WO2011065213A1 - 分散液、透明電極、および有機エレクトロルミネッセンス素子 - Google Patents

分散液、透明電極、および有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2011065213A1
WO2011065213A1 PCT/JP2010/069796 JP2010069796W WO2011065213A1 WO 2011065213 A1 WO2011065213 A1 WO 2011065213A1 JP 2010069796 W JP2010069796 W JP 2010069796W WO 2011065213 A1 WO2011065213 A1 WO 2011065213A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
transparent electrode
dispersion
conductive layer
conductive
Prior art date
Application number
PCT/JP2010/069796
Other languages
English (en)
French (fr)
Inventor
和明 中村
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011543198A priority Critical patent/JPWO2011065213A1/ja
Publication of WO2011065213A1 publication Critical patent/WO2011065213A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • H05B33/145Arrangements of the electroluminescent material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers

Definitions

  • a transparent electrode that can be suitably used in various fields such as a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, a solar cell, an electromagnetic wave shield, electronic paper, a touch panel, and the transparent
  • the present invention relates to an organic electroluminescence element using an electrode (hereinafter also referred to as an organic EL element).
  • the transparent electrode is an essential constituent technology.
  • transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
  • ITO transparent electrode in which an indium-tin composite oxide (ITO) film is formed on a transparent substrate such as glass or a transparent plastic film by a vacuum deposition method or a sputtering method has been mainly used. It was. However, since indium used for ITO is a rare metal and is relatively expensive, indium removal is desired. Also, roll-to-roll production technology using a flexible substrate has been desired along with an increase in display size and productivity.
  • ITO indium-tin composite oxide
  • a technique using conductive fibers has been disclosed, a part of the conductive fibers is fixed to the flexible substrate with a transparent resin film, and a part of the conductive fibers is placed on the surface of the transparent resin film. It has been proposed to form an electrode by projecting (see, for example, Patent Document 2).
  • the electrode having such a configuration has a problem that it cannot be applied to a technical application such as a surface electrode having a uniform surface conductivity because it has conductivity only at the portion where the conductive fiber protrudes on the surface. It was.
  • a transparent surface electrode has been proposed in which polyurethane is overcoated on silver nanowires coated on a transparent substrate and the electrode surface is smooth (see, for example, Patent Document 3).
  • an organic EL element is laminated on the transparent electrode, there is a problem that the surface light emission property and the light emission lifetime are poor.
  • an electrode used for an organic EL element As an electrode used for an organic EL element, a smooth electrode having an average surface roughness (Ra) of 10 nm or less is usually used.
  • Ra average surface roughness
  • an organic EL element is manufactured using an electrode having protrusions on the surface of the transparent electrode as in Patent Document 2, there is a problem that the protrusions are short-circuited, such as a short circuit between the anode and the cathode. Below, there was a problem that this phenomenon becomes more prominent. Further, there is a problem that a transparent resin exists between the protrusions and a function as a surface electrode cannot be obtained.
  • Patent Document 4 a transparent electrode in which a silver nanowire that is a metal nanowire is used as a conductive fiber and a conductive polymer material is laminated on the silver nanowire has been proposed (for example, see Patent Document 4).
  • the conductivity is lowered under high temperature and high humidity environment, and when the organic EL element is laminated on the transparent electrode, there is a problem that the surface light emission and the light emission life are remarkably deteriorated.
  • Patent Document 1 cannot achieve both low resistivity and high transmittance, it is said that when used in an organic EL element, the surface light emission and the light emission life are deteriorated when used in an organic EL element at a high temperature and high humidity. Had problems.
  • Patent Document 4 discloses a barrier-forming corrosion inhibitor that easily bonds to silver nanowires and forms a protective film on the silver surface for the purpose of preventing deterioration of the silver nanowires, and H that is a corrosive gas present in the atmosphere. using technology 2 S scavengers are disclosed.
  • the barrier-forming corrosion inhibitor forms a protective film on the surface of the silver nanowire, the performance as a transparent electrode is reduced, and the H 2 S supplemental agent improves the surface uniformity of the transparent electrode as the supplemental agent diffuses.
  • the supplemental agent diffuses between layers, and there is a problem that the surface light emission property and the light emission lifetime are remarkably deteriorated.
  • a transparent conductive film such as a conductive polymer compound is laminated on a thin metal wire formed in a pattern, and the current surface is highly uniform.
  • a transparent conductive film having both conductivity has been developed (see, for example, Patent Documents 5 and 6).
  • the conductive polymer compound has absorption in the visible light region, there is a problem that when the film is thickened, the transparency of the transparent electrode is significantly lowered.
  • Patent Document 7 a technique of laminating a mixture of a conductive polymer compound and an insulating polymer compound on a thin wire structure is disclosed (for example, Patent Document 7).
  • an insulating polymer compound not only lowers the conductivity, but from the viewpoint of compatibility with the conductive polymer compound, the amount of the polymer compound added is limited, and sufficient transmittance can be maintained. It had the problem of being difficult.
  • the present invention has been made in view of the above problems.
  • the object of the present invention is excellent in smoothness, conductivity, and light transmittance, and also has smoothness, conductivity, and light transmittance even in a high temperature and high humidity environment.
  • An object of the present invention is to provide a transparent electrode using the dispersion liquid of the present invention which gives an organic EL device which is less deteriorated, excellent in stability, excellent in light emission uniformity, and less deteriorated in light emission uniformity and excellent in durability.
  • Another object of the present invention is to provide an organic EL device having high emission uniformity using the electrode, less deterioration of emission uniformity, and excellent durability.
  • a conductive polymer compound dispersion containing a polymer compound having a repeating structural unit represented by the following general formula (I) and a polyanion the conductive polymer compound dispersion is heated at 200 ° C. for 60 minutes.
  • A represents an alkylene group having 1 to 4 carbon atoms which may have a substituent, and Q represents an oxygen atom or a sulfur atom.
  • Q represents an oxygen atom or a sulfur atom.
  • It has the 2nd transparent conductive layer formed using the dispersion liquid in any one of said 1-3 on the 1st transparent conductive layer containing a conductive fiber on a transparent base material, It is characterized by the above-mentioned. Transparent electrode.
  • a transparent electrode having a first conductive layer on a transparent substrate and a second transparent conductive layer formed using the dispersion liquid according to any one of 1 to 3, wherein the first conductive layer A transparent electrode characterized by comprising a metal material formed in a pattern.
  • smoothness, conductivity and light transmittance are excellent, and smoothness, conductivity and light transmittance are hardly deteriorated even in a high temperature and high humidity environment, the stability is excellent, and light emission is uniform. It is possible to provide a transparent electrode that provides an organic EL device that is excellent in durability and has little deterioration in light emission uniformity and excellent durability.
  • an organic EL element that has high emission uniformity using the electrode, has little deterioration in emission uniformity, and is excellent in durability.
  • the present invention is a transparent electrode using the dispersion of the present invention having a first transparent conductive layer containing conductive fibers on a transparent substrate, the transparent electrode being the first transparent conductive layer Containing a polymer compound having a repeating structural unit represented by the above general formula (I) or having a repeating structural unit represented by the above general formula (I) on the first transparent conductive layer It has the 2nd transparent conductive layer containing a molecular compound, It is characterized by the above-mentioned.
  • the transparent conductive layer in which the electrode has a conductive fiber and a polymer compound having a repeating structural unit represented by the general formula (I) (hereinafter also simply referred to as the polymer compound according to the present invention).
  • the transparent electrode contains a polymer compound in which the first transparent conductive layer has a repeating structural unit represented by the general formula (I), or the above-mentioned general on the first transparent conductive layer. It has the 2nd transparent conductive layer containing the high molecular compound which has a repeating structural unit represented by Formula (I).
  • conductive refers to a state in which electricity flows, and the sheet resistance measured by a method in accordance with JIS K 7194 “Resistivity Test Method Using Conductive Plastic Four-Probe Method” is 10 ⁇ . It means lower than 8 ⁇ / ⁇ .
  • the conductive polymer compound according to the present invention includes a polymer compound having a repeating structural unit represented by the general formula (I) and a polyanion, and the polyanion is represented by the general formula (II).
  • a polymer anion compound having a repeating structural unit hereinafter also referred to as polyanion is preferred.
  • M represents H + , an alkali metal ion, or an ammonium ion.
  • the synthesis of the polyanion having the repeating structural unit represented by the general formula (II) can be carried out by bulk, solution, precipitation, suspension or (inverse) emulsion polymerization.
  • a solution polymerization method is preferred for obtaining an appropriate molecular weight.
  • the initiator used for the synthesis of the polyanion having the repeating structural unit represented by the general formula (II) for example, a peroxide, a hydroperoxide, a persulfate, an azo compound, a redox catalyst, or the like can be used.
  • Persulfate such as potassium persulfate, sodium persulfate and ammonium persulfate, and azo compounds such as 2,2'-azobisbutyronitrile are preferably used.
  • the polymerization solvent used for the synthesis of the polyanion having the repeating structural unit represented by the general formula (II) is inactive under the reaction conditions and is not particularly limited as long as the monomer and the polymer compound to be formed can be dissolved. Is preferred.
  • the solution polymerization can be carried out at a total monomer concentration of 1 to 80% by weight, preferably 10 to 60% by weight.
  • the polymerization temperature for carrying out the synthesis of the polyanion having the repeating structural unit represented by the general formula (II) varies depending on the initiator used, but is generally ⁇ 10 to 250 ° C., preferably 0 to 200 ° C., more preferably 10 Performed at ⁇ 100 ° C.
  • the starting materials may be introduced first into the solvent, introduced separately into the solvent or together.
  • the addition of the free radical initiator dissolved in a suitable solvent can be carried out before, simultaneously with or after the addition of the starting material.
  • the reaction is preferably carried out under reflux or in a protective gas atmosphere, preferably nitrogen gas or argon.
  • Monomers used for the synthesis of polyanions include acrylic acid, methacrylic acid, maleic acid, vinyl sulfonic acid and alkali metal salts and ammonium salts thereof. These may be used alone or in combination. May be synthesized.
  • the weight average molecular weight of the polyanion having the repeating structural unit represented by the general formula (II) is preferably in the range of 1,000 to 2,000,000, more preferably 2,000 to 500,000, still more preferably 3000 to Within the range of 100,000.
  • the molecular weight of the polyanion can be measured by a conventional method such as gel permeation chromatography or osmotic pressure measurement.
  • the conductive polymer compound of the present invention has a cationic polymer compound in which the main chain is a ⁇ -conjugated system, and has a composite structure having the polyanion as a counter anion.
  • the cationic polymer compound of the present invention is not particularly limited as long as the main chain is a polymer compound composed of a ⁇ -conjugated system.
  • polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes examples thereof include polyanilines, polyacenes, polythiophene vinylenes, and copolymers thereof.
  • polypyrroles, polythiophenes and polyanilines are preferably used.
  • the cationic polymer compound is not substituted, sufficient conductivity and compatibility with the binder resin can be obtained.
  • an alkyl group, a carboxy group, a sulfo group can be obtained. It is preferable to introduce a functional group such as a group, an alkoxy group or a hydroxy group into the polymer compound.
  • cationic polymer compound examples include polypyrrole, poly (N-methylpyrrole), poly (3-methylpyrrole), poly (3-ethylpyrrole), poly (3-n-propylpyrrole), poly ( 3-butylpyrrole), poly (3-octylpyrrole), poly (3-decylpyrrole), poly (3-dodecylpyrrole), poly (3,4-dimethylpyrrole), poly (3,4-dibutylpyrrole), Poly (3-carboxypyrrole), poly (3-methyl-4-carboxypyrrole), poly (3-methyl-4-carboxyethylpyrrole), poly (3-methyl-4-carboxybutylpyrrole), poly (3- Hydroxypyrrole), poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3 Methyl-4-hexyloxypyrrole), poly (thiophene), poly (3-methylthiophene),
  • the polymer compound having the repeating structural unit represented by the general formula (I) is contained, and the conductive polymer compound according to the present invention is further represented by the general formula (II).
  • the aspect which has the polyanion which has is a preferable aspect.
  • A represents an optionally substituted alkylene group having 1 to 4 carbon atoms
  • Q represents an oxygen atom or a sulfur atom.
  • the polymer compound containing the repeating structural unit represented by the general formula (I) may contain the same structural unit repeatedly or may contain two or more different structural units repeatedly.
  • the polymer compound containing the repeating structural unit represented by the general formula (I) can be obtained by oxidative polymerization of a compound represented by the following general formula (Ia).
  • the 3,4-di-substituted thiophene in which Q is an oxygen atom in the general formula (Ia) is obtained by combining an alkali metal salt of 3,4-dihydroxythiophene-2,5-dicarboxylic acid ester with an appropriate alkylene dihalide.
  • the free 3,4- (alkylenedioxy-) thiophene-2,5-dicarboxylic acid can then be obtained by decarboxylation (see, for example, Tetrahedron, 1967, 23, 2437-2441 and J. Am. Chem. Soc., 1945, 67, 2217-2218).
  • an oxidant typically used for oxidative polymerization of pyrrole is used, and is represented by the general formula (Ia) in a solvent. Obtained by oxidative polymerization of the compound.
  • Polythiophene is positively charged by oxidative polymerization, but it is difficult to determine its number and position clearly.
  • the synthesis of the polymer compound having the repeating structural unit represented by the general formula (I) according to the present invention forms a cationic polymer compound with the polyanion having the repeating structural unit represented by the general formula (II). It is carried out by stirring at a predetermined polymerization temperature in a solvent containing a compound as a structural unit until the polymerization reaction is completed.
  • the mass ratio of the cationic polymer compound and the polyanion having the repeating structural unit represented by the general formula (II) is not particularly limited as long as the polyanion is rich, but is 50 or less with respect to the cationic polymer compound 1. Preferably, it is 25 or less, more preferably 10 or less.
  • Polymerization time can be between a few minutes and 30 hours depending on batch size, polymerization temperature and oxidant. Preferred polymerization times are generally between 30 minutes and 24 hours.
  • Suitable oxidizing agents are for example described in J. Am. Soc. 85, 454 (1963). Any oxidant suitable for oxidative polymerization of pyrrole.
  • oxidants such as iron (III) salts such as FeCl 3 , Fe (ClO 4 ) 3 , organic acids and iron (III) salts of inorganic acids containing organic residues (eg Fe 2 (SO 4 ) 3 ), or H 2 O 2 , K 2 Cr 2 O 7 , alkali persulfate (eg potassium persulfate, sodium persulfate) or ammonium, alkali perborate, potassium permanganate and copper It is preferred to use a salt such as copper tetrafluoroborate.
  • iron (III) salts such as FeCl 3 , Fe (ClO 4 ) 3
  • organic acids and iron (III) salts of inorganic acids containing organic residues eg Fe 2 (SO 4 ) 3
  • iron (III) salts of inorganic acids containing organic acids and organic residues have great application advantages because they are not corrosive.
  • iron (III) salts of inorganic acids containing organic residues include iron (III) salts of alkanol sulfates having 1 to 20 carbon atoms, such as iron (III) salts of lauryl sulfate.
  • iron (III) salts of organic acids include: alkyl sulfonic acids having 1 to 20 carbon atoms such as methane or dodecane sulfonic acid; aliphatic carboxylic acids having 1 to 20 carbon atoms such as 2-ethylhexyl.
  • Carboxylic acids aliphatic perfluorocarboxylic acids such as trifluoroacetic acid and perfluorooctanoic acid; aliphatic dicarboxylic acids such as oxalic acid and especially aromatic, optionally alkyl substituted sulfonic acids having 1 to 20 carbon atoms, such as It is also possible to use iron (III) salts of benzesenesulfonic acid, p-toluenesulfonic acid and dodecylbenzenesulfonic acid, and also mixtures of iron (III) salts of the above mentioned organic acids.
  • the repeating structural unit represented by the general formula (II) is present in an amount of 0.25 to 10, preferably 0.8 to 8, anionic groups for each mole of the corresponding thiophene. It is preferable to add in.
  • Organic solvents used for the polymerization are inert under reaction conditions, such as aliphatic alcohols such as methanol, ethanol and propanol; aliphatic ketones such as acetone, methyl ethyl ketone; aliphatic carboxylic acid esters such as ethyl acetate and butyl acetate.
  • aliphatic alcohols such as methanol, ethanol and propanol
  • aliphatic ketones such as acetone, methyl ethyl ketone
  • aliphatic carboxylic acid esters such as ethyl acetate and butyl acetate.
  • Aromatic hydrocarbons such as toluene and xylene; aliphatic hydrocarbons such as hexane, heptane and cyclohexane; chlorinated hydrocarbons such as dichloromethane and dichloroethane; aliphatic nitriles such as acetonitrile; aliphatic sulfoxides and sulfones such as dimethyl sulfoxide and Sulfolane; aliphatic carboxamides such as methylacetamide and dimethylformamide; aliphatic and aromatic ethers such as diethyl ether and anisole It is. Furthermore, water or a mixture of water and the above organic solvent can also be used as the solvent. Preferably it is water.
  • the amount of the solvent used for the oxidative polymerization is 0.1 to 80% by mass, preferably 0.5 to 50% by mass of the polymer compound according to the present invention from the viewpoint of dispersibility of the synthesized polymer compound.
  • the oxidative polymerization is generally carried out at ⁇ 10 to 250 ° C., preferably 0 to 200 ° C., more preferably 10 to 100 ° C., depending on the oxidizing agent used and the required reaction time.
  • the starting material may be introduced first into the solvent, separately into the solvent or introduced together.
  • the addition of the oxidizing agent dissolved in a suitable solvent can be carried out before, simultaneously with or after the addition of the starting materials.
  • the reaction is preferably carried out under reflux or in a protective gas atmosphere, preferably nitrogen gas or argon.
  • the conductive polymer compound according to the present invention may have a repeating structural unit having an anionic group in addition to the repeating structural unit represented by the general formula (II), but 50% (moles) of the entire anionic group.
  • the above is preferably a repeating structural unit represented by the general formula (II), and more preferably 90% or more is a repeating structural unit represented by the general formula (II).
  • the first transparent conductive layer or the second transparent conductive layer according to the present invention may contain a transparent binder material or additive.
  • the transparent binder material is not particularly limited as long as it is a transparent resin capable of forming a coating solution.
  • a polyester resin, a polystyrene resin, an acrylic resin, a polyurethane resin, an acrylic urethane resin, a polycarbonate resin, Cellulose resins, butyral resins, and the like can be used alone or in combination. Cellulosic resins and acrylic resins are preferred.
  • the transparent binder material is not particularly limited as long as it is a natural polymer, a synthetic resin, a polymer and a copolymer, and other media for forming a film.
  • a water-soluble binder can be preferably used.
  • water-soluble binders include: gelatin, casein, starch, gum arabic, poly (vinyl alcohol), poly (vinyl pyrrolidone), carboxymethyl ether cellulose, hydroxyethyl cellulose, methyl hydroxyethyl ether cellulose and other celluloses, chitosan, dextran , Guar gum, poly (acrylamide), poly (methylacrylamide), poly (ethylmethylacrylamide), poly (acrylamide-acrylic acid), poly (acrylic acid), poly (methacrylic acid), poly (allylamine), poly (butadiene- Maleic anhydride), poly (n-butyl acrylate-2-methacryloyltrimethylammonium bromide), poly (3-chloro-2-hydroxypropyl-2-methacryloxytrimethyl) Ammonium bromide), poly (2-dimethylaminoethyl methacrylate), poly (ethylene glycol), poly (ethylene glycol) -bisphenol A-diglycidyl ether a
  • the polymer compound having carboxylic acid, sulfonic acid, phosphoric acid or the like may have a salt such as lithium, sodium or potassium, and the polymer compound having a nitrogen atom has a structure such as hydrochloride. You may have.
  • the binder material can be used alone or in combination.
  • the water-soluble binder is preferably a polyacrylate, more preferably a poly (2-hydroxyethyl acrylate) or poly (2-hydroxyethyl acrylate) copolymer.
  • first transparent conductive layer or the second transparent conductive layer according to the present invention is not limited to the effect of the present invention, and other conductive polymers in addition to the conductive polymer compound according to the present invention.
  • a compound may be contained.
  • the thickness of the first transparent conductive layer according to the present invention varies depending on the shape and content of the conductive fiber to be used, but as a rough guide, the average diameter of the conductive fiber is preferably 500 nm or less. It is preferable to reduce the thickness of the first transparent conductive layer according to the present invention by a pressurizing method described later, because the network formation of conductive fibers in the thickness direction can be made dense.
  • the thickness of the second transparent conductive layer is preferably 1 nm to 1 ⁇ m, particularly preferably 3 nm to 500 nm.
  • the transparent electrode preferably has a total light transmittance of 60% or more, more preferably 70% or more, and particularly preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • an electrical resistance value of the transparent conductive layer in the transparent electrode of this invention it is preferable that it is 1000 ohms / square or less as surface resistivity, and it is more preferable that it is 100 ohms / square or less.
  • it is preferably 50 ⁇ / ⁇ or less, particularly preferably 10 ⁇ / ⁇ or less. It is preferable that it is 10 3 ⁇ / ⁇ or less because it can function as a transparent electrode in various optoelectronic devices.
  • the surface resistivity can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity testing method using a conductive plastic four-probe method), and can be easily performed using a commercially available surface resistivity meter. Can be measured.
  • the thickness of the transparent electrode of this invention there is no restriction
  • the amount of sulfur oxide generated by heating a dispersion containing a polymer compound having a repeating structural unit represented by the general formula (I) of the present invention and a polyanion at 200 ° C. for 60 minutes is oxidized with hydrogen peroxide.
  • the amount of sulfate ion can be determined by ion chromatography.
  • a range in which there is no problem in storage and use of the transparent electrode and the organic electroluminescence element is 0 to 300 ppm in terms of sulfate ion with respect to the total amount of the dispersion. More preferably, it is 0 to 100 ppm, and more preferably 0 to 50 ppm.
  • the method for reducing the amount of sulfur oxide is not particularly limited, but degassing the dispersion by bubbling an inert gas into the dispersion to remove gaseous components, and extracting the solid content obtained by removing the solvent from the dispersion is a Soxhlet extraction
  • Examples of the method include washing with a vessel, washing the dispersion by ultrafiltration, further using a high-purity solvent, re-dispersing after purification by reprecipitation, and using a plurality of these.
  • Examples of the gas for bubbling the inert gas in the dispersion of the present invention include rare gases such as carbon dioxide, nitrogen, helium, neon, argon, and xenon.
  • rare gases such as carbon dioxide, nitrogen, helium, neon, argon, and xenon.
  • carbon dioxide, nitrogen, and argon are preferable, nitrogen and argon are more preferable, and nitrogen is more preferable.
  • the amount and time for bubbling the inert gas in the dispersion of the present invention vary depending on the total amount, the presence or absence of stirring and the speed, but the total amount of inert gas used is 0.1 to 100 times the volume of the dispersion. Preferably, it is 0.5 to 50 times, and more preferably 1 to 30 times.
  • the bubbling time is not particularly limited, but is preferably within 10 hours, more preferably within 3 hours, and even more preferably within 1 hour.
  • Examples of the method for removing the solvent of the dispersion of the present invention include distillation under reduced pressure using a rotary evaporator and solvent removal using a freeze dryer or the like.
  • the degree of pressure reduction and temperature are not particularly limited, and is performed within a range where the dispersed conductive polymer compound is not damaged.
  • the washing solvent by the solid Soxhlet extractor obtained by removing the solvent in the dispersion of the present invention has a solubility in the polymer compound having the repeating structural unit represented by the general formula (I) and the polyanion. If low, there will be no restriction
  • washing time of the solids Soxhlet extractor obtained by removing the solvent of the dispersion of the present invention is preferably within 10 hours, more preferably within 5 hours, and even more preferably 3 Within hours.
  • the method for washing the dispersion of the present invention by ultrafiltration is not particularly limited, and can be carried out by a known method such as an apparatus or a filter type. It is desirable to perform ultrafiltration and replace with pure water or ultrapure water while removing impurities. In addition, when synthesizing a conductive polymer compound, it is preferable to use ultrapure water instead of pure water, and it is further preferable to combine it with cleaning such as degassing, a Soxhlet extractor or ultrafiltration. In addition, the dispersion of the present invention is dropped into a large amount of solvent having low solubility in the polymer compound having a repeating structural unit represented by the general formula (I) and the polyanion, reprecipitation is performed, and the solvent is used. After drying, it may be redispersed in ultrapure water or the like.
  • transparent means in the visible light wavelength range measured by a method in accordance with “Testing method of total light transmittance of plastic-transparent material” of JIS K 7361-1 (corresponding to ISO 13468-1). It means that the total light transmittance is 60% or more.
  • the transparent substrate used for the transparent electrode of the present invention is not particularly limited as long as it has high light transmittance.
  • a transparent glass substrate, a transparent resin substrate, a transparent resin film, etc. are preferably mentioned in terms of excellent hardness as a base material and ease of forming a transparent conductive layer on the surface. From the viewpoint of flexibility, it is preferable to use a transparent resin film.
  • the transparent resin film that can be preferably used as the transparent substrate is not particularly limited, and the material, shape, structure, thickness, and the like can be appropriately selected from known ones.
  • polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, and modified polyester
  • polyolefins such as polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, and cyclic olefin resin Resin films
  • vinyl resin films such as polyvinyl chloride and polyvinylidene chloride
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyether sulfone
  • PC polycarbonate
  • PC polyamide resin film
  • polyimide resin film acrylic resin film
  • TAC triacetyl cellulose
  • a resin film having a transmittance of 80% or more at (380 to 780 nm) is preferable.
  • biaxially stretched polyethylene terephthalate film and biaxially stretched polyethylene naphthalate are preferable in terms of transparency, heat resistance, ease of handling, strength and cost.
  • a film, a polyethersulfone film, and a polycarbonate film are preferable, and a biaxially stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film are more preferable.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, epoxy copolymer and the like.
  • the transparent resin film is a biaxially stretched polyethylene terephthalate film
  • the refractive index of the easy-adhesion layer adjacent to the film is set to 1.57 to 1.63, so that the interface reflection between the film substrate and the easy-adhesion layer can be reduced. Since it can reduce and can improve the transmittance
  • a ratio of an oxide sol having a relatively high refractive index such as a tin oxide sol or a cerium oxide sol and a binder resin can be appropriately prepared and coated.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side of the transparent conductive layer.
  • the transparent substrate can be subjected to surface treatment as described above, and various functional layers can be provided depending on the purpose.
  • the first transparent conductive layer contains conductive fibers, and when a metal material formed in a pattern is used, the first transparent conductive layer is made of metal. The material is formed in a pattern.
  • the conductive fiber according to the present invention has conductivity and a length that is sufficiently longer than the diameter (thickness).
  • the conductive fiber according to the present invention is considered to function as an auxiliary electrode by forming a three-dimensional conductive network when the conductive fibers contact each other in the transparent conductive layer. Accordingly, a longer conductive fiber is preferable because it is advantageous for forming a conductive network.
  • the conductive fibers are long, the conductive fibers are entangled to form aggregates, which may deteriorate the optical characteristics.
  • the one with the optimal average aspect ratio should be used according to the conductive fibers used. Is preferred. As a rough guide, an average aspect ratio of 10 to 10,000 is preferable.
  • the shape examples include a hollow tube shape, a wire shape, and a fiber shape, such as organic fibers and inorganic fibers coated with metal, conductive metal oxide fibers, metal nanowires, carbon fibers, and carbon nanotubes.
  • a conductive fiber having a thickness of 300 nm or less is preferable from the viewpoint of transparency.
  • the conductive fiber is at least selected from the group of metal nanowires and carbon nanotubes. One type is preferable.
  • silver nanowires can be most preferably used from the viewpoint of cost (raw material costs, manufacturing costs) and performance (conductivity, transparency, flexibility).
  • the average value of the length, diameter, and aspect ratio of the conductive fiber can be obtained from an arithmetic average of measured values of individual conductive fiber images by taking an electron micrograph of a sufficient number of conductive fibers. it can.
  • the relative standard deviation of length and diameter is expressed by a value obtained by multiplying 100 by the value obtained by dividing the standard deviation of the measured value by the average value.
  • the number of conductive fiber samples to be measured is preferably at least 100 or more, more preferably 300 or more.
  • the metal nanowire refers to a linear structure having a metal element as a main component.
  • the metal nanowire in the present invention means a linear structure having a diameter from the atomic scale to the nm size.
  • the average length is preferably 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, In particular, the thickness is preferably 3 to 300 ⁇ m.
  • the relative standard deviation of the length is preferably 40% or less.
  • an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint.
  • the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the relative standard deviation of the diameter is preferably 20% or less.
  • a metal composition of the metal nanowire which concerns on this invention, although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. Further, in order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and resistance to magnesium), it is also preferable that silver and at least one metal belonging to a noble metal other than silver are included.
  • the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
  • the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
  • a carbon nanotube is a carbon-based fiber material having a shape in which a graphite-like carbon atomic plane (graphene sheet) having a thickness of several atomic layers is wound into a cylindrical shape, and single-walled nanotubes (SWNT) and multilayers are formed from the number of peripheral walls. It is roughly divided into nanotubes (MWNT), and it is divided into a chiral type, a zigzag type, and an armchair type depending on the structure of the graphene sheet, and various types are known.
  • MWNT nanotubes
  • any type of carbon nanotube can be used, and a mixture of these various carbon nanotubes may be used.
  • An excellent single-walled carbon nanotube is preferable, and a metallic armchair-type single-walled carbon nanotube is more preferable.
  • carbon nanotubes having an aspect ratio of 102 or more, preferably 103 or more can be mentioned.
  • the average length of the carbon nanotube is preferably 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, and particularly preferably 3 to 300 ⁇ m.
  • the relative standard deviation of the length is preferably 40% or less.
  • the average diameter is preferably smaller than 100 nm, preferably 1 to 50 nm, and more preferably 1 to 30 nm.
  • the relative standard deviation of the diameter is preferably 20% or less.
  • the method for producing carbon nanotubes is not particularly limited, and catalytic hydrogen reduction of carbon dioxide, arc discharge method, laser evaporation method, CVD method, vapor phase growth method, carbon monoxide is reacted with iron catalyst at high temperature and high pressure.
  • Well-known means such as HiPco method for growing in a gas phase can be used.
  • carbon nanotubes that have been further purified by various purification methods such as washing methods, centrifugal separation methods, filtration methods, oxidation methods, chromatographic methods, etc. Is more preferable because various functions can be sufficiently expressed.
  • a metal material When a metal material is formed in a pattern on the first conductive layer, it becomes a film substrate having both a light-impermeable conductive portion made of a metal material and a light-transmissive window portion, and an electrode substrate excellent in transparency and conductivity can be produced.
  • the metal material is not particularly limited as long as it is excellent in conductivity.
  • the metal material may be an alloy other than a metal such as gold, silver, copper, iron, nickel, and chromium.
  • the shape of the metal material is preferably metal fine particles or metal nanowires from the viewpoint of ease of pattern formation as described later, and the metal material is preferably silver from the viewpoint of conductivity.
  • the pattern shape is not particularly limited.
  • the conductive portion may be a stripe shape, a mesh shape, or a random network shape, but the aperture ratio is preferably 80% or more from the viewpoint of transparency.
  • the aperture ratio is the ratio of the light-impermeable conductive portion to the whole.
  • the aperture ratio of the stripe pattern having a line width of 100 ⁇ m and a line interval of 1 mm is about 90%.
  • the line width of the pattern is preferably 10 to 200 ⁇ m.
  • the height of the fine wire is preferably 0.1 to 10 ⁇ m. If the height of the thin wire is less than 0.1 ⁇ m, desired conductivity cannot be obtained.
  • a metal layer can be formed on the entire surface of the substrate and formed by a known photolithography method.
  • a conductor layer is formed on the entire surface using one or more physical or chemical forming methods such as printing, vapor deposition, sputtering, plating, etc., or a metal foil is used as an adhesive.
  • the film After being laminated on the base material, the film can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
  • a method of printing an ink containing metal fine particles in a desired shape by screen printing, or applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, followed by plating treatment As another method, a method using silver salt photographic technology can also be used.
  • a method using silver salt photographic technology can be carried out with reference to, for example, [0076]-[0112] of JP-A-2009-140750 and Examples.
  • the method for carrying out the plating process by gravure printing of the catalyst ink can be carried out with reference to, for example, JP-A-2007-281290.
  • a method for spontaneously forming a disordered network structure of conductive fine particles by applying and drying a liquid containing metal fine particles as described in JP-T-2005-530005 can be used.
  • FIG. 1 is a structural schematic diagram showing an example of a representative transparent electrode of the present invention.
  • the transparent electrode has a first transparent conductive layer 31 on a transparent substrate 41, and the first transparent conductive layer 31 contains the conductive fiber 11 and the conductive polymer compound 21 according to the present invention.
  • FIG. 2 is a structural schematic diagram showing another example of a representative transparent electrode of the present invention, which has a first transparent conductive layer 31 including a conductive fiber 11 on a transparent substrate 41, and A second transparent conductive layer containing the conductive polymer compound 21 according to the present invention is formed on one transparent conductive layer 31.
  • FIG. 3 is a structural schematic diagram showing still another example of a representative transparent electrode of the present invention, which has a first transparent conductive layer 31 containing conductive fibers 11 on a transparent substrate 41, and A second transparent conductive layer 32 containing the conductive polymer compound 21 according to the present invention is formed on the first transparent conductive layer 31, and a part of the second transparent conductive layer 32 is conductive. Fiber 11 is included. That is, the conductive fiber 11 is shared by both the first transparent conductive layer 31 and the second transparent conductive layer 32.
  • 1 is a first conductive layer made of a metal material formed in a pattern
  • 2 is a second conductive layer containing a conductive polymer compound according to the present invention
  • 3 is a substrate.
  • the transparent electrode of the present invention can be produced by the following methods (1) to (3).
  • the mixture is an aqueous dispersion as described below.
  • a step of forming a first transparent conductive layer containing a patterned metal material on a transparent substrate, and a repeating structural unit represented by the general formula (I) on the first transparent conductive layer The manufacturing method which has the process of forming the 2nd transparent conductive layer containing a conductive polymer compound.
  • the method used in the step of forming the first or second transparent conductive layer is not particularly limited, but from the viewpoint of improving productivity, improving electrode quality such as smoothness and uniformity, and reducing environmental impact. It is preferable to use a liquid phase film forming method such as a coating method or a printing method.
  • Application methods include roll coating, bar coating, dip coating, spin coating, casting, die coating, blade coating, gravure coating, curtain coating, spray coating, and doctor coating.
  • a letterpress (letter) printing method a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, an ink jet printing method, and the like can be used.
  • a mixture containing conductive fibers and a conductive polymer compound having a repeating structural unit represented by the general formula (I) is formed on a transparent substrate.
  • a conductive layer formed by applying and applying a mixture containing conductive fibers and a polymer compound having a repeating structural unit represented by the general formula (I) on the release surface of the release substrate There is a method of forming by transferring on a transparent substrate.
  • the second transparent conductive layer of the above (2) and (3) As a method used in the step of forming the second transparent conductive layer of the above (2) and (3), it has a repeating structural unit represented by the general formula (I) on the first transparent conductive layer. There is a method of applying and forming a coating liquid containing a polymer compound.
  • the coating liquid for forming the mixture or the second transparent conductive layer containing the conductive fiber and the polymer compound having the repeating structural unit represented by the general formula (I) is water-soluble. It is a preferable embodiment to use an aqueous dispersion containing a binder resin.
  • the following means are particularly preferably used.
  • the aqueous dispersion contains a water-soluble binder resin and contains conductive fibers in a dispersed manner.
  • the water-soluble binder resin the water-soluble binder described above can be used.
  • a step of forming a second transparent conductive layer by applying a coating liquid containing a polymer compound having a repeating structural unit represented by formula (I) and a water-soluble binder resin on the conductive layer A manufacturing method for forming a transparent conductive layer.
  • the first transparent conductive layer After forming the first transparent conductive layer containing the conductive fibers on the release surface of the releasable base material, the first transparent conductive layer is transferred onto the transparent base material to transfer the first transparent conductive layer.
  • a step of forming a conductive layer and applying a coating solution containing a polymer compound having a repeating structural unit represented by the general formula (I) and a water-soluble binder resin on the first transparent conductive layer The manufacturing method which forms a transparent conductive layer by the method which has the process of forming the transparent conductive layer of.
  • the conductive fiber is preferably 0.50 g / m 2 from the relationship between conductivity and transmittance. More preferably, it is 0.10 g / m 2 or less.
  • the conductive polymer compound has a solid content of preferably 50 times or less, more preferably 10 times or less, and further preferably 5 times or less of the mass of the conductive fiber.
  • the water-soluble binder resin is preferably 5 times or less, more preferably 3 times or less, of the conductive binder solid content.
  • the conductive fibers or the patterned metal material, the conductive polymer compound, and the water-soluble binder resin are added in the same amount as in the above-mentioned transparent electrode production method a).
  • the amount added is preferred.
  • examples of the releasable substrate that can be used include a resin substrate and a resin film.
  • limiting in particular in this resin It can select suitably from well-known things, For example, synthesis
  • a substrate or film composed of a single layer or multiple layers of resin is preferably used.
  • a glass substrate or a metal substrate can also be used.
  • a surface treatment may be applied to the surface (release surface) of the releasable substrate by applying a release agent such as silicon resin, fluororesin, or wax as necessary.
  • the surface of the releasable substrate affects the smoothness of the surface after the transparent conductive layer is transferred, it is desirable that the surface of the releasable substrate be highly smooth.
  • Ry ⁇ 50 nm is preferable, and Ry ⁇ 40 nm. More preferably, it is more preferable that Ry ⁇ 30 nm.
  • Ra ⁇ 10 nm is preferable, Ra ⁇ 5 nm is more preferable, and Ra ⁇ 1 nm is further more preferable.
  • the release surface of the releasable substrate may be previously hydrophilized by corona discharge (plasma) or the like.
  • the transfer may be performed via an adhesive layer.
  • the transfer layer may be provided on the releasable substrate side or may be provided on the transparent substrate side.
  • the adhesive used for the adhesive layer is not particularly limited as long as it is a material that is transparent in the visible region and has transfer ability. As long as it is transparent, a curable resin or a thermoplastic resin may be used.
  • curable resins examples include thermosetting resins, ultraviolet curable resins, and electron beam curable resins.
  • the equipment for resin curing is simple and excellent in workability. It is preferable to use an ultraviolet curable resin.
  • the ultraviolet curable resin is a resin that is cured through a crosslinking reaction or the like by ultraviolet irradiation, and a component containing a monomer having an ethylenically unsaturated double bond is preferably used.
  • acrylic urethane type resin, polyester acrylate type resin, epoxy acrylate type resin, polyol acrylate type resin and the like can be mentioned.
  • an acrylic or acrylic urethane-based ultraviolet curable resin is a main component as a binder.
  • Acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylates including methacrylates) in addition to products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • acrylates including methacrylates can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • those described in JP 59-151110 A can be used.
  • a mixture of 100 parts Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) is preferably used.
  • UV curable polyester acrylate resins include those that are easily formed by reacting polyester polyols with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, generally as disclosed in JP-A-59-151112. Those described in the publication can be used.
  • ultraviolet curable epoxy acrylate resin examples include those produced by reacting epoxy acrylate with an oligomer, a reactive diluent and a photoinitiator added thereto, and reacting them. Those described in Japanese Patent No. 105738 can be used.
  • UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. Polymerized products can be mentioned.
  • Examples of the monomer include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, and styrene as monomers having one unsaturated double bond.
  • Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
  • 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane (meth) acrylate, trimethylolethane (meth) acrylate are the main components of the binder.
  • photoinitiators of these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and derivatives thereof. You may use with a photosensitizer.
  • the photoinitiator can also be used as a photosensitizer.
  • a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used.
  • the photoreaction initiator or photosensitizer used in the ultraviolet curable resin composition is 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the composition.
  • the transparent conductive layer is made transparent by bonding (bonding) the release substrate formed with the transparent conductive layer and the transparent base material, curing the adhesive by irradiating ultraviolet rays and the like, and then peeling the release substrate. It can be transferred to the substrate side.
  • the bonding method is not particularly limited and can be performed by a sheet press, a roll press or the like, but is preferably performed using a roll press machine.
  • the roll press is a method in which a film to be bonded is sandwiched between the rolls, and the rolls are rotated.
  • the roll press is uniformly applied with pressure, and has a higher productivity than the sheet press and can be used preferably.
  • the first transparent conductive layer or the transparent conductive layer comprising the first transparent conductive layer and the second transparent conductive layer according to the present invention can be patterned.
  • a known method can be applied as appropriate.
  • a method of forming a patterned transparent electrode by forming a transparent conductive layer patterned on a release surface and then transferring it onto a transparent substrate can be used. Such a method can be preferably used.
  • the transparent electrode of the present invention has a smoothness of the surface of the transparent conductive layer (the smoothness of the surface of the first transparent conductive layer or the second transparent conductive layer) Ry ⁇ 50 nm. It is preferable that Ra ⁇ 10 nm.
  • Ry and Ra representing the smoothness of the surface of the transparent conductive layer
  • Ry maximum height (difference between the top and bottom of the surface)
  • Ra arithmetic mean roughness, according to JIS B601 (1994). It is a value according to the specified surface roughness.
  • a commercially available atomic force microscope (AFM) can be used. For example, it can be measured by the following method.
  • an SPI 3800N probe station manufactured by Seiko Instruments Inc. and an SPA400 multifunctional unit as the AFM set a sample cut to a size of about 1 cm square on a horizontal sample stage on a piezo scanner, and place the cantilever on the sample surface.
  • scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan 20 ⁇ m in the XY direction and 2 ⁇ m in the Z direction is used.
  • the cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 ⁇ 80 ⁇ m is measured at a scanning frequency of 1 Hz.
  • the value of Ry is more preferably 50 nm or less, and further preferably 40 nm or less.
  • the value of Ra is more preferably 10 nm or less, and further preferably 5 nm or less.
  • Organic electroluminescence device The organic electroluminescence device of the present invention has the transparent electrode of the present invention.
  • the organic electroluminescent element of the present invention has an organic layer including an organic light emitting layer and the transparent electrode of the present invention.
  • the organic electroluminescent element in the present invention preferably uses the transparent electrode of the present invention as an anode, and the organic light emitting layer and the cathode are made of any material or configuration generally used in organic electroluminescent elements. Can be used.
  • the element configuration of the organic electroluminescence element is anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport.
  • Examples of various configurations such as layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. Can do.
  • the organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer.
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
  • the organic electroluminescence element of the present invention can be used for a self-luminous display, a liquid crystal backlight, illumination, and the like. Since the organic electroluminescent element of the present invention can emit light uniformly and without unevenness, it is preferably used for lighting purposes.
  • the transparent electrode of the present invention has both high conductivity and transparency, and various optoelectronic devices such as liquid crystal display elements, organic light emitting elements, inorganic electroluminescent elements, electronic paper, organic solar cells, inorganic solar cells, electromagnetic wave shields, touch panels. It can be suitably used in such fields. Among these, it can use especially preferably as a transparent electrode of the organic electroluminescent element and organic thin-film solar cell element by which the smoothness of the transparent electrode surface is calculated
  • PEDOT poly3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • a pipette with a septum was attached to the tip of a nitrogen line (Teflon (registered trademark) tube), and the tube was placed in a three-head flask so that the tip of the pipette was below the liquid level.
  • Others have a two-way cock and a ball plug.
  • CP-4 which is a dispersion of the conductive polymer compound of the present invention, was obtained in the same manner as CP-3, except that 0.5% was used.
  • CP-5 which is a dispersion of the conductive polymer compound of the present invention, was obtained in the same manner as CP-3 except that the washing time was 3 hours in the preparation of CP-3.
  • PVS polyvinyl sulfonic acid
  • Synthesis example 1 Synthesis of CP-A (PEDOT (poly3,4-ethylenedioxythiophene polyethylenedioxythiophene) / PVS / PSS) Polyvinylsulfonic acid (PVS) prepared above (0.61 g, 0.70 mmol, 15% aqueous solution, Molecular weight 130.10), polystyrene sulfonic acid (PSS) (0.31 g, 0.27 mmol, 18% aqueous solution, molecular weight 206.19), potassium persulfate (0.11 g, 0.4 mmol, molecular weight 270.32, Kanto Chemical) ) And iron (III) sulfate n-hydrate (0.5 mg, 8.8 ⁇ 10 ⁇ 4 mmol [purity 70% equivalent], molecular weight 399.88, manufactured by Kanto Chemical Co., Inc.) in 20 ml of pure water Dissolved.
  • PVS Polyvinylsulfonic acid
  • PSS polyst
  • 3,4-Ethylenedioxythiophene (56 mg, 0.4 mmol, molecular weight 142.18, manufactured by Aldrich) was added to the stirred solution and polymerized at room temperature for 24 hours. Subsequently, 5.0 g of an anion exchanger (Bayer AG; Lewatit MP62) and 5.0 g of a cation exchanger (Bayer AG Lewatit S100) were added to the solution and stirred for 8 hours. The ion exchanger was removed by filtration to obtain a dispersion CP-A (solid content concentration: 1.0%).
  • Synthesis example 2 Synthesis of CP-B (PEDOT / PAA / PSS)
  • CP-A polyvinyl sulfonic acid
  • PVS polyvinyl sulfonic acid
  • PAA polyacrylic acid
  • CP-7 (Production of CP-7, 8) CP-1 was prepared in the same manner as CP-1, except that CP-A as a dispersion was used instead of CLEVIOS P VP AI4083 (manufactured by HC Starck, solid content concentration: 1.5%). According to the method, CP-7, which is a dispersion of the conductive polymer compound of the present invention, was obtained. CP-8, which is a dispersion of the conductive polymer compound of the present invention, was obtained in the same manner as CP-1, except that CP-B as a dispersion was used.
  • CP-3 was prepared in the same manner as CP-3 except that CP-A as a dispersion was used instead of CLEVIOS P VP AI4083 (manufactured by HC Starck, solid content concentration: 1.5%). According to the method, CP-9, which is a dispersion of the conductive polymer compound of the present invention, was obtained. CP-10, which is a dispersion of the conductive polymer compound of the present invention, was obtained in the same manner as CP-3, except that CP-B as a dispersion was used.
  • silver nanowires having an average minor axis of 75 nm and an average length of 35 ⁇ m are prepared, and the silver nanowires are filtered using an ultrafiltration membrane and washed with water.
  • Propylmethylcellulose 60SH-50 manufactured by Shin-Etsu Chemical Co., Ltd. was redispersed in an aqueous solution in which 25% by mass of silver was added to prepare a silver nanowire dispersion.
  • Example 1 Preparation of Transparent Electrode TC-101; Present Invention
  • the prepared silver nanowire dispersion liquid is subjected to easy adhesion processed polyethylene terephthalate film support Cosmo Shine (registered trademark) A4100 (manufactured by Toyobo Co., Ltd.) so that the amount of silver nanowires is 0.05 g / m 2.
  • the dispersion was applied using a spin coater and dried. Subsequently, the silver nanowire coating layer was calendered, and a stripe pattern electrode TCF-1 having a conductive part pattern width of 10 mm and a pattern interval of 10 mm was produced by a known photolithography method.
  • a transparent electrode TC-101 was produced by applying with a spin coater to 300 nm and drying at 120 ° C. for 30 minutes.
  • Transparent Electrode TC-113 Comparative Example
  • CP-1 which is the dispersion of the present invention
  • becamine M-3 made by DIC
  • catalyst ACX which is a crosslinking accelerator
  • 30 A transparent electrode TC-113 was prepared in the same manner except that Byron UR-3220 (manufactured by Toyobo Co., Ltd.), a MEK solution of% polyurethane resin, was used in an amount of 30% by mass based on the solid content of the conductive polymer compound. .
  • the total light transmittance, surface resistivity, and surface smoothness are obtained by the following methods, and the light transmittance, conductivity It was used as an index of smoothness.
  • the total light transmittance, surface resistivity, and surface roughness (Ra, Ry) of the transparent electrode sample after the forced deterioration test placed in an environment of 80 ° C. and 90% RH for 14 days. was used as an index of stability.
  • the evaluation results are shown in Table 1.
  • Total light transmittance Based on JIS K 7361-1: 1997, measurement was performed using a haze meter HGM-2B manufactured by Suga Test Instruments Co., Ltd.
  • the transparent electrodes TC-101 to 110 are superior to the transparent electrodes TC-111 to TC-113 in terms of smoothness, conductivity and light transmission, and in a high temperature and high humidity environment. It can be seen that there is little deterioration in smoothness, conductivity, and light transmittance, and the stability is excellent.
  • Example 2 [Preparation of Transparent Electrode TC-201; Present Invention]
  • CP-1 solid content concentration: 1.5%), which is a dispersion of the conductive polymer compound of the present invention, is concentrated with a rotary evaporator until the solid content concentration becomes 13%. 3 times in terms of solid content was added, and PHEA-1 having a mass 2.3 times that of CP-1 was added.
  • This dispersion was applied onto a polyethylene terephthalate film support having a thickness of 100 ⁇ m that had been subjected to an easy adhesion process using a spin coater so as to have a dry film thickness of 300 nm, and dried at 120 ° C. for 30 minutes.
  • a gravure coating machine K printing proofer manufactured by Matsuo Sangyo Co., Ltd.
  • a plate having a printing pattern opposite to the 10 mm stripe pattern The viscosity of the metal nanowire remover BF-1 produced above was appropriately adjusted with CMC, and the number of times of printing was adjusted so that the coating film thickness was 30 ⁇ m on the silver nanowire coating layer, and gravure printing was performed. After printing, the plate was left for 1 minute, and then washed with running water to produce a transparent electrode TC-201.
  • Transparent Electrodes TC-202 to TC-210 were produced in the same manner except for the above.
  • Transparent Electrodes TC-211 and TC-212 Comparative Example
  • CP-1 which is a dispersion of the conductive polymer compound of the present invention was prepared using CLEVIOS P VP AI4083 (manufactured by HC Starck, solid content concentration: 1.5%)
  • Transparent electrodes TC-211 and TC-212 were produced in the same manner except that CLEVIOS P VP CH8000 (manufactured by HC Starck, solid content concentration: 2.5%) was used.
  • the total light transmittance, surface resistivity, and surface smoothness (Ra, Ry) were determined by the method described in Example 1. Moreover, in order to evaluate the stability of the transparent electrode, the total light transmittance, surface resistivity, and surface roughness (Ra, Ry) of the transparent electrode sample after the forced deterioration test placed in an environment of 80 ° C. and 90% RH for 14 days. Evaluation was performed.
  • the transparent electrodes TC-201 to 210 are superior to the transparent electrodes TC-211 to TC-213 in terms of smoothness, conductivity and light transmission, and in a high temperature and high humidity environment. It can be seen that there is little deterioration in smoothness, conductivity, and light transmittance, and the stability is excellent.
  • Example 3 Production of transparent electrode TC-301 (present invention)
  • the transparent electrode was produced according to the preferable manufacturing process of the transparent electrode of this invention.
  • the silver nanowire dispersion is applied and dried so that the basis weight of the silver nanowire is 80 mg / m 2.
  • a first conductive layer containing was provided.
  • an ultraviolet curable resin manufactured by JSR, NN803 was applied as an adhesive layer on a transparent substrate (PET film (total light transmittance 90%)) having a barrier layer and an easy-adhesion layer, and the solvent component was vaporized. Then, the 1st electroconductive layer containing silver nanowire and the contact bonding layer were bonded. Subsequently, after the ultraviolet ray was irradiated to sufficiently cure the adhesive layer, the releasable PET film as the releasable substrate was peeled off.
  • PET film total light transmittance 90%
  • PHEA-1 having a mass 2.3 times the solid content concentration of CP-1 and a DMSO (dimethylsulfoxide) solution of 5% by mass of the CP-1 solution were added to the conductive polymer compound CP-1.
  • the transparent electrode TC of the present invention is subjected to heat treatment at 80 ° C. for 3 hours after overcoating and drying the surface of the first conductive layer from which the release PET film has been peeled off so that the dry film thickness becomes 100 nm. -301 was produced.
  • Transparent Electrodes TC-311 and TC-312 were prepared using CLEVIOS P VP AI4083 (manufactured by HC Starck, solid content concentration: 1.5%), Transparent electrodes TC-311 and TC-312 were produced in the same manner except that CLEVIOS P VP CH8000 (made by HC Starck, solid content concentration: 2.5%) was used.
  • the total light transmittance, surface resistivity, and surface smoothness (Ra, Ry) were determined by the method described in Example 1. Moreover, in order to evaluate the stability of the transparent electrode, the total light transmittance, surface resistivity, and surface roughness (Ra, Ry) of the transparent electrode sample after the forced deterioration test placed in an environment of 80 ° C. and 90% RH for 14 days. Evaluation was performed.
  • Example 4 [Production of transparent electrode] ⁇ Formation of first conductive layer> The transparent electrode was produced according to the preferable manufacturing process of the transparent electrode of this invention.
  • a fine wire grid (metal material) was produced by gravure printing as follows.
  • the following coating liquid A is extruded on the transparent electrode in which a first conductive layer is formed by gravure printing on a film substrate for a transparent electrode having gas barrier properties, using an extrusion method so as to have a dry film thickness of 300 nm.
  • the slit gap was adjusted and applied, dried by heating at 110 ° C. for 5 minutes to form a second conductive layer comprising a conductive polymer compound and CP-1, and the obtained electrode was cut into 8 ⁇ 8 cm. .
  • the obtained electrode was heated in an oven at 110 ° C. for 30 minutes to produce a transparent electrode TC-401.
  • Coating liquid A By adding PHEA-1, which is 2.3 times the weight of the solid content concentration of CP-1, to a conductive polymer compound CP-1, a DMSO (dimethyl sulfoxide) solution of 5% by mass of the CP-1 solution is added. A coating solution A was prepared.
  • CP-1 which is a dispersion of the conductive polymer compound of the present invention was prepared by using CLEVIOS P VP AI4083 (manufactured by HC Starck, solid content concentration: 1.5%)
  • Transparent electrodes TC-411 and TC-412 were prepared in the same manner as in CLEVIOS P VP CH8000 (manufactured by HC Starck, solid content concentration: 2.5%).
  • Transparent Electrode TC-413 Comparative Example
  • CP-1 which is a dispersion of the conductive polymer compound of the present invention
  • melamine resin Becamine M-3 manufactured by DIC
  • catalyst ACX which is a crosslinking accelerator
  • Byron UR-3220 manufactured by Toyobo Co., Ltd.
  • a transparent electrode TC-413 was produced.
  • the total light transmittance, surface resistivity, and surface smoothness (Ra, Ry) were determined by the method described in Example 1. Moreover, in order to evaluate the stability of the transparent electrode, the total light transmittance, surface resistivity, and surface roughness (Ra, Ry) of the transparent electrode sample after the forced deterioration test placed in an environment of 80 ° C. and 90% RH for 14 days. Evaluation was performed.
  • the transparent electrodes TC-401 to 410 are superior to the transparent electrodes TC-411 to TC-413 in terms of smoothness, conductivity and light transmission, and in a high temperature and high humidity environment. It can be seen that there is little deterioration in smoothness, conductivity, and light transmittance, and the stability is excellent.
  • Example 5 [Production of organic electroluminescence element (organic EL element)] Using the produced transparent electrodes TC-101 to 113 as the first electrode, organic EL elements OEL-501 to 513 were produced by the following procedure, respectively. ⁇ Formation of hole transport layer> On the first electrode, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), which is a hole transport material, is added to 1% by mass in 1,2-dichloroethane. The dissolved coating solution for forming a hole transport layer was applied by a spin coater and then dried at 80 ° C. for 60 minutes to form a hole transport layer having a thickness of 40 nm.
  • NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the red dopant material Btp 2 Ir (acac) is 1% by mass and the green dopant material Ir (ppy) 3 is 2% with respect to polyvinylcarbazole (PVK) as the host material.
  • % And blue dopant material FIr (pic) are mixed so as to be 3% by mass, respectively, and dissolved in 1,2-dichloroethane so that the total solid concentration of PVK and the three dopants is 1% by mass.
  • the coating liquid for layer formation was applied with a spin coater and then dried at 100 ° C. for 10 minutes to form a light emitting layer having a thickness of 60 nm.
  • the comparative organic EL elements OEL-511 to OEL-513 are significantly deteriorated in light emission uniformity after heating at 80 ° C. for 30 minutes, whereas the organic EL elements OEL-501 to OEL-510 of the present invention It can be seen that the light emission uniformity is stable even after heating and has excellent durability.
  • Example 6 [Production of organic electroluminescence element (organic EL element)] Organic EL elements OEL-601 to 613 were produced in the same manner as in the procedure of Example 4 using the transparent electrodes TC-201 to 213 produced in the same manner as in the procedure of Example 2 as the first electrode. (Evaluation) Evaluation was performed in the same manner as in Example 5.
  • the comparative organic EL elements OEL-611 to OEL-613 are significantly deteriorated in light emission uniformity after heating (forced deterioration) at 60% RH and 80 ° C. for 30 minutes, whereas the organic EL elements of the present invention It can be seen that the light emission uniformity of OEL-601 to OEL-610 is stable after heating (forced deterioration) and has excellent durability.
  • Example 7 [Production of organic electroluminescence element (organic EL element)] Organic EL elements OEL-701 to 713 were produced in the same manner as in the procedure of Example 4 using the transparent electrodes TC-301 to 313 produced in the same manner as in the procedure of Example 3 as the first electrode. (Evaluation) Evaluation was performed in the same manner as in Example 5.
  • the comparative organic EL elements OEL-711 to OEL-713 are significantly deteriorated in light emission uniformity after heating (forced deterioration) at 60% RH and 80 ° C. for 30 minutes, whereas the organic EL elements of the present invention It can be seen that the light emission uniformity of OEL-701 to OEL-710 is stable even after heating (forced deterioration) and has excellent durability.
  • Example 8 [Production of organic electroluminescence element (organic EL element)] Organic EL elements OEL-801 to 813 were produced in the same manner as in the procedure of Example 4 using the transparent electrodes TC-401 to 413 produced in the same manner as in the procedure of Example 4 as the first electrode. (Evaluation) Evaluation was performed in the same manner as in Example 5.
  • the comparative organic EL elements OEL-811 to OEL-813 are significantly deteriorated in light emission uniformity after heating (forced deterioration) at 60% RH and 80 ° C. for 30 minutes, whereas the organic EL elements of the present invention It can be seen that the light emission uniformity of OEL-801 to OEL-810 is stable even after heating (forced deterioration) and has excellent durability.
  • Example 9 [Production of Transparent Electrode TC-901 (Invention Example)] Except for changing the silver nanowire to SWCNT (manufactured by Unidym, HiPcoR single-walled carbon nanotube) and adjusting the weight of SWCNT to 50 mg / m 2 , the same method for producing TC-101 shown in Example 1 Thus, TC-901 was produced.
  • organic electroluminescence element organic EL element
  • OLE-901 was produced Using the obtained transparent electrode as the first electrode (anode electrode), an organic EL element OLE-901 was produced and evaluated in the same manner as in Example 5. As in OLE-101, the entire EL element emitted light uniformly. I was able to confirm. Further, even after heating the organic EL device at 60% RH and 80 ° C. for 30 minutes (forced deterioration), uniform light emission was observed throughout the device.
  • Example 10 [Production of Transparent Electrode TC-1001 (Invention)] The silver nanowire was changed to SWCNT (Unipym, HiPcoR single-walled carbon nanotube), and the dispersion was applied from the top of the plate on which the printed pattern of 10 mm stripe pattern was formed on the support without using the silver nanowire remover. Except for the above, TC-1001 was produced in the same manner as in the production method of TC-201 shown in Example 2. [Production of organic electroluminescence element (organic EL element)] Using the obtained transparent electrode as the first electrode (anode electrode), an organic EL element OLE-1001 was fabricated and evaluated in the same manner as in Example 5. As in OLE-101, the entire EL element uniformly emitted light. I was able to confirm. Further, even after heating the organic EL device at 60% RH and 80 ° C. for 30 minutes (forced deterioration), uniform light emission was observed throughout the device.
  • SWCNT Unipym, HiPcoR single
  • SYMBOLS 1 1st conductive layer which consists of metal material formed in pattern shape 2 2nd conductive layer containing binder resin and conductive polymer of this invention 3 Base material 11 Conductive fiber 21 Conductive polymer compound 31 1st transparent Conductive layer 32 Second transparent conductive layer 41 Transparent substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)

Abstract

 平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れ、また発光均一性に優れ、かつ発光均一性の劣化が少なく耐久性に優れる有機EL素子を与える透明電極を提供することを目的に、下記一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンを含む導電性高分子化合物分散液において、該導電性高分子化合物分散液を200℃、60分間で加熱して得られた硫黄酸化物の成分を酸化し、生成した硫酸イオンの含有量が0~300ppmであることを特徴とする分散液を見出した。(式中、Aは置換基を有しても良い炭素数1~4のアルキレン基を示し、Qは酸素原子または硫黄原子を表す。)

Description

分散液、透明電極、および有機エレクトロルミネッセンス素子
 本発明の分散液を用いることにより、液晶表示素子、有機発光素子、無機電界発光素子、太陽電池、電磁波シールド、電子ペーパー、タッチパネル等の各種分野において好適に用いることができる透明電極、さらに該透明電極を用いた有機エレクトロルミネッセンス素子(以後、有機EL素子ともいう。)に関する。
 近年、薄型TV需要の高まりに伴い、液晶・プラズマ・有機エレクトロルミネッセンス・フィールドエミッション等、各種方式のディスプレイ技術が開発されている。これら表示方式が異なるいずれのディスプレイにおいても、透明電極は必須の構成技術となっている。また、テレビ以外でも、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子においても、透明電極は欠くことのできない技術要素となっている。
 従来透明電極は、ガラスや透明なプラスチックフィルム等の透明基材上に、インジウム-スズの複合酸化物(ITO)膜を真空蒸着法やスパッタリング法で製膜したITO透明電極が主に使用されてきた。しかし、ITOに用いられているインジウムはレアメタルであり、比較的高価であることから、脱インジウムが望まれている。また、ディスプレイの大画面化、生産性向上に伴い、フレキシブル基板を用いたロールツーロールの生産技術が所望されている。
 近年、導電性高分子材料であるポリ3,4-ジアルコキシチオフェンとポリアニオン複合体の分散物を透明フレキシブル基板に積層した透明導電膜が提案されている(例えば、特許文献1参照)。しかし、このポリ3,4-ジアルコキシチオフェンとポリアニオン複合体は可視光領域に吸収を有し、表面抵抗率を下げるために膜厚を厚くすると可視光領域の透過率が低下し、低抵抗率と高透過率を両立できないという課題を有していた。
 上記課題を克服するために、導電性繊維を用いる技術が開示されており、導電性繊維の一部を透明樹脂膜でフレキシブル基板に固定し、かつ導電性繊維の一部を透明樹脂膜表面に突起させて電極を形成することが提案されている(例えば、特許文献2参照)。しかし、このような構成の電極は、表面に導電性繊維が突起した部分にしか導電性がないため、表面の導電性が均一である面電極などの技術用途には適用できないという課題を有していた。
 また、透明基板上に塗布された銀ナノワイヤ上にポリウレタンをオーバーコートし、電極表面が平滑な透明面電極が提案されている(例えば、特許文献3参照)。しかし、この透明電極上に有機EL素子を積層すると、面発光性および発光寿命が悪いという問題を有していた。
 有機EL素子に用いられる電極としては、その表面の平均表面粗さ(Ra)が、通常10nm以下の平滑な電極が用いられている。上記特許文献2のように透明電極表面に突起が存在する電極を用いて有機EL素子を作製すると、陽極と陰極の短絡等、突起を起点にショートするという問題があり、高温、高湿度の環境下ではさらにこの現象が顕著化するという課題を有していた。また、突起間は透明樹脂が存在し、面電極としての機能が得られないという問題を有していた。
 また、上記特許文献3のように、単量体、二量体アクリレートを用いたオーバーコートを銀ナノワイヤ上に積層後硬化した透明電極を用いた場合、残留モノマー、オリゴマーや低分子量体が生成し、層間拡散し、寿命が著しく劣化するという課題を有していた。
 さらに、導電性繊維として金属ナノワイヤである銀ナノワイヤを用い、その銀ナノワイヤ上に導電性高分子材料を積層させた透明電極が提案されている(例えば、特許文献4参照)。しかし、高温、高湿度の環境下では導電性が低下し、またこの透明電極上に有機EL素子を積層した場合、面発光性および発光寿命が著しく劣化するという課題を有していた。上記特許文献1も低抵抗率と高透過率を両立できないという課題以外に高温、高湿度の環境下での導電性低下、有機EL素子に使用した場合、面発光性および発光寿命が劣化するという課題を有していた。
 また、上記特許文献4には、銀ナノワイヤの劣化防止を目的に銀ナノワイヤと容易に結合し、銀表面において保護膜を形成する障壁形成腐食抑制剤、大気中に存在する腐食性ガスであるHS補足剤の使用技術が開示されている。しかし、障壁形成腐食抑制剤は銀ナノワイヤ表面に保護膜を形成するため、透明電極としての性能低下を引き起こし、またHS補足剤は、補足剤の拡散にともない、透明電極の面均一性を低下さたり、この透明電極上に有機EL素子を積層した場合、補足剤が層間拡散し、面発光性および発光寿命が著しく劣化するという課題を有していた。
 更に、大面積かつ低抵抗値が要求される製品にも対応できる技術として、パターン状に形成された金属細線に導電性高分子化合物等の透明導電膜を積層し、電流の面均一性と高い導電性を併せ持つ透明導電フィルムが開発されている(例えば、特許文献5、6参照)。しかしながら、このような構成では、有機電子デバイスのリークの原因となる金属細線の凹凸を、導電性高分子化合物等の透明導電膜でなだらかにする必要があり、導電性高分子化合物の厚膜化が必須となる。しかし、導電性高分子化合物は可視光領域に吸収を有するため、厚膜化すると、透明電極の透明性が著しく低下してしまうという課題を有していた。
 また、導電性と透明性を両立する方法として、細線構造部上へ導電性高分子化合物と絶縁性高分子化合物の混合物を積層する技術が開示されている(例えば、特許文献7)。しかし、絶縁性高分子化合物の添加は導電率が低下するばかりではなく、導電性高分子化合物への相溶性の観点から、高分子化合物添加量が制限され、十分な透過率を維持することが困難であるという課題を有していた。
特開2004-59666号公報 特開2006-519712号公報 米国特許出願公開第2007/0074316号明細書 米国特許出願公開第2008/0259262号明細書 特開2005-302508号公報 特開2009-87843号公報 特開2009-4348号公報
 本発明は上記課題に鑑みなされたものであり、本発明の目的は、平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れ、また発光均一性に優れ、かつ発光均一性の劣化が少なく耐久性に優れる有機EL素子を与える本発明の分散液を用いた透明電極を提供することにある。
 さらに、当該電極を用いた発光均一性が高く、発光均一性の劣化が少なく耐久性に優れる有機EL素子を提供することにある。
 前記した課題を解決するために、本発明で用いる導電性高分子材料を加熱したときに発生する硫黄酸化物量を低減させることにより、高温、高湿度環境下における環境試験後でも高い導電性と透明性及び良好な平滑性を併せ持つ安定性の優れた透明電極及び該透明電極を用いた有機エレクトロルミネッセンス素子が得られることを見出したものである。
 本発明の上記目的は、下記の構成により達成される。
 1.下記一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンを含む導電性高分子化合物分散液において、該導電性高分子化合物分散液を200℃、60分間で加熱して得られた硫黄酸化物の成分を酸化し、生成した硫酸イオンの含有量が0~300ppmであることを特徴とする分散液。
Figure JPOXMLDOC01-appb-C000003
(式中、Aは置換基を有しても良い炭素数1~4のアルキレン基を示し、Qは酸素原子または硫黄原子を表す。)
 2.前記硫酸イオンの含有量が0~100ppmであることを特徴とする前記1に記載の分散液。
 3.前記ポリアニオンが下記一般式(II)で表される繰り返し構造単位を有するものであることを特徴とする前記1または2に記載の分散液。
Figure JPOXMLDOC01-appb-C000004
〔式中、MはH、アルカリ金属イオン又はアンモニウムイオンを表す。〕
 4.透明基材上に、導電性繊維を含有する透明導電層を有する透明電極であって、該透明電極が前記1から3の何れかに記載の分散液を用いて形成されたものであることを特徴とする透明電極。
 5.透明基材上に、導電性繊維を含有する第一の透明導電層上に前記1から3の何れかに記載の分散液を用いて形成された第二の透明導電層を有することを特徴とする透明電極。
 6.前記導電性繊維が銀ナノワイヤであることを特徴とする前記4または5に記載の透明電極。
 7.透明基材上の第一の導電層と、前記1から3の何れかに記載の分散液を用いて形成された第二の透明導電層を有する透明電極であって、該第一の導電層がパターン状に形成された金属材料からなることを特徴とする透明電極。
 8.前記1から3の何れかに記載の分散液を用いる透明電極を有することを特徴とする有機エレクトロルミネッセンス素子。
 本発明の上記手段により、平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れ、また発光均一性に優れ、かつ発光均一性の劣化が少なく耐久性に優れる有機EL素子を与える透明電極が提供できる。
 さらに、当該電極を用いた発光均一性が高く、発光均一性の劣化が少なく耐久性に優れる有機EL素子が提供できる。
本発明の分散液を塗布した時の構造模式図である。 本発明の透明電極を示す構造模式図である。 本発明の透明電極の他の例を示す構造模式図である。 本発明のパターン状に形成された金属材料からなる第一導電層と本発明に係る導電性高分子化合物を含有する第二導電層の例を示す構造模式図である。
 本発明は、透明基材上に、導電性繊維を含有する第一の透明導電層を有する本発明の分散液を用いた透明電極であって、該透明電極は、該第一の透明導電層が上記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含有するか、または該第一の透明導電層上に前記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含有する第二の透明導電層を有することを特徴とする。
 本発明においては特に、電極が導電性繊維と上記一般式(I)で表される繰り返し構造単位を有する高分子化合物(以下、単に本発明に係る高分子化合物とも称する。)を有する透明導電層を有することで、平滑性、光透過性に優れ、かつ高温、高湿度環境下においても平滑性、光透過性の劣化が少なく耐久性に優れ、発光均一性が高く発光寿命が長い有機EL素子を与える透明電極が得られる。
 以下、本発明とその構成要素について説明する。
 〔導電性高分子化合物〕
 本発明においては、透明電極は、第一の透明導電層が前記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含有するか、または第一の透明導電層上に上記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含有する第二の透明導電層を有する。
 本発明において、「導電性」とは、電気が流れる状態を指し、JIS K 7194の「導電電性プラスチックの4探針法による抵抗率試験方法」に準拠した方法で測定したシート抵抗が10×8Ω/□より低いことをいう。
 本発明に係わる導電性高分子化合物は、前記一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンを含むものであって、前記ポリアニオンが前記一般式(II)で表される繰り返し構造単位を有する高分子アニオン化合物(以下ポリアニオンとも称する)が好ましい。
 一般式(II)中、MはH、アルカリ金属イオン、アンモニウムイオンを表す。
 一般式(II)で表される繰り返し構造単位を有するポリアニオンの合成は、塊状、溶液、沈澱、懸濁または(逆)乳化重合法によって実施することができる。適当な分子量を得るには溶液重合法が好ましい。
 一般式(II)で表される繰り返し構造単位を有するポリアニオンの合成に使用する開始剤としては、例えば過酸化物、ヒドロペルオキシド類、過硫酸塩、アゾ化合物またはレドックス触媒等を用いることができる。過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の過流酸塩、2,2’-アゾビスブチロニトリル等のアゾ化合物が好ましく使用される。
 一般式(II)で表される繰り返し構造単位を有するポリアニオンの合成に使用する重合溶剤は、反応条件化で不活性であり、モノマー、生成する高分子化合物を溶解できれば特に制限はないが、水が好ましい。溶液重合は1~80質量%、好ましくは10~60質量%の総モノマー濃度で実施することができる。
 一般式(II)で表される繰り返し構造単位を有するポリアニオンの合成を実施する重合温度は、使用する開始剤によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。出発材料は溶剤中に最初に導入しても、溶剤中に別々に導入してもまたは一緒に導入してもよい。場合によっては適当な溶剤に溶解した遊離基開始剤の添加は、出発材料の添加前、添加と同時にまたは添加後に実施することができる。重合の妨害を回避するために、反応は還流下にまたは保護ガス雰囲気、好ましくは窒素ガスまたはアルゴン中で実施することが好ましい。
 ポリアニオンの合成に使用するモノマーは、アクリル酸、メタクリル酸、マレイン酸、ビニルスルホン酸およびこれらのアルカリ金属塩、アンモニウム塩が挙げられる、これらは単独で使用しても、複数使用して共重合体を合成しても良い。
 一般式(II)で表される繰り返し構造単位を有するポリアニオンの重量平均分子量は好ましくは1,000~2,000,000の範囲、より好ましくは2,000~500,000、さらに好ましくは3000~100000の範囲内である。
 ポリアニオンの分子量はゲルパーミッションクロマトグラフィーまたは浸透圧測定の様な慣用の方法で測定することができる。
 本発明の導電性高分子化合物は、主鎖がπ共役系で構成されるカチオン性の高分子化合物を有し、上記ポリアニオンを対アニオンとして有する複合体構成を有する。
 本発明のカチオン性高分子化合物は、主鎖がπ共役系で構成されている高分子化合物であれば特に制限されず、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、およびこれらの共重合体等が挙げられる。これらの中でもポリピロール類、ポリチオフェン類およびポリアニリン類が好ましく用いられる。
 カチオン性の高分子化合物は無置換のままでも、充分な導電性、バインダ樹脂への相溶性を得ることができるが、導電性および相溶性をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基等の官能基を高分子化合物に導入することが好ましい。
 カチオン性の高分子化合物の具体例としては、ポリピロール、ポリ(N-メチルピロール)、ポリ(3-メチルピロール)、ポリ(3-エチルピロール)、ポリ(3-n-プロピルピロール)、ポリ(3-ブチルピロール)、ポリ(3-オクチルピロール)、ポリ(3-デシルピロール)、ポリ(3-ドデシルピロール)、ポリ(3,4-ジメチルピロール)、ポリ(3,4-ジブチルピロール)、ポリ(3-カルボキシピロール)、ポリ(3-メチル-4-カルボキシピロール)、ポリ(3-メチル-4-カルボキシエチルピロール)、ポリ(3-メチル-4-カルボキシブチルピロール)、ポリ(3-ヒドロキシピロール)、ポリ(3-メトキシピロール)、ポリ(3-エトキシピロール)、ポリ(3-ブトキシピロール)、ポリ(3-メチル-4-ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3-メチルチオフェン)、ポリ(3-エチルチオフェン)、ポリ(3-プロピルチオフェン)、ポリ(3-ブチルチオフェン)、ポリ(3-ヘキシルチオフェン)、ポリ(3-ヘプチルチオフェン)、ポリ(3-オクチルチオフェン)、ポリ(3-デシルチオフェン)、ポリ(3-ドデシルチオフェン)、ポリ(3-オクタデシルチオフェン)、ポリ(3-ブロモチオフェン)、ポリ(3-クロロチオフェン)、ポリ(3-ヨードチオフェン)、ポリ(3-シアノチオフェン)、ポリ(3-フェニルチオフェン)、ポリ(3,4-ジメチルチオフェン)、ポリ(3,4-ジブチルチオフェン)、ポリ(3-ヒドロキシチオフェン)、ポリ(3-メトキシチオフェン)、ポリ(3-エトキシチオフェン)、ポリ(3-ブトキシチオフェン)、ポリ(3-ヘキシルオキシチオフェン)、ポリ(3-ヘプチルオキシチオフェン)、ポリ(3-オクチルオキシチオフェン)、ポリ(3-デシルオキシチオフェン)、ポリ(3-ドデシルオキシチオフェン)、ポリ(3-オクタデシルオキシチオフェン)、ポリ(3-メチル-4-メトキシチオフェン)、ポリ(3,4-エチレンジオキシチオフェン)、ポリ(3-メチル-4-エトキシチオフェン)、ポリ(3-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシチオフェン)、ポリ(3-メチル-4-カルボキシエチルチオフェン)、ポリ(3-メチル-4-カルボキシブチルチオフェン)、ポリアニリン、ポリ(2-メチルアニリン)、ポリ(3-イソブチルアニリン)、ポリ(2-アニリンスルホン酸)、ポリ(3-アニリンスルホン酸)等が挙げられる。
 これらの中でも特に前記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含有し、更に本発明に係る導電性高分子化合物が前記一般式(II)で表される繰り返し構造単位を有するポリアニオンを有する態様が好ましい態様である。
 (一般式(I)で表される繰り返し構造単位)
 一般式(I)中、Aは置換基を有しても良い炭素数1~4のアルキレン基を示し、Qは酸素原子または硫黄原子を表す。
 一般式(I)で表される繰り返し構造単位を含む高分子化合物は、同一の構造単位を繰り返し含んでもよいし、異なる2種類以上の構造単位を繰り返し含んでいても良い。
 前記一般式(I)で表される繰り返し構造単位を含む高分子化合物は、下記一般式(I-a)で表される化合物を酸化重合することによって得ることが出来る。
Figure JPOXMLDOC01-appb-C000005
 一般式(I-a)においてQが酸素原子である3,4-ジ-置換チオフェンは、3,4-ジヒドロキシチオフェン-2,5-ジカルボン酸エステルのアルカリ金属塩と適当なアルキレンジハライドとを反応させ、次いで遊離3,4-(アルキレンジオキシ-)チオフェン-2,5-ジカルボン酸を脱カルボン酸にして得ることができる(例えば、Tetrahedron,1967,23,2437-2441及びJ.Am.Chem.Soc.,1945,67,2217-2218参照)。
 本発明に係る一般式(I)で表される繰り返し構造単位を有する高分子化合物の合成については、一般式(I-a)で表される化合物を例にして説明する。
 上記の一般式(II)で表される繰り替えし構造単位を有するポリアニオンの存在下に、ピロールの酸化重合に代表的に用いる酸化剤を用い、溶媒中で一般式(I-a)で表される化合物の酸化重合により得られる。
 ポリチオフェンは酸化重合により正に荷電されるが、その数および位置を明確に求めることは困難である。
 本発明に係る一般式(I)で表される繰り返し構造単位を有する高分子化合物の合成は、一般式(II)で表される繰り返し構造単位を有するポリアニオンと、カチオン性高分子化合物を形成する構造単位である化合物を含有する溶媒中で、重合反応が完了するまで所定の重合温度で撹拌することで行われる。
 カチオン性高分子化合物と一般式(II)で表される繰り返し構造単位を有するポリアニオンの質量比は、ポリアニオンがリッチな環境ならば特に限定はないが、カチオン性高分子化合物1に対し50以下が好ましく、より好ましくは25以下、更に好ましくは10以下である。
 重合時間はバッチの大きさ、重合温度および酸化剤に依存して数分乃至30時間の間であり得る。好ましい重合時間は一般に30分乃至24時間の間である。
 適切な酸化剤は例えばJ.Am.Soc.85、454(1963)に記載されるピロールの酸化重合に適するいずれかの酸化剤である。実際的な理由のために、安価で且つ取扱い易い酸化剤例えば鉄(III)塩例えばFeCl、Fe(ClO、有機酸および有機残基を含む無機酸の鉄(III)塩(例えば、Fe(SO)、またはH、KCr、過硫酸アルカリ(例えば過硫酸カリウム、過硫酸ナトリウム)またはアンモニウム、過ホウ酸アルカリ、過マンガン酸カリウムおよび銅塩例えば四フッ化ホウ酸銅を用いることが好ましい。加えて、酸化剤として随時触媒量の金属イオン例えば鉄、コバルト、ニッケル、モリブデンおよびバナジウムイオンの存在下における空気および酸素も使用することができる。過硫酸塩並びに有機酸および有機残基を含む無機酸の鉄(III)塩の使用が腐食性でないために大きな応用上の利点を有する。有機残基を含む無機酸の鉄(III)塩の例には炭素数が1~20のアルカノールの硫酸エステルの鉄(III)塩である例えばラウリル硫酸の鉄(III)塩がある。有機酸の鉄(III)塩の例として次のものが挙げられる:炭素数が1~20のアルキルスルホン酸例えばメタンまたはドデカンスルホン酸;炭素数が1~20の脂肪族カルボン酸例えば2-エチルヘキシルカルボン酸;脂肪族パーフルオロカルボン酸例えばトリフルオロ酢酸およびパーフルオロオクタノン酸;脂肪族ジカルボン酸、例えばシュウ酸並びに殊に芳香族の、随時炭素数が1~20のアルキル置換されたスルホン酸例えばベンゼセンスルホン酸、p-トルエンスルホン酸およびドデシルベンゼンスルホン酸の鉄(III)塩、また上記の有機酸の鉄(III)塩の混合物も使用することができる。
 酸化重合反応において、一般式(II)で表される繰り返し構造単位は、対応するチオフェン各1モルに対して0.25~10個、好ましくは0.8~8個のアニオン基が存在する量で加えることが好ましい。
 理論的にはチオフェン1モル当り2.25当量の酸化剤が対応するチオフェンの酸化重合に必要である[例えばJ.Polym.Sci.PartA、Polymer Chemistry,第26巻、1287頁(1988)参照]。しかしながら実際には、酸化剤はある過剰量で、例えばチオフェン1モル当り0.1~2当量の過剰で用いる。
 重合に用いる有機溶剤としては、反応条件化で不活性であり、例えば脂肪族アルコール、例えばメタノール、エタノールおよびプロパノール;脂肪族ケトン、例えばアセトン、メチルエチルケトン;脂肪族カルボン酸エステル、例えば酢酸エチル、酢酸ブチル;芳香族炭化水素、例えばトルエンおよびキシレン;脂肪族炭化水素、例えばヘキサン、ヘプタンおよびシクロヘキサン;塩素化炭化水素、例えばジクロロメタンおよびジクロロエタン;脂肪族ニトリル、例えばアセトニトリル;脂肪族スルホキシドおよびスルホン、例えばジメチルスルホキシドおよびスルホラン;脂肪族カルボキシアミド、例えばメチルアセトアミドおよびジメチルホルムアミド;脂肪族および芳香族エーテル、例えばジエチルエーテルおよびアニソール等が挙げられる。さらに水又は水と上記有機溶剤との混合物も溶媒として使用することができる。好ましくは水である。
 酸化重合に用いられる溶媒の量としては、合成された高分子化合物の分散性の面から、本発明に係る高分子化合物が、0.1~80質量%、好ましくは0.5~50質量%の固体含有量を有するような溶媒の量が好ましい。
 酸化重合においては、使用する酸化剤および必要とする反応時間によって異なるが、一般に-10~250℃、好ましくは0~200℃、より好ましくは10~100℃で実施される。
 出発材料は溶剤中に最初に導入しても、溶剤中に別々に導入してもまたは一緒に導入してもよい。場合によっては適当な溶剤に溶解した酸化剤の添加は、出発材料の添加前、添加と同時にまたは添加後に実施することができる。重合の妨害を回避するために、反応は還流下にまたは保護ガス雰囲気、好ましくは窒素ガスまたはアルゴン中で実施することが好ましい。
 本発明に係る導電性高分子化合物は、一般式(II)で表される繰り返し構造単位以外にアニオン基を有する繰り返し構造単位を有してもよいが、全体のアニオン基のうち50%(モル)以上は一般式(II)で表される繰り返し構造単位であることが好ましく、特に90%以上が一般式(II)で表される繰り返し構造単位であることが好ましい。
 本発明に係る第一の透明導電層または第二の透明導電層は、透明なバインダー材料や添加剤を含んでいてもよい。透明なバインダー材料としては、塗布液を形成できる透明な樹脂であれば特に制限はなく、例えば、ポリエステル系樹脂、ポリスチレン系樹脂、アクリル系樹脂、ポリウレタン系樹脂、アクリルウレタン系樹脂、ポリカーボネート系樹脂、セルロース系樹脂、ブチラール系樹脂等を単独または複数併用して用いることができる。セルロース系樹脂、アクリル系樹脂が好ましい。
 透明なバインダー材料としては、天然ポリマー、合成樹脂やポリマーおよびコポリマー、その他フィルムを形成する媒体であれば、特に限定はない。これらのバインダー材料のうち、水溶性バインダーが好ましく用いることができる。水溶性バインダーとしては、例えば:ゼラチン、カゼイン、デンプン、アラビアゴム、ポリ(ビニルアルコール)、ポリ(ビニルピロリドン)、カルボキシメチルエーテルセルロース、ヒドロキシエチルセルロース、メチルヒドロキシエチルエーテルセルロース等のセルロース類、キトサン、デキストラン、グアーガム、ポリ(アクリルアミド)、ポリ(メチルアクリルアミド)、ポリ(エチルメチルアクリルアミド)、ポリ(アクリルアミド-アクリル酸)、ポリ(アクリル酸)、ポリ(メタクリル酸)、ポリ(アリルアミン)、ポリ(ブタジエン-無水マレイン酸)、ポリ(n-ブチルアクリレート-2-メタクリロイルトリメチルアンモニウムブロミド)、ポリ(3-クロロ-2-ヒドロキシプロピル-2-メタクリロキシトリメチルアンモニウムブロミド)、ポリ(2-ジメチルアミノエチルメタクリレート)、ポリ(エチレングリコール)、ポリ(エチレングリコール)-ビスフェノールA-ジグリシジルエーテル付加体、ポリ(エチレングリコール)ビス2-アミノエチル、ポリ(エチレングリコール)ジメチルエーテル、ポリ(エチレングリコール)モノカルボキシメチルエーテルモノメチルエーテル、ポリ(エチレングリコール)モノメチルエーテル、ポリ(エチレンオキシド)、ポリ(エチレンオキシド-b-プロピレンオキシド)、ポリエチレンイミン、ポリ(2-エチル-2-オキサゾリン)、ポリ(1-グリセロールメタクリレート)、ポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-エチルメタクリレート)、ポリ(2-ヒドロキシエチルメタクリレート-メタクリル酸)、ポリ(マレイン酸)、ポリ(メタクリルアミド)、ポリ(2-メタクリロキシエチルトリメチルアンモニウムブロミド)、ポリ(N-イソ-プロピルアクリルアミド)、ポリ(スチレンスルホン酸)、ポリ(N-ビニルアセトアミド)、ポリ(N-メチル-N-ビニルアセトアミド)、ポリ(ビニルアミン)、ポリ(2-ビニル-1-メチルピリジニウムブロミド)、ポリ(リン酸)、ポリ(2-ビニルピリジン)、ポリ(4-ビニルピリジン)、ポリ(2-ビニルピリジン-N-オキシド)、ポリ(ビニルスルホン酸)等が挙げられる。
 上記バインダー材料において、カルボン酸、スルホン酸、リン酸等を有する高分子化合物は、リチウム、ナトリウム、カリウム等の塩を有していてもよく、窒素原子を有する高分子化合物は塩酸塩等の構造を有していても良い。上記バインダー材料は1種でも複数種でも使用することができる。
 また、上記水溶性バインダーでポリアクリレートが好ましく、より好ましくはポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-ヒドロキシエチルアクリレート)共重合体である。
 さらに、本発明に係る第一の透明導電層または第二の透明導電層は、本発明の効果を損なわない範囲で、本発明に係る導電性高分子化合物の他に、他の導電性高分子化合物を含有してもよい。
 本発明に係る第一の透明導電層の厚さは、使用する導電性繊維の形状や含有量によって異なるが、大凡の目安として、導電性繊維の平均直径以上500nm以下が好ましい。後述の加圧方法などにより、本発明に係る第一の透明導電層の厚さを薄くすると、厚さ方向の導電性繊維のネットワーク形成を密にすることができるため好ましい。
 また、第二の透明導電層を設ける場合、第二の透明導電層の厚さは、1nm~1μmが好ましく、特に3nm~500nmの範囲が好ましい。
 本発明において、透明電極は、全光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが特に好ましい。全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。また、本発明の透明電極における透明導電層の電気抵抗値としては、表面抵抗率として1000Ω/□以下であることが好ましく、100Ω/□以下であることがより好ましい。さらには、電流駆動型オプトエレクトロニクスデバイスに適用するためには、50Ω/□以下であることが好ましく、10Ω/□以下であることが特に好ましい。10Ω/□以下であると各種オプトエレクトロニクスデバイスにおいて、透明電極として機能することができて好ましい。
 前記表面抵抗率は、例えば、JIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)などに準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。
 本発明の透明電極の厚みには特に制限はなく、目的に応じて適宜選択することができるが、一般的に10μm以下であることが好ましく、厚みが薄くなるほど透明性や柔軟性が向上するためより好ましい。
 本発明の一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンを含む分散液を200℃で60分加熱して発生する硫黄酸化物量は、過酸化水素で全量酸化することで硫酸イオンにし、その量をイオンクロマトグラフィーで定量できる。硫黄酸化物が透明電極、有機エレクトロルミネッセンス素子の経時の保存や通電、発光等の使用で発生すると、電極や素子の安定性を著しく劣化させるため、硫黄酸化物の発生が少ない材料を用いる必要がある。透明電極、有機エレクトロルミネッセンス素子の保存や使用で問題ない範囲としては、硫酸イオン換算で分散液の全量に対して0~300ppmである。更に好ましくは0~100ppmであり、より好ましくは0~50ppmである。
 硫黄酸化物量を減量する方法としては、特に限定されないが不活性ガスを分散液中にバブリングし気体成分を除去する分散液の脱気、分散液の溶媒を除去し得られた固形分をソックスレー抽出器により洗浄、また分散液を限外ろ過により洗浄、更に高純度の溶媒の使用や再沈殿による精製後再分散する方法やこれらを複数使用する等の方法が挙げられる。
 本発明の分散液中に不活性ガスをバブリングするガスとしては、二酸化炭素、窒素、ヘリウム、ネオン、アルゴン、キセノン等希ガスが挙げられる。この中でも、二酸化炭素、窒素、アルゴンが好ましく、より好ましくは窒素、アルゴンで、更に好ましくは窒素である。
 本発明の分散液中に不活性ガスをバブリングする量や時間は、全体量、攪拌の有無やスピードにより異なるが、使用する不活性ガスのトータル量は分散液体積の0.1~100倍が好ましく、より好ましくは0.5~50倍で、更に好ましくは1~30倍である。バブリング時間は特に制限はないが、10時間以内が好ましく、より好ましくは3時間以内で、更に好ましくは1時間以内である。
 本発明の分散液の溶媒を除去する方法としては、ロータリーエバポレーターによる減圧留去、凍結乾燥機等による溶媒除去が挙げられる。減圧度、温度は特に制限はなく、分散している導電性高分子化合物にダメージがない範囲で行なう。
 本発明の分散液中の溶媒を除去することにより得られた固形分のソックスレー抽出器による洗浄溶媒は、一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンに対する溶解性が低ければ特に制限はなく、ヘキサン、トルエン、ジエチルエーテル、酢酸エチル、アセトン、アセトニトリル等が好ましく、より好ましくはヘキサン、トルエン、アセトンである。
 本発明の分散液の溶媒を除去することにより得られた固形分のソックスレー抽出器による洗浄時間には特に制限はないが、10時間以内が好ましく、より好ましくは5時間以内で、更に好ましくは3時間以内である。
 本発明の分散液を限外ろ過により洗浄する方法には特に制限はなく、装置、フィルター種等既知の方法により実施することができる。限外ろ過を行ない不純物を除去しながら純水や超純水で置換することが望ましい。また、導電性高分子化合物を合成する場合も純水の代わりに超純水を使用することが好ましく、更に脱気、ソックスレー抽出器や限外ろ過等の洗浄と組合すことが好ましい。また、本発明の分散液を一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンに対する溶解性が低い大量の溶媒中へ滴下し、再沈殿を行ない、使用溶媒で洗浄、乾燥後再び超純水等に再分散してもよい。
 〔透明基材〕
 本発明において、「透明」とは、JIS K 7361-1(ISO 13468-1に対応)の「プラスチック-透明材料の全光線透過率の試験方法」に準拠した方法で測定した可視光波長領域における全光線透過率が60%以上であることをいう。
 本発明の透明電極に用いられる透明基材としては、高い光透過性を有していればそれ以外に特に制限はない。例えば、基材としての硬度に優れ、またその表面への透明導電層の形成のし易さ等の点で、透明ガラス基板、透明樹脂基板、透明樹脂フィルムなどが好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが好ましい。
 透明基材として好ましく用いることができる透明樹脂フィルムには特に制限はなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。
 透明基材として、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~780nm)における透過率が80%以上である樹脂フィルムが好ましく、中でも透明性、耐熱性、取り扱いやすさ、強度およびコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
 本発明に用いられる透明基材には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基材と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。
 屈折率を調製する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調製して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。また、透明基材にはバリアコート層が予め形成されていてもよいし、透明導電層の反対側にはハードコート層が予め形成されていてもよい。
 尚、透明基材には前述のように表面処理を施したり、目的に応じて各種の機能性層を設けることができる。
 (第一の透明導電層)
 本発明の透明電極において、導電性繊維を用いる場合は、第一の透明導電層に導電性繊維を含有し、パターン状に形成された金属材料を用いる場合は、第一の透明導電層に金属材料をパターン状に形成する。
 〔導電性繊維〕
 本発明に係る導電性繊維とは、導電性を有し、かつその長さが直径(太さ)に比べて十分に長い形状を持つものである。本発明に係る導電性繊維は、透明導電層内において導電性繊維が互いに接触し合うことにより3次元的な導電ネットワークを形成し補助電極として機能すると考えられる。従って、導電性繊維が長い方が導電ネットワーク形成に有利であるため好ましい。一方で、導電性繊維が長くなると導電性繊維が絡み合って凝集体を生じ、光学特性を劣化させる場合がある。導電ネットワーク形成や凝集体生成には、導電性繊維の剛性や直径等も影響するため、使用する導電性繊維に応じて最適な平均アスペクト比(アスペクト=長さ/直径)のものを使用することが好ましい。大凡の目安として、平均アスペクト比は、10~10,000であるものが好ましい。
 形状としては中空チューブ状、ワイヤ状、ファイバー状のもの等があり、例えば、金属でコーティングした有機繊維や無機繊維、導電性金属酸化物繊維、金属ナノワイヤ、炭素繊維、カーボンナノチューブ等がある。
 本発明においては、透明性の観点から太さが300nm以下の導電性繊維であることが好ましく、併せて導電性も満足するために、導電性繊維は金属ナノワイヤおよびカーボンナノチューブの群から選ばれる少なくとも1種であることが好ましい。さらには、コスト(原材料費、製造費)と性能(導電性、透明性、可撓性)の観点から、銀ナノワイヤを最も好ましく用いることができる。
 本発明において上記導電性繊維の長さや直径、アスペクト比の平均値は、十分な数の導電性繊維について電子顕微鏡写真を撮影し、個々の導電性繊維像の計測値の算術平均から求めることができる。導電性繊維の長さは、本来直線状に伸ばした状態で測定すべきであるが、現実には屈曲している場合が多いため、電子顕微鏡写真から画像解析装置を用いてナノワイヤの投影径および投影面積を算出し、円柱体を仮定して算出する(長さ=投影面積/投影径)こともできる。また、長さや直径の相対標準偏差は、測定値の標準偏差を平均値で除した値に100を乗じた値で表す。計測対象の導電性繊維のサンプル数は、少なくとも100個以上が好ましく、300個以上がより好ましい。
  相対標準偏差[%]=(測定値の標準偏差/平均値)×100
 〔金属ナノワイヤ〕
 一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤとは、原子スケールからnmサイズの直径を有する線状構造体を意味する。
 本発明に係る導電性繊維に適用される金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に、3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。
 本発明に係る金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)および鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、およびマグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。
 本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤの製造方法としては特開2006-233252号公報等、Cuナノワイヤの製造方法としては特開2002-266007号公報等、Coナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.およびChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。
 〔カーボンナノチューブ〕
 カーボンナノチューブは、厚さ数原子層のグラファイト状炭素原子面(グラフェンシート)が筒形に巻かれた形状からなる炭素系繊維材料であり、その周壁の構成数から単層ナノチューブ(SWNT)と多層ナノチューブ(MWNT)とに大別され、また、グラフェンシートの構造の違いからカイラル(らせん)型、ジグザグ型、アームチェア型に分けられ、各種のものが知られている。
 本発明に係る導電性繊維に適用されるカーボンナノチューブとしては、いずれのタイプのカーボンナノチューブも用いることができ、また、これらの種々のカーボンナノチューブを複数混合して用いてもよいが、導電性に優れた単層カーボンナノチューブであることが好ましく、さらには金属性のアームチェア型単層カーボンナノチューブであることがより好ましい。
 カーボンナノチューブの形状としては、1つのカーボンナノチューブで長い導電パスを形成するために、アスペクト比(=長さ/直径)が大きい、すなわち細くて長い単層カーボンナノチューブであることが好ましい。例えば、アスペクト比が102以上、好ましくは103以上のカーボンナノチューブが挙げられる。カーボンナノチューブの平均長さは、3μm以上であることが好ましく、さらには3~500μmが好ましく、特に、3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は100nmより小さいことが好ましく、1~50nmが好ましく、1~30nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。
 カーボンナノチューブの製造方法は特に限定されるものではなく、二酸化炭素の接触水素還元、アーク放電法、レーザー蒸発法、CVD法、気相成長法、一酸化炭素を高温高圧化で鉄触媒と共に反応させて気相で成長させるHiPco法等の公知の手段を用いることができる。また、副生成物や触媒金属等の残留物を除去するために、洗浄法、遠心分離法、ろ過法、酸化法、クロマトグラフ法等の種々の精製法によって、より高純度化されたカーボンナノチューブの方が、各種機能を十分に発現できることから好ましい。
 〔パターン状金属材料〕
 第1導電層に金属材料をパターン状に形成場合は、金属材料からなる光不透過の導電部と透光性窓部を併せ持つフィルム基板となり、透明性、導電性に優れた電極基板が作製できる。金属材料は、導電性に優れていれば特に制限はなく、例えば、金、銀、銅、鉄、ニッケル、クロム等の金属の他に合金でもよい。特に、後述のようにパターンの形成のしやすさの観点から金属材料の形状は、金属微粒子または金属ナノワイヤであることが好ましく、金属材料は導電性の観点から銀であることが好ましい。
 パターン形状には特に制限はないが、例えば、導電部がストライプ状、メッシュ状あるいはランダムな網目状であってもよいが、開口率は透明性の観点から80%以上であることが好ましい。開口率とは、光不透過の導電部が全体に占める割合である。例えば、導電部がストライプ状あるいはメッシュ状であるとき、線幅100μm、線間隔1mmのストライプ状パターンの開口率は、およそ90%である。パターンの線幅は10~200μmが好ましい。細線の線幅が10μm未満では、所望の導電性が得られず、また200μmを超えると透明性が低下する。細線の高さは、0.1~10μmが好ましい。細線の高さが0.1μm未満では、所望の導電性が得られず、また10μmを超えると有機電子デバイスの形成において、電流リークや機能層の膜厚し分布不良の要因となる。
 導電部がストライプ状またはメッシュ状の電極を形成する方法としては、特に、制限はなく、従来公知な方法が利用できる。例えば、基材全面に金属層を形成し、公知のフォトリソ法によって形成できる。具体的には、基材上に全面に、印刷、蒸着、スパッタ、めっき等の1あるいは2以上の物理的または化学的形成手法を用いて導電体層を形成する、あるいは、金属箔を接着剤で基材に積層した後、公知のフォトリソ法を用いて、エッチングすることにより、所望のストライプ状あるいはメッシュ状に加工できる。
 別な方法としては、金属微粒子を含有するインクをスクリーン印刷により所望の形状に印刷する方法や、メッキ可能な触媒インクをグラビア印刷、あるいは、インクジェット方式で所望の形状に塗布した後、メッキ処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。銀塩写真技術を応用した方法については、例えば、特開2009-140750号公報の[0076]-[0112]、及び実施例を参考にして実施できる。触媒インクをグラビア印刷してメッキ処理する方法については、例えば、特開2007-281290号公報を参考にして実施できる。
 ランダムな網目構造としては、例えば、特表2005-530005号公報に記載のような、金属微粒子を含有する液を塗布乾燥することにより、自発的に導電性微粒子の無秩序な網目構造を形成する方法を利用できる。
 〔透明電極〕
 本発明の透明電極の構造模式図を図に示す。
 図1は、本発明の代表的な透明電極の一例を示す構造模式図である。透明電極は、透明基材41上に第一の透明導電層31を有し、該第一の透明導電層31は導電性繊維11および本発明に係る導電性高分子化合物21を含有する。
 図2は、本発明の代表的な透明電極の別の一例を示す構造模式図であって、透明基材41上に導電性繊維11を含む第一の透明導電層31を有し、該第一の透明導電層31の上に、本発明に係る導電性高分子化合物21を含有する第二の透明導電層を形成する。
 図3は、本発明の代表的な透明電極のさらに別の一例を示す構造模式図であって、透明基材41上に導電性繊維11を含む第一の透明導電層31を有し、該第一の透明導電層31の上に、本発明に係る導電性高分子化合物21を含有する第二の透明導電層32を形成するが、第二の透明導電層32の一部は、導電性繊維11を含む。即ち、導電性繊維11が第一の透明導電層31と第二の透明導電層32の両層に共有されている状態を指す。
 図4において、1はパターン状に形成された金属材料からなる第一導電層、2は本発明に係る導電性高分子化合物を含有する第二導電層、3は基材を示す。
 〔透明電極の製造方法〕
 本発明の透明電極は、下記(1)~(3)の方法で作製することができる。
 (1)透明基材上に導電性繊維および前記一般式(I)で表される繰り返し構造単位を有する導電性高分子化合物を含む混合物を用い、導電性繊維および前記一般式(I)で表される繰り返し構造単位を有する導電性高分子化合物を含有する層を形成する工程を有する製造方法。
 この場合、上記混合物が下述するように水系分散物であることが好ましい態様である。
 (2)透明基材上に、導電性繊維を含有する第一の透明導電層を形成する工程、および第一の透明導電層上に一般式(I)で表される繰り返し構造単位を有する導電性高分子化合物を含有する第二の透明導電層を形成する工程を有する製造方法。
 (3)透明基材上に、パターン状金属材料を含有する第一の透明導電層を形成する工程、および第一の透明導電層上に一般式(I)で表される繰り返し構造単位を有する導電性高分子化合物を含有する第二の透明導電層を形成する工程を有する製造方法。
 上記第一または第二の透明導電層を形成する工程に用いられる方法としては特に制限はないが、生産性の改善、平滑性や均一性などの電極品質の向上、環境負荷軽減の観点から、塗布法や印刷法などの液相成膜法を用いることが好ましい。
 塗布法としては、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法などを用いることができる。印刷法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法などを用いることができる。
 上記(1)の工程に用いられる方法としては、透明基材上に導電性繊維および前記一般式(I)で表される繰り返し構造単位を有する導電性高分子化合物を含む混合物を塗布して形成する方法、または離型性基材の離型面状に導電性繊維および前記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含む混合物を塗布し塗布により形成された導電層を透明基材上転写して形成する方法がある。
 上記(2)、(3)の第二の透明導電層を形成する工程に用いられる方法としては、第一の透明導電層の上に、一般式(I)で表される繰り返し構造単位を有する高分子化合物を含有する塗布液を塗布し形成する方法がある。
 本発明においては、上記の導電性繊維および前記一般式(I)で表される繰り返し構造単位を有する高分子化合物を含む混合物または第二の透明導電層を形成するための塗布液として、水溶性バインダー樹脂を含有する水系分散物を用いることが好ましい態様である。
 本発明の透明電極を製造する製造方法としては、特に下記の手段が好ましく用いられる。
 イ)透明基材上に導電性繊維、一般式(I)で表される繰り返し構造単位を有する導電性高分子化合物および水溶性バインダー樹脂を含有する水系分散物を塗布することにより第一の透明導電層を形成する製造方法。水系分散物は、水溶性バインダー樹脂を含有し、導電性繊維を分散含有する。水溶性バインダー樹脂としては、前述の水溶性バインダーを用いることができる。
 ロ)透明基材上に導電性繊維、或いはパターン状金属材料を含有する塗布液を塗布、乾燥、必要に応じて焼成して第一の透明導電層を形成する工程と、この第一の透明導電層上に一般式(I)で表される繰り返し構造単位を有する高分子化合物および水溶性バインダー樹脂を含む塗布液を塗布することにより第二の透明導電層を形成する工程とを有する方法により透明導電層を形成する製造方法。
 ハ)離型性基材の離型面上に、導電性繊維を含む第一の透明導電層を形成した後、第一の透明導電層を透明基材上に転写することにより第一の透明導電層を形成する工程およびこの第一の透明導電層上に、一般式(I)で表される繰り返し構造単位を有する高分子化合物および水溶性バインダー樹脂を含む塗布液を塗布することにより第二の透明導電層を形成する工程とを有する方法により透明導電層を形成する製造方法。
 前述イ)において、導電性繊維、導電性高分子化合物、および水溶性バインダー樹脂の添加量に特に制限はないが、導電性繊維は導電性と透過率の関係から0.50g/mが好ましく、より好ましくは0.10g/m以下である。また導電性高分子化合物は固形分として、導電性繊維質量の50倍以下が好ましく、より好ましくは10倍以下であり、さらに好ましくは5倍以下である。水溶性バインダー樹脂は、導電性バインダー固形分の5倍以下が好ましく、より好ましくは3倍以下である。
 前述の透明電極の製造方法ロ)において、導電性繊維、あるいはパターン状金属材料、導電性高分子化合物、および水溶性バインダー樹脂の添加量は、各々前述の透明電極の製造方法イ)と同様の添加量が好ましい。
 前述の透明電極の製造方法ハ)において、用いられる離型性基板としては、樹脂基板や樹脂フィルムなどが好適に挙げられる。該樹脂には特に制限はなく、公知のものの中から適宜選択することができ、例えば、ポリエチレンテレフタレート樹脂、塩化ビニル系樹脂、アクリル系樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂などの合成樹脂の単層あるいは複数層からなる基板やフィルムが好適に用いられる。さらにガラス基板や金属基板を用いることもできる。また、離型性基板の表面(離型面)には、必要に応じてシリコン樹脂やフッ素樹脂、ワックスなどの離型剤を塗布して表面処理を施してもよい。
 離型性基板表面は、透明導電層を転写した後の表面の平滑性に影響を与えるため、高平滑であることが望ましく、具体的にはRy≦50nmであることが好ましく、Ry≦40nmであることがより好ましく、Ry≦30nmであることがさらに好ましい。また、Ra≦10nmであることが好ましく、Ra≦5nmであることがより好ましく、Ra≦1nmであることがさらに好ましい。
 上記の工程において、導電性繊維を塗布した後、カレンダー処理や熱処理を施し導電性繊維間の密着性を高めることや、プラズマ処理を施し導電性繊維間の接触抵抗を低減することは、導電性繊維のネットワーク構造の導電性を向上させる方法として有効である。また、上記工程において、離型性基板の離型面は、予めコロナ放電(プラズマ)などにより親水化処理していてもよい。
 上記転写する工程を有する方法において、転写は接着層を介して行ってもよい。転写層は離型性基板側に設けても良いし、透明基材側に設けても良い。接着層に用いられる接着剤としては、可視領域で透明で転写能を有する材料であれば特に限定されない。透明であれば、硬化型樹脂でも良いし、熱可塑性樹脂でも良い。
 硬化型樹脂として、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂などが挙げられるが、これらの硬化型樹脂のうちでは、樹脂硬化のための設備が簡易で作業性に優れることから、紫外線硬化型樹脂を用いることが好ましい。紫外線硬化型樹脂とは紫外線照射により架橋反応等を経て硬化する樹脂で、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられる。例えば、アクリルウレタン系樹脂、ポリエステルアクリレート系樹脂、エポキシアクリレート系樹脂、ポリオールアクリレート系樹脂等が挙げられる。本発明では、バインダーとしてアクリル系、アクリルウレタン系の紫外線硬化型樹脂を主成分とすることが好ましい。
 アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載のものを用いることができる。例えば、ユニディック17-806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることができ、特開昭59-151112号公報に記載のものを用いることができる。
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号公報に記載のものを用いることができる。
 紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を重合させたもの挙げることができる。
 モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることができる。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることができる。
 これらの中で、バインダーの主成分として、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパン(メタ)アクリレート、トリメチロールエタン(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレートから選択されるアクリル系の活性線硬化樹脂が好ましい。
 これら紫外線硬化型樹脂の光反応開始剤としては、具体的には、ベンゾインおよびその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等およびこれらの誘導体を挙げることができる。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用できる。また、エポキシアクリレート系の光反応開始剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることができる。紫外線硬化型樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1~15質量部であり、好ましくは1~10質量部である。
 透明導電層を形成した離型性基板と透明基材とを接着(貼合)し、紫外線等を照射して接着剤を硬化した後に離型性基板を剥離することにより、透明導電層を透明基材側に転写することができる。ここで、接着方法は特に限定されることなく、シートプレス、ロールプレス等により行うことができるが、ロールプレス機を用いて行うことが好ましい。ロールプレスは、ロールとロールの間に接着すべきフィルムを挟んで圧着し、ロールを回転させる方法である。ロールプレスは均一に圧力がかけられ、シートプレスよりも生産性が良く好適に用いることができる。
 〔パターニング方法〕
 本発明に係る第一の透明導電層または第一の透明導電層と第二の透明導電層とからなる透明導電層は、パターニングすることができる。パターニングの方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。例えば、離型面上にパターニングされた透明導電層を形成した後、透明基材上に転写することによってパターニングされた透明電極を形成する方法を用いることができ、具体的には、以下のような方法を好ましく用いることができる。
i)離型性基板上に印刷法を用いて透明導電層をパターン様に直接形成する方法
ii)離型性基板上に透明導電層を一様に形成した後、一般的なフォトリソプロセスを用いてパターニングする方法
iii)例えば紫外線硬化型樹脂を含む導電性材料を使用して透明導電層を一様に形成した後、フォトリソプロセス様にパターニングする方法
iv)離型性基板上に予めフォトレジストで形成したネガパターン上に透明導電層を一様に形成し、リフトオフ法を用いてパターニングする方法
 〔表面の平滑性〕
 本発明の透明電極は、透明導電層の表面の平滑性(第一の透明導電層または第二の透明導電層の表面の平滑性)がRy≦50nm、また、併せてこの表面の平滑性はRa≦10nmであることが好ましい。透明導電層の表面の平滑性を表すRyとRaは、Ry=最大高さ(表面の山頂部と谷底部との高低差)とRa=算術平均粗さを意味し、JIS B601(1994)に規定される表面粗さに準ずる値である。RyやRaの測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができ、例えば、以下の方法で測定できる。
 AFMとして、セイコーインスツルメンツ社製SPI3800NプローブステーションおよびSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーは、XY方向20μm、Z方向2μmが走査可能なものを使用する。カンチレバーは、セイコーインスツルメンツ社製シリコンカンチレバーSI-DF20で、共振周波数120~150kHz、バネ定数12~20N/mのものを用い、DFMモード(Dynamic Force Mode)で測定する。測定領域80×80μmを、走査周波数1Hzで測定する。
 本発明において、Ryの値は50nm以下であることがより好ましく、40nm以下であることがさらに好ましい。同様に、Raの値は10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。
 〔有機エレクトロルミネッセンス素子〕
 本発明の有機エレクトロルミネッセンス素子は、本発明の透明電極を有することを特徴とする。
 本発明の有機エレクトロルミネッセンス素子は、有機発光層を含む有機層および本発明の透明電極を有する。
 本発明における有機エレクトロルミネッセンス素子は、本発明の透明電極を陽極として用いることが好ましく、有機発光層、陰極については有機エレクトロルミネッセンス素子に一般的に使われている材料、構成等の任意のものを用いることができる。
 有機エレクトロルミネッセンス素子の素子構成としては、陽極/有機発光層/陰極、陽極/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/有機発光層/電子輸送層/電子注入層/陰極、陽極/ホール注入層/有機発光層/電子注入層/陰極、等の各種の構成のものを挙げることができる。
 また、本発明において有機発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、および各種蛍光色素および希土類金属錯体、燐光発光材料等があるが、これらに限定されるものではない。またこれらの化合物のうちから選択される発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることも好ましい。
 有機発光層は上記の材料等を用いて公知の方法によって作製されるものであり、蒸着、塗布、転写などの方法が挙げられる。この有機発光層の厚みは0.5~500nmが好ましく、特に、0.5~200nmが好ましい。
 本発明の有機エレクトロルミネッセンス素子は、自発光型ディスプレイ、液晶用バックライト、照明等に用いることができる。本発明の有機エレクトロルミネッセンス素子は、均一にムラなく発光させることができるため、照明用途で用いることが好ましい。
 本発明の透明電極は高い導電性と透明性を併せ持ち、液晶表示素子、有機発光素子、無機電界発光素子、電子ペーパー、有機太陽電池、無機太陽電池等の各種オプトエレクトロニクスデバイスや、電磁波シールド、タッチパネル等の分野において好適に用いることができる。その中でも、透明電極表面の平滑性が厳しく求められる有機エレクトロルミネッセンス素子や有機薄膜太陽電池素子の透明電極として特に好ましく用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
[本発明のPEDOT(ポリ3,4-エチレンジオキシチオフェン)/PSS(ポリスチレンスルホン酸)分散液の調製]
(CP-1の作製)
 ポリ3,4-エチレンジオキシチオフェンとポリスチレンスルホン酸との複合体「CLEVIOS P VP AI4083」(H.C.Starck社製、固形分濃度;1.5%)20mlを三頭フラスコに入れた。窒素ライン(テフロン(登録商標)チューブ)の先にセプタム付ピペットを付け、ピペットの先が液面より下になるように三頭フラスコに設置した。その他は二方コックと玉栓を設置した。窒素ラインより0.5L/分の流量で20分間窒素をバブリングすることで、本発明の導電性高分子化合物の分散液であるCP-1を得た。
(CP-2の作製)
 CP-1の調製において、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)の代わりに、同じくポリ3,4-エチレンジオキシチオフェンとポリスチレンスルホン酸との複合体「CLEVIOS P VP CH8000」(H.C.Starck社製、固形分濃度;2.5%)を用いた以外は調製例1と同様な方法により本発明の導電性高分子化合物の分散液であるCP-2を得た。
(CP-3の作製)
 CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)20mlを凍結乾燥機に水を留去し、固体を得た。この粉体を、ヘキサンを溶媒としてソックスレーにより1時間洗浄を行なった。得られた固体に純水を加え、超音波照射により再分散を行なった結果、本発明の導電性高分子化合物の分散液であるCP-3を得た。
(CP-4の作製)
 CP-3の調製において、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)の代わりにCLEVIOS P VP CH8000(H.C.Starck社製、固形分濃度;2.5%)を用いた以外はCP-3と同様な方法により本発明の導電性高分子化合物の分散液であるCP-4を得た。
(CP-5の作製)
 CP-3の調製において、洗浄時間を3時間にした以外はCP-3と同様な方法により本発明の導電性高分子化合物の分散液であるCP-5を得た。
(CP-6の作製)
 CP-3の調製において、洗浄時間を12時間にし、純水の代わりに超純水を用いた以外はCP-3と同様な方法により本発明の導電性高分子化合物の分散液であるCP-6を得た。
[導電性高分子化合物の合成]
 以下に、導電性高分子化合物の合成例を示す。
 ポリビニルスルホン酸(PVS)の調製
 ポリビニルスルホン酸ナトリウム(100g、25%水溶液、アルドリッチ社製)を限外ろ過膜(ミリポア社製Biomax-100)を用い限外ろ過後、陽イオン交換体(Bayer AG Lewatit S100)を用い陽イオン交換し、純水で希釈することでポリビニルスルホン酸(PVS)の15%水溶液を得た。
 合成例1
 CP-A(PEDOT(ポリ3,4-エチレンジオキシチオフェンポリエチレンジオキシチオフェン)/PVS/PSS)の合成
 上記で調製したポリビニルスルホン酸(PVS)(0.61g、0.70mmol、15%水溶液、分子量130.10)、ポリスチレンスルホン酸(PSS)(0.31g、0.27mmol、18%水溶液、分子量206.19)、過硫酸カリウム(0.11g、0.4mmol、分子量270.32、関東化学社製)および硫酸鉄(III)・n水和物(0.5mg、8.8×10-4mmol[純度70%換算]、分子量399.88、関東化学社製)、を純水20mlに溶解した。攪拌された前記溶液中へ3,4-エチレンジオキシチオフェン(56mg、0.4mmol、分子量142.18、アルドリッチ社製)を添加し、室温で24時間重合させた。続いて、陰イオン交換体(BayerAG;Lewatit MP62)5.0g、陽イオン交換体(Bayer AG Lewatit S100)5.0gを溶液へ添加し、8時間攪拌した。イオン交換体をろ過によって取除き、分散液であるCP-Aを得た(固形分濃度:1.0%)。
 合成例2
 CP-B(PEDOT/PAA/PSS)の合成
 合成例1の本発明の分散液であるCP-Aの合成において、ポリアニオンであるポリビニルスルホン酸(PVS)(0.61g、0.70mmol、18%水溶液、分子量130.10)の代わりに、ポリアクリル酸(PAA)(38.9mg、0.27mmol、50%水溶液、分子量72.06、ポリマーサイエンス社製)を用いた以外は合成例1と同様な方法により分散液であるCP-Bを得た(固形分濃度:0.6%)。
 (CP-7,8の作製)
 CP-1の調製において、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)の代わりに分散液であるCP-Aを用いた以外はCP-1と同様な方法により本発明の導電性高分子化合物の分散液であるCP-7を得た。分散液であるCP-Bを用いた以外はCP-1と同様な方法により本発明の導電性高分子化合物の分散液であるCP-8を得た。
 (CP-9,10の作製)
 CP-3の調製において、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)の代わりに分散液であるCP-Aを用いた以外はCP-3と同様な方法により本発明の導電性高分子化合物の分散液であるCP-9を得た。分散液であるCP-Bを用いた以外はCP-3と同様な方法により本発明の導電性高分子化合物の分散液であるCP-10を得た。
 [ポリヒドロキシエチルアクリレート(PHEA-1)の合成]
 300mlナスフラスコに2-ヒドロキシエチルアクリレート(東京化成社製)5.0g(43.1mmol、Fw 116.12)、2,2’-アゾビス(2-メチルイソプロピオニトリル)0.7g(4.3mmol、Fw 164.21)及びテトラヒドロフラン100mlを加え、8時間加熱還流した。その後、溶液を室温まで冷却し、激しく攪拌されたメチルエチルケトン2.0L中へ滴下した。反応溶液を1時間攪拌後、メチルエチルケトンをデカンテーションし、メチルエチルケトン100mlで壁面に付着した重合体を3回洗浄した。重合体はテトラヒドロフラン100mlに溶解し、200mlフラスコへ移し、ロータリーエバポレーターによりテトラヒドロフランを減圧留去した。その後、80℃3時間減圧することで、残留しているTHFを留去し、数平均分子量57,800、分子量分布1.24のPHEA-1を4.1g(収率82%)得た。
 構造、分子量は各々1H-NMR(400MHz、日本電子社製)、GPC(Waters2695、Waters社製)で測定した。
<GPC測定条件>
 装置:Wagers2695(Separations Module)
 検出器:Waters 2414 (Refractive Index Detector)
 カラム:Shodex Asahipak GF-7M HQ
 溶離液:ジメチルホルムアミド(20mM LiBr)
 流速:1.0ml/min
 温度:40℃
 [銀ナノワイヤの作製]
 金属微粒子として、ポリビニルピロリドンK30(分子量5万;ISP社製)を用い、Adv.Mater.,2002,14,833~837に記載の方法に基づき、平均短径75nm、平均長さ35μmの銀ナノワイヤを作製し、限外濾過膜を用いて銀ナノワイヤを濾別、水洗処理した後、ヒドロキシプロピルメチルセルロース60SH-50(信越化学工業社製)を銀に対し25質量%加えた水溶液に再分散し、銀ナノワイヤ分散液を調製した。
 実施例1
 〔透明電極TC-101の作製;本発明〕
 調製した銀ナノワイヤ分散液を、易接着加工済みポリエチレンテレフタレートフィルム支持体コスモシャイン(登録商標)A4100(東洋紡社製)に、銀ナノワイヤの目付け量が0.05g/mとなるように、銀ナノワイヤ分散液をスピンコーターを用いて塗布し、乾燥させた。続いて、銀ナノワイヤの塗布層にカレンダー処理を施した後、公知のフォトリソグラフィー法により導電部パターン幅10mm・パターン間隔10mmのストライプ状パターン電極TCF-1を作製した。
 次いで、本発明の分散液であるCP-1(固形分濃度:1.5%)にCP-1の固形分濃度に対し2.3倍の質量のPHEA-1を添加後、乾燥膜厚が300nmとなるようにスピンコーターにて塗布し、120℃で30分乾燥することで透明電極TC-101を作製した。
 〔透明電極TC-102~TC-110の作製;本発明〕
 透明電極TC-101の作製において、本発明の分散液であるCP-1を、本発明の分散液であるCP-2~CP-10に置き換えた以外は同様の操作を行い、透明電極TC-102~TC-110を作製した。
 〔透明電極TC-111、TC-112の作製;比較例〕
 透明電極TC-101の作製において、本発明の分散液であるCP-1を、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)に置き換えて、CP-Xを、またCLEVIOS P VP CH8000(H.C.Starck社製、固形分濃度;2.5%)を置き換えて、CP-Yを作製して、それぞれ透明電極TC-111、TC-112を作製した。
 〔透明電極TC-113の作製;比較例〕
 透明電極TC-101の作製において、本発明の分散液であるCP-1、メラミン樹脂ベッカミンM-3(DIC社製)および架橋促進剤であるキャタリストACX(DIC社製)の代わりに、30%ポリウレタン樹脂のMEK溶液であるバイロンUR-3220(東洋紡社製)を導電性高分子化合物の固形分に対して30質量%用いた以外は同様の操作を行い、透明電極TC-113を作製した。
 (評価)
 以上のように作製した透明電極TC-101~TC-113に対して、以下の方法にて全光線透過率、表面抵抗率、表面平滑性(Ra、Ry)を求め、光透過性、導電性、平滑性の指標とした。
 また、透明電極の安定性を評価するため、80℃90%RHの環境下で14日間置く強制劣化試験後の透明電極試料の全光線透過率、表面抵抗率、表面粗さ(Ra、Ry)の評価を行い安定性の指標とした。評価結果を表1に示す。
 [全光線透過率]
 JIS K 7361-1:1997に準拠して、スガ試験機(株)製のヘイズメーターHGM-2Bを用いて測定した。
 [表面抵抗率]
 JIS K 7194:1994に準拠して、三菱化学社製ロレスターGP(MCP-T610型)を用いて、測定した。
 [表面粗さ(Ra、Ry)]
 AFM(セイコーインスツルメンツ社製SPI3800NプローブステーションおよびSPA400多機能型ユニット)を使用し、約1cm角の大きさに切り取った試料を用いて、前記の方法(JIS B601(1994)に規定される表面粗さに準ずる。)で測定した。
[硫黄酸化物量由来の硫酸イオン量の定量]
 加熱ボート上に試料1を1g入れ、円柱状の石英管の中に設置した。ガラス管付シリコン栓を石英管の両側に設置し、一方は窒素ライン、もう一方は過酸化水素溶液へ通じるラインにつないだ。窒素をフロー(0.5L/分)しながら加熱ボートがある石英管部分を電気炉で200℃に加熱し、発生気体を窒素フローにて過酸化水素溶液中へ送り出した。ガス捕集は過酸化水素溶液を2つ用意し、1つ目の過酸化水素溶液で捕集し切れなかったガスを2つ目の過酸化水素溶液で捕集した。過熱は60分間実施した。硫黄酸化物が酸化された硫酸イオン量はイオンクロマトグラフィーによりTSK gel ICAnion PWを分離カラムとして用い、定量した。
Figure JPOXMLDOC01-appb-T000006
 表1に示した結果から、透明電極TC-111~TC-113に対して、透明電極TC-101~110は、平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れることが分かる。
 実施例2
 〔透明電極TC-201の作製;本発明〕
 本発明の導電性高分子化合物の分散液であるCP-1(固形分濃度:1.5%)を固形分濃度が13%になるまでロータリーエバポレーターで濃縮し、前記で作製した銀ナノワイヤ質量に対し固形分換算で3倍加え、さらにCP-1の固形分濃度に対し2.3倍の質量のPHEA-1を添加した。この分散液を、易接着加工を施した厚さ100μmのポリエチレンテレフタレートフィルム支持体上に、乾燥膜厚が300nmとなるようにスピンコーターにて塗布し、120℃で30分乾燥した。
 〈金属ナノワイヤ除去剤BF-1の作製〉
 エチレンジアミン4酢酸第2鉄アンモニウム         60g
 エチレンジアミン4酢酸                   2g
 メタ重亜硫酸ナトリウム                  15g
 チオ硫酸アンモニウム                   70g
 マレイン酸                         5g
を純水で1Lに仕上げ、硫酸またはアンモニア水でpHを5.5に調製し金属ナノワイヤ除去剤BF-1を作製した。
 続いて、上記銀ナノワイヤの塗布層にカレンダー処理を施した後、グラビア塗布機Kプリンティングプルーファー(松尾産業株式会社製)に、10mmのストライプ状パターンと逆の印刷パターンを形成した版を取り付け、上記にて作製した金属ナノワイヤ除去剤BF-1の粘度をCMCで適宜調製し、銀ナノワイヤ塗布層の上に塗布膜厚30μmとなるよう印刷回数を調製してグラビア印刷を行った。印刷後1分間放置し、次いで流水による水洗処理を行い、透明電極TC-201を作製した。
 〔透明電極TC-202~TC-210の作製;本発明〕
 透明電極TC-201の作製において、本発明の導電性高分子化合物の分散液であるCP-1を、本発明の導電性高分子化合物の分散液であるCP-2~CP-10に置き換えた以外は同様の操作を行い、透明電極TC-202~TC-210を作製した。
 〔透明電極TC-211、TC-212の作製;比較例〕
 透明電極TC-201の作製において、本発明の導電性高分子化合物の分散液であるCP-1を、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)、CLEVIOS P VP CH8000(H.C.Starck社製、固形分濃度;2.5%)に置き換えた以外は同様の操作を行い、透明電極TC-211、TC-212を作製した。
 〔透明電極TC-213の作製;比較例〕
 透明電極TC-201の作製において、本発明の導電性高分子化合物の分散液であるCP-1、メラミン樹脂ベッカミンM-3(DIC社製)および架橋促進剤であるキャタリストACX(DIC社製)の代わりに、30%ポリウレタン樹脂のMEK溶液であるバイロンUR-3220(東洋紡社製)を導電性高分子化合物の固形分に対して30質量%用いた以外は同様の操作を行い、透明電極TC-213を作製した。
 (評価)
 以上のように作製した透明電極TC-201~TC-213に対して、実施例1記載の方法にて全光線透過率、表面抵抗率、表面平滑性(Ra、Ry)を求めた。また、透明電極の安定性を評価するため、80℃90%RHの環境下で14日間置く強制劣化試験後の透明電極試料の全光線透過率、表面抵抗率、表面粗さ(Ra、Ry)評価を行なった。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表2に示した結果から、透明電極TC-211~TC-213に対して、透明電極TC-201~210は、平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れることが分かる。
 実施例3
 [透明電極の作製]
 透明電極TC-301の作製(本発明)
 本発明の透明電極の好ましい製造プロセスに従い透明電極を作製した。離型性基板として、表面の平滑性がRy=35nm、Ra=2nmである離型性PETフィルムを用いた。該離型性PETフィルム表面にコロナ放電処理を施した後、上記銀ナノワイヤ分散液を銀ナノワイヤの目付け量が80mg/mとなるように塗布し乾燥して、導電性繊維である銀ナノワイヤを含有する第一の導電層を設けた。
 次いで、バリア層と易接着層を有する透明基材(PETフィルム(全光透過率90%))上に接着層として紫外線硬化型樹脂(JSR社製、NN803)を塗布し溶媒成分を気化させた後、銀ナノワイヤを含有する第一の導電性層と、接着層とを貼合した。続いて、紫外線を照射して接着層を十分に硬化させた後、離型性基板である離型性PETフィルムを剥離した。
 さらに、導電性高分子化合物CP-1へCP-1の固形分濃度に対し2.3倍の質量のPHEA-1、CP-1溶液の5質量%のDMSO(ジメチルスルホキド)溶液を添加し、乾燥膜厚が100nmとなるよう、上記離型性PETフィルムを剥離した第一の導電層の面へ、オーバーコートし乾燥した後、80℃で3時間熱処理することで本発明の透明電極TC-301を作製した。
 〔透明電極TC-302~TC-310の作製;本発明〕
 透明電極TC-301の作製において、本発明の導電性高分子化合物の分散液であるCP-1をCP-2~CP-10に置き換えた以外は同様の操作を行い、透明電極TC-302~TC-310を作製した。
 〔透明電極TC-311、TC-312の作製;比較例〕
 透明電極TC-301の作製において、本発明の導電性高分子化合物の分散液であるCP-1を、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)、CLEVIOS P VP CH8000(H.C.Starck社製、固形分濃度;2.5%)に置き換えた以外は同様の操作を行い、透明電極TC-311、TC-312を作製した。
 〔透明電極TC-313の作製;比較例〕
 透明電極TC-301の作製において、本発明の導電性高分子化合物の分散液であるCP-1、メラミン樹脂ベッカミンM-3(DIC社製)および架橋促進剤であるキャタリストACX(DIC社製)の代わりに、30%ポリウレタン樹脂のMEK溶液であるバイロンUR-3220(東洋紡社製)を導電性高分子化合物の固形分に対して30質量%用いた以外は同様の操作を行い、透明電極TC-313を作製した。
 (評価)
 以上のように作製した透明電極TC-301~TC-313に対して、実施例1記載の方法にて全光線透過率、表面抵抗率、表面平滑性(Ra、Ry)を求めた。また、透明電極の安定性を評価するため、80℃90%RHの環境下で14日間置く強制劣化試験後の透明電極試料の全光線透過率、表面抵抗率、表面粗さ(Ra、Ry)評価を行なった。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000008
 表3に示した結果から、透明電極TC-311~TC-313に対して、透明電極TC-301~310は、平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れることが分かる。
実施例4
 [透明電極の作製]
 〈第一導電層の形成〉
 本発明の透明電極の好ましい製造プロセスに従い透明電極を作製した。
 (細線格子)
 下記の如く細線格子(金属材料)をグラビア印刷にて作製した。
 (グラビア印刷)
 銀ナノ粒子ペースト1(M-Dot SLP:三ツ星ベルト製)をRK Print Coat Instruments Ltd製グラビア印刷試験機K303MULTICOATERを用いて線幅50μm、高さ1.5μm、間隔1.0mmの細線格子を印刷した後、110℃、5分の乾燥処理を行なった。
 (透明電極TC-401の作製(本発明))
 〈第二導電層の形成〉
 ガスバリア性を有する透明電極用のフィルム基板上にグラビア印刷にて第一導電層を形成した透明電極上に、下記塗布液Aを、押し出し法を用いて、乾燥膜厚300nmになるように押し出しヘッドのスリット間隙を調整して塗布し、110℃、5分で加熱乾燥し、導電性高分子化合物とCP-1からなる第二導電層を形成し、得られた電極を8×8cmに切り出した。得られた電極をオーブンを用いて110℃、30分加熱することで透明電極TC-401を作製した。
 (塗布液A)
 導電性高分子化合物CP-1へCP-1の固形分濃度に対し2.3倍の重量のPHEA-1、CP-1溶液の5質量%のDMSO(ジメチルスルホキド)溶液を添加することで塗布液Aを作製した。
 〔透明電極TC-402~TC-410の作製;本発明〕
 透明電極TC-401の作製において、本発明の導電性高分子化合物の分散液であるCP-1をCP-2~CP-10に置き換えた以外は同様の操作を行い、透明電極TC-402~TC-410を作製した。
 〔透明電極TC-411、TC-412の作製;比較例〕
 透明電極TC-401の作製において、本発明の導電性高分子化合物の分散液であるCP-1を、CLEVIOS P VP AI4083(H.C.Starck社製、固形分濃度;1.5%)、CLEVIOS P VP CH8000(H.C.Starck社製、固形分濃度;2.5%)に置き換えた以外は同様の操作を行い、透明電極TC-411、TC-412を作製した。
 〔透明電極TC-413の作製;比較例〕
 透明電極TC-401の作製において、本発明の導電性高分子化合物の分散液であるCP-1、メラミン樹脂ベッカミンM-3(DIC社製)および架橋促進剤であるキャタリストACX(DIC社製)の代わりに、30%ポリウレタン樹脂のMEK溶液であるバイロンUR-3220(東洋紡社製)を導電性高分子化合物の固形分に対して30質量%用いた以外は同様の操作を行い、透明電極TC-413を作製した。
 (評価)
 以上のように作製した透明電極TC-401~TC-413に対して、実施例1記載の方法にて全光線透過率、表面抵抗率、表面平滑性(Ra、Ry)を求めた。また、透明電極の安定性を評価するため、80℃90%RHの環境下で14日間置く強制劣化試験後の透明電極試料の全光線透過率、表面抵抗率、表面粗さ(Ra、Ry)評価を行なった。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000009
 表4に示した結果から、透明電極TC-411~TC-413に対して、透明電極TC-401~410は、平滑性、導電性、光透過性に優れると共に、高温、高湿度環境下においても平滑性、導電性、光透過性の劣化が少なく、安定性に優れることが分かる。
 実施例5
 [有機エレクトロルミネッセンス素子(有機EL素子)の作製]
 作製した透明電極TC-101~113を第一電極に用いて、以下の手順でそれぞれ有機EL素子OEL-501~513を作製した。
〈正孔輸送層の形成〉
 第一電極上に、1,2-ジクロロエタン中に1質量%となるように正孔輸送材料の4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)を溶解させた正孔輸送層形成用塗布液をスピンコート装置で塗布した後、80℃、60分間乾燥して、厚さ40nmの正孔輸送層を形成した。
〈発光層の形成〉
 正孔輸送層が形成された各フィルム上に、ホスト材のポリビニルカルバゾール(PVK)に対して、赤ドーパント材BtpIr(acac)が1質量%、緑ドーパント材Ir(ppy)が2質量%、青ドーパント材FIr(pic)が3質量%にそれぞれなるように混合し、PVKと3種ドーパントの全固形分濃度が1質量%となるように1,2-ジクロロエタン中に溶解させた発光層形成用塗布液をスピンコート装置で塗布した後、100℃、10分間乾燥して、厚さ60nmの発光層を形成した。
Figure JPOXMLDOC01-appb-C000010
〈電子輸送層の形成〉
 形成した発光層上に、電子輸送層形成用材料としてLiFを5×10-4Paの真空下にて蒸着し、厚さ0.5nmの電子輸送層を形成した。
〈第二電極の形成〉
 形成した電子輸送層の上に、第二電極形成用材料としてAlを5×10-4Paの真空下にて蒸着し、厚さ100nmの第2電極を形成した。
〈封止膜の形成〉
 形成した電子輸送層の上に、ポリエチレンテレフタレートを基材とし、Alを厚さ300nmで蒸着した可撓性封止部材を使用した。第一電極および第二電極の外部取り出し端子が形成できる様に端部を除き第二電極の周囲に接着剤を塗り、可撓性封止部材を貼合した後、熱処理で接着剤を硬化させた。
(評価)
[発光輝度ムラ]
 KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。200cd/mで発光させた有機EL素子OEL-501~OEL-513について、50倍の顕微鏡で各々の発光均一性を観察した。また、有機EL素子OEL-501~OEL-513をオーブンにて60%RH、80℃2時間加熱したのち、再び前記23±3℃、55±3%RHの環境下で1時間以上調湿した後、同様に発光均一性を観察した。
 発光均一性の評価基準
◎:EL素子全体が均一に発光している
○:EL素子全体がほぼ均一に発光している
△:EL素子の発光にややムラが認められる
×:EL素子の発光に明らかなムラが認められる
 上記評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000011
 表5から、比較の有機EL素子OEL-511~OEL-513は80℃30分の加熱後、発光均一性が著しく劣化するのに対し、本発明の有機EL素子OEL-501~OEL-510の発光均一性は加熱後でも安定しており耐久性に優れることが分かる。
 実施例6
 [有機エレクトロルミネッセンス素子(有機EL素子)の作製]
 実施例2の手順と同様にして作製した透明電極TC-201~213を第一電極に用いて、実施例4の手順と同様な方法で有機EL素子OEL-601~613を作製した。
(評価)
 実施例5と同様にして評価を行った。
 結果を表6に示す。
Figure JPOXMLDOC01-appb-T000012
 表6から、比較の有機EL素子OEL-611~OEL-613は60%RH、80℃30分の加熱(強制劣化)後、発光均一性が著しく劣化するのに対し、本発明の有機EL素子OEL-601~OEL-610の発光均一性は加熱(強制劣化)後でも安定しており耐久性に優れることが分かる。
 実施例7
 [有機エレクトロルミネッセンス素子(有機EL素子)の作製]
 実施例3の手順と同様にして作製した透明電極TC-301~313を第一電極に用いて、実施例4の手順と同様な方法で有機EL素子OEL-701~713を作製した。
(評価)
 実施例5と同様にして評価を行った。
 結果を表7に示す。
Figure JPOXMLDOC01-appb-T000013
 表7から、比較の有機EL素子OEL-711~OEL-713は60%RH、80℃30分の加熱(強制劣化)後、発光均一性が著しく劣化するのに対し、本発明の有機EL素子OEL-701~OEL-710の発光均一性は加熱(強制劣化)後でも安定しており耐久性に優れることが分かる。
 実施例8
 [有機エレクトロルミネッセンス素子(有機EL素子)の作製]
 実施例4の手順と同様にして作製した透明電極TC-401~413を第一電極に用いて、実施例4の手順と同様な方法で有機EL素子OEL-801~813を作製した。
(評価)
 実施例5と同様にして評価を行った。
 結果を表8に示す。
Figure JPOXMLDOC01-appb-T000014
 表8から、比較の有機EL素子OEL-811~OEL-813は60%RH、80℃30分の加熱(強制劣化)後、発光均一性が著しく劣化するのに対し、本発明の有機EL素子OEL-801~OEL-810の発光均一性は加熱(強制劣化)後でも安定しており耐久性に優れることが分かる。
 実施例9
 〔透明電極TC-901の作製(発明例)〕
 銀ナノワイヤをSWCNT(Unidym社製、HiPcoR単層カーボンナノチューブ)に変更し、SWCNTの目付け量が50mg/mとなるよう調製した以外は、実施例1で示したTC-101の製造方法と同様にしてTC-901を作製した。
〔有機エレクトロルミネッセンス素子(有機EL素子)の作製〕
 得られた透明電極を第一電極(アノード電極)として、実施例5と同様に有機EL素子OLE-901を作製し評価を行ったところ、OLE-101と同様にEL素子全体が均一に発光することが確認できた。また、有機EL素子を60%RH、80℃30分の加熱(強制劣化)後も素子全体に均一発光が認められた。
 実施例10
 〔透明電極TC-1001の作製(発明例)〕
 銀ナノワイヤをSWCNT(Unidym社製、HiPcoR 単層カーボンナノチューブ)に変更し、銀ナノワイヤ除去剤を用いず、分散液を支持体上に10mmのストライプ状パターンの印刷パターンを形成した版の上から塗布した以外は、実施例2で示したTC-201の製造方法と同様にしてTC-1001を作製した。
〔有機エレクトロルミネッセンス素子(有機EL素子)の作製〕
 得られた透明電極を第一電極(アノード電極)として、実施例5と同様に有機EL素子OLE-1001を作製し評価を行ったところ、OLE-101と同様にEL素子全体が均一に発光することが確認できた。また、有機EL素子を60%RH、80℃30分の加熱(強制劣化)後も素子全体に均一発光が認められた。
 1 パターン状に形成された金属材料からなる第1導電層
 2 本発明のバインダー樹脂と導電性ポリマーを含有する第2導電層
 3 基材
 11 導電性繊維
 21 導電性高分子化合物
 31 第一の透明導電層
 32 第二の透明導電層
 41 透明基材

Claims (8)

  1.  下記一般式(I)で表される繰り返し構造単位を有する高分子化合物とポリアニオンを含む導電性高分子化合物分散液において、該導電性高分子化合物分散液を200℃、60分間で加熱して得られた硫黄酸化物の成分を酸化し、生成した硫酸イオンの含有量が0~300ppmであることを特徴とする分散液。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Aは置換基を有しても良い炭素数1~4のアルキレン基を示し、Qは酸素原子または硫黄原子を表す。)
  2.  前記硫酸イオンの含有量が0~100ppmであることを特徴とする請求項1に記載の分散液。
  3.  前記ポリアニオンが下記一般式(II)で表される繰り返し構造単位を有するものであることを特徴とする請求項1または2に記載の分散液。
    Figure JPOXMLDOC01-appb-C000002

    〔式中、MはH、アルカリ金属イオン又はアンモニウムイオンを表す。〕
  4.  透明基材上に、導電性繊維を含有する透明導電層を有する透明電極であって、該透明電極が請求項1から3の何れかに記載の分散液を用いて形成されたものであることを特徴とする透明電極。
  5.  透明基材上に、導電性繊維を含有する第一の透明導電層上に請求項1から3の何れかに記載の分散液を用いて形成された第二の透明導電層を有することを特徴とする透明電極。
  6.  前記導電性繊維が銀ナノワイヤであることを特徴とする請求項4または5に記載の透明電極。
  7.  透明基材上の第一の導電層と、請求項1から3の何れかに記載の分散液を用いて形成された第二の透明導電層を有する透明電極であって、該第一の導電層がパターン状に形成された金属材料からなることを特徴とする透明電極。
  8.  請求項1から3のいずれかに記載の分散液を用いる透明電極を有することを特徴とする有機エレクトロルミネッセンス素子。
PCT/JP2010/069796 2009-11-27 2010-11-08 分散液、透明電極、および有機エレクトロルミネッセンス素子 WO2011065213A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011543198A JPWO2011065213A1 (ja) 2009-11-27 2010-11-08 分散液、透明電極、および有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-269987 2009-11-27
JP2009269987 2009-11-27

Publications (1)

Publication Number Publication Date
WO2011065213A1 true WO2011065213A1 (ja) 2011-06-03

Family

ID=44066316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069796 WO2011065213A1 (ja) 2009-11-27 2010-11-08 分散液、透明電極、および有機エレクトロルミネッセンス素子

Country Status (2)

Country Link
JP (1) JPWO2011065213A1 (ja)
WO (1) WO2011065213A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540865A (ja) * 2010-10-12 2013-11-07 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー 明確な硫酸イオン含有量を持つポリチオフェンを含む分散液
JP2014063638A (ja) * 2012-09-21 2014-04-10 Toppan Printing Co Ltd 透明導電性基材
JP2015511771A (ja) * 2012-03-16 2015-04-20 ケンブリッジ ディスプレイ テクノロジー リミテッド 光電装置
JP2016132679A (ja) * 2015-01-15 2016-07-25 ナガセケムテックス株式会社 導電層形成用組成物、導電積層体、電磁波シールド部材及び立体形状を有する導電積層体の製造方法
JP2018078112A (ja) * 2013-04-01 2018-05-17 パイオニア株式会社 光学装置
JP7542377B2 (ja) 2020-09-23 2024-08-30 信越ポリマー株式会社 導電性高分子粉体及びその製造方法、導電性高分子組成物、並びに電極及びその製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210108A (ja) * 1985-07-08 1987-01-19 Showa Denko Kk 電導性高分子の精製法
JPH07165892A (ja) * 1993-12-10 1995-06-27 Marubishi Yuka Kogyo Kk 導電性高分子コロイド水溶液の製造方法
JP2000090732A (ja) * 1998-09-16 2000-03-31 Matsushita Electric Ind Co Ltd 導電性組成物及びコンデンサの製造方法
JP2004502004A (ja) * 2000-06-26 2004-01-22 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ ポリチオフェンを含む再分散可能なラテックス
JP2004256686A (ja) * 2003-02-26 2004-09-16 Achilles Corp ポリピロール系導電性塗料
JP2006225461A (ja) * 2005-02-16 2006-08-31 Sumitomo Chemical Co Ltd ポリチオフェン
JP2006265555A (ja) * 2005-03-22 2006-10-05 Xerox Corp ポリチオフェンから不純物を除去する方法
WO2008131304A1 (en) * 2007-04-20 2008-10-30 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
WO2008132955A1 (ja) * 2007-04-16 2008-11-06 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液の製造方法
JP2009087843A (ja) * 2007-10-02 2009-04-23 Konica Minolta Holdings Inc 透明導電フィルム
WO2009131012A1 (ja) * 2008-04-21 2009-10-29 テイカ株式会社 導電性組成物の分散液、導電性組成物および固体電解コンデンサ
JP2010040776A (ja) * 2008-08-05 2010-02-18 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料、電解コンデンサ、ならびに固体電解コンデンサおよびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210108A (ja) * 1985-07-08 1987-01-19 Showa Denko Kk 電導性高分子の精製法
JPH07165892A (ja) * 1993-12-10 1995-06-27 Marubishi Yuka Kogyo Kk 導電性高分子コロイド水溶液の製造方法
JP2000090732A (ja) * 1998-09-16 2000-03-31 Matsushita Electric Ind Co Ltd 導電性組成物及びコンデンサの製造方法
JP2004502004A (ja) * 2000-06-26 2004-01-22 アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ ポリチオフェンを含む再分散可能なラテックス
JP2004256686A (ja) * 2003-02-26 2004-09-16 Achilles Corp ポリピロール系導電性塗料
JP2006225461A (ja) * 2005-02-16 2006-08-31 Sumitomo Chemical Co Ltd ポリチオフェン
JP2006265555A (ja) * 2005-03-22 2006-10-05 Xerox Corp ポリチオフェンから不純物を除去する方法
WO2008132955A1 (ja) * 2007-04-16 2008-11-06 Shin-Etsu Polymer Co., Ltd. 導電性高分子溶液の製造方法
WO2008131304A1 (en) * 2007-04-20 2008-10-30 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
JP2009087843A (ja) * 2007-10-02 2009-04-23 Konica Minolta Holdings Inc 透明導電フィルム
WO2009131012A1 (ja) * 2008-04-21 2009-10-29 テイカ株式会社 導電性組成物の分散液、導電性組成物および固体電解コンデンサ
JP2010040776A (ja) * 2008-08-05 2010-02-18 Nec Tokin Corp 導電性高分子懸濁液およびその製造方法、導電性高分子材料、電解コンデンサ、ならびに固体電解コンデンサおよびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540865A (ja) * 2010-10-12 2013-11-07 ヘレウス プレシャス メタルズ ゲーエムベーハー ウント コンパニー カーゲー 明確な硫酸イオン含有量を持つポリチオフェンを含む分散液
JP2015511771A (ja) * 2012-03-16 2015-04-20 ケンブリッジ ディスプレイ テクノロジー リミテッド 光電装置
JP2014063638A (ja) * 2012-09-21 2014-04-10 Toppan Printing Co Ltd 透明導電性基材
JP2018078112A (ja) * 2013-04-01 2018-05-17 パイオニア株式会社 光学装置
JP2016132679A (ja) * 2015-01-15 2016-07-25 ナガセケムテックス株式会社 導電層形成用組成物、導電積層体、電磁波シールド部材及び立体形状を有する導電積層体の製造方法
JP7542377B2 (ja) 2020-09-23 2024-08-30 信越ポリマー株式会社 導電性高分子粉体及びその製造方法、導電性高分子組成物、並びに電極及びその製造方法

Also Published As

Publication number Publication date
JPWO2011065213A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5584991B2 (ja) 透明電極、透明電極の製造方法、および有機エレクトロルミネッセンス素子
JP5391932B2 (ja) 透明電極、透明電極の製造方法、および有機エレクトロルミネッセンス素子
JP5454476B2 (ja) 透明電極および透明電極の製造方法
JP5625256B2 (ja) 透明電極、透明電極の製造方法及び有機エレクトロルミネッセンス素子
JP5533669B2 (ja) 透明電極、その製造方法及び有機エレクトロルミネッセンス素子
JP5359132B2 (ja) 透明電極及び該透明電極を有する有機エレクトロルミネッセンス素子
WO2011065213A1 (ja) 分散液、透明電極、および有機エレクトロルミネッセンス素子
JP5987843B2 (ja) 透明電極形成用組成物、透明電極、有機電子素子および透明電極の製造方法
JP2011054419A (ja) 透明電極、有機エレクトロルミネッセンス素子、および有機薄膜太陽電池素子
JP2009059666A (ja) 透明導電層付フィルムとフレキシブル機能性素子、およびそれらの製造方法
JP5660121B2 (ja) 透明導電膜、および有機エレクトロルミネッセンス素子
JP5499617B2 (ja) 透明電極および有機エレクトロルミネッセンス素子
WO2013153971A1 (ja) 導電膜及び有機エレクトロルミネッセンス素子
JP5782855B2 (ja) 透明電極及び有機エレクトロルミネッセンス素子
WO2013061967A1 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP2014229397A (ja) 導電膜の製造方法、導電膜、有機電子素子及びタッチパネル
JP5333142B2 (ja) パターン電極、有機エレクトロルミネッセンス素子、およびパターン電極の製造方法
JP6015764B2 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
WO2011055663A1 (ja) 透明電極および有機電子デバイス
JP2012243401A (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP5834954B2 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP5831303B2 (ja) 透明導電膜及び有機エレクトロルミネッセンス素子
JP2012138311A (ja) 透明導電膜基板および有機エレクトロルミネッセンス素子
JP2011065799A (ja) 有機電子デバイスとその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543198

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833060

Country of ref document: EP

Kind code of ref document: A1