WO2017104867A1 - 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2017104867A1
WO2017104867A1 PCT/KR2015/013882 KR2015013882W WO2017104867A1 WO 2017104867 A1 WO2017104867 A1 WO 2017104867A1 KR 2015013882 W KR2015013882 W KR 2015013882W WO 2017104867 A1 WO2017104867 A1 WO 2017104867A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
polymer matrix
polymer
electrolyte
secondary battery
Prior art date
Application number
PCT/KR2015/013882
Other languages
English (en)
French (fr)
Inventor
김택경
장민철
손병국
양두경
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/562,297 priority Critical patent/US10633492B2/en
Priority to PCT/KR2015/013882 priority patent/WO2017104867A1/ko
Priority to CN201580079083.0A priority patent/CN107534128B/zh
Priority to EP15910790.3A priority patent/EP3264500B1/en
Publication of WO2017104867A1 publication Critical patent/WO2017104867A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention there is no fear of loss of electrolyte solution and deterioration of battery life characteristics even during repeated charging and discharging of the battery, and negative electrode for a lithium secondary battery having excellent safety due to suppression of dentite growth of lithium and a lithium secondary including the same It relates to a battery.
  • Lithium secondary batteries for example, lithium ion batteries
  • nickel hydride batteries and other secondary batteries are becoming increasingly important as power supplies for in-vehicle power supplies or portable terminals such as notebook computers.
  • a lithium secondary battery capable of attaining a high energy density at a light weight can be preferably used as a high output power supply for a vehicle, which is expected to increase demand in the future.
  • the lithium secondary battery is manufactured by using a material capable of inserting and detaching lithium ions as an active material of a negative electrode and a negative electrode, installing a porous separator between the positive electrode and the negative electrode, and then injecting a liquid electrolyte, and forming the lithium at the negative electrode and the positive electrode. Electricity is generated or consumed by a redox reaction resulting from the insertion and removal of ions.
  • An object of the present invention is to provide a negative electrode having excellent safety since there is no fear of loss of electrolyte solution and consequent deterioration of battery life even during repeated charging and discharging of the battery, and growth of lithium dentite is suppressed.
  • Still another object of the present invention is to provide a lithium secondary battery having improved battery performance and safety, including the negative electrode described above.
  • a negative electrode for a lithium secondary battery includes a negative electrode active layer including a lithium metal or an alloy of lithium metal, and a protective layer positioned on the negative electrode active layer, wherein the protective layer is a three-dimensional crosslinked network of a polymer.
  • the protective layer may include a porous polymer matrix having a three-dimensional crosslinked network structure of a polymer, and the electrolyte may be included in pores of the porous polymer matrix.
  • porous polymer matrix may have a porosity of 5 to 80% by volume.
  • the three-dimensional cross-linked network structure is characterized by chemical crosslinking by branched chains between polymers, coupling between one or more monomers having a reactive multifunctional group, and physical crosslinking of cluster domains formed by phase separation of block copolymers. It may be formed by a crosslink selected from the group consisting of a bond and an ionic crosslink of the ionomer.
  • the polymer matrix may include a crosslinked polymer of polydimethylsiloxane or a derivative thereof.
  • the polymer matrix may include polysilsesquioxane.
  • the polymer matrix may include a three-dimensional covalent organic framework by coupling between two or more monomers having a reactive multifunctional group.
  • the polymer matrix may include any one substituent selected from the group consisting of a sulfonic acid group (SO 3 H), a phosphoric acid group (PO 4 H 2 ), a carbonic acid group (CO 3 H), and a combination thereof. Some or all may comprise anionic polymer electrolyte self-doped with lithium.
  • the protective layer may include a structure in which a non-crosslinked linear polymer having a weight average molecular weight of 1,000,000 g / mol or more is entangled with each other, and the electrolyte may be contained in the structure.
  • non-crosslinked linear polymer may be polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride-hexafuluropropylene, polyvinylidene fluoride-trichloroethylene, polymethyl methacrylate, It may be selected from the group consisting of polystyrene-acrylonitrile copolymer, polyvinylchloride, polyvinylpyrrolidone, polyvinylacetate, polyethylenevinylacetate copolymer, and mixtures thereof.
  • the protective layer may have a thickness of 1nm to 10 ⁇ m.
  • the electrolyte may be absorbed and included in a polymer forming a polymer matrix.
  • the manufacturing method of the negative electrode for a lithium secondary battery according to another embodiment of the present invention, the manufacturing step of the negative electrode active layer containing lithium; Forming a polymer matrix including a three-dimensional crosslinked network structure of a polymer on the anode active layer or comprising a non-crosslinked linear polymer; And impregnating, coating or spraying the electrolyte in an amount of 100 to 1000 parts by weight based on 100 parts by weight of the polymer matrix to form the protective layer by including the electrolyte in the polymer matrix.
  • a lithium secondary battery includes a positive electrode and a negative electrode disposed to face each other; A separator interposed between the positive electrode and the negative electrode; And a nonaqueous electrolyte, wherein the negative electrode includes a negative electrode active layer including lithium, and a protective layer positioned on the negative electrode active layer, wherein the protective layer includes a three-dimensional crosslinked network structure of a polymer, or a non-crosslinked linear polymer It includes a polymer matrix, and the electrolyte contained in the content of 100 to 1000 parts by weight based on 100 parts by weight of the polymer matrix in the polymer matrix.
  • the negative electrode for a lithium secondary battery of the present invention has no risk of loss of electrolyte solution and consequent deterioration of battery life even during repeated charging and discharging of the battery, and growth of lithium dentite can be suppressed to improve battery safety. .
  • FIG. 1 is an exploded perspective view of a rechargeable lithium battery according to another embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the electrode manufactured in Example
  • FIG. 3 is a schematic diagram of the electrode manufactured in Comparative Example.
  • the present invention provides a protective layer capable of accumulating electrolyte at the same time, while protecting the negative electrode on the negative electrode active layer containing a negative electrode active material, during the manufacture of the negative electrode, the loss of the electrolyte during the repeated charging and discharging of the battery and the resulting battery life There is no fear of deterioration of characteristics, and growth of lithium dendrites is suppressed, thereby improving battery safety.
  • the negative electrode for a lithium secondary battery includes a negative electrode active layer including a lithium metal or an alloy of lithium metal and a protective layer positioned on the negative electrode active layer, and the protective layer is a three-dimensional crosslinking of a polymer.
  • a polymer matrix comprising a network structure or comprising a non-crosslinked linear polymer;
  • an electrolyte included in the polymer matrix in an amount of 100 to 1000 parts by weight based on 100 parts by weight of the polymer matrix.
  • the negative electrode active layer is a negative electrode active material capable of reversible intercalation and deintercalation of lithium, and includes lithium metal or an alloy of lithium metal.
  • the alloy of the lithium metal may be an alloy of lithium with a metal of Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, or Cd.
  • the negative electrode active layer may further include a binder selectively with the negative electrode active material.
  • the binder acts as a paste for the negative electrode active material, mutual adhesion between the active materials, adhesion between the active material and the current collector, and a buffering effect on the expansion and contraction of the active material.
  • the binder is polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinylpyrrolidone, polyurethane , Polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like, but is not limited thereto.
  • the binder may be included in 20 wt% or less, or 5 to 15 wt% based on the total weight of the negative electrode active layer.
  • a protective layer including a polymer matrix and an electrolyte contained in the polymer matrix is positioned on the negative electrode active layer.
  • the polymer matrix includes a three-dimensional crosslinked network structure of the polymer or includes non-crosslinked linear polymer.
  • the three-dimensional cross-linked network structure is a chemical cross-linking by an interpolymer branch chain, coupling between one or more monomers having a reactive multifunctional group, block It may be formed by crosslinking selected from the group consisting of physical crosslinking of the cluster domain formed by phase separation of the copolymer and ionic crosslinking of the ionomer.
  • chemical crosslinking by the branched chain between the polymers include those in which the main chain is crosslinked by a branched chain serving as a crosslinking agent such as polydimethylsiloxane (PDMS) or a derivative thereof to form a crosslinked structure.
  • a crosslinking agent such as polydimethylsiloxane (PDMS) or a derivative thereof to form a crosslinked structure.
  • polysilsesquioxane by organic-inorganic sol-gel reaction of a single monomer having a structure of formula (1) polysilsesquioxane).
  • R 1 is a linear, branched or cyclic divalent hydrocarbon group (for example, alkylene group, benzene group, etc.), and a lithium ion conductive moiety such as oligoethylene glycol or the like. May include)
  • the monomers having the structure of Chemical Formula 1 reacting with each other may include different R 1 moieties.
  • a monomer having a structure of Formula 1, wherein R 1 is a moiety that transfers lithium ions well and a monomer having a structure of Formula 1, wherein R 1 is a moiety that provides excellent mechanical rigidity, are coupled to each other.
  • R 1 is a moiety that transfers lithium ions well
  • R 1 is a moiety that provides excellent mechanical rigidity
  • R and R ' are each independently a linear, branched or cyclic hydrocarbon group, and may further include a lithium ion conductive moiety such as oligoethylene glycol, X, And Y is a functional group capable of reacting with each other to form a crosslink, wherein X is an amino group or a hydroxy group, and Y may be an isocyanate group, a carboxylic acid group, or an aldehyde group.
  • X and Y react as they exchange electrons, where Y is an amino group or a hydroxyl group, and X is an isocyanate group, a carboxylic acid group, or an aldehyde group for smooth reaction according to the electronegativity of R or R '. have.
  • Formulas 2 and 3a to 3c are illustrated as including X or Y, respectively, but the present invention is not limited thereto, and Formulas 2 and 3a to 3c simultaneously include X and Y in one molecule. It is possible if there is.
  • the block copolymer may minimize resistance by including a block capable of intramolecular ion conduction.
  • ionic crosslinking of the ionomer examples include an ionic crosslinking of an ionomer in which a proton of polysulfonic acid is substituted with lithium, as shown in the following structural formula (I).
  • the ionomer may be an anionic polymer electrolyte self-doped with lithium, and specifically, a sulfonic acid group (SO 3 H), a phosphoric acid group (PO 4 H 2 ), and a carbonic acid group (CO 3 H
  • a polymer comprising any one substituent selected from the group consisting of a combination thereof may be one or all of them self-doped with lithium, more specifically, the polymer side chain terminal is substituted with a sulfonic acid group, such as polystyrene sulfonic acid
  • SO 3 H may be a polymer substituted with SO 3 Li.
  • the ionic crosslinker of the ionomer is composed of a single lithium ion conductive polymer, which inhibits the movement of anions and allows only lithium ions to move, thereby minimizing the concentration gradient between ions and consequently suppressing the formation of dendrites. .
  • the polymer matrix may be a porous polymer matrix, wherein the electrolyte may be included in the pores of the porous polymer matrix.
  • the polymer matrix may have a porosity of 5 to 80% by volume based on the total volume of the polymer matrix. If the porosity is less than 5% by volume, the content of electrolyte solution impregnated into the pores is low, and the improvement effect due to the formation of the polymer matrix is insignificant. If the porosity is more than 80% by volume, the mechanical properties of the polymer matrix itself may be deteriorated. have. However, in the case of a three-dimensional network structure, even if the porosity exceeds 80% by volume, by appropriately adjusting the organic moiety to be inserted, and when using two or more monomers, by controlling the content ratio of each monomer, the mechanical properties are reduced. You can prevent it.
  • the porous polymer matrix may swell by absorbing the electrolyte. Accordingly, the electrolyte may be included in the polymer.
  • the electrolyte may be included in the non-crosslinked linear polymer absorbed or contained between the non-crosslinked linear polymer entangled with each other.
  • the non-crosslinked linear polymer When the non-crosslinked linear polymer absorbs the electrolyte, the non-crosslinked linear polymer may expand as the injected electrolyte is absorbed into the polymer and may exhibit electrolyte ion conductivity due to the absorbed electrolyte. Accordingly, as the amount of the electrolyte absorbed into the non-crosslinked linear polymer increases, the ion conductivity may be increased. However, when the electrolyte absorption amount is too high, the mechanical properties of the polymer matrix may be reduced. Therefore, the non-crosslinked linear polymer may preferably have a swelling rate of 300 to 700 wt%, or 400 to 500 wt% with respect to the electrolyte obtained according to Equation 1 below.
  • P1 is the weight after drying the test piece of the polymer compound adjusted to a thickness of 100 ⁇ m
  • P2 is the weight after impregnating the electrolyte to be used at 25 °C for 10 hours.
  • the non-crosslinked linear polymer having a swelling ratio in the above range has a high electrolyte absorption rate (degree of swelling), when the contact between the cathode and the electrolyte can be freely permeated ions constituting the electrolyte, the conductivity of such electrolyte ions increases The battery performance can be improved.
  • non-crosslinked linear polymer examples include polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride-hexafulopropylene, polyvinylidene fluoride-trichloroethylene, and polymethyl methacrylate.
  • Polystyrene-acrylonitrile copolymer, polyvinylchloride, polyvinylpyrrolidone, polyvinylacetate, or polyethylenevinylacetate copolymer, and the like, and one or a mixture of two or more thereof may be used.
  • the negative electrode according to the present invention includes a lithium-based compound such as lithium metal or a lithium alloy as the negative electrode active material, it is preferable to appropriately select from the non-crosslinked linear polymer for forming a protective layer in consideration of interfacial bonding with lithium.
  • the non-crosslinked linear polymer when the non-crosslinked linear polymer is a homopolymer having a weight average molecular weight of 1,000,000 g / mol or more, the non-crosslinked linear polymer may be included in the polymer matrix in a entangled state and may carry an electrolyte due to the entangled structure.
  • the electrolyte included in the polymer matrix as described above may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • an ester solvent, an ether solvent, a ketone solvent, an aromatic hydrocarbon solvent, an alkoxyalkane solvent, a carbonate solvent, or the like may be used.
  • One of these may be used alone or in combination of two or more thereof.
  • ester solvent examples include methyl acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, dimethyl acetate, methyl propionate, and ethyl prop.
  • ether solvents include dibutyl ether, tetraglyme, 2-methyltetrahydrofuran, tetrahydrofuran, and the like.
  • ketone solvent examples include cyclohexanone.
  • aromatic hydrocarbon-based organic solvent examples include benzene, fluorobenzene, chlorobenzene, iodobenzene, toluene, fluorotoluene, or xylene (xylene) etc. are mentioned.
  • alkoxyalkane solvent examples include dimethoxy ethane or diethoxy ethane.
  • the carbonate solvent examples include dimethyl carbonate (dimethyl carbonate, DMC), diethyl carbonate (DEC), dipropyl carbonate (dipropyl carbonate, DPC), methyl propyl carbonate (methyl propyl carbonate, MPC), ethyl propyl carbonate (ethyl propyl carbonate, EPC) , Methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or fluoro Ethylene carbonate (FEC) etc. are mentioned.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • the lithium salt When the lithium salt is dissolved in an electrolyte, the lithium salt may function as a source of lithium ions in the lithium secondary battery and may promote the movement of lithium ions between the positive electrode and the negative electrode. Accordingly, the lithium salt is preferably included at a concentration of approximately 0.6 mol% to 2 mol% in the electrolyte. When the concentration of the lithium salt is less than 0.6 mol%, the conductivity of the electrolyte may be lowered and the performance of the electrolyte may be lowered. When the concentration of the lithium salt is higher than 2 mol%, the viscosity of the electrolyte may be increased, thereby reducing the mobility of lithium ions. In consideration of the conductivity of the electrolyte and the mobility of lithium ions, the lithium salt may be more preferably adjusted to about 0.7 mol% to 1.6 mol% in the electrolyte.
  • the electrolyte further includes additives (hereinafter, referred to as 'other additives') that can be generally used in the electrolyte for the purpose of improving the life characteristics of the battery, suppressing the reduction of the battery capacity, and improving the discharge capacity of the battery. can do.
  • additives hereinafter, referred to as 'other additives'
  • the other additives include vinylene carbonate (VC), metal fluoride (eg, LiF, RbF, TiF, AgF, AgF2, BaF 2 , CaF 2 , CdF 2 , FeF 2 , HgF 2 , Hg 2 F 2 , MnF 2 , NiF 2 , PbF 2 , SnF 2 , SrF 2 , XeF 2 , ZnF 2 , AlF 3 , BF 3 , BiF 3 , CeF 3 , CrF 3 , DyF 3 , EuF 3 , GaF 3, GdF 3, FeF 3, HoF 3, InF 3, LaF 3, LuF 3, MnF 3, NdF 3, PrF 3, SbF 3, ScF 3, SmF 3, TbF 3, TiF 3, TmF 3, YF 3, YbF 3, TIF 3, CeF 4 , GeF 4, HfF 4, SiF 4, SnF 4, TiF 4, VF 4, ZrF4 4, NbF 5, SbF
  • the electrolyte may be contained in an amount of 100 to 1000 parts by weight based on 100 parts by weight of the polymer matrix. When included in the above weight ratio, higher charge and discharge efficiency can be obtained. If the content of the electrolyte is less than 100 parts by weight, the ion conductivity in the protective layer may be low, which may lower battery characteristics. If the content of the electrolyte is more than 1000 parts by weight, the electrolyte may be unevenly distributed to the cathode due to the excessive amount of the electrolyte. There is a risk of deterioration.
  • the organic block to be inserted has an ion conductivity, it is possible to prevent the problem caused by the decrease in ion conductivity have.
  • the protective layer may have a thickness of about 1 nm to about 10 ⁇ m. If the thickness of the protective layer is less than 1 nm, it may not effectively suppress side reactions and exothermic reactions between the electrode active material and the electrolyte, which may increase under conditions such as overcharging or high temperature storage. It takes a long time to impregnate or swell with the electrolyte, and there is a fear that the movement of lithium ions decreases and the overall battery performance decreases. In consideration of the remarkable improvement effect of the formation of the protective layer, the protective layer may be more preferably formed with a thickness of 10nm to 1 ⁇ m.
  • the negative electrode may further include a current collector for supporting the negative electrode active layer.
  • the current collector may be any one metal selected from the group consisting of copper, aluminum, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof, wherein the stainless steel is carbon, nickel, It may be surface-treated with titanium or silver, and as the alloy, an aluminum-cadmium alloy may be preferably used.
  • calcined carbon, a nonconductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • the negative electrode having the above structure, the manufacturing step of the negative electrode active layer containing lithium; Forming a polymer matrix including a three-dimensional crosslinked network structure or non-crosslinked linear polymer on the anode active layer; And impregnating, coating or spraying the electrolyte with respect to the polymer matrix to form a protective layer by including the electrolyte in the polymer matrix.
  • Step 1 is a step of forming the negative electrode active layer, the negative electrode active material, and optionally the negative electrode active layer forming composition prepared by mixing a binder and a conductive agent applied to the negative electrode current collector and dried to the negative electrode active material layer Or a thin film of lithium metal itself may be used as a negative electrode active layer without a separate process.
  • the negative electrode active layer forming composition may be prepared by dispersing a negative electrode active material, and optionally a binder and a conductive agent in a solvent, and the types and contents of the negative electrode active material, the binder and the conductive agent can be used as described above.
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • acetone or water.
  • the current collector As a method for applying the current collector to the negative electrode active material layer-forming composition thus prepared, it may be selected from a known method or performed by a new suitable method in consideration of the properties of the material. For example, it is preferable to disperse the composition for forming the negative electrode active material layer on a current collector and then to uniformly disperse the same using a doctor blade or the like. In some cases, a method of distributing and dispersing in one process may be used. In addition, methods such as die casting, comma coating, and screen printing may be used. In this case, the current collector is the same as described above.
  • a drying process may be performed on the negative electrode active layer formed on the current collector, and the drying process may be performed by heat treatment or hot air drying at a temperature of 80 to 120 ° C.
  • a process such as rolling may be optionally further performed so that the negative electrode mixture prepared after drying has an appropriate mixture density. Since the rolling method can be performed according to the rolling method in normal electrode production, a detailed description is omitted.
  • step 2 is a step of forming a polymer matrix on the negative electrode active layer prepared above.
  • the polymer matrix may be chemically crosslinked by branched polymer chains, coupling between one or more monomers having a reactive multifunctional group, physical crosslinking of a cluster domain formed by phase separation of the block copolymer, or It may be formed by ionic crosslinking of the ionomer or by non-crosslinked linear polymer.
  • the polymer or monomer thereof to form a three-dimensional network structure through physical or chemical crosslinking as a compound for forming a polymer matrix may be applied or sprayed on the negative electrode active layer, or the negative electrode active layer is immersed in the polymer matrix forming composition, and then dried.
  • non-crosslinked linear polymer and the polymer forming the three-dimensional network structure through the physical and chemical crosslinking are the same as described above.
  • the solvent may vary depending on the type of polymer used, and in particular, the solubility index is similar to those of the polymers, so that the homogeneous mixing is easy and the boiling point is low for easy solvent removal thereafter. It may be desirable. Specific examples thereof include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone, NMP), cyclohexane, water and mixtures thereof, but are not limited thereto.
  • crosslinking may be performed by acid treatment or heat treatment.
  • the acid treatment may be prepared by preparing a polymer matrix on another substrate in advance to prevent contact with lithium in the negative electrode active layer, and then transferring the polymer matrix onto the negative electrode active layer containing lithium.
  • the polymer matrix includes a three-dimensional covalently bonded organic skeleton frame by coupling between two or more monomers having a reactive multifunctional group
  • the crosslinking reaction is performed even under mild conditions as the reactive multifunctional group in the monomer. It may be desirable to use monomers having this easy functional group.
  • the composition for forming the polymer matrix may further include an inorganic filler to improve the mechanical strength of the polymer matrix.
  • the inorganic filler may be silica, alumina, or the like, and may be preferably included in an amount of 0.1 to 10 wt% based on the total weight of the composition for forming the polymer matrix.
  • the method for coating the composition for forming the polymer matrix on the negative electrode active layer may be used a conventional method known in the art, for example, dip (Dip) coating, die coating, roll coating, Various methods, such as a comma coating or a mixing method thereof, can be used.
  • the drying process may then preferably be carried out at 150 to 250 ° C. for 12 to 24 hours under vacuum.
  • a negative electrode active material such as lithium metal shows high charge and discharge capacity while low reversibility and stability.
  • the loss or exhaustion of the electrolyte occurs, it is difficult to drive the battery continuously.
  • the negative electrode manufactured by the manufacturing method as described above includes a protective layer including a polymer matrix and an electrolyte solution on the negative electrode active layer, thereby significantly reducing side reactivity of the electrode active material and the electrolyte solution generated under extreme conditions such as charging or high temperature storage.
  • the protective layer may exhibit excellent mechanical properties such as stretching and bending characteristics by including a polymer matrix. Therefore, even if charging and discharging continue, it may exist stably without being damaged inside the battery.
  • a lithium secondary battery comprising a negative electrode prepared according to the above-described manufacturing method.
  • the lithium secondary battery includes a positive electrode including a positive electrode active material disposed opposite to each other, a negative electrode including a negative electrode active material, and an electrolyte solution interposed between the positive electrode and the negative electrode, and the negative electrode is the same as described above.
  • the lithium secondary battery may be classified into a lithium ion battery, a lithium ion polymer battery, and a lithium polymer battery according to the type of separator and electrolyte used, and may be classified into a cylindrical shape, a square shape, a coin type, a pouch type, and the like. Depending on the size, it can be divided into bulk type and thin film type.
  • FIG. 1 is an exploded perspective view of a lithium secondary battery 1 according to another embodiment of the present invention. 1 is only an example for describing the present invention and the present invention is not limited thereto.
  • a separator 7 is disposed between the negative electrode 3, the positive electrode 5, the negative electrode 3, and the positive electrode 5 to form an electrode assembly 9. It can be prepared by placing in the case 15 and injecting an electrolyte (not shown) so that the negative electrode 3, the positive electrode 5 and the separator 7 is impregnated in the electrolyte.
  • Conductive lead members 10 and 13 may be attached to the negative electrode 3 and the positive electrode 5, respectively, and the lead members 10 and 13 may be attached to the positive electrode 5, respectively. And a current generated in the negative electrode 3 to the positive electrode terminal and the negative electrode terminal.
  • the positive electrode 5 is prepared by mixing a positive electrode active material, a conductive agent, and a binder to prepare a composition for forming a positive electrode active material layer, and then applying the composition for forming the positive electrode active material layer to a positive electrode current collector such as aluminum foil and rolling the same. can do. It is also possible to produce the positive electrode plate by casting the positive electrode active material composition on a separate support and then laminating the film obtained by peeling from the support onto a metal current collector.
  • a compound (lithiated intercalation compound) capable of reversible intercalation and deintercalation of lithium may be used.
  • the conductive agent and the binder are the same as described above for the negative electrode.
  • the separator 7 can be used without particular limitation as long as it is normally used as a separator in a lithium secondary battery. Particularly, it is preferable that the separator 7 has low resistance to ion migration of the electrolyte and has excellent electrolyte-moisture capability.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the electrolyte may be the same as described above in the formation of the protective layer.
  • the cylindrical lithium secondary battery 1 has been described as an example, but the technology of the present invention is not limited to the cylindrical lithium secondary battery 1, and may be any shape as long as it can operate as a battery.
  • the lithium secondary battery including the negative electrode active material according to the present invention stably exhibits excellent discharge capacity, cycle life characteristics and rate characteristics, and thus requires a fast charging speed such as a mobile phone, a notebook computer, a digital camera, a camcorder, and the like. It is useful in portable devices, electric vehicle fields such as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and medium and large energy storage systems.
  • HEVs hybrid electric vehicles
  • PHEVs plug-in HEVs
  • medium and large energy storage systems medium and large energy storage systems.
  • Sylgard 184 monomer purchased from Dow Corning and the curing agent were mixed in a weight ratio of 10: 1 to 10: 5. Dilute by adding hexane as a means to lower the concentration to control the thickness to 1 to 10um level. The prepared solution was applied on a lithium metal thin film and then thermally cured at 50 to 100 ° C. for 1 hour to 12 hours. At this time, the higher the temperature can shorten the curing time.
  • a single monomer having a structure of Formula 1 was subjected to a sol-gel reaction to form polysilsesquioxane.
  • R 1 is oligoethylene glycol
  • the polymer matrix-forming composition prepared by dissolving 10% by weight of the polysilsesquioxane prepared in THF was applied on a thin film of lithium metal as a negative electrode active layer and then cured at 100 ° C. to form a polymer matrix.
  • the curing time and degree of curing can be shortened by changing the solvent with an alcohol or adding an acid or a base to the solution.
  • another substrate such as Teflon sheet or PET sheet in consideration of the reactivity of lithium, It can also be transferred onto a thin film.
  • a three-dimensional covalent organic framework was formed on the thin film of lithium metal by coupling a monomer of Formula 2 to a compound of Formula 3a as in Scheme 1.
  • Formula 2 and Formula 3a were dissolved in anhydrous DMF in an equivalent ratio of 1: 1 under normal temperature and nitrogen atmosphere (concentration 0.04 g / mL).
  • concentration 0.04 g / mL concentration 0.04 g / mL.
  • agitation is usually present in a sol (sol) state before 3 days to 4 days and then gelation (gelation), after the coating on the thin film in the sol state, the solvent is dried to prepare a three-dimensional porous membrane.
  • the polymer matrix-forming composition prepared by dissolving 10 wt% of polystyrene sulfonic acid in which the sulfonic acid group (SO 3 H) of the polymer side chain terminal was substituted with SO 3 Li in THF was applied as a negative electrode active layer on a thin film of lithium metal, followed by 60 ° C. Drying to form a polymer matrix.
  • a lithium metal thin film was used as the negative electrode active layer.
  • a lithium fully symmetric cell was produced using the electrodes prepared in Examples and Comparative Examples.
  • An electrode assembly was prepared through a separator of porous polyethylene between two lithium electrodes, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery. At this time, the electrolyte is also impregnated into the polymer matrix formed on the electrode.
  • FIG. 2 and 3 show schematic diagrams of the prepared electrodes.
  • 2 shows a schematic diagram of an electrode according to an embodiment
  • FIG. 3 shows a schematic diagram of an electrode according to a comparative example.
  • a polymer matrix 113 is formed on a lithium metal thin film 112 placed on a current collector 111, and electrolyte is accumulated in the polymer matrix 113. do.
  • Electrolyte uptake (wt.%) 1 ) When the discharge capacity drops sharply Comparative Example 1 0 After 30 cycles Example 1 400-1100 After 45 cycles Example 2 500-900 After 40 cycles Example 3 40-100 After 42 cycles
  • Electrolyte uptake (wt.%): The increase was calculated as a percentage by measuring the mass before and after electrolyte impregnation of each polymer matrix having a diameter of 19 mm.
  • the present invention relates to a negative electrode for a lithium secondary battery and a lithium secondary battery including the same, wherein the negative electrode has no fear of loss of electrolyte solution and consequent deterioration of battery life even during repeated charging and discharging of the battery. Growth can be suppressed to improve battery safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 상기 음극은 리튬을 포함하는 음극활성층, 및 상기 음극활성층 위에 위치하는 보호층을 포함하고, 상기 보호층은 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스, 및 상기 고분자 매트릭스 내에, 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함된 전해질을 포함함으로써, 전지의 반복적인 충,방전 동안에도 전해액의 손실 및 그에 따른 전지 수명특성 저하의 우려가 없고, 또 리튬의 덴트라이트 성장이 억제되어 전지 안전성을 향상시킬 수 있다.

Description

리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
본 발명은 전지의 반복적인 충, 방전 동안에도 전해액의 손실 및 그에 따른 전지 수명특성 저하의 우려가 없고, 또 리튬의 덴트라이트 성장이 억제되어 우수한 안전성을 갖는 리튬이차전지용 음극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
리튬 이차 전지(예를 들면, 리튬 이온 전지), 니켈 수소 전지 그 외의 이차 전지는, 차량 탑재용 전원, 또는 노트북 등의 휴대 단말기의 전원으로서 중요성이 높아지고 있다. 특히, 경량으로 고에너지 밀도를 얻을 수 있는 리튬 이차 전지는 차량 탑재용 고출력 전원으로서 바람직하게 이용될 수 있어서, 향후 계속적인 수요 증대가 전망되고 있다.
리튬 이차 전지는 리튬 이온의 삽입 및 탈리가 가능한 물질을 음극과 음극의 활물질로 사용하고, 상기 양극과 음극 사이에 다공성 분리막을 설치한 후 액체 전해질을 주입시켜 제조되며, 상기 음극 및 양극에서의 리튬 이온의 삽입 및 탈리에 따른 산화 환원반응에 의해 전기가 생성 또는 소비된다.
그러나 전지의 반복적인 충,방전 동안 전극의 부피변화에 따른 전해액의 손실 및 고갈이 발생하고, 이로 인해 전지 구동이 지속되지 않는 문제점이 있다.
이에 따라 전해액의 손실을 방지하여 전지의 수명특성을 향상시키고, 또 리튬의 덴드라이트 성장을 억제하여 리튬 전극의 안전성을 향상시킬 수 있는 전극 소재의 개발이 요구된다.
[선행기술문헌]
[특허문헌]
한국등록특허 제10-0359605호 (2002.10.22 등록)
본 발명의 목적은 전지의 반복적인 충,방전 동안에도 전해액의 손실 및 그에 따른 전지 수명특성 저하의 우려가 없고, 또 리튬의 덴트라이트 성장이 억제되어 우수한 안전성을 갖는 음극을 제공하는 것이다.
본 발명의 또 다른 목적은 상기한 음극을 포함하여 개선된 전지 성능 및 안전성을 갖는 리튬이차전지를 제공하는 것이다.
본 발명의 일 실시예에 따른 리튬이차전지용 음극은, 리튬 금속 또는 리튬 금속의 합금을 포함하는 음극활성층, 및 상기 음극활성층 위에 위치하는 보호층을 포함하고, 상기 보호층은 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스, 그리고 상기 고분자 매트릭스 내에, 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함된 전해질을 포함한다.
상기 리튬이차전지용 음극에 있어서, 상기 보호층은 고분자의 3차원 가교 네트워크 구조를 갖는 다공성 고분자 매트릭스를 포함하고, 상기 전해질은 상기 다공성 고분자 매트릭스의 기공 내에 포함된 것일 수 있다.
그리고 상기 다공성 고분자 매트릭스는 5 내지 80부피%의 기공도를 갖는 것일 수 있다.
또, 상기 3차원 가교 네트워크 구조는 고분자간 가지 사슬에 의한 화학적 가교결합, 반응성 다중관능기를 갖는 1 이상의 단량체 사이의 커플링, 블록공중합체의 상분리에 의해 형성되는 클러스터 도메인(cluster domain)의 물리적 가교결합 및 이오노머의 이온성 가교 결합으로 이루어진 군에서 선택되는 가교결합에 의해 형성된 것일 수 있다.
상기 고분자 매트릭스는 폴리디메틸실록산 또는 그 유도체의 가교 고분자를 포함하는 것일 수 있다.
또, 상기 고분자 매트릭스는 폴리실세스퀴옥산을 포함하는 것일 수 있다.
또, 상기 고분자 매트릭스는 반응성 다중관능기를 갖는 2 이상의 단량체 사이의 커플링에 의한 3차원 공유결합성 유기 골격프레임(covalent organic framework)을 포함하는 것일 수 있다.
또, 상기 고분자 매트릭스는 술폰산기(SO3H), 인산기(PO4H2), 탄산기(CO3H) 및 이들의 조합으로 이루어지는 군에서 선택되는 어느 하나의 치환기를 포함하며, 상기 치환기 중 일부 또는 전부가 리튬으로 자기-도핑(self-doping)된 음이온 고분자 전해질을 포함하는 것일 수 있다.
또, 상기 리튬이차전지용 음극에 있어서, 상기 보호층은 중량평균분자량 1,000,000g/mol 이상의 비가교 선형 고분자가 서로 얽힌 구조체를 포함하고, 상기 전해질은 상기 구조체에 담지되어 포함된 것일 수 있다.
또, 상기 비가교 선형고분자는 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리아크릴로니트릴, 폴리비닐리덴풀루오라이드-헥사풀루오로프로필렌, 폴리비닐리덴풀루오라이드-트리클로로에틸렌, 폴리메틸메타크릴레이트, 폴리스티렌-아크릴로니트릴 공중합체, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리비닐아세테이트, 폴리에틸렌비닐아세테이트 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것일 수 있다.
또, 상기 리튬이차전지용 음극에 있어서, 상기 보호층은 1nm 내지 10㎛의 두께를 갖는 것일 수 있다.
또, 상기 리튬이차전지용 음극에 있어서, 상기 전해질은 고분자 매트릭스를 형성하는 고분자 내에 흡수되어 포함될 수 있다.
또, 본 발명의 다른 일 실시예에 따른 리튬이차전지용 음극의 제조방법은, 리튬을 포함하는 음극활성층의 제조 단계; 상기 음극활성층 위에 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스를 형성하는 단계; 그리고 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 전해질을 함침하거나, 도포 또는 분무하여 고분자 매트릭스 내에 전해질을 포함시켜 보호층을 형성하는 단계를 포함한다.
또, 본 발명의 다른 일 실시예에 따른 리튬이차전지는 서로 대향 배치되는 양극과 음극; 상기 양극과 음극 사이에 개재되는 세퍼레이터; 및 비수 전해질을 포함하고, 상기 음극은 리튬을 포함하는 음극활성층, 및 상기 음극활성층 위에 위치하는 보호층을 포함하고, 상기 보호층은 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스, 그리고 상기 고분자 매트릭스 내에, 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함된 전해질을 포함하는 것이다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명의 리튬이차전지용 음극은, 전지의 반복적인 충,방전 동안에도 전해액의 손실 및 그에 따른 전지 수명특성 저하의 우려가 없고, 또 리튬의 덴트라이트 성장이 억제되어 전지의 안전성을 향상시킬 수 있다.
도 1은 본 발명의 다른 일 실시예에 따른 리튬 이차 전지의 분해 사시도이다.
도 2는 실시예에서 제조된 전극의 모식도이고, 도 3은 비교예에서 제조된 전극의 모식도이다.
도 4는 실시예 및 비교예에서 제조한 리튬 이차 전지의 사이클 수명을 나타내는 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 음극의 제조시, 음극활물질을 포함하는 음극활성층 위에 음극을 보호하는 동시에 전해액을 축적할 수 있는 보호층을 형성함으로써, 전지의 반복적인 충,방전 동안에도 전해액의 손실 및 그에 따른 전지 수명특성 저하의 우려가 없고, 또 리튬의 덴트라이트 성장이 억제되어 전지 안전성을 향상시키는 것을 특징으로 한다.
즉, 본 발명의 일 실시예에 따른 리튬이차전지용 음극은, 리튬 금속 또는 리튬 금속의 합금을 포함하는 음극활성층 및 상기 음극활성층 위에 위치하는 보호층을 포함하고, 상기 보호층은 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스; 그리고 상기 고분자 매트릭스 내에, 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함된 전해질을 포함한다.
구체적으로, 상기 음극에 있어서, 음극활성층은 리튬의 가역적인 인터칼레이션(intercalation) 및 디인터칼레이션(deintercalation)이 가능한 음극활물질로서, 리튬 금속 또는 리튬 금속의 합금을 포함한다.
상기 리튬 금속의 합금은 구체적으로 리튬과 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, 또는 Cd의 금속과의 합금일 수 있다.
또, 상기 음극활성층은 상기 음극활물질과 함께 선택적으로 바인더를 더 포함할 수 있다.
상기 바인더는 음극활물질의 페이스트화, 활물질간 상호 접착, 활물질과 집전체와의 접착, 활물질 팽창 및 수축에 대한 완충 효과 등의 역할을 한다. 구체적으로 상기 바인더는 폴리비닐알코올, 카르복시메틸셀룰로즈, 히드록시프로필셀룰로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피롤리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드(PVDF), 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등일 수 있으며, 이에 한정되는 것은 아니다. 상기 바인더는 음극활성층 총 중량에 대하여 20중량% 이하, 혹은 5 내지 15중량%로 포함되는 것이 바람직할 수 있다.
한편, 상기 리튬이차전지용 음극에 있어서, 상기한 음극활성층 위에는 고분자 매트릭스 및 상기 고분자 매트릭스 내 포함된 전해질을 포함하는 보호층이 위치한다.
구체적으로, 상기 고분자 매트릭스는 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함한다.
보다 구체적으로, 상기 고분자 매트릭스가 고분자의 3차원 가교 네트워크 구조를 갖는 경우, 상기 3차원 가교 네트워크 구조는 고분자간 가지사슬에 의한 화학적 가교결합, 반응성 다중관능기를 갖는 1 이상의 단량체 사이의 커플링, 블록공중합체의 상분리에 의해 형성되는 클러스터 도메인(cluster domain)의 물리적 가교결합 및 이오노머의 이온성 가교 결합으로 이루어진 군에서 선택되는 가교결합에 의해 형성될 수 있다.
상기 고분자간 가지 사슬에 의한 화학적 가교결합의 구체적인 예로는 폴리디메틸실록산(PDMS) 또는 그 유도체와 같이 가교제의 역할을 하는 가지 사슬에 의해 주 사슬이 가교되어 가교결합 구조체를 형성한 것을 들 수 있다.
또, 상기 반응성 다중관능기를 갖는 1 이상의 단량체 사이의 커플링에 의한 3차원 가교 네트워크 구조 형성의 구체적인 예로는, 하기 화학식 1의 구조를 갖는 단일 단량체의 유무기 졸겔 반응에 의한 폴리실세스퀴옥산(polysilsesquioxane)의 형성을 들 수 있다.
[화학식 1]
Figure PCTKR2015013882-appb-I000001
(상기 화학식 1에서 R1은 직쇄, 분지 또는 환형의 2가의 탄화수소기(예를 들면, 알킬렌기, 벤젠기 등)로서, 올리고에틸렌글리콜(oligoethylene glycol) 등과 같은 리튬 이온 전도성의 모이어티(moiety)를 포함할 수 있다)
이때, 서로 반응하는 상기 화학식 1의 구조를 갖는 단량체들은 각각 서로 다른 R1 모이어티를 포함할 수도 있다. 예를 들어, R1이 리튬 이온을 잘 전달해 주는 모이어티인 상기 화학식 1의 구조를 갖는 단량체와 R1이 기계적 강성을 우수하게 해 주는 모이어티인 상기 화학식 1의 구조를 갖는 단량체가 서로 커플링되어 3차원 가교 네트워크 구조를 형성할 수 있다.
또, 2 이상의 단량체의 커플링에 의한 3차원 가교 네트워크 구조 형성의 구체적인 예로는 하기 반응식 1에서와 같이 화학식 2의 단량체와 화학식 3a 내지 3c의 화합물과의 커플링에 의한 3차원 공유결합성 유기 골격프레임(covalent organic framework)의 형성을 들 수 있다.
[반응식 1]
Figure PCTKR2015013882-appb-I000002
상기 화학식 2 및 3a~3c에서, R 및 R'은 각각 독립적으로 직쇄, 분지 또는 환형의 탄화수소기로서, 올리고에틸렌글리콜(oligoethylene glycol) 등과 같은 리튬 이온 전도성의 모이어티를 더 포함할 수 있으며, X 및 Y는 서로 반응하여 가교결합을 형성할 수 있는 작용기로서, X는 아미노기 또는 히드록시기이고, Y는 이소시아네이트기, 카르복실산기, 또는 알데히드기일 수 있다. X와 Y는 전자를 주고 받음에 따라 반응을 하게 되는데, 이때 R 또는 R'의 전기음성도에 따라 원활한 반응을 위하여 Y가 아미노기 또는 히드록시기이고, X가 이소시아네이트기, 카르복실산기, 또는 알데히드기일 수도 있다.
다만, 반응식 1에서 상기 화학식 2 및 3a~3c이 각각 X 또는 Y를 포함하는 것으로 예시하였으나, 본 발명이 이에 한정되는 것은 아니고 상기 화학식 2 및 3a~3c이 한 분자 내에 X 및 Y를 동시에 포함하고 있는 경우도 가능하다.
또, 상기 블록공중합체의 상분리에 의해 형성되는 클러스터 도메인(cluster domain)의 물리적 가교결합의 구체적인 예로는, 하기 반응식 2에서와 같은 블록공중합체의 물리적 가교결합을 들 수 있다. 하기 반응식 2는 블록공중합체의 물리적 가교결합을 모식적으로 나타낸 것으로, 본 발명을 설명하기 위한 일 예일뿐 본 발명이 이에 한정되는 것은 아니다.
[반응식 2]
Figure PCTKR2015013882-appb-I000003
또, 상기 블록공중합체는 분자내 이온전도가 가능한 블록을 포함함으로써 저항을 최소화할 수도 있다.
그리고 상기 이오노머의 이온성 가교 결합의 구체적인 예로는 하기 구조식 (I)에서와 같이 폴리술폰산의 프로톤이 리튬으로 치환된 이오노머의 이온성 가교 결합을 들 수 있다.
Figure PCTKR2015013882-appb-I000004
(I)
상기 이오노머는 리튬으로 자기-도핑(self-doping)된 음이온 고분자 전해질(anionic polymer electrolyte)일 수 있고, 구체적으로 술폰산기(SO3H), 인산기(PO4H2), 탄산기(CO3H) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함하는 고분자로서 이들 중 일부 또는 전부가 리튬으로 자기-도핑된 것일 수 있고, 보다 구체적으로 폴리스티렌 술폰산과 같이 고분자 측쇄 말단이 술폰산기로 치환되어 있는 고분자 중에서 SO3H가 SO3Li로 치환된 고분자일 수 있다.
상기와 같은 이오노머의 이온성 가교 결합체는 단일 리튬 이온 전도성 고분자로 구성된 것으로서 음이온의 이동은 저해하고 리튬 이온만을 이동하게 하여 이온 간 농도 구배를 최소화하고, 그 결과로 덴드라이트의 형성을 억제할 수 있다.
상기와 같은 3차원 가교 네트워크 구조는 고분자 사슬의 가교결합에 의해 형성됨에 따라, 구조내 기공이 형성될 수 있다. 이에 따라 상기 고분자 매트릭스는 다공성의 고분자 매트릭스일 수 있으며, 이때 상기 전해질은 다공성 고분자 매트릭스의 기공 내에 포함될 수 있다.
구체적으로, 상기 고분자 매트릭스는 고분자 매트릭스 총 부피에 대하여 5 내지 80부피%의 기공도를 갖는 것이 바람직할 수 있다. 기공도가 5부피% 미만이면 기공에 함침되어 포함되는 전해액의 함량이 낮아 고분자 매트릭스 형성에 따른 개선효과가 미미하고, 기공도가 80부피%를 초과하면 고분자 매트릭스 자체의 기계적 물성이 저하될 우려가 있다. 그러나, 3차원 네트워크 구조의 경우 기공도가 80부피%를 초과하더라도 삽입되는 유기 모이어티를 적절히 조절함으로써, 그리고 2개 이상의 단량체를 사용하는 경우에는 각 단량체의 함량비를 조절함으로써 기계적 물성의 저하를 방지할 수 있다.
또, 상기 다공성 고분자 매트릭스는, 고분자 매트릭스를 형성하는 고분자의 가교도에 따라 고분자가 전해질을 흡수하여 팽윤될 수도 있다. 이에 따라 상기 전해질이 고분자 내에 포함될 수도 있다.
한편, 상기 고분자 매트릭스가 비가교 선형 고분자를 포함하는 경우, 상기 전해질은 비가교 선형 고분자내에 흡수되어 포함되거나, 또는 서로 얽혀진 비가교 선형 고분자들 사이에 담지되어 포함될 수도 있다.
상기 비가교 선형 고분자가 전해질을 흡수하는 경우, 상기 비가교 선형 고분자는 투입되는 전해질이 고분자내로 흡수됨에 따라 팽창하는 동시에, 흡수된 전해질로 인해 전해질 이온 전도성을 나타낼 수도 있다. 이에 따라 비가교 선형 고분자 내로 흡수되는 전해질의 양이 많을수록 증가된 이온전도성을 나타낼 수 있다. 그러나, 전해질 흡수량이 지나치게 높을 경우 고분자 매트릭스의 기계적 물성이 저하될 수 있다. 따라서, 상기 비가교 선형 고분자는 하기 수학식 1에 따라 구한 전해질에 대한 팽윤율이 300 내지 700중량%, 혹은 400 내지 500중량%인 것이 바람직할 수 있다.
[수학식 1]
Figure PCTKR2015013882-appb-I000005
상기 식에서, P1은 두께 100㎛로 조정한 고분자화합물의 시험편을 건조한 후의 중량이고, P2는 사용하는 전해액에 25℃에서 10시간 함침한 후의 중량이다.
상기한 범위의 팽윤율을 갖는 비가교 선형 고분자는 높은 전해액 흡수율(degree of swelling)을 가져, 음극과 전해액의 접촉시, 전해액을 구성하는 이온의 자유로운 투과가 가능하고, 이 같은 전해질 이온의 전도성 증가로 전지 성능을 향상시킬 수 있다.
상기 비가교 선형고분자는 구체적으로, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리아크릴로니트릴, 폴리비닐리덴풀루오라이드-헥사풀루오로프로필렌, 폴리비닐리덴풀루오라이드-트리클로로에틸렌, 폴리메틸메타크릴레이트, 폴리스티렌-아크릴로니트릴 공중합체, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리비닐아세테이트, 또는 폴리에틸렌비닐아세테이트 공중합체 등 일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용가능하다. 다만, 본 발명에 따른 음극은 음극활물질로서 리튬 금속 또는 리튬 합금과 같은 리튬계 화합물을 포함하기 때문에, 리튬과의 계면 접합성을 고려하여 상기한 보호층 형성용 비가교 선형 고분자 중에서 적절히 선택하는 것이 바람직하다,
또, 상기 비가교 선형고분자가 중량평균분자량 1,000,000g/mol 이상의 호모폴리머(homopolymer)인 경우, 서로 얽힌 상태로 고분자 매트릭스내에 포함되고, 이같이 얽혀진 구조로 인해 전해질을 담지할 수도 있다.
한편, 상기와 같은 고분자 매트릭스에 포함되는 전해질은, 유기용매 및 리튬염을 포함할 수 있다.
상기 유기용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용할 수 있다. 구체적으로 상기 유기용매로는 에스테르 용매, 에테르 용매, 케톤 용매, 방향족 탄화수소 용매, 알콕시알칸 용매, 카보네이트 용매 등을 사용할 수 있으며, 이들 중 1종 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
상기 에스테르 용매의 구체적인 예로는 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), n-프로필 아세테이트(n-propyl acetate), 디메틸아세테이트(dimethyl acetate), 메틸프로피오네이트(methyl propionate), 에틸프로피오네이트(ethyl propionate), γ-부티로락톤(γ-butyrolactone), 데카놀라이드(decanolide), γ-발레로락톤(γ-valerolactone), 메발로노락톤(mevalonolactone), γ-카프로락톤(γ-caprolactone), δ-발레로락톤(δ-valerolactone), 또는 ε-카프로락톤(ε-caprolactone) 등을 들 수 있다.
상기 에테르계 용매의 구체적인 예로는 디부틸 에테르(dibutyl ether), 테트라글라임(tetraglyme), 2-메틸테트라히드로퓨란(2-methyltetrahydrofuran), 또는 테트라히드로퓨란(tetrahydrofuran) 등을 들 수 있다.
상기 케톤계 용매의 구체적인 예로는 시클로헥사논(cyclohexanone) 등을 들 수 있다. 상기 방향족 탄화수소계 유기용매의 구체적인 예로는 벤젠(benzene), 플루오로벤젠(fluorobenzene), 클로로벤젠(chlorobenzene), 아이오도벤젠(iodobenzene), 톨루엔(toluene), 플루오로톨루엔(fluorotoluene), 또는 자일렌(xylene) 등을 들 수 있다. 상기 알콕시알칸 용매로는 디메톡시에탄(dimethoxy ethane) 또는 디에톡시에탄(diethoxy ethane) 등을 들 수 있다.
상기 카보네이트 용매의 구체적인 예로는 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 디프로필카보네이트(dipropylcarbonate, DPC), 메틸프로필카보네이트(methylpropylcarbonate, MPC), 에틸프로필카보네이트(ethylpropylcarbonate, EPC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC), 부틸렌카보네이트(butylenes carbonate, BC), 또는 플루오로에틸렌카보네이트(fluoroethylene carbonate, FEC) 등을 들 수 있다.
상기 리튬염은 리튬 이차 전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용할 수 있다. 구체적으로 상기 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiN(CaF2a + 1SO2)(CbF2b + 1SO2)(단, a 및 b는 자연수, 바람직하게는 1≤a≤20이고, 1≤b≤20임), LiCl, LiI, LiB(C2O4)2 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 바람직하게 리튬 헥사플루오로포스페이트(LiPF6)을 사용하는 것이 좋다.
상기 리튬염을 전해질에 용해시키면, 상기 리튬염은 리튬 이차 전지 내에서 리튬 이온의 공급원으로 기능하고, 양극과 음극 간의 리튬 이온의 이동을 촉진할 수 있다. 이에 따라, 상기 리튬염은 상기 전해질 내에 대략 0.6mol% 내지 2mol%의 농도로 포함되는 것이 바람직하다. 상기 리튬염의 농도가 0.6mol% 미만인 경우 전해질의 전도도가 낮아져 전해질 성능이 떨어질 수 있고, 2mol%를 초과하는 경우 전해질의 점도가 증가하여 리튬 이온의 이동성이 낮아질 수 있다. 이와 같은 전해질의 전도도 및 리튬 이온의 이동성을 고려하면, 상기 리튬염은 상기 전해질 내에서 대략 0.7mol% 내지 1.6mol%로 조절되는 것이 보다 바람직할 수 있다.
상기 전해질은 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해질에 사용될 수 있는 첨가제(이하, '기타 첨가제'라 함)를 더 포함할 수 있다.
상기 기타 첨가제의 구체적인 예로는 비닐렌카보네이트(vinylenecarbonate, VC), 메탈플루오라이드(metal fluoride, 예를 들면, LiF, RbF, TiF, AgF, AgF₂, BaF2, CaF2, CdF2, FeF2, HgF2, Hg2F2, MnF2, NiF2, PbF2, SnF2, SrF2, XeF2, ZnF2, AlF3, BF3, BiF3, CeF3, CrF3, DyF3, EuF3, GaF3, GdF3, FeF3, HoF3, InF3, LaF3, LuF3, MnF3, NdF3, PrF3, SbF3, ScF3, SmF3, TbF3, TiF3, TmF3, YF3, YbF3, TIF3, CeF4, GeF4, HfF4, SiF4, SnF4, TiF4, VF4, ZrF44, NbF5, SbF5, TaF5, BiF5, MoF6, ReF6, SF6, WF6, CoF2, CoF3, CrF2, CsF, ErF3, PF3, PbF3, PbF4, ThF4, TaF5, SeF6 ), 글루타노나이트릴(glutaronitrile, GN), 숙시노나이트릴(succinonitrile, SN), 아디포나이트릴(adiponitrile, AN), 3,3'-티오디프로피오나이트릴(3,3'-thiodipropionitrile, TPN), 비닐에틸렌카보네이트(vinylethylene carbonate, VEC), 플루오로에틸렌카보네이트(fluoroethylene carbonate, FEC), 디플루오로에틸렌카보네이트(difluoroethylenecarbonate), 플루오로디메틸카보네이트(fluorodimethylcarbonate), 플루오로에틸메틸카보네이트(fluoroethylmethylcarbonate), 리튬비스(옥살레이토)보레이트(Lithium bis(oxalato)borate, LiBOB), 리튬 디플루오로(옥살레이토) 보레이트(Lithium difluoro (oxalate) borate, LiDFOB), 리튬(말로네이토 옥살레이토)보레이트(Lithium (malonato oxalato) borate, LiMOB) 등을 들 수 있으며, 이들 중 1종 단독으로 또는 2종 이상을 혼합하여 포함할 수 있다. 상기 기타 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
또, 상기 전해질은 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함되는 것이 바람직할 수 있다. 상기한 중량비로 포함될 때 보다 높은 충방전 효율을 얻을 수 있다. 전해질의 함량이 100중량부 미만이면 보호층내 이온 전도도가 낮아 전지 특성 저하의 우려가 있고, 1000중량부를 초과하면 지나치게 많은 양의 전해질이 음극쪽으로 몰려 양극까지의 전해질 분포도가 고르지 못하고, 그 결과 성능이 저하될 우려가 있다. 또, 전해질의 함량이 100 중량부이더라도, 유무기 졸겔 반응법에 의한 경우나, 2개 이상의 단량체를 사용하는 경우 삽입하는 유기 블록이 이온 전도성을 갖도록 함으로써 이온 전도도의 저하에 따른 문제를 방지할 수도 있다.
상기와 같은 보호층은 1nm 내지 10㎛의 두께를 갖는 것이 바람직할 수 있다. 보호층의 두께가 1nm 미만이면 과충전 또는 고온 저장 등의 조건에서 증가되는 전극활물질과 전해액의 부반응 및 발열반응을 효과적으로 억제하지 못하여 안전성 향상을 이룰 수 없고, 또 10㎛를 초과할 경우 보호층내 고분자 매트릭스가 전해액에 의해 함침 또는 팽윤되는데 장시간이 요구되고, 리튬 이온의 이동이 저하되어 전체적인 전지 성능 저하의 우려가 있다. 보호층의 형성에 따른 개선효과의 현저함을 고려할 때 상기 보호층은 10nm 내지 1㎛의 두께로 형성되는 것이 보다 바람직할 수 있다.
또, 상기 음극은 상기한 음극활성층의 지지를 위한 집전체를 더 포함할 수도 있다.
구체적으로 상기 집전체는 구리, 알루미늄, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 금속일 수 있고, 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금을 바람직하게 사용할 수 있고, 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등을 사용할 수도 있다.
상기와 같은 구조를 갖는 음극은, 리튬을 포함하는 음극활성층의 제조 단계; 상기 음극활성층 위에 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스를 형성하는 단계; 그리고 상기 고분자 매트릭스에 대해 전해질을 함침하거나, 도포 또는 분무하여 고분자 매트릭스 내에 전해질을 포함시켜 보호층을 형성하는 단계를 포함하는 제조방법에 의해 제조될 수 있다.
이하 각 단계별로 상세히 설명하면, 단계 1은 음극활성층의 형성 단계로서, 음극활물질, 그리고 선택적으로 바인더 및 도전제를 혼합하여 제조한 음극활성층 형성용 조성물을 음극 집전체에 도포 후 건조하여 음극활물질층을 형성하거나, 또는 별도의 공정없이 리튬 금속의 박막 그 자체로 음극활성층으로 사용할 수도 있다.
상기 음극활성층 형성용 조성물은 음극활물질, 그리고 선택적으로 바인더 및 도전제를 용매 중에 분산시켜 제조될 수 있으며, 이때 사용가능한 음극활물질, 바인더 및 도전제의 종류와 함량은 앞서 설명한 바와 동일하다.
상기 용매의 바람직한 예로는 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 알코올, N-메틸피롤리돈(NMP), 아세톤 또는 물 등을 들 수 있다.
상기 제조된 음극 활물질층 형성용 조성물을 집전체 도포하는 방법으로는 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 상기 음극 활물질층 형성용 조성물을 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시키는 것이 바람직하다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 다이캐스팅(die casting), 콤마코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 사용할 수도 있다. 이때 상기 집전체는 앞서 설명한 바와 동일하다.
이후 집전체 위에 형성된 음극활성층에 대해 건조 공정이 실시될 수 있으며, 이때 건조 공정은 80 내지 120℃의 온도에서의 가열처리 또는 열풍건조 등의 방법에 의해 실시될 수 있다.
또, 상기 건조 후 제조된 음극합제가 적절한 합제밀도를 갖도록 압연 등의 공정이 선택적으로 더 실시될 수도 있다. 압연 방법은 통상의 전극 제조에서의 압연 방법에 따라 실시될 수 있으므로, 구체적인 설명은 생략한다.
다음으로, 단계 2는 상기에서 제조한 음극 활성층 위에 고분자 매트릭스를 형성하는 단계이다.
구체적으로, 상기 고분자 매트릭스는 고분자간 가지 사슬에 의한 화학적 가교결합, 반응성 다중관능기를 갖는 1 이상의 단량체 사이의 커플링, 블록공중합체의 상분리에 의해 형성되는 클러스터 도메인(cluster domain)의 물리적 가교결합 또는 이오노머의 이온성 가교 결합에 의해 형성되거나, 또는 비가교 선형 고분자에 의해 형성될 수 있다.
이에 따라, 고분자 매트릭스 형성용 화합물로서 물리적 또는 화학적 가교결합을 통해 3차원 네트워크 구조를 형성하는 고분자 또는 그 단량체; 또는 비가교 비선형 고분자를 용매 중에 용해 또는 분산시켜 제조한 고분자 매트릭스 형성용 조성물을 음극활성층 위에 도포 또는 분무하거나, 또는 음극활성층을 상기 고분자 매트릭스 형성용 조성물에 침지한 후, 건조함으로써 제조될 수 있다.
상기 비가교 선형 고분자 및 상기 물리적, 화학적 가교결합을 통해 3차원 네트워크 구조를 형성하는 고분자의 구체적인 종류 및 함량은 앞서 설명한 바와 동일하다.
또, 상기 용매는 사용되는 고분자의 종류에 따라 달라질 수 있으며, 구체적으로는 용해도 지수가 상기 고분자들과 유사하여 균일 혼합이 용이하고, 또 이후 용이한 용매 제거를 위해 끓는점(boiling point)이 가능한 낮은 것이 바람직할 수 있다. 그 구체적인 예로서는 아세톤 (acetone), 테트라하이드로퓨란 (tetrahydrofuran), 메틸렌클로라이드(methylene chloride), 클로로포름 (chloroform), 디메틸포름아미드 (dimethylformamide), N-메틸-2-피롤리돈 (Nmethyl-2-pyrrolidone, NMP), 시클로헥산 (cyclohexane), 물 및 이들의 혼합체 등이 있으나, 이들에만 한정되는 것은 아니다.
구체적으로, 상기 고분자 매트릭스가 유무기 졸겔 반응에 의한 폴리실세스퀴옥산을 포함하는 경우, 산 처리하거나, 또는 열처리를 통해 가교를 실시할 수도 있다. 또, 상기 산 처리의 경우 음극활성층내 리튬과의 접촉을 방지하기 위해 미리 다른 기판위에서 고분자 매트릭스를 제조한 후 리튬을 포함하는 음극활성층위로 고분자 매트릭스를 전사시킴으로써 제조할 수도 있다.
또, 상기 고분자 매트릭스가 반응성 다중관능기를 갖는 2 이상의 단량체 사이의 커플링에 의한 3차원 공유결합성 유기 골격프레임을 포함하는 경우, 상기 단량체내 반응성 다중관능기로는 마일드(mild)한 조건에서도 가교반응이 용이한 관능기를 갖는 단량체를 사용하는 것이 바람직할 수 있다.
또, 상기 고분자 매트릭스 형성용 조성물은 고분자 매트릭스의 기계적 강도 향상을 위해 무기 충진제를 더 포함할 수도 있다. 상기 무기 충진제는 구체적으로 실리카, 알루미나 등일 수 있으며, 고분자 매트릭스 형성용 조성물 총 중량에 대하여 0.1 내지 10중량%로 포함되는 것이 바람직할 수 있다.
한편, 상기 고분자 매트릭스 형성용 조성물을 음극활성층 상에 코팅하는 방법은 당업계에 알려진 통상의 방법을 사용할 수 있으며, 예를 들면 딥(Dip) 코팅, 다이(Die) 코팅, 롤(roll) 코팅, 콤마(comma) 코팅 또는 이들의 혼합 방식 등 다양한 방식을 이용할 수 있다.
이후 건조 공정은 150 내지 250℃에서, 진공 하에 12 내지 24시간 실시되는 것이 바람직할 수 있다. 특히, 리튬 박막 위에 코팅한 후 건조할 경우에는 리튬의 녹는점(약 180℃) 이하에서 실시하는 것이 더욱 바람직하다.
통상, 리튬 금속과 같은 음극활물질은 높은 충방전 용량을 나타내는 반면 가역성 및 안정성이 낮다. 또, 리튬이차전지의 충방전 동안에 전극의 부피 변화로 인해 전해액의 손실 또는 고갈이 발생되어 지속적인 전지 구동이 어렵다.
이에 대해 상기와 같은 제조방법에 의해 제조된 음극은 음극활성층 위에 고분자 매트릭스 및 전해액을 포함하는 보호층을 포함함으로써, 충전 또는 고온 저장 등의 극한 조건에서 발생되는 전극활물질과 전해액의 부반응성이 현저히 저하되고, 그 결과로 전극과 전해액의 부반응에 의한 발열량이 감소하고 전극 표면에서의 덴드라이트(dendrite) 형성이 억제되어 전지의 안전성이 크게 향상될 수 있다. 또한, 상기 보호층은 고분자 매트릭스를 포함함으로써 연신 및 굽힘 특성 등의 우수한 기계적 물성을 나타낼 수 있다. 따라서, 충방전이 지속되더라도 전지 내부에서 손상되지 않고 안정적으로 존재할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 제조방법에 따라 제조된 음극을 포함하는 리튬이차전지가 제공된다.
구체적으로, 상기 리튬이차전지는 서로 대향 배치되는 양극 활물질을 포함하는 양극과 음극 활물질을 포함하는 음극, 그리고 상기 양극과 음극 사이에 개재되는 전해액을 포함하며, 상기 음극은 상기한 바와 동일하다.
상기 리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다.
도 1은 본 발명의 다른 일 실시예에 따른 리튬 이차 전지(1)의 분해 사시도이다. 도 1은 본 발명을 설명하기 위한 일 예일 뿐 본 발명이 이에 한정되는 것은 아니다.
상기 도 1을 참조하면, 상기 리튬 이차 전지(1)는 음극(3), 양극(5), 상기 음극(3) 및 양극(5) 사이에 세퍼레이터(7)를 배치하여 전극 조립체(9)를 제조하고, 이를 케이스(15)에 위치시키고 전해질(도시하지 않음)을 주입하여 상기 음극(3), 상기 양극(5) 및 상기 세퍼레이터(7)가 전해질에 함침되도록 함으로써 제조할 수 있다.
상기 음극(3) 및 양극(5)에는 전지 작용시 발생하는 전류를 집전하기 위한 도전성 리드 부재(10, 13)가 각기 부착될 수 있고, 상기 리드 부재(10, 13)는 각각 양극(5) 및 음극(3)에서 발생한 전류를 양극 단자 및 음극 단자로 유도할 수 있다.
상기 양극(5)은 양극 활물질, 도전제 및 바인더를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 상기 양극 활물질 층 형성용 조성물을 알루미늄 포일 등의 양극 전류 집전체에 도포한 후 압연하여 제조할 수 있다. 상기 양극 활물질 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 금속 집전체상에 라미네이션하여 양극판을 제조하는 것도 가능하다.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다. 구체적으로는 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1 - yMnyO2, LiNi1 - yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2 - zNizO4, LiMn2 - zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있다. 또한, 이러한 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용할 수 있다.
상기 도전제 및 바인더는 앞서 음극에서 설명한 바와 동일하다.
상기 세퍼레이터(7)로는 통상 리튬이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
또, 상기 전해액은 앞서 보호층의 형성에서 설명한 것과 동일한 것일 수 있다.
본 실시예에서는 원통형 리튬 이차 전지(1)를 예로 들어 설명하였으나, 본 발명의 기술이 원통형 리튬 이차 전지(1)로 한정되는 것은 아니며, 전지로서 작동할 수 있으면 어떠한 형상으로도 가능할 수 있다.
상기와 같이 본 발명에 따른 음극 활물질을 포함하는 리튬 이차 전지는 우수한 방전용량, 사이클 수명 특성 및 율특성을 안정적으로 나타내기 때문에, 빠른 충전 속도가 요구되는 휴대전화, 노트북 컴퓨터, 디지털 카메라, 캠코더 등의 휴대용 기기나, 하이브리드 전기자동차(hybrid electric vehicle, HEV), 플러그인 하이브리드 전기자동차(plug-in HEV, PHEV) 등의 전기 자동차 분야, 그리고 중대형 에너지 저장 시스템에 유용하다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[ 제조예 1: 음극의 제조]
( 실시예 1)
Dow Corning社에서 구매한 Sylgard 184 단량체와 경화제를 10:1 내지 10:5의 중량비로 섞었다. 두께를 1 내지 10um 수준으로 제어하기 위해 농도를 낮추는 수단으로 헥산을 첨가하여 희석시켰다. 제조된 용액을 리튬 금속 박막 위에 도포한 후, 50 내지는 100℃에서 1시간 내지는 12시간 정도 열경화하였다. 이때, 온도가 높을수록 경화시간을 단축시킬 수 있다.
( 실시예 2)
하기 화학식 1의 구조를 갖는 단일 단량체를 졸겔 반응시켜 폴리실세스퀴옥산(polysilsesquioxane)을 형성하였다.
[화학식 1]
Figure PCTKR2015013882-appb-I000006
(상기 화학식 1에서, R1은 올리고에틸렌글리콜이다)
상기 제조된 폴리실세스퀴옥산 10중량%를 THF 중에 용해시켜 제조한 고분자 매트릭스 형성용 조성물을, 음극 활성층으로서 리튬 금속의 박막 위에 도포 한 후 100℃에서 경화하여 고분자 매트릭스를 형성하였다.
이때, 용매를 알코올로 달리하거나, 용액에 산 또는 염기를 첨가함으로써 경화 시간 및 경화도를 단축시킬 수 있는데 이 경우, 리튬의 반응성을 고려하여 테플론 시트나 PET 시트와 같은 타 기재 위에서 경화시킨 후, 리튬 박막 위에 전사할 수도 있다.
( 실시예 3)
음극활성층으로서 리튬 금속의 박막 위에, 상기 반응식 1에서와 같이 화학식 2의 단량체와 화학식 3a의 화합물과의 커플링에 의한 3차원 공유결합성 유기 골격프레임(covalent organic framework)을 형성하였다.
상기 반응식 1의 화학식 2 및 3a에서, R 및 R'은 올리고에틸렌글리콜이고, X 및 Y는 X는 아미노기이고, Y는 이소시아네이트기이었다. 상온, 질소 분위기 하에서 화학식 2 및 화학식 3a를 1:1의 당량비로 무수 DMF에 용해시켰다(농도 0.04 g/mL). 교반을 시키면 보통 3일 내지 4일 이전에는 졸(sol) 상태로 존재하고 이후에는 겔화(gelation)가 되는데, 졸 상태에서 박막 위에 도포한 후, 용매를 건조시켜 3차원 다공성 막을 제조하였다.
( 실시예 4)
고분자 측쇄 말단의 술폰산기(SO3H)가 SO3Li로 치환된 폴리스티렌 술폰산 10중량%를 THF 중에 용해시켜 제조한 고분자 매트릭스 형성용 조성물을, 음극활성층으로서 리튬 금속의 박막 위에 도포 한 후 60℃에서 건조하여 고분자 매트릭스를 형성하였다.
( 비교예 1)
음극활성층으로 리튬 금속 박막을 이용하였다.
[ 제조예 2: 리튬이차전지의 제조]
상기 실시예 및 비교예에서 제조한 전극을 이용하여 리튬 완전 대칭 셀을 제작하였다. 두 리튬 전극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때, 상기 전해액은 상기 전극에 형성된 고분자 매트릭스에도 함침된다.
상기 전해액은 에틸렌카보네이트/디메틸카보네이트(EC/EMC의 혼합 부피비=1/1)로 이루어진 유기용매에 1M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
상기 제조된 전극의 모식도를 도 2 및 도 3에 나타내었다. 도 2는 실시예에 따른 전극의 모식도를 나타내고, 도 3은 비교예에 따른 전극의 모식도를 나타낸다. 상기 도 2 및 도 3을 참고하면, 상기 실시예에 따른 전극은 집전체(111) 위에 놓여진 리튬 금속 박막(112) 위에 고분자 매트릭스(113)가 형성되고, 상기 고분자 매트릭스(113) 내에 전해액이 축적된다.
[ 실험예 1: 리튬 이차 전지의 사이클 수명특성 측정]
상기 실시예 및 비교예에서 제조한 리튬 이차 전지에 대해 사이클 수명을 측정하였고, 그 결과를 하기 도 4에 나타내었다.
또한, 상기 측정된 사이클 수명에서 방전 용량이 급격히 저하되는 시점 및 전해액 uptake를 측정하였고, 그 결과를 하기 표 1에 나타내었다.
전해액 uptake(wt.%)1 ) 방전 용량이 급격히 저하되는 시점
비교예 1 0 30 사이클 후
실시예 1 400~1100 45 사이클 후
실시예 2 500~900 40 사이클 후
실시예 3 40~100 42 사이클 후
1) 전해액 uptake(wt.%): 직경이 19mm인 크기의 각 고분자 매트릭스의 전해액 함침 전, 후 질량을 측정하여 증가분을 백분율로 계산하였다.
상기 도 4 및 표 1을 참고하면, 전해액을 축적하고 있는 고분자 매트릭스를 포함하지 않는 전극을 적용한 비교예의 경우, 사이클 진행이 종료된 후 셀을 분해해 보면 전해액이 완전 소모되어 있음을 확인할 수 있으나, 전해액을 축적하고 있는 고분자 매트릭스를 포함하는 전극을 적용한 실시예의 경우, 사이클 진행이 종료된 후 셀을 분해해 보면 전해액이 잔재하고 있음을 확인할 수 있다.
이에 따라, 비교예 1에 비하여 각 실시예에서 제조된 음극이 고분자 매트릭스 유무에 따라 기공도, 전해액 uptake 및 사이클 수명이 개선되는 것도 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
1: 리튬 이차 전지
3: 음극
5: 양극
7: 세퍼레이터
9: 전극 조립체
10, 13: 리드 부재
15: 케이스
111: 집전체
112: 리튬 금속 박막
113: 고분자 매트릭스
본 발명은 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 상기 음극은 전지의 반복적인 충,방전 동안에도 전해액의 손실 및 그에 따른 전지 수명특성 저하의 우려가 없고, 또 리튬의 덴트라이트 성장이 억제되어 전지 안전성을 향상시킬 수 있다.

Claims (14)

  1. 리튬 금속 또는 리튬 금속의 합금을 포함하는 음극활성층, 및
    상기 음극활성층 위에 위치하는 보호층을 포함하고,
    상기 보호층은 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스; 그리고 상기 고분자 매트릭스 내에, 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함된 전해질을 포함하는 것인 리튬이차전지용 음극.
  2. 제1항에 있어서,
    상기 보호층이 고분자의 3차원 가교 네트워크 구조를 갖는 다공성 고분자 매트릭스를 포함하고, 상기 전해질이 상기 다공성 고분자 매트릭스의 기공 내에 포함된 것인 리튬이차전지용 음극.
  3. 제2항에 있어서,
    상기 다공성 고분자 매트릭스가 5 내지 80부피%의 기공도를 갖는 것인 리튬이차전지용 음극.
  4. 제1항에 있어서,
    상기 3차원 가교 네트워크 구조가 고분자간 가지 사슬에 의한 화학적 가교결합, 반응성 다중관능기를 갖는 1 이상의 단량체 사이의 커플링, 블록공중합체의 상분리에 의해 형성되는 클러스터 도메인(cluster domain)의 물리적 가교결합 및 이오노머의 이온성 가교 결합으로 이루어진 군에서 선택되는 가교결합에 의해 형성된 것인 리튬이차전지용 음극.
  5. 제1항에 있어서,
    상기 고분자 매트릭스가 폴리디메틸실록산 또는 그 유도체의 가교 고분자를 포함하는 것인 리튬이차전지용 음극.
  6. 제1항에 있어서,
    상기 고분자 매트릭스가 폴리실세스퀴옥산을 포함하는 것인 리튬이차전지용 음극.
  7. 제1항에 있어서,
    상기 고분자 매트릭스가 반응성 다중관능기를 갖는 2 이상의 단량체 사이의 커플링에 의한 3차원 공유결합성 유기 골격프레임(covalent organic framework)을 포함하는 것인 리튬이차전지용 음극.
  8. 제1항에 있어서,
    상기 고분자 매트릭스가 술폰산기(SO3H), 인산기(PO4H2), 탄산기(CO3H) 및 이들의 조합으로 이루어지는 군에서 선택되는 어느 하나의 치환기를 포함하며, 상기 치환기 중 일부 또는 전부가 리튬으로 자기-도핑(self-doping)된 음이온 고분자 전해질을 포함하는 것인 리튬이차전지용 음극.
  9. 제1항에 있어서,
    상기 보호층이 중량평균분자량 1,000,000g/mol 이상의 비가교 선형 고분자가 서로 얽힌 구조체를 포함하고, 상기 전해질이 상기 구조체에 담지되어 포함된 것인 리튬이차전지용 음극.
  10. 제1항에 있어서,
    상기 비가교 선형고분자가 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리아크릴로니트릴, 폴리비닐리덴풀루오라이드-헥사풀루오로프로필렌, 폴리비닐리덴풀루오라이드-트리클로로에틸렌, 폴리메틸메타크릴레이트, 폴리스티렌-아크릴로니트릴 공중합체, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리비닐아세테이트, 폴리에틸렌비닐아세테이트 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것인 리튬이차전지용 음극.
  11. 제1항에 있어서,
    상기 보호층이 1nm 내지 10㎛의 두께를 갖는 것인 리튬이차전지용 음극.
  12. 제1항에 있어서,
    상기 전해질이 고분자 매트릭스를 형성하는 고분자 내에 흡수되어 포함되는 것인 리튬이차전지용 음극.
  13. 리튬을 포함하는 음극활성층의 제조 단계;
    상기 음극활성층 위에 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스를 형성하는 단계; 그리고
    상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 전해질을 함침하거나, 도포 또는 분무하여 고분자 매트릭스 내에 전해질을 포함시키는 단계
    를 포함하는 리튬이차전지용 음극의 제조방법.
  14. 서로 대향 배치되는 양극과 음극;
    상기 양극과 음극 사이에 개재되는 세퍼레이터; 및
    비수 전해질을 포함하며,
    상기 음극이 리튬을 포함하는 음극활성층, 및 상기 음극활성층 위에 위치하는 보호층을 포함하고,
    상기 보호층이 고분자의 3차원 가교 네트워크 구조를 포함하거나, 또는 비가교 선형고분자를 포함하는 고분자 매트릭스, 그리고 상기 고분자 매트릭스 내에, 상기 고분자 매트릭스 100중량부에 대하여 100 내지 1000중량부의 함량으로 포함된 전해질을 포함하는 것인 리튬이차전지.
PCT/KR2015/013882 2015-12-17 2015-12-17 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지 WO2017104867A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/562,297 US10633492B2 (en) 2015-12-17 2015-12-17 Lithium secondary battery anode and lithium secondary battery including same
PCT/KR2015/013882 WO2017104867A1 (ko) 2015-12-17 2015-12-17 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN201580079083.0A CN107534128B (zh) 2015-12-17 2015-12-17 锂二次电池用负极及包含其的锂二次电池
EP15910790.3A EP3264500B1 (en) 2015-12-17 2015-12-17 Lithium secondary battery anode and lithium secondary battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/013882 WO2017104867A1 (ko) 2015-12-17 2015-12-17 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2017104867A1 true WO2017104867A1 (ko) 2017-06-22

Family

ID=59056813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013882 WO2017104867A1 (ko) 2015-12-17 2015-12-17 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지

Country Status (4)

Country Link
US (1) US10633492B2 (ko)
EP (1) EP3264500B1 (ko)
CN (1) CN107534128B (ko)
WO (1) WO2017104867A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022403A1 (ko) * 2017-07-26 2019-01-31 주식회사 엘지화학 리튬 전극의 제조방법
US11430977B2 (en) 2017-10-16 2022-08-30 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11870078B2 (en) 2018-10-30 2024-01-09 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11942629B2 (en) 2019-01-11 2024-03-26 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11978852B2 (en) 2018-10-31 2024-05-07 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11757135B2 (en) * 2018-02-23 2023-09-12 Sk On Co., Ltd. Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
KR102094263B1 (ko) * 2018-02-23 2020-03-30 에스케이이노베이션 주식회사 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
US20210167395A1 (en) * 2018-04-12 2021-06-03 The Penn State Research Foundation Porous metal-ion affinity material
CN108878748A (zh) * 2018-06-25 2018-11-23 宁德新能源科技有限公司 电化学装置
WO2020013766A1 (en) * 2018-07-13 2020-01-16 Nanyang Technological University Electrochemically active interlayers for rechargeable batteries
JP7044883B2 (ja) * 2018-07-27 2022-03-30 エルジー エナジー ソリューション リミテッド 電極保護層用高分子及びこれを適用した二次電池
JP7378032B2 (ja) * 2018-07-30 2023-11-13 パナソニックIpマネジメント株式会社 リチウム二次電池
EP3761405A4 (en) * 2018-10-31 2021-05-26 Lg Chem, Ltd. SECONDARY LITHIUM BATTERY
US11735722B2 (en) 2019-04-10 2023-08-22 Global Graphene Group, Inc. Method of producing conducting polymer network-enabled particulates of anode active material particles for lithium-ion batteries
CN111933864B (zh) * 2019-04-25 2022-12-20 聚电材料股份有限公司 能量储存装置
US11881564B2 (en) * 2019-05-06 2024-01-23 Global Graphene Group, Inc. Method of improving the cycle stability of lithium metal secondary batteries
US11658290B2 (en) 2019-05-06 2023-05-23 Global Graphene Group, Inc. Lithium metal secondary battery containing a conducting polymer network-based anode-protecting layer
US11916223B2 (en) 2019-05-09 2024-02-27 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing conducting polymer network-protected cathode material particulates
US11302911B2 (en) 2019-05-13 2022-04-12 Global Graphene Group, Inc. Particulates of polymer electrolyte-protected anode active material particles for lithium-ion batteries
CN110416498B (zh) * 2019-08-08 2022-10-18 湖南科技大学 一种锂金属电池的锂负极表面改性方法、改性锂负极及锂金属电池
CN113629246A (zh) * 2020-05-09 2021-11-09 深圳新宙邦科技股份有限公司 一种金属电极及电池
CN112186134A (zh) * 2020-09-11 2021-01-05 中国航发北京航空材料研究院 一种具有保护层的锂金属电极的制备方法
CN112838194B (zh) * 2021-01-25 2022-08-09 清华大学 一种基于复合负极中三维骨架材料与电解液相互作用优化金属锂负极固液界面层的方法
CN114005980B (zh) * 2021-10-19 2022-11-22 珠海冠宇电池股份有限公司 一种负极材料及含有该负极材料的锂离子电池
CN114242956B (zh) * 2021-11-22 2023-05-23 华南理工大学 一种聚合物负极保护层及其制备方法与应用
CN114906835B (zh) * 2022-05-24 2023-03-21 四川新能源汽车创新中心有限公司 碳材料及其制备方法和锂金属电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990055229A (ko) * 1997-12-27 1999-07-15 전주범 리튬 전지 및 그 제조 방법
KR100359605B1 (ko) 1999-10-13 2002-11-07 사단법인 고등기술연구원 연구조합 리튬이차전지 음극의 조성물, 이를 이용한 리튬이차전지 음극과 리튬이차전지 및 리튬이차전지의 제조방법
KR20050041661A (ko) * 2003-10-31 2005-05-04 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
KR100999168B1 (ko) * 2002-02-26 2010-12-07 소니 주식회사 비수전해질 전지
KR101141056B1 (ko) * 2008-11-20 2012-05-03 주식회사 엘지화학 전지특성이 향상된 리튬 이차전지
KR101393534B1 (ko) * 2011-06-30 2014-05-09 주식회사 엘지화학 신규 구조 전극조립체 및 이를 이용한 이차전지

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961672A (en) 1994-02-16 1999-10-05 Moltech Corporation Stabilized anode for lithium-polymer batteries
US6402795B1 (en) 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
JP3676115B2 (ja) 1999-04-30 2005-07-27 帝人株式会社 電解液担持ポリマー膜及びそれを用いた二次電池
JP5030074B2 (ja) 2000-11-20 2012-09-19 三井化学株式会社 非水電解液およびそれを用いた二次電池
CN1279633C (zh) 2000-12-21 2006-10-11 分子技术股份有限公司 电化学电池用的锂阳极
KR100413800B1 (ko) * 2001-10-17 2004-01-03 삼성에스디아이 주식회사 불소계 코폴리머, 이를 포함한 폴리머 전해질 및 이폴리머 전해질을 채용한 리튬 전지
KR100449765B1 (ko) 2002-10-12 2004-09-22 삼성에스디아이 주식회사 리튬전지용 리튬메탈 애노드
KR100473352B1 (ko) 2002-11-18 2005-03-11 한국화학연구원 리튬 안정성이 향상된 폴리알킬렌 옥시드계 고분자 전해질조성물
KR100497231B1 (ko) 2003-07-08 2005-06-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬 이차 전지
KR100497251B1 (ko) * 2003-08-20 2005-06-23 삼성에스디아이 주식회사 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지
KR100609693B1 (ko) 2004-04-24 2006-08-08 한국전자통신연구원 리튬 단이온 전도 무기 첨가제를 포함하는 리튬이차전지용 복합 고분자 전해질 및 그 제조 방법
US7514180B2 (en) * 2004-03-16 2009-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. Battery with molten salt electrolyte and protected lithium-based negative electrode material
CN100593880C (zh) 2005-04-19 2010-03-10 株式会社Lg化学 功能性电解质添加剂和包括该添加剂的电化学装置
EP2282364B1 (en) 2008-03-31 2014-05-21 Zeon Corporation Porous film and secondary cell electrode
EP2357692B1 (en) 2008-11-20 2014-09-24 Lg Chem, Ltd. Lithium secondary battery having improved characteristics
US8557437B2 (en) 2009-03-25 2013-10-15 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery
JP5359444B2 (ja) 2009-03-25 2013-12-04 Tdk株式会社 リチウムイオン二次電池
PL2706605T3 (pl) * 2011-06-23 2019-09-30 Lg Chem, Ltd. Zespół elektrod mający nowatorską strukturę i jego zastosowanie w baterii akumulatorowej
EP2713432B1 (en) 2011-06-30 2017-08-09 LG Chem, Ltd. Novel polymer electrolyte and lithium secondary battery including same
JP2014025157A (ja) * 2012-07-25 2014-02-06 Kri Inc ポリシルセスキオキサン系不織布及びその製造方法、電池用セパレータ並びにリチウム二次電池
CA2922834C (en) * 2013-09-02 2018-11-20 Kotaro Kobayashi A protective film, and a separator and a secondary battery using the same
KR20150103938A (ko) * 2014-03-04 2015-09-14 현대자동차주식회사 리튬황 배터리 분리막
KR102249888B1 (ko) * 2014-11-07 2021-05-07 삼성에스디아이 주식회사 리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990055229A (ko) * 1997-12-27 1999-07-15 전주범 리튬 전지 및 그 제조 방법
KR100359605B1 (ko) 1999-10-13 2002-11-07 사단법인 고등기술연구원 연구조합 리튬이차전지 음극의 조성물, 이를 이용한 리튬이차전지 음극과 리튬이차전지 및 리튬이차전지의 제조방법
KR100999168B1 (ko) * 2002-02-26 2010-12-07 소니 주식회사 비수전해질 전지
KR20050041661A (ko) * 2003-10-31 2005-05-04 삼성에스디아이 주식회사 리튬 금속 전지용 음극 및 이를 포함하는 리튬 금속 전지
US20050095504A1 (en) * 2003-10-31 2005-05-05 Hee-Tak Kim Negative electrode for lithium metal battery and lithium metal battery comprising the same
KR101141056B1 (ko) * 2008-11-20 2012-05-03 주식회사 엘지화학 전지특성이 향상된 리튬 이차전지
KR101393534B1 (ko) * 2011-06-30 2014-05-09 주식회사 엘지화학 신규 구조 전극조립체 및 이를 이용한 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3264500A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022403A1 (ko) * 2017-07-26 2019-01-31 주식회사 엘지화학 리튬 전극의 제조방법
US11444273B2 (en) 2017-07-26 2022-09-13 Lg Energy Solution, Ltd. Method for manufacturing lithium electrode
US11430977B2 (en) 2017-10-16 2022-08-30 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11870078B2 (en) 2018-10-30 2024-01-09 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11978852B2 (en) 2018-10-31 2024-05-07 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same
US11942629B2 (en) 2019-01-11 2024-03-26 Lg Energy Solution, Ltd. Lithium electrode and lithium secondary battery comprising same

Also Published As

Publication number Publication date
US20180051137A1 (en) 2018-02-22
US10633492B2 (en) 2020-04-28
EP3264500B1 (en) 2023-07-12
CN107534128A (zh) 2018-01-02
EP3264500A1 (en) 2018-01-03
EP3264500A4 (en) 2018-10-17
CN107534128B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2017104867A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR101811495B1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2017217596A1 (ko) 리튬금속전지용 복합 전해질, 그 제조방법 및 이를 포함한 리튬금속전지
WO2019208959A1 (ko) 고체 전해질 전지 및 그를 포함하는 전지모듈 및 전지팩
WO2019112167A1 (ko) 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
WO2016052910A1 (ko) 리튬이차전지용 음극 활물질, 이의 제조 방법, 이를 포함하는 리튬이차전지용 음극, 및 리튬이차전지
WO2016052850A1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차 전지용 음극, 및 리튬 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
WO2018159950A1 (ko) 리튬 이차전지
WO2019208958A1 (ko) 고체 전해질 전지용 양극 및 그를 포함하는 고체 전해질 전지
WO2017146426A1 (ko) 겔 폴리머 전해질용 조성물 및 이를 포함하는 리튬 이차전지
WO2019212315A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2020153822A1 (ko) 리튬 이차 전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2013009108A9 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2020159263A1 (ko) 이차전지용 음극의 제조방법
WO2019221456A1 (ko) 전해질 및 이를 포함하는 리튬 이차전지
WO2015119486A1 (ko) 전기 화학 소자
WO2018190665A1 (ko) 고분자 고체 전해질 및 이를 포함하는 리튬 이차전지
WO2016105176A1 (ko) 전기 화학 소자
WO2020022690A1 (ko) 리튬 이차전지용 리튬 금속의 전처리 방법
WO2022211521A1 (ko) 리튬 금속 전극 코팅 조성물, 리튬 금속 전극 제조방법, 리튬 금속 전극 및 리튬 이차 전지
WO2022197094A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2016208946A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562297

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015910790

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE