performed except that the dispersion liquid of the conductive composition obtained as described above was used instead of the dispersion liquid of the conductive composition prepared in Example 1. A tantalum solid electrolytic capacitor was produced.
  • Comparative Example 2 Instead of 200 g of a 3% aqueous solution of a mixture of polystyrene sulfonic acid (number average molecular weight 500,000) and sulfonated polyester (number average molecular weight 27,000) in Example 1 mixed at a mass ratio of 1: 1, a general formula ( Except that 200 g of a 4% aqueous solution of a phenolsulfonic acid novolak resin having a repeating unit represented by I) [lotEG0727 (trade name) manufactured by Konishi Chemical Industry Co., Ltd., average molecular weight 60,000, R in the formula is hydrogen] was used. The same operation as in Example 1 was performed to obtain a dispersion of a conductive composition.
  • a general formula Except that 200 g of a 4% aqueous solution of a phenolsulfonic acid novolak resin having a repeating unit represented by I) [lotEG0727 (trade name) manufactured by Konishi Chemical Industry Co., Ltd., average
  • Example 2 the same operation as in Example 1 was performed except that the dispersion liquid of the conductive composition obtained as described above was used instead of the dispersion liquid of the conductive composition prepared in Example 1. A tantalum solid electrolytic capacitor was produced.
  • Comparative Example 3 Instead of 600 g of a 4% aqueous solution of a mixture of polystyrene sulfonic acid (number average molecular weight 100,000) and phenolsulfonic acid novolak resin (number average molecular weight 60,000) mixed in a mass ratio of 3: 1 in Example 2, The same procedure as in Example 2 was performed, except that 600 g of a 4% aqueous solution of a modified polyester [Plus Coat Z-561 (trade name), number average molecular weight 27,000, manufactured by Kyoyo Chemical Industry Co., Ltd.] was used. A dispersion of the product was obtained.
  • a tantalum solid electrolytic capacitor was obtained by performing the same operation as in Example 1 except that the above dispersion of the conductive composition was used instead of the dispersion of the conductive composition prepared in Example 1. Produced.
  • the ESR and capacitance of the tantalum solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3 manufactured as described above were measured. The results are shown in Table 1.
  • the measuring method of ESR and an electrostatic capacitance is as showing below.
  • the ESR was measured at 25 ° C. and 100 kHz using an LCR meter (4284A) manufactured by HEWLETT PACKARD.
  • the capacitance was measured at 25 ° C. and 120 Hz using a LCR meter (4284A) manufactured by HEWLETT PACKARD.
  • 10 samples were used for each sample, and the ESR values and capacitance values shown in Table 1 were obtained by calculating the average value of the 10 samples and rounding off the decimals. It is.
  • the tantalum solid electrolytic capacitors of Examples 1 to 5 have smaller ESR than the tantalum solid electrolytic capacitors of Comparative Examples 1 to 3, and the tantalum solid electrolytic capacitors of Comparative Examples 1 to 3 It had a large capacitance equivalent to or higher than that, had a small ESR and a large capacitance, and had excellent characteristics as a solid electrolytic capacitor.
  • the tantalum solid electrolytic capacitors of Examples 1 to 5 have smaller ESR after high temperature storage than the tantalum solid electrolytic capacitors of Comparative Examples 1 to 3, and Comparative Examples 1 to 3 It has a large capacitance equal to or greater than that of the tantalum solid electrolytic capacitor, and shows high reliability under high temperature conditions.
  • the tantalum solid electrolytic capacitors of Examples 1 to 5 have small ESR, large capacitance, and high reliability under high temperature conditions. It shows that the conductive composition used as the solid electrolyte has high conductivity and excellent heat resistance.
  • the low ESR and the large capacitance are based on the high conductivity of the conductive composition used as a solid electrolyte, and the ESR is small even after high-temperature storage.
  • the large capacitance is due to the excellent heat resistance of the conductive composition used as the solid electrolyte.
  • Example 6 In order to divide the aluminum etched foil of 10 mm length by 3.3 mm width into 4 mm from one end in the vertical direction and 5 mm from the other end, a polyimide solution is applied with a width of 1 mm in the width direction of the foil. , Dried. Next, a silver wire as an anode was attached to a portion 2 mm from the one end of the portion on the 5 mm side from one end in the vertical direction of the foil.
  • a portion (4 mm ⁇ 3.3 mm) on the 4 mm side from one end in the vertical direction of the foil is attached to a 10% ammonium adipate aqueous solution and subjected to chemical conversion treatment by applying a voltage of 8 V to oxidize as a dielectric layer.
  • a film was formed.
  • the capacitor element produced as described above was immersed in an ethanol solution of 3,4-ethylenedioxythiophene solution having a concentration of 35%, taken out after 1 minute, and left for 5 minutes. Thereafter, an oxidizer / dopant solution consisting of a mixture prepared by mixing a 50% phenol butylamine sulfonate aqueous solution (pH 5) and a 30% ammonium persulfate aqueous solution prepared in advance at a mass ratio of 1: 1. The capacitor element was immersed, taken out after 30 seconds, allowed to stand at room temperature for 30 minutes, and then heated at 50 ° C. for 10 minutes for polymerization.
  • the capacitor element was immersed in water and allowed to stand for 30 minutes, then taken out and dried at 70 ° C. for 30 minutes. After repeating this operation five times, the capacitor element was immersed in the dispersion liquid of the conductive composition prepared in Example 1, taken out after 30 seconds, and dried at 70 ° C. for 30 minutes. This operation was repeated twice, and then allowed to stand at 150 ° C. for 60 minutes to form a solid electrolyte layer made of a conductive composition. Thereafter, the solid electrolyte layer was covered with carbon paste and silver paste to produce an aluminum solid electrolytic capacitor.
  • Example 7 Aluminum solid electrolysis was carried out in the same manner as in Example 6 except that the conductive composition dispersion prepared in Example 2 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • Example 8 Aluminum solid electrolysis was carried out in the same manner as in Example 6 except that the conductive composition dispersion prepared in Example 3 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • Example 9 Aluminum solid electrolysis was carried out in the same manner as in Example 6 except that the conductive composition dispersion prepared in Example 4 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • Example 10 Aluminum solid electrolysis was carried out in the same manner as in Example 6 except that the conductive composition dispersion prepared in Example 5 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • Comparative Example 4 Aluminum solid electrolysis was carried out in the same manner as in Example 6 except that the conductive composition dispersion prepared in Comparative Example 1 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • Comparative Example 5 Aluminum solid electrolysis was carried out in the same manner as in Example 6 except that the conductive composition dispersion prepared in Comparative Example 2 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • Comparative Example 6 Aluminum solid electrolysis was carried out in the same manner as in Example 6, except that the conductive composition dispersion prepared in Comparative Example 3 was used instead of the conductive composition dispersion prepared in Example 1. A capacitor was produced.
  • the aluminum solid electrolytic capacitors of Examples 6 to 10 had smaller ESR than the aluminum solid electrolytic capacitors of Comparative Examples 4 to 6, and the aluminum solid electrolytic capacitors of Comparative Examples 4 to 6 It had an equivalent large capacitance, a low ESR, a large capacitance, and excellent characteristics as a solid electrolytic capacitor.
  • the aluminum solid electrolytic capacitors of Examples 6 to 10 have smaller ESR than the aluminum solid electrolytic capacitors of Comparative Examples 4 to 6 even after high temperature storage, and Comparative Examples 4 to 6 It had a large capacitance equal to or greater than that of the aluminum solid electrolytic capacitor of No. 1, and showed high reliability under high temperature conditions.
  • a conductive composition having high conductivity and excellent heat resistance and suitable for use as a solid electrolyte of a solid electrolytic capacitor can be provided, and the conductive composition is used as a solid electrolyte.
  • a solid electrolytic capacitor having low ESR and high reliability under high temperature conditions can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】 導電性が高く、かつ耐熱性が優れ、固体電解コンデンサの固体電解質として用いるのに適した導電性組成物を提供し、その導電性組成物を固体電解質として用いて、ESRが低く、かつ高温条件下における信頼性が高い固体電解コンデンサを提供する。 【解決手段】 ポリスチレンスルホン酸と、下記の一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種との存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合物からなる水性液中で、酸化重合することにより得られた導電性高分子と、高沸点溶剤とを含有させて導電性組成物の分散液を構成し、その導電性組成物を固体電解質として用いて固体電解コンデンサを構成する。 【化1】 (式中のRは水素またはメチル基である)

Description

導電性組成物の分散液、導電性組成物および固体電解コンデンサ
 本発明は、導電性組成物の分散液、特に固体電解コンデンサの固体電解質として用いるのに適した導電性組成物の分散液、前記導電性組成物の分散液を乾燥して得られた導電性組成物および前記導電性組成物を固体電解質として用いた固体電解コンデンサに関する。
 導電性高分子は、その高い導電性により、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム固体電解コンデンサなどの固体電解コンデンサの固体電解質として用いられている。
 そして、この用途における導電性高分子としては、例えば、チオフェンまたはその誘導体などの重合性モノマーを酸化重合することによって合成したものが用いられている。
 上記チオフェンまたはその誘導体などの重合性モノマーの酸化重合、特に化学酸化重合を行う際のドーパントとしては、主として有機スルホン酸が用いられ、その中でも、芳香族スルホン酸が適しているといわれており、酸化剤としては遷移金属が用いられ、その中でも、第二鉄が適しているといわれていて、通常、芳香族スルホン酸の第二鉄塩がチオフェンまたはその誘導体などの重合性モノマーの化学酸化重合にあたっての酸化剤兼ドーパント剤として用いられている。
 そして、その芳香族スルホン酸の第二鉄塩の中でも、トルエンスルホン酸第二鉄塩やメトキシベンゼンスルホン酸第二鉄塩などが特に有用であるとされていて、それらを用いた導電性高分子の合成は、それらの酸化剤兼ドーパントをチオフェンまたはその誘導体などの重合性モノマーと混合することにより行うことができ、簡単で、工業化に向いていると報告されている(特許文献1~2)。
 しかしながら、トルエンスルホン酸第二鉄塩を酸化剤兼ドーパントとして用いて得られた導電性高分子は、初期抵抗値や耐熱性において、充分に満足できる特性を有さず、また、メトキシベンゼンスルホン酸第二鉄塩を酸化剤兼ドーパントとして用いて得られた導電性高分子は、トルエンスルホン酸第二鉄塩を用いた導電性高分子に比べれば、初期抵抗値が低く、耐熱性も優れているが、それでも、充分に満足できる特性は得られなかった。
 これは、トルエンスルホン酸第二鉄塩やメトキシベンゼンスルホン酸第二鉄塩が、固体であるため、一般にアルコールに溶解された状態で用いられるが、これらの溶液は、保存している間に沈殿が生じるからである。
 すなわち、沈殿が生じてしまったトルエンスルホン酸第二鉄塩やメトキシベンゼンスルホン酸第二鉄塩のアルコール溶液を用いると、均一性が低下し、得られた導電性高分子を用いた固体電解コンデンサのESR(等価直列抵抗)が増加したり、高温条件下における信頼性が低下するためである。
 また、得られた導電性高分子を、固体電解コンデンサの固体電解質として用いる場合、化学酸化重合法で合成した導電性高分子は、通常、溶剤に対する溶解性がないため、タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、前記弁金属の酸化皮膜からなる誘電体層とを有する素子の上に直接導電性高分子を形成する必要がある。
 しかしながら、このように素子上に直接導電性高分子を形成することは、条件的に非常に難しい作業を強いられることになり、再現性が乏しく、工程管理が非常に難しくなるという問題があった。
 このような状況をふまえ、可溶化導電性高分子が積極的に検討されている(特許文献3)。この特許文献3によれば、ポリスチレンスルホン酸、過硫酸アンモニウム、鉄塩、エチレンジオキシチオフェンなどを混合して、反応させれば、導電性高分子の分散液が得られると報告されている。しかしながら、それによって得られる導電性高分子は、固体電解コンデンサの固体電解質として用いるには、導電率のさらなる向上が必要と考えられる。
 また、ポリアニリンにフェノールスルホン酸ノボラック樹脂をドーピングさせた導電性高分子が報告されている(特許文献4~5)。しかしながら、それによって得られる導電性高分子も、導電性が充分に高いとはいえず、固体電解コンデンサの固体電解質として用いるには、さらなる導電性の向上が必要である。
 また、ポリアニリンに溶剤可溶型ポリエステルスルホン酸をドーピングさせた導電性高分子が報告されている(特許文献6)。しかしながら、それによって得られる導電性高分子も、導電性が充分に高いとはいえず、固体電解コンデンサの固体電解質として用いるには、さらなる導電性の向上が必要である。
特開2003-160647号公報 特開2004-265927号公報 特許第2636968号公報 特許第3906071号公報 特開2007-277569号公報 特開平8-41321号公報
 本発明は、上記のような事情に鑑み、固体電解コンデンサの固体電解質として用いるのに適した導電性組成物を提供し、かつ、その導電性組成物の有する優れた特性を生かして、ESRが小さく、かつ高温条件下における信頼性が高い固体電解コンデンサを提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ポリスチレンスルホン酸と、下記の一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種との存在下で、チオフェンまたはその誘導体を、水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合することにより得られた導電性高分子と、高沸点溶剤を含有する導電性組成物の分散液を乾燥して得られる導電性組成物が、前記目的を達成するのに適していることを見出し、それに基づいて本発明を完成するにいたった。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素またはメチル基である)
 すなわち、本発明は、ポリスチレンスルホン酸と、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種との存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合することによって得られた導電性高分子と、高沸点溶剤とを含有することを特徴とする導電性組成物の分散液に関する。
 また、本発明は、ポリスチレンスルホン酸の存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合液からなる水性液中で酸化重合することにより得られた導電性高分子と、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種との存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合することにより得られた導電性高分子と、高沸点溶剤とを含有することを特徴とする導電性組成物の分散液に関する。
 さらに、本発明は、上記導電性組成物の分散液を乾燥して得られる導電性組成物および上記導電性組成物を固体電解質として用いた固体電解コンデンサに関する。
 本発明の導電性組成物は、導電性が高く、かつ耐熱性が優れ、固体電解コンデンサの固体電解質として用いるのに適していて、それを固体電解コンデンサの固体電解質として用いることにより、ESRが小さく、かつ高温条件下における信頼性が高い固体電解コンデンサを提供することができる。
 本発明においては、導電性高分子の合成にあたって、ポリスチレンスルホン酸と、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種とをドーパントとして用いるが、これらは、導電性高分子の合成時、優れた分散剤として機能し、酸化剤や重合性モノマーとしてのチオフェンまたはその誘導体などを水中または水性液中を均一に分散させ、かつ合成されるポリマー中にドーパントとして取り込まれ、得られる導電性高分子を固体電解コンデンサの固体電解質として用いるのに適した高い導電性を有するものにさせる。そして、上記ドーパントが、優れた分散剤として機能することが、得られる導電性高分子を固体電解コンデンサの固体電解質として用いるのに適した優れた耐熱性を持たせるようにし、また、透明性も高くするものと考えられる。
 上記ポリスチレンスルホン酸としては、その数平均分子量が10,000~1,000,000のものが好ましい。
 すなわち、上記ポリスチレンスルホン酸の数平均分子量が10,000より小さい場合は、得られる導電性高分子の導電性が低くなり、また、透明性も悪くなるおそれがある。また、上記ポリスチレンスルホン酸の数平均分子量が1,000,000より大きい場合は、導電性組成物の分散液の粘度が高くなり、固体電解コンデンサの作製にあたって、使用しにくくなるおそれがある。そして、上記ポリスチレンスルホン酸としては、その数平均分子量が上記範囲内で、20,000以上のものが好ましく、40,000以上のものがより好ましく、また、800,000以下のものが好ましく、300,000以下のものがより好ましい。
 また、上記一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂としては、その数平均分子量が5,000~500,000のものが好ましい。
 すなわち、上記フェノールスルホン酸ノボラック樹脂の数平均分子量が5,000より小さい場合は、得られる導電性高分子の導電性が低くなり、また、透明性も悪くなるおそれがある。また、上記フェノールスルホン酸ノボラック樹脂の数平均分子量が500,000より大きい場合は、導電性組成物の分散液の粘度が高くなり、固体電解コンデンサの作製にあたって使用しにくくなるおそれがある。そして、このフェノールスルホン酸ノボラック樹脂としては、その数平均分子量が上記範囲内で、10,000以上のものが好ましく、また、400,000以下のものが好ましく、80,000以下のものがより好ましい。
 また、上記スルホン化ポリエステルは、スルホイソフタル酸、スルホテレフタル酸などのジカルボキシベンゼンスルホン酸もしくはスルホイソフタル酸エステル、スルホテレフタル酸エステルなどのジカルボキシベンゼンスルホン酸ジエステルと、アルキレングリコールとの混合物を酸化アンチモンや酸化亜鉛などの触媒の存在下で縮重合させたもの、または上記ジカルボキシベンゼンスルホン酸もしくはジカルボキシベンゼンスルホン酸ジエステルと、アルキレングリコールと、テレフタル酸もしくはテレフタル酸ジメチルとの混合物を酸化アンチモンや酸化亜鉛などの触媒の存在下で縮重合させたものであり、このスルホン化ポリエステルとしては、その数平均分子量が5,000~300,000のものが好ましい。
 すなわち、スルホン化ポリエステルの数平均分子量が5,000より小さい場合は、得られる導電性高分子の導電性が低くなり、透明性も悪くなるおそれがある。また、スルホン化ポリエステルの数平均分子量が300,000より大きい場合は、導電性組成物の分散液の粘度が高くなり、固体電解コンデンサの作製にあたって使用しにくくなるおそれがある。そして、この水溶性ポリエステルとしては、その数平均分子量が上記範囲内で、10,000以上のものが好ましく、20,000以上のものがより好ましく、また、100,000以下のものが好ましく、80,000以下のものがより好ましい。
 本発明においては、ドーパントとなるポリスチレンスルホン酸、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂、スルホン化ポリエステルを、上記ポリスチレンスルホン酸と、上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種との組み合せで併用するが、このポリスチレンスルホン酸と、フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種とを混合し、その混合物の存在下でチオフェンまたはその誘導体の酸化重合を行ってもよいし、また、ポリスチレンスルホン酸の存在下でチオフェンまたはその誘導体の酸化重合をしてポリマー中に取り込ませ、それとは別に、上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種の存在下でチオフェンまたはその誘導体を酸化重合してポリマー中に取り込ませ、それらのポリマーを混合することによって、結果的に、ポリスチレンスルホン酸と、上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種とが併用されている状態にしてもよい。
 そして、そのポリスチレンスルホン酸と、上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種との比率としては、質量比で、1:0.05~1:10が好ましい。
 すなわち、ポリスチレンスルホン酸に対する上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種の比率が上記より小さい場合は、固体電解コンデンサの固体電解質として使用したときに、固体電解コンデンサのESRが大きくなる上に、耐熱性が悪くなるおそれがあり、また、ポリスチレンスルホン酸に対する上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種の比率が上記より大きい場合も、固体電解コンデンサの固体電解質として使用したときに、ESRが大きくなるおそれがある。そして、このポリスチレンスルホン酸に対する上記フェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群からなる少なくとも1種との比率としては、上記範囲内で、1:0.1以上が好ましく、1:0.3以上がより好ましく、また、1:5以下が好ましく、1:3以下がより好ましい。
 本発明の分散液には、高沸点溶剤を含有させているが、このように高沸点溶剤を含有させるのは、得られる導電性組成物の製膜性を向上させ、それによって、導電性を向上させ、固体電解コンデンサの固体電解質として用いたときに、ESRを小さくさせるためである。これは、例えば、固体電解コンデンサの作製にあたって、固体電解コンデンサのコンデンサ素子を導電性組成物の分散液に浸漬し、取り出して乾燥したときに、高沸点溶剤も脱け出ていくが、その高沸点溶剤が脱け出る際に、導電性組成物の厚み方向の層密度を高くさせ、それによって、導電性高分子間の面間隔が狭くなり、導電性高分子の導電性が高くなって、固体電解コンデンサの固体電解質として用いたときにESRの小さいものにさせることができるようになるものと考えられる。
 上記高沸点溶剤としては、沸点が150℃以上のものが好ましく、そのような高沸点溶剤の具体例としては、例えば、ジメチルスルホキシド(沸点:189℃)、γ-ブチロラクトン(沸点:204℃)、スルホラン(沸点:285℃)、N-メチルピロリドン(沸点:202℃)、ジメチルスルホン(沸点:233℃)、エチレングリコール(沸点:198℃)、ジエチレングリコール(沸点:244℃)などが挙げられるが、特にジメチルスルホキシドが好ましい。そして、この高沸点溶剤の含有量としては、分散液中の導電性高分子に対して質量基準で5~3,000%(すなわち、導電性高分子100質量部に対して高沸点溶剤が5~3,000質量部)が好ましく、特に20~700%が好ましい。高沸点溶剤の含有量が上記より少ない場合は、導電性組成物の製膜性が低下し、その結果、導電性組成物の導電性を向上させる作用が低下するおそれがあり、高沸点溶剤の含有量が上記より多い場合は、分散液の乾燥に時間を要するようになり、また、かえって、導電性の低下を引き起こすおそれがある。
 なお、分散液中における導電性高分子の含有量は、コンデンサ素子を導電性組成物の分散液に浸漬し、取り出す時などの作業性に影響を与えるので、通常1~10質量%程度が好ましい。つまり、導電性高分子の含有量が上記より少ない場合は、乾燥に時間を要するようになるおそれがあり、また、導電性高分子の含有量が上記より多い場合は、分散液の粘度が高くなって、固体電解コンデンサの作製にあたっての作業性が低下するおそれがある。
 導電性高分子と高沸点溶剤を含有する分散液を乾燥して得られる乾燥物は、導電性高分子が主剤となり、高沸点溶剤を若干含んでいると考えられるので、本書では、導電性組成物の分散液を乾燥して得られるものを導電性組成物と表現している。ただし、高沸点溶剤も溶剤であるので、さらなる高温で乾燥すれば、ほとんど蒸発してしまう可能性があるが、本発明では、導電性高分子と高沸点溶剤を含有する導電性組成物の分散液を乾燥して得られた乾燥物は、たとえ、その中に高沸点溶剤をほとんど含んでいないものであっても、導電性組成物と表現することにしている。
 本発明においては、導電性高分子を酸化重合によって合成するための重合性モノマーとして、チオフェンまたはその誘導体を用いるが、そのチオフェンまたはその誘導体におけるチオフェンの誘導体としては、例えば、3,4-エチレンジオキシチオフェン、3-アルキルチオフェン、3-アルコキシチオフェン、3-アルキル-4-アルコキシチオフェン、3,4-アルキルチオフェン、3,4-アルコキシチオフェンなどが挙げられ、そのアルキル基やアルコキシ基の炭素数は1~16が好ましく、特に1~4が適しているが、とりわけ炭素数が2の3,4-エチレンジオキシチオフェンが好ましい。
 ドーパントとなるポリスチレンスルホン酸、フェノールスルホン酸ノボラック樹脂、スルホン化ポリエステルのいずれも、水や水と水混和性溶剤との混合物からなる水性液に対して溶解性を有していることから、酸化重合は水中または水性液中で行われる。
 上記水性液を構成する水混和性溶剤としては、例えば、メタノール、エタノール、プロパノール、アセトン、アセトニトリルなどが挙げられ、これらの水混和性溶剤の水との混合割合としては、水性液全体中の50質量%以下が好ましい。
 導電性高分子を合成するにあたっての酸化重合は、化学酸化重合、電解酸化重合のいずれも採用することができる。
 化学酸化重合を行うにあたっての酸化剤としては、例えば、過硫酸塩が用いられるが、その過硫酸塩としては、例えば、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、過硫酸カルシウム、過硫酸バリウムなどが用いられる。
 化学酸化重合において、ドーパント、重合性モノマー、酸化剤の使用量は、特に限定されることはないが、例えば、ドーパントとしてポリスチレンスルホン酸と一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂とを用い、重合性モノマーとして3,4-エチレンジオキシチオフェンを用い、酸化剤として過硫酸アンモニウムを用いた場合、それらの使用比率としては、質量比で、ドーパント:3,4-エチレンジオキシチオフェン:酸化剤=1:0.1~10:0.1~10が好ましく、特に、ドーパント:3,4-エチレンジオキシチオフェン:酸化剤=1:0.2~4:0.2~4が好ましい。化学酸化重合時の温度としては、5~95℃が好ましく、10~30℃がより好ましく、また、重合時間としては、1時間~72時間が好ましく、8時間~24時間がより好ましい。
 電解酸化重合は、定電流でも定電圧でも行い得るが、例えば、定電流で電解酸化重合を行う場合、電流値としては0.05mA/cm~10mA/cmが好ましく、0.2mA/cm~4mA/cmがより好ましく、定電圧で電解酸化重合を行う場合は、電圧としては0.5V~10Vが好ましく、1.5V~5Vがより好ましい。電解酸化重合時の温度としては、5~95℃が好ましく、特に10~30℃が好ましい。また、重合時間としては、1時間~72時間が好ましく、8時間~24時間がより好ましい。なお、電解酸化重合にあたっては、触媒として硫酸第一鉄または硫酸第二鉄を添加してもよい。
 上記のようにして得られる導電性高分子は、重合直後、水中または水性液中に分散した状態で得られ、酸化剤としての過硫酸塩や触媒として用いた硫酸鉄塩やその分解物などを含んでいる。そこで、その不純物を含んでいる導電性高分子の水分散液を超音波ホモジナイザーや遊星ボールミルなどの分散機にかけて不純物を分散させた後、カチオン交換樹脂で金属成分を除去する。このときの導電性高分子の粒径としては、100μm以下が好ましく、特に10μm以下が好ましい。その後、エタノール沈殿法、限外濾過法、陰イオン交換樹脂などにより、酸化剤や触媒の分解により生成した硫酸などを除去し、高沸点溶剤を添加する。
 本発明の導電性組成物は、固体電解コンデンサの固体電解質として用いるのに適していて、アルミニウム固体電解コンデンサをはじめ、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサなどの固体電解コンデンサの固体電解質として好適に用いられ、ESRが小さく、かつ高温条件下における信頼性が高い固体電解コンデンサを提供することができる。
 上記のように、本発明の導電性組成物を固体電解コンデンサの固体電解質として用いる際は、それをそのままでも使用することもできるが、導電性組成物が水中または水性液中に分散した分散液で使用し、その後、乾燥して得られた導電性組成物を固体電解質として使用に供する方が適している。そして、その際、導電性組成物とコンデンサ素子との密着性を高めるために、導電性組成物の分散液にバインダ樹脂を添加しておくことが好ましい。
 そのようなバインダ樹脂としては、例えば、ポリウレタン、ポリエステル、アクリル樹脂、ポリアミド、ポリイミド、エポキシ樹脂、ポリアクリロニトリル樹脂、ポリメタクリロニトリル樹脂、ポリスチレン樹脂、ノボラック樹脂、シランカップリング剤などが挙げられ、特にポリエステル、ポリウレタン、アクリル樹脂などが好ましい。また、スルホン化ポリアリル、スルホン化ポリビニル、スルホン化ポリスチレンのように、スルホン基が付加されていると、導電性組成物の導電性を向上させることができるので、より好ましい。
 以下、本発明の導電性組成物を固体電解質として用いて固体電解コンデンサを作製する例を説明する。
 まず、本発明の導電性組成物をタンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム積層型固体電解コンデンサなどの固体電解質として用いる場合、タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、それらの弁金属の酸化皮膜からなる誘電体層を有するコンデンサ素子を、本発明の導電性組成物の分散液に浸漬し、取り出した後、乾燥し、この分散液への浸漬と乾燥する工程を繰り返すことによって、導電性組成物からなる固体電解質層を形成した後、カーボンペースト、銀ペーストを付け、乾燥した後、外装することによって、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム積層型固体電解コンデンサなどを作製することができる。
 また、非鉄塩系の有機スルホン酸塩をドーパントとして用い、重合性モノマー、酸化剤を含む液に、前記のコンデンサ素子を浸漬し、取り出した後、重合を行い、水に浸漬し、引き上げ、洗浄した後、乾燥することで導電性高分子を合成した後、それら全体を本発明の導電性組成物の分散液に浸漬し、引き上げて乾燥する操作を繰り返して固体電解質層を形成してもよく、また、その逆の形態にしてもよい。
 そして、そのようにして導電性組成物で覆われた素子をカーボンペースト、銀ペーストで覆った後、外装することによって、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム積層型固体電解コンデンサなどを作製することもできる。
 また、本発明の導電性組成物をアルミニウム巻回型固体電解コンデンサの固体電解質として用いる場合は、アルミニウム箔の表面をエッチング処理した後、化成処理を行って誘電体層を形成した陽極にリード端子を取り付け、また、アルミニウム箔からなる陰極にリード端子を取り付け、それらのリード端子付き陽極と陰極とをセパレータを介して巻回して作製したコンデンサ素子を本発明の導電性組成物の分散液に浸漬し、取り出し、乾燥した後、アルミニウム箔のエッチングにより形成された細孔に入っていない導電性組成物を取り除くため、純水に含浸し、取り出した後、乾燥し、これらの操作を繰り返したのち、外装材で外装して、アルミニウム巻回型固体電解コンデンサを作製することができる。
 上記のように、本発明の導電性組成物は、固体電解コンデンサの固体電解質として用いるのに適した高い導電性と優れた耐熱性を有している上に、透明性も高いので、固体電解コンデンサの固体電解質として用いる以外に、帯電防止フィルム、帯電防止布、帯電防止樹脂などの帯電防止材の導電体として用いることもできる。また、本発明の導電性組成物は、そのような特性を利用して、それらの用途以外にも、バッテリーの正極活物質、耐腐食用塗料の基材樹脂などとしても用いることができる。
 例えば、本発明の導電性組成物を導電体として用いて帯電防止フィルムを作製するには、基材シートに前記の導電性組成物の分散液を塗布するか、基材シートを導電性組成物の分散液に浸漬し、引き上げた後、乾燥して、帯電防止フィルムを形成し、そのフィルムを基材シートから剥離すればよいが、むしろ、基材シートの一方の面または両面に形成した帯電防止フィルムを基材シートから剥がさずに、基材シートを支持材とした帯電防止シートとして使用に供する方が適している場合がある。また、本発明の導電性組成物を導電体として用いて帯電防止布を作製するには、布に前記の導電性組成物の分散液を塗布するか、あるいは布を導電性組成物の分散液に浸漬し、引き上げた後、乾燥すればよい。そして、上記のように帯電防止シートや帯電防止布を作製するにあたっては、上記導電性組成物の分散液にバインダ樹脂を添加しておくと、基材シートや布に対する導電性組成物の密着性を向上させることができるので好ましい。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はそれらの実施例に例示のもののみに限定されることはない。なお、以下の実施例などにおいて濃度や使用量を示す際の%は特にその基準を付記しないかぎり、質量基準による%である。
実施例1
 ポリスチレンスルホン酸(テイカ社製、数平均分子量500,000)とスルホン化ポリエステル〔互応化学工業社製プラスコートZ-561(商品名)、数平均分子量27,000〕とを質量比1:1で混合した混合物の3%水溶液200gを内容積1Lの容器に入れ、酸化剤として過硫酸アンモニウムを2g添加した後、攪拌機で攪拌して溶解した。次いで、硫酸第二鉄の40%水溶液を0.4g添加し、攪拌しながら、その中に3,4-エチレンジオキシチオフェン3mLをゆっくり滴下し、24時間かけて、3,4-エチレンジオキシチオフェンの重合を行った。
 なお、上記ドーパント(ポリスチレンスルホン酸とスルホン化ポリエステルとの質量比1:1の混合物)と重合性モノマー(3,4-エチレンジオキシチオフェン)と酸化剤(過硫酸アンモニウム)との比率は、質量比で、ドーパント:重合性モノマー:酸化剤=6g:4g:2g=1:0.67:0.33である。
 上記重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、オルガノ社のカチオン交換樹脂アンバーライト120B(商品名)を100g添加して、1時間攪拌機で攪拌し、次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理と濾過を3回繰り返して、液中のカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてジメチルスルホキシドを4g添加し、攪拌して、導電性組成物の分散液を得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 つぎに、上記の導電性組成物の分散液を用いてタンタル固体電解コンデンサを作製し、その評価をする。詳細は以下の通りである。ただし、その評価方法や評価結果は、他の実施例や比較例の記載の後で説明する。
 タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、20Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面に酸化皮膜を形成して誘電体層を構成した。次に、濃度が35%の3,4-エチレンジオキシチオフェン溶液のエタノール溶液に上記タンタル焼結体を浸漬し、1分後に取り出し、5分間放置した。その後、あらかじめ用意しておいた濃度が50%のフェノールスルホン酸ブチルアミン水溶液(pH5)と濃度が30%の過硫酸アンモニウム水溶液とを質量比1:1で混合した混合物からなる酸化剤兼ドーパント溶液中に浸漬し、30秒後に取り出し、室温で30分間放置した後、50℃で10分間加熱して、重合を行った。
 重合後、水中に上記タンタル焼結体を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作を6回繰り返した後、この実施例1において前記のように調製した導電性組成物の分散液に浸漬し、30秒後に取り出し、70℃で30分間乾燥した。この操作を2回繰り返した後、150℃で60分間放置して、導電性組成物からなる固体電解質層を形成した。その後、カーボンペースト、銀ペーストで上記固体電解質層を覆ってタンタル固体電解コンデンサを作製した。
実施例2
 ポリスチレンスルホン酸(テイカ社製、数平均分子量100,000)と一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂〔小西化学工業社製lotEG0727(商品名)、数平均分子量60,000、式中のRは水素〕とを質量比3:1で混合した混合物の4%水溶液600gを内容積1Lのステンレス鋼製容器に入れ、触媒として硫酸第一鉄・7水和物を0.3g添加して溶解した。その中に3,4-エチレンジオキシチオフェンを4mLゆっくり滴下した。ステンレス鋼製の攪拌バネで攪拌し、容器に陽極を取り付け、攪拌バネに陰極を取り付け、1mA/cmの定電流で18時間電解酸化重合を行った。上記電解酸化重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、実施例1と同様にカチオン交換樹脂による処理と濾過を3回繰り返し、液中のカチオン成分を除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてジメチルスルホキシドを4g添加し、攪拌して、導電性組成物の分散体を得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 ついで、上記のようにして得られた導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例3
 ポリスチレンスルホン酸(テイカ社製、数平均分子量100,000)の4%水溶液600gを内容積1Lのステンレス鋼製容器に入れ、硫酸第一鉄・7水和物を0.3g添加して溶解し、その中に3,4-エチレンジオキシチオフェン4mLをゆっくり滴下した。ステンレス鋼製の攪拌翼で攪拌し、容器に陽極を取り付け、攪拌翼の付け根に陰極を取り付け、1mA/cmの定電流で18時間電解酸化重合を行った。上記電解酸化重合後、水で4倍に希釈した後、超音波ホモジナイザー〔日本精機社製、US-T300(商品名)〕で30分間分散処理を行った。その後、オルガノ社製のカチオン交換樹脂アンバーライト120B(商品名)を100g添加し、1時間攪拌機で攪拌した。次いで、東洋濾紙社製の濾紙No.131で濾過し、このカチオン交換樹脂による処理およびそれに続く濾過を3回繰り返して、液中の鉄イオンなどのカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてのジメチルスルホキシドを4g添加し、導電性組成物の分散液Aを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 上記とは別に、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂〔小西化学工業社製lotEG0727(商品名)、数平均分子量60,000、式中のRは水素〕の3%水溶液200gを内容積1Lの容器に入れ、酸化剤として過硫酸アンモニウムを2g添加した後、攪拌機で攪拌して溶解した。次いで、硫酸第二鉄の40%水溶液を0.4g添加し、攪拌しながら、その中に3,4-エチレンジオキシチオフェンを3mLゆっくり滴下し、24時間かけて、3,4-エチレンジオキシチオフェンの化学酸化重合を行った。
 上記重合後、水で4倍に希釈した後、超音波ホモジナイザー(日本精機社製、US-T300)で30分間分散処理を行った。その後、オルガノ社製のカチオン交換樹脂アンバーライト120B(商品名)を100g添加し、1時間攪拌機で攪拌した。次いで、東洋濾紙社製の濾紙No.131で濾過した。このカチオン交換樹脂による処理と濾過を3回繰り返して、液中のカチオン成分をすべて除去した。
 上記処理後の液を孔径が1μmのフィルターに通し、その通過液を限外濾過装置〔ザルトリウス社製Vivaflow200(商品名)、分子量分画5万〕で処理して、液中の遊離の低分子成分を除去した。この処理後の液を水で希釈して濃度を3%に調整し、その3%液40gに対し、高沸点溶剤としてのジメチルスルホキシドを4g添加し、攪拌して、導電性組成物の分散液Bを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 そして、上記分散液Aと分散液Bとを質量比で3:1の比率で混合して、実施例3の導電性組成物の分散液とした。
 ついで、上記のようにして得られた導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例4
 実施例3と同様にポリスチレンスルホン酸の存在下で3,4-エチレンジオキシチオフェンの電解酸化重合を行い、実施例3と同様の精製処理を行って、濃度が3%の導電性組成物の分散液Cを得た。つまり、この分散液Cは、実施例3における分散液Aと同じ内容のものである。
 上記とは別に、ポリスチレンスルホン酸(テイカ社製、数平均分子量100,000)とスルホン化ポリエステル(数平均分子量27,000)とを質量比1:1で混合した3%水溶液200gに代えて、スルホン化ポリエステル〔互応化学工業社製プラスコートZ-561(商品名)、数平均分子量27,000〕の3%水溶液200gを用いた以外は、すべて実施例1と同様の操作を行い、該スルホン化ポリエステルの存在下で実施例1と同様に3,4-エチレンジオキシチオフェンの化学酸化重合を行い、実施例1と同様の精製処理およびジメチルスルホキシドの添加を行って、濃度が3%の導電性組成物の分散液Dを得た。なお、上記ジメチルスルホキシドの含有量は導電性高分子に対して330%であった。
 そして、上記分散液Cと分散液Dとを質量比1:1の比率で混合して、実施例4の導電性組成物の分散液を得た。
 ついで、上記のようにして得られた導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
実施例5
 前記実施例3で調製した導電性組成物の分散液Cと実施例4で調製した導電性組成物の分散液Dとを質量比1:2の比率で混合して、実施例5の導電性組成物の分散液を得た。
 ついで、上記のようにして得られた導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例1
 実施例1におけるポリスチレンスルホン酸(数平均分子量500,000)とスルホン化ポリエステル(数平均分子量27,000)とを質量比で1:1で混合した混合物の3%水溶液200gに代えて、ポリスチレンスルホン酸(テイカ社製、数平均分子量100,000)の3%水溶液200gを用いた以外は、実施例1と同様の操作を行って、導電性組成物の分散液を得た。
 ついで、上記のようにして得られた導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例2
 実施例1におけるポリスチレンスルホン酸(数平均分子量500,000)とスルホン化ポリエステル(数平均分子量27,000)とを質量比1:1で混合した混合物の3%水溶液200gに代えて、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂〔小西化学工業社製lotEG0727(商品名)、平均分子量60,000、式中のRは水素〕の4%水溶液200gを用いた以外は、実施例1と同様の操作を行って、導電性組成物の分散液を得た。
 ついで、上記のようにして得られた導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
比較例3
 実施例2におけるポリスチレンスルホン酸(数平均分子量100,000)とフェノールスルホン酸ノボラック樹脂(数平均分子量60,000)とを質量比3:1で混合した混合物の4%水溶液600gに代えて、スルホン化ポリエステル〔互応化学工業社製プラスコートZ-561(商品名)、数平均分子量27,000〕の4%水溶液600gを用いた以外は、実施例2と同様の操作を行って、導電性組成物の分散液を得た。
 ついで、上記の導電性組成物の分散液を、実施例1で調製した導電性組成物の分散液に代えて使用した以外は、実施例1と同様の操作を行って、タンタル固体電解コンデンサを作製した。
 上記のように作製した実施例1~5および比較例1~3のタンタル固体電解コンデンサについて、そのESRおよび静電容量を測定した。その結果を表1に示す。なお、ESRおよび静電容量の測定方法は以下に示す通りである。ESRの測定にはHEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃、100kHzでESRを測定した。静電容量の測定にはHEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃、120Hzで静電容量を測定した。そして、それらの測定においては、いずれの試料も、10個ずつを用い、表1に示すESR値および静電容量値は、それら10個の平均値を求め、小数点以下を四捨五入して示したものである。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、実施例1~5のタンタル固体電解コンデンサは、比較例1~3のタンタル固体電解コンデンサに比べて、ESRが小さく、また、比較例1~3のタンタル固体電解コンデンサと同等またはそれ以上の大きな静電容量を有していて、ESRが小さく、かつ静電容量が大きく、固体電解コンデンサとして優れた特性を有していた。
 つぎに、上記実施例1~5および比較例1~3のタンタル固体電解コンデンサをそれぞれ10個ずつ、125℃で200時間貯蔵した後、前記と同様にESRおよび静電容量を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、実施例1~5のタンタル固体電解コンデンサは、比較例1~3のタンタル固体電解コンデンサに比べて、高温貯蔵後においても、ESRが小さく、また、比較例1~3のタンタル固体電解コンデンサと同等またはそれ以上の大きな静電容量を有していて、高温条件下で信頼性が高いことを示していた。
 上記のように、実施例1~5のタンタル固体電解コンデンサが、ESRが小さく、かつ静電容量が大きく、しかも高温条件下での信頼性が高いということは、そのタンタル固体電解コンデンサの作製にあたって固体電解質として用いた導電性組成物の導電性が高く、かつ耐熱性が優れていることを示している。
 すなわち、ESRが小さく、かつ静電容量が大きいということは、固体電解質として用いた導電性組成物の導電性が高いことに基づくものであり、また、高温貯蔵後においても、ESRが小さく、かつ静電容量が大きいことは、固体電解質として用いた導電性組成物の耐熱性が優れていることによるものである。
[アルミニウム固体電解コンデンサでの評価]
実施例6
 縦10mm×横3.3mmのアルミニウムエッチド箔について、縦方向の片端から4mmの部分と、他端から5mmの部分とに分けるために、上記箔の横方向に幅1mmでポリイミド溶液を塗布し、乾燥した。次に、上記箔の縦方向の片端から5mm側の部分の該片端から2mmの箇所に、陽極としての銀線を取り付けた。また、上記箔の縦方向の片端から4mm側の部分(4mm×3.3mm)を、10%アジピン酸アンモニウム水溶液につけ、8Vの電圧を印加することにより化成処理を行って誘電体層としての酸化皮膜を形成した。
 次に、上記のように作製したコンデンサ素子を濃度が35%の3,4-エチレンジオキシチオフェン溶液のエタノール溶液に浸漬し、1分後に取り出し、5分間放置した。その後、あらかじめ用意しておいた濃度が50%のフェノールスルホン酸ブチルアミン水溶液(pH5)と濃度が30%の過硫酸アンモニウム水溶液とを質量比1:1で混合した混合物からなる酸化剤兼ドーパント溶液中に上記コンデンサ素子を浸漬し、30秒後に取り出し、室温で30分間放置した後、50℃で10分間加熱して、重合を行った。その後、水中に上記コンデンサ素子を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥した。この操作を5回繰り返した後、上記コンデンサ素子を実施例1で調製した導電性組成物の分散液に浸漬し、30秒後に取り出し、70℃で30分間乾燥した。この操作を2回繰り返した後、150℃で60分間放置して、導電性組成物からなる固体電解質層を形成した。その後、カーボンペースト、銀ペーストで上記固体電解質層を覆ってアルミニウム固体電解コンデンサを作製した。
実施例7
 実施例1で調製した導電性組成物の分散液に代えて、実施例2で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
実施例8
 実施例1で調製した導電性組成物の分散液に代えて、実施例3で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
実施例9
 実施例1で調製した導電性組成物の分散液に代えて、実施例4で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
実施例10
 実施例1で調製した導電性組成物の分散液に代えて、実施例5で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
比較例4
 実施例1で調製した導電性組成物の分散液に代えて、比較例1で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
比較例5
 実施例1で調製した導電性組成物の分散液に代えて、比較例2で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
比較例6
 実施例1で調製した導電性組成物の分散液に代えて、比較例3で調製した導電性組成物の分散液を使用した以外は、実施例6と同様の操作を行って、アルミニウム固体電解コンデンサを作製した。
 上記のように作製した実施例6~10および比較例4~6のアルミニウム固体電解コンデンサについて、そのESRおよび静電容量を前記と同様に測定した。その結果を表3に示す。なお、ESRおよび静電容量の測定は、各試料とも、10個ずつについて行い、表3に示すESR値および静電容量値は、その10個の平均値を求め、小数点以下を四捨五入して求めたものである。
Figure JPOXMLDOC01-appb-T000006
 表3に示すように、実施例6~10のアルミニウム固体電解コンデンサは、比較例4~6のアルミニウム固体電解コンデンサに比べて、ESRが小さく、また、比較例4~6のアルミニウム固体電解コンデンサと同等の大きな静電容量を有していて、ESRが小さ く、かつ静電容量が大きく、固体電解コンデンサとして優れた特性を有していた。
 つぎに、上記実施例6~10および比較例4~6のアルミニウム固体電解コンデンサをそれぞれ10個ずつ、125℃で200時間貯蔵した後、前記と同様にESRおよび静電容量を測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000007
 表4に示すように、実施例6~10のアルミニウム固体電解コンデンサは、高温貯蔵後においても、比較例4~6のアルミニウム固体電解コンデンサに比べて、ESRが小さく、また、比較例4~6のアルミニウム固体電解コンデンサと同等またはそれ以上の大きな静電容量を有していて、高温条件下での信頼性が高いことを示していた。
 本発明によれば、導電性が高く、かつ耐熱性が優れ、固体電解コンデンサの固体電解質として用いるのに適した導電性組成物を提供することができ、その導電性組成物を固体電解質として用いて、ESRが低く、かつ高温条件下における信頼性が高い固体電解コンデンサを提供することができる。

Claims (10)

  1.  ポリスチレンスルホン酸と、下記の一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種との存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合物からなる水性液中で、酸化重合することにより得られた導電性高分子と、高沸点溶剤とを含有することを特徴とする導電性組成物の分散液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素またはメチル基である)
  2.  ポリスチレンスルホン酸の存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合することにより得られた導電性高分子と、下記の一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種の存在下で、チオフェンまたはその誘導体を水中または水と水混和性溶剤との混合物からなる水性液中で酸化重合することにより得られた導電性高分子と、高沸点溶剤とを含有することを特徴とする導電性組成物の分散液。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素またはメチル基である)
  3.  ポリスチレンスルホン酸と、一般式(I)で表される繰り返し単位を有するフェノールスルホン酸ノボラック樹脂およびスルホン化ポリエステルよりなる群から選ばれる少なくとも1種との比率が、質量比で、1:0.05~1:10であることを特徴とする請求項1または請求項2記載の導電性組成物の分散液。
  4.  チオフェンの誘導体が、3,4-エチレンジオキシチオフェンであることを特徴とする請求項1~3のいずかに記載の導電性組成物の分散液。
  5.  高沸点溶剤の沸点が、150℃以上であることを特徴とする請求項1~4のいずれかに記載の導電性組成物の分散液
  6.  高沸点溶剤が、ジメチルスルホキシドであることを特徴とする請求項1~5のいずれかに記載の導電性組成物の分散液。
  7.  さらにバインダを含むことを特徴とする請求項1~6に記載の導電性組成物の分散液。
  8.  請求項1~7のいずれかに記載の導電性組成物の分散液を乾燥して得られたことを特徴とする導電性組成物。
  9.  請求項8記載の導電性組成物を固体電解質として用いたことを特徴とする固体電解コンデンサ。
  10.  タンタル、ニオブ、アルミニウムなどの弁金属の多孔体からなる陽極と、前記弁金属の酸化皮膜からなる誘電体層と、固体電解質層を有してなる固体電解コンデンサであって、前記固体電解質層が、前記誘電体層上に非鉄塩系酸化剤兼ドーパントの存在下でチオフェンまたはその誘導体を化学酸化重合することにより形成した導電性高分子層と、その上に形成した請求項8記載の導電性組成物層とからなることを特徴とする固体電解コンデンサ。
PCT/JP2009/057242 2008-04-21 2009-04-09 導電性組成物の分散液、導電性組成物および固体電解コンデンサ WO2009131012A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009528940A JP4454042B2 (ja) 2008-04-21 2009-04-09 導電性組成物の分散液、導電性組成物および固体電解コンデンサ
US12/811,342 US7990684B2 (en) 2008-04-21 2009-04-09 Dispersion liquid of a conductive composition, a conductive composition, and a solid electrolytic capacitor
CN2009801039684A CN101932653B (zh) 2008-04-21 2009-04-09 导电性组合物的分散液、导电性组合物以及固体电解电容器
EP09733736.4A EP2270092B1 (en) 2008-04-21 2009-04-09 Dispersion of electroconductive composition, electroconductive composition, and solid electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-109732 2008-04-21
JP2008109732 2008-04-21

Publications (1)

Publication Number Publication Date
WO2009131012A1 true WO2009131012A1 (ja) 2009-10-29

Family

ID=41216750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057242 WO2009131012A1 (ja) 2008-04-21 2009-04-09 導電性組成物の分散液、導電性組成物および固体電解コンデンサ

Country Status (7)

Country Link
US (1) US7990684B2 (ja)
EP (1) EP2270092B1 (ja)
JP (1) JP4454042B2 (ja)
KR (1) KR100979381B1 (ja)
CN (1) CN101932653B (ja)
TW (1) TWI368243B (ja)
WO (1) WO2009131012A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095650A1 (ja) * 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
WO2011004831A1 (ja) * 2009-07-08 2011-01-13 綜研化学株式会社 導電性高分子組成物およびその製造方法
WO2011004833A1 (ja) * 2009-07-08 2011-01-13 綜研化学株式会社 固体電解質用組成物およびそれを用いた太陽電池
JP2011109024A (ja) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
WO2011065213A1 (ja) * 2009-11-27 2011-06-03 コニカミノルタホールディングス株式会社 分散液、透明電極、および有機エレクトロルミネッセンス素子
CN102199288A (zh) * 2010-03-25 2011-09-28 Nec东金株式会社 导电聚合物及其制备方法,导电聚合物分散体,和固体电解电容器及其制备方法
WO2012144477A1 (ja) * 2011-04-19 2012-10-26 イーメックス株式会社 フェノール化合物含有導電性高分子
WO2013035548A1 (ja) * 2011-09-06 2013-03-14 テイカ株式会社 導電性高分子の分散液、導電性高分子およびその用途
DE102012111932A1 (de) 2011-12-12 2013-06-13 Nec Tokin Corporation Elektrisch leitende Polymerzusammensetzung, elektrisch leitendes Polymermaterial, elektrisch leitendes Substrat, Elektrode und Festelektrolytkondensator
JP2014003322A (ja) * 2013-09-02 2014-01-09 Sanyo Electric Co Ltd 電解コンデンサの製造方法
US9183990B2 (en) 2011-12-12 2015-11-10 Nec Tokin Corporation Electroconductive polymer composition, electroconductive polymer material, electroconductive substrate, electrode and solid electrolytic capacitor
WO2018038201A1 (ja) * 2016-08-24 2018-03-01 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
JP2018145305A (ja) * 2017-03-06 2018-09-20 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに帯電防止フィルム及びその製造方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023992A1 (en) 2010-08-20 2012-02-23 Rhodia Operations Films containing electrically conductive polymers
US9030806B2 (en) 2012-01-25 2015-05-12 Kemet Electronics Corporation Polymerization method for preparing conductive polymer
US9378898B2 (en) 2012-12-07 2016-06-28 Kemet Electronics Corporation Linear-hyperbranched polymers as performance additives for solid electrolytic capacitors
WO2015013443A1 (en) 2013-07-24 2015-01-29 Kemet Electronics Corporation Conductive polymer composition with a dual crosslinker system for capacitors
CN104672786B (zh) * 2015-03-11 2017-05-17 中国科学院理化技术研究所 一种水溶性pedot‑pss分散液及其均相聚合制备方法
JP6760272B2 (ja) * 2015-04-28 2020-09-23 パナソニックIpマネジメント株式会社 電解コンデンサ
WO2017200936A1 (en) 2016-05-19 2017-11-23 Kemet Electronics Corporation Polyanion copolymers for use with conducting polymers in solid electrolytic capacitors
US10658121B2 (en) 2017-10-18 2020-05-19 Kemet Electronics Corporation Process for forming a solid electrolytic capacitor
US10943742B2 (en) 2017-10-18 2021-03-09 Kemet Electronics Corporation Conductive polymer dispersion for improved reliability
US11177076B2 (en) 2017-10-18 2021-11-16 Kemet Electronics Corporation Conductive polymer capacitor for improved reliability
JP7442500B2 (ja) 2018-08-10 2024-03-04 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション 導電性ポリマー粒子から形成される固体電解キャパシタ
KR102659642B1 (ko) 2018-08-10 2024-04-22 교세라 에이브이엑스 컴포넌츠 코포레이션 고유 전도성 중합체를 포함하는 고체 전해 커패시터
WO2020033817A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing polyaniline
CN118213199A (zh) 2018-12-11 2024-06-18 京瓷Avx元器件公司 含有本征导电聚合物的固体电解电容器
CN114521278A (zh) 2019-09-18 2022-05-20 京瓷Avx元器件公司 用于高电压下使用的固体电解电容器
KR20220113704A (ko) 2019-12-10 2022-08-16 교세라 에이브이엑스 컴포넌츠 코포레이션 안정성이 증가된 탄탈 커패시터
CN114787952A (zh) 2019-12-10 2022-07-22 京瓷Avx元器件公司 包含预涂层和本征导电聚合物的固体电解电容器
EP3889980A1 (en) * 2020-04-02 2021-10-06 Heraeus Deutschland GmbH & Co KG Process for producing polymer capacitors for high reliability applications
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
WO2022060460A1 (en) 2020-09-17 2022-03-24 Kemet Electronics Corporation Conductive polymer dispersion for improved reliability
EP4160632A1 (en) * 2021-09-29 2023-04-05 Heraeus Deutschland GmbH & Co. KG Process for producing polymer capacitors for high reliability applications

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106404A1 (ja) * 2003-05-27 2004-12-09 Fujitsu Limited 有機導電性ポリマー組成物、それを用いた透明導電膜及び透明導電体、並びに、該透明導電体を用いた入力装置及びその製造方法
WO2005014692A1 (ja) * 2003-08-11 2005-02-17 Tayca Corporation 導電性高分子およびそれを用いた固体電解コンデンサ
JP2006028214A (ja) * 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
WO2007091656A1 (ja) * 2006-02-09 2007-08-16 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液、導電性塗膜、コンデンサ及びコンデンサの製造方法
JP2007529608A (ja) * 2004-03-17 2007-10-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高分子酸コロイドおよび水混和性有機液体を含む水分散性ポリジオキシチオフェン
JP2008171761A (ja) * 2007-01-15 2008-07-24 Shin Etsu Polymer Co Ltd 導電性高分子溶液の製造方法
WO2008132955A1 (ja) * 2007-04-16 2008-11-06 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液の製造方法
JP2009001624A (ja) * 2007-06-20 2009-01-08 Tayca Corp 導電性高分子合成用分散剤兼ドーパント、それを用いて合成した導電性高分子、上記導電性高分子を含有する導電性組成物、上記導電性高分子または導電性組成物の分散液および上記導電性高分子または導電性組成物の応用物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59010247D1 (de) 1990-02-08 1996-05-02 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JP3509205B2 (ja) 1994-08-01 2004-03-22 東洋紡績株式会社 有機重合体組成物、これを用いた導電性薄膜および薄膜の製造方法
JP3254163B2 (ja) * 1997-02-28 2002-02-04 昭和電工株式会社 コンデンサ
JP4036985B2 (ja) * 1998-10-26 2008-01-23 三洋電機株式会社 固体電解コンデンサ
US6430032B2 (en) * 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
AU2002218511A1 (en) * 2000-12-01 2002-06-11 Showa Denko K K Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
JP3906071B2 (ja) 2000-12-27 2007-04-18 日東電工株式会社 導電性ポリアニリン組成物、そのフィルム及びそれらの製造方法
US6625009B2 (en) * 2001-04-05 2003-09-23 Rohm Co., Ltd. Solid electrolytic capacitor and method of making the same
JP2003197468A (ja) * 2001-10-19 2003-07-11 Nec Tokin Toyama Ltd 固体電解コンデンサ及びその製造方法
JP4328483B2 (ja) * 2001-11-26 2009-09-09 Necトーキン株式会社 固体電解コンデンサ及びその製造方法
JP4688125B2 (ja) 2001-11-27 2011-05-25 テイカ株式会社 導電性高分子およびそれを用いた固体電解コンデンサ
US6671168B2 (en) * 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2004265927A (ja) 2003-02-13 2004-09-24 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
PT1524678E (pt) 2003-10-17 2009-10-19 Starck H C Gmbh Condensadores electrolíticos com camada exterior polimérica
DE102005033839A1 (de) * 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
JP4740193B2 (ja) 2007-05-31 2011-08-03 日東電工株式会社 導電性ポリアニリン組成物とその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106404A1 (ja) * 2003-05-27 2004-12-09 Fujitsu Limited 有機導電性ポリマー組成物、それを用いた透明導電膜及び透明導電体、並びに、該透明導電体を用いた入力装置及びその製造方法
WO2005014692A1 (ja) * 2003-08-11 2005-02-17 Tayca Corporation 導電性高分子およびそれを用いた固体電解コンデンサ
JP2007529608A (ja) * 2004-03-17 2007-10-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高分子酸コロイドおよび水混和性有機液体を含む水分散性ポリジオキシチオフェン
JP2006028214A (ja) * 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
WO2007091656A1 (ja) * 2006-02-09 2007-08-16 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液、導電性塗膜、コンデンサ及びコンデンサの製造方法
JP2008171761A (ja) * 2007-01-15 2008-07-24 Shin Etsu Polymer Co Ltd 導電性高分子溶液の製造方法
WO2008132955A1 (ja) * 2007-04-16 2008-11-06 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液の製造方法
JP2009001624A (ja) * 2007-06-20 2009-01-08 Tayca Corp 導電性高分子合成用分散剤兼ドーパント、それを用いて合成した導電性高分子、上記導電性高分子を含有する導電性組成物、上記導電性高分子または導電性組成物の分散液および上記導電性高分子または導電性組成物の応用物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270092A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095650A1 (ja) * 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
JPWO2010095650A1 (ja) * 2009-02-17 2012-08-30 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
JP5738178B2 (ja) * 2009-02-17 2015-06-17 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
WO2011004831A1 (ja) * 2009-07-08 2011-01-13 綜研化学株式会社 導電性高分子組成物およびその製造方法
WO2011004833A1 (ja) * 2009-07-08 2011-01-13 綜研化学株式会社 固体電解質用組成物およびそれを用いた太陽電池
US9296921B2 (en) 2009-07-08 2016-03-29 Soken Chemical & Engineering Co., Ltd. Conductive polymer composition and process for preparing the same
US8702817B2 (en) 2009-11-20 2014-04-22 Sanyo Electric Co., Ltd. Method of manufacturing solid electrolytic capacitor
JP2011109024A (ja) * 2009-11-20 2011-06-02 Sanyo Electric Co Ltd 固体電解コンデンサの製造方法
US9287053B2 (en) 2009-11-20 2016-03-15 Panasonic Intellectual Propety Management Co., Ltd. Method of manufacturing solid electrolytic capacitor
WO2011065213A1 (ja) * 2009-11-27 2011-06-03 コニカミノルタホールディングス株式会社 分散液、透明電極、および有機エレクトロルミネッセンス素子
DE102011005950A1 (de) 2010-03-25 2011-12-15 Nec Tokin Corp. Leitfähiges Polymer und Verfahren zu seiner Herstellung, leitfähige Polymerdispersion und Festelektrolyt-Kondensator und Verfahren zu ihrer Herstellung
CN102199288A (zh) * 2010-03-25 2011-09-28 Nec东金株式会社 导电聚合物及其制备方法,导电聚合物分散体,和固体电解电容器及其制备方法
JP2012226962A (ja) * 2011-04-19 2012-11-15 Eamex Co フェノール化合物含有導電性高分子
WO2012144477A1 (ja) * 2011-04-19 2012-10-26 イーメックス株式会社 フェノール化合物含有導電性高分子
KR20140057490A (ko) 2011-09-06 2014-05-13 데이카 가부시키가이샤 도전성 고분자의 분산액, 도전성 고분자 및 그 용도
WO2013035548A1 (ja) * 2011-09-06 2013-03-14 テイカ株式会社 導電性高分子の分散液、導電性高分子およびその用途
JP5252669B1 (ja) * 2011-09-06 2013-07-31 テイカ株式会社 固体電解コンデンサ
KR20160034431A (ko) 2011-09-06 2016-03-29 데이카 가부시키가이샤 도전성 고분자의 분산액, 도전성 고분자 및 그 용도
US9460860B2 (en) 2011-09-06 2016-10-04 Tayca Corporation Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US9953767B2 (en) 2011-09-06 2018-04-24 Tayca Corporation Conductive polymer dispersion liquid, a conductive polymer, and use thereof
DE102012111932A1 (de) 2011-12-12 2013-06-13 Nec Tokin Corporation Elektrisch leitende Polymerzusammensetzung, elektrisch leitendes Polymermaterial, elektrisch leitendes Substrat, Elektrode und Festelektrolytkondensator
US9183990B2 (en) 2011-12-12 2015-11-10 Nec Tokin Corporation Electroconductive polymer composition, electroconductive polymer material, electroconductive substrate, electrode and solid electrolytic capacitor
US9452594B2 (en) 2011-12-12 2016-09-27 Nec Tokin Corporation Electroconductive polymer composition, electroconductive polymer material, electroconductive substrate, electrode and solid electrolytic capacitor
JP2014003322A (ja) * 2013-09-02 2014-01-09 Sanyo Electric Co Ltd 電解コンデンサの製造方法
WO2018038201A1 (ja) * 2016-08-24 2018-03-01 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
JPWO2018038201A1 (ja) * 2016-08-24 2019-06-24 株式会社村田製作所 固体電解コンデンサ素子、固体電解コンデンサ、固体電解コンデンサ素子の製造方法、及び、固体電解コンデンサの製造方法
JP2018145305A (ja) * 2017-03-06 2018-09-20 信越ポリマー株式会社 導電性高分子分散液及びその製造方法、並びに帯電防止フィルム及びその製造方法

Also Published As

Publication number Publication date
US20100284129A1 (en) 2010-11-11
JP4454042B2 (ja) 2010-04-21
KR20100068495A (ko) 2010-06-23
TWI368243B (en) 2012-07-11
EP2270092A4 (en) 2011-04-06
KR100979381B1 (ko) 2010-08-31
EP2270092B1 (en) 2015-03-11
CN101932653A (zh) 2010-12-29
JPWO2009131012A1 (ja) 2011-08-18
US7990684B2 (en) 2011-08-02
CN101932653B (zh) 2013-02-27
EP2270092A1 (en) 2011-01-05
TW200952013A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4454042B2 (ja) 導電性組成物の分散液、導電性組成物および固体電解コンデンサ
JP4454041B2 (ja) 導電性組成物の分散液、導電性組成物およびその用途
JP5191171B2 (ja) 導電性高分子合成用分散剤兼ドーパント、それを用いて合成した導電性高分子、上記導電性高分子を含有する導電性組成物、上記導電性高分子または導電性組成物の分散液および上記導電性高分子または導電性組成物の応用物
JP5281209B1 (ja) 導電性高分子の分散液、導電性高分子およびその用途
JP6580436B2 (ja) 導電性高分子組成物およびその用途
JP6639153B2 (ja) 電解コンデンサ
JP5062738B2 (ja) 導電性組成物、その製造方法、上記導電性組成物の分散液および上記導電性組成物の応用物
JP2006228679A (ja) 導電性高分子組成物およびそれを用いた固体電解コンデンサ
JP6016780B2 (ja) 導電性高分子溶液及びその製造方法、導電性高分子材料、ならびにそれを用いた固体電解コンデンサ及びその製造方法
JP4573363B1 (ja) 有機溶剤系導電性高分子分散液の製造方法およびその応用
JP4565522B2 (ja) 導電性高分子の分散液の製造方法、導電性高分子の分散液、導電性高分子およびその用途
JP5355313B2 (ja) 有機溶剤系導電性高分子分散液の製造方法およびその応用
JP6223703B2 (ja) 導電性高分子溶液及びその製造方法、導電性高分子材料、ならびに固体電解コンデンサ
JP5598897B2 (ja) 固体電解コンデンサの製造方法
JP2011060980A (ja) 固体電解コンデンサ
JP3649526B2 (ja) 導電性ポリアニリン組成物及びこれを固体電解質とする固体電解コンデンサ
WO2016174817A1 (ja) 電解コンデンサ
JP5062694B2 (ja) 導電性高分子製造用酸化剤、それを用いた固体電解コンデンサとその製造方法
JP2022126045A (ja) 導電性高分子分散液、導電性高分子膜および電解コンデンサ
JP2019189879A (ja) 導電性高分子組成物およびその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103968.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009528940

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107011492

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12811342

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009733736

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE