WO2009123168A1 - 多孔膜および二次電池電極 - Google Patents

多孔膜および二次電池電極 Download PDF

Info

Publication number
WO2009123168A1
WO2009123168A1 PCT/JP2009/056606 JP2009056606W WO2009123168A1 WO 2009123168 A1 WO2009123168 A1 WO 2009123168A1 JP 2009056606 W JP2009056606 W JP 2009056606W WO 2009123168 A1 WO2009123168 A1 WO 2009123168A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
water
polymer
mass
porous film
Prior art date
Application number
PCT/JP2009/056606
Other languages
English (en)
French (fr)
Inventor
脇坂 康尋
真弓 福峯
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to PL14158519T priority Critical patent/PL2747173T3/pl
Priority to CN200980111691.XA priority patent/CN101981727B/zh
Priority to EP14158519.0A priority patent/EP2747173B1/en
Priority to US12/935,437 priority patent/US9202631B2/en
Priority to EP09728531.6A priority patent/EP2282364B1/en
Priority to KR1020107021820A priority patent/KR101664502B1/ko
Priority to JP2010505924A priority patent/JP5370356B2/ja
Publication of WO2009123168A1 publication Critical patent/WO2009123168A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a porous film, and more particularly to a porous film that is formed on the electrode surface of a lithium ion secondary battery or an electric double layer capacitor and can contribute to improvement of film uniformity and flexibility and battery cycle characteristics.
  • the present invention also relates to a secondary battery electrode provided with such a porous membrane.
  • lithium ion secondary batteries exhibit the highest energy density, and are often used especially for small electronics. In addition to small-sized applications, development for automobiles is also expected. Among them, there is a demand for extending the life of lithium ion secondary batteries and further improving safety.
  • a lithium ion secondary battery generally includes a positive electrode and a negative electrode including an electrode mixture layer carried on a current collector, a separator, and a non-aqueous electrolyte.
  • the electrode mixture layer includes an electrode active material having an average particle size of about 5 to 50 ⁇ m and a binder.
  • the electrode is manufactured by applying a mixture slurry containing a powdered electrode active material on a current collector to form an electrode mixture layer. Further, as a separator for separating the positive electrode and the negative electrode, a very thin separator having a thickness of about 10 to 50 ⁇ m is used.
  • a lithium ion secondary battery is manufactured through a lamination process of an electrode and a separator, a cutting process of cutting into a predetermined electrode shape, and the like. However, while passing through this series of manufacturing steps, the active material may fall off from the electrode mixture layer, and a part of the dropped active material may be included in the battery as foreign matter.
  • Such a foreign substance has a particle size of about 5 to 50 ⁇ m and is approximately the same as the thickness of the separator, so that it causes a problem of penetrating the separator in the assembled battery and causing a short circuit. Further, heat is generated when the battery is operated. As a result, the separator made of stretched polyethylene resin or the like is also heated. In general, a separator made of stretched polyethylene resin or the like tends to shrink even at a temperature of 150 ° C. or less, and easily leads to a short circuit of the battery. Further, when a sharply shaped protrusion such as a nail penetrates the battery (for example, during a nail penetration test), a short circuit occurs instantaneously, reaction heat is generated, and the short circuit part expands.
  • Patent Document 1 discloses a porous protective film formed by using a fine particle slurry containing polyvinylidene fluoride as a binder and fine particles such as alumina, silica, and polyethylene resin.
  • Patent Document 2 describes a porous protective film using a heat-crosslinkable resin such as polyacrylonitrile as a binder.
  • Patent Document 3 as a means for solving the problem of flexibility, an inorganic filler is added to a resin binder composed of a water-soluble polymer such as carboxymethyl cellulose and rubber particles made of acrylonitrile-acrylate copolymer.
  • a porous protective film formed using a dispersed slurry is disclosed.
  • rubber particles as the binder, the flexibility is greatly improved, but due to insufficient binding of the porous membrane, a phenomenon that part of the porous membrane is detached (powder falling) occurs and the cycle Sexual deterioration is seen.
  • the inorganic filler is not sufficiently dispersed, the film uniformity is also poor.
  • the present invention has been made in view of the prior art as described above, and in the porous protective film provided on the surface of an electrode used for a secondary battery or the like, the cycle characteristics of the battery are improved by improving the binding property.
  • An object of the present invention is to provide a porous membrane that can contribute to improvement.
  • the present inventors have used a water-soluble polymer and a particulate polymer containing a hydrophilic group as a binder constituting the porous film, thereby binding properties. As a result, it was found that a porous membrane capable of supplying a battery exhibiting excellent cycle characteristics can be obtained, and the present invention has been completed.
  • the present invention for solving the above-mentioned problems includes the following matters as a gist.
  • a water-soluble polymer an inorganic filler, A water-insoluble particulate polymer containing 0.5 to 40% by mass of a monomer unit containing a hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group and a sulfonic acid group Porous membrane.
  • the content of the water-soluble polymer in the porous membrane is 0.1 to 5 parts by mass with respect to 100 parts by mass of the inorganic filler, and the content of the water-insoluble particulate polymer is inorganic.
  • the porous membrane according to any one of (1) to (4), which is 0.1 to 15 parts by mass with respect to 100 parts by mass of the filler.
  • An electrode mixture layer comprising a binder and an electrode active material is attached to the current collector, and the porous film described in (1) is provided on the surface of the electrode mixture layer. Secondary battery electrode.
  • (6) includes a step of applying and drying a slurry for a porous membrane comprising a water-soluble particulate polymer and a dispersion medium on an electrode mixture layer comprising a binder and an electrode active material. The manufacturing method of the secondary battery electrode of description.
  • a lithium ion secondary battery including a positive electrode, a negative electrode, and an electrolyte solution, At least one of the positive electrode and the negative electrode is the electrode according to (6), Lithium ion secondary battery.
  • a porous film that has excellent binding properties and can contribute to improvement of the cycle characteristics of the battery.
  • a porous membrane is formed on the surface of the secondary battery electrode, functions as a protective film for the electrode, has high binding properties, adheres to the electrode surface, and contributes to prevention of falling off of the active material and prevention of short circuit during battery operation. To do.
  • the porous membrane of the present invention contains a water-soluble polymer, an inorganic filler, and a water-insoluble particulate polymer.
  • the particulate polymer is made of a water-insoluble polymer and contains a hydrophilic group selected from the group consisting of a carboxylic acid group, a hydroxyl group, and a sulfonic acid group.
  • the water-insoluble polymer in the present specification refers to a polymer having an insoluble content of 90% by mass or more when 0.5 g of the polymer is dissolved in 100 g of water at 25 ° C.
  • the water-soluble polymer means a polymer having an insoluble content of less than 0.5% by mass under the same conditions.
  • the particulate polymer can impart the dispersion stability of the inorganic filler and the binding property between the inorganic fillers by having the hydrophilic group. Since the surface of the inorganic filler tends to show hydrophilicity, the particulate polymer has a hydrophilic group, so that the particulate polymer is easily adsorbed on the surface of the inorganic filler. And since it becomes easy to adsorb
  • the particulate polymer is hydrophilic. It is necessary to contain a group.
  • the hydrophilic group is introduced into the particulate polymer by copolymerizing a monomer containing the hydrophilic group and another monomer copolymerizable therewith during the production of the particulate polymer. be able to.
  • Examples of the monomer containing a carboxylic acid group include monocarboxylic acid and derivatives thereof, dicarboxylic acid, acid anhydrides thereof, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Monocarboxylic acid derivatives include 2-ethylacrylic acid, 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -Diaminoacrylic acid etc. are mentioned.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, and itaconic acid.
  • Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, dimethyl maleic anhydride and the like.
  • Dicarboxylic acid derivatives include methyl maleic acid, dimethyl maleic acid, phenyl maleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid and the like methyl allyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate, And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
  • Monomers containing a hydroxyl group include ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol, 5-hexen-1-ol; 2-hydroxyethyl acrylate, acrylic acid- 2-hydroxypropyl, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, di-2-hydroxyethyl maleate, di-4-hydroxybutyl maleate, di-2-hydroxypropyl itaconate, etc.
  • ethylenically unsaturated alcohols such as (meth) allyl alcohol, 3-buten-1-ol, 5-hexen-1-ol
  • 2-hydroxyethyl acrylate acrylic acid- 2-hydroxypropyl
  • 2-hydroxyethyl methacrylate 2-hydroxypropyl methacrylate
  • di-2-hydroxyethyl maleate di-4-hydroxybutyl maleate
  • di-2-hydroxypropyl itaconate etc.
  • Alkanol esters of ethylenically unsaturated carboxylic acids general formula CH 2 ⁇ CR 1 —COO— (C n H 2n O) m —H (m is an integer from 2 to 9, n is an integer from 2 to 4, R 1 Represents a hydrogen or methyl group) and esters of polyalkylene glycol and (meth) acrylic acid; Mono (meth) acrylic acid esters of dihydroxy esters of dicarboxylic acids such as 2-hydroxyethyl-2 '-(meth) acryloyloxyphthalate, 2-hydroxyethyl-2'-(meth) acryloyloxysuccinate; 2-hydroxy Vinyl ethers such as ethyl vinyl ether and 2-hydroxypropyl vinyl ether; (meth) allyl-2-hydroxyethyl ether, (meth) allyl-2-hydroxypropyl ether, (meth) allyl-3-hydroxypropyl ether, (meth) allyl Mono (meta) of
  • Examples of the monomer containing a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamide- Examples thereof include 2-methylpropanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • “(meth) acryloyl” is “acryloyl” or “methacryloyl”
  • “(meth) allyl” is “allyl” or “methallyl”
  • (meth) acryl” is “acryl” or "Methacryl” means each.
  • a carboxylic acid group is preferable as the hydrophilic group.
  • the carboxylic acid groups two hydrophilic groups are present adjacent to each other. Dicarboxylic acid that is easily adsorbed efficiently on the surface of the inorganic filler particles is more preferable, and itaconic acid is most preferable.
  • the hydrophilic group content in the particulate polymer is preferably 0.5 to 40% by mass, more preferably 3 to 4% by mass with respect to 100% by mass of the total amount of monomers as a hydrophilic group-containing monomer during polymerization. It is in the range of 20% by mass.
  • the hydrophilic group content in the particulate polymer can be controlled by the monomer charge ratio at the time of polymer production. If the amount of the hydrophilic group-containing monomer is too small, the above-described effects cannot be obtained due to the small number of hydrophilic groups in the particulate polymer. On the contrary, when there are too many hydrophilic group containing monomers, the solubility to water will become high and the dispersibility of an inorganic filler may deteriorate on the contrary.
  • the particulate polymer containing a hydrophilic group preferably has a polystyrene-equivalent weight average molecular weight determined by GPC in the range of 10,000 to 500,000, more preferably 20,000 to 200,000.
  • GPC polystyrene-equivalent weight average molecular weight
  • the average particle size (volume average D50 average particle size) of the particulate polymer containing a hydrophilic group is preferably 0.01 to 0.5 ⁇ m, more preferably 0.01 to 0.2 ⁇ m. More preferably. If the particle size of the particulate polymer is too large, the number of points of adhesion with the filler will decrease, causing a decrease in binding properties. If the particle size is too small, the porosity will decrease, the resistance of the membrane will increase, and the battery properties will increase. May decrease.
  • the glass transition temperature (Tg) of the particulate polymer containing a hydrophilic group is preferably 20 ° C. or less, and more preferably 5 ° C. or less.
  • Tg glass transition temperature
  • the particulate polymer containing a hydrophilic group can be obtained by copolymerizing a monomer containing a hydrophilic group with another copolymerizable monomer.
  • copolymerizable monomers include ⁇ , ⁇ -unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile; styrene, chlorostyrene, vinyl toluene, t-butyl styrene, vinyl benzoic acid, methyl vinyl benzoate, Styrene monomers such as vinyl naphthalene, chloromethyl styrene, ⁇ -methyl styrene, divinyl benzene; olefins such as ethylene and propylene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate (Meth) acrylic acid alkyl esters such as (meth) acrylic acid hexyl, (meth) acrylic acid-2-ethylhexyl; two or more carbon-carbons such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, trimethylolprop
  • the particulate polymer preferably contains a crosslinkable group.
  • a crosslinkable group When a crosslinkable group is introduced, the porous film can be crosslinked by heat treatment after the porous film is formed, and dissolution and swelling in the electrolytic solution can be suppressed, so that a tough and flexible porous film can be obtained.
  • the crosslinkable group include an epoxy group and a hydroxyl group that is a hydrophilic group, and further examples include an N-methylolamide group and an oxazoline group, and an epoxy group and / or a hydroxyl group are preferred. That is, the hydroxyl group functions to uniformly disperse the filler when the inorganic filler is dispersed, and acts as a crosslinkable group when forming the film.
  • the crosslinkable group may be introduced into the particulate polymer by simultaneously copolymerizing a polymerizable compound containing a crosslinkable group during the production of the particulate polymer. It may be introduced into the particulate polymer by conventional modification means.
  • the method for producing the particulate polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be used.
  • polymerization initiators used for polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,3,5-trimethylhexanoyl peroxide, and the like.
  • the emulsion polymerization method and the suspension polymerization method are preferable from the viewpoint that the polymerization can be performed in water and can be added as it is when the porous membrane slurry is prepared.
  • the average degree of polymerization of the water-soluble polymer used in the present invention is preferably in the range of 500 to 2500, more preferably 1000 to 2000, and particularly preferably 1000 to 1500. .
  • the water-based slurry it is considered that a part of the water-soluble polymer is present in water, and part of the water-soluble polymer is adsorbed on the surface of the inorganic filler, thereby stabilizing the dispersion of the inorganic filler in water.
  • the average degree of polymerization of the water-soluble polymer may affect the adsorption stability to the inorganic filler.
  • the water-soluble polymer when the average degree of polymerization of the water-soluble polymer is smaller than the above range, the water-soluble polymer is adsorbed on the surface of the inorganic filler because the water-soluble polymer has high water solubility and high mobility.
  • detachment from the inorganic filler is likely to occur due to the high mobility of the polymer and the high solubility in water.
  • the dispersion stable layer by the water-soluble polymer on the surface of the inorganic filler becomes sparse, and as a result, the inorganic filler cannot be stably dispersed, and it may be difficult to obtain a uniform film. is there.
  • the average degree of polymerization of the water-soluble polymer is larger than the above range, adsorption may occur between a plurality of inorganic fillers, and bridging aggregation may occur.
  • the viscosity of the slurry is greatly increased, and the fluidity of the slurry is reduced. As a result, surface smoothing (leveling) on the coating film surface is less likely to occur during coating, and the obtained electrode may be uneven.
  • the average degree of polymerization of the water-soluble polymer may affect the fluidity of the slurry, the film uniformity of the obtained porous film, and the process of the process. Is preferably selected.
  • water-soluble polymers examples include natural polymers, semi-synthetic polymers, and synthetic polymers.
  • the filler When used inside the battery, stability at a high potential is required. When used as a porous membrane, the filler is required to have dispersibility. In addition, it is necessary that the slurry has a certain degree of viscosity and exhibits fluidity because of the necessity of coating on the electrode surface or the separator surface. Thus, selection of materials is necessary from many viewpoints.
  • thickening polysaccharides are particularly preferable from the viewpoint of imparting viscosity.
  • the thickening polysaccharide includes natural polymers and cellulose semisynthetic polymers.
  • natural polymer for example, plant or animal-derived polysaccharides and proteins can be exemplified, and in some cases, natural polymers subjected to fermentation treatment with microorganisms or heat treatment can be exemplified.
  • natural polymers can be classified as plant natural polymers, animal natural polymers, microbial natural polymers, and the like.
  • Examples of plant-based natural polymers include gum arabic, gum tragacanth, galactan, guar gum, carob gum, caraya gum, carrageenan, pectin, cannan, quince seed (malmello), arche colloid (gasso extract), starch (rice, corn, potato, wheat) Etc.), glycyrrhizin and the like.
  • Examples of animal-based natural polymers include collagen, casein, albumin, gelatin and the like.
  • Examples of the microbial natural polymer include xanthan gum, dextran, succinoglucan, and bullulan.
  • Cellulosic semisynthetic polymers can be classified into nonionic, anionic and cationic.
  • Nonionic cellulose-based semisynthetic polymers include, for example, methylcellulose, methylethylcellulose, ethylcellulose, microcrystalline cellulose, and other alkylcelluloses, as well as hydroxyethylcellulose, hydroxybutylmethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, hydroxy Examples thereof include hydroxyalkylcelluloses such as propylmethylcellulose stearoxy ether, carboxymethylhydroxyethylcellulose, alkylhydroxyethylcellulose, and nonoxynylhydroxyethylcellulose.
  • anionic cellulose semisynthetic polymer examples include alkyl celluloses obtained by substituting the above nonionic cellulose semisynthetic polymer with various derivative groups, and sodium salts and ammonium salts thereof. Examples thereof include sodium cellulose sulfate, methyl cellulose, methyl ethyl cellulose, ethyl cellulose, carboxymethyl cellulose (CMC), and salts thereof.
  • Examples of cationic cellulose semisynthetic polymers include low nitrogen hydroxyethylcellulose dimethyl diallylammonium chloride (polyquaternium-4), O- [2-hydroxy-3- (trimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-10). ), O- [2-hydroxy-3- (lauryldimethylammonio) propyl] hydroxyethylcellulose (polyquaternium-24) and the like.
  • a cellulose-based semisynthetic polymer, a sodium salt thereof, or an ammonium salt thereof is particularly preferable because it can have cationic, anionic or amphoteric characteristics.
  • an anionic cellulose semisynthetic polymer is particularly preferable from the viewpoint of dispersibility of the inorganic filler.
  • the degree of etherification of the cellulose semisynthetic polymer is preferably in the range of 0.5 to 1.0, more preferably 0.6 to 0.8.
  • the degree of substitution of a hydroxyl group (3) per anhydroglucose unit in cellulose with a carboxymethyl group or the like is referred to as the degree of etherification.
  • values from 0 to 3 can be taken.
  • the inorganic filler is desired to be electrochemically stable under the usage environment of the secondary battery.
  • the inorganic filler is desirably a material suitable for mixing with the water-soluble polymer or particulate polymer to prepare a slurry.
  • the BET specific surface area of the inorganic filler is, for example, preferably 0.9 m 2 / g or more, more preferably 1.5 m 2 / g or more. Further, from the viewpoint of suppressing the aggregation of the inorganic filler and optimizing the fluidity of the slurry, the BET specific surface area is not too large, and is preferably, for example, 150 m 2 / g or less.
  • the average particle size (volume average D50 average particle size) of the inorganic filler is preferably 0.1 to 5 ⁇ m, and more preferably 0.2 to 2 ⁇ m.
  • the inorganic filler is preferably an inorganic oxide filler, such as alumina (aluminum oxide), magnesia (magnesium oxide), calcium oxide, titania (titanium oxide), zirconia (zirconium oxide), talc, and silica.
  • An inorganic oxide filler made of, for example, a material can be preferably used.
  • Such an inorganic filler is excellent in dispersion stability and maintains a uniform slurry state for a long time without settling even when a slurry for a porous membrane is prepared.
  • the porous film of the present invention is obtained by applying and drying a slurry (slurry for porous film) containing the water-soluble polymer, particulate polymer, inorganic filler, and dispersant on a predetermined substrate. can get.
  • the substrate is not particularly limited, but the porous film of the present invention is particularly preferably formed on the surface of a secondary battery electrode or an electric double layer capacitor electrode.
  • the solid content composition in the obtained porous film is the same as the solid content composition of the slurry for the porous film, and the water-soluble polymer is preferably 0.1 to 5 parts by mass, more preferably 0 to 100 parts by mass of the inorganic filler. 2 to 4 parts by mass, and preferably 0.1 to 15 parts by mass, more preferably 0.5 to 10 parts by mass of the particulate polymer. If the content of the water-soluble polymer and the particulate polymer is less than the above range, the dispersibility of the inorganic filler is inferior, and there is a possibility that aggregation or a decrease in porosity occurs.
  • the binding properties between the inorganic fillers and the electrodes are also lowered, and there is a risk of powder falling and flexibility. If the content of the water-soluble polymer and the particulate polymer is larger than the above range, the pores may be covered and the movement of Li may be hindered to increase the resistance.
  • the porous film may further contain a dispersant, an electrolytic solution additive having a function of inhibiting decomposition of the electrolytic solution, and the like. . These are not particularly limited as long as they do not affect the battery reaction.
  • the porous membrane of the present invention has moderate porosity and absorbs the electrolyte solution, even if the electrolyte solution penetrates into the membrane and is formed on the surface of the secondary battery electrode, it does not inhibit the battery reaction. In addition, the rate characteristics and the like are not adversely affected as compared with the conventional porous protective film. In addition, since the porous membrane of the present invention has appropriate flexibility, it is formed on the surface of the secondary battery electrode, functions as a protective film for the electrode, prevents the active material from falling off during the battery preparation process, and operates the battery. This contributes to prevention of short circuit.
  • Such a porous film has an excellent balance between porosity and flexibility, and has a high retention of inorganic fillers, thereby reducing the loss of fillers during the battery production process.
  • the film thickness of the porous film is not particularly limited and is appropriately set according to the use or application field of the film. If the film is too thin, a uniform film cannot be formed. If the film is too thick, the volume in the battery ( Since the capacity per weight is reduced, it is preferably 1 to 50 ⁇ m, and more preferably 1 to 20 ⁇ m when forming a protective film on the electrode surface.
  • porous membrane slurry The porous membrane of the present invention is produced by applying and drying the slurry for a porous membrane having the above-described predetermined solid content composition on an electrode mixture layer of a secondary battery electrode described later. Moreover, after immersing an electrode in this slurry, this can be dried and a porous film can also be formed. Alternatively, the slurry may be applied and formed on a release film, and the obtained porous film may be transferred onto a predetermined electrode mixture layer.
  • the secondary battery electrode with a porous film of the present invention is formed by forming a porous film on the above electrode mixture layer.
  • the porous film may be formed on the surface of either the positive electrode or the negative electrode of the secondary battery, or may be formed on both the positive electrode and the negative electrode.
  • the solid content concentration of the slurry for the porous membrane is not particularly limited as long as it has the above-mentioned viscosity and fluidity that can be applied and immersed, but is generally about 20 to 50% by mass.
  • the dispersion medium for the slurry for the porous membrane is not particularly limited as long as it can uniformly disperse the solid content, but generally, water, acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methylpyrrolidone, cyclohexane, xylene, cyclohexanone or a mixed solvent thereof is used. Among these, it is particularly preferable to use water.
  • the water-soluble polymer is dissolved, and a slurry in which the particulate polymer and the inorganic filler are uniformly dispersed in this solution is obtained.
  • an organic solvent is not used, it is preferable to use water from the viewpoint of environmental conservation in terms of work hygiene.
  • the method for producing the slurry for the porous membrane is not particularly limited, and can be obtained by mixing the water-soluble polymer, the particulate polymer, the inorganic filler, and other components and dispersion medium added as necessary. Regardless of the mixing method and mixing order, a porous film slurry in which inorganic fillers are highly dispersed can be obtained by using the above components.
  • other components include nano-particles such as fumed silica and fumed alumina: surfactants such as alkyl-based surfactants, silicon-based surfactants, fluorine-based surfactants, and metal-based surfactants.
  • the thixotropy of the slurry for forming a porous film can be controlled, and the leveling property of the porous film obtained thereby can be improved.
  • the mixing apparatus is not particularly limited as long as it can uniformly mix the above components, and a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and the like can be used.
  • a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix that can add a high dispersion share.
  • the method for applying the slurry for the porous film onto the electrode mixture layer is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method. Among them, the dip method and the gravure method are preferable in that a uniform porous film can be obtained.
  • the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams. The drying temperature varies depending on the type of solvent used.
  • a low-volatility solvent such as N-methylpyrrolidone
  • it is preferably dried at a high temperature of 120 ° C. or more with a blower-type dryer.
  • a highly volatile solvent when used, it can be dried at a low temperature of 100 ° C. or lower.
  • the adhesion between the electrode mixture layer and the porous film can be improved by a press treatment using a mold press or a roll press.
  • the pressure treatment is excessively performed, the porosity of the porous film may be impaired, so the pressure and the pressure time are controlled appropriately.
  • the porous film of the present invention is formed on the surface of the secondary battery electrode and is particularly preferably used as a protective film or separator for the electrode mixture layer.
  • the secondary battery electrode on which the porous film is formed is not particularly limited, and the porous film of the present invention can be formed on electrodes having various configurations.
  • the porous film may be formed on any surface of the positive electrode and the negative electrode of the secondary battery, or may be formed on both the positive electrode and the negative electrode.
  • the porous film is also used as a protective film for an electrode of an electric double layer capacitor.
  • the electrode of such a secondary battery electrode or electric double layer capacitor is generally an electrode mixture formed from a slurry containing a binder and an electrode active material (hereinafter sometimes referred to as “mixture slurry”). A layer is attached to the current collector.
  • the electrode active material for the secondary battery may be any material that can reversibly insert and release lithium ions by applying a potential in the electrolyte, and may be an inorganic compound or an organic compound.
  • Electrode active materials (positive electrode active materials) for secondary battery positive electrodes are broadly classified into those made of inorganic compounds and those made of organic compounds.
  • Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, composite oxides of lithium and transition metals, and transition metal sulfides.
  • As the transition metal Fe, Co, Ni, Mn and the like are used.
  • the inorganic compound used for the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , LiFeVO 4, and other lithium-containing composite metal oxides; TiS 2 , TiS 3 , non- Transition metal sulfides such as crystalline MoS 2 ; transition metal oxides such as Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 , V 2 O 5 , V 6 O 13 It is done. These compounds may be partially element-substituted.
  • the positive electrode active material made of an organic compound for example, a conductive polymer such as polyacetylene or poly-p-phenylene can be used.
  • An iron-based oxide having poor electrical conductivity may be used as an electrode active material covered with a carbon material by allowing a carbon source material to be present during reduction firing. These compounds may be partially element-substituted.
  • the positive electrode active material for the secondary battery may be a mixture of the above inorganic compound and organic compound.
  • the particle diameter of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as load characteristics and cycle characteristics, the 50% volume cumulative diameter is usually 0.1. It is ⁇ 50 ⁇ m, preferably 1 to 20 ⁇ m. When the 50% volume cumulative diameter is within this range, a secondary battery having a large charge / discharge capacity can be obtained, and handling of the slurry for electrodes and the electrodes is easy.
  • the 50% volume cumulative diameter can be determined by measuring the particle size distribution by laser diffraction.
  • Examples of electrode active materials (negative electrode active materials) for secondary battery negative electrodes include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, pitch-based carbon fibers, and conductive polymers such as polyacene. Can be given.
  • the negative electrode active material metals such as silicon, tin, zinc, manganese, iron, nickel, alloys thereof, oxides or sulfates of the metals or alloys are used.
  • lithium alloys such as lithium metal, Li—Al, Li—Bi—Cd, and Li—Sn—Cd, lithium transition metal nitride, silicon, and the like can be used.
  • the electrode active material a material obtained by attaching a conductivity imparting material to the surface by a mechanical modification method can also be used.
  • the particle diameter of the negative electrode active material is appropriately selected in consideration of other constituent elements of the battery. From the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, a 50% volume cumulative diameter is usually The thickness is 1 to 50 ⁇ m, preferably 15 to 30 ⁇ m.
  • the electrode active material for the electric double layer capacitor powder or fiber of carbonaceous material such as activated carbon, polyacene, carbon whisker, graphite or the like can be used.
  • the electrode active material is preferably activated carbon, and as the activated carbon, phenol, rayon, acrylic, pitch, coconut shell, or the like can be used.
  • the specific surface area of the activated carbon is usually 500 to 5,000 m 2 / g, preferably 1,000 to 3,000 m 2 / g.
  • non-porous carbon having microcrystalline carbon similar to graphite and having an increased interphase distance between the microcrystalline carbon described in JP-A-11-317333 and JP-A-2002-25867 is also used as an electrode active material. It can be used as a substance.
  • the specific surface area of these non-porous carbons is usually 10 to 1,000 m 2 / g, preferably 130 to 300 m 2 / g.
  • the particle size of the electrode active material is 0.1-1 A thickness of 00 ⁇ m, more preferably 1 to 20 ⁇ m, is preferable because the capacitor electrode can be easily thinned and the capacity density can be increased.
  • a metal oxide such as ruthenium oxide (RuO 2 ) is used as an electrode active material.
  • the conductivity-imparting material can be added to the mixture slurry.
  • conductive carbon such as acetylene black, ketjen black, carbon black, graphite, vapor-grown carbon fiber, and carbon nanotube can be used. Examples thereof include carbon powders such as graphite, and fibers and foils of various metals.
  • the reinforcing material various inorganic and organic spherical, plate-like, rod-like or fibrous fillers can be used.
  • the electrical contact between the electrode active materials can be improved by using the conductivity imparting material, the discharge rate characteristics are improved when used for a lithium ion secondary battery, and the internal resistance when used for an electric double layer capacitor. Can be reduced and the capacity density can be increased.
  • the amount of the conductivity-imparting material used is usually 0 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the electrode mixture layer includes a binder and an electrode active material.
  • the mixture is prepared as a mixture slurry dispersed in a solvent. Any solvent may be used as long as it dissolves or disperses the binder in the form of particles, but a solvent that dissolves the binder is preferable. When a solvent that dissolves the binder is used, the dispersion of the electrode active material and the like is stabilized by the adsorption of the binder to the surface.
  • various resin components can be used.
  • polyethylene polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like can be used. These may be used alone or in combination of two or more.
  • the soft polymer illustrated below can also be used as a binder.
  • Acrylic acid such as polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, butyl acrylate / styrene copolymer, butyl acrylate / acrylonitrile copolymer, butyl acrylate / acrylonitrile / glycidyl methacrylate copolymer
  • an acrylic soft polymer which is a homopolymer of a methacrylic acid derivative or a copolymer with a monomer copolymerizable therewith Isobutylene-based soft polymers such as polyisobutylene, isobutylene-isoprene rubber, isobutylene-styrene copolymer; Polybutadiene, polyisoprene, butadiene / styrene random copolymer, isopren
  • Olefinic soft polymers of Vinyl-based soft polymers such as polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, vinyl acetate / styrene copolymer; Epoxy-based soft polymers such as polyethylene oxide, polypropylene oxide, epichlorohydrin rubber; Fluorine-containing soft polymers such as vinylidene fluoride rubber and tetrafluoroethylene-propylene rubber; Examples thereof include other soft polymers such as natural rubber, polypeptide, protein, polyester-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. These soft polymers may have a cross-linked structure or may have a functional group introduced by modification.
  • the amount of the binder is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 4 parts by mass, and particularly preferably 0.1 parts by mass with respect to 100 parts by mass of the electrode active material. 5 to 3 parts by mass.
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the electrode active material. If the amount of the binder is too small, the active material may be easily removed from the electrode. Conversely, if the amount is too large, the active material may be covered with the binder to inhibit the battery reaction or increase the internal resistance. .
  • the binder is prepared as a solution or dispersion to produce an electrode.
  • the viscosity at that time is usually in the range of 1 mPa ⁇ S to 300,000 mPa ⁇ S, preferably 50 mPa ⁇ S to 10,000 mPa ⁇ S.
  • the viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.
  • the mixture slurry usually contains a solvent and disperses the electrode active material and the conductivity-imparting material. It is preferable to use a solvent that can dissolve the binder as the solvent because it is excellent in dispersibility of the electrode active material and the conductivity-imparting material.
  • a solvent that can dissolve the binder as the solvent because it is excellent in dispersibility of the electrode active material and the conductivity-imparting material.
  • organic solvents include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ⁇ -butyrolactone, ⁇ -Esters such as caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol and ethylene glycol monomethyl ether; N-methyl Amides such as pyrrolidone and N, N-dimethylformamide are exemplified. These solvents may be used alone or in admixture of two or more
  • the mixture slurry may further contain additives that exhibit various functions such as a thickener, a conductive material, and a reinforcing material.
  • a thickener a polymer soluble in the organic solvent used for the mixture slurry is used. Specifically, acrylonitrile-butadiene copolymer hydride or the like is used.
  • the mixture slurry contains trifluoropropylene carbonate, vinylene carbonate, catechol carbonate, 1,6-dioxaspiro [4,4] nonane-2,7-dione, 12-crown. -4-ether can be used. These may be used by being contained in an electrolyte solution described later.
  • the amount of the organic solvent in the mixture slurry is adjusted so as to have a viscosity suitable for coating depending on the type of the electrode active material, the binder and the like.
  • the solid content concentration of the electrode active material, the binder and other additives is preferably adjusted to an amount of 30 to 90% by mass, more preferably 40 to 80% by mass.
  • the mixture slurry is obtained by mixing a binder, an electrode active material, an additive added as necessary, and other organic solvents using a mixer. Mixing may be performed by supplying the above components all at once to the mixer and mixing them. However, the conductive material and the thickener are mixed in an organic solvent to disperse the conductive material into fine particles, and then a binder, It is preferable to add an electrode active material and further mix since the dispersibility of the slurry is improved.
  • a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, and the like can be used. When a ball mill is used, a conductive material and an electrode active material are aggregated. Is preferable.
  • the particle size of the mixture slurry is preferably 35 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the conductive material is highly dispersible and a homogeneous electrode can be obtained.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of having heat resistance, for example, iron, copper, aluminum, nickel, stainless steel, etc. Metal materials such as titanium, tantalum, gold, and platinum are preferable. Among these, aluminum is particularly preferable for the positive electrode of the nonaqueous electrolyte secondary battery, and copper is particularly preferable for the negative electrode.
  • the shape of the current collector is not particularly limited, but a sheet shape having a thickness of about 0.001 to 0.5 mm is preferable. In order to increase the adhesive strength of the mixture, the current collector is preferably used after roughening in advance. Examples of the roughening method include mechanical polishing, electrolytic polishing, and chemical polishing.
  • an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used. Further, an intermediate layer may be formed on the current collector surface in order to increase the adhesive strength and conductivity of the electrode mixture layer.
  • the manufacturing method of the secondary battery electrode may be a method in which an electrode mixture layer is bound in layers on at least one side, preferably both sides of the current collector.
  • the mixture slurry is applied to a current collector and dried, and then heat treated at 120 ° C. or more for 1 hour or more to form a mixture electrode layer.
  • the method for applying the mixture slurry to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the porosity of the electrode mixture is preferably cured.
  • the thickness of the electrode mixture layer is usually 5 to 300 ⁇ m, preferably 10 to 250 ⁇ m, for both the positive electrode and the negative electrode.
  • the secondary battery electrode with a porous film of the present invention is used as an electrode of a lithium ion secondary battery or an electric double layer capacitor. Especially, it is preferable to use as an electrode of a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and an electrolytic solution, and at least one of the positive electrode and the negative electrode is the secondary battery electrode with a porous film of the present invention.
  • the secondary battery electrode with a porous film of the present invention is used for the positive electrode and the negative electrode.
  • a specific method for producing a lithium ion secondary battery for example, a positive electrode with a porous film and a negative electrode with a porous film are overlapped via a separator, and this is wound into a battery container according to the shape of the battery. And a method of injecting an electrolyte solution into a battery container and sealing it. If necessary, an expanded metal, an overcurrent prevention element such as a fuse or a PTC element, a lead plate, or the like can be inserted to prevent an increase in pressure inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • separator a known separator such as a separator made of a polyolefin resin such as polyethylene or polypropylene is used.
  • a separator can also be abbreviate
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt is not particularly limited, LiPF 6, LiAsF 6, LiBF 4, LiSbF 6, LiAlCl 4, LiClO 4, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi, (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. Two or more of these may be used in combination. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, but dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • Carbonates such as (BC) and methyl ethyl carbonate (MEC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Are preferably used. Moreover, you may use the liquid mixture of these solvents.
  • carbonates are preferable because they have a high dielectric constant and a wide stable potential region. Since the lithium ion conductivity increases as the viscosity of the solvent used decreases, the lithium ion conductivity can be adjusted depending on the type of the solvent.
  • the concentration of the supporting electrolyte in the electrolytic solution is usually 1 to 30% by mass, preferably 5 to 20% by mass.
  • the concentration is usually 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity tends to decrease. Since the degree of swelling of the polymer particles increases as the concentration of the electrolytic solution used decreases, the lithium ion conductivity can be adjusted by the concentration of the electrolytic solution.
  • Example Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
  • the part and% in a present Example are a mass reference
  • various physical properties were evaluated as follows.
  • x represents an average value of the film thickness
  • n represents the number of measurements. (Evaluation criteria) A: Less than 5% B: 5% or more to less than 10% C: 10% or more to less than 20% D: 20% or more to less than 50% E: 50% or more
  • water-soluble polymer carboxymethyl cellulose having an average polymerization degree of 1200 to 1300 and an etherification degree of 0.65 to 0.75 was used.
  • ⁇ Particulate polymer> (Preparation of particulate polymer A)
  • 70 parts of ion exchange water, 0.2 part of sodium dodecylbenzenesulfonate and 0.3 part of potassium persulfate were respectively supplied, the gas phase part was replaced with nitrogen gas, and the temperature was changed to 60 ° C. The temperature rose.
  • 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate, and 80 parts of ethyl acrylate (ethyl acrylate), 15 parts of acrylonitrile, and 5 parts of itaconic acid are mixed in a separate container. Thus, a monomer mixture was obtained.
  • This monomer mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was further completed by stirring at 70 ° C. for 3 hours. The polymerization conversion rate was 99.5% or more. After cooling the obtained polymerization reaction liquid to 25 ° C., aqueous ammonia is added to adjust the pH to 7, and then steam is introduced to remove unreacted monomers. % Aqueous dispersion was obtained. In the obtained particulate polymer A, the ratio of monomer (itaconic acid) units containing a hydrophilic group was 5%, the glass transition temperature was 10 ° C., and the average particle size was about 100 nm.
  • Preparation of particulate polymer B A 40% aqueous dispersion of the particulate polymer B was obtained by polymerizing in the same manner as the particulate polymer A except that the itaconic acid in the particulate polymer A was changed to acrylic acid.
  • the ratio of the monomer (acrylic acid) unit containing a hydrophilic group was 5%
  • the glass transition temperature was 5 ° C.
  • the average particle size was about 100 nm.
  • Preparation of particulate polymer C Polymerization was performed in the same manner as in the particulate polymer A except that itaconic acid in the particulate polymer A was changed to acrylamido-2-methylpropanesulfonic acid to obtain a 40% aqueous dispersion of the particulate polymer C.
  • the proportion of monomer (acrylamido-2-methylpropanesulfonic acid) unit containing a hydrophilic group is 5%
  • the glass transition temperature is 3 ° C.
  • the average particle size is about It was 100 nm.
  • particulate polymer D Polymerized in the same manner as the particulate polymer A except that itaconic acid in the particulate polymer A was changed to 2-hydroxyethyl methacrylate (2-hydroxyethyl methacrylate). Got the body.
  • the proportion of monomer (2-hydroxyethyl methacrylate) units containing a hydrophilic group was 5%
  • the glass transition temperature was 3 ° C.
  • the average particle size was about 100 nm. It was.
  • Preparation of particulate polymer E A 40% aqueous dispersion of the particulate polymer E was obtained by polymerizing in the same manner as the particulate polymer A, except that 5 parts of itaconic acid in the particulate polymer A was changed to 2 parts.
  • the ratio of the monomer (itaconic acid) unit containing a hydrophilic group was 2%
  • the glass transition temperature was 0 ° C.
  • the average particle size was about 100 nm.
  • Preparation of particulate polymer F Polymerization was carried out in the same manner as in the particulate polymer A except that 5 parts of itaconic acid in the particulate polymer A was changed to 0.1 part to obtain a 40% aqueous dispersion of the particulate polymer F.
  • the obtained particulate polymer F had a ratio of monomer (itaconic acid) units containing a hydrophilic group of 0.1%, a glass transition temperature of ⁇ 5 ° C., and an average particle size of about 100 nm. It was.
  • Inorganic filler alumina having an average particle size of 0.5 ⁇ m was used.
  • Example 1 ⁇ Creation of slurry for porous membrane> A porous membrane slurry 1 was prepared by mixing the inorganic filler: water-soluble polymer: particulate polymer so that the solid content mass ratio was 100: 4: 5, and dispersing in water using a bead mill.
  • the particulate polymer A was used as the particulate polymer.
  • the content of raw materials (total solid content) other than water in the slurry was set to 50% by mass.
  • Electrode composition for positive electrode and positive electrode To 95 parts of LiCoO 2 having a spinel structure as a positive electrode active material, PVDF (polyvinylidene fluoride) as a binder was added to a solid content of 3 parts, and further 2 parts of acetylene black and 20 parts of N-methylpyrrolidone were added. Mixing with a planetary mixer, a slurry-like electrode composition for a positive electrode was obtained. This electrode composition was applied to an aluminum foil having a thickness of 18 ⁇ m, dried at 120 ° C. for 3 hours, and then roll-pressed to obtain a positive electrode having a thickness of 100 ⁇ m.
  • PVDF polyvinylidene fluoride
  • negative electrode composition and negative electrode As a negative electrode active material, 98 parts of graphite having a particle diameter of 20 ⁇ m and a specific surface area of 4.2 m 2 / g are mixed with PVDF (polyvinylidene fluoride) as a binder in an amount of 5 parts in solids, and NMP is added to add planetary. A slurry-like electrode composition for a negative electrode was prepared by mixing with a mixer. This negative electrode composition was applied to one side of a 0.1 mm thick copper foil, dried at 110 ° C. for 3 hours, and then roll pressed to obtain a negative electrode having a thickness of 100 ⁇ m.
  • PVDF polyvinylidene fluoride
  • the obtained positive electrode was cut out into a circle having a diameter of 13 mm, and the negative electrode with a porous film was cut into a circle having a diameter of 14 mm.
  • the battery can was sealed, and a lithium ion secondary battery having a diameter of 20 mm and a thickness of about 3.2 mm was manufactured (coin cell CR2032).
  • the charge / discharge cycle characteristics of the obtained battery were measured. The results are shown in Table 2.
  • Example 2 In Example 1, the porous membrane slurry was coated on the positive electrode, and the negative electrode was the same as in Example 1, except that the porous membrane was not coated. Batteries were prepared and evaluated. The results are shown in Table 1.
  • Example 3 A porous membrane slurry 3 was prepared in the same manner as in Example 1 except that the particulate polymer A was changed to the particulate polymer B in Example 1. In Example 1, except that the porous film slurry 1 was changed to the porous film slurry 3, an electrode with a porous film and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 A porous membrane slurry 4 was prepared in the same manner as in Example 1 except that the particulate polymer A was changed to the particulate polymer C in Example 1. In Example 1, except that the porous film slurry 1 was changed to the porous film slurry 4, a porous film-attached electrode and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 5 A porous membrane slurry 5 was prepared in the same manner as in Example 1 except that the particulate polymer A was changed to the particulate polymer D in Example 1. In Example 1, except that the porous film slurry 1 was changed to the porous film slurry 5, an electrode with a porous film and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 6 In Example 1, the particulate polymer A was changed to the particulate polymer E, and the solid content mass ratio of inorganic filler: water-soluble polymer: particulate polymer was mixed so as to be 100: 4: 2.
  • Example 1 except that the porous film slurry 1 was changed to the porous film slurry 6, an electrode with a porous film and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 a porous membrane slurry 7 was prepared in the same manner as in Example 1 except that the particulate polymer A was not used. In Example 1, except that the porous membrane slurry 1 was changed to the porous membrane slurry 7, a porous membrane-attached electrode and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 A porous membrane slurry 8 was prepared in the same manner as in Example 1 except that the particulate polymer A was changed to the particulate polymer F in Example 1.
  • Example 1 except that the porous membrane slurry 1 was changed to the porous membrane slurry 8, a porous membrane-attached electrode and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 (Comparative Example 3)
  • the particulate polymer A was changed to the liquid polymer G, and the inorganic filler: water-soluble polymer: particulate polymer was mixed so that the solid content mass ratio was 100: 4: 0.1.
  • a porous membrane slurry 9 was prepared in the same manner as in Example 1.
  • the cohesiveness was measured in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 except that the porous membrane slurry 1 was changed to the porous membrane slurry 9, a porous membrane-attached electrode and a secondary battery were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • a porous membrane slurry 10 was prepared by mixing the inorganic filler: polyvinylidene fluoride (PVDF) so that the solid content mass ratio was 100: 10 and dispersing the mixture in N-methylpyrrolidone (NMP) using a bead mill. The content of raw materials (total solid content) in the slurry was set to 40% by mass.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the binding property and dispersibility of the inorganic filler are improved, and a uniform porous film can be obtained.
  • the secondary battery produced using the obtained porous film also exhibits good battery characteristics (cycle characteristics).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Abstract

 【課題】 二次電池などに用いられる電極の表面に設けられる多孔性保護膜において、結着性の向上による電池のサイクル特性の改善に寄与しうる多孔膜を提供する。  【解決手段】 本発明に係る多孔膜は、水溶性高分子と、無機フィラーと、 カルボン酸基、水酸基及びスルホン酸基からなる群から選択される親水性基を含有する単量体単位を0.5~40質量%含有する非水溶性の粒子状高分子とを含有してなる。  

Description

多孔膜および二次電池電極
 本発明は多孔膜に関し、さらに詳しくはリチウムイオン二次電池や電気二重層キャパシタの電極表面に形成され、膜均一性や柔軟性及び電池のサイクル特性の改善に寄与しうる多孔膜に関する。また本発明は、かかる多孔膜を備えた二次電池電極に関する。
 実用化されている電池の中でも、リチウムイオン二次電池は最も高いエネルギー密度を示し、特に小型エレクトロニクス用に多く使用されている。また、小型用途に加えて自動車向けへの展開も期待されている。その中で、リチウムイオン二次電池の長寿命化と、安全性のさらなる向上が要望されている。    
 リチウムイオン二次電池は、一般に集電体に担持された電極合剤層を含む正極および負極、セパレータおよび非水電解液を具備する。電極合剤層は、平均粒径5~50μm程度の電極活物質とバインダーとを含む。電極は集電体上に粉末の電極活物質を含んだ合剤スラリーを塗布して電極合剤層を形成して作製される。また、正極と負極を隔離するためのセパレータとしては、厚さ10~50μm程度の非常に薄いセパレータが使用されている。リチウムイオン二次電池は、電極とセパレータとの積層工程や所定の電極形状に裁断する裁断工程等を経て製造される。しかし、この一連の製造工程を通過する間に、電極合剤層から活物質が脱落し、脱落した活物質の一部が異物として電池内に含まれてしまうことがある。
 このような異物は、粒径が5~50μm程度であり、セパレータの厚みと略同程度であるため、組み立てられた電池内でセパレータを貫通し、短絡を引き起こすという問題を誘発する。また、電池の作動時には、発熱を伴う。この結果、延伸ポリエチレン樹脂などからなるセパレータも加熱される。延伸ポリエチレン樹脂などからなるセパレータは、概して150℃以下の温度でも収縮しやすく、電池の短絡を導きやすい。また、釘のような鋭利な形状の突起物が電池を貫いた時(例えば釘刺し試験時)、瞬時に短絡し、反応熱が発生し、短絡部が拡大する。
 そこで、このような課題を解決するため、電極表面に多孔性保護膜を設けることが提案されている。多孔性保護膜を設けることで、電池の作成過程における活物質の脱落を防止し、また電池作動時の短絡を防止している。さらに保護膜が多孔性であるため、保護膜中に電解液が浸透し、電池反応を阻害することもない。
 たとえば、特許文献1には、バインダーとしてのポリフッ化ビニリデンと、アルミナやシリカ、ポリエチレン樹脂などの微粒子とを含む微粒子スラリーを用いて形成されてなる多孔性保護膜が開示されている。特許文献2には、バインダーとしてポリアクリロニトリルなどの熱架橋性樹脂を使用してなる多孔性保護膜が記載されている。
 しかし、ポリフッ化ビニリデンや熱架橋性樹脂などの高分子をバインダーとした場合には、多孔膜の柔軟性に劣り捲回時に割れを起こしうる。その為、電極巻取り工程時等において巻取速度を極度に抑えて行う必要がある。また、捲回時に割れが生じると、発生する剥離塊が内部短絡の原因となり、電池の発火等を起こす可能性が高い。
 また、特許文献3には、上記柔軟性の問題を解決する手段としてカルボキシメチルセルロースなどの水溶性重合体と、アクリロニトリル-アクリレート共重合体からなるゴム粒子とからなる樹脂結着剤に、無機フィラーを分散したスラリーを用いて形成した多孔性保護膜が開示されている。結着剤にゴム粒子を用いることで柔軟性の大幅な向上は見られるが、多孔膜の結着性が足りない為に多孔膜の一部が脱離(粉落ち)という現象が起こり、サイクル性の悪化が見られる。さらに、無機フィラーの分散が不十分なため、膜均一性にも劣る。
特開平7-220759号公報 特開2005-332809号公報 国際特許公開WO2005/011043号
 本発明は、上記のような従来技術に鑑みてなされたものであって、二次電池などに用いられる電極の表面に設けられる多孔性保護膜において、結着性の向上による電池のサイクル特性の改善に寄与しうる多孔膜を提供することを目的としている。
 上記課題を解決すべく、鋭意検討の結果、本発明者らは多孔膜を構成するバインダーとして、水溶性高分子と、親水性基を含有する粒子状高分子とを用いることで、結着性の向上による優れたサイクル特性を示す電池を供給でき得る多孔膜が得られることを見いだし、本発明を完成するに至った。
 上記課題を解決する本発明は、下記事項を要旨として含む。
(1)水溶性高分子と、無機フィラーと、
 カルボン酸基、水酸基及びスルホン酸基からなる群から選択される親水性基を含有する単量体単位を0.5~40質量%含有する非水溶性の粒子状高分子とを含有してなる多孔膜。
(2)前記水溶性高分子が、増粘多糖類から選択されるものである(1)に記載の多孔膜。
(3)前記増粘多糖類が、セルロース系半合成系高分子、そのナトリウム塩及びアンモニウム塩からなる群から選択されるものである(2)に記載の多孔膜。
(4)前記粒子状高分子の親水性基が、カルボン酸基である(1)に記載の多孔膜。
(5)前記多孔膜中の水溶性高分子の含有割合が、前記無機フィラー100質量部に対して0.1~5質量部であり、非水溶性の粒子状高分子の含有割合が、無機フィラー100質量部に対して0.1~15質量部である(1)~(4)の何れかに記載の多孔膜。
(6)バインダーと、電極活物質とを含んでなる電極合剤層が、集電体に付着してなり、かつ電極合剤層の表面に、(1)に記載の多孔膜が設けられてなる二次電池電極。
(7)水溶性高分子と、無機フィラーと、カルボン酸基、水酸基及びスルホン酸基からなる群から選択される親水性基を含有する単量体単位を0.5~40質量%含有する非水溶性の粒子状高分子と、分散媒とを含んでなる多孔膜用スラリーを、バインダーと、電極活物質とを含んでなる電極合剤層上に塗布、乾燥する工程を含む(6)に記載の二次電池電極の製造方法。
(8)正極、負極、及び電解液を含むリチウムイオン二次電池であって、
 正極及び負極の少なくとも一方が、(6)に記載の電極である、
 リチウムイオン二次電池。
 本発明によれば、結着性に優れ、電池のサイクル特性の向上に寄与しうる多孔膜が提供される。かかる多孔膜は、二次電池電極の表面に形成され、電極の保護膜として機能し、高い結着性を有し電極表面に密着し活物質の脱落防止、および電池作動時の短絡防止に寄与する。
 以下に本発明を詳述する。
 本発明の多孔膜は、水溶性高分子と、無機フィラーと、非水溶性の粒子状高分子とを含む。
(粒子状高分子)
 粒子状高分子は、非水溶性の高分子からなり、カルボン酸基、水酸基、スルホン酸基からなる群から選ばれる親水性基を含有する。
 本明細書における非水溶性の高分子とは、25℃において、高分子0.5gを100gの水に溶解した際に、不溶分が90質量%以上の高分子をいう。一方、水溶性高分子とは、同条件において不溶分が0.5質量%未満の高分子をいう。
 粒子状高分子は、上記親水性基を有することで無機フィラーの分散安定性及び無機フィラー同士の結着性向上を付与することができる。無機フィラーの表面が親水性を示し易いことから粒子状高分子が親水性基を有することで、粒子状高分子が無機フィラーの表面に吸着しやすくなる。そして無機フィラー表面に吸着しやすくなることにより無機フィラーの分散性が高く、電極作製時に強固な結着状態を取りうる。よって無機フィラーとの親和性を向上させ、スラリー化した際に無機フィラーを均一に分散しうる観点と得られた多孔膜の結着性を向上しうる観点から、上記粒子状高分子が親水性基を含有することが必要となる。
 親水性基は、粒子状高分子の製造時に、親水性基を含有する単量体とこれと共重合可能な他の単量体とを共重合することで、粒子状高分子中に導入することができる。
 カルボン酸基を含有する単量体としては、モノカルボン酸及びその誘導体やジカルボン酸、その酸無水物、及びこれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。モノカルボン酸誘導体としては、2-エチルアクリル酸、2-エチルアクリル酸、イソクロトン酸、α―アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸などマレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステル;が挙げられる。
 水酸基を含有する単量体としては、(メタ)アリルアルコール、3-ブテン-1-オール、5-ヘキセン-1-オールなどのエチレン性不飽和アルコール;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸-ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピルなどのエチレン性不飽和カルボン酸のアルカノールエステル類;一般式CH=CR-COO-(C2nO)-H(mは2ないし9の整数、nは2ないし4の整数、Rは水素またはメチル基を表す)で表されるポリアルキレングリコールと(メタ)アクリル酸とのエステル類;
 2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシフタレート、2-ヒドロキシエチル-2’-(メタ)アクリロイルオキシサクシネートなどのジカルボン酸のジヒドロキシエステルのモノ(メタ)アクリル酸エステル類;2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテルなどのビニルエーテル類;(メタ)アリル-2-ヒドロキシエチルエーテル、(メタ)アリル-2-ヒドロキシプロピルエーテル、(メタ)アリル-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシブチルエーテル、(メタ)アリル-3-ヒドロキシブチルエーテル、(メタ)アリル-4-ヒドロキシブチルエーテル、(メタ)アリル-6-ヒドロキシヘキシルエーテルなどのアルキレングリコールのモノ(メタ)アリルエーテル類;ジエチレングリコールモノ(メタ)アリルエーテル、ジプロピレングリコールモノ(メタ)アリルエーテルなどのポリオキシアルキレングリコール(メタ)モノアリルエーテル類;グリセリンモノ(メタ)アリルエーテル、(メタ)アリル-2-クロロ-3-ヒドロキシプロピルエーテル、(メタ)アリル-2-ヒドロキシ-3-クロロプロピルエーテルなどの、(ポリ)アルキレングリコールのハロゲン及びヒドロキシ置換体のモノ(メタ)アリルエーテル;オイゲノール、イソオイゲノールなどの多価フェノールのモノ(メタ)アリルエーテル及びそのハロゲン置換体;(メタ)アリル-2-ヒドロキシエチルチオエーテル、(メタ)アリル-2-ヒドロキシプロピルチオエーテルなどのアルキレングリコールの(メタ)アリルチオエーテル類;などが挙げられる。
 また、スルホン酸基を含有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」は「アクリロイル」又は「メタアクリロイル」を、「(メタ)アリル」は「アリル」又は「メタアリル」を、「(メタ)アクリル」は「アクリル」又は「メタアクリル」を、それぞれ意味する。
 これらの中でも、親水性基としては、無機フィラーの分散性や結着性をさらに向上できる観点から、カルボン酸基が好ましく、カルボン酸基の中でも2つの親水性基が隣接して存在することで無機フィラー粒子表面に効率的に吸着し易いジカルボン酸がより好ましく、中でもイタコン酸が最も好ましい。
 粒子状高分子中の親水性基含有量は、重合時の親水性基含有単量体量として単量体全量100質量%に対して好ましくは0.5~40質量%、更に好ましくは3~20質量%の範囲である。粒子状高分子中の親水性基含有量は、高分子製造時の単量体仕込み比により制御できる。親水性基含有単量体の量が少なすぎると粒子状高分子中の親水性基が少ないことで上述した効果を出すことができない。逆に、親水性基含有単量体が多すぎると水への溶解性が高くなり、無機フィラーの分散性がかえって悪化することがある。
 親水性基を含有する粒子状高分子は、GPCにより求められるポリスチレン換算の重量平均分子量が好ましくは10,000~500,000、さらに好ましくは20,000~200,000の範囲にある。粒子状高分子の重量平均分子量が上記範囲にあると、強度に優れ且つ無機フィラーの分散性が高い多孔膜が得られる。
 また、親水性基を含有する粒子状高分子の平均粒径(体積平均のD50平均粒子径)は、0.01~0.5μmであることが好ましく、さらには0.01~0.2μmであることがより好ましい。粒子状高分子の粒径が大きすぎると、フィラーとの接着点が少なくなり結着性の低下を引き起こし、また粒径が小さすぎると、多孔性が低下し、膜の抵抗が上がり電池物性が低下するおそれがある。
 さらに、親水性基を含有する粒子状高分子のガラス転移温度(Tg)は、20℃以下であることが好ましく、さらには5℃以下であることがより好ましい。前記ガラス転移温度(Tg)が前記範囲であることにより、多孔膜の柔軟性が上がり、電極の耐屈曲性が向上し多孔膜が割れることによる不良率を下げることができる。
 上記親水性基を含有する粒子状高分子は、親水性基を含有する単量体と、その他の共重合可能な単量体と共重合することにより得られる。
 その他の共重合可能な単量体としては、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル化合物;スチレン、クロロスチレン、ビニルトルエン、t-ブチルスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルナフタレン、クロロメチルスチレン、α-メチルスチレン、ジビニルベンゼン等のスチレン系単量体;エチレン、プロピレン等のオレフィン類;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2エチルヘキシルなどの(メタ)アクリル酸アルキルエステル類;エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリメチロールプロパントリアクリレートなどの2つ以上の炭素-炭素二重結合を有するカルボン酸エステル類;ブタジエン、イソプレン等のジエン系単量体;塩化ビニル、塩化ビニリデン等のハロゲン原子含有単量体; 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、ブチルビエルエーテル等のビニルエーテル類;メチルビニルケトン、エチルビニルケトン、ブチルビニルケトン、ヘキシルビニルケトン、イソプロペニルビニルケトン等のビニルケトン類; N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の複素環含有ビニル化合物;アクリルアミド、N-メチロールアクリルアミド、アクリルアミド-2-メチルプロパンスルホン酸などのアミド系単量体;が挙げられる。
 また、粒子状高分子は、架橋性基を含有することが好ましい。架橋性基を導入すると、多孔膜形成後の加熱処理によって、多孔膜を架橋させることができ、電解液への溶解や膨潤を抑制できるので、強靱で柔軟な多孔膜が得られる。架橋性基としては、エポキシ基、親水性基である水酸基も含まれるが更に、N-メチロールアミド基、オキサゾリン基などがあげられ、エポキシ基および/または水酸基が好ましい。すなわち、水酸基は、無機フィラーの分散時にはフィラーを均一に分散する機能を果たし、膜形成時には架橋性基としての作用を発現する。架橋性基は、粒子状高分子の製造時に、架橋性基を含有する重合性化合物を同時に共重合することで、粒子状高分子中に導入してもよく、また架橋性基含有化合物を用いた慣用の変性手段により粒子状高分子中に導入してもよい。
 粒子状高分子の製造方法は特に限定はされず、溶液重合法、懸濁重合法、乳化重合法などのいずれの方法も用いることができる。重合に用いる重合開始剤としては、たとえば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、t-ブチルパーオキシピバレート、3,3,5-トリメチルヘキサノイルパーオキサイドなどの有機過酸化物、α,α’-アゾビスイソブチロニトリルなどのアゾ化合物、または過硫酸アンモニウム、過硫酸カリウムなどがあげられる。
 特に、水中で重合をすることが出来、そのまま多孔膜スラリー作製時に添加できるという観点から、乳化重合法、懸濁重合法が好ましい。
 (水溶性高分子)
 本発明に用いる水溶性高分子の、ウベローデ粘度計より求められる極限粘度から算出される平均重合度は、好ましくは500~2500、さらに好ましくは1000~2000、特に好ましくは1000~1500の範囲にある。
 水系のスラリーにおいて、水溶性高分子の一部が水中に存在し、一部が無機フィラー表面に吸着することで無機フィラーの水中での分散安定化が行われているものと考えられる。そして、水溶性高分子の平均重合度は無機フィラーへの吸着安定性に影響を与えることがある。
 たとえば、水溶性高分子の平均重合度が前記範囲よりも小さい場合は、水溶性高分子の水への溶解性が高く運動性も高くなる為に、水溶性高分子が無機フィラー表面に吸着しても、高分子の運動性及び水への溶解性の高さから無機フィラーから脱離を起こしやすい。このため、無機フィラー表面の水溶性高分子による分散安定層が疎な状態になり、その結果、無機フィラーを安定的に分散させることができず、均一な膜を得ることが困難になることがある。逆に水溶性高分子の平均重合度が前記範囲よりも大きい場合は、複数の無機フィラー間で吸着をし、橋架け凝集が起きることがある。加えて、スラリーの粘度も大幅に上がることになり、スラリーの流動性の低下が見られる。その結果、塗工時に塗膜表面における表面の平滑化(レベリング)が起こりにくくなり、得られた電極にムラが生じるおそれがある。
 このように、水溶性高分子の平均重合度はスラリーの流動性・得られた多孔膜の膜均一性及び工程上のプロセスへ影響することがあるため、最適な平均重合度の水溶性高分子を選択することが好ましい。
 水溶性高分子としては、例えば、天然系高分子、半合成系高分子及び合成系高分子を例示できる。
 電池内部で使用されるにあたっては高い電位での安定性が必要とされる。多孔膜用途として使用するに当たってはフィラーの分散性を有することが求められる。また、電極表面やセパレーター表面に塗工させる必要性からスラリーがある程度の粘度を持ち流動性を示すことが必要となってくる。このように多数の観点から材料の選定が必要となる。これらの水溶性高分子の中でも、特に、粘度を与える観点から増粘多糖類が好ましい。増粘多糖類としては、天然系高分子やセルロース系半合成系高分子が含まれる。
 天然系高分子として、例えば、植物もしくは動物由来の多糖類及びたんぱく質等を例示することができ、また、場合により微生物等による発酵処理や、熱による処理がされた天然系高分子を例示できる。これらの天然系高分子は、植物系天然系高分子、動物系天然系高分子及び微生物系天然系高分子等として分類することができる。
 植物系天然系高分子として、例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンナン、クインスシード(マルメロ)、アルケコロイド(ガッソウエキス)、澱粉(コメ、トウモロコシ、馬鈴薯、小麦等に由来するもの)、グリチルリチン等を例示できる。動物系天然系高分子として、コラーゲン、カゼイン、アルブミン、ゼラチン等を例示できる。微生物系天然系高分子として、キサンタンガム、デキストラン、サクシノグルカン、ブルラン等を例示できる。
 セルロース系半合成系高分子は、ノニオン性、アニオン性及びカチオン性に分類することができる。
 ノニオン性セルロース系半合成系高分子として、例えば、メチルセルロース、メチルエチルセルロース、エチルセルロース、マイクロクリスタリンセルロース、等のアルキルセルロース、並びにヒドロキシエチルセルロース、ヒドロキシブチルメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースステアロキシエーテル、カルボキシメチルヒドロキシエチルセルロース、アルキルヒドロキシエチルセルロース、ノノキシニルヒドロキシエチルセルロース等のヒドロキシアルキルセルロースを例示できる。
 アニオン性セルロース系半合成系高分子としては上記のノニオン性セルロース系半合成系高分子を各種誘導基により置換されたアルキルセルロース及びそのナトリウム塩やアンモニウム塩が挙げられる。例えば、セルロース硫酸ナトリウム、メチルセルロース、メチルエチルセルロース、エチルセルロース、カルボキシメチルセルロース(CMC)及びそれらの塩等を例示することができる。
 カチオン性セルロース系半合成系高分子として、例えば、低窒素ヒドロキシエチルセルロースジメチルジアリルアンモニウムクロリド(ポリクオタニウム-4)、塩化O-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-10)、塩化O-[2-ヒドロキシ-3-(ラウリルジメチルアンモニオ)プロピル]ヒドロキシエチルセルロース(ポリクオタニウム-24)等を例示できる。
 これらの中でもカチオン性、アニオン性また両性の特性を取りうることから特にセルロース系半合成系高分子、そのナトリウム塩、又はそのアンモニウム塩が、特に好ましい。その中でも特に無機フィラーの分散性の観点からアニオン性のセルロース系半合成系高分子が好ましい。
 また、セルロース系半合成系高分子のエーテル化度は、好ましくは0.5~1.0、さらに好ましくは0.6~0.8の範囲にある。セルロース中の無水グルコース単位1個当たりの水酸基(3個)のカルボキシメチル基等への置換体への置換度をエーテル化度という。理論的に0~3までの値を取りうる。エーテル化度が上記範囲にある場合は無機フィラー表面に吸着しつつ水への相溶性も見られることから分散性に優れ、無機フィラーを一次粒子レベルまで微分散できる。加えて最適な平均重合度も持たせることで経時の安定性も向上し、凝集物がなく厚みムラのない塗工が可能になる。
 (無機フィラー)
 無機フィラーは、二次電池の使用環境下で、電気化学的にも安定であることが望まれる。また、無機フィラーは、前記水溶性高分子や粒子状高分子と混合してスラリーを調製するのに適した材料であることが望まれる。
 無機フィラーのBET比表面積は、例えば0.9m/g以上、さらには1.5m/g以上であることが好ましい。また、無機フィラーの凝集を抑制し、スラリーの流動性を好適化する観点から、BET比表面積は大き過ぎず、例えば150m/g以下であることが好ましい。また、無機フィラーの平均粒径(体積平均のD50平均粒子径)は、0.1~5μmであることが好ましく、さらには0.2~2μmであることがより好ましい。
 以上のような観点から、無機フィラーとしては、無機酸化物フィラーが好ましく、例えばアルミナ(酸化アルミニウム)、マグネシア(酸化マグネシウム)、酸化カルシウム、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)、タルク、珪石等を材料とする無機酸化物フィラーを好ましく用いることができる。
 このような無機フィラーは、分散安定性に優れ、多孔膜用スラリーを調製した際にも沈降することなく、均一なスラリー状態を長時間維持する。
 (多孔膜)
 本発明の多孔膜は、上記水溶性高分子と、粒子状高分子と、無機フィラーと、分散剤とを含んでなるスラリー(多孔膜用スラリー)を所定の基材上に塗布・乾燥して得られる。基材は、特に限定はされないが、本発明の多孔膜は特に二次電池電極や電気二重層キャパシタの電極の表面に形成されることが好ましい。
 得られる多孔膜中の固形分組成は、多孔膜用スラリーの固形分組成と等しく、前記無機フィラー100質量部に対し、水溶性高分子を好ましくは0.1~5質量部、さらに好ましくは0.2~4質量部含み、また粒子状高分子を好ましくは0.1~15質量部、さらに好ましくは0.5~10質量部含む。水溶性高分子及び粒子状高分子の含有量が前記範囲よりも少ないと無機フィラーの分散性が劣り、凝集又は多孔性の低下が起こる恐れがある。さらに無機フィラー同士及び電極への結着性も低下し、粉落ち及び柔軟性の低下の恐れがある。水溶性高分子及び粒子状高分子の含有量が、前記範囲よりも多いと空孔を覆いLiの移動が阻害されて抵抗が増大する恐れがある。
 また、多孔膜には、上記水溶性高分子、粒子状高分子、および無機フィラーのほかに、さらに分散剤や電解液分解抑制等の機能を有する電解液添加剤等が含まれていてもよい。これらは電池反応に影響を及ぼさないものであれば特に限られない。
 本発明の多孔膜は、適度な多孔性を有し、電解液を吸液するため、膜中に電解液が浸透し、二次電池電極の表面に形成されても電池反応を阻害することはなく、従来の多孔性保護膜に比して、レート特性等に対し悪影響を及ぼすことも無い。また、本発明の多孔膜は、適度な柔軟性を有するため、二次電池電極の表面に形成され、電極の保護膜として機能し、電池の作成過程における活物質の脱落防止、および電池作動時の短絡防止に寄与する。
 このような多孔膜は、空隙率と柔軟性とのバランスに優れ、また無機フィラーの保持性が高く、電池の作成過程におけるフィラーの脱落が低減される。
 多孔膜の膜厚は、特に限定はされず、膜の用途あるいは適用分野に応じて適宜に設定されるが、薄すぎると均一な膜を形成できず、又厚すぎると電池内での体積(重量)あたりの容量(capacity)が減ることから、好ましくは1~50μm、更に電極表面に保護膜として形成する際は1~20μmが好ましい。
 (多孔膜用スラリー)
 本発明の多孔膜は、上記した所定の固形分組成を有する多孔膜用スラリーを、後述する二次電池電極の電極合剤層上に塗布、乾燥して作製される。また、該スラリーに電極を浸漬後、これを乾燥して多孔膜を形成することもできる。あるいは、スラリーを剥離フィルム上に塗布、成膜し、得られた多孔膜を所定の電極合剤層上に転写してもよい。
 本発明の多孔膜付二次電池電極は、上記の電極合剤層上に多孔膜を成膜してなる。多孔膜は、二次電池の正極、負極の何れの表面に成膜されてもよく、正極、負極の両者に成膜されてもよい。
 多孔膜用スラリーの固形分濃度は、上記の塗布、浸漬が可能な程度の粘度、流動性を有する限り特に限定はされないが、一般的には20~50質量%程度である。また、多孔膜用スラリーの分散媒としては、上記固形分を均一に分散しうるものであれば特に限定はされないが、一般的には、水、アセトン、テトラヒドロフラン、メチレンクロライド、クロロホルム、ジメチルホルムアミド、N-メチルピロリドン、シクロヘキサン、キシレン、シクロヘキサノンまたはこれらの混合溶媒が用いられる。これらの中でも、特に水を用いることが好ましい。水を用いることで、水溶性高分子が溶解し、この溶液中に粒子状高分子、無機フィラーが均一に分散したスラリーが得られる。また、有機溶媒を使用しないため、作業衛生上、環境保全の観点からも水を使用することが好ましい。
 多孔膜用スラリーの製法は、特に限定はされず、上記水溶性高分子、粒子状高分子、および無機フィラーならびに必要に応じ添加される他の成分、分散媒を混合して得られる。混合方法や混合順序によらず、上記成分を用いることで、無機フィラーが高度に分散された多孔膜用スラリーを得ることができる。他の成分としては、フュームドシリカやフュームドアルミナなどのナノ微粒子:アルキル系界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤、金属系界面活性剤などの界面活性剤が挙げられる。前記ナノ微粒子を混合することにより多孔膜形成用スラリーのチキソ性をコントロールすることができ、さらにそれにより得られる多孔膜のレベリング性を向上させることができる。前記界面活性剤を混合することにより、塗工時に発生するはじきを防止したり、電極の平滑性を向上させることができる。混合装置は、上記成分を均一に混合できる装置であれば特に限定はされず、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどを使用することができるが、高い分散シェアを加えることができる、ビーズミル、ロールミル、フィルミックス等の高分散装置を使用することが特に好ましい。
 多孔膜用スラリーを電極合剤層上へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。中でも、均一な多孔膜が得られる点でディップ法やグラビア法が好ましい。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥温度は、使用する溶剤の種類によってかわる。溶剤を完全に除去するために、例えば溶剤にN-メチルピロリドン等の揮発性の低い溶剤を用いる場合には送風式の乾燥機で120℃以上の高温で乾燥させることが好ましい。逆に揮発性の高い溶剤を用いる場合には100℃以下の低温において乾燥させることもできる。
 次いで、必要に応じ、金型プレスやロールプレスなどを用い、加圧処理により電極合剤層と多孔膜との密着性を向上させることもできる。ただし、この際、過度に加圧処理を行うと、多孔膜の空隙率が損なわれることがあるため、圧力および加圧時間を適宜に制御する。
 本発明の多孔膜は、二次電池電極の表面に成膜され、電極合剤層の保護膜あるいはセパレータとして特に好ましく用いられる。多孔膜が成膜される二次電池電極は特に限定はされず、各種の構成の電極に対して、本発明の多孔膜は成膜されうる。また、多孔膜は、二次電池の正極、負極の何れの表面に成膜されてもよく、正極、負極の両者に成膜されてもよい。さらに、多孔膜は電気二重層キャパシタの電極用保護膜としても用いられる。
 (電極)
 このような二次電池電極や電気二重層キャパシタの電極は、一般にバインダーと、電極活物質とを含んでなるスラリー(以下、「合剤スラリー」と呼ぶことがある)から形成された電極合剤層が、集電体に付着してなる。
 二次電池用電極活物質は、電解質中で電位をかける事により可逆的にリチウムイオンを挿入放出できるものであれば良く、無機化合物でも有機化合物でも用いることが出来る。
 二次電池正極用の電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。無機化合物からなる正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などが挙げられる。上記の遷移金属としては、Fe、Co、Ni、Mn等が使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO、LiNiO、LiMnO、LiMn、LiFePO、LiFeVOなどのリチウム含有複合金属酸化物;TiS、TiS、非晶質MoS等の遷移金属硫化物;Cu、非晶質VO-P、MoO、V、V13などの遷移金属酸化物が挙げられる。これらの化合物は、部分的に元素置換したものであってもよい。有機化合物からなる正極活物質としては、例えば、ポリアセチレン、ポリ-p-フェニレンなどの導電性高分子を用いることもできる。電気伝導性に乏しい、鉄系酸化物は、還元焼成時に炭素源物質を存在させることで、炭素材料で覆われた電極活物質として用いてもよい。また、これら化合物は、部分的に元素置換したものであってもよい。
 二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常0.1~50μm、好ましくは1~20μmである。50%体積累積径がこの範囲であると、充放電容量が大きい二次電池を得ることができ、かつ電極用スラリーおよび電極を製造する際の取扱いが容易である。50%体積累積径は、レーザー回折で粒度分布を測定することにより求めることができる。
 二次電池負極用の電極活物質(負極活物質)としては、たとえば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料、ポリアセン等の導電性高分子などがあげられる。また、負極活物質としては、ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属やこれらの合金、前記金属又は合金の酸化物や硫酸塩が用いられる。加えて、金属リチウム、Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金、リチウム遷移金属窒化物、シリコン等を使用できる。電極活物質は、機械的改質法により表面に導電付与材を付着させたものも使用できる。負極活物質の粒径は、電池の他の構成要件との兼ね合いで適宜選択されるが、初期効率、負荷特性、サイクル特性などの電池特性の向上の観点から、50%体積累積径が、通常1~50μm、好ましくは15~30μmである。
 電気二重層キャパシタ用の電極活物質としては、活性炭、ポリアセン、カーボンウィスカ、グラファイト等の炭素質物質の粉末または繊維を使用することができる。電極活物質は好ましくは活性炭であり、活性炭としてはフェノール系、レーヨン系、アクリル系、ピッチ系、又はヤシガラ系等を使用することができる。活性炭の比表面積は、通常500~5,000m/g、好ましくは1,000~3,000m/gである。また、特開平11-317333号公報や特開2002-25867号公報などに記載される、黒鉛類似の微結晶炭素を有しその微結晶炭素の相間距離が拡大された非多孔性炭素も電極活物質として用いることができる。これらの非多孔性炭素の比表面積は、通常10~1,000m/g、好ましくは130~300m/gである。電極活物質の粒子径は0.1~1
00μm、さらに好ましくは1~20μmであると、キャパシタ用電極の薄膜化が容易で、容量密度も高くできるので好ましい。さらに、レドックスキャパシタにおいては、酸化ルテニウム(RuO)などの金属酸化物が電極活物質として用いられる。
 導電性付与材は、前記電極活物質に付着させる他、合剤スラリーに添加しておくこともできる。導電付与材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、グラファイト、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。黒鉛などの炭素粉末、各種金属のファイバーや箔などが挙げられる。補強材としては、各種の無機および有機の球状、板状、棒状または繊維状のフィラーが使用できる。導電性付与材を用いることにより電極活物質同士の電気的接触を向上させることができ、リチウムイオン二次電池に用いる場合に放電レート特性を改善したり、電気二重層キャパシタに用いる場合の内部抵抗を低減し、かつ容量密度を高くすることができる。導電性付与材の使用量は、電極活物質100質量部に対して通常0~20質量部、好ましくは1~10質量部である。
 電極合剤層は、バインダーおよび電極活物質を含む。通常、合剤は溶媒に分散させた合剤スラリーとして調製される。溶媒としては、前記バインダーを溶解または粒子状に分散するものであればよいが、バインダーを溶解するものが好ましい。バインダーを溶解する溶媒を用いると、バインダーが表面に吸着することにより電極活物質などの分散が安定化する。
 バインダーとしては様々な樹脂成分を用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 更に、下に例示する軟質重合体もバインダーとして使用することができる。
 ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
 ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
 ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
 ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
 液状ポリエチレン、ポリプロピレン、ポリ-1-ブテン、エチレン・α-オレフィン共重合体、プロピレン・α-オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
 ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
 ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
 フッ化ビニリデン系ゴム、四フッ化エチレン-プロピレンゴムなどのフッ素含有軟質重合体;
 天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。
 バインダーの量は、リチウムイオン二次電池に用いる場合は電極活物質100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.2~4質量部、特に好ましくは0.5~3質量部である。また、電気二重層キャパシタに用いる場合は電極活物質100質量部に対して、好ましくは0.1~20質量部、より好ましくは0.5~10質量部である。バインダー量が少なすぎると電極から活物質が脱落しやすくなるおそれがあり、逆に多すぎると活物質がバインダーに覆い隠されて電池反応が阻害されたり、内部抵抗が増大したりするおそれがある。
 バインダーは、電極を作製するために溶液もしくは分散液として調製される。その時の粘度は、通常1mPa・S~300,000mPa・Sの範囲、好ましくは50mPa・S~10,000mPa・Sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 合剤スラリーは、通常、溶媒を含有し、電極活物質や導電性付与材を分散させる。溶媒としては、前記バインダーを溶解し得るものを用いると、電極活物質や導電性付与材の分散性に優れるので好ましい。バインダーが溶媒に溶解した状態で用いることにより、バインダーが電極活物質などの表面に吸着してその体積効果により分散を安定化させていると推測される。
 合剤スラリーに用いる溶媒としては、水および有機溶媒のいずれも使用できる。有機溶媒としては、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;エチルメチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル類;アセトニトリル、プロピオニトリルなどのアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミドなどのアミド類があげられる。これらの溶媒は、単独または2種以上を混合して、乾燥速度や環境上の観点から適宜選択して用いることができる。中でも、本発明においては水への電極膨張特性の観点から、非水性溶媒を用いることが好ましい。
 合剤スラリーには、さらに増粘剤、導電材、補強材などの各種の機能を発現する添加剤を含有させることができる。増粘剤としては、合剤スラリーに用いる有機溶媒に可溶な重合体が用いられる。具体的には、アクリロニトリル-ブタジエン共重合体水素化物などが用いられる。
 さらに、合剤スラリーには、電池の安定性や寿命を高めるため、トリフルオロプロピレンカーボネート、ビニレンカーボネート、カテコールカーボネート、1,6-ジオキサスピロ[4,4]ノナン-2,7-ジオン、12-クラウン-4-エーテル等が使用できる。また、これらは後述する電解液に含有せしめて用いてもよい。
 合剤スラリーにおける有機溶媒の量は、電極活物質やバインダーなどの種類に応じ、塗工に好適な粘度になるように調整して用いる。具体的には、電極活物質、バインダーおよび他の添加剤を合わせた固形分の濃度が、好ましくは30~90質量%、より好ましくは40~80質量%となる量に調整して用いられる。
 合剤スラリーは、バインダー、電極活物質、必要に応じ添加される添加剤、およびその他の有機溶媒を、混合機を用いて混合して得られる。混合は、上記の各成分を一括して混合機に供給し、混合してもよいが、導電材および増粘剤を有機溶媒中で混合して導電材を微粒子状に分散させ、次いでバインダー、電極活物質を添加してさらに混合することがスラリーの分散性が向上するので好ましい。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができるが、ボールミルを用いると導電材、電極活物質の凝集を抑制できるので好ましい。
 合剤スラリーの粒度は、好ましくは35μm以下であり、さらに好ましくは25μm以下である。スラリーの粒度が上記範囲にあると、導電材の分散性が高く、均質な電極が得られる。
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するとの観点から、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料が好ましい。中でも、非水電解質二次電池の正極用としてはアルミニウムが特に好ましく、負極用としては銅が特に好ましい。集電体の形状は特に制限されないが、厚さ0.001~0.5mm程度のシート状のものが好ましい。集電体は、合剤の接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、電極合剤層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 二次電池電極の製造方法は、前記集電体の少なくとも片面、好ましくは両面に電極合剤層を層状に結着させる方法であればよい。例えば、前記合剤スラリーを集電体に塗布、乾燥し、次いで、120℃以上で1時間以上加熱処理して合剤電極層を形成する。合剤スラリーを集電体へ塗布する方法は特に制限されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。乾燥方法としては例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。
 次いで、金型プレスやロールプレスなどを用い、加圧処理により電極の合剤の空隙率を低くすることが好ましい。空隙率の好ましい範囲は5%~15%、より好ましくは7%~13%である。空隙率が高すぎると充電効率や放電効率が悪化する。空隙率が低すぎる場合は、高い体積容量が得難かったり、合剤が剥がれ易く不良を発生し易いといった問題を生じる。さらに、硬化性の重合体を用いる場合は、硬化させることが好ましい。
 電極合剤層の厚みは、正極、負極とも、通常5~300μmであり、好ましくは10~250μmである。
 本発明の多孔膜付二次電池電極は、リチウムイオン二次電池や電気二重層キャパシタの電極として用いられる。中でも、リチウムイオン二次電池の電極として用いるのが好ましい。
 本発明のリチウムイオン二次電池は、正極、負極、及び電解液を含み、正極及び負極の少なくとも一方が、本発明の多孔膜付二次電池電極である。
 正極及び負極に、本発明の多孔膜付二次電池電極を用いた例について説明する。リチウムイオン二次電池の具体的な製造方法としては、例えば、多孔膜付正極と多孔膜付負極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。また必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、電池内部の圧力上昇、過充放電の防止をする事もできる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など何れであってもよい。
 前記セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂からなるセパレータなどの公知のものが用いられる。なお、本発明の多孔膜は、セパレータとしての機能も有するため、セパレータの使用を省略することもできる。
 電解液としては、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、リチウム塩が用いられる。リチウム塩としては、特に制限はないが、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF、LiClO、CFSOLiが好ましい。これらは、二種以上を併用してもよい。解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;が好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類が好ましい。用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 電解液中における支持電解質の濃度は、通常1~30質量%、好ましくは5質量%~20質量%である。また、支持電解質の種類に応じて、通常0.5~2.5モル/Lの濃度で用いられる。支持電解質の濃度が低すぎても高すぎてもイオン導電度は低下する傾向にある。用いる電解液の濃度が低いほど重合体粒子の膨潤度が大きくなるので、電解液の濃度によりリチウムイオン伝導度を調節することができる。
(実施例)
 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるものではない。尚、本実施例における部および%は、特記しない限り質量基準である。
 実施例および比較例において、各種物性は以下のように評価した。
(評価方法)
<1.   多孔膜電極特性>
<1.1 粉落ち性>
 多孔膜付電極を5cm角で切り出して、500mlのガラス瓶に入れ、しんとう機で200rpmにて2時間しんとうさせる。
 落ちた粉の質量をa、しんとう前の電極の質量をb、多孔膜を塗布前の電極の質量をc、多孔膜を塗布していない電極のみをしんとうさせた際の落ちた粉の質量をdと置いた際、落ちた粉の比率Xは下記のように計算され、以下の基準で評価した。
 X=(a-d)/(b-c-a)×100 (質量%)
(評価基準)
A:2%未満
B:2%以上5%未満
C:5%以上10%未満
D:10%以上
<1.2   膜均一性>
 多孔膜付電極を、幅6cm×長さ1mに切り出して、切り出した電極において幅方向に3点、長さ方向は5cmおきに厚みを測定し、膜厚の標準偏差と平均値から、下記式に基づきバラつきを計算し、以下の基準で評価した。
Figure JPOXMLDOC01-appb-M000001
 ここで、x は膜厚の平均値、n は測定数を示す。
(評価基準)
A:5%未満
B:5%以上~10%未満
C:10%以上~20%未満
D:20%以上~50%未満
E:50%以上
<2.電池特性>
<2.1 充放電サイクル特性>
 得られたコイン型電池を用いて、20℃で0.2Cの定電流で0.02Vまで充電し、0.2Cの定電流で1.5Vまで放電する充放電サイクルを行った。2サイクル目における放電容量に対する100サイクル目おける放電容量の割合を百分率で算出して充放電サイクル特性とし、下記の基準で判定した。この値が大きいほど、サイクルによる容量劣化が大きく寿命が短いことを示す。
(評価基準)
A:90%以上
B:85%以上90%未満
C:80%以上85%未満
D:80%未満
 また、実施例および比較例における保護膜(多孔膜)形成用スラリーには、下記成分を用いた。
<水溶性高分子>
 水溶性高分子として、平均重合度1200~1300、エーテル化度0.65~0.75のカルボキシメチルセルロースを用いた。
<粒子状高分子>
(粒子状高分子Aの調製)
 撹拌機を備えた反応器に、イオン交換水70部、ドデシルベンゼンスルホン酸ナトリウム0.2部および過硫酸カリウム0.3部をそれぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器でイオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.5部、および重合性単量体として、エチルアクリレート(アクリル酸エチル)80部、アクリロニトリル15部、イタコン酸5部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了した。重合転化率は99.5%以上であった。得られた重合反応液を25℃に冷却後、アンモニア水を添加してpHを7に調整し、その後スチームを導入して未反応の単量体を除去して、粒子状高分子Aの40%水分散体を得た。得られた粒子状高分子Aは、親水性基を含有する単量体(イタコン酸)単位の割合が5%であり、ガラス転移温度は10℃、平均粒子径は約100nmであった。
(粒子状高分子Bの調製)
 粒子状高分子Aにおけるイタコン酸をアクリル酸に変更した以外は、粒子状高分子Aと同様に重合して、粒子状高分子Bの40%水分散体を得た。得られた粒子状高分子Bは、親水性基を含有する単量体(アクリル酸)単位の割合が5%であり、ガラス転移温度は5℃、平均粒子径は約100nmであった。
(粒子状高分子Cの調製)
 粒子状高分子Aにおけるイタコン酸をアクリルアミド-2-メチルプロパンスルホン酸に変更した以外は、粒子状高分子Aと同様に重合して、粒子状高分子Cの40%水分散体を得た。得られた粒子状高分子Cは、親水性基を含有する単量体(アクリルアミド-2-メチルプロパンスルホン酸)単位の割合が5%であり、ガラス転移温度は3℃、平均粒子径は約100nmであった。
(粒子状高分子Dの調製)
 粒子状高分子Aにおけるイタコン酸を2-ヒドロキシエチルメタクリレート(メタクリル酸2-ヒドロキシエチル)に変更した以外は、粒子状高分子Aと同様に重合して、粒子状高分子Dの40%水分散体を得た。得られた粒子状高分子Dは、親水性基を含有する単量体(2-ヒドロキシエチルメタクリレート)単位の割合が5%であり、ガラス転移温度は3℃、平均粒子径は約100nmであった。
(粒子状高分子Eの調製)
 粒子状高分子Aにおけるイタコン酸5部を2部に変更した以外は、粒子状高分子Aと同様に重合して、粒子状高分子Eの40%水分散体を得た。得られた粒子状高分子Eは、親水性基を含有する単量体(イタコン酸)単位の割合が2%であり、ガラス転移温度は0℃、平均粒子径は約100nmであった。
(粒子状高分子Fの調製)
 粒子状高分子Aにおけるイタコン酸5部を0.1部に変更した以外は、粒子状高分子Aと同様に重合して、粒子状高分子Fの40%水分散体を得た。得られた粒子状高分子Fは、親水性基を含有する単量体(イタコン酸)単位の割合が0.1%であり、ガラス転移温度は-5℃、平均粒子径は約100nmであった。
(溶解型高分子Gの調製)
 撹拌機のオートクレーブに、イオン交換水300部、2-エチルヘキシルアクリレート(アクリル酸2-エチルヘキシル)80部、アクリロニトリル15部、メタアクリル酸3部、グリシジルメタアクリレート2部、ドデシルベンゼンスルホン酸ナトリウム3部および過硫酸カリウム0.7部を入れ、充分に撹拌した後、70℃に加温して重合し、粒子状高分子を得た。固形分濃度から求めた重合転化率は99%であった。この粒子状高分子100部にNMP320部を加え、減圧下に水を溜出させて溶解型高分子GのNMP溶液を調製した。
<無機フィラー>
 無機フィラーには平均粒径0.5μmのアルミナを用いた。
(実施例1)
<多孔膜用スラリーの作成>
 無機フィラー:水溶性高分子:粒子状高分子の固形分質量比が100:4:5になるように混合し、水中にビーズミルを用いて分散させ多孔膜用スラリー1を調製した。なお、粒子状高分子として粒子状高分子Aを用いた。また、スラリーにおける水以外の原料(固形分の合計)の含有量は、50質量%となるようにした。
<正極用電極組成物および正極の製造>
 正極活物質としてスピネル構造を有するLiCoO95部にバインダーとしてPVDF(ポリフッ化ビニリデン)を固形分量が3部となるように加え、さらに、アセチレンブラック2部、N-メチルピロリドン20部を加えて、プラネタリーミキサーで混合してスラリー状の正極用電極組成物を得た。この電極組成物を厚さ18μmのアルミニウム箔に塗布し、120℃で3時間乾燥した後、ロールプレスして厚さ100μmの正極を得た。
<負極用電極組成物および負極の製造>
 負極活物質として粒子径20μm、比表面積4.2m/gのグラファイトを98部と、バインダーとしてPVDF(ポリフッ化ビニリデン)を固形分相当で5部とを混合し、更にNMPを加えてプラネタリーミキサーで混合してスラリー状の負極用電極組成物を調製した。この負極用組成物を厚さ0.1mmの銅箔の片面に塗布し、110℃で3時間乾燥した後、ロールプレスして厚さが100μmの負極を得た。
<多孔膜付電極の作成>
 前記多孔膜用スラリー1を、負極表面に負極合剤層が完全に覆われるように、乾燥後の厚みが10μmとなるように塗工し、110℃で20分間乾燥し、多孔膜を形成し、多孔膜付二次電池電極多孔膜付電極を得た。
 得られた多孔膜付電極の粉落ち性、膜均一性を評価した。結果を表1に示す。
<二次電池の作製>
 得られた正極を直径13mm、多孔膜付負極を直径14mmの円形に切り抜いた。正極の活物質層面側に直径18mm、厚さ25μmの円形ポリプロピレン製多孔膜からなるセパレーター、負極を順に積層し、これをポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器中に収納した。この容器中に電解液(EC/DEC=1/2、1MLiPF)を空気が残らないように注入し、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約3.2mmのリチウムイオン二次電池を製造した(コインセルCR2032)。得られた電池の充放電サイクル特性を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例2)
 実施例1において、多孔膜用スラリーを正極上に塗工し、負極は多孔膜を塗工していないものを用いた以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(実施例3)
 実施例1において、粒子状高分子Aを粒子状高分子Bに変更した以外は、実施例1と同様にして、多孔膜用スラリー3を調製した。実施例1において、多孔膜用スラリー1を多孔膜用スラリー3に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(実施例4)
 実施例1において、粒子状高分子Aを粒子状高分子Cに変更した以外は、実施例1と同様にして、多孔膜用スラリー4を調製した。実施例1において、多孔膜用スラリー1を多孔膜用スラリー4に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(実施例5)
 実施例1において、粒子状高分子Aを粒子状高分子Dに変更した以外は、実施例1と同様にして、多孔膜用スラリー5を調製した。実施例1において、多孔膜用スラリー1を多孔膜用スラリー5に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(実施例6)
 実施例1において、粒子状高分子Aを粒子状高分子Eに変更し、無機フィラー:水溶性高分子:粒子状高分子の固形分質量比を100:4:2になるように混合した以外は、実施例1と同様にして、多孔膜用スラリー6を調製した。実施例1において、多孔膜用スラリー1を多孔膜用スラリー6に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(比較例1)
 実施例1において、粒子状高分子Aを用いなかった以外は、実施例1と同様にして、多孔膜用スラリー7を調製した。実施例1において、多孔膜用スラリー1を多孔膜用スラリー7に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(比較例2)
 実施例1において、粒子状高分子Aを粒子状高分子Fに変更した以外は、実施例1と同様にして、多孔膜用スラリー8を調製した。実施例1において、多孔膜用スラリー1を多孔膜用スラリー8に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(比較例3)
 実施例1において、粒子状高分子Aを液状高分子Gに変更し、無機フィラー:水溶性高分子:粒子状高分子の固形分質量比を100:4:0.1になるように混合した以外は、実施例1と同様にして、多孔膜用スラリー9を調製した。得られた多孔膜用スラリー8について実施例1と同様に凝集性を測定した。その結果を表1に示す。実施例1において、多孔膜用スラリー1を多孔膜用スラリー9に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
(比較例4)
 無機フィラー:ポリフッ化ビニリデン(PVDF)の固形分質量比が100:10となるように混合し、N-メチルピロリドン(NMP)中にビーズミルを用いて分散させ多孔膜用スラリー10を調製した。また、スラリーにおける原料(固形分の合計)の含有量は、40質量%となるようにした。
 実施例1において、多孔膜用スラリー1を多孔膜用スラリー10に変更した以外は、実施例1と同様にして、多孔膜付電極、及び二次電池を作製し、これらの評価を行った。結果を表1に示す。
 以上のように、非水溶性の粒子状ポリマー中に特定の親水性基を特定量含有させることにより、無機フィラーの結着性や分散性が向上し、均一な多孔膜を得ることができる。その結果、得られた多孔膜を用いて作製した二次電池も、良好な電池特性(サイクル特性)を示すことがわかる。

Claims (8)

  1.  水溶性高分子と、
     無機フィラーと、
     カルボン酸基、水酸基及びスルホン酸基からなる群から選択される親水性基を含有する単量体単位を0.5~40質量%含有する非水溶性の粒子状高分子とを含有してなる多孔膜。
  2.  前記水溶性高分子が、増粘多糖類から選択されるものである請求項1に記載の多孔膜。
  3.  前記増粘多糖類が、セルロース系半合成系高分子、そのナトリウム塩及びアンモニウム塩からなる群から選択されるものである請求項2に記載の多孔膜。
  4.  前記粒子状高分子の親水性基が、カルボン酸基である請求項1に記載の多孔膜。
  5.  前記多孔膜中の水溶性高分子の含有割合が、前記無機フィラー100質量部に対して0.1~5質量部であり、非水溶性の粒子状高分子の含有割合が、無機フィラー100質量部に対して0.1~15質量部である請求項1~4の何れかに記載の多孔膜。
  6.  バインダーと、電極活物質とを含んでなる電極合剤層が、集電体に付着してなり、かつ電極合剤層の表面に、請求項1に記載の多孔膜が設けられてなる二次電池電極。
  7.  水溶性高分子と、無機フィラーと、カルボン酸基、水酸基及びスルホン酸基からなる群から選択される親水性基を含有する単量体単位を0.5~40質量%含有する非水溶性の粒子状高分子と、分散媒とを含んでなる多孔膜用スラリーを、バインダーと、電極活物質とを含んでなる電極合剤層上に塗布、乾燥する工程を含む請求項6に記載の二次電池電極の製造方法。
  8.  正極、負極、及び電解液を有してなるリチウムイオン二次電池であって、
     正極及び負極の少なくとも一方が、請求項6に記載の電極である、
     リチウムイオン二次電池。
PCT/JP2009/056606 2008-03-31 2009-03-31 多孔膜および二次電池電極 WO2009123168A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL14158519T PL2747173T3 (pl) 2008-03-31 2009-03-31 Porowata powłoka oraz elektroda baterii akumulatorowej
CN200980111691.XA CN101981727B (zh) 2008-03-31 2009-03-31 多孔膜以及二次电池电极
EP14158519.0A EP2747173B1 (en) 2008-03-31 2009-03-31 Porous film and secondary battery electrode
US12/935,437 US9202631B2 (en) 2008-03-31 2009-03-31 Porous film and secondary battery electrode
EP09728531.6A EP2282364B1 (en) 2008-03-31 2009-03-31 Porous film and secondary cell electrode
KR1020107021820A KR101664502B1 (ko) 2008-03-31 2009-03-31 다공막 및 2 차 전지 전극
JP2010505924A JP5370356B2 (ja) 2008-03-31 2009-03-31 多孔膜および二次電池電極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-094153 2008-03-31
JP2008094153 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123168A1 true WO2009123168A1 (ja) 2009-10-08

Family

ID=41135541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056606 WO2009123168A1 (ja) 2008-03-31 2009-03-31 多孔膜および二次電池電極

Country Status (8)

Country Link
US (1) US9202631B2 (ja)
EP (2) EP2747173B1 (ja)
JP (1) JP5370356B2 (ja)
KR (1) KR101664502B1 (ja)
CN (1) CN101981727B (ja)
HU (1) HUE042537T2 (ja)
PL (1) PL2747173T3 (ja)
WO (1) WO2009123168A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040474A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JP2011144245A (ja) * 2010-01-13 2011-07-28 Nippon Zeon Co Ltd 多孔膜用スラリー及び二次電池
JP2011210413A (ja) * 2010-03-29 2011-10-20 Konica Minolta Holdings Inc 電気化学素子用セパレータおよび非水電解液二次電池
WO2012043729A1 (ja) * 2010-09-30 2012-04-05 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
WO2012046843A1 (ja) 2010-10-07 2012-04-12 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
WO2013001919A1 (ja) * 2011-06-30 2013-01-03 三洋電機株式会社 非水電解質二次電池
WO2013005796A1 (ja) 2011-07-06 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
JP2013084393A (ja) * 2011-10-06 2013-05-09 Toyota Motor Corp リチウムイオン二次電池の製造方法
CN103339757A (zh) * 2010-11-30 2013-10-02 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板、二次电池以及二次电池多孔膜的制造方法
WO2013154197A1 (ja) * 2012-04-10 2013-10-17 住友化学株式会社 バインダー樹脂組成物の使用、非水電解液二次電池用セパレーター基材表面処理用樹脂組成物、非水電解液二次電池用セパレーター及びその製造方法、並びに、非水電解液二次電池
CN103560252A (zh) * 2013-10-17 2014-02-05 福建瑞达精工股份有限公司 一种柔性易回收铅酸蓄电池芯及其制备方法
KR20140102650A (ko) 2011-11-18 2014-08-22 스미또모 가가꾸 가부시끼가이샤 적층 다공질 필름 및 그 제조 방법, 그리고 비수 전해액 2 차 전지용 세퍼레이터, 적층 전극 시트 및 비수 전해액 2 차 전지
WO2014136799A1 (ja) * 2013-03-07 2014-09-12 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JP2014211995A (ja) * 2013-04-18 2014-11-13 日立マクセル株式会社 非水二次電池
WO2014188734A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池
WO2014188724A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用負極、および、二次電池
JP5747919B2 (ja) * 2010-08-31 2015-07-15 日本ゼオン株式会社 電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
WO2015145967A1 (ja) * 2014-03-24 2015-10-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
JP2016004758A (ja) * 2014-06-19 2016-01-12 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
KR20160125364A (ko) 2014-02-27 2016-10-31 제온 코포레이션 2 차 전지 다공막용 바인더 조성물, 2 차 전지 다공막용 슬러리, 2 차 전지용 다공막 및 2 차 전지
US9676955B2 (en) 2011-08-31 2017-06-13 Sumitomo Chemical Company, Limited Coating liquid, laminated porous film, and method for producing laminated porous film
JP2018037278A (ja) * 2016-08-31 2018-03-08 株式会社豊田自動織機 電極及び二次電池
JPWO2017038897A1 (ja) * 2015-09-04 2018-08-30 東京応化工業株式会社 多孔質膜の製造方法
US10312521B2 (en) 2014-11-25 2019-06-04 Zeon Corporation Binder for non-aqueous secondary battery, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
US10476071B2 (en) * 2015-10-05 2019-11-12 Sila Nanotechnologies, Inc. Protection of battery electrodes against side reactions
JP2020024811A (ja) * 2018-08-06 2020-02-13 トヨタ自動車株式会社 セパレータ一体型電極の製造方法、及び、セパレータ一体型電極
WO2024048424A1 (ja) * 2022-08-31 2024-03-07 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用積層体、及び電気化学素子

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342512B1 (ko) * 2011-03-17 2013-12-17 로베르트 보쉬 게엠베하 수계 활물질 조성물, 이를 이용하여 제조된 전극 및 리튬 이차 전지
CN104254939B (zh) 2012-03-26 2017-10-13 日本瑞翁株式会社 二次电池负极用复合粒子、其用途及制造方法、以及粘合剂组合物
KR101511732B1 (ko) * 2012-04-10 2015-04-13 주식회사 엘지화학 다공성 코팅층이 형성된 전극, 이의 제조방법 및 이를 포함하는 전기화학소자
KR20140087271A (ko) * 2012-12-28 2014-07-09 재단법인 포항산업과학연구원 전자차단층을 포함하는 금속지지체형 고체산화물 연료전지용 셀
TWI620373B (zh) 2013-01-07 2018-04-01 由尼帝佳股份有限公司 鋰二次電池用電極及其製造方法
US9570751B2 (en) * 2013-02-26 2017-02-14 Samsung Sdi Co., Ltd. Binder composition for secondary battery, anode including the binder composition, and lithium battery including the anode
KR20150134327A (ko) * 2013-03-21 2015-12-01 제온 코포레이션 리튬 이온 2 차 전지 다공막용 슬러리 및 그 제조 방법, 리튬 이온 2 차 전지용 세퍼레이터 그리고 리튬 이온 2 차 전지
KR20150135207A (ko) * 2013-03-27 2015-12-02 제이에스알 가부시끼가이샤 축전 디바이스용 결합제 조성물
CN104425788B (zh) 2013-08-28 2017-05-03 比亚迪股份有限公司 一种锂离子电池隔膜及其制备方法和含有该隔膜的锂离子电池
CN105440770B (zh) * 2014-06-30 2021-05-04 四川茵地乐材料科技集团有限公司 用于改性锂离子电池用隔膜的水性组合物及改性隔膜和电池
CN105273444B (zh) * 2014-07-23 2017-11-14 乐凯胶片股份有限公司 一种浆料组合物及包含该浆料组合物的锂离子电池隔膜
WO2017104867A1 (ko) 2015-12-17 2017-06-22 주식회사 엘지화학 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
HUE052066T2 (hu) * 2016-05-10 2021-04-28 Zeon Corp Készítmény nem-vizes szekunder elem funkcionális rétegéhez, funkcionális réteg nem-vizes szekunder elemhez és nem-vizes szekunder elem
US10570235B2 (en) * 2016-05-10 2020-02-25 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
KR102407601B1 (ko) * 2016-08-25 2022-06-10 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층, 비수계 이차 전지, 및 비수계 이차 전지용 전극의 제조 방법
CN109792020B (zh) * 2017-01-06 2022-08-26 株式会社Lg新能源 包括功能性粘合剂的电池隔板以及包括该电池隔板的电化学装置
GB2563272B (en) 2017-06-09 2020-01-01 Ge Aviat Systems Ltd Battery pack
JP7013876B2 (ja) * 2018-01-09 2022-02-01 トヨタ自動車株式会社 リチウムイオン二次電池の正極板、リチウムイオン二次電池、及びリチウムイオン二次電池の正極板の製造方法
CN112421034A (zh) 2019-08-22 2021-02-26 荒川化学工业株式会社 锂离子电池用粘合剂水溶液、锂离子电池负极用浆料、锂离子电池用负极及锂离子电池
CN114175386A (zh) * 2019-10-29 2022-03-11 株式会社Lg新能源 具有改善的电极粘附强度和电阻特性的用于锂二次电池的隔板、和包括该用于锂二次电池的隔板的锂二次电池
CN111293312B (zh) * 2020-02-21 2024-02-20 上海交通大学 一种柔性多功能的交联粘接剂及其制备方法和应用
CN111525136A (zh) * 2020-04-30 2020-08-11 青岛科技大学 一种复合粘结剂及其在锂离子电池硅负极中的应用
CN113437360A (zh) * 2021-05-20 2021-09-24 上海大学 一种用于锌电池的新型凝胶电解质及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JPH09147916A (ja) * 1995-11-20 1997-06-06 Fuji Photo Film Co Ltd 非水二次電池
WO2005011043A1 (ja) 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
WO2005098997A1 (ja) * 2004-03-30 2005-10-20 Matsushita Electric Industrial Co., Ltd. 非水電解液二次電池
JP2005332809A (ja) 2004-04-19 2005-12-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造法
WO2006062349A1 (en) * 2004-12-07 2006-06-15 Lg Chem, Ltd. Surface-treated microporous membrane and electrochemical device prepared thereby
JP2007280911A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167213A (ja) * 1997-08-21 1999-03-09 Jsr Corp 電池電極用組成物および電池電極
US6753108B1 (en) * 1998-02-24 2004-06-22 Superior Micropowders, Llc Energy devices and methods for the fabrication of energy devices
JPH11317333A (ja) 1998-03-03 1999-11-16 Jeol Ltd 電気二重層コンデンサ用炭素材料、電気二重層コンデンサ用炭素材料の製造方法、電気二重層コンデンサ及び電気二重層コンデンサの製造方法
US6203941B1 (en) * 1998-12-18 2001-03-20 Eveready Battery Company, Inc. Formed in situ separator for a battery
JP2002025867A (ja) 2000-07-04 2002-01-25 Jeol Ltd 電気二重層キャパシタおよび電気二重層キャパシタ用炭素材料
KR20020086668A (ko) * 2001-01-22 2002-11-18 소니 가부시끼 가이샤 전해액 흡수 폴리머 및 그 제조 방법, 및 이 폴리머를사용한 전지
US6967232B2 (en) * 2001-10-04 2005-11-22 Dainichiseika Color & Chemicals Mfg., Co., Ltd. High-molecular gelling agent precursor for electrolyte
DE10216418B4 (de) * 2002-04-12 2006-02-09 Daramic, Inc. Batterieseparator, Verwendung eines Batterieseparators, Verfahren zur Herstellung eines Batterieseparators und Verwendung einer Verbindung
CN100559634C (zh) * 2003-07-29 2009-11-11 松下电器产业株式会社 锂离子二次电池
JP4326323B2 (ja) * 2003-12-24 2009-09-02 三洋電機株式会社 非水電解質電池
JP2005222780A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
CN100394632C (zh) * 2004-03-30 2008-06-11 松下电器产业株式会社 非水电解液二次电池
KR100636191B1 (ko) * 2004-11-13 2006-10-19 삼성전자주식회사 부품 유니트의 호환가능여부 체킹 시스템 및 방법
CN101156264B (zh) * 2005-04-07 2011-05-25 Lg化学株式会社 用于锂二次电池的具有优良的倍率特性和长期循环性能的粘合剂
KR100729118B1 (ko) * 2005-05-17 2007-06-14 주식회사 엘지화학 다중 중첩 전기화학 셀을 포함하는 전기 화학 소자용바인더
KR100821442B1 (ko) 2005-05-31 2008-04-10 마쯔시다덴기산교 가부시키가이샤 비수전해질 2차전지 및 전지모듈
JP5128786B2 (ja) * 2005-05-31 2013-01-23 パナソニック株式会社 電池モジュール
JP4380608B2 (ja) * 2005-08-26 2009-12-09 日本ゼオン株式会社 有機溶媒系バインダー組成物、電極、および電池
JP5671208B2 (ja) 2005-12-06 2015-02-18 エルジー・ケム・リミテッド モルフォロジーグラジエントを有する有機/無機複合分離膜、その製造方法及びこれを備えた電気化学素子
WO2007108426A1 (ja) * 2006-03-17 2007-09-27 Sanyo Electric Co., Ltd. 非水電解質電池及びその製造方法
KR100727248B1 (ko) 2007-02-05 2007-06-11 주식회사 엘지화학 다공성 활성층이 코팅된 유기/무기 복합 분리막 및 이를구비한 전기화학소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JPH09147916A (ja) * 1995-11-20 1997-06-06 Fuji Photo Film Co Ltd 非水二次電池
WO2005011043A1 (ja) 2003-07-29 2005-02-03 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池
WO2005098997A1 (ja) * 2004-03-30 2005-10-20 Matsushita Electric Industrial Co., Ltd. 非水電解液二次電池
JP2005332809A (ja) 2004-04-19 2005-12-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池およびその製造法
WO2006062349A1 (en) * 2004-12-07 2006-06-15 Lg Chem, Ltd. Surface-treated microporous membrane and electrochemical device prepared thereby
JP2007280911A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2282364A4

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852788B2 (en) 2009-09-30 2014-10-07 Zeon Corporation Porous membrane for a secondary battery and a secondary battery
WO2011040474A1 (ja) * 2009-09-30 2011-04-07 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JP5765228B2 (ja) * 2009-09-30 2015-08-19 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JPWO2011040474A1 (ja) * 2009-09-30 2013-02-28 日本ゼオン株式会社 二次電池用多孔膜及び二次電池
JP2011144245A (ja) * 2010-01-13 2011-07-28 Nippon Zeon Co Ltd 多孔膜用スラリー及び二次電池
JP2011210413A (ja) * 2010-03-29 2011-10-20 Konica Minolta Holdings Inc 電気化学素子用セパレータおよび非水電解液二次電池
JP5747919B2 (ja) * 2010-08-31 2015-07-15 日本ゼオン株式会社 電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
KR101801049B1 (ko) 2010-08-31 2017-11-24 제온 코포레이션 전지 다공막용 슬러리 조성물, 이차 전지용 다공막의 제조 방법, 이차 전지용 다공막, 이차 전지용 전극, 이차 전지용 세퍼레이터 및 이차 전지
WO2012043729A1 (ja) * 2010-09-30 2012-04-05 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
CN103262297A (zh) * 2010-09-30 2013-08-21 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板、二次电池及二次电池多孔膜的制造方法
CN103262297B (zh) * 2010-09-30 2015-07-01 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板、二次电池及二次电池多孔膜的制造方法
JP5605591B2 (ja) * 2010-09-30 2014-10-15 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター、二次電池、及び二次電池多孔膜の製造方法
KR20140003404A (ko) 2010-10-07 2014-01-09 제온 코포레이션 이차 전지 다공막 슬러리, 이차 전지 다공막, 이차 전지 전극, 이차 전지 세퍼레이터 및 이차 전지
WO2012046843A1 (ja) 2010-10-07 2012-04-12 日本ゼオン株式会社 二次電池多孔膜スラリー、二次電池多孔膜、二次電池電極、二次電池セパレーター及び二次電池
CN103339757A (zh) * 2010-11-30 2013-10-02 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板、二次电池以及二次电池多孔膜的制造方法
CN103636053A (zh) * 2011-06-30 2014-03-12 三洋电机株式会社 非水电解质二次电池
US9620758B2 (en) 2011-06-30 2017-04-11 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
WO2013001919A1 (ja) * 2011-06-30 2013-01-03 三洋電機株式会社 非水電解質二次電池
EP2731170A4 (en) * 2011-07-06 2014-12-31 Zeon Corp POROUS MEMBRANE FOR SECONDARY BATTERY, SEPARATOR FOR SECONDARY BATTERY, AND SECONDARY BATTERY
EP2731170A1 (en) * 2011-07-06 2014-05-14 Zeon Corporation Porous membrane for secondary battery, separator for secondary battery, and secondary battery
WO2013005796A1 (ja) 2011-07-06 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
US9676955B2 (en) 2011-08-31 2017-06-13 Sumitomo Chemical Company, Limited Coating liquid, laminated porous film, and method for producing laminated porous film
KR20170126010A (ko) 2011-08-31 2017-11-15 스미또모 가가꾸 가부시끼가이샤 도포액, 적층 다공질 필름 및 적층 다공질 필름의 제조 방법
JP2013084393A (ja) * 2011-10-06 2013-05-09 Toyota Motor Corp リチウムイオン二次電池の製造方法
KR20140102650A (ko) 2011-11-18 2014-08-22 스미또모 가가꾸 가부시끼가이샤 적층 다공질 필름 및 그 제조 방법, 그리고 비수 전해액 2 차 전지용 세퍼레이터, 적층 전극 시트 및 비수 전해액 2 차 전지
US10147923B2 (en) 2011-11-18 2018-12-04 Sumitomo Chemical Company, Limited Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
KR20190065468A (ko) 2011-11-18 2019-06-11 스미또모 가가꾸 가부시끼가이샤 적층 다공질 필름 및 그 제조 방법, 그리고 비수 전해액 2 차 전지용 세퍼레이터, 적층 전극 시트 및 비수 전해액 2 차 전지
WO2013154197A1 (ja) * 2012-04-10 2013-10-17 住友化学株式会社 バインダー樹脂組成物の使用、非水電解液二次電池用セパレーター基材表面処理用樹脂組成物、非水電解液二次電池用セパレーター及びその製造方法、並びに、非水電解液二次電池
JPWO2013154197A1 (ja) * 2012-04-10 2015-12-21 住友化学株式会社 バインダー樹脂組成物の使用、非水電解液二次電池用セパレーター基材表面処理用樹脂組成物、非水電解液二次電池用セパレーター及びその製造方法、並びに、非水電解液二次電池
WO2014136799A1 (ja) * 2013-03-07 2014-09-12 日本ゼオン株式会社 二次電池セパレーターの多孔膜用スラリー、二次電池セパレーター用多孔膜及びその製造方法、二次電池用セパレーター並びに二次電池
JP2014211995A (ja) * 2013-04-18 2014-11-13 日立マクセル株式会社 非水二次電池
JPWO2014188734A1 (ja) * 2013-05-23 2017-02-23 日本ゼオン株式会社 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池
WO2014188724A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用負極、および、二次電池
JPWO2014188724A1 (ja) * 2013-05-23 2017-02-23 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用負極、および、二次電池
WO2014188734A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池負極用スラリー組成物、二次電池用負極、および、二次電池
CN103560252A (zh) * 2013-10-17 2014-02-05 福建瑞达精工股份有限公司 一种柔性易回收铅酸蓄电池芯及其制备方法
KR20160125364A (ko) 2014-02-27 2016-10-31 제온 코포레이션 2 차 전지 다공막용 바인더 조성물, 2 차 전지 다공막용 슬러리, 2 차 전지용 다공막 및 2 차 전지
US10256446B2 (en) 2014-02-27 2019-04-09 Zeon Corporation Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery
WO2015145967A1 (ja) * 2014-03-24 2015-10-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
KR20160137516A (ko) 2014-03-24 2016-11-30 니폰 제온 가부시키가이샤 비수계 이차전지 다공막용 바인더, 비수계 이차전지 다공막용 조성물, 비수계 이차전지용 다공막 및 비수계 이차전지
JP2015185353A (ja) * 2014-03-24 2015-10-22 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
US11807698B2 (en) 2014-03-24 2023-11-07 Zeon Corporation Binder for non-aqueous secondary battery porous membrane-use, composition for non-aqueous secondary battery porous membrane-use, porous membrane for non-aqueous secondary battery-use, and non-aqueous secondary battery
JP2016004758A (ja) * 2014-06-19 2016-01-12 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー組成物、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
US10312521B2 (en) 2014-11-25 2019-06-04 Zeon Corporation Binder for non-aqueous secondary battery, composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery
US10865286B2 (en) 2015-09-04 2020-12-15 Tokyo Ohka Kogyo Co., Ltd. Method for manufacturing porous membrane
JPWO2017038897A1 (ja) * 2015-09-04 2018-08-30 東京応化工業株式会社 多孔質膜の製造方法
US10476071B2 (en) * 2015-10-05 2019-11-12 Sila Nanotechnologies, Inc. Protection of battery electrodes against side reactions
US20220037645A1 (en) * 2015-10-05 2022-02-03 Sila Nanotechnologies Inc. Protection of battery electrodes against side reactions
JP2018037278A (ja) * 2016-08-31 2018-03-08 株式会社豊田自動織機 電極及び二次電池
JP2020024811A (ja) * 2018-08-06 2020-02-13 トヨタ自動車株式会社 セパレータ一体型電極の製造方法、及び、セパレータ一体型電極
JP6992701B2 (ja) 2018-08-06 2022-01-13 トヨタ自動車株式会社 セパレータ一体型電極の製造方法、及び、セパレータ一体型電極
WO2024048424A1 (ja) * 2022-08-31 2024-03-07 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用積層体、及び電気化学素子

Also Published As

Publication number Publication date
PL2747173T3 (pl) 2019-02-28
JP5370356B2 (ja) 2013-12-18
EP2747173A1 (en) 2014-06-25
EP2747173B1 (en) 2018-10-10
US9202631B2 (en) 2015-12-01
KR20110005793A (ko) 2011-01-19
EP2282364A1 (en) 2011-02-09
US20110091774A1 (en) 2011-04-21
CN101981727B (zh) 2016-03-30
HUE042537T2 (hu) 2019-07-29
KR101664502B1 (ko) 2016-10-11
JPWO2009123168A1 (ja) 2011-07-28
EP2282364B1 (en) 2014-05-21
EP2282364A4 (en) 2013-01-23
CN101981727A (zh) 2011-02-23

Similar Documents

Publication Publication Date Title
JP5370356B2 (ja) 多孔膜および二次電池電極
JP5704223B2 (ja) 多孔膜および二次電池電極
JP5747919B2 (ja) 電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用電極、二次電池用セパレーター及び二次電池
JP6451732B2 (ja) 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
JP6877862B2 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5928464B2 (ja) 二次電池用多孔膜、二次電池用セパレーター及び二次電池
KR101807543B1 (ko) 이차 전지 부극용 슬러리, 이차 전지용 부극 및 그 제조 방법, 그리고 이차 전지
JP5991321B2 (ja) 二次電池負極用バインダー組成物、二次電池用負極、負極用スラリー組成物、製造方法及び二次電池
KR102067562B1 (ko) 2 차 전지용 부극, 2 차 전지, 슬러리 조성물, 및 제조 방법
WO2010024328A1 (ja) 多孔膜、二次電池電極及びリチウムイオン二次電池
WO2010016476A1 (ja) リチウムイオン二次電池用電極
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
KR20160146737A (ko) 전기 화학 소자 전극용 복합 입자의 제조 방법
JP2014089834A (ja) リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
KR20150016937A (ko) 2 차 전지용 부극 및 그 제조 방법
JP6236964B2 (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
KR102330766B1 (ko) 전기 화학 소자 전극용 복합 입자
WO2014112436A1 (ja) リチウムイオン二次電池用正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111691.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09728531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107021820

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010505924

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009728531

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12935437

Country of ref document: US