WO2020022690A1 - 리튬 이차전지용 리튬 금속의 전처리 방법 - Google Patents

리튬 이차전지용 리튬 금속의 전처리 방법 Download PDF

Info

Publication number
WO2020022690A1
WO2020022690A1 PCT/KR2019/008769 KR2019008769W WO2020022690A1 WO 2020022690 A1 WO2020022690 A1 WO 2020022690A1 KR 2019008769 W KR2019008769 W KR 2019008769W WO 2020022690 A1 WO2020022690 A1 WO 2020022690A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium metal
lithium
battery
secondary battery
stripping step
Prior art date
Application number
PCT/KR2019/008769
Other languages
English (en)
French (fr)
Inventor
박인태
양두경
안지현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/971,180 priority Critical patent/US11978886B2/en
Priority to EP19839866.1A priority patent/EP3745509B1/en
Priority to CN201980018364.3A priority patent/CN111837264B/zh
Priority to JP2020545502A priority patent/JP7062194B2/ja
Publication of WO2020022690A1 publication Critical patent/WO2020022690A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for pretreatment of lithium metal for a lithium secondary battery. More specifically, the present invention relates to a method for pretreatment of lithium metal for a lithium secondary battery including a stripping step and a plating step as an electrochemical polishing technique.
  • lithium secondary batteries exhibiting high energy density and operating potential and low self discharge rate have been commercialized.
  • the lithium metal secondary battery is the first commercially available lithium secondary battery, using lithium metal as a negative electrode.
  • the lithium metal secondary battery is a lithium resin phase formed on the surface of the lithium metal negative electrode, the volume expansion of the cell, the gradual decrease in capacity and energy density, short circuit due to the continuous growth of the dendrite, cycle life decrease and cell stability problems (explosion and Ignition), production stopped just a few years after commercialization.
  • a carbon-based negative electrode was used in place of lithium metal, which is more stable and stably stores lithium in a lattice or empty space, and commercialization and dissemination of a full-scale lithium secondary battery has been advanced due to the use of the carbon-based negative electrode.
  • lithium secondary batteries are mainly made of carbon-based or non-carbon-based anode materials, and most of the development of anode materials is made of carbon-based (graphite, hard carbon, soft carbon, etc.) and non-carbon-based (silicon, tin, titanium oxide, etc.) materials. Focused on.
  • carbon-based materials do not exceed the theoretical capacity of 400 mAh / g
  • non-carbon based materials are more than 1000 mAh / g, but there is a problem of volume expansion and performance degradation during charging and discharging.
  • Lithium is very light and has the potential to achieve excellent energy densities above 3800 mAh / g theoretical capacity.
  • a surface native layer such as Li 2 O or Li 2 CO 3 may be naturally formed on the surface of the lithium metal. Due to the presence of the surface oxide, a nonuniform reaction may occur on the surface of the lithium metal during the reaction. Can exhibit low efficiency characteristics.
  • a mechanical polishing technique such as Non-Patent Document 1
  • a uniform reaction may be induced on the lithium metal surface.
  • mechanical polishing techniques are likely to cause secondary problems in which lithium metal surfaces are unevenly formed in the brushing process itself, or reoxidation occurs during battery assembly. Therefore, there is a need in the art for a new technique that can effectively remove the surface oxide film to compensate for the disadvantages of the mechanical polishing technique.
  • Non-Patent Document 1 Ryou, M.H. et al., Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating, Adv. Funct. Mater., 2015, 25, 834-841.
  • the present invention uses an electrochemical polishing technique through charging and discharging of a battery in a state where a lithium secondary battery is assembled, thereby effectively removing a surface oxide film naturally formed on lithium metal as a negative electrode. It is intended to provide a method for pretreatment of metals.
  • the present invention includes a stripping step of discharging a battery to remove the surface oxide film formed on the lithium metal, and a plating step of charging the battery to replenish lithium metal on the lithium metal from which the surface oxide film has been removed by the stripping step.
  • a method for pretreatment of lithium metal for a lithium secondary battery is provided.
  • the stripping step is performed by discharging the battery at a current density of 5 to 20 mA / cm 2 .
  • the stripping step is performed by discharging the battery in a time of 20 to 120 seconds and 1 to 13 times.
  • the stripping step is performed by discharging the battery in the ECPS factor value range of 6.0 ⁇ 10 -4 to 3.0 ⁇ 10 -2 represented by the following equation (1).
  • the plating step is performed by charging the battery at a current density of 0.01 to 0.2mA / cm 2 .
  • the plating step is performed by charging the battery at a time of 1,000 to 7,000 seconds and 1 to 13 times.
  • the stripping step and the plating step are performed two or more times, the stripping step and the plating step are performed sequentially and alternately the same number of times.
  • the ratio of the current density during discharge in the stripping step and the current density during charging in the plating step is 50: 1 to 200: 1.
  • the ratio of the ECPP factor value during discharge in the stripping step and the ECPP factor value during charging in the plating step is 1.3: 1 to 1: 1.3, wherein the ECPP factor value is represented by Equation 2 below. Is displayed.
  • the present invention provides a lithium secondary battery containing lithium metal pretreated by the above-described pretreatment method of lithium metal.
  • the pretreatment since the pretreatment is performed after the battery is assembled, it is possible to fundamentally prevent the reoxidation problem of the lithium metal that may occur after the pretreatment.
  • the lithium metal since it is not a mechanical or chemical method, the lithium metal is not damaged by the device or the reagent, and if the conditions of the stripping step and the plating step are properly adjusted, a uniform lithium metal surface can be formed after the pretreatment.
  • FIG. 1 is an image showing photographs of pretreated lithium metal after pretreatment of lithium metal according to Example 1.
  • FIG. 1 is an image showing photographs of pretreated lithium metal after pretreatment of lithium metal according to Example 1.
  • FIG. 2 is a photograph showing photographs of pretreated lithium metal after pretreatment of lithium metal according to Comparative Example 5.
  • FIG. 2 is a photograph showing photographs of pretreated lithium metal after pretreatment of lithium metal according to Comparative Example 5.
  • FIG 3 is a graph showing the life characteristics of a lithium secondary battery subjected to a pretreatment process of lithium metal according to Examples 1 and 2 and Comparative Examples 4 and 6, respectively.
  • the present invention provides a method for effectively removing a surface oxide film such as Li 2 O, Li 2 CO 3 which is naturally formed on the lithium metal used as a negative electrode material in a lithium secondary battery. Since the negative electrode material of the lithium secondary battery in the present invention is limited to lithium metal, the lithium secondary battery of the present specification may be interpreted as a lithium metal secondary battery.
  • the surface oxide film may be naturally formed by lithium metal exposed in the air reacting with oxygen or carbon dioxide, and when the lithium metal having a thick surface oxide film is applied to a lithium secondary battery, it may inhibit a uniform reaction on the surface of the lithium metal. Can be. Therefore, it may be advantageous in the life characteristics of the lithium secondary battery that the lithium metal in the state where the surface oxide film is removed is applied to the lithium secondary battery.
  • a mechanical polishing technique and a chemical polishing technique are mainly used as a method for removing a surface oxide film from lithium metal.
  • This technique is performed using a mechanical device or a chemical reagent, which can not be performed with lithium metal applied to the lithium secondary battery. Therefore, when the conventional mechanical polishing technique and the chemical polishing technique are used, the problem of reoxidation of lithium metal during the battery assembly process is inevitable.
  • conventional mechanical polishing techniques and chemical polishing techniques are difficult to control precisely on a micro or nano scale, which may cause a problem that the lithium metal surface is unevenly formed or lost after the operation.
  • the method according to the present invention does not cause reoxidation problem of lithium metal because lithium metal is applied to a lithium secondary battery, and desorbs surface oxide film and attaches lithium metal onto lithium metal. Since this proceeds sequentially, the loss of lithium metal can be minimized.
  • the present invention provides a method for pretreatment of lithium metal in which the lithium secondary battery uniformly removes the surface oxide film formed on the surface of the lithium metal using an electrochemical polishing technique before driving the battery in earnest.
  • the pretreatment method of lithium metal according to the present invention largely includes a stripping step and a plating step.
  • the stripping step and the plating step may be performed two or more times, respectively, but the present invention is not limited thereto, but it may be preferable to perform the same number of times sequentially.
  • the above-described stripping step and the plating step will be described in detail.
  • the stripping step is a step of removing the surface oxide film formed on the lithium metal, which is performed through the method of discharging the lithium secondary battery.
  • the stripping step may be performed by discharging the battery at a current density of 5 to 20 mA / cm 2 , preferably 8 to 16 mA / cm 2 .
  • the stripping step may be performed by discharging the battery at a time of 20 to 150 seconds, preferably 30 to 120 seconds, and 1 to 13 times, preferably 3 to 10 times.
  • the effect of removing the surface oxide film may be insignificant, and when the battery is discharged for more than 150 seconds, lithium metal may be removed together, which is not preferable.
  • the stripping step is performed 14 times or more, loss of lithium metal may be accelerated, which is not preferable.
  • the removal of the surface oxide film which is the object of the present invention, may be more important than the plating step because it is substantially caused by the stripping step.
  • the setting of conditions such as current density, time and number of times during discharge of the battery in the stripping step may greatly affect the result, and the organic setting as well as the individual setting of each condition may be important.
  • an ECPS ElectroChemical Polishing Stripping
  • the ECPS factor value means a value obtained by dividing the current density by the square of time and number of times.
  • the stripping step has an ECPS factor value represented by Equation 1 below 6.0 ⁇ 10 ⁇ 4 to 3.0 ⁇ 10 ⁇ 2 , preferably 6.5 ⁇ 10 ⁇ 4 to 1.5 ⁇ 10 ⁇ 2 . It can be performed by discharging the battery in the range.
  • the ECPS factor value is set out of the above range, the removal effect of the surface oxide film is insignificant or a large amount of lithium metal is removed together with the surface oxide film.
  • the plating step is a step of replenishing lithium metal on the lithium metal from which the surface oxide film is removed by the stripping step, which is performed by a method of charging a lithium secondary battery.
  • the surface oxide film is completely removed on the lithium metal so that the exposed portion is preferentially replenished, so that the plating step can compensate for the uneven reaction in the stripping step.
  • the plating step may be performed for a long time at a lower current density than the stripping step, and when the reaction proceeds slowly, a more uniform lithium metal surface may be obtained.
  • the plating step may be performed by charging the battery at a current density of 0.01 to 0.2 mA / cm 2 , preferably 0.04 to 0.16 mA / cm 2 .
  • the replenishment amount of the lithium metal is insufficient or the replenishment rate of the lithium metal is low, which is not preferable.
  • the battery is charged at a current density of more than 0.2 mA / cm 2 in the plating step, it is not preferable to uniformly replenish the surface of the non-uniform lithium metal or surface oxide film formed by the stripping step.
  • the plating step may be performed by charging the battery at a time of 1,000 to 7,000 seconds, preferably 3,000 to 6,000 seconds, and 1 to 13 times, preferably 3 to 10 times.
  • the effect of lithium metal replenishment may be insignificant, and if the battery is charged for more than 7,000 seconds, the overall pretreatment process may be too slow to be practical.
  • the plating step is performed 14 times or more, lithium metal lost by the stripping step may not be efficiently replenished, which is not preferable.
  • the plating step is performed independently of the stripping step, but it may be more appropriate to adjust the conditions of the plating step in consideration of the conditions of the stripping step.
  • the ratio of the current density during discharge in the stripping step and the current density during charging in the plating step may be 50: 1 to 200: 1.
  • the stripping step and the plating step are performed within the ratio range, the surface oxide film can be efficiently removed, and a lithium metal having a uniform surface after pretreatment can be obtained.
  • an ECPP ElectroChemical Polishing Plating
  • the ECPP factor value means a value obtained by multiplying the current density and time.
  • the ratio of the ECPP factor value during discharge in the stripping step and the ECPP factor value during charging in the plating step may be 1.3: 1 to 1: 1.3.
  • the method of pretreatment of lithium metal according to the present invention it is possible to obtain about 90% by weight or more of lithium metal compared to the first lithium metal before the surface oxide film is formed, and the obtained lithium metal is obtained with the surface oxide film completely removed. Since it is directly applied to the lithium secondary battery, the life characteristics and the like of the lithium secondary battery can be improved.
  • the lithium secondary battery to which the lithium metal pretreatment method according to the present invention is applicable is not particularly limited as long as the negative electrode is lithium metal.
  • each configuration of the lithium secondary battery will be described in more detail.
  • the lithium secondary battery to which the method of pretreatment of lithium metal according to the present invention is applicable includes a negative electrode; anode; A separator disposed between the cathode and the anode; And electrolytes.
  • the negative electrode of the lithium secondary battery is limited to lithium metal, the present invention relates to a pretreatment method for removing the surface oxide film formed on such a lithium metal.
  • the cathode is not particularly limited, but may be a lithium thin film or a cathode active material layer formed on one surface of a current collector. If the positive electrode is a positive electrode active material layer formed on one surface of the current collector, the positive electrode may be prepared by applying a positive electrode active material slurry containing a positive electrode active material on one surface of the current collector and then drying it. The slurry may further include additives such as a binder and a conductive material, a filler, and a dispersant in addition to the positive electrode active material.
  • the cathode active material is not particularly limited, but may be, for example, a sulfur-based active material, a manganese spinel active material, a lithium metal oxide, or a mixture thereof.
  • the lithium metal oxide may be lithium-manganese oxide, lithium-nickel-manganese oxide, lithium-manganese cobalt oxide, lithium-nickel-manganese-cobalt oxide, and the like.
  • the binder is a component that assists in the bonding between the positive electrode active material and the conductive material and the current collector, and may generally be added in an amount of 1 wt% to 30 wt% based on the total amount of the positive electrode active material slurry.
  • Such binders are not particularly limited but include, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacryl Polymethylmethacrylate, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene It may be one or a mixture of two or more selected from the group consisting of monomers (EPDM), sulfonated EPDM, styrene-butylene rubber (SBR) and fluorine rubber.
  • PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
  • SBR styrene-butylene rubber
  • the conductive material is not particularly limited, but for example, graphite such as natural graphite or artificial graphite; Carbon blacks such as carbon black (super-p), acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, and denka black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives.
  • the conductive material may typically be in an amount of 0.05 wt% to 10 wt% based on the total weight of the cathode active material slurry.
  • the filler may be used as necessary to determine whether or not to be used as a component for inhibiting the expansion of the positive electrode, and if the fibrous material without causing chemical changes in the battery is not particularly limited, for example, olefin polymers such as polyethylene polypropylene; It may be a fibrous material such as glass fiber, carbon fiber.
  • the dispersant is not particularly limited, but may be, for example, isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or the like.
  • the coating may be performed by a method commonly known in the art, but for example, the positive electrode active material slurry may be distributed on one surface of the positive electrode current collector and then uniformly dispersed using a doctor blade or the like. Can be.
  • the method may be performed by a die casting method, a comma coating method, a screen printing method, or the like.
  • the drying is not particularly limited, but may be performed within one day in a vacuum oven at 50 °C to 200 °C.
  • the separator is a physical separator having a function of physically separating the electrode, and can be used without particular limitation as long as it is used as a conventional separator, and in particular, it is preferable that the separator has a low resistance to electrolyte migration and excellent electrolyte-moisture capability.
  • the separator enables the transport of lithium ions between the positive electrode and the negative electrode while separating or insulating the positive electrode and the negative electrode from each other.
  • the separator may be made of a porous, nonconductive or insulating material having a porosity of 30 to 50%.
  • porous polymer films such as ethylene homopolymers, propylene homopolymers, ethylene / butene copolymers, ethylene / hexene copolymers and ethylene / methacrylate copolymers may be used. It is possible to use a nonwoven fabric made of glass fiber having a high melting point. Among them, a porous polymer film is preferably used.
  • the electrolyte impregnation amount and the ion conduction characteristics are reduced, and the effect of reducing the overvoltage and improving the capacity characteristics is minimal.
  • both nonwoven materials are used, mechanical rigidity cannot be secured and a problem of battery short circuit occurs.
  • the film-type separator and the polymer nonwoven buffer layer are used together, the mechanical strength can be secured together with the battery performance improvement effect due to the adoption of the buffer layer.
  • an ethylene homopolymer (polyethylene) polymer film is used as a separator and a polyimide nonwoven fabric is used as a buffer layer.
  • the polyethylene polymer film has a thickness of 10 to 25 ⁇ m, porosity is preferably 40 to 50%.
  • the electrolyte solution is a non-aqueous electrolyte solution containing a lithium salt and is composed of a lithium salt and a solvent.
  • the lithium salt is a material that can be easily dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiN One or more from the group consisting of (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , lithium chloroborane, lower aliphatic lithium carbonate, lithium tetraphenyl borate and lithium imide.
  • the lithium salt may be preferably lithium imide.
  • the concentration of the lithium salt is 0.1 to 8.0 M, depending on various factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, the operating temperature and other factors known in the lithium secondary battery field. , Preferably 0.5 to 2.0 M. If the concentration of the lithium salt is less than the above range, the conductivity of the electrolyte may be lowered, thereby degrading battery performance. If the lithium salt is more than the above range, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions (Li + ). It is desirable to select the appropriate concentration.
  • the non-aqueous organic solvent is a substance capable of dissolving lithium salt well, and preferably N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate , Diethyl carbonate, ethylmethyl carbonate, gamma-butylo lactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, 1-ethoxy-2-methoxy ethane, diethylene glycol dimethyl ether, Triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, dimethyl Ether, diethyl ether, formamide, dimethylformamide, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trim
  • the non-aqueous electrolyte solution for lithium-sulfur batteries of the present invention may further include a nitric acid or nitrous acid-based compound as an additive.
  • the nitric acid or nitrite compound has an effect of forming a stable film on the lithium electrode and improving the charge and discharge efficiency.
  • Such a nitric acid or nitrite compound is not particularly limited in the present invention, but lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba (NO 3 ) 2 ), ammonium nitrate Inorganic nitric acid or nitrite compounds such as (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ) and ammonium nitrite (NH 4 NO 2 ); Organic nitric acid such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nitrite and oct
  • the non-aqueous electrolyte may further include other additives for the purpose of improving charge and discharge characteristics, flame retardancy and the like.
  • the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexa phosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazoli Dinon, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC) etc. are mentioned.
  • an electrode assembly is formed by disposing a separator between a positive electrode and a negative electrode, and the electrode assembly may be manufactured by putting an electrolyte into a cylindrical battery case or a square battery case. Alternatively, after stacking the electrode assembly, it may be prepared by impregnating it in an electrolyte and sealing the resultant obtained in a battery case.
  • the battery case may be adopted that is commonly used in the art, there is no limitation on the appearance according to the use of the battery, for example, cylindrical, square, pouch (coin) or coin type (coin) using a can, etc. This can be
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source of a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, power storage systems, and the like.
  • the lithium secondary battery used in the following examples is manufactured by the following method.
  • a composition for forming a positive electrode active material layer Using water as a solvent, sulfur, Super-P, SP, a conductive material and a binder were mixed by a ball mill to prepare a composition for forming a positive electrode active material layer.
  • denka black was used as the conductive material
  • a binder of SBR and CMC was used as the binder.
  • the mixing ratio was sulfur and SP (9: 1 ratio): conductive material: binder as 90:10:10. It was made.
  • the prepared positive electrode active material layer-forming composition was applied to an aluminum current collector and then dried to prepare a positive electrode (energy density of the positive electrode: 2.5 mAh / cm 2).
  • the electrolyte is 1 wt% of lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI) in a 1 M concentration in an organic solvent consisting of dioxolane (DOL) and dimethyl ether (DME) (mixed volume ratio of 1: 1).
  • LiTFSI lithium bis (trifluoromethyl sulfonyl) imide
  • DOL dioxolane
  • DME dimethyl ether
  • the above-mentioned lithium secondary battery were plated by charging for 6000 seconds at a current density of a surface oxide film after stripping to discharge for 60 seconds at a current density of 8mA / cm 2, 0.08mA / cm 2 play a lithium metal.
  • the charge and discharge process was repeated 10 times in sequence to finish the pretreatment of lithium metal.
  • Example 1 8.0 60 0.08 6,000 10
  • Example 2 8.0 60 0.08 6,000 5
  • Example 3 8.0 60 0.08 6,000 3
  • Example 4 12.0 40 0.08 6,000 10
  • Example 5 8.0 30 0.04 6,000 10
  • Example 6 16.0 30 0.08 6,000 10
  • Example 7 8.0 120 0.16 6,000 10 Comparative Example 1 2.67 180 0.08 6,000 10 Comparative Example 2 8.0 180 0.24 6,000 10 Comparative Example 3 8.0 240 0.32 6,000 10 Comparative Example 4 8.0 60 0.08 6,000 15 Comparative Example 5 8.0 60 0.08 6,000 20
  • the recovery ratio of lithium metal after pretreatment of lithium metal was measured and shown in Table 3 below.
  • the recovery rate of the lithium metal is calculated through the following Equation 3.
  • Recovery rate of lithium metal (%) content of lithium metal after pretreatment (g) / content of lithium metal before pretreatment (g) x 100
  • the content of lithium metal before and after pretreatment was confirmed by weighing through a micro valence (Mettler Toledo, XP105 model).
  • the weight measurement of the lithium metal after the pretreatment was performed after washing and drying with dimethoxyethane for accurate measurement.
  • the lithium secondary battery was repeatedly charged and discharged, Capacity retention was measured and shown in FIG. 3.
  • the charge and discharge of the lithium secondary battery is 0.3C after 0.1C / 0.1C charge / discharge 3 cycles and 0.2C / 0.2C charge / discharge 3 cycles within the potential range of 1.5V to 2.8V (vs. Li / Li + ).
  • Ten cycles of C / 0.5 charge / discharge and three cycles of 0.2C / 0.2C charge / discharge were performed sequentially.
  • the lithium secondary battery that has been subjected to the pretreatment of the lithium metal according to Examples 1 and 2 may effectively remove the surface oxide film formed on the surface of the lithium metal, and thus did not perform the lithium metal pretreatment. It was confirmed that the life characteristics are significantly improved compared to the lithium secondary battery according to.
  • the lithium secondary battery subjected to the pretreatment of the lithium metal according to Examples 1 and 2 has a high recovery rate of lithium metal, and thus has a similar lifespan characteristic as compared to the lithium secondary battery subjected to the pretreatment of the lithium metal according to Comparative Example 4. It was confirmed that the improvement.

Abstract

본 발명은 전지를 방전하여 리튬 금속 상에 형성된 표면 산화막을 제거하는 스트리핑 단계, 및 전지를 충전하여 상기 스트리핑 단계에 의해 표면 산화막이 제거된 리튬 금속 상에 리튬 금속을 보충하는 플레이팅 단계를 포함하는 리튬 이차전지용 리튬 금속의 전처리 방법에 관한 것이다.

Description

리튬 이차전지용 리튬 금속의 전처리 방법
본 출원은 2018년 7월 25일자 한국 특허 출원 제10-2018-0086474호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 리튬 이차전지용 리튬 금속의 전처리 방법에 관한 것이다. 보다 구체적으로, 전기 화학적 폴리싱(polishing) 기법으로서 스트리핑(stripping) 단계 및 플레이팅(plating) 단계를 포함하는 리튬 이차전지용 리튬 금속의 전처리 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동전위를 나타내고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 있다.
리튬 금속 이차전지는 최초로 상용화된 리튬 이차전지로서, 리튬 금속을 음극으로 사용한다. 그러나, 리튬 금속 이차전지는 리튬 금속 음극의 표면에 형성되는 리튬 수지상에 의해 셀의 부피팽창, 용량 및 에너지 밀도의 점진적인 감소, 수지상 지속 성장에 따른 단락발생, 사이클 수명 감소와 셀 안정성 문제(폭발 및 발화)가 있어 상용화된지 불과 몇 년 만에 생산이 중단되었다. 이에, 리튬 금속 대신에 보다 안정하고 격자나 빈공간 내에 리튬을 이온상태로 안정하게 저장할 수 있는 탄소계 음극이 사용되었으며, 상기 탄소계 음극 사용으로 인해 본격적인 리튬 이차전지의 상용화 및 보급이 진행되었다.
현재까지 리튬 이차전지는 탄소계 또는 비탄소계 음극 소재들이 주류를 이루고 있으며, 대부분의 음극재 개발은 탄소계(흑연, 하드카본, 소프트 카본 등)와 비탄소계(실리콘, 주석, 티타늄 산화물 등) 소재에 집중되어 있다. 그러나, 탄소계 소재들은 이론용량이 400 mAh/g을 넘지 못하고 있고, 비탄소계는 1000 mAh/g이 넘는 소재들이지만 충방전시 부피팽창 및 성능저하 문제가 있다.
한편, 최근에는 중대형 리튬 이차전지가 활성화 되면서 고용량 및 고에너지밀도 특성이 요구되고 있으나, 기존 탄소계 또는 비탄소계 음극 소재들은 이러한 성능을 맞추기에는 한계가 있다.
이에, 최근 리튬-공기 전지와 같이 리튬 금속을 다시 활용하려는 연구들이 활발히 진행되고 있으며, 동시에 리튬 금속 이차전지에 대한 관심이 다시 고조되고 있다. 리튬은 매우 가볍고, 이론용량이 3800 mAh/g을 상회하는 우수한 에너지 밀도를 구현할 가능성을 가지고 있다.
그러나, 리튬 금속을 이차전지의 음극소재로 적용하기 위해서는 극복해야 할 문제점들이 산적해 있다. 먼저, 리튬 금속의 경우, 반응과정에서 부피 변화가 크고, 전해액과의 부반응으로 인해 낮은 효율 특성을 나타낼 수 있다. 이를 해결하기 위해 리튬 금속 보호용 인-시츄 SEI 층(in-situ SEI layer) 또는 엑스-시츄 패시베이션 층(ex-situ passivation layer)을 개발 및 적용함으로써 리튬 금속의 효율을 개선하고자 하는 연구가 진행되고 있다.
또한, 리튬 금속 표면에는 자연적으로 Li2O, Li2CO3와 같은 표면 산화막(native layer)이 형성될 수 있는데, 이러한 표면 산화막의 존재로 인해 반응과정에서 리튬 금속 표면에서의 불균일한 반응을 야기하여 낮은 효율 특성을 나타낼 수 있다. 이를 제어하기 위해 하기 비특허문헌 1과 같이 기계적인 폴리싱(Mechanical polishing) 기법을 이용하여 물리적으로 표면 산화막을 제거하면 리튬 금속 표면에서의 균일 반응을 유도할 수 있다. 그러나, 이러한 기계적인 폴리싱 기법은 브러싱(brushing) 공정 자체에서 리튬 금속 표면이 불균일하게 형성되거나, 전지 조립 과정에서 재산화가 나타나는 이차적인 문제가 발생할 가능성이 높다. 따라서, 해당 기술 분야에서는 상기 기계적인 폴리싱 기법의 단점을 보완하여 효율적으로 표면 산화막을 제거할 수 있는 새로운 기법이 요구되고 있다.
[선행기술문헌]
[비특허문헌]
(비특허문헌 1) Ryou,M.H. et al., Mechanical Surface Modifi cation of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating, Adv. Funct. Mater., 2015, 25, 834-841.
상기 문제점을 해결하기 위해, 본 발명은 리튬 이차전지가 조립된 상태에서 전지의 충·방전을 통한 전기 화학적 폴리싱 기법을 사용함으로써, 음극인 리튬 금속에 자연적으로 형성된 표면 산화막을 효과적으로 제거할 수 있는 리튬 금속의 전처리 방법을 제공하고자 한다.
본 발명의 제1 측면에 따르면,
본 발명은 전지를 방전하여 리튬 금속 상에 형성된 표면 산화막을 제거하는 스트리핑 단계, 및 전지를 충전하여 상기 스트리핑 단계에 의해 표면 산화막이 제거된 리튬 금속 상에 리튬 금속을 보충하는 플레이팅 단계를 포함하는 리튬 이차전지용 리튬 금속의 전처리 방법을 제공한다.
본 발명의 일 구체예에 있어서, 상기 스트리핑 단계는 5 내지 20mA/cm2의 전류 밀도로 전지를 방전하여 수행된다.
본 발명의 일 구체예에 있어서, 상기 스트리핑 단계는 20 내지 120초의 시간 및 1 내지 13회의 횟수로 전지를 방전하여 수행된다.
본 발명의 일 구체예에 있어서, 상기 스트리핑 단계는 하기 수학식 1로 표시되는 ECPS factor 값이 6.0×10-4 내지 3.0×10-2의 범위에서 전지를 방전하여 수행된다.
[수학식 1]
ECPS factor(mA/cm2/s/n2)= 전류 밀도(mA/cm2)/시간(s)/(횟수(n))2
본 발명의 일 구체예에 있어서, 상기 플레이팅 단계는 0.01 내지 0.2mA/cm2의 전류 밀도로 전지를 충전하여 수행된다.
본 발명의 일 구체예에 있어서, 상기 플레이팅 단계는 1,000 내지 7,000초의 시간 및 1 내지 13회의 횟수로 전지를 충전하여 수행된다.
본 발명의 일 구체예에 있어서, 상기 스트리핑 단계 및 상기 플레이팅 단계가 2회 이상 수행되는 경우, 상기 스트리핑 단계 및 플레이팅 단계는 동일한 횟수로, 번갈아 순차적으로 수행된다.
본 발명의 일 구체예에 있어서, 상기 스트리핑 단계에서 방전 시 전류 밀도와 상기 플레이팅 단계에서 충전 시 전류 밀도의 비율은 50:1 내지 200:1이다.
본 발명의 일 구체예에 있어서, 상기 스트리핑 단계에서 방전 시 ECPP factor 값과 상기 플레이팅 단계에서 충전 시 ECPP factor 값의 비율은 1.3:1 내지 1:1.3이며, 상기 ECPP factor 값은 하기 수학식 2로 표시된다.
[수학식 2]
ECPP factor(mA·s/cm2)=전류 밀도(mA/cm2)·시간(s)
본 발명의 제2 측면에 따르면,
본 발명은 상술한 리튬 금속의 전처리 방법에 의해 전처리된 리튬 금속을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따른 리튬 금속의 전처리 방법에 의하면, 전지가 조립된 후 전처리가 수행되기 때문에 전처리 후 발생할 수 있는 리튬 금속의 재산화 문제를 원천적으로 방지할 수 있다. 또한, 기계적 또는 화학적인 방법이 아니기 때문에 장치나 시약에 의해 리튬 금속이 손상되지 않고, 스트리핑 단계와 플레이팅 단계의 조건을 적절하게 조절하면 전처리 후 균일한 리튬 금속 표면을 형성할 수 있다.
도 1은 실시예 1에 따라 리튬 금속을 전처리한 후 전처리된 리튬 금속을 사진 촬영하여 나타낸 이미지이다.
도 2는 비교예 5에 따라 리튬 금속을 전처리한 후 전처리된 리튬 금속을 사진 촬영하여 나타낸 이미지이다.
도 3은 실시예 1 및 2와 비교예 4 및 6 각각에 따른 리튬 금속의 전처리 과정을 수행한 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
본 발명은 리튬 이차전지에서 음극 소재로 사용되는 리튬 금속에 자연적으로 형성되는 Li2O, Li2CO3와 같은 표면 산화막을 효과적으로 제거하는 방법을 제공한다. 본 발명에서 리튬 이차전지의 음극 소재는 리튬 금속으로 한정되기 때문에, 본 명세서의 리튬 이차전지는 리튬 금속 이차전지로 해석될 수 있다. 상기 표면 산화막은 공기 중에 노출된 리튬 금속이 산소 또는 이산화탄소와 반응하여 자연스럽게 형성될 수 있으며, 이러한 표면 산화막이 두껍게 형성된 리튬 금속을 리튬 이차전지에 적용하는 경우 리튬 금속 표면에서의 균일한 반응을 저해할 수 있다. 따라서, 상기 표면 산화막이 제거된 상태의 리튬 금속이 리튬 이차전지에 적용되는 것이 리튬 이차전지의 수명 특성에 있어서 유리할 수 있다.
종래에는 리튬 금속에서 표면 산화막을 제거하기 위한 방법으로 기계적인 폴리싱 기법과 화학적인 폴리싱 기법이 주로 사용되었다. 이러한 기법은 기계적인 장치 또는 화학적인 시약을 사용하여 수행되는데, 리튬 금속이 리튬 이차전지에 적용된 상태에서는 이러한 기법이 수행될 수 없다. 따라서, 종래의 기계적인 폴리싱 기법과 화학적인 폴리싱 기법을 이용하는 경우 전지 조립 과정에서 리튬 금속이 재산화되는 문제의 발생은 불가피하다. 또한, 종래의 기계적인 폴리싱 기법과 화학적인 폴리싱 기법은 마이크로 또는 나노 스케일로 정교하게 컨트롤하기 어려워 작업 후에도 리튬 금속 표면이 불균일하게 형성되거나 리튬 금속이 손실되는 문제가 발생할 수 있다. 이와 달리, 본 발명에 따른 방법은 리튬 금속이 리튬 이차전지에 적용된 상태에서 수행되기 때문에 리튬 금속의 재산화 문제가 발생하지 않고, 리튬 금속 상에 표면 산화막을 탈리하는 작업과 리튬 금속을 부착하는 작업이 순차적으로 진행되기 때문에 리튬 금속의 손실을 최소화할 수 있다.
리튬 금속의 전처리 방법
본 발명은 리튬 이차전지가 본격적인 전지의 구동 전에 전기 화학적 폴리싱 기법을 이용하여 리튬 금속 표면에 형성된 표면 산화막을 균일하게 제거하는 리튬 금속의 전처리 방법을 제공한다. 본 발명에 따른 리튬 금속의 전처리 방법은 크게 스트리핑 단계 및 플레이팅 단계를 포함한다. 상기 스트리핑 단계 및 상기 플레이팅 단계는 각각 2회 이상 수행될 수 있는데, 특별히 이에 제한되는 것은 아니지만, 동일한 횟수로, 번갈아 순차적으로 수행되는 것이 바람직할 수 있다. 이하에서는 상술한 스트리핑 단계와 플레이팅 단계에 대해서 구체적으로 설명한다.
먼저, 스트리핑 단계는 리튬 금속 상에 형성된 표면 산화막을 제거하는 단계이며, 이는 리튬 이차전지를 방전하는 방법을 통해 수행된다. 리튬 이차전지를 방전하는 경우 표면 산화막뿐만 아니라 노출된 리튬 금속도 함께 제거될 수 있기 때문에, 표면 산화막을 균일하게 제거하면서 리튬 금속의 손실을 최소화하기 위하여 방전 조건을 적절한 범위에서 설정하는 것이 중요하다. 본 발명의 구체예에 따르면, 상기 스트리핑 단계는 5 내지 20mA/cm2, 바람직하게는 8 내지 16mA/cm2의 전류 밀도로 전지를 방전하여 수행될 수 있다. 상기 스트리핑 단계에서 5mA/cm2 미만의 전류 밀도로 전지를 방전하는 경우 표면 산화막 제거의 효과가 미미할 수 있고, 균일하게 표면 산화막을 제거하기 어렵다. 상기 스트리핑 단계에서 20mA/cm2 초과의 전류 밀도로 전지를 방전하는 경우 리튬 금속이 함께 제거될 수 있고, 균일하게 표면 산화막을 제거하기 어렵다. 본 발명의 구체예에 따르면, 상기 스트리핑 단계는 20 내지 150초, 바람직하게는 30 내지 120초의 시간 및 1 내지 13회, 바람직하게는 3 내지 10회의 횟수로 전지를 방전하여 수행될 수 있다. 상기 스트리핑 단계에서 20초 미만의 시간으로 전지를 방전하는 경우 표면 산화막 제거의 효과가 미미할 수 있고, 150초 초과의 시간으로 전지를 방전하는 경우 리튬 금속이 함께 제거될 수 있어 바람직하지 않다. 또한, 상기 스트리핑 단계를 14회 이상 수행하는 경우 리튬 금속의 손실이 가속화될 수 있어 바람직하지 않다.
본 발명의 목적인 표면 산화막의 제거는 실질적으로 스트리핑 단계에 의해 일어나기 때문에, 플레이팅 단계보다 더 중요할 수 있다. 상술한 바와 같이, 상기 스트리핑 단계에서 전지의 방전 시 전류 밀도, 시간 및 횟수 등의 조건 설정이 결과에 크게 영향을 미칠 수 있는데, 각 조건의 개별적인 설정뿐만 아니라 유기적인 설정도 중요할 수 있다. 본 발명에서는 스트리핑 단계에서 전지의 방전 시 전류 밀도, 시간 및 횟수의 유기적인 관계를 정의하기 위해 하기 수학식 1로 표현되는 ECPS(ElectroChemical Polishing Stripping) factor 값을 도입한다.
[수학식 1]
ECPS factor(mA/cm2/s/n2)= 전류 밀도(mA/cm2)/시간(s)/(횟수(n))2
상기 수학식 1에 따르면, 상기 ECPS factor 값은 전류 밀도를 시간과 횟수의 제곱으로 나눈 값을 의미한다. 본 발명의 구체예에 따르면, 상기 스트리핑 단계는 하기 수학식 1로 표시되는 ECPS factor 값이 6.0×10-4 내지 3.0×10-2, 바람직하게는 6.5×10-4 내지 1.5×10-2의 범위에서 전지를 방전하여 수행될 수 있다. 상기 범위를 벗어나게 ECPS factor 값을 설정하는 경우, 표면 산화막의 제거 효과가 미미하거나 표면 산화막과 함께 다량의 리튬 금속이 제거되어 바람직하지 않다.
플레이팅 단계는 상기 스트리핑 단계에 의해 표면 산화막이 제거된 리튬 금속 상에 리튬 금속을 보충하는 단계이며, 이는 리튬 이차전지를 충전하는 방법을 통해 수행된다. 플레이팅 단계에 의해 리튬 금속이 보충될 때, 리튬 금속 상에 표면 산화막이 완전히 제거되어 노출된 부분이 우선적으로 보충될 수 있기 때문에, 플레이팅 단계는 스트리핑 단계에서 불균일하게 반응이 진행되어도 이를 보완할 수 있다. 상기 플레이팅 단계는 상기 스트리핑 단계에 비해 낮은 전류 밀도로 장시간 동안 수행될 수 있는데, 이와 같이 반응을 서서히 진행하는 경우 보다 균일한 리튬 금속 표면을 얻을 수 있다. 본 발명의 구체예에 따르면, 상기 플레이팅 단계는 0.01 내지 0.2mA/cm2, 바람직하게는 0.04 내지 0.16mA/cm2의 전류 밀도로 전지를 충전하여 수행될 수 있다. 상기 플레이팅 단계에서 0.01mA/cm2 미만의 전류 밀도로 전지를 충전하는 경우 리튬 금속의 보충량이 부족하거나 리튬 금속의 보충 속도가 느려져서 바람직하지 않다. 상기 플레이팅 단계에서 0.2mA/cm2 초과의 전류 밀도로 전지를 충전하는 경우 스트리핑 단계에 의해 형성된 불균일한 리튬 금속 또는 표면 산화막의 표면을 균일하게 보충하기 어려워 바람직하지 않다. 본 발명의 구체예에 따르면, 상기 플레이팅 단계는 1,000 내지 7,000초, 바람직하게는 3,000 내지 6,000초의 시간 및 1 내지 13회, 바람직하게는 3 내지 10회의 횟수로 전지를 충전하여 수행될 수 있다. 상기 플레이팅 단계에서 1,000초 미만의 시간으로 전지를 충전하는 경우 리튬 금속 보충의 효과가 미미할 수 있고, 7,000초 초과의 시간으로 전지를 충전하는 경우 전체적인 전처리 과정이 너무 느려져서 실용적이지 않다. 또한, 상기 플레이팅 단계를 14회 이상 수행하는 경우 스트리핑 단계에 의해 손실된 리튬 금속을 효율적으로 보충하지 못하여 바람직하지 않다.
플레이팅 단계는 스트리핑 단계와 독립적으로 수행되지만, 플레이팅 단계의 조건은 스트리핑 단계의 조건을 고려하여 조절하는 것이 보다 적절할 수 있다. 본 발명의 구체예에 따르면, 상기 스트리핑 단계에서 방전 시 전류 밀도와 상기 플레이팅 단계에서 충전 시 전류 밀도의 비율은 50:1 내지 200:1일 수 있다. 상기 비율 범위 내에서 스트리핑 단계 및 플레이팅 단계를 수행하는 경우, 표면 산화막을 효율적으로 제거할 수 있으면서, 전처리 후 균일한 표면을 갖는 리튬 금속을 얻을 수 있다. 본 발명에서는 상기 스트리핑 단계의 전류 밀도 및 시간과 상기 플레이팅 단계의 전류 밀도 및 시간 사이의 관계를 정의하기 위해 하기 수학식 2로 표현되는 ECPP(ElectroChemical Polishing Plating) factor 값을 도입한다.
[수학식 2]
ECPP factor(mA·s/cm2)=전류 밀도(mA/cm2)·시간(s)
상기 수학식 2에 따르면, 상기 ECPP factor 값은 전류 밀도와 시간을 곱한 값을 의미한다. 본 발명의 구체예에 따르면, 상기 스트리핑 단계에서 방전 시 ECPP factor 값과 상기 플레이팅 단계에서 충전 시 ECPP factor 값의 비율은 1.3:1 내지 1:1.3일 수 있다. 상기 비율 범위 내에서 스트리핑 단계 및 플레이팅 단계를 수행하는 경우, 스트리핑 단계와 플레이팅 단계의 균형을 적절하게 맞출 수 있다.
본 발명에 따른 리튬 금속의 전처리 방법을 적용하면, 표면 산화막이 형성되기 전 최초의 리튬 금속과 비교하여 약 90 중량% 이상의 리튬 금속을 얻을 수 있으며, 얻어진 리튬 금속은 표면 산화막이 완전히 제거된 상태로 리튬 이차전지에 바로 적용되기 때문에, 리튬 이차전지의 수명 특성 등을 향상시킬 수 있다.
리튬 이차전지
상술한 리튬 금속의 전처리 방법은 리튬 이차전지의 조립 후 수행되는 것이기 때문에, 리튬 이차전지의 구성에 영향을 받을 수 있다. 본 발명에 따른 리튬 금속의 전처리 방법이 적용 가능한 리튬 이차전지는 음극이 리튬 금속이면 특별히 제한되지는 않지만, 이하에서는 리튬 이차전지의 각 구성에 대해서 보다 구체적으로 설명한다.
본 발명에 따른 리튬 금속의 전처리 방법이 적용 가능한 리튬 이차전지는 음극; 양극; 상기 음극과 양극 사이에 배치되는 분리막; 및 전해질을 포함한다. 상기 리튬 이차전지의 음극은 리튬 금속으로 한정되며, 본 발명은 이러한 리튬 금속 상에 형성된 표면 산화막을 제거하기 위한 전처리 방법에 관한 것이다.
상기 양극은 특별히 제한하는 것은 아니나, 리튬 박막이거나 집전체 일면 상에 양극 활물질층이 형성되어 있는 것일 수 있다. 만약, 상기 양극이 집전체 일면 상에 양극 활물질층이 형성되어 있는 것인 경우, 상기 양극은 집전체 일면 상에 양극 활물질을 포함하는 양극 활물질 슬러리를 도포한 후 건조하여 제조할 수 있으며, 이때 상기 슬러리는 양극 활물질 이외에 바인더 및 도전재, 충진제, 분산제와 같은 첨가제를 더 포함하는 것일 수 있다.
상기 양극 활물질은 특별히 제한되는 것은 아니나, 예컨대, 황 계열 활물질, 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물일 수 있다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다. 상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간 코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물 등일 수 있다. 구체적으로, 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1 - yMnyO2, LiNi1 - yMnyO2(여기서, 0≤y<1), Li(NidCoeMnf)O4(여기서, 0<d<2, 0<e<2, 0<f<2, d+e+f=2), LiMn2 - zNizO4, 또는 LiMn2 - zCo2O4(여기서, 0<z<2)일 수 있다.
상기 바인더는 상기 양극 활물질과 도전재의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질 슬러리 총량을 기준으로 1 중량% 내지 30 중량%로 첨가될 수 있다. 이러한 바인더는 특별히 제한하는 것은 아니나, 예컨대 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌-부티렌 고무(SBR) 및 불소 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 도전재는 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 상기 도전재는 통상적으로 상기 양극 활물질 슬러리 전체 중량을 기준으로 0.05 중량% 내지 10 중량%의 함량일 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 필요에 따라 사용 여부를 정할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한하는 것은 아니나, 예컨대 폴리에틸렌 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다.
상기 분산제(분산액)로는 특별히 제한하는 것은 아니나, 예컨대 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등일 수 있다.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 예컨대 상기 양극 활물질 슬러리를 상기 양극 집전체 일측 상면에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시켜 수행할 수 있다. 이외에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 통하여 수행할 수 있다.
상기 건조는 특별히 제한하는 것은 아니나 50℃ 내지 200℃의 진공오븐에서 1일 이내로 수행하는 것일 수 있다.
분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저 저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 기공도 30~50%의 다공성이고, 비전도성 또는 절연성인 물질로 이루어질 수 있다.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 사용할 수 있고, 고융점의 유리 섬유 등으로 된 부직포를 사용할 수 있다. 이 중 바람직하기로 다공성 고분자 필름을 사용한다.
만일 버퍼층 및 분리막으로 모두 고분자 필름을 사용하게 되면, 전해액 함침량 및 이온 전도 특성이 감소하고, 과전압 감소 및 용량 특성 개선 효과가 미미하게 된다. 반대로, 모두 부직포 소재를 사용할 경우는 기계적 강성이 확보되지 못하여 전지 단락의 문제가 발생한다. 그러나, 필름형의 분리막과 고분자 부직포 버퍼층을 함께 사용하면, 버퍼층의 채용으로 인한 전지 성능 개선 효과와 함께 기계적 강도 또한 확보할 수 있다.
본 발명의 바람직한 일 구체예에 따르면 에틸렌 단독중합체(폴리에틸렌) 고분자 필름을 분리막으로, 폴리이미드 부직포를 버퍼층으로 사용한다. 이때, 상기 폴리에틸렌 고분자 필름은 두께가 10 내지 25μm, 기공도가 40 내지 50%인 것이 바람직하다.
전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성된다.
상기 리튬염은 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4 , LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 하나 이상일 수 있다. 본 발명의 일 구체예에 있어서, 상기 리튬염은 리튬 이미드가 바람직할 수 있다.
상기 리튬염의 농도는, 전해액 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 이차전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.1 내지 8.0 M, 바람직하기로 0.5 내지 2.0 M일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면 전해액의 전도도가 낮아져서 전지 성능이 저하될 수 있고, 상기 범위 초과이면 전해액의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있으므로 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.
상기 비수계 유기 용매는 리튬염을 잘 용해시킬 수 있는 물질로서, 바람직하기로 N-메틸-2-피롤리돈, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 1-에톡시-2-메톡시 에탄, 디에틸렌글리콜 디메틸에테르, 트리에틸렌글리콜 디메틸에테르, 테트라에틸렌글리콜 디메틸에테르, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디메틸에테르, 디에틸에테르, 포름아미드, 디메틸포름아미드, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양성자성 유기 용매가 사용될 수 있으며, 이들 중 하나 또는 둘 이상의 혼합 용매 형태로 사용될 수 있다. 본 발명의 일 구체예에 있어서, 상기 비양성자성 용매는 디옥솔란, 디메틸에테르, 또는 이들의 조합이 바람직할 수 있다.
본 발명의 리튬-황 전지용 비수계 전해액은 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 리튬 전극에 안정적인 피막을 형성하고 충방전 효율을 향상시키는 효과가 있다. 이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.
또한, 상기 비수계 전해액은 충방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.
본 발명의 리튬 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수도 있다.
상기 전지 케이스는 당업계에서 통상적으로 사용되는 것이 채택될 수 있고, 전지의 용도에 따른 외형에 제한이 없으며, 예를 들면 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. 상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력 저장용 시스템 등을 들 수 있지만, 이에 제한되는 것은 아니다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예
리튬 이차전지의 제공
하기의 실시예에서 사용된 리튬 이차전지는 이하의 방법으로 제조된다.
물을 용매로 하고, 황, 슈퍼피(Super-P, SP), 도전재 및 바인더를 볼밀로 혼합하여 양극 활물질층 형성용 조성물을 제조하였다. 이때 도전재로는 덴카블랙을, 바인더로는 SBR과 CMC의 혼합 형태의 바인더를 사용하였으며, 혼합 비율은 중량비로 황 및 SP(9:1비율):도전재:바인더가 90:10:10가 되도록 하였다. 제조한 양극활물질층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다(양극의 에너지 밀도: 2.5 mAh/㎠).
상기 제조한 양극과 음극을 대면하도록 위치시킨 후, 두께 20μm 기공도 45%의 폴리에틸렌 분리막을 상기 양극과 음극 사이에 개재하였다.
그 후, 케이스 내부로 전해질을 주입하여 리튬 이차전지를 제조하였다. 이때 상기 전해질은, 디옥솔란(DOL) 및 디메틸에테르 (DME) (혼합 부피비= 1:1)로 이루어진 유기용매에 1M 농도의 리튬 비스(트리플루오로메틸 설포닐)이미드(LiTFSI)와 1 wt%의 LiNO3를 용해시켜 제조하였다.
실시예 1
상술한 리튬 이차전지를 8mA/cm2의 전류 밀도로 60초 동안 방전하여 표면 산화막을 스트리핑한 후, 0.08mA/cm2의 전류 밀도로 6,000초 동안 충전하여 리튬 금속을 플레이팅하였다. 상기 충·방전 과정을 순차적으로 10회 반복하여 리튬 금속의 전처리 과정을 마무리하였다.
실시예 2 내지 7
하기 표 1과 같이, 전류 밀도, 시간 및 횟수를 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 금속의 전처리 과정을 마무리하였다.
비교예 1 내지 5
하기 표 1과 같이, 전류 밀도, 시간 및 횟수를 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 금속의 전처리 과정을 마무리하였다.
비교예 6
본 발명에 따른 리튬 금속의 전처리 과정을 수행하지 않았다.
스트리핑 단계 플레이팅 단계 횟수(n)
전류 밀도(mA/cm2) 시간(s) 전류 밀도(mA/cm2) 시간(s)
실시예 1 8.0 60 0.08 6,000 10
실시예 2 8.0 60 0.08 6,000 5
실시예 3 8.0 60 0.08 6,000 3
실시예 4 12.0 40 0.08 6,000 10
실시예 5 8.0 30 0.04 6,000 10
실시예 6 16.0 30 0.08 6,000 10
실시예 7 8.0 120 0.16 6,000 10
비교예 1 2.67 180 0.08 6,000 10
비교예 2 8.0 180 0.24 6,000 10
비교예 3 8.0 240 0.32 6,000 10
비교예 4 8.0 60 0.08 6,000 15
비교예 5 8.0 60 0.08 6,000 20
상기 표 1에 표시된 정보를 바탕으로 상술한 ECPS factor 및 ECPP factor 값을 계산하여 하기 표 2에 나타내었다.
스트리핑 단계 플레이팅 단계
ECPS factor(mA/cm2/s/n2) ECPP factor(mA·s/cm2) ECPP factor (mA·s/cm2)
실시예 1 0.00133 480 480
실시예 2 0.00533 480 480
실시예 3 0.0148 480 480
실시예 4 0.003 480 480
실시예 5 0.00267 240 240
실시예 6 0.00533 480 480
실시예 7 0.000667 960 960
비교예 1 0.000148 480 480
비교예 2 0.000444 1,440 1,440
비교예 3 0.000333 1,920 1,920
비교예 4 0.000593 480 480
비교예 5 0.000333 480 480
실험예
실험예 1
리튬 금속의 전처리 이후 리튬 금속의 회수율(recovery ratio)을 측정하여 하기 표 3에 나타내었다. 상기 리튬 금속의 회수율은 하기 수학식 3을 통해 계산된다.
[수학식 3]
리튬 금속의 회수율(%)= 전처리 이후 리튬 금속의 함량(g)/전처리 이전 리튬 금속의 함량(g)×100
전처리 전후의 리튬 금속의 함량은 Micro valence(Mettler Toledo, XP105 model)를 통해 무게를 측정하여 확인하였다. 특히, 전처리 후의 리튬 금속의 무게 측정은 정확한 측정을 위해 디메톡시에탄(dimethoxyethane)으로 세척 및 건조한 후 진행하였다.
리튬 금속의 회수율(%) 리튬 금속의 회수율(%)
실시예 1 98.5 실시예 7 93.3
실시예 2 99.1 비교예 1 81.6
실시예 3 99.5 비교예 2 88.4
실시예 4 96.7 비교예 3 85.3
실시예 5 95.8 비교예 4 81.5
실시예 6 92.7 비교예 5 75.5
상기 표 3에 따르면, 실시예 1 내지 7의 조건으로 스트리핑 및 플레이팅 단계에서 전류 밀도, 시간 및 횟수를 조절하는 경우 표면 산화막을 효과적으로 제거한 후에 리튬 금속을 90% 이상 회수할 수 있었다.
실험예 2
실시예 1 및 비교예 5 각각에 따라 리튬 금속을 전처리한 후 전처리된 리튬 금속을 사진 촬영하여 도 1 및 도 2에 나타내었다.
상기 도 1에 따르면, 실시예 1에 따라 리튬 금속을 전처리한 경우, 스트리핑 단계 이후에 플레이팅 단계에서 리튬 금속이 충분하게 보충되어 상대적으로 광택이 없고, 균일한 형태의 표면이 형성된 것을 확인 할 수 있었다. 이와 달리, 상기 도 2에 따르면, 비교예 5에 따라 리튬 금속을 전처리한 경우, 스트리핑 단계 이후에 플레이팅 단계에서 리튬 금속이 불충분하게 보충되어 광택이 있고, 균일한 형태의 표면이 형성된 것을 확인할 수 있었다.
실험예 3
리튬 금속의 전처리 이후 리튬 이차전지의 성능을 평가하기 위해, 실시예 1 및 2와 비교예 4 및 6 각각에 따라 리튬 금속을 전처리한 후 리튬 이차전지를 반복적으로 충·방전하면서 각 사이클에서 전지의 용량 보유율(capacity retention)을 측정하여 도 3에 나타내었다. 리튬 이차전지의 충·방전은 1.5V ~ 2.8V(vs. Li/Li+)의 전위 범위 내에서 0.1C/0.1C 충전/방전 3 사이클, 0.2C/0.2C 충전/방전 3 사이클 이후, 0.3C/0.5 충전/방전 10 사이클과 0.2C/0.2C 충전/방전 3 사이클을 순차적으로 반복하여 수행하였다.
도 3에 따르면, 실시예 1 및 2에 따른 리튬 금속의 전처리 과정을 수행한 리튬 이차전지는 리튬 금속의 표면에 형성된 표면 산화막을 효과적으로 제거할 수 있어 리튬 금속의 전처리 과정을 수행하지 않은 비교예 6에 따른 리튬 이차전지에 비해 수명 특성이 현저하게 개선되는 것을 확인할 수 있었다. 또한, 실시예 1 및 2에 따른 리튬 금속의 전처리 과정을 수행한 리튬 이차전지는 리튬 금속의 회수율이 높아 비교예 4에 따른 리튬 금속의 전처리 과정을 수행한 리튬 이차전지에 비해 마찬가지로 수명 특성이 현저하게 개선되는 것을 확인할 수 있었다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (10)

  1. 전지를 방전하여 리튬 금속 상에 형성된 표면 산화막을 제거하는 스트리핑 단계; 및
    전지를 충전하여 상기 스트리핑 단계에 의해 표면 산화막이 제거된 리튬 금속 상에 리튬 금속을 보충하는 플레이팅 단계를 포함하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  2. 청구항 1에 있어서,
    상기 스트리핑 단계는 5 내지 20mA/cm2의 전류 밀도로 전지를 방전하여 수행되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  3. 청구항 2에 있어서,
    상기 스트리핑 단계는 20 내지 120초의 시간 및 1 내지 13회의 횟수로 전지를 방전하여 수행되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  4. 청구항 1에 있어서,
    상기 스트리핑 단계는 하기 수학식 1로 표시되는 ECPS factor 값이 6.0×10-4 내지 3.0×10-2의 범위에서 전지를 방전하여 수행되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법:
    [수학식 1]
    ECPS factor(mA/cm2/s/n2)= 전류 밀도(mA/cm2)/시간(s)/(횟수(n))2.
  5. 청구항 1에 있어서,
    상기 플레이팅 단계는 0.01 내지 0.2mA/cm2의 전류 밀도로 전지를 충전하여 수행되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  6. 청구항 5에 있어서,
    상기 플레이팅 단계는 1,000 내지 7,000초의 시간 및 1 내지 13회의 횟수로 전지를 충전하여 수행되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  7. 청구항 1에 있어서,
    상기 스트리핑 단계 및 상기 플레이팅 단계가 2회 이상 수행되는 경우, 상기 스트리핑 단계 및 플레이팅 단계는 동일한 횟수로, 번갈아 순차적으로 수행되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  8. 청구항 1에 있어서,
    상기 스트리핑 단계에서 방전 시 전류 밀도와 상기 플레이팅 단계에서 충전 시 전류 밀도의 비율은 50:1 내지 200:1인 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법.
  9. 청구항 1에 있어서,
    상기 스트리핑 단계에서 방전 시 ECPP factor 값과 상기 플레이팅 단계에서 충전 시 ECPP factor 값의 비율은 1.3:1 내지 1:1.3이며, 상기 ECPP factor 값은 하기 수학식 2로 표시되는 것을 특징으로 하는 리튬 이차전지용 리튬 금속의 전처리 방법:
    [수학식 2]
    ECPP factor(mA·s/cm2)=전류 밀도(mA/cm2)·시간(s).
  10. 청구항 1에 따른 리튬 금속의 전처리 방법에 의해 전처리된 리튬 금속을 포함하는 리튬 이차전지.
PCT/KR2019/008769 2018-07-25 2019-07-16 리튬 이차전지용 리튬 금속의 전처리 방법 WO2020022690A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/971,180 US11978886B2 (en) 2018-07-25 2019-07-16 Method for preprocessing lithium metal for lithium secondary battery
EP19839866.1A EP3745509B1 (en) 2018-07-25 2019-07-16 Method for preprocessing lithium metal for lithium secondary battery
CN201980018364.3A CN111837264B (zh) 2018-07-25 2019-07-16 锂二次电池用锂金属的预处理方法
JP2020545502A JP7062194B2 (ja) 2018-07-25 2019-07-16 リチウム二次電池用リチウム金属の前処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180086474A KR102617870B1 (ko) 2018-07-25 2018-07-25 리튬 이차전지용 리튬 금속의 전처리 방법
KR10-2018-0086474 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022690A1 true WO2020022690A1 (ko) 2020-01-30

Family

ID=69181803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008769 WO2020022690A1 (ko) 2018-07-25 2019-07-16 리튬 이차전지용 리튬 금속의 전처리 방법

Country Status (6)

Country Link
US (1) US11978886B2 (ko)
EP (1) EP3745509B1 (ko)
JP (1) JP7062194B2 (ko)
KR (1) KR102617870B1 (ko)
CN (1) CN111837264B (ko)
WO (1) WO2020022690A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072076A (zh) * 2020-07-22 2020-12-11 宁波大学 一种锂金属电池负极表面的改性方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284564B (zh) * 2021-12-06 2024-02-09 上海空间电源研究所 一种具有恒定电位参比电极的软包电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181528A1 (en) * 2007-06-19 2010-07-22 Richardson Thomas J Solid solution lithium alloy cermet anodes
US20170133662A1 (en) * 2015-11-11 2017-05-11 The Board Of Trustees Of The Leland Stanford Junior University Composite lithium metal anodes for lithium batteries with reduced volumetric fluctuation during cycling and dendrite suppression
KR20180086474A (ko) 2016-03-09 2018-07-31 쌩-고벵 글래스 프랑스 조명가능한 복합 판유리

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61285667A (ja) * 1985-06-11 1986-12-16 Japan Storage Battery Co Ltd リチウム電池の製造方法
JPH11297362A (ja) * 1998-04-13 1999-10-29 Matsushita Electric Ind Co Ltd 非水電解質二次電池とその製造法および電池の状態検知方法
JP2010267487A (ja) * 2009-05-14 2010-11-25 Murata Mfg Co Ltd リチウム遷移金属複合酸化物及びその製造方法並びにそれを用いた非水電解質二次電池
JP5331627B2 (ja) * 2009-09-09 2013-10-30 公立大学法人首都大学東京 リチウム二次電池用セパレーターおよびこれを用いたリチウム二次電池
EP2306579A1 (fr) 2009-09-28 2011-04-06 STMicroelectronics (Tours) SAS Procédé de formation d'une batterie lithium-ion en couches minces
JP5289595B2 (ja) 2011-03-17 2013-09-11 株式会社Jsv 充放電に基づく電極絶縁体不活性化皮膜の除去再生充電装置
WO2013118659A1 (ja) * 2012-02-06 2013-08-15 日本電気株式会社 リチウムイオン電池およびその製造方法
JP5854009B2 (ja) 2012-12-26 2016-02-09 株式会社デンソー マグネシウム二次電池用負極の表面処理方法
WO2014109271A1 (en) 2013-01-14 2014-07-17 Semiconductor Energy Laboratory Co., Ltd. Electrochemical device
WO2015016621A1 (ko) * 2013-07-31 2015-02-05 주식회사 엘지화학 리튬 이차전지용 양극 활물질의 제조방법
KR20150022090A (ko) * 2013-08-22 2015-03-04 주식회사 엘지화학 양극 활물질 및 이를 포함하는 리튬 이차전지와 이의 제조방법
JP2015072809A (ja) * 2013-10-03 2015-04-16 信越化学工業株式会社 珪素含有材料並びに非水電解質二次電池用負極及び非水電解質二次電池並びにそれらの製造方法
JP6302203B2 (ja) 2013-10-04 2018-03-28 国立大学法人鳥取大学 二次電池用負極材、二次電池用負極材の製造方法および二次電池用負極
KR20150059820A (ko) * 2013-11-23 2015-06-03 주식회사 에너세라믹 공침법에 의한 리튬 이차전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차전지용 양극활물질 전구체
KR101751574B1 (ko) * 2014-09-30 2017-06-27 주식회사 엘지화학 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차 전지용 음극, 및 리튬 이차 전지
KR102609408B1 (ko) 2015-04-16 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 세터 플레이트 및 그를 사용하여 치밀한 고체 전해질을 제조하는 방법
US10418670B2 (en) * 2015-06-26 2019-09-17 Lg Chem, Ltd. Method of manufacturing lithium secondary battery and lithium secondary battery manufactured by the same
KR20180108807A (ko) 2016-03-25 2018-10-04 후지필름 가부시키가이샤 알루미늄판의 제조 방법, 및 알루미늄판의 제조 장치
JP2018019557A (ja) 2016-07-29 2018-02-01 ダイハツ工業株式会社 車両用制御装置
US10897040B2 (en) 2016-09-30 2021-01-19 Lg Chem, Ltd. Anode having double-protection layer formed thereon for lithium secondary battery, and lithium secondary battery comprising same
JP6937009B2 (ja) * 2017-05-10 2021-09-22 公立大学法人大阪 全固体アルカリ金属二次電池用の固体電解質層及び全固体アルカリ金属二次電池
JP6998551B2 (ja) * 2017-05-18 2022-02-10 パナソニックIpマネジメント株式会社 リチウム二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100181528A1 (en) * 2007-06-19 2010-07-22 Richardson Thomas J Solid solution lithium alloy cermet anodes
US20170133662A1 (en) * 2015-11-11 2017-05-11 The Board Of Trustees Of The Leland Stanford Junior University Composite lithium metal anodes for lithium batteries with reduced volumetric fluctuation during cycling and dendrite suppression
KR20180086474A (ko) 2016-03-09 2018-07-31 쌩-고벵 글래스 프랑스 조명가능한 복합 판유리

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GIREAUD, L. ET AL.: "Lithium metal stripping/plating mechanisms studies: A metallurgical approach", ELECTROCHEMISTRY COMMUNICATIONS, vol. 8, 2006, pages 1639 - 1649, XP028041692, DOI: 10.1016/j.elecom.2006.07.037 *
LIN, DIMGCHANG ET AL.: "Three-dimensional stable lithium metal anode with nanoscale lithium island s embedded in ionically conductive solid matrix", PNAS, vol. 1 14, no. 18, 2017, pages 4613 - 4618, XP055624025, DOI: 10.1073/pnas.1619489114 *
MARKEVICH, ELENA ET AL.: "Very Stable Lithium Metal Stripping-Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solutio n", ACS ENERGY LETTERS, vol. 2, 2017, pages 1321 - 1326, XP055681929, DOI: 10.1021/acsenergylett.7b00300 *
RYOU,M.H. ET AL.: "Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating", ADV. FUNCT. MATER., vol. 25, 2015, pages 834 - 841, XP001595266, DOI: 10.1002/adfm.201402953
See also references of EP3745509A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072076A (zh) * 2020-07-22 2020-12-11 宁波大学 一种锂金属电池负极表面的改性方法
CN112072076B (zh) * 2020-07-22 2021-07-27 宁波大学 一种锂金属电池负极表面的改性方法

Also Published As

Publication number Publication date
JP7062194B2 (ja) 2022-05-06
EP3745509B1 (en) 2024-02-07
CN111837264A (zh) 2020-10-27
EP3745509A4 (en) 2021-05-26
EP3745509A1 (en) 2020-12-02
JP2021515965A (ja) 2021-06-24
US11978886B2 (en) 2024-05-07
CN111837264B (zh) 2023-05-05
KR102617870B1 (ko) 2023-12-22
KR20200011699A (ko) 2020-02-04
US20210104732A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2017104867A1 (ko) 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2019112167A1 (ko) 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
WO2019194433A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2015065102A1 (ko) 리튬 이차전지
WO2014193148A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020085823A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2014185750A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2018212481A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020076091A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2019177403A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지용 음극
WO2020022690A1 (ko) 리튬 이차전지용 리튬 금속의 전처리 방법
WO2019198938A1 (ko) 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2020231087A1 (ko) 음극의 제조방법
WO2017030416A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020159263A1 (ko) 이차전지용 음극의 제조방법
WO2020226354A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 양극 및 이를 포함하는 리튬 이차전지
WO2020153701A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2019221410A1 (ko) 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지
WO2019135525A1 (ko) 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체
WO2019093869A2 (ko) 이차전지용 양극 활물질의 제조방법
WO2018062934A1 (ko) 이중 보호층이 형성된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2017057963A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19839866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545502

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019839866

Country of ref document: EP

Effective date: 20200826

NENP Non-entry into the national phase

Ref country code: DE