WO2009119756A1 - 吸水性樹脂粉体の輸送方法 - Google Patents

吸水性樹脂粉体の輸送方法 Download PDF

Info

Publication number
WO2009119756A1
WO2009119756A1 PCT/JP2009/056159 JP2009056159W WO2009119756A1 WO 2009119756 A1 WO2009119756 A1 WO 2009119756A1 JP 2009056159 W JP2009056159 W JP 2009056159W WO 2009119756 A1 WO2009119756 A1 WO 2009119756A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
water
absorbent resin
transportation
resin powder
Prior art date
Application number
PCT/JP2009/056159
Other languages
English (en)
French (fr)
Inventor
野木 幸三
中村 将敏
松本 幸治
一真 粟井
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41113942&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009119756(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to EP09724168A priority Critical patent/EP2263957B1/en
Priority to CN200980111363.XA priority patent/CN101980937B/zh
Priority to US12/935,052 priority patent/US9175142B2/en
Priority to JP2010505785A priority patent/JP5710966B2/ja
Publication of WO2009119756A1 publication Critical patent/WO2009119756A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for transporting water absorbent resin powder.
  • water-absorbent resins have been widely used as sanitary materials such as paper diapers, sanitary napkins, and incontinence pads from the viewpoint of absorbing body fluids.
  • a water-absorbing resin include a crosslinked polyacrylic acid partially neutralized product, a hydrolyzate of starch-acrylic acid graft polymer, a saponified product of vinyl acetate-acrylic acid ester copolymer, an acrylonitrile copolymer or acrylamide.
  • a hydrolyzate of a copolymer or a crosslinked product thereof, and a crosslinked product of a cationic monomer are known.
  • this water-absorbent resin can be used in the form of a sheet, fiber, or film, it is generally used in the form of a powder (particulate).
  • powder for example, a particulate water-absorbing agent having a weight average particle diameter of about 200 to 800 ⁇ m is widely used.
  • the particulate water-absorbing agent is manufactured through a drying process, a crushing process, a classification process, a surface crosslinking process, and the like.
  • a transportation device is used for transportation between devices performing each process. Examples of the transportation method include mechanical transportation and pneumatic transportation. In mechanical transportation, for example, a conveyor is used as a transportation device.
  • Pneumatic transportation has many advantages compared to mechanical transportation.
  • the advantage of pneumatic transportation is that there are few mechanical parts, there are few mechanical troubles, it has excellent durability, and unlike a belt conveyor, there is no need for a return line, it is a one-way, and foreign matter is difficult to mix. , Etc.
  • Air transportation methods are roughly divided into low-concentration air transportation and high-concentration air transportation.
  • low-concentration pneumatic transportation the material to be transported is in a dispersed state in the transportation pipe.
  • high-concentration pneumatic transportation the powder that is the object to be transported moves while forming a group called slag or plug in the transportation pipe.
  • the air velocity In order for the powder to maintain a dispersed state, the air velocity must be high, so low concentration pneumatic transportation is high speed transportation. On the other hand, high concentration pneumatic transportation is low speed transportation.
  • JP-A-2004-345804 discloses a transport method that can suppress deterioration of physical properties of water-absorbent resin powder containing polyhydric alcohol.
  • Patent Documents 2 to 4 disclose a pneumatic transport method for a water-absorbent resin with little deterioration in physical properties during transport.
  • the curvature radius of the pipe is specified to be five times or more of the pipe diameter
  • Patent Document 3 the gas speed and the solid-gas ratio are specified
  • Patent Document 4 the fluid number is specified. is doing.
  • Patent Document 5 discloses a method for preventing aggregation of a water-absorbent resin during transportation by heating or keeping the apparatus warm, and discloses pneumatic transportation as an example of the transportation method.
  • the present inventor has found a new transportation method capable of suppressing deterioration of physical properties in pneumatic transportation based on a technical idea different from the conventional one.
  • the problem to be solved by the present invention is to provide a method of transporting water-absorbent resin powder that can suppress deterioration of physical properties of the water-absorbent resin powder while suppressing the blocking phenomenon and is suitable for long-distance transport.
  • the transport method according to the present invention is a transport method in which the water-absorbent resin powder in the manufacturing process is pneumatically transported via a transport pipe.
  • this transportation method two or more pneumatic transportation devices are used in one transportation section (multistage pneumatic transportation), and these pneumatic transportation devices are connected in series by transportation piping.
  • the total length Lt of the transport pipes included in one transport section is 50 m or more.
  • the length Lp of each transport pipe included in one transport section is 40 m or less.
  • the linear velocity at the end of the transport pipe of the water absorbent resin powder is 15 m / s or less.
  • the pneumatic transport device has a pressurized tank and a receiving hopper.
  • a valve is provided between the pressurized tank and the receiving hopper.
  • the opening and closing of the valve and the activation of the pneumatic transportation device are automatically controlled.
  • the opening and closing of the valve and the activation of the air transport device are automatically controlled based on the detection result of the pressure in the pressurized tank (also referred to as “pressurized tank hopper”).
  • the pressure in the pressurized tank in the pressurized state is 0.05 to 0.7 MPa.
  • the total length Lt of the transport pipes included in one transport section is 100 m or more.
  • the pneumatic transport device is a high concentration pneumatic transport device.
  • the transport amount of the water absorbent resin powder by the transport method is 1000 kg / hr or more.
  • the water absorbent resin powder is surface-crosslinked with a polyhydric alcohol.
  • the water absorbent resin powder includes a polyvalent metal salt.
  • the water absorbent resin powder includes inorganic particles.
  • the water-absorbent resin powder before and after transportation has a 0.69 mass% saline flow conductivity (SFC) of 10 (10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more. is there.
  • the “water absorbent resin powder after transport” means the water absorbent resin powder immediately after transport according to the present invention, and the transport according to the present invention is an intermediate stage in the production process of the water absorbent resin powder. When it is made, it means the water-absorbent resin powder (intermediate) immediately after transport in this intermediate stage.
  • the water absorbent resin powder is a polyacrylic acid (salt) water absorbent resin having an irregularly crushed shape obtained by continuous belt polymerization or continuous kneader polymerization.
  • the water absorbent resin powder is a polyacrylic acid (salt) water absorbent resin obtained in a production process including a fine powder recycling process.
  • it is a polyacrylic acid (salt) water-absorbing resin obtained by surface-crosslinking the water-absorbing resin powder at 150 to 250 ° C.
  • the transportation piping can be shortened even when the transportation section is long.
  • the physical property fall of a water absorbent resin powder can be suppressed by suppressing the linear velocity of a water absorbent resin powder.
  • Such an effect is particularly prominent with respect to a water-absorbing resin obtained in a specific production process (polymerization, surface cross-linking, additive addition, fine powder recycling, etc.).
  • FIG. 1 is a schematic configuration diagram showing a production facility used for producing a water-absorbing resin (also referred to as a particulate water-absorbing agent).
  • FIG. 2 is a diagram showing a schematic configuration of a transport apparatus that can be used in an embodiment of the present invention.
  • FIG. 3 shows the cone angle of the hopper that can be used in an embodiment of the present invention, the maximum aperture (R1) at the top of the hopper that defines the ratio of the draw ratio and the maximum aperture (diameter) to the height of the hopper. It is the schematic which shows the aperture (R2) and height (H) of a hopper discharge part.
  • FIG. 4 is a diagram showing a schematic configuration of a transport unit used in the transport method of the present invention.
  • FIG. 1 is a schematic configuration diagram showing a production facility used for producing a water-absorbing resin (also referred to as a particulate water-absorbing agent).
  • FIG. 2 is a diagram showing a schematic configuration of a transport apparatus that can be used in an embodiment
  • FIG. 5 is a schematic configuration diagram showing FIG. 4 in some detail.
  • FIG. 6 is a diagram showing an example of a timing chart of each transportation apparatus according to the present invention.
  • FIG. 7 is a cross-sectional view showing a transport pipe and a secondary air pipe.
  • FIG. 8 is a schematic configuration diagram of a transport unit according to the third embodiment.
  • the present invention relates to a method for transporting water-absorbent resin powder in the production process of a particulate water-absorbing agent.
  • the “water-absorbing resin” means a water-swellable, water-insoluble polymer gelling agent.
  • the water absorption capacity (CRC) is essentially 5 g / g or more, preferably 10 to 100 g / g, and more preferably 20 to 80 g / g.
  • the extractables are essentially 0 to 50% by weight, preferably 0 to 30% by weight, more preferably 0 to 20% by weight, and particularly preferably 0 to 10% by weight. .
  • the water-absorbing resin is not limited to a form in which the total amount (100%) is a polymer, and may contain additives (described later) within a range that maintains the above performance. That is, even the particulate water-absorbing agent (water-absorbing resin composition) is collectively referred to as a water-absorbing resin in the present invention.
  • the content of the water absorbent resin (polyacrylic acid (salt) water absorbent resin) according to the present invention is The content is preferably 70 to 99.9% by weight, more preferably 80 to 99.7% by weight, and still more preferably 90 to 99.5% by weight.
  • water is preferable from the viewpoint of water absorption speed and impact resistance of the powder (particles), and if necessary, additives described later are included.
  • polyacrylic acid (salt) means a polymer mainly composed of acrylic acid (salt) as a repeating unit.
  • acrylic acid (salt) is essentially 50 to 100 mol%, preferably 70 to 100 mol%, more preferably 90 to 100 mol%, particularly preferably substantially as a monomer excluding the crosslinking agent. Contains 100 mol%.
  • the salt as a polymer essentially contains a water-soluble salt, preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt, particularly an alkali metal salt, and further a sodium salt.
  • EDANA is an abbreviation for European Disposables and Nonwovens Associations.
  • ERT / EDANA Recommended Test Methods of the water-absorbent resin of European standard (almost world standard)
  • ERT European Disposables and Nonwovens Associations
  • hydrated gel polymer hydrated gel
  • dried product dried product
  • water absorbent resin powder water absorbent resin powder
  • “Hydrated gel polymer (hydrated gel; polymer gel)” refers to a hydrogel crosslinked polymer of a water-absorbing resin. As a representative, it is a hydrogel obtained in the polymerization step. Usually, it refers to a polymer having a water content of 30% by weight or more.
  • “Dry product” refers to a dry polymer of a water-absorbent resin that has undergone a drying process. Although it depends on the water content after polymerization, it usually refers to a dry polymer having a water content of less than 30% by weight, further 20% by weight or less in the drying step. Regardless of the shape, drying may be performed simultaneously with polymerization (drying by polymerization heat or heating during polymerization).
  • Water-absorbent resin powder has a certain fluidity as a powder, for example, a state in which Flow Rate (ERT450.2-02) can be measured as fluidity, or (ERT420 .2-02) which can be classified by sieving. More specifically, it is a solid having a particle size of 5 mm or less as defined by sieve classification, and is used as a solid of a dry polymer powder of a water absorbent resin, or a raw material or additive of a water absorbent resin. Powder (for example, water-insoluble inorganic powder, polyvalent metal salt powder or hydrated salt thereof). The water content is not limited as long as it is solid, but it is usually less than 30% by weight, and further 20% by weight or less.
  • a particle diameter is not restrict
  • 1 mm or more may be referred to as granules, and less than 1 mm may be referred to as powder.
  • these powders water-absorbent resin or raw material
  • “powder” and “powder” are treated as synonyms.
  • FIG. 1 is a schematic configuration diagram showing a production facility 2 used for producing a water absorbent resin (particulate water absorbing agent).
  • a water absorbent resin particle water absorbing agent
  • devices for performing each process are connected by a transport unit 6.
  • the polymerization apparatus 8, the drying apparatus 10, the pulverizing apparatus 12, the classification apparatus 14, the mixing apparatus 16, the heating apparatus 18, the cooling apparatus 20, the granulating apparatus 22, the filling apparatus 24, the fine powder capturing apparatus 26, and the granulating apparatus 28 are manufactured in this manner. It is provided in the facility 2.
  • the water absorbent resin powder obtained in a certain process is transported to the next process by the transport unit 6.
  • a polymerization process is performed using the polymerization apparatus 8.
  • a drying process is performed using the drying apparatus 10.
  • a pulverization step is performed using the pulverizer 12.
  • a classification process is performed using the classification device 14.
  • a surface cross-linking step is performed using the mixing device 16 and the heating device 18.
  • a cooling process is performed using the cooling device 20.
  • a sizing step is performed using the sizing device 22.
  • a packaging process is performed. Fine powder is collected using the fine powder capture device 26.
  • a granulation step is performed using the granulator 28. The collected fine powder and the flow-formed particles formed by the granulation process are recycled by the fine powder recycling process.
  • the polymerization step is a step of polymerizing a monomer that can become a water-absorbing resin by polymerization (hereinafter also referred to as a monomer) to produce a polymer gel (hydrogel polymer).
  • the polymerization method of the water-absorbent resin according to the present invention is not particularly limited, and examples thereof include bulk polymerization, precipitation polymerization, aqueous solution polymerization, reverse phase suspension polymerization, spray polymerization, and droplet polymerization. In view of performance and ease of polymerization control, aqueous solution polymerization or reverse phase suspension polymerization in which the monomer is used as an aqueous solution is preferable.
  • aqueous solution polymerization particularly continuous aqueous solution polymerization, in which the solution of the problem of transportability is remarkable from the shape of the obtained polymer gel is preferable.
  • a continuous belt polymerization or a continuous kneader can be preferably used from the viewpoint of more exerting the effects of the present invention.
  • continuous kneader polymerization for example, US Pat. No. 6,987,151 and US Pat. No. 6,710,141
  • continuous belt polymerization for example, US Pat. No. 4,893,999, US Pat. No. 6,241,928 and US Patent Application Publication
  • Such continuous polymerization can produce water-absorbing resins (particularly, irregularly crushed water-absorbing resins) with high productivity, but there is a tendency for physical properties to fluctuate and decrease with scale-up. It can be solved.
  • (Monomer) Although it does not specifically limit as a monomer, the water-soluble unsaturated monomer as shown below is mentioned.
  • Anionic unsaturated monomers such as sulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2-hydroxyethyl (meth) acryloyl phosphate and salts thereof; containing mercapto group Unsaturated monomers; phenolic hydroxyl group-containing unsaturated monomers; amide group-containing unsaturated monomers such as (meth) acrylamide
  • These monomers may be used independently and may be used in mixture of 2 or more types suitably.
  • These monomers may contain a polymerization inhibitor and iron of 5 ppm or less (more preferably 1 ppm or less), and a suitable use amount is, for example, 160 ppm or less of methoxyphenol, and the use amount exemplified in US Pat. No. 7,049,366. is there.
  • anionic unsaturated monomers particularly carboxyl group-containing unsaturated monomers, and further acrylic acid and / or its salts (for example, sodium, lithium, potassium)
  • the amount of acrylic acid and / or salt thereof used is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly with respect to all monomer components (excluding the internal crosslinking agent described later).
  • the said monomer is acid group containing monomers, such as a carboxyl group
  • limiting in particular in the neutralization rate A polymerization gel may be neutralized after superposition
  • the neutralization rate is preferably 40 mol% or more and 90 mol% or less, and more preferably 50 mol% or more and 80 mol% or less.
  • the concentration of the monomer in the aqueous solution is not particularly limited, but is in the range of 10 to 70% by weight.
  • the content is preferably in the range of 20 to 60% by weight, more preferably in the range of 35 to 60% by weight.
  • solvents other than water may be used together as needed.
  • the kind of solvent used together is not specifically limited.
  • a radical polymerization initiator In the polymerization step, for example, a radical polymerization initiator can be used.
  • the radical polymerization initiator is not particularly limited, and one or two or more types selected from those used in normal water-absorbing resin polymerization are selected in accordance with the type of monomer to be polymerized and polymerization conditions. Can be used.
  • a thermal decomposition type initiator for example, persulfate such as sodium persulfate, potassium persulfate, ammonium persulfate; peroxide such as hydrogen peroxide, t-butyl peroxide, methyl ethyl ketone peroxide; azonitrile compound, azoamidine compound
  • persulfate such as sodium persulfate, potassium persulfate, ammonium persulfate
  • peroxide such as hydrogen peroxide, t-butyl peroxide, methyl ethyl ketone peroxide
  • azonitrile compound azoamidine compound
  • reducing agents for example, benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, azo compounds, etc.
  • a thermal decomposition type initiator is preferable, and a persulfate is particularly preferable.
  • the combined use of the reducing agent can accelerate the decomposition of these radical polymerization initiators, they can be combined to form a redox initiator.
  • the reducing agent is not particularly limited. For example, reducing metal (salt) such as (heavy) sulfite (salt) such as sodium sulfite and sodium bisulfite, L-ascorbic acid (salt), ferrous salt and the like. And amines.
  • the amount of radical polymerization initiator used in the above-mentioned polymerization step is not particularly limited, but is usually 0.001 to 2% by weight with respect to the amount of monomer used from the viewpoint of residual monomer and water-soluble content. It is preferably 0.01 to 1% by weight, more preferably 0.01 to 0.5% by weight, and particularly preferably 0.01 to 0.05% by weight.
  • the amount of the radical polymerization initiator used relative to the amount of the monomer used is less than 0.001% by weight because the amount of residual monomer in the water-absorbing resin that can increase the amount of unreacted monomers increases. It is not preferable.
  • the monomer may be polymerized by irradiating with active energy rays such as radiation, electron beam or ultraviolet ray instead of the above-mentioned radical polymerization initiator.
  • an internal cross-linking agent in the polymerization step, can be used as necessary.
  • the internal cross-linking agent include conventionally known internal cross-linking agents having two or more polymerizable unsaturated groups or two or more reactive groups in one molecule.
  • the internal cross-linking agent is preferably a compound having two or more polymerizable unsaturated groups.
  • the amount of the internal cross-linking agent used may be appropriately determined depending on the desired properties of the water-absorbent resin. Usually, the amount of the internal cross-linking agent used is 0.001 to 5 mol%, more preferably 0. A range of 005 to 2 mol%, particularly 0.01 to 0.5 mol% is preferable.
  • the internal cross-linking agent may be added to the reaction system all at once, or may be added in portions.
  • a drying process is a process of drying the polymer gel (hydrogel polymer) obtained at the above-mentioned polymerization process.
  • the polymer gel obtained in the polymerization step using aqueous solution polymerization is usually dried into a particulate state of about 0.1 to 5 mm, more preferably about 0.5 to 3 mm by crushing treatment during polymerization or after polymerization. It is preferable to use for a process.
  • a particulate gel the surface area of the gel is increased, so that the drying process described above can proceed smoothly.
  • the crushing means is not particularly limited, and various cutting means such as a meat chopper, a roller cutter, a guillotine cutter, a slicer, a roll cutter, a shredder, and scissors can be used alone or in appropriate combination.
  • the drying method in this drying process is not specifically limited, As said drying apparatus 10, the method using a normal dryer and a heating furnace can be employ
  • the hot air dryer examples include drying devices such as a ventilation band type, a ventilation circuit type, a ventilation bowl type, a parallel flow band type, a ventilation tunnel type, a ventilation groove type stirring type, a fluidized bed type, an air flow type, and a spray type.
  • the band type is preferable.
  • the drying temperature is preferably set to a relatively high temperature, specifically, preferably 100 to 250 ° C, more preferably 120 to 220 ° C, and further preferably 150 to 200 ° C.
  • the drying time is not particularly limited, but may be set so that the obtained dried product has a desired solid content rate.
  • the solid content of the dried product obtained in the drying step is 90% by weight or more.
  • the drying time is usually preferably within 2 hours from the viewpoint of production efficiency.
  • the pulverization step is a step of pulverizing the particulate water-absorbing resin as a dried polymer gel obtained in the above-described drying step. Although this grinding
  • pulverization is normally performed with respect to this dried material, you may carry out with respect to the polymer gel obtained at the polymerization process before drying. By this pulverization, a particulate water-absorbing resin as a pulverized product is obtained.
  • the pulverization is preferably performed so as to obtain more particulate water-absorbing resin having a desired particle diameter (preferably, a weight average particle diameter of 200 to 800 ⁇ m).
  • a desired particle diameter preferably, a weight average particle diameter of 200 to 800 ⁇ m.
  • a conventionally well-known method is employable.
  • An example of the pulverizer 12 used in this pulverization step is a three-stage roll mill. Since fine powder is generated by this pulverization, the particulate water-absorbing resin obtained in the pulverization step contains fine powder. In addition, when the particle size of the particulate water-absorbing resin obtained in the polymerization step or the drying step is controlled and sufficiently small, this pulverization step may not be performed.
  • the water-absorbent resin and water-absorbing agent particles obtained through the pulverization step are irregularly crushed particles, but such a shape is preferable because it has a large surface area by pulverization and can be easily fixed to pulp. That is, the shape of the water-absorbing resin or the water-absorbing agent is preferably irregular crushed particles.
  • the irregularly pulverized and crushed particles are difficult to transport due to their shapes and are liable to cause deterioration in physical properties accompanying transportation.
  • the present invention solves such problems and is preferable.
  • the classification step is a step of sieving the particulate water-absorbing resin.
  • the pulverized product obtained in the above pulverization step is sieved.
  • a classification device 14 having a metal sieve screen is used.
  • the classifier 14 is used to select particles having a desired particle diameter (weight average particle diameter (D50) defined by sieve classification is preferably 200 to 800 ⁇ m, more preferably 300 to 600 ⁇ m).
  • D50 weight average particle diameter
  • There is no particular limitation on the classification method and a conventionally known method can be adopted, and the particulate water-absorbing resin obtained in the polymerization step or the drying step can be obtained. If the particle size of the resin is controlled and sufficiently small, this classification step may not be carried out, in particular, sieve classification is particularly preferably applied, and the number of sieves is appropriately determined, but usually 2 to 5 It is about a step.
  • the surface crosslinking step is a step of obtaining a particulate water-absorbing agent by crosslinking the vicinity of the surface of the particulate water-absorbing resin obtained in the classification step using a surface crosslinking agent.
  • the water-absorbent resin is a water-swellable crosslinked polymer and has a crosslinked structure inside (particles), but the water-absorbent resin (particles) used in the present invention is further surface-crosslinked, and the crosslink density on the surface or in the vicinity of the surface is high. It is preferable that the height is higher than the inside.
  • the vicinity of the surface usually refers to a surface layer of the water-absorbent resin and has a thickness of several tens of ⁇ m or less or 1/10 or less of the whole, and is appropriately determined according to the purpose.
  • the surface cross-linking of the water-absorbent resin may be (1) surface cross-linked by an organic surface cross-linking agent and / or a water-soluble inorganic surface cross-linking agent exemplified as a surface cross-linking agent described later.
  • the monomer may be subjected to cross-linking polymerization (for example, disclosed in US Pat. No. 7,201,941), or (3) radical surface cross-linking with persulfate (for example, disclosed in US Pat. No. 4,783,510). Good.
  • the crosslinking reaction is preferably accelerated by heating or radiation (preferably ultraviolet rays, disclosed in European Patent 1824910).
  • the water-absorbing resin contained in the water-absorbing agent can increase the absorption capacity against AAP, in other words, pressure, because the surface vicinity is surface-crosslinked.
  • the surface cross-linking means that the surface of the water-absorbent resin or a region near the surface is chemically or physically modified to be surface cross-linked.
  • the chemical modification is an organic surface cross-linking agent having two or more functional groups present in the vicinity of the particle surface, in particular, a functional group capable of reacting with a carboxyl group.
  • a state where surface cross-linking is applied is included.
  • the organic surface crosslinking agent having two or more functional groups capable of reacting with a carboxyl group include polyhydric alcohols, polyhydric glycidyl compounds, polyhydric amines, and the like.
  • the surface crosslinking in the present application includes surface crosslinking in a form in which a polyvalent metal such as trivalent aluminum is ionically bonded to a carboxyl group on the surface.
  • the form of bonding in the surface crosslinking is not limited.
  • a method for surface crosslinking using a surface crosslinking agent will be described.
  • a conventionally known surface crosslinking agent is preferably used.
  • Polyhydric alcohols such as trimethylolpropane, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene-oxypropylene block copolymer, pentaerythritol, sorbitol; Epoxy compounds such as tylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, g
  • Polyvalent isocyanate compounds such as 1,2-ethylenebisoxazoline Phosphorus compounds; 1,3-dioxolan-2-one, 4-methyl-1,3-dioxolan-2-one, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1 , 3-dioxolan-2-one, 4-ethyl-1,3-dioxolan-2-one, 4-hydroxymethyl-1,3-dioxolan-2-one, 1,3-dioxane-2-one, 4- Alkylene carbonate compounds such as methyl-1,3-dioxane-2-one, 4,6-dimethyl-1,3-dioxane-2-one, 1,3-dioxopan-2-one; epichlorohydrin, epibrom Haloepoxy compounds such as hydrin and ⁇ -methylepichlorohydrin; polyvalent metal compounds such as hydroxides or chlorides such as
  • these surface cross-linking agents at least one compound selected from the group consisting of polyhydric alcohols, epoxy compounds, polyvalent amine compounds and salts thereof, alkylene carbonate compounds and oxazolidinone compounds is preferable in terms of physical properties, Is preferably a dehydrating ester-reactive cross-linking agent comprising a polyhydric alcohol, an alkylene carbonate compound and an oxazolidinone compound, and particularly preferably a polyhydric alcohol.
  • These surface cross-linking agents may be used alone or in combination of two or more in consideration of reactivity.
  • the surface cross-linking step may be performed twice or more in consideration of the effect.
  • the same surface cross-linking agent as the first time may be used for the surface cross-linking agent used for the second time or later.
  • a surface cross-linking agent different from the first surface cross-linking agent may be used.
  • the dehydrating ester-reactive crosslinking agent becomes a powder having a low water content with dehydration esterification and tends to cause a problem of deterioration of physical properties due to damage during transportation.
  • the present invention solves this problem.
  • the water-absorbent resin powder according to the present invention is preferably surface-crosslinked, and more preferably surface-crosslinked with the polyhydric alcohol.
  • the terminal linear velocity Vy can be suppressed, so that the surface cross-linked layer is prevented from being peeled off by rubbing. Therefore, the physical property improvement effect resulting from the surface cross-linking by the polyhydric alcohol is hardly impaired.
  • the polyhydric alcohol one or more of C2-C10, more preferably C3-C8, particularly preferably C3-C6 polyhydric alcohol is used.
  • the amount of the above-mentioned surface cross-linking agent used depends on the selected surface cross-linking agent, combination of surface cross-linking agents, etc., but is 0.001 to It is preferably within the range of 10 parts by mass, and more preferably within the range of 0.01 to 5 parts by mass.
  • the surface cross-linking agent in this range the cross-linking density in the vicinity of the surface of the water absorbent resin can be made higher than that inside.
  • the amount of the surface cross-linking agent used exceeds 10 parts by mass, it is not preferable because it is not economical and the supply of the cross-linking agent is excessive in forming an optimal cross-linking structure for the water-absorbent resin.
  • the amount of the surface cross-linking agent used is less than 0.001 part by mass, a sufficient improvement effect cannot be obtained in improving performance such as absorption capacity under pressure of the particulate water-absorbing agent.
  • the surface cross-linking step in addition to the surface cross-linking agent, if necessary, further acid substances such as organic acids (lactic acid, citric acid, p-toluenesulfonic acid) or salts thereof, inorganic acids (phosphoric acid, sulfuric acid, sulfurous acid) Or a salt thereof, a basic substance such as caustic soda or sodium carbonate, a polyvalent metal salt such as aluminum sulfate described later, etc. exceeds 0% by weight to 10% by weight or less, more preferably 0% by weight. More than 5% by weight, particularly preferably more than 0% by weight and about 1% by weight or less may be used in combination.
  • organic acids lactic acid, citric acid, p-toluenesulfonic acid
  • inorganic acids phosphoric acid, sulfuric acid, sulfurous acid
  • a salt thereof a basic substance such as caustic soda or sodium carbonate
  • a polyvalent metal salt such as aluminum sulfate described later, etc.
  • water as a solvent in mixing the particulate water-absorbing resin and the surface crosslinking agent.
  • the amount of water used depends on the type of water-absorbent resin, the particle size of the particulate water-absorbent resin, the water content, etc., but exceeds 0 parts by mass with respect to 100 parts by mass of the solid content of the particulate water-absorbent resin. It is preferably 20 parts by mass or less, and more preferably in the range of 0.5 to 10 parts by mass.
  • a hydrophilic organic solvent may be used in combination as necessary.
  • hydrophilic organic solvent examples include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and t-butyl alcohol; ketones such as acetone.
  • Ethers such as dioxane and tetrahydrofuran; amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide and the like.
  • the amount of the hydrophilic organic solvent used depends on the type of the water-absorbent resin, the particle size of the particulate water-absorbent resin, the water content, etc., but is 0 part by mass with respect to 100 parts by mass of the solid content of the particulate water-absorbent resin.
  • the content is preferably 20 parts by mass or less and more preferably 0 parts by mass or more and 10 parts by mass or less.
  • a surface treating agent solution When performing surface cross-linking, first, water and / or a hydrophilic organic solvent and a surface cross-linking agent are mixed in advance to prepare a surface treating agent solution. Next, a method in which this solution is sprayed or dropped onto the particulate water-absorbing resin by spraying or the like is mixed, and a mixing method by spraying is more preferable.
  • the size of the droplets to be sprayed is preferably in the range of 0.1 to 300 ⁇ m, more preferably in the range of 0.1 to 200 ⁇ m, in terms of average particle diameter.
  • the particulate water-absorbing resin, the surface cross-linking agent, water, and the hydrophilic organic solvent are mixed using the mixing device 16.
  • the mixing device 16 preferably has a large mixing force in order to mix both uniformly and reliably.
  • Examples of the mixing device 16 include a cylindrical mixer, a double-wall cone mixer, a high-speed stirring mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, a double-arm kneader, and a pulverizing kneader.
  • Rotating mixers, airflow mixers, turbulators, batch-type Redige mixers, continuous-type Redige mixers, and the like are suitable.
  • the mixture of the particulate water-absorbing resin and the surface cross-linking agent can perform surface cross-linking even at room temperature.
  • the particulate water-absorbing agent can be used. It is preferable that after the resin and the surface cross-linking agent are mixed, heat treatment is further performed to cross-link the vicinity of the surface of the particulate water-absorbing resin. That is, in order to react the cross-linking agent in the vicinity of the surface of the particulate water-absorbent resin, it is preferable that the heat treatment is performed in consideration of the reactivity of the cross-linking agent, the simplicity of production equipment, productivity, and the like.
  • the treatment temperature is preferably 80 ° C. or higher although it depends on the selected surface cross-linking agent.
  • the treatment temperature is 80 ° C. or higher, the heat treatment does not take a long time, and a reduction in productivity can be prevented, and uniform surface crosslinking can be achieved. In this case, it is possible to prevent a decrease in absorption characteristics under pressure of the particulate water-absorbing agent and the remaining unreacted surface crosslinking agent.
  • the treatment temperature (heat medium temperature or material temperature / particularly the heat medium temperature) is more preferably in the range of 100 to 250 ° C., further preferably in the range of 150 to 250 ° C. The temperature range is particularly suitable for the dehydration esterification reactive surface cross-linking agent.
  • the heating time is preferably in the range of 1 minute to 2 hours.
  • Preferred examples of the combination of heating temperature and heating time are 180 ° C. for 0.1 to 1.5 hours and 200 ° C. for 0.1 to 1 hour.
  • the present invention solves this problem.
  • the present invention is suitably applied to transporting water-absorbing resin powder having a water content of ERT430.2-02 of 0 to 3%, particularly 0 to 2%, particularly 0 to 1%.
  • a known dryer or heating furnace is used as the heating device 18 for performing the above heat treatment.
  • a conduction heat transfer type, radiation heat transfer type, hot air heat transfer type, dielectric heating type dryer or heating furnace is suitable.
  • Specific examples include a belt type, groove type stirring type, screw type, rotary type, disk type, kneading type, fluidized bed type, air flow type, infrared type, electron beam type dryer or heating furnace.
  • the heat treatment can be performed in a stationary state or under stirring.
  • the mixture may be heated in the mixing device 16 in which the particulate water-absorbing resin and the surface cross-linking agent are mixed to complete the surface cross-linking, for example, biaxial
  • the mixture may be put into a grooved stirring and drying apparatus, and the mixture may be heated to complete surface crosslinking.
  • the cooling step is performed before the particulate water-absorbing agent, which is heated in the surface cross-linking step and cross-linked in the vicinity of the surface, is added to the subsequent step (for example, the sizing step).
  • the subsequent step for example, the sizing step.
  • it is a process that is cooled if necessary.
  • the twin-shaft agitation dryer by which cooling water is passed through the inside of an inner wall and other heat-transfer surfaces, and a groove type stirring type drying
  • the temperature of the cooling water can be less than the heating temperature, that is, 25 ° C. or more and less than 80 ° C., and preferably 30 ° C. or more and 60 ° C. or less.
  • surface cross-linking of the particulate water-absorbing resin may be performed at room temperature.
  • this cooling step since the particulate water-absorbing agent obtained by surface cross-linking is not heated, this cooling step may not be performed. Therefore, this cooling step is another step that may be further included in the transportation method of the present invention, if necessary.
  • the addition process of adding additives other than the said surface crosslinking agent may be further provided.
  • This addition step is preferably provided after the polymerization step, and more preferably after the drying step.
  • An additive may be added simultaneously with or separately from the surface crosslinking, for example, in the cooling step or other steps.
  • the additive include the following (A) deodorant component (preferably a plant component), (B) a polyvalent metal salt, (C) inorganic particles (including (D) a composite hydrous oxide), (E ) Liquid permeability improver, (F) Other additives, etc. may be added.
  • A deodorant component
  • B a polyvalent metal salt
  • C inorganic particles
  • D a composite hydrous oxide
  • E Liquid permeability improver
  • Other additives, etc. may be added.
  • various functions can be imparted to the particulate water-absorbing agent.
  • the following (G) chelating agent may be added to this particulate water absorbing agent.
  • the amount of the above (A) to (E) and (F) used varies depending on the purpose and the additional function, but is usually 0 to 10 parts by mass with respect to 100 parts by mass of the water-absorbent resin.
  • the range is preferably 0.001 to 5 parts by mass, and more preferably 0.002 to 3 parts by mass.
  • this addition amount is less than 0.001 part by mass, sufficient effects and additional functions due to the additive cannot be obtained, and when this addition amount is 10 parts by mass or more, an effect commensurate with the addition amount cannot be obtained. Or water absorption performance will fall.
  • the particulate water-absorbing agent can be mixed with a deodorant component, preferably a plant component, in the above amount in order to exert deodorant properties.
  • a deodorant component preferably a plant component
  • Examples of the plant component include, but are not particularly limited to, US Patent Application Publication No. 2004/048955 and International Publication No. 2002/42379 pamphlet.
  • the particulate water-absorbing agent obtained by the above-described method is a polyvalent metal salt or polyvalent metal on the surface of a water-absorbent resin for the purpose of improving liquid permeability and powder fluidity at the time of moisture absorption.
  • a metal hydroxide preferably a polyvalent metal salt, more preferably a water-soluble polyvalent metal salt, more preferably a trivalent to tetravalent water-soluble polyvalent metal salt, particularly preferably a water-soluble aluminum salt. It is preferable to become.
  • the preferred amount of the polyvalent metal salt is as described above. When blending a polyvalent metal salt, it has been found that the transportability and physical properties during transport are greatly reduced, and the method of the present invention can be suitably applied.
  • polyvalent metal salts examples include organic acid polyvalent metal salts and inorganic polyvalent metal salts described in US Patent Application Publication No. 2002/0128618, US Patent Application Publication No. 2006/204755, and the like. Illustrated.
  • the water-soluble polyvalent metal salt is a polyvalent metal salt that dissolves in water at room temperature in an amount of 0.1 g / 100 g or more (preferably 1 g / 100 g or more, particularly preferably 10 g / 100 g or more). Mixed as a solution, the solution may be a dispersion exceeding the saturation concentration.
  • Preferred organic polyvalent metal salts include aluminum lactate and calcium lactate.
  • Preferred inorganic polyvalent metal salts include, for example, aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium aluminum bissulfate, sodium aluminum bissulfate, potassium alum, ammonium alum, sodium alum, sodium aluminate, and chloride.
  • Examples include calcium, calcium nitrate, magnesium chloride, magnesium sulfate, magnesium nitrate, zinc chloride, zinc sulfate, zinc nitrate, zirconium chloride, zirconium sulfate, and zirconium nitrate.
  • an aluminum compound is particularly preferred.
  • aluminum chloride, polyaluminum chloride, aluminum sulfate, aluminum nitrate, potassium bissulfate aluminum, sodium bissulfate aluminum, potassium alum, ammonium alum, sodium alum, and sodium aluminate are preferable, and aluminum sulfate is particularly preferable.
  • Water-containing crystal powders such as aluminum sulfate 18 hydrate and aluminum sulfate 14-18 hydrate can be most preferably used. These may be used alone or in combination of two or more.
  • the polyvalent metal salt described above is preferably used in a solution state, and more preferably in an aqueous solution state, from the viewpoints of handling properties and miscibility with the water-absorbent resin powder.
  • the polyvalent metal salt of organic acid used and the mixing method thereof are exemplified in, for example, International Publication No. 2004/069936.
  • the concentration of the solution may exceed the saturation concentration, but it is preferably added at a normal temperature or 10 to 100%, more preferably 30 to 100% of the saturation concentration in the heated solution.
  • examples of water-soluble polyvalent metal salts include aluminum sulfate and various alums.
  • the transport method of the present invention it is possible to satisfy both conflicting problems of suppressing the destruction of the water-absorbent resin powder at a low transport speed and preventing the decrease in transport efficiency due to blockage in the transport pipe. For this reason, the transport method of the present invention is effective for a water-absorbent resin powder containing a water-soluble polyvalent metal salt.
  • the water-absorbent resin powder containing a polyvalent metal salt is difficult to slip on the surface and has a large coefficient of friction on the surface.
  • the present invention is effective in a water-absorbing resin powder containing a water-soluble polyvalent metal salt, because it can suppress the clogging phenomenon while reducing the initial linear velocity Vx and the terminal linear velocity Vy. Moreover, since this invention can suppress the initial linear velocity Vx and the terminal linear velocity Vy, it is suppressed that a polyvalent metal salt peels from the powder surface by friction. Therefore, the physical property improvement effect resulting from the polyvalent metal salt is not easily impaired.
  • the particulate water-absorbing agent can contain inorganic particles, particularly water-insoluble inorganic particles (water-insoluble fine particles), on the surface of the water-absorbent resin in order to improve liquid permeability and prevent blocking during moisture absorption.
  • the inorganic particles include metal oxides such as silicon dioxide and titanium oxide, silicic acid (salts) such as natural zeolite and synthetic zeolite, kaolin, talc, clay, bentonite and the like. Of these, silicon dioxide and silicic acid (salt) are more preferred, and silicon dioxide and silicic acid (salt) having an average particle diameter of 0.001 to 200 ⁇ m measured by the Coulter counter method are more preferred.
  • Composite water-containing oxide containing zinc and silicon, or zinc and aluminum in the particle water-absorbing agent in order to exhibit the properties (fluidity of the powder after the water-absorbing resin or water-absorbing agent absorbs moisture) and the excellent deodorizing function Can also be blended.
  • the initial linear velocity Vx (the line of the water-absorbent resin powder at the starting point of the transport pipe) is found.
  • Speed can be suppressed, so that the inorganic particles are prevented from peeling off from the powder surface due to rubbing, and as a result, the effect of improving physical properties due to the inorganic particles is hardly impaired. Therefore, the method of the present invention can be suitably applied.
  • Polyamine compound polyvalent amine compound
  • Polyamines can be added for the purpose of improving liquid permeability and shape retention of the particulate water-absorbing agent.
  • water-soluble polyamine polymers more specifically, polyethyleneimine, polyvinylamine, polyallylamine and the like having a weight average molecular weight of 200 to 1,000,000 can be exemplified.
  • these are used for water-absorbing resin surface coating or crosslinking.
  • the polyamine polymer that can be applied to the water-absorbing resin include US Patent Application Publication No. 2003/0669359, US Patent Application Publication No. 2005/0245684, International Publication No. 2006/082197, International Publication No. 2006/074816. No. pamphlet, International Publication No. 2006/082189 pamphlet, International Publication No. 2008/025652 pamphlet, International Publication No. 2008/025656 pamphlet, International Publication No. 2008 / 025655A1, and the like.
  • the liquid permeability improver is a water absorbent resin or water absorbent having a saline flow conductivity (SFC) described later of 6 (10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more.
  • SFC saline flow conductivity
  • SFC saline flow conductivity
  • These are preferably compounds that improve liquid permeability by maintaining and expanding the gaps between the particles as ionic spacers (cations) or steric spacers (fine particles). Therefore, even the additives exemplified in the above (A) to (D) may correspond to this liquid permeability improver.
  • the liquid permeability improver is preferably the above (B) to (D).
  • water-soluble polyvalent metal salts such as aluminum sulfate and potassium alum alum that can be ionic spacers exemplified in (B) above are preferable in terms of improving the saline flow conductivity (SFC).
  • the presence form of the liquid permeability improver in the particulate water-absorbing agent may be in the form of particles, and may be coated at the molecular level as a whole (usually coated with a solution), or may be used in combination.
  • the liquid permeability improver is preferably used in the form of an aqueous solution because it is easy to add uniformly to the entire surface of the water absorbent resin and there is no segregation of the liquid permeability improver.
  • the liquid permeability improver is preferably used in a proportion of 0.001 to 10% by weight, more preferably 0.01 to 5% by weight, based on the water-absorbent resin.
  • the particulate water-absorbing agent preferably contains a surfactant. Due to the presence of the surfactant, powder characteristics (powder fluidity, fluidity at the time of moisture absorption, etc.) can be improved. In particular, it is preferable to include a surfactant on the surface of the water absorbent resin.
  • Surfactants include anionic surfactants such as fatty acid salts and higher alcohol sulfates, and nonionic properties such as sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, and sorbitan tristearate.
  • examples include surfactants, cationic surfactants such as alkylamine salts such as coconut amine acetate and stearylamine acetate, and amphoteric surfactants.
  • surfactants described in US Pat. No. 6,107,358 can be applied to the present invention.
  • the addition method of the surfactant is not particularly limited, and is preferably added in the granulation step exemplified in US Pat. No.
  • the addition timing of the surfactant is not particularly limited, and (a) in the polymerization step, the surfactant is added to the acrylic acid aqueous solution and polymerization is performed in the presence of the surfactant; In the polymerization step, a surfactant is added to the hydrous gel after polymerization; (c) In the drying step, the surfactant is added during or after drying; (d) In the crushing / classifying step, the dried product is crushed or classified.
  • the amount of the surfactant used is preferably 0.0005 to 0.012 parts by weight, more preferably 0.0005 to 0.001 parts by weight, and still more preferably 0.001 to 0 parts per 100 parts by weight of the water absorbent resin. .0045 parts by weight, particularly preferably 0.0015 to 0.004 parts by weight. If it is less than 0.0005 part by weight, the improvement of fluidity and bulk density may be insufficient. On the other hand, when the amount exceeds 0.012 parts by weight, there is a problem that the surface tension of the absorbing solution is lowered, and an effect corresponding to the amount of addition may not be exhibited, which is uneconomical.
  • the surfactant used in the present invention is not limited to the above surfactant.
  • nonionic surfactants are preferable from the viewpoint of safety, and among them, sorbitan fatty acid esters and polyoxyethylene sorbitan fatty acid esters are particularly preferable.
  • the HLB (hydrophilic-hydrophobic balance) of the surfactant used in the present invention is not particularly limited, but is preferably 8 to 18, more preferably 9 to 17, and still more preferably 10 to The range is 17. When HLB is in the above range, the fluidity and bulk density of the particulate water-absorbing agent can be improved more suitably.
  • the water-absorbent resin powder used in the present invention may contain a chelating agent in order to prevent coloring and improve urine resistance.
  • the step of mixing the chelating agent is not particularly limited, but it is preferable to mix the chelating agent with the monomer or monomer solution.
  • the chelating agent is not particularly limited, and for example, chelating agents exemplified in European Patent Application Publication No. 1426157, International Publication No. 2007/28751, and International Publication No. 2008/90961 can be used. From the viewpoint of effect, a water-soluble organic chelating agent having a molecular weight of 100 to 1000 is preferable.
  • Specific preferred chelating agents include iminodiacetic acid, hydroxyethyliminodiacetic acid, nitrilotriacetic acid, nitrilotripropionic acid, ethylenediaminetetraacetic acid, hydroxyethylenediaminetriacetic acid, hexamethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetramine Aminocarboxylic acid metal chelating agents such as hexaacetic acid and salts thereof, ethylenediamine-N, N′-di (methylenephosphinic acid), ethylenediaminetetra (methylenephosphinic acid), polymethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta Aminopolyphosphate compounds such as (methylenephosphonic acid), 1-hydroxyethylidene diphosphonic acid, and salts thereof.
  • Aminocarboxylic acid metal chelating agents such as hexaacetic acid and salts thereof
  • the amount of the chelating agent used is 0.001 part by mass or more, preferably 0.05 part by mass or more, more preferably 0.1 part by mass or more with respect to 100 parts by mass of the water absorbent resin contained in the water absorbent resin powder. In addition, it is desirable that the amount is 1 part by mass or less, preferably 0.5 part by mass or less, and more preferably 0.2 part by mass or less with respect to 100 parts by mass of the water absorbent resin.
  • the above (B) and (C) can be suitably used as a surface treatment agent.
  • the surface treatment means that the surface of the water absorbent resin or a region near the surface is chemically or physically modified.
  • chemical modification means a state of modification with some kind of chemical bond (covalent bond or ionic bond)
  • physical modification means physical coating or attachment without chemical bond. To do.
  • the particulate water-absorbing agent preferably contains a lubricant.
  • a lubricant on the surface of the water absorbent resin.
  • “Lubricant” refers to a substance that is located between two surfaces that slide against each other and acts to reduce friction (resistance).
  • the lubricant that can be used in the present invention is not particularly limited as long as it is a solid lubricant at normal temperature (25 ° C.) and normal pressure (0.101 MPa). Lubricants are exemplified in US Pat. No. 7,473,739, International Publication No.
  • lubricants exemplified in these can be preferably used in the present invention.
  • examples thereof include hydrocarbon lubricants, fatty acid lubricants (preferably C12 or more), fatty acid amide lubricants, ester lubricants, alcohol lubricants (glycols or higher alcohols), metal soap lubricants, and the like.
  • hydrocarbon lubricants preferably C12 or more
  • fatty acid lubricants preferably C12 or more
  • fatty acid amide lubricants preferably C12 or more
  • ester lubricants e.glycols or higher alcohols
  • metal soap lubricants e.glycols or higher alcohols
  • the powder temperature of the water-absorbent resin when mixed with the lubricant is usually room temperature or higher, but in order to obtain stable water absorption characteristics, flow rate, and bulk density of the particulate water-absorbing agent, preferably 40 ° C. or higher, More preferably, it is mixed at 50 ° C. or higher.
  • the amount is preferably 0.0001 to 0.1% by weight, more preferably 0.01 to 0.05% by weight, and particularly preferably 0.001 to 0.01% by weight with respect to 100% by weight of the water absorbent resin.
  • a polyvalent metal salt is preferred as an additive for improving liquid permeability.
  • the polyvalent metal salt is preferably mixed after the addition.
  • the same mixing apparatus 16 of the said surface crosslinking agent can be mentioned.
  • the polyvalent metal salt is preferably mixed with water-absorbing resin particles (particulate water-absorbing resin) as an aqueous solution.
  • the size of the aqueous solution droplets can be adjusted as appropriate.
  • the aqueous solution preferably has a concentration of 50% or more, more preferably 60% with respect to the saturated concentration.
  • the above concentration more preferably a concentration of 70% or more, further preferably a concentration of 80% or more, and particularly preferably a concentration of 90% or more.
  • the amount of water used is about 0.1 to 30% by weight, more preferably about 0.2 to 10% by weight, based on the weight of the water absorbent resin. Good.
  • the particulate water-absorbing agent after the surface cross-linking step or the cooling step may contain aggregates having a large particle size. This agglomerate can be generated mainly when the surface cross-linking agent is mixed or during the surface cross-linking reaction.
  • the aggregates are crushed and classified for the purpose of readjusting the particle size.
  • count of this crushing process and a classification process are not specifically limited.
  • a classification treatment is first performed on the particulate water-absorbing agent.
  • this classification treatment a classification device such as a sieve or an airflow classifier is used, and aggregates having a large particle diameter and fine powder having a small particle diameter can be removed. Then, the aggregate obtained by the classification treatment is subjected to a crushing process, and the particles constituting the aggregate are broken up into individual particles. For this crushing treatment, for example, a knife cutter type crusher is used. The pulverized product obtained by this pulverization treatment is subjected to the classification process again to remove a fine powder having a small particle size, and a desired particle size (preferably a weight average particle size of 200 to 800 ⁇ m). A particulate water-absorbing agent having can be obtained. From the viewpoint of productivity, this sizing step is preferably performed after the cooling step.
  • the granulation step may not be performed.
  • This sizing step is another step that may be further included in the transport method of the present invention as necessary.
  • the packaging process is a process in which the particulate water-absorbing agent is packaged.
  • the particulate water-absorbing agent sized in the above sizing process is packaged in the packaging process.
  • the particulate water-absorbing agent transferred to the storage hopper is filled into the storage bag using the filling device 24.
  • the particulate water-absorbing agent filled in the storage bag is shipped as a product through a predetermined inspection.
  • the sizing method is exemplified in US Pat. No. 7,347,330, US Patent Application Publication No. 2005/0113252, and the like.
  • the fine powder recycling process is a process for returning fine powder (for example, particles containing particles of less than 150 ⁇ m as a main component, particularly 70% by weight or more) to the water-absorbent resin production process for various purposes such as fine powder reduction.
  • fine powder can be removed and reused by recycling to a polymerization step or a drying step. That is, in one Embodiment of this invention, the said water absorbing resin powder contains the fine powder recycled material of a water absorbing resin. In such a recycling step, the fine powder may be returned as it is, or may be recycled after granulation in the granulation step described later.
  • fine powder is mixed and integrated in a polymerization machine, preferably a stirring polymerization machine such as a kneader, or after polymerization, the polymer gel and fine powder or a granulated product thereof are separately mixed, for example, with a meat chopper (pulverization). ) Mixing or mixing in a dryer.
  • a stirring polymerization machine such as a kneader
  • the water absorbent resin including such a fine powder recycling process that is, the water absorbent resin including the fine powder recycled product tends to be deteriorated in physical properties in the transport process.
  • the fine powder is also removed in the fine powder recycling process, the physical properties are improved, and the impact is suppressed without lowering the transportation efficiency at the time of pneumatic transportation.
  • Preferred fine powder recycling methods include, for example, US Pat. No. 6,133,193, US Pat. No. 6,228,930, US Pat. No. 5,455,284, US Pat. No. 5,342,899, US Patent Application Publication No. 2008/0306209.
  • the amount of fine powder is reduced by adding fine powder to the water-absorbent resin production process such as a polymerization process, a gel grinding process, and a drying process.
  • the amount of fine powder recycled is appropriately determined, for example, from 1 to 30% by weight, more preferably from 5 to 25% by weight, and particularly from 8 to 20% by weight of the production amount.
  • the fine powder remains as a dry powder, or is gelated by adding water as necessary, and recycled to the production process.
  • the fine powder is recycled to a monomer and / or a gel (before drying or during polymerization).
  • the granulation step is a step of adding an aqueous liquid to fine powder to obtain granulated particles.
  • This fine powder can be obtained, for example, in the classification step.
  • the fine powder may be collected by the fine powder capturing device 26 from the atmosphere of another process (such as a pulverization process or a sizing process).
  • the fine powder capturing device 26 includes, for example, a filter that can capture fine powder.
  • the granulated particles are composed of a plurality of fine powders.
  • the weight average particle diameter of the granulated particles is 20 mm or less, preferably 0.3 to 10 mm, more preferably 0.35 to 5 mm.
  • granulation may be performed only with fine powder (for example, 150 ⁇ m passing material), or may be performed with the whole particle including fine powder (850 ⁇ m passing water absorbent resin powder containing a predetermined amount of 150 ⁇ m passing material).
  • the granulated particles obtained in the granulation step may be used as a granulated product as they are, but are preferably put into any of the above steps. From the viewpoint of production efficiency, the granulated particles are preferably fed into the drying step as a fine powder recycling step and dried in the presence of the polymer gel.
  • the transport unit 6 connected to the fine powder capturing device 26 is connected to the granulating device 28.
  • the granulator 28 is connected to the drying facility 10 by the transport unit 6.
  • the fine powder discharged from the fine powder capturing device 26 is transported by the transport unit 6 and is put into the granulating device 28.
  • This fine powder is also a water absorbent resin powder.
  • the granulated particles formed by the granulator 28 are transported by the transport unit 6 and put into the drying device 10. Whether the particulate water-absorbing agent is a granulated particle can be confirmed by the fact that a plurality of individual particles are gathered and aggregated while maintaining the shape by an optical microscope, and the fact that they are swollen as a plurality of discontinuous particles upon liquid absorption.
  • the transport method of the water absorbent resin powder of the present invention includes a storage step of the water absorbent resin powder.
  • the apparatus used in the storage process is referred to as “hopper” in the present invention.
  • the hopper is a device for storing or storing the water-absorbent resin powder temporarily or for a long period of time, and in the present invention, a silo (vertically long shape) is also included as long as it has a specific shape.
  • apparatuses such as a receiving hopper 40, a pressurized tank hopper 32, and a storage hopper 42 as shown in FIG. Details of FIG. 2 will be described later.
  • FIG. 3 shows a schematic diagram of a hopper that can be used in an embodiment of the present invention.
  • the shape of the hopper from the viewpoint of transportability and transportability of the powder, particularly the water-absorbent resin powder, an inverted truncated pyramid shape or an inverted truncated cone shape as shown in the left diagram of FIG. 3, and a right diagram of FIG.
  • a shape in which a prism having the same shape is added to the maximum aperture portion of the inverted truncated pyramid as shown, or a shape in which a cylinder having the same shape is added to the maximum aperture portion of the inverted truncated cone is preferably used.
  • the ratio between the maximum diameter (diameter) and the height of the hopper is 1/10 to 10/1, further 1 / It is in the range of 3 to 3/1, particularly 1/2 to 2/1.
  • the inverted truncated pyramid shape or the inverted truncated cone shape as shown in the left diagram of FIG. "H” in the figure).
  • the prism portion or the height of the inverted truncated cone portion or the inverted truncated cone portion is This indicates the total height ("H '" in the right figure of FIG. 3) including the height of the cylindrical portion.
  • the maximum diameter of the hopper is defined in terms of the diameter of a circle corresponding to the maximum cross-sectional area.
  • the ratio of the inverted angle (or inverted circle) to the truncated cone is that the height of the truncated cone is smaller, and the shape of the hopper cross section is the home base shape.
  • the cross-sectional area of the triangular part is main. That is, the main component of the water-absorbent resin powder, preferably 50% by weight or more, more preferably 80% by weight or more, is stored in the pyramid or cone portion of the hopper.
  • the upper limit of the cone inclination is preferably less than 90 degrees.
  • the “cone section inclination angle” is an inclination angle of the side wall surface with respect to the horizontal plane of the installed hopper, as shown in FIG. 3.
  • the cone portion inclination angle of the hopper of the present invention is more preferably 50 degrees or more, further preferably 60 to 90 degrees, particularly preferably 65 to 85 degrees, and most preferably 68 to 85 degrees.
  • the “drawing rate” is defined by the diameter of the opening on the upper surface of the hopper (maximum diameter portion (R1) at the top of the hopper) and the opening on the bottom surface of the hopper (diameter (R2) of the hopper discharge portion).
  • the ratio is a ratio (R2 / R1 ⁇ 100) expressed as a percentage.
  • the squeezing rate of the hopper is preferably 30 to 80%, more preferably 35 to 80%, still more preferably 40 to 80%, and particularly preferably 40 to 70%.
  • the aperture is not a circle, for example, in the case of an ellipse or a polygon, it is defined in terms of a circle corresponding to its cross-sectional area.
  • the filling rate (average) of the water absorbent resin powder in the hopper is more than 0% by volume and 90% by volume or less, preferably 10 to 80% by volume, more preferably 30 to 80% by volume, particularly preferably. 40 to 80% by volume.
  • the “filling rate” is defined by the volume ratio (volume%) of the water-absorbing resin to be filled with respect to the inner volume of the hopper, and the transportability of the water-absorbing resin is improved by controlling to the above range.
  • the material of the hopper is not particularly limited, but stainless steel is preferable, and the surface roughness of the inner surface conforms to the piping of the air transportation device described later.
  • the residence time (average) of the water absorbent resin in the hopper depends on the amount of the water absorbent resin filled in the hopper, but is preferably 24 hours or less, more preferably It is 12 hours or less, more preferably 6 hours or less, particularly preferably 2 hours or less. If the residence time exceeds 24 hours, the physical properties may be deteriorated or blocking may be caused.
  • the lower limit of the residence time (average) of the water-absorbent resin in the hopper is not particularly limited, but is preferably as short as possible.
  • the method of the present invention is used, for example, when producing a water-absorbing resin at a production rate of 100 kg or more, preferably 500 kg or more, particularly preferably 1 t or more per hour. Applicable to transportation method.
  • the hopper is heated, and the surface temperature thereof is preferably 40 to 120 ° C., more preferably 50 to 90 ° C., and particularly preferably 60 to 80 ° C.
  • the water-absorbent resin powder stored in the hopper is also preferably heated, and the temperature is preferably in the range of 40 to 120 ° C., more preferably 50 to 90 ° C., particularly preferably 60 to 80 ° C. .
  • the temperature is lower than the above temperature, the physical property value may decrease, the physical property value may increase in width, and the water absorbent resin may aggregate.
  • temperature is higher than the said temperature, in addition to the fall of a physical-property value or the increase in the width
  • the water content of the water-absorbent resin powder stored in the hopper is not particularly limited, but is preferably 0.1 to 30% by weight, more preferably 0.1 to 10% by weight.
  • the moisture content in the range when the water absorbent resin powder is stored (or filled) in the hopper, damage can be reduced and physical properties can be prevented from being lowered.
  • the hopper When handling powder (water absorbent resin powder) in each step, the hopper is applied in each step when discharging the powder after storing the powder in at least one place after the drying step. . That is, the hopper is in the drying process; in the pulverization / classification process; in the surface crosslinking process; between the drying process and the pulverization / classification process; between the pulverization / classification process and the surface crosslinking process; During the process of filling the water absorbent resin obtained as a container bag or the like (filling process) or after; between the surface cross-linking process and the filling process, any time may be used. Further, during each of the above periods, one hopper may be installed, or two or more hoppers may be installed. Further, in the latter case, the plurality of hoppers may be installed continuously or another process (or apparatus) may be installed between the hoppers.
  • the conveyance of the water-absorbent resin powder from the previous step to the storage step using the hopper and the conveyance from the storage step to the next step are preferably performed by pneumatic transportation described later.
  • the transportation method according to a preferred embodiment of the present invention includes a step of storing the water absorbent resin powder after the pneumatic transportation step. Such a form is preferable because there is no deterioration in physical properties due to impact and the quality of high physical properties can be stably maintained.
  • the outline of the production process of the particulate water-absorbing agent according to the present invention is as described above. Next, the transportation (conveyance) method according to the present invention will be described.
  • pneumatic transportation is applied to transportation of the water-absorbing resin powder (particulate water-absorbing resin and particulate water-absorbing agent) produced by the above steps.
  • Pneumatic transportation is performed by the transportation unit 6 shown in FIG.
  • Air transport is not suitable between the polymerization apparatus 8 and the drying apparatus 10, between the mixing apparatus 16 and the heating apparatus 18, and between the granulation apparatus 28 and the drying apparatus 10, because the material to be transported is moist. (However, this is not intended to exclude the application of pneumatic transportation).
  • pneumatic transportation is used in at least one place or two or more places in the transportation section 6 of FIG.
  • mechanical transportation such as a conveyor may be employed for the transportation unit 6 in which pneumatic transportation is not employed.
  • FIG. 2 is a schematic diagram of a pneumatic transport device 30 that can be used in an embodiment of the present invention.
  • the pneumatic transport device 30 includes a pressurized tank hopper 32, a transport pipe 34, a secondary air pipe (not shown), a valve 37, a secondary air valve 36, and a compressor 38.
  • the compressor 38 is connected to the pressurized tank hopper 32 via a valve 37.
  • the inside of the pressurized tank hopper 32 can be pressurized by the compressor 38.
  • the compressor 38 is connected to the transport pipe 34 via a valve 37.
  • the compressor 38 can supply air for the transport pipe 34.
  • Secondary air is supplied through valve 36.
  • the secondary air is supplied to the secondary air pipe via the valve 36.
  • the compressor 38 can supply air (secondary air) in the secondary air piping.
  • FIG. 2 a plurality of compressors 38 may be provided. There are various methods for supplying secondary air, and the method is not limited to the method of the present embodiment.
  • the pneumatic transport device 30 transports the water absorbent resin powder from the receiving hopper 40 to the storage hopper 42.
  • the pneumatic transport device 30 connects a device that performs the process X and a device that performs the process Y.
  • the process X and the process Y are not limited.
  • Step Y is the next step after step X.
  • the receiving hopper 40 stores the water-absorbent resin powder generated in the process X.
  • the water-absorbent resin powder transported by the pneumatic transport device 30 is stored in the storage hopper 42 and provided to the process Y.
  • the hopper (40, 32) is provided, and after the water absorbent resin powder is stored in the hopper (storage step), the water absorbent resin powder is transported to the transport pipe 34.
  • the air-absorbing resin powder transported by air (air transport process) is stored in the hopper (42) before the process Y (storage process).
  • the storage hopper 42 corresponds to a storage unit in the embodiment of FIG. 5 described later.
  • the water-absorbent resin powder stored in the receiving hopper 40 falls into the pressurized tank hopper 32 when the valve 44 is opened. Next, the valve 44 is closed, and pressurized air is introduced into the pressurized tank hopper 32. Due to the pressure of the air (primary air), the water absorbent resin powder inside the pressurized tank hopper 32 moves inside the transport pipe 34 and reaches the storage hopper 42.
  • FIG. 4 is an outline of one embodiment of the transport method of the present invention. It is a figure which shows a structure. In this transportation method, the water-absorbent resin powder obtained in the process X is transported to an apparatus for performing the process Y. Process Y is the next process of process X. The process X is not limited, and the process Y is not limited.
  • This storage unit is a storage unit for supplying the water-absorbent resin powder to the apparatus that performs the process Y.
  • This storage part is a part of an apparatus that performs the process Y.
  • the transportation apparatus A and the transportation apparatus B are connected by a transportation pipe P1.
  • the transport apparatus B and the transport apparatus C are connected by a transport pipe P2.
  • the transport apparatus C and the storage unit are connected by a transport pipe P3. That is, the transport apparatus A, the transport apparatus B, and the transport apparatus C are connected in series by the transport pipe.
  • two or more pneumatic transportation devices are used in one transportation section, and the two or more pneumatic transportation devices are connected in series by transportation piping. It has a feature in that.
  • one transport section is a continuous section for transporting the water-absorbent resin powder.
  • the start point B1 of the transport section is a connection point between the transport device A and the transport pipe P1
  • the end point F1 of the transport section is a connection point between the transport pipe P3 and the storage unit.
  • the section from the start point B1 to the end point F1 is “one transport section”.
  • three transport devices are connected in series by transport pipes P1, P2, and P3.
  • the transport pipe may be installed by being bent in a planar, three-dimensional or polygonal shape.
  • the curvature radius of the bent portion is It is preferable to be 2 m or more.
  • the number of bends in one transport section is preferably 2 or more and 10 or less, more preferably 2 or more and 5 or less.
  • the inner diameter of the pipe is determined according to the production volume, but is preferably 30 mm to 300 mm, more preferably 50 mm to 200 mm, and particularly preferably about 70 to 160 mm.
  • FIG. 5 is a schematic configuration diagram of the transport section 6 in which FIG. 4 is described in some detail.
  • the transport apparatus A has a receiving hopper Ha, a pressurized tank Ta (pressurized tank hopper), and valves (Va1, Va2).
  • the receiving hopper Ha and the pressurized tank Ta are connected via a valve Va1.
  • the valve Va2 is provided between the pressurized tank Ta and the transport pipe P1.
  • the transport device B has a receiving hopper Hb, a pressurized tank Tb, and valves (Vb1, Vb2).
  • the receiving hopper Hb and the pressurized tank Tb are connected via a valve Vb1.
  • the valve Vb2 is provided between the pressurized tank Tb and the transport pipe P2.
  • the transport apparatus C has a receiving hopper Hc, a pressurized tank Tc, and valves (Vc1, Vc2).
  • the receiving hopper Hc and the pressurized tank Tc are connected via a valve Vc1.
  • the valve Vc2 is provided between the pressurized tank Tc and the transport pipe P3.
  • a compressor is connected to the pressurized tanks (Ta, Tb, Tc).
  • the pressure tanks (Ta, Tb, Tc) can be pressurized by this compressor.
  • the pressure in the pressurized tank (Ta, Tb, Tc) can be higher than atmospheric pressure.
  • the pressure tanks (Ta, Tb, Tc) are provided with pressure relief valves. By opening the pressure relief valve, the pressure in the pressurized tank (Ta, Tb, Tc) is reduced to atmospheric pressure, and the pressurized state can be released.
  • the pressure in the pressurized tank (Ta, Tb, Tc) can be adjusted as appropriate.
  • the receiving hopper (Ha, Hb, Hc) is equipped with a filter for cleaning and discharging the transported air introduced when the water-absorbing resin powder is received.
  • a filter for cleaning and discharging the transported air introduced when the water-absorbing resin powder is received.
  • the receiving hoppers (Ha, Hb, Hc) are respectively arranged above the pressurized tanks (Ta, Tb, Tc).
  • the valves (Va1, Vb1, Vc1) are opened, the water-absorbent resin powders in the receiving hoppers (Ha, Hb, Hc) respectively fall into the pressurized tanks (Ta, Tb, Tc). In this way, the water absorbent resin powder is supplied to the pressurized tank (Ta, Tb, Tc).
  • the pressurized tanks (Ta, Tb, Tc) are depressurized, and the pressurized tanks (Ta, Tb, Tc) The pressure state is released.
  • one transportation device is used per transportation section.
  • a plurality (three) of transport devices are used per transport section.
  • the transport apparatus B and the transport apparatus C are connected in series and used.
  • the water absorbent resin powder that has finished the process X is supplied to the receiving hopper Ha.
  • the receiving hopper Ha receives the water-absorbing resin powder (receiving step 1a).
  • the valve Va1 is closed.
  • the valve Va1 is opened, and the water-absorbing resin powder is sent from the receiving hopper Ha to the pressurized tank Ta (powder feeding step 2a).
  • the valve Va2 is closed.
  • the pressure in the pressurized tank Ta is the same as the atmospheric pressure.
  • the valve Va1 and the valve Va2 are closed, and the inside of the pressurized tank Ta is pressurized (pressurizing step 3a).
  • step 4a air is supplied from a compressor (not shown), thereby pressurizing the pressurized tank Ta and sending transport air to the transport pipe P1.
  • step 4a the valve Va1 is closed.
  • the receiving hopper Hb receives the water-absorbing resin powder (receiving step 1b). That is, the transportation step 4a and the receiving step 1b proceed simultaneously.
  • the valve Vb1 is closed.
  • the valve Vb1 is opened, and the water-absorbing resin powder is sent from the receiving hopper Hb to the pressurized tank Tb (powder feeding step 2b).
  • the valve Vb2 is closed.
  • the pressure in the pressurized tank Tb is the same as the atmospheric pressure.
  • the valve Vb1 and the valve Vb2 are closed, and the inside of the pressurized tank Tb is pressurized (pressurizing step 3b).
  • step 4b air is supplied from a compressor (not shown), whereby the pressurized tank Tb is pressurized and transport air is sent to the transport pipe P2.
  • step 4b the valve Vb1 is closed.
  • the receiving hopper Hc receives the water-absorbing resin powder (receiving step 1c). That is, the transportation step 4b and the receiving step 1c proceed simultaneously.
  • the valve Vc1 is closed.
  • the valve Vc1 is opened, and the water-absorbing resin powder is sent from the receiving hopper Hc to the pressurized tank Tc (powder feeding step 2c).
  • the valve Vc2 is closed.
  • the pressure in the pressurized tank Tc is the same as the atmospheric pressure.
  • the valve Vc1 and the valve Vc2 are closed, and the inside of the pressurized tank Tc is pressurized (pressurizing step 3c).
  • the pressurized tank Tc is pressurized.
  • the valve Vc2 is opened, and the water-absorbent resin powder is sent from the pressurized tank Tc to the storage unit (transport step 4c).
  • air is supplied from a compressor (not shown), so that the pressurized tank Tc is pressurized and transport air is sent to the transport pipe P3.
  • the valve Vc1 is closed.
  • the pressure in the pressurized tank in the pressurized state is preferably 0.05 MPa or more and 0.7 MPa or less, and more preferably 0.1 MPa or more and 0.3 MPa or less.
  • the water absorbent resin powder that has finished the process X moves in the order of the transport device A, the transport pipe P1, the transport device B, the transport pipe P2, the transport device C, and the transport pipe P3, and reaches the storage unit related to the process Y.
  • Transport between the transport apparatus A, transport by the transport apparatus B, and transport by the transport apparatus C is inherited in series, and transport between the process X and the process Y is achieved.
  • the transportation device B and the transportation device C are not provided.
  • FIG. 6 is a diagram illustrating an example of a transport timing chart according to the present embodiment.
  • the receiving step 1a is performed from the time t1 to the time t2
  • the powder feeding step 2a is performed from the time t2 to the time t3
  • the receiving step 1a is performed from the time t3 to the time t4. Is made.
  • the transport step 4a is performed from time t1 to time t2
  • the acceptance step 2a is performed from time t2 to time t3
  • the transport step is performed from time t3 to time t4. 4a is made.
  • the valve opening / closing timing correlates with the step switching timing. For example, in the transport device A, at time t2, the valve Va1 is switched from “closed” to “open”, and the valve Va2 is switched from “open” to “closed”. For example, in the transport device A, at time t3, the valve Va1 is switched from “open” to “closed”, and the valve Va2 is switched from “closed” to “open”.
  • the step switching timing is the same between the transport device A and the transport device B, and the step switching timing is also the same between the transport device B and the transport device C. Since the work times such as piping blow and depressurization can be different for each of the transportation apparatuses A, B and C, it is actually difficult to make the timings completely coincide as shown in FIG. In the timing chart of FIG. 6, the time required for the pressurizing step or the like is not considered.
  • the timing chart of FIG. 6 is briefly described for the purpose of showing that three transport devices can be operated simultaneously.
  • the transport steps by each transport device can proceed simultaneously.
  • the transport step 4a, the transport step 4b, and the transport step 4c proceed simultaneously.
  • the transportation by the transportation device A, the transportation by the transportation device B, and the transportation by the transportation device C can be performed at the same time. Due to the simultaneous progress of the transportation, the transportation efficiency (transport amount per unit time) can be improved.
  • the transport amount of the water-absorbent resin powder is preferably 1000 kg / hr or more. [Kg / hr] means the transport amount (kg) per hour. From the viewpoint of reducing the terminal linear velocity Vy, the transport amount of the water-absorbent resin powder is preferably 10,000 kg / hr or less, and preferably 8000 kg / hr or less.
  • the accepting step in each transport device can also proceed simultaneously.
  • the receiving step 1a to the receiving hopper Ha, the receiving step 1b to the receiving hopper Hb, and the receiving step 1 to the receiving hopper Hc can be performed simultaneously.
  • the receiving step 2a to the pressurized tank Ta, the receiving step 2b to the pressurized tank Tb, and the receiving step 2c to the pressurized tank Tc can be performed simultaneously. This simultaneous progression can improve transportation efficiency.
  • the receiving step by the receiving hopper and the transporting step by the pressurized tank can be performed at the same time.
  • the receiving step 1a and the transporting step 4a can be performed simultaneously.
  • the subsequent transfer transfer from the receiving hopper to the pressurized tank
  • the receiving step and the powder feeding step are not performed at the same time in the same receiving hopper. Further, in the present embodiment, there is a restriction that the receiving step and the transporting step are not performed simultaneously in the same pressurized tank. Within these constraints, multiple transport devices can operate simultaneously.
  • bulb Va1, Va2, Vb1, Vb2, Vc1, Vc2
  • continuous supply type valves such as a rotary valve
  • biting may occur in the rotary part of the rotary valve, and the water-absorbent resin powder may be destroyed (particle destruction).
  • the pressurized pressure fluctuates due to air leakage at the rotary valve portion, and transportation may become unstable.
  • step switching can be performed by automatic control.
  • This automatic control can be performed based on various automatic detection data.
  • the automatic detection data include the amount of powder in the receiving hopper, the amount of powder in the pressurized tank (pressurized tank hopper), the pressure in the pressurized tank (pressurized tank hopper), and the like.
  • the detection of the amount of powder in the receiving hopper or the pressurized tank (pressurized tank hopper) can be performed by detecting the position of the upper surface (powder surface) of the powder, for example. This powder surface position can be detected by a known method such as an ultrasonic method or a capacitance method. Based on these detection data, automatic control can be performed.
  • Automatic control can be performed by a known method such as a sequencer or a computer.
  • the opening and closing of the valve and the activation of the pneumatic transport device are automatically controlled. For example, based on the detection result that the position of the powder surface of the receiving hopper Ha has exceeded a predetermined upper limit value, control is performed such that the closed valve Va1 is opened, the valve Va2 is closed, and the transportation device is stopped. The Conversely, for example, based on the detection result that the position of the powder surface of the receiving hopper Ha is less than a predetermined lower limit value, the opened valve Va1 is closed, the valve Va2 is opened, and the transportation device is activated. Control.
  • the opening and closing of the valve and the activation of the pneumatic transport device are automatically controlled based on the detection result of the pressure in the pressurized tank. For example, based on the detection result that the pressure in the pressurized tank Ta has exceeded a predetermined upper limit value, the closed valve Va2 is opened and the transport device is activated. Conversely, for example, based on the detection result that the pressure in the pressurized tank Ta is less than a predetermined lower limit value, the closed valve Va1 is opened, the valve Va2 is closed, and the transportation device is stopped. Control is made.
  • These automatic control programs can be determined in consideration of transportation efficiency and the like.
  • Transport by the transport unit 6 is high-concentration pneumatic transport.
  • the transportation device (A, B, C) is a high concentration pneumatic transportation device.
  • the transport devices (A, B, C) respectively send secondary air to the transport pipes (P1, P2, P3). You may have the piping (S1, S2, S3) for the secondary air to supply.
  • FIG. 7 is a cross-sectional view showing the transport pipe P1 and the secondary air pipe S1.
  • FIG. 7 also illustrates the transport pipe P2 and the transport pipe P3. That is, the transport pipe P2 is provided with a secondary air pipe S2, and the transport pipe P3 is provided with a secondary air pipe S3.
  • the secondary air pipe S1 extends alongside the transport pipe P1.
  • the transport pipe P1 has a secondary air introduction hole hs. Secondary air introduction holes hs are provided at a plurality of positions in the longitudinal direction of the transport pipe P1.
  • a secondary air pipe S1 is connected to each of the secondary air introduction holes hs at a plurality of positions.
  • the secondary air introduction hole hs is described as a hole having a large inner diameter, but actually, the secondary air introduction hole hs is a nozzle (air nozzle).
  • the water-absorbent resin powder that is a transported object is divided by the air introduced from the secondary air introduction hole hs.
  • the divided water-absorbing resin powder moves in the transport pipe P1 while forming the plug Pg (see FIG. 7).
  • high-concentration pneumatic transportation is pneumatic transportation of the water absorbent resin powder while forming the plug Pg.
  • it is rare that the plug Pg having a uniform shape as shown in FIG. 7 is always maintained during transportation.
  • transportation is performed while repeating the following series of behaviors.
  • Transport devices A, B and C are high concentration pneumatic transport devices.
  • the high-concentration pneumatic transport device means a device that can realize high-concentration pneumatic transport.
  • the terminal solid-gas ratio is 10 (kg-resin / kg-air) or more, it is generally defined as high-concentration pneumatic transport.
  • the terminal solid-gas ratio is the solid-gas ratio at the terminal Em of the transport pipe.
  • the solid-gas ratio is a value obtained by dividing the mass (kg) of the water-absorbent resin powder by the mass (kg) of air, and the unit is (kg-resin / kg-air).
  • the terminal solid-gas ratio is calculated by dividing the transport amount of the water-absorbent resin powder per unit time during pneumatic transportation by the mass of air consumed for transportation per unit time.
  • the pressure and the volumetric flow rate of air may be obtained using a flow meter or the like, and calculated from these values using the average molecular weight of air.
  • three pneumatic transportation devices are provided in one transportation section, and these pneumatic transportation devices are connected in series by transportation piping (P1, P2, P3).
  • transportation piping P1, P2, P3
  • the transport distance by a single transport device is reduced.
  • the distance from the start point B1 to the end point F1 of the transport section is 100 m.
  • a transportation pipe of 100 m was necessary.
  • the length of the transport pipe P1 can be 33.3 m
  • the length of the transport pipe P2 can be 33.3 m
  • the length of the transport pipe P3 can be 33.3 m. . That is, the transport distance by a single transport device can be made shorter than the distance of the transport section.
  • the total length Lt of the transport pipes included in one transport section is preferably 50 m or more, more preferably 70 m or more, and more preferably 100 m or more. From the viewpoint of suppressing the number of transport devices, the total length Lt is preferably 1000 m or less, more preferably 500 m or less, and more preferably 200 m or less. For example, in the embodiment shown in FIG. 4, the total length Lt is the sum of the length Lp1 of the transport pipe P1, the length Lp2 of the transport pipe P2, and the length Lp3 of the transport pipe P3. That is,
  • the length Lp of each transport pipe included in one transport section is preferably 50 m or less, more preferably 40 m or less, and even more preferably 35 m or less. If the number of transport devices is excessively increased in order to reduce the length Lp, the transport efficiency may be lowered. In this respect, the length Lp is preferably 30 m or more.
  • the length Lp1 of the transport pipe P1 is an example of the length Lp
  • the length Lp2 of the transport pipe P2 is also an example of the length Lp
  • the length Lp3 of the transport pipe P3 is also This is an example of the length Lp.
  • the transportation section is divided equally by the transportation device. Therefore, when the number of pneumatic transportation devices connected in series to one transportation section is N (N is an integer of 2 or more), the total length Lt in the transportation section and all the transportation sections included in the transportation section
  • the length Lp of the transport pipe preferably satisfies the following relational expression (1), and more preferably satisfies the relational expression (2).
  • the linear velocity (also referred to as “linear velocity”) is the moving speed of the water-absorbent resin powder and is substantially the same as the moving speed of air.
  • the magnitude of this linear velocity is measured along the longitudinal direction of the transport pipe.
  • the linear velocity can be calculated, for example, by measuring the air flow rate per unit time flowing in the pipe with a flow meter or the like and dividing this measured value by the cross-sectional area of the transport pipe.
  • FIG.4 and FIG.5 shows, in this embodiment, the terminal Em of transport piping exists in three places.
  • the linear velocity of the water-absorbent resin powder at the starting point Km of the transport pipe is also referred to as an initial linear velocity Vx.
  • the air pressure at the starting point Km of the transport pipe is also referred to as an initial pressure Px.
  • the linear velocity of the water-absorbent resin powder at the terminal Em of the transport pipe is also referred to as the terminal linear velocity Vy.
  • the pressure of air at the terminal Em of the transport pipe is also referred to as terminal pressure Py.
  • the air pressure tends to decrease as the end Em of the transport pipe is approached.
  • the terminal pressure Py is smaller than the initial pressure Px.
  • the linear velocity tends to increase as the end Em of the transport pipe is approached.
  • the terminal linear velocity Vy is larger than the initial linear velocity Vx.
  • the terminal linear velocity Vy is the maximum linear velocity in the same transportation pipe.
  • the terminal linear velocity Vy decreases, the collision speed between the particles and the transport pipe and the collision speed between the particles decrease. That is, damage to the water absorbent resin powder can be suppressed by the small terminal linear velocity Vy.
  • the terminal linear velocity Vy is preferably 15 m / s or less, more preferably 13 m / s or less, and more preferably 10 m / s or less.
  • the terminal linear velocity Vy is preferably 7 m / s or more.
  • a preferable range of the terminal linear velocity Vy described above is a velocity range suitable for high-concentration pneumatic transportation.
  • the transportation section according to the present invention may have a branched transportation route.
  • the present invention can be established for each of the branched transportation routes. For example, consider a case where the transportation section branches into two branches at a branch point D1 located between the start point B1 and the end point of the transportation section. In this case, there are two end points F1 of the transport section. When these two end points F1 are a first end point F11 and a second end point F12, respectively, the following first route and the following second route can be recognized in the branched transport section.
  • First route A route from the start point B1 of the transport section to the first end point F11 via the branch point D1.
  • Second route A route from the start point B1 of the transport section to the second end point F12 via the branch point D1.
  • the present invention can be realized.
  • the present invention can be established if the transport devices are connected in series in the second route.
  • the branch point D1 may be formed by the branch of transport piping, and may be formed by the transport apparatus.
  • the receiving hopper is preferably provided with a filter capable of capturing fine powder.
  • This filter can capture fines present in the gas in the receiving hopper. Fine powder can be captured by passing the gas in the receiving hopper through the filter by vacuum suction or the like.
  • a bag filter is preferable. With this filter, pneumatic transportation can be performed while reducing fine powder.
  • a membrane filter is preferable as the filter. This membrane filter is excellent in collection efficiency. In addition, since this membrane filter can easily filter out fine powder, it is difficult to clog, and there is little reduction in collection efficiency due to use.
  • a filter excellent in the collection efficiency of JIS type 12 carbon black (particle size: 0.03 ⁇ m to 0.2 ⁇ m) is preferable.
  • the collection efficiency is preferably 90% or more, more preferably 95% or more, further preferably 99.9% or more, and particularly preferably 99.99% or more.
  • This collection efficiency is measured by, for example, the method of JIS B9908 format 1.
  • the collection efficiency can be measured with a commercially available dust meter.
  • This collection efficiency can be substantially obtained based on the amount of fine powder before passing through the filter and the amount of fine powder after passing through the filter.
  • the collection efficiency can be calculated by the following formula from the fine powder amount W0 (mg / m 3 ) before passing through the filter and the fine powder amount Wf (mg / m 3 ) after passing through the filter.
  • the brand name "P5L digital dust meter" by Shibata Kagaku is mentioned, for example.
  • the material of the transportation pipe is preferably stainless steel.
  • the inner surface of the transport pipe is preferably mirror-finished. This mirror finish can suppress damage to the water-absorbent resin powder.
  • the stainless steel is mirror finished to further enhance the damage suppressing effect. Examples of stainless steel include SUS304, SUS316, and SUS316L.
  • the mirror finish means that the surface roughness specified in JIS B 0601-1982 is smoothed to 6.3S or less. This “S” means the maximum value of the maximum height ( ⁇ m) of the surface irregularities. Such surface roughness can be measured by a stylus type surface roughness measuring instrument (JIS B 0651) or a light wave interference type surface roughness measuring instrument (JIS B 0652).
  • the method for controlling the temperature of the water absorbent resin powder during transportation is not limited.
  • a means for heating a storage tank such as a hopper or a transportation pipe from the outside can be used.
  • the temperature of the water-absorbent resin powder can be maintained at a predetermined temperature or higher by arranging a copper pipe on the outer surface of the storage tank and / or the transport pipe and allowing steam to pass through the copper pipe.
  • the transportation pipe is preferably disposed indoors.
  • the particle shape of the water absorbent resin powder is not limited.
  • the particle shape is spherical, substantially spherical, irregularly crushed (which is a pulverized product), rod-shaped, polyhedral, sausage-shaped (eg, US Pat. No. 4,973,632), particles having wrinkles (eg, US Pat. No. 5744564) and the like.
  • They may be single particles, granulated particles, or a mixture of primary particles and granulated particles.
  • the particles may be foamed porous.
  • primary particles and / or granulated particles of irregularly shaped particles are used.
  • the mass average particle diameter (D50) of the water absorbent resin (water absorbent resin powder) before surface crosslinking and / or in the final product is preferably 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, still more preferably 250 to 500 ⁇ m, particularly
  • the thickness is preferably 350 to 450 ⁇ m.
  • the smaller the particle size is less than 150 ⁇ m, the better, and it is usually adjusted to 0 to 5% by mass, preferably 0 to 3% by mass, particularly preferably 0 to 1% by mass.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.40, more preferably 0.27 to 0.37, and still more preferably 0.25 to 0.35.
  • the water absorption capacity (CRC) of the water-absorbent resin powder after surface cross-linking and after transport with respect to physiological saline is preferably 15 g / g or more.
  • the water absorption capacity (CRC) under no pressure of the water absorbent resin powder before surface crosslinking is not particularly limited, but is preferably 15 g / g or more.
  • Absorbent articles such as diapers in which this water-absorbent resin powder is used absorb body fluids well.
  • the water absorption capacity (CRC) after the surface crosslinking or before the surface crosslinking is more preferably 20 g / g or more, further preferably 25 g / g, particularly preferably 30 g / g or more.
  • the water absorption ratio (CRC) is preferably as large as possible.
  • the water absorption capacity (CRC) is preferably 60 g / g or less, more preferably 50 g / g or less, and particularly preferably 35 g / g or less.
  • the absorption capacity without load (CRC) is synonymous with the free swelling ratio (GV), and the CRC may be referred to as GV.
  • the water absorption resin powder after surface cross-linking and further transported under the pressure of physiological saline under pressure (AAP: Absorbency against Pure) (ERT442.2-02, with a load of 50 g / cm 2 ) Is preferably in the range of 15 to 50 g / g, more preferably 18 to 45 g / g, particularly preferably 20 to 45 g / g, most preferably 20 to 45 g / g.
  • Absorbent articles such as diapers in which this water-absorbent resin powder is used absorb body fluids well.
  • the water absorption capacity under pressure is the water absorption capacity (unit: g / g) after swelling under a load of 21 g / cm 2 for 1 hour with respect to a 0.9% sodium chloride aqueous solution.
  • AAP is a value measured in the same manner except that the load is changed to 50 g / cm 2 .
  • the 0.69% by mass physiological saline flow conductivity (hereinafter also referred to as SFC) of the water-absorbent resin powder is a value indicating the liquid permeability when the water-absorbent resin powder or the water-absorbing agent swells. A larger SFC value indicates that the water-absorbent resin powder has higher liquid permeability.
  • the SFC of the water absorbent resin powder is preferably 10 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more, preferably 20 to 1000 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) is more preferred, and 30 to 500 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) is even more preferred.
  • the initial linear velocity Vx can be suppressed, a decrease in SFC during transportation can be suppressed. Such evaluation is performed according to the SFC test described in US Pat. No. 5,849,405.
  • AAP In general, AAP, CRC, and SFC tend to conflict with each other, but by setting the above range, a water-absorbing resin that balances these physical properties can be provided.
  • the moisture content of the water-absorbent resin powder before and after transportation is preferably 5% by weight or less, more preferably 3% by weight or less.
  • This rule applies to both the water absorbent resin powder before the surface crosslinking and the particulate water absorbent resin after the surface crosslinking.
  • a certain amount of water preferably 0.1% by weight or more, more preferably 0.5% by weight or more, has the advantage of maintaining and improving the absorption rate and physical properties after transportation.
  • the amount of water added may be appropriately adjusted depending on the heating conditions and necessity.
  • a dried gas as the gas constituting the air stream from the viewpoint that the excellent physical properties of the water-absorbent resin powder can be stably maintained and the clogging phenomenon can be suppressed.
  • the dew point of this gas is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 15 ° C. or lower, and particularly preferably ⁇ 20 ° C. or lower.
  • a heated gas may be used. Although it does not specifically limit as a heating method, A gas may be directly heated using a heat source, and the gas passed may be indirectly heated by heating the said transport part and piping.
  • the temperature of the heated gas is preferably 30 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 70 ° C. or higher.
  • the pneumatic transportation of the present invention may be pressurized transportation or decompression transportation.
  • the water absorbent resin powder is transported by the suction force of the transport device.
  • the internal pressure of the piping is set lower than the atmospheric pressure.
  • pneumatic transportation of the present invention is pressurized transportation as in the above embodiment.
  • the water absorbent resin powder is transported by the high pressure generated from the transportation device.
  • the above embodiment is pressurized transportation.
  • the internal pressure of the pipe is set higher than the atmospheric pressure.
  • an aqueous monomer solution (1) an aqueous solution of a partial sodium salt of acrylic acid neutralized by 75 mol% was prepared.
  • This monomer aqueous solution (1) contains polyethylene glycol diacrylate (average n number 9) as an internal cross-linking agent, and the content ratio of this polyethylene glycol diacrylate is 0.000 based on the total number of moles of monomers. The concentration was 06 mol%. In the monomer aqueous solution (1), the concentration of the monomer (the partial sodium salt of acrylic acid) was 38% by mass.
  • the obtained monomer aqueous solution (1) was continuously fed by a metering pump, and nitrogen gas was continuously blown in the middle of the piping to make the oxygen concentration in the monomer aqueous solution (1) 0.5 ppm or less.
  • the “average n number” means the average number of ethylene oxide polymerization degrees in the polyethylene glycol chain.
  • sodium persulfate and L-ascorbic acid were continuously mixed with the monomer aqueous solution (1) by line mixing.
  • the mixing ratio of sodium persulfate was 0.12 g per mole of monomer
  • the mixing ratio of L-ascorbic acid was 0.005 g per mole of monomer.
  • the continuous mixture obtained by this line mixing was supplied to a flat steel belt having weirs at both ends in a thickness of about 30 mm, and continuously subjected to aqueous solution polymerization for 30 minutes to obtain a hydrogel crosslinked polymer (1). Obtained.
  • This hydrogel crosslinked polymer (1) is subdivided into a particle size of about 2 mm with a meat chopper having a pore diameter of 7 mm, and this is spread and placed on a perforated plate on which a continuous ventilation band dryer moves so that the thickness becomes 50 mm. And dried at 185 ° C. for 30 minutes to obtain a dry polymer.
  • the dry polymer was pulverized by continuously supplying the entire amount of the dry polymer to a three-stage roll mill.
  • the roll gap of this three-stage roll mill was 1.0 mm / 0.55 mm / 0.42 mm in order from the top.
  • Water-absorbent resin powder (particulate water-absorbent resin) (1) was obtained.
  • the CRC of the water absorbent resin powder (1) was 35 g / g.
  • the surface treatment agent solution was sprayed and mixed while spraying the water-absorbent resin powder (1) continuously to a high-speed continuous mixer (turbulator / 1000 rpm) at 1500 kg / hr.
  • This surface treating agent solution was a mixed liquid of 1,4-butanediol, propylene glycol and pure water.
  • the surface treating agent solution is composed of 0.3 parts by mass of 1,4-butanediol, 0.5 parts by mass of propylene glycol and 2.7 parts by mass of pure water with respect to 100 parts by mass of the water absorbent resin. Mixed in proportion.
  • the obtained mixture was continuously heat-treated at 198 ° C. for 40 minutes with a paddle dryer, and then forcedly cooled to 60 ° C.
  • the 850 ⁇ m passing material was classified by a sieving device, and the 850 ⁇ m ON product (850 ⁇ m non-passing material) was pulverized again and then mixed with the 850 ⁇ m passing material, so that the total amount was 850 ⁇ m passing material.
  • Water-absorbent resin powder A as a product was obtained.
  • the CRC of the water absorbent resin powder A is 30.5 (g / g)
  • the SFC is 30.0 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 )
  • the AAP is 25. 5 (g / g).
  • the water absorbent resin powder B was prepared in the same manner as in Production Example 1 except that 1 mass% of the 50 mass% aluminum sulfate aqueous solution was added to 100 parts by mass of the water absorbent resin powder (1). Obtained.
  • the CRC of the water absorbent resin powder B is 30.0 (g / g)
  • the SFC is 50.0 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 )
  • the AAP is 24. 5 (g / g).
  • an aqueous solution of a partial sodium salt of acrylic acid with 75 mol% neutralized was prepared.
  • This aqueous monomer solution (2) contains polyethylene glycol diacrylate (average n number 9) as an internal cross-linking agent, and the content ratio of this polyethylene glycol diacrylate is 0.000 based on the total number of moles of monomers. 1 mol%.
  • the concentration of the monomer (the acrylic acid partial sodium salt) was 38% by mass.
  • the obtained monomer aqueous solution (2) was continuously fed by a metering pump, and nitrogen gas was continuously blown in the middle of the piping to make the oxygen concentration in the monomer aqueous solution (2) 0.5 ppm or less.
  • sodium persulfate and L-ascorbic acid were continuously mixed with the monomer aqueous solution (2) by line mixing.
  • the mixing ratio of sodium persulfate was 0.12 g per mole of monomer
  • the mixing ratio of L-ascorbic acid was 0.005 g per mole of monomer.
  • the continuous mixture obtained by this line mixing was supplied to a flat steel belt having weirs at both ends in a thickness of about 30 mm, and continuously subjected to aqueous solution polymerization for 30 minutes to obtain a hydrogel crosslinked polymer (2). Obtained.
  • This hydrogel crosslinked polymer (2) is subdivided to a particle size of about 2 mm with a meat chopper having a pore diameter of 7 mm, and this is spread and placed on a perforated plate on which a continuous ventilation band dryer moves so that the thickness becomes 50 mm. And dried at 185 ° C. for 30 minutes to obtain a dry polymer.
  • the dry polymer was pulverized by continuously supplying the entire amount of the dry polymer to a three-stage roll mill.
  • the roll gap of this three-stage roll mill was 1.0 mm / 0.4 mm / 0.3 mm in order from the top.
  • Water-absorbent resin powder (particulate water-absorbent resin) (2) was obtained.
  • the CRC of this water absorbent resin powder (2) was 33 g / g.
  • the surface treatment agent solution was sprayed and mixed while spraying the water-absorbent resin powder (2) continuously to a high-speed continuous mixer (turbulator / 1000 rpm) at 1500 kg / hr.
  • This surface treating agent solution was a mixed liquid of 1,4-butanediol, propylene glycol and pure water.
  • this surface treating agent solution is composed of 0.4 parts by mass of 1,4-butanediol, 0.6 parts by mass of propylene glycol and 3.0 parts by mass of pure water with respect to 100 parts by mass of the water absorbent resin. Mixed in proportion.
  • the obtained mixture was continuously heat-treated at 200 ° C. for 40 minutes with a paddle dryer, and then forcedly cooled to 60 ° C.
  • the water-absorbent resin powder (3) contains a granulated product in which fine powder is integrated with particles having a particle size of 710 to 150 ⁇ m, which is smaller than that of the water-absorbent resin powder (2). Recycling improves yield and water absorption rate (eg, see US Pat. No. 6,894,665 for Vortex and FSR / measurement methods).
  • the fine powder recycling to the same water-containing gel can be performed by a continuous kneader instead of the meat chopper.
  • Example 1 Using the same transport section as the transport section 6 shown in FIGS. 4 and 5, three transport apparatuses were connected in series, and a transport test of the water absorbent resin powder was performed. The test time was about 10 minutes as the total time required for each transport aircraft to transport each time.
  • the water absorbent resin powder As the water absorbent resin powder, the water absorbent resin powder A obtained in Production Example 1 was used.
  • the inner diameters of the transport pipes (P1, P2, P3) were all 83.1 mm.
  • the transport pipes (P1, P2, P3) each have a horizontal part and a vertical part, and the length of the transport pipe P1 was 38 m for the horizontal part and 5 m for the vertical part.
  • the length of the transport pipe P2 was 34 m for the horizontal part and 5 m for the vertical part.
  • the length of the transport pipe P3 was 37m in the horizontal part and 20m in the vertical part, and the end part of P3 was connected to the storage hopper.
  • the terminal linear velocity Vy was 9.9 m / s at the terminal Em of the transport pipe P1, 10.5 m / s at the terminal Em of the transport pipe P2, and 11.5 m / s at the terminal Em of the transport pipe P3. It was.
  • the transport capacity per unit time of the transport apparatus A during operation was 5972 kg / hr.
  • the transport capacity per unit time of the transport apparatus B during operation was 6327 kg / hr.
  • the transportation capacity per unit time of the transportation apparatus C at the time of operation was 6664 kg / hr.
  • Transportability here refers to the total amount of time required for one transport in each transport aircraft (total time for transport preparation, powder loading, pressurization, transport, and piping blow). It is the value converted into.
  • the transport amount per unit time in the entire transport section was 4500 kg / hr.
  • the transportation capacity indicates the maximum transportation capacity that can be exhibited by the apparatus under predetermined transportation conditions. In actual operation, it is operated below its transport capacity. Therefore, the transport amount per unit time in the entire transport section may not match the transport capability of each transport device described above.
  • the transport amount per unit time in the entire transport section 4500 kg / hr, means the production rate of the water absorbent resin powder.
  • the CRC of the water-absorbent resin powder after the transport test reaching the end point F1 of the transport section is 30.5 (g / g), and the SFC is 29.8 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ), AAP was 25.2 (g / g).
  • the SFC reduction rate due to transportation was 0.8%. There was no blockage of the transportation piping.
  • the SFC reduction rate Rs (%) can be calculated from the following equation.
  • Example 2 Instead of the water-absorbent resin powder A, a water-absorbent resin powder B was used to conduct a transport test of the water-absorbent resin powder. At this time, the transport capacity per unit time of the transport apparatus A during operation was 5673 kg / hr. The transport capacity per unit time of the transport apparatus B during operation was 6010 kg / hr. The transport capacity per unit time of the transport apparatus C during operation was 6340 kg / hr. The transport amount per unit time in the entire transport section was 4500 kg / hr. Others were carried out in the same manner as in Example 1.
  • the CRC of the water-absorbent resin powder after the transportation test reaching the end point F1 of the transportation section is 30.0 (g / g), and the SFC is 49.8 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ), AAP was 24.5 (g / g).
  • the SFC reduction rate due to transportation was 0.4%. There was no blockage of the transportation piping.
  • the CRC of the water-absorbent resin powder after the transport test reaching the end point F1 of the transport section is 30.3 (g / g), and the SFC is 26.3 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ), AAP was 24.9 (g / g).
  • the SFC reduction rate due to transportation was 12.5%. There was no blockage of the transportation piping.
  • Comparative Example 2 A transport experiment was conducted in the same manner as in Comparative Example 1 except that the terminal linear velocity Vy at the end of the transport pipe P4 was 9.9 m / s. As a result, a clogging phenomenon occurred during the test, and transportation was interrupted.
  • Comparative Example 3 A transport experiment was conducted in the same manner as in Comparative Example 1 except that the terminal linear velocity Vy at the end of the transport pipe P4 was 9.9 m / s and the water absorbent resin powder B was used instead of the water absorbent resin powder A. It was. As a result, a clogging phenomenon occurred during the test, and transportation was interrupted.
  • Example 3 Using a transport unit having one transport device less than the transport unit 6 shown in FIGS. 4 and 5, two transport devices were connected in series, and a transport test of the water absorbent resin powder was performed.
  • the transport part 6 used in Example 3 is shown in FIG.
  • the transport apparatus (A, B) shown in FIG. 8 is the same as the transport apparatus used in Example 1.
  • the test time was about 7 minutes as the total time required for each transport to be transported once.
  • the water absorbent resin powder B obtained in Production Example 2 was used as the water absorbent resin powder.
  • the inner diameters of the first transport pipe P1 and the second transport pipe P2 were both 83.1 mm.
  • the transport pipes (P1, P2) each have a horizontal part and a vertical part, and the length of the first transport pipe P1 was 40 m for the horizontal part and 5 m for the vertical part.
  • the length of the second transport pipe P2 was 39 m in the horizontal part and 20 m in the vertical part.
  • the end of P2 was connected to a storage hopper.
  • the terminal linear velocity Vy was 11.4 m / s at the terminal Em of the transport pipe P1, and 8.3 m / s at the terminal Em of the transport pipe P2.
  • the transportation capacity per unit time of the transportation apparatus A during operation was 6329 kg / hr.
  • the transport capacity per unit time of the transport apparatus B during operation was 5330 kg / hr.
  • the transport amount per unit time in the entire transport section was 4500 kg / hr.
  • the CRC of the water-absorbent resin powder after the transport test reaching the end point F1 of the transport section is 30.0 (g / g), and the SFC is 49.6 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ), AAP was 24.4 (g / g).
  • the SFC reduction rate due to transportation was 0.8%. There was no blockage of the transportation piping.
  • Example 4 A transport unit similar to that of Example 1 was used except that the transport device B was removed from the transport unit of Example 3 and the transport section start point B1 to the transport section end point F1 were connected by a single transport pipe P5.
  • the length of this transport pipe was 75 m for the horizontal part and 20 m for the vertical part.
  • the terminal linear velocity Vy at the end of the transport pipe P5 was 19.4 m / s.
  • the transport capacity per unit time was 6571 kg / hr.
  • the CRC of the water-absorbent resin powder after the transportation test reaching the end point F1 of the transportation section is 30.2 (g / g), and the SFC is 46.0 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ), AAP was 24.2 (g / g).
  • the SFC reduction rate due to transportation was 8%. There was no blockage of the transportation piping.
  • a water-absorbent resin powder C was used to perform a transport test of the water-absorbent resin powder. Specifically, using the same transport unit as the transport unit 6 shown in FIGS. 4 and 5, three transport devices were connected in series, and a transport test of the water absorbent resin powder was performed. The test time was about 10 minutes as the total time required for each transport aircraft to transport each time.
  • the inner diameters of the transport pipes (P1, P2, P3) were all 83.1 mm.
  • the transport pipes (P1, P2, P3) each have a horizontal part and a vertical part, and the length of the transport pipe P1 was 38 m for the horizontal part and 5 m for the vertical part.
  • the length of the transport pipe P2 was 34 m in the horizontal part and 5 m in the vertical part.
  • the length of the transport pipe P3 was 37 m in the horizontal part and 20 m in the vertical part.
  • the end of the transport pipe P3 was connected to a storage hopper.
  • the terminal linear velocity Vy was 9.9 m / s at the terminal Em of the transport pipe P1, 10.5 m / s at the terminal Em of the transport pipe P2, and 11.5 m / s at the terminal Em of the transport pipe P3.
  • the transport capacity per unit time of the transport apparatus A during operation was 6151 kg / hr.
  • the transport capacity per unit time of the transport apparatus B during operation was 6580 kg / hr.
  • the transport capacity per unit time of the transport apparatus C during operation was 6940 kg / hr.
  • the transport amount per unit time in the entire transport section was 4500 kg / hr.
  • the CRC of the water-absorbent resin powder after the transport test that reached the end point F1 of the transport section is 27.0 (g / g)
  • the SFC is 118 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 )
  • AAP was 23.8 (g / g).
  • the SFC reduction rate due to transportation was 1.7%. There was no blockage of the transportation piping.
  • the CRC of the water-absorbent resin powder after the transport test that reached the end point F1 of the transport section is 26.8 (g / g)
  • the SFC is 102 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 )
  • AAP was 23.6 (g / g).
  • the SFC reduction rate due to transportation was 15%. There was no blockage of the transportation piping.
  • Example 5 In Example 4, instead of the water absorbent resin powder C, the transport test of the water absorbent resin powder was performed using the water absorbent resin powder (3) including the recycled fine powder obtained in Production Example 4. . As a result, there was substantially no fine powder regeneration by transportation, and no clogging phenomenon of transportation piping was observed.
  • Comparative Example 8 In Comparative Example 6, a transport test of the water absorbent resin powder was performed using the water absorbent resin powder (3) containing the recycled fine powder obtained in Production Example 4. As a result, fine powder regeneration and dust generation by transportation were observed.
  • the example has a higher evaluation than the comparative example. From these results, the superiority of the present invention is clear.
  • the method for transporting water-absorbing resin powder according to the present invention is suitably applied in the manufacturing process of water-absorbing resin powder used for sanitary materials including absorbents such as paper diapers, sanitary napkins, and incontinence pads. Can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Pipeline Systems (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

【課題】閉塞現象を抑制しつつ、吸水性樹脂粉体の物性低下を抑制でき、長距離の輸送に好適な吸水性樹脂粉体の輸送方法を提供する。 【解決手段】本発明は、製造工程中の吸水性樹脂粉体を、輸送配管を経由して空気輸送する輸送方法である。この輸送方法では、一つの輸送区間に2つ以上の空気輸送装置(A、B、C)が具備され、これらの空気輸送装置(A、B、C)が輸送配管(P1、P2、P3)によって直列的に接続されている。

Description

吸水性樹脂粉体の輸送方法
 本発明は、吸水性樹脂粉体の輸送方法に関する。
 近年、紙オムツ、生理用ナプキン、失禁パッド等の衛生材料には、体液吸収の観点から、その構成材として吸水性樹脂が幅広く利用されている。かかる吸水性樹脂としては、例えば、ポリアクリル酸部分中和物架橋体、澱粉-アクリル酸グラフト重合体の加水分解物、酢酸ビニル-アクリル酸エステル共重合体の鹸化物、アクリロニトリル共重合体もしくはアクリルアミド共重合体の加水分解物またはこれらの架橋体、およびカチオン性モノマーの架橋体等が知られている。この吸水性樹脂は、シート状、繊維状、フィルム状とされても用いられうるが、一般には、粉末状(粒子状)とされて用いられている。かかる粉末(粒子)としては、例えば、その重量平均粒子径が200~800μm程度である粒子状吸水剤が汎用されている。
 粒子状吸水剤は、乾燥工程、破砕工程、分級工程、表面架橋工程等を経て製造される。工業的スケールでの生産においては、各工程を行う装置間の輸送には、輸送装置が用いられる。輸送方式として、機械的輸送及び空気輸送が挙げられる。機械的輸送においては、輸送装置として例えばコンベアが用いられる。
 空気輸送は、機械的輸送と比較して多くのメリットを有する。空気輸送のメリットは、メカニカルな部分が少なく機械的トラブルが少ないこと、耐久性に優れること、ベルトコンベアなどと違い戻りラインが不要でありワンウェイ(one way)であること、異物が混入しにくいこと、等が挙げられる。
 空気輸送の方式は、低濃度空気輸送と高濃度空気輸送とに大別される。低濃度空気輸送では、被輸送物粉体は、輸送管内において分散状態にある。高濃度空気輸送では、被輸送物である粉体は、輸送管内においてスラグまたはプラグと呼ばれる集団を形成しながら移動する。粉体が分散状態を維持するためには、気流速度が高くなければならないので、低濃度空気輸送は高速輸送である。一方、高濃度空気輸送は低速輸送である。
 空気輸送中には、被輸送物(粉体)の粒子同士における衝突や摩擦が起こりうる。また、空気輸送中において、粉体は、配管に衝突しうる。また粉体と配管との間で衝突や摩擦が生じうる。空気輸送中に、粉体は摩耗又は破壊されうる。空気輸送は、吸水性樹脂粉体の物性に影響を与えうる。よって、粉体の物性低下を抑制しうる空気輸送が求められる。
 特開2004-345804号公報は、多価アルコールを含有する吸水性樹脂粉体について、物性低下を抑制しうる輸送方法を開示する。特許文献2~4は、輸送時の物性低下が少ない吸水性樹脂の空気輸送方法を開示する。かかる目的のために、特許文献2では、配管の曲率半径を配管径の5倍以上に規定し、特許文献3では、ガススピード及び固気比を規定し、また特許文献4ではフルード数を規定している。さらに、特許文献5では、装置を加熱ないし保温することによる輸送時の吸水性樹脂の凝集防止法を開示し、輸送方法の一例として空気輸送を開示している。
先行技術文献
特開2004-345804号公報 国際公開第2007/104657号パンフレット 国際公開第2007/104673号パンフレット 国際公開第2007/104676号パンフレット 米国特許第6817557号明細書
 本発明者は、従来とは異なる技術思想に基づき、空気輸送における物性低下を抑制しうる新たな輸送方法を見いだした。
 また、空気輸送に関する他の問題として、閉塞現象(詰まり)が挙げられる。閉塞現象が発生すると、輸送が停止される。閉塞現象が頻発すると、輸送効率が低下する。
 本発明が解決しようとする課題は、閉塞現象を抑制しつつ吸水性樹脂粉体の物性低下を抑制でき、長距離の輸送に好適な吸水性樹脂粉体の輸送方法を提供することにある。
 本発明に係る輸送方法は、製造工程中の吸水性樹脂粉体を輸送配管を経由して空気輸送する輸送方法である。この輸送方法では、一つの輸送区間に2つ以上の空気輸送装置が用いられ(多段空気輸送)、これらの空気輸送装置が輸送配管によって直列的に接続されている。
 好ましくは、一つの上記輸送区間に含まれる輸送配管の合計長さLtが50m以上である。
 好ましくは、一つの上記輸送区間に含まれる各輸送配管の長さLpは40m以下である。
 好ましくは、上記吸水性樹脂粉体の輸送配管末端での線速度は15m/s以下である。
 好ましくは、上記空気輸送装置は加圧タンク及び受けホッパーを有している。
 好ましくは、上記加圧タンクと上記受けホッパーとの間にはバルブが具備されている。
 好ましくは、上記受けホッパーの粉面の検知結果に基づき、上記バルブの開閉及び空気輸送装置の起動が自動制御される。好ましくは、上記加圧タンク(「加圧タンクホッパー」とも称する)内の圧力の検知結果に基づき、上記バルブの開閉及び空気輸送装置の起動が自動制御される。好ましくは、加圧状態における上記加圧タンク内の圧力は、0.05~0.7MPaとされる。
 好ましくは、一つの輸送区間に含まれる輸送配管の合計長さLtが100m以上である。
 好ましくは、上記空気輸送装置が高濃度空気輸送装置である。
 好ましくは、上記輸送方法による上記吸水性樹脂粉体の輸送量は1000kg/hr以上である。
 好ましくは、上記吸水性樹脂粉体は多価アルコールによって表面架橋されている。
 好ましくは、上記吸水性樹脂粉体は多価金属塩を含む。
 好ましくは、上記吸水性樹脂粉体は無機粒子を含む。
 好ましくは、輸送前及び輸送後における上記吸水性樹脂粉体の、0.69質量%生理食塩水流れ誘導性(SFC)は、10(10-7・cm・s・g-1)以上である。なお、「輸送後の吸水性樹脂粉体」とは、本発明による輸送がなされた直後の吸水性樹脂粉体を意味し、本発明の輸送が吸水性樹脂粉体の製造工程の中間段階でなされる場合には、この中間段階での輸送がなされた直後の吸水性樹脂粉体(中間体)を意味する。輸送後の物性が規定されることにより、本発明の輸送方法が、吸水性樹脂粉体のダメージを抑制していることが示される。
 好ましくは、吸水性樹脂粉体が、連続ベルト重合または連続ニーダー重合により得られる不定形破砕形状のポリアクリル酸(塩)系吸水性樹脂である。
 好ましくは、吸水性樹脂粉体が、微粉リサイクル工程を含む製造工程で得られるポリアクリル酸(塩)系吸水性樹脂である。
 好ましくは、吸水性樹脂粉体が150~250℃で表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂である。
 本発明によれば、複数の輸送装置を直列的に配置することにより、輸送区間が長い場合であっても、輸送配管が短くされうる。その結果、吸水性樹脂粉体の線速度を抑制しつつ、閉塞現象を抑制することができる。また、吸水性樹脂粉体の線速度が抑制されることにより、吸水性樹脂粉体の物性低下が抑制されうる。かかる効果は、特に特定の製造工程(重合、表面架橋、添加剤の添加、微粉リサイクル等)で得られた吸水性樹脂に対して顕著に現れる。
図1は、吸水性樹脂(別称;粒子状吸水剤)を製造するために用いられる製造設備が示された概略構成図である。 図2は、本発明の一実施形態に使用されうる輸送装置の概略構成が示された図である。 図3は、本発明の一実施形態に使用されうるホッパーに関するコーン部傾斜角と、絞り率及びホッパーの最大口径(直径)と高さとの比を規定するホッパー上部の最大口径部(R1)と、ホッパー排出部の口径(R2)及び高さ(H)を示す概略図である。 図4は、本発明の輸送方法に用いられる輸送部の概略構成が示された図である。 図5は、図4が若干詳細に示された概略構成図である。 図6は、本発明に係る各輸送装置のタイミングチャートの一例を示す図である。 図7は、輸送配管及び二次空気用配管を示す断面図である。 図8は、実施例3に係る輸送部の概略構成図である。
発明を実施するための形態
 本発明は、粒子状吸水剤の製造工程における吸水性樹脂粉体の輸送方法に関する。本明細書において、「吸水性樹脂」は、水膨潤性水不溶性の高分子ゲル化剤を意味する。吸水倍率(CRC)は必須に5g/g以上であり、好ましくは10~100g/gであり、さらには20~80g/gである。また、可溶分(Extractables)は必須に0~50重量%であり、好ましくは0~30重量%であり、さらに好ましくは0~20重量%であり、特に好ましくは0~10重量%である。
 なお、吸水性樹脂とは全量(100%)が重合体である形態に限定されず、上記性能を維持する範囲において添加剤(後述など)を含んでいてもよい。すなわち、粒子状吸水剤(吸水性樹脂組成物)であっても、本発明では吸水性樹脂と総称する。本発明では吸水性樹脂が粒子状吸水剤(吸水性樹脂組成物)である場合の、本発明に係る吸水性樹脂(ポリアクリル酸(塩)系吸水性樹脂)の含有量は、全体に対して、好ましくは70~99.9重量%であり、より好ましくは80~99.7重量%であり、さらに好ましくは90~99.5重量%である。吸水性樹脂以外のその他の成分としては、吸水速度や粉末(粒子)の耐衝撃性の観点から水が好ましく、必要により後述の添加剤が含まれる。
 本明細書において、「ポリアクリル酸(塩)」は、繰り返し単位として、アクリル酸(塩)を主成分とする重合体を意味する。具体的には、架橋剤を除く単量体として、アクリル酸(塩)を、必須に50~100モル%、好ましくは70~100モル%、さらに好ましくは90~100モル%、特に好ましくは実質100モル%含む。重合体としての塩は必須に水溶性塩を含み、好ましくは一価塩、さらに好ましくはアルカリ金属塩ないしアンモニウム塩、特にアルカリ金属塩、さらにはナトリウム塩を含む。
 「EDANA」は、European Disposables and Nonwovens Associationsの略である。欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(ERT/EDANA Recomeded Test Methods)の詳細は公知文献(02年改定)であるERTの原本を参照されたい。
 本明細書において、「含水ゲル状重合体(含水ゲル)」、「乾燥物」、及び「吸水性樹脂粉体(粉体)」は、以下のようにして定義される。
 「含水ゲル状重合体(含水ゲル;重合ゲル)」とは、吸水性樹脂の含水ゲル状架橋重合体を指す。代表として、重合工程で得られる含水ゲルのことである。通常は含水率が30重量%以上の重合体を指す。
 「乾燥物」とは、乾燥工程を経た吸水性樹脂の乾燥重合体を指す。重合後の含水率によるが、通常、乾燥工程で含水率が30重量%未満、さらには20重量%以下の乾燥重合体を指す。形状は問わず、また、乾燥は重合と同時(重合熱や重合時の加熱で乾燥等)に行ってよい。
 「吸水性樹脂粉体(粉体)」とは、粉体として一定の流動性を有し、例えば、流動性として、Flow Rate(ERT450.2-02)を測定可能である状態、あるいは(ERT420.2-02)で篩分級可能な固体のことである。より具体的には、篩分級で規定される粒子径5mm以下の固体であって、吸水性樹脂の乾燥重合体の粉体、または、吸水性樹脂の原料や添加剤のうち固体のまま使用される粉体(例えば、水不溶性無機粉末、多価金属塩粉末やその水和塩等)を指す。固体であれば含水率は問わないが、通常は30重量%未満、さらには20重量%以下である。粒子径の下限は、特に制限されないが、例えば、1nm以上である。なお、一般に1mm以上を粒体、1mm未満を粉体と呼ぶ場合もあるが、本発明では、それら粉粒体(吸水性樹脂ないしその原料)を総称して、以下、「粉体」と称する。また、本明細書では、「粉体」および「粉末」は、同義語として扱う。
 まず、本発明に係る粒子状吸水剤(吸水性樹脂粉体)の製造工程の概略について説明し、次いで、本発明の輸送方法について説明する。
 図1は、吸水性樹脂(粒子状吸水剤)を製造するために用いられる製造設備2が示された概略構成図である。この製造設備2は、各工程を実施するための装置が輸送部6によって連結されている。重合装置8、乾燥装置10、粉砕装置12、分級装置14、混合装置16、加熱装置18、冷却装置20、整粒装置22、充填装置24、微粉捕捉装置26及び造粒装置28が、この製造設備2に設けられている。輸送部6により、ある工程で得られた吸水性樹脂粉体が、次の工程に輸送される。
 重合装置8を用いて重合工程がなされる。乾燥装置10を用いて、乾燥工程がなされる。粉砕装置12を用いて、粉砕工程がなされる。分級装置14を用いて、分級工程がなされる。混合装置16及び加熱装置18を用いて、表面架橋工程がなされる。冷却装置20を用いて、冷却工程がなされる。整粒装置22を用いて、整粒工程がなされる。充填装置24を用いて、包装工程がなされる。微粉捕捉装置26を用いて、微粉が収集される。造粒装置28を用いて、造粒工程がなされる。収集された微粉や造粒工程で造流された造流粒子は、微粉リサイクル工程によりリサイクルされる。
 [重合工程]
 重合工程は、重合により吸水性樹脂となりうる単量体(以下、モノマーとも称することもある)を、重合させて重合ゲル(含水ゲル状重合体)を生成させる工程である。本発明に係る吸水性樹脂の重合法としては、特に限定されるものではないが、例えば、バルク重合、沈殿重合、水溶液重合、逆相懸濁重合、噴霧重合、液滴重合等が挙げられる。性能面及び重合制御の容易さから、モノマーが水溶液とされて用いられうる水溶液重合または逆相懸濁重合が好ましい。
 本発明では、得られる重合ゲルの形状から搬送性の問題解決が顕著である水溶液重合、特に連続水溶液重合が好ましい。連続水溶液重合では、本発明の効果をより発揮する面から連続ベルト重合ないし連続ニーダーが好適に使用されうる。好ましい連続重合として、連続ニーダー重合(例えば、米国特許第6987151号明細書および米国特許第6710141号明細書)、連続ベルト重合(例えば、米国特許第4893999号、米国特許第6241928号および米国特許出願公開第2005/215734号)が挙げられる。かかる連続重合では高生産性で吸水性樹脂(特に、不定形破砕状吸水性樹脂)が生産できるが、スケールアップに伴い物性にフレや低下が見られる傾向があるが、本発明ではかかる問題も解決しうる。
 (単量体)
 モノマーとしては、特に限定されないが、例えば以下に示すような水溶性不飽和単量体が挙げられる。例えば、(メタ)アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等の、アニオン性不飽和単量体およびその塩;メルカプト基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の、アミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体;等である。これらモノマーは単独で用いられてもよく、適宜2種以上が混合されて用いられてもよい。これらモノマーは重合禁止剤や5ppm以下(さらに好ましくは1ppm以下)の鉄を含んでもよく、好適な使用量は例えばメトキシフェノール類160ppm以下であり、米国特許第7049366号明細書に例示の使用量である。
 中でも、得られる吸水性樹脂の性能及びコストの点から、アニオン性不飽和単量体、特にカルボキシル基含有不飽和単量体、さらにはアクリル酸および/またはその塩(例えば、ナトリウム、リチウム、カリウム、アンモニウム、アミン類等の塩、中でもコスト面からナトリウム塩が好ましい)を主成分として用いるポリアクリル酸(塩)系吸水性樹脂であることが好ましい。アクリル酸および/またはその塩の使用量は全モノマー成分(後述する内部架橋剤は除く)に対して70モル%以上が好ましく、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である(上限は100モル%である)。なお、上記モノマーがカルボキシル基などの酸基含有単量体の場合、その中和率には特に制限はなく、必要に応じて、重合後に重合ゲルが中和されてもよい。衛生用品など人体に触れる可能性のある用途では、重合後の中和は必要とされない。この中和率は、40モル%以上90モル%以下が好ましく、50モル%以上80モル%以下がより好ましい。
 重合工程において前述のモノマーを水溶液とする場合、該水溶液(以下、「モノマー溶液」と称することもある)中のモノマーの濃度は、特に限定されるものではないが、10~70重量%の範囲内が好ましく、20~60重量%、さらには35~60重量%の範囲内がさらに好ましい。また、上記水溶液重合または逆相懸濁重合を行う際には、水以外の溶媒が必要に応じて併用されてもよい。なお、併用される溶媒の種類は、特に限定されるものではない。
 (重合開始剤)
 重合工程においては、例えば、ラジカル重合開始剤を用いることができる。このラジカル重合開始剤としては、特に制限はなく、重合させるモノマーの種類、重合条件等に合わせて、通常の吸水性樹脂の重合において利用されているものの中から1種または2種以上が選択されて使用されればよい。 例えば、熱分解型開始剤(例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物;アゾニトリル化合物、アゾアミジン化合物、環状アゾアミジン化合物、アゾアミド化合物、アルキルアゾ化合物、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等のアゾ化合物;など)や、光分解型開始剤(例えば、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物など)等を挙げることができる。これらのなかでも、コスト面および残存モノマー低減能から、熱分解型開始剤が好ましく、過硫酸塩が特に好ましい。また、還元剤の併用はこれらラジカル重合開始剤の分解を促進しうるので、両者を組み合わせてレドックス系開始剤とすることもできる。上記の還元剤としては、特に限定されないが、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸(塩)、L-アスコルビン酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等が挙げられる。
 前述の重合工程に用いられるラジカル重合開始剤の使用量は、特に制限されないが、残存モノマーや水可溶分の観点からモノマーの使用量に対して、通常、0.001~2重量%であることが好ましく、より好ましくは0.01~1重量%、さらに好ましくは0.01~0.5重量%であり、0.01~0.05重量%であることが特に好ましい。該モノマーの使用量に対するラジカル重合開始剤の使用量が0.001重量%未満であることは、未反応のモノマーが多くなり得られる吸水性樹脂中の残存モノマー量が増加してしまうという点で好ましくない。一方、該使用量が2重量%を超えることは、得られる吸水性樹脂中の水可溶成分が増加してしまうという点で好ましくない。なお、この重合工程においては、前述のラジカル重合開始剤の代わりに、放射線、電子線、紫外線などの活性エネルギー線が照射されて、モノマーが重合されてもよい。
 (内部架橋剤)
 重合工程においては、必要に応じて、内部架橋剤を用いることができる。内部架橋剤としては、1分子内に2個以上の重合性不飽和基や2個以上の反応性基を有する従来公知の内部架橋剤が挙げられる。具体的には、例えば、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリアリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、1,4-ブタンジオール、ペンタエリスリトール、エチレンジアミン、エチレンカーボネート、プロピレンカーボネート、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらの中から、反応性を考慮して、1種または2種以上が用いられうる。特に、内部架橋剤としては、2個以上の重合性不飽和基を有する化合物が好ましい。内部架橋剤の使用量は、所望する吸水性樹脂の物性により適宜決定されればよいが、通常、内部架橋剤の使用量は、モノマーに対して0.001~5モル%、さらには0.005~2モル%、特に0.01~0.5モル%の範囲がよい。内部架橋剤の使用量が少なすぎると、重合ゲルの強度が低下し可溶分が増加する傾向にあり、逆に多すぎると吸水倍率等の物性が低下する傾向にある。なお、内部架橋剤は、反応系に一括添加されてもよく、分割添加されてもよい。
 [乾燥工程]
 乾燥工程は、前述の重合工程で得られた重合ゲル(含水ゲル状重合体)を乾燥する工程である。水溶液重合を用いる重合工程で得られた重合ゲルは、通常、重合時または重合後の解砕処理により0.1~5mm、さらに好ましくは0.5~3mm程度の粒子状の状態にして、乾燥工程に供されることが好ましい。粒子状のゲルとすることにより、ゲルの表面積が大きくなるため、上述した乾燥工程が円滑に進行しうる。解砕手段は特に制限されないが、例えば、ミートチョッパー、ローラー型カッター、ギロチンカッター、スライサー、ロールカッター、シュレッダー、ハサミなどの各種の切断手段を単独でまたは適宜組み合わせて使用することができる。該乾燥工程における乾燥方法は特に限定されないが、上記乾燥装置10としては、通常の乾燥機及び加熱炉を用いた方法が広く採用されうる。具体的には、伝導伝熱型乾燥機、輻射伝熱型乾燥機、熱風伝熱型乾燥機、誘電加熱乾燥機等が例示される。乾燥の速さの観点から、熱風伝熱型乾燥機(以下、熱風乾燥機)が好ましい。この熱風乾燥機としては、通気バンド式、通気回路式、通気竪型式、平行流バンド式、通気トンネル式、通気溝型攪拌式、流動層式、気流式、噴霧式等の乾燥装置が挙げられる。粒子状吸水剤の物性制御が容易であるという観点から、バンド式が好ましい。乾燥温度としては、比較的高い温度が設定されることが好ましく、具体的には、100~250℃が好ましく、120~220℃がより好ましく、150~200℃がさらに好ましい。乾燥時間は特に限定されないが、得られる乾燥物が所望の固形分率となるような時間が設定されればよい。乾燥工程において得られる乾燥物の固形分率(180℃で3時間加熱した後の残存量)が、90重量%以上であるのが、粉砕のし易さの点で好ましい。一般に、重合ゲルの粒子径、乾燥温度、風量などにもよるが、生産効率の点から、該乾燥時間は通常、2時間以内とすることが好ましい。
 [粉砕工程]
 粉砕工程は、前述の乾燥工程において得られた、重合ゲルの乾燥物としての粒子状吸水性樹脂を粉砕する工程である。この粉砕は通常、この乾燥物に対して行うが、乾燥前の、重合工程で得られた重合ゲルに対して行っても良い。この粉砕により、粉砕物としての粒子状吸水性樹脂が得られる。
 粉砕は、所望の粒径(好ましくは、重量平均粒子径200~800μm)の粒子状吸水性樹脂がより多く得られるように行うことが好ましい。粉砕方法については、特に制限はなく、従来公知の方法を採用することができる。この粉砕工程に用いられる粉砕装置12としては、3段ロールミルが例示される。この粉砕により微粉が発生するので、粉砕工程で得られる粒子状吸水性樹脂には微粉が含まれる。なお、重合工程や乾燥工程で得られた粒子状吸水性樹脂の粒径が粒度制御され十分小さい場合、この粉砕工程は実施されなくてもよい。粉砕工程を経て得られた吸水性樹脂や吸水剤の粒子は、不定形破砕状粒子となるが、かかる形状では粉砕により被表面積が大きく、かつ、パルプへの固定も容易であるため好ましい。すなわち、吸水性樹脂や吸水剤の形状は不定形破砕状粒子であることが好ましい。また、不定形粉砕破砕状粒子はその形状から輸送が困難で、また輸送に伴う物性低下も起こしやすかったが、本発明ではかかる問題も解決するため、好ましい。
 [分級工程]
 分級工程は、粒子状吸水性樹脂を篩い分ける工程である。分級工程では前述の粉砕工程で得られた粉砕物が篩い分けられる。この分級工程では、例えば、金属篩網を有する分級装置14が用いられる。該分級工程において、この分級装置14を用いて所望の粒径(篩分級で規定される重量平均粒子径(D50)が好ましくは200~800μm、さらに好ましくは300~600μmを有する粒子を選択して、目的とする粒子状吸水性樹脂が得られうる。分級方法については、特に制限はなく、従来公知の方法を採用することができる。なお、重合工程や乾燥工程で得られた粒子状吸水性樹脂の粒径が粒度制御され十分小さい場合、この分級工程は実施されなくてもよい。なかでも、特に篩分級が好適に適用され、篩の数は適宜決定されるが、通常は2~5段程度である。
 [表面架橋工程]
 表面架橋工程は、前述の分級工程で得られた粒子状吸水性樹脂の表面近傍を表面架橋剤を用いて架橋して粒子状吸水剤を得る工程である。吸水性樹脂は水膨潤性架橋重合体であり、(粒子)内部に架橋構造を有するが、本発明で用いられる吸水性樹脂(粒子)はさらに表面架橋され、その表面ないし表面近傍の架橋密度が内部より高められていることが好ましい。なお、表面の近傍とは通常、吸水性樹脂の表層であって厚みが数十μm以下又は全体の1/10以下の部分をさすが、目的に応じて適宜決定される。かかる吸水性樹脂の表面架橋は、(1)後述する表面架橋剤として例示の有機表面架橋剤及び/又は水溶性無機表面架橋剤によって表面架橋されていてもよく、(2)表面で架橋性単量体を架橋重合(例えば、米国特許7201941号明細書に開示)してもよく、また、(3)過硫酸塩などでラジカル表面架橋(例えば、米国特許4783510号明細書に開示)してもよい。また、架橋反応は加熱や放射線(好ましくは紫外線、欧州特許1824910号明細書に開示)で反応促進することが好ましい。吸水剤に含まれる吸水性樹脂はその表面近傍が、表面架橋されていることにより、AAP、言い換えれば、圧力に対する吸収力を高めることができる。
 さらに詳述すると、本願において表面架橋とは、吸水性樹脂表面あるいは表面近傍の領域が、化学的あるいは物理的に修飾されて表面架橋がなされたことを意味する。例えば部分中和架橋ポリアクリル酸の場合を例にとると、化学的な修飾とは、粒子表面近傍に存在する官能基、特にカルボキシル基と反応しうる官能基を2個以上有する有機表面架橋剤により、表面架橋が施された状態を含む。カルボキシル基と反応しうる官能基を2個以上有する有機表面架橋剤としては、例えば多価アルコール、多価グリシジル化合物、多価アミン等が挙げられる。また、本願における表面架橋とは、例えば3価アルミニウムのような多価金属が表面のカルボキシル基とイオン結合した形態の表面架橋をも含む。表面架橋における結合の形態は限定されない。
 以下、好ましい架橋方法として表面架橋剤を使用して、表面架橋する方法について説明する。表面架橋工程に用いられる表面架橋剤としては、従来公知の表面架橋剤が好適に用いられる。例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、ジプロピレングリコール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリプロピレングリコール、グリセリン、ポリグリセリン、2-ブテン-1,4-ジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,2-シクロヘキサンジオール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピレン、オキシエチレン-オキシプロピレンブロック共重合体、ペンタエリスリトール、ソルビトール等の多価アルコール;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシドール等のエポキシ化合物;エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等の多価アミン化合物やそれらの無機塩ないし有機塩(アジリジニウム塩など);2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物;1,2-エチレンビスオキサゾリン等の多価オキサゾリン化合物;1,3-ジオキソラン-2-オン、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物;エピクロロヒドリン、エピブロムヒドリン、α-メチルエピクロロヒドリン等のハロエポキシ化合物;亜鉛、カルシウム、マグネシウム、アルミニウム、鉄、ジルコニウム等の水酸化物又は塩化物等の多価金属化合物;2-オキサゾリジノン等のオキサゾリジノン化合物(米国特許第6559239号明細書に例示);オキセタン化合物;環状尿素化合物;等が挙げられる。これらの表面架橋剤の中でも、物性面から多価アルコール、エポキシ化合物、多価アミン化合物やそれらの塩、アルキレンカーボネート化合物及びオキサゾリジノン化合物からなる群より選ばれる少なくとも1種の化合物が好適であり、さらには多価アルコール、アルキレンカーボネート化合物及びオキサゾリジノン化合物ならなる脱水エステル反応性架橋剤が好適であり、特に多価アルコールが好適である。これら表面架橋剤は単独で用いてもよく、反応性を考慮して2種類以上が混合されて用いられてもよい。なお、表面架橋工程は、その効果を考慮して2回以上行ってもよく、その場合、2回目以降に用いられる表面架橋剤に、1回目と同一の表面架橋剤が用いられてもよいし、1回目の表面架橋剤とは異なる表面架橋剤が用いられてもよい。なお、脱水エステル反応性架橋剤では脱水エステル化に伴い含水率が低い粉体となり、輸送時のダメージによる物性低下の問題を起こしやすいが、本発明ではかかる問題も解決される。
 本発明に係る吸水性樹脂粉体は、表面架橋されているのが好ましく、上記多価アルコールによって表面架橋されているのがより好ましい。本発明は、末端線速Vyを抑制しうるため、表面架橋層が擦れ合いによって剥離することが抑制される。よって、多価アルコールによる表面架橋に起因する物性向上効果が損なわれにくい。なお、多価アルコールとして、好ましくはC2-C10、より好ましくはC3-C8、特に好ましくはC3-C6の多価アルコールの1種または2種以上が使用される。
 表面架橋工程において、前述の表面架橋剤の使用量は、選定される表面架橋剤、表面架橋剤の組み合わせ等にもよるが、吸水性樹脂の固形分100質量部に対して、0.001~10質量部の範囲内が好ましく、0.01~5質量部の範囲内がより好ましい。この範囲で表面架橋剤が用いられることにより、吸水性樹脂の表面近傍の架橋密度を内部のそれよりも高くすることができる。表面架橋剤の使用量が10質量部を超える場合は、不経済でありであるばかりか、吸水性樹脂に最適な架橋構造を形成する上で架橋剤の供給が過剰であるので、好ましくない。表面架橋剤の使用量が0.001質量部未満の場合は、粒子状吸水剤の加圧下吸収倍率等の性能を向上させる上で、充分な改良効果が得られないので、好ましくない。
 表面架橋工程では、上記表面架橋剤に加えて、必要に応じてさらに有機酸(乳酸、クエン酸、p-トルエンスルホン酸)又はその塩、無機酸(リン酸、硫酸、亜硫酸)等の酸物質又はその塩、苛性ソーダや炭酸ソーダ等の塩基物質、後述する硫酸アルミニウム等の多価金属塩等が、吸水性樹脂に対して0重量%を超えて10重量%以下、さらに好ましくは0重量%を超えて5重量%以下、特に好ましくは0重量%を超えて1重量%以下程度、併用されてもよい。
 表面架橋工程では、粒子状吸水性樹脂と表面架橋剤との混合にあたり、溶媒として水を用いることが好ましい。水の使用量は、吸水性樹脂の種類、粒子状吸水性樹脂の粒径、含水率等にもよるが、粒子状吸水性樹脂の固形分100質量部に対して、0質量部を超え、20質量部以下が好ましく、0.5~10質量部の範囲内がより好ましい。粒子状吸水性樹脂と表面架橋剤との混合にあたり、必要に応じて、親水性有機溶媒が併用されてもよい。ここで併用されうる親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。親水性有機溶媒の使用量は、吸水性樹脂の種類、粒子状吸水性樹脂の粒径、含水率等にもよるが、粒子状吸水性樹脂の固形分100質量部に対して、0質量部以上20質量部以下が好ましく、0質量部以上10質量部以下がより好ましい。
 表面架橋を行うに際しては、まず、水及び/又は親水性有機溶媒と表面架橋剤とが予め混合されて、表面処理剤溶液が作製される。次いで、この溶液が粒子状吸水性樹脂にスプレー等で噴霧又は滴下されて混合される方法が好ましく、噴霧による混合方法がより好ましい。噴霧される液滴の大きさとしては、平均粒子径で0.1~300μmの範囲内が好ましく、0.1~200μmの範囲がより好ましい。
 粒子状吸水性樹脂と、上記表面架橋剤、水及び親水性有機溶媒とは、混合装置16を用いて混合される。この混合装置16は、両者を均一かつ確実に混合するために、大きな混合力を備えているのが好ましい。この混合装置16としては、例えば円筒型混合機、二重壁円錐混合機、高速攪拌型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、双腕型ニーダー、粉砕型ニーダー、回転式混合機、気流型混合機、タービュライザー、バッチ式レディゲミキサー、連続式レディゲミキサー等が好適である。
 表面架橋工程では、粒子状吸水性樹脂と表面架橋剤との混合物は、室温でも表面架橋を行なうことができるが、反応の促進並びに添加された水及び溶媒の除去の観点から、粒子状吸水性樹脂と表面架橋剤との混合後、さらに、加熱処理が行われて、粒子状吸水性樹脂の表面近傍が架橋させられることが好ましい。すなわち、粒子状吸水性樹脂の表面近傍で架橋剤を反応させるには、架橋剤の反応性、製造設備の簡易性、生産性等を考慮すると加熱処理が行われるのが好ましいのである。該加熱処理において、処理温度は、選定される表面架橋剤にもよるが、80℃以上が好ましい。処理温度が80℃以上であれば、加熱処理が長時間とならず、生産性の低下を防止しうる上に、均一な表面架橋が達成されうる。この場合、粒子状吸水剤の加圧下における吸収特性の低下や未反応の表面架橋剤の残存を防止しうる。また、物性の観点からは、処理温度(熱媒温度または材料温度/特に熱媒温度)として、より好ましくは100~250℃の範囲内、さらに好ましくは150~250℃の範囲内である。前記温度範囲は特に上記脱水エステル化反応性表面架橋剤では好適である。
 加熱時間としては、1分間~2時間の範囲内が好ましい。加熱温度と加熱時間の組み合わせの好適例としては180℃で0.1~1.5時間、200℃で0.1~1時間である。
 なお、高温の表面架橋では含水率が低い粉体となり、輸送時のダメージによる物性低下の問題を起こしやすいが、本発明ではかかる問題も解決する。例えば、ERT430.2-02の含水率は0~3%、特に0~2%、特に0~1%の吸水性樹脂粉体の輸送に好適に本発明は適用される。
 上記加熱処理を行う加熱装置18としては、公知の乾燥機又は加熱炉が用いられる。例えば、伝導伝熱型、輻射伝熱型、熱風伝熱型、誘電加熱型の乾燥機又は加熱炉が好適である。具体的には、ベルト式、溝型攪拌式、スクリュー式、回転型、円盤型、捏和型、流動層式、気流式、赤外線型、電子線型の乾燥機又は加熱炉が挙げられる。
 表面架橋工程では、加熱処理は静置状態又は撹拌下で行なわれうる。撹拌下で加熱処理が実施される場合、粒子状吸水性樹脂と表面架橋剤との混合がなされた混合装置16内で混合物が加熱されて表面架橋が完成させられてもよいし、例えば2軸溝型撹拌乾燥装置に混合物を投入して、該混合物が加熱されて表面架橋が完成させられてもよい。
 [冷却工程]
 冷却工程は架橋反応の停止や制御などを目的として、前述の表面架橋工程で加熱され表面近傍が架橋されて得られる粒子状吸水剤が、続く工程(例えば、整粒工程)に投入される前に、必要により冷却させられる工程である。この冷却工程で用いられる上記冷却装置20としては、特に制限はないが、例えば、内壁その他の伝熱面の内部に冷却水が通水されている2軸撹拌乾燥機や、溝型攪拌式乾燥機等を用いることができ、この冷却水の温度は、加熱温度未満、即ち25℃以上80℃未満とされ、好ましくは30℃以上60℃以下とされうる。
 なお、上記表面架橋工程において、粒子状吸水性樹脂の表面架橋が室温で実施される場合がある。この場合、表面架橋により得られる粒子状吸水剤は加熱されないので、この冷却工程は実施されなくてもよい。したがって、この冷却工程は、必要により本発明の輸送方法にさらに含まれていてもよい他の工程である。
 [添加剤の添加工程]
 本発明では、上記表面架橋剤以外の添加剤を添加する添加工程がさらに設けられてもよい。この添加工程は、上記重合工程以降に設けられるのが好ましく、上記乾燥工程以降に設けられるのがより好ましい。表面架橋と同時または別途、例えば、上記冷却工程又はその他の工程において、添加剤が添加されてもよい。この添加剤としては、例えば、下記の(A)消臭成分(好ましくは植物成分)、(B)多価金属塩、(C)無機粒子((D)複合含水酸化物を含む)、(E)通液性向上剤、(F)その他の添加物等が添加されてもよい。この添加により、粒子状吸水剤に種々の機能が付与されうる。さらに、この粒子状吸水剤には、下記の(G)キレート剤が添加されてもよい。
 上記(A)~(E)及び(F)の使用量は、目的及び付加機能によっても異なるが、通常、その1種類の添加量として、吸水性樹脂100質量部に対して0~10質量部、好ましくは0.001~5質量部、さらに好ましくは0.002~3質量部の範囲である。通常、この添加量が0.001質量部より少ない場合、添加剤による十分な効果及び付加機能が得られず、この添加量が10質量部以上の場合、添加量に見合った効果が得られないか、吸水性能が低下してしまう。
 (A)消臭成分
 粒子状吸水剤は、消臭性を発揮させるために、上記量で消臭成分、好ましくは植物成分を配合することが出来る。植物成分としては、米国特許出願公開第2004/048955号明細書、国際公開第2002/42379号パンフレットなどに例示されるが、特に限定されない。
 (B)多価金属塩
 上述した方法により得られる粒子状吸水剤は、吸水性樹脂の表面に、通液性及び吸湿時の粉体流動性の向上の目的で、多価金属塩または多価金属の水酸化物、好ましくは多価金属塩、より好ましくは水溶性多価金属塩、さらに好ましくは3価ないし4価の水溶性多価金属塩、特に好ましくは水溶性アルミニウム塩が配合されてなることが好ましい。この多価金属塩の好ましい量は、上記の通りである。多価金属塩を配合する場合、輸送性の低下や輸送時の物性低下が大きいことが見出され、本発明の方法が好適に適用できる。この多価金属塩としては、米国特許出願公開第2002/0128618号明細書、米国特許出願公開第2006/204755号明細書などに記載の有機酸の多価金属塩及び無機の多価金属塩が例示される。なお、水溶性多価金属塩とは常温の水に0.1g/100g以上(好ましくは1g/100g以上、特に好ましくは10g/100g以上)溶解する多価金属塩であり、これらは粉体または溶液として混合され、溶液は飽和濃度を超えた分散液であってもよい。好ましい有機多価金属塩としては、乳酸アルミニウム、乳酸カルシウムなどが例示される。
 また、好ましい無機の多価金属塩として、例えば、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウム、塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、塩化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウムなどが挙げられる。また、尿などの吸収液との溶解性の点から、これらの結晶水を有する塩を使用するのが好ましい。特に好ましいくは、アルミニウム化合物である。このアルミニウム化合物の中でも、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、ビス硫酸カリウムアルミニウム、ビス硫酸ナトリウムアルミニウム、カリウムミョウバン、アンモニウムミョウバン、ナトリウムミョウバン、アルミン酸ナトリウムが好ましく、硫酸アルミニウムが特に好ましい。硫酸アルミニウム18水塩、硫酸アルミニウム14~18水塩などの含水結晶の粉末は、最も好適に使用することができる。これらは1種のみ用いても良いし、2種以上を併用して用いてもよい。上述した多価金属塩は、ハンドリング性及び吸水性樹脂粉体との混合性の観点から、溶液状態で用いられることが好ましく、特に水溶液状態で用いられることがより好ましい。その他、用いられる有機酸の多価金属塩及びその混合方法は、例えば、国際公開第2004/069936号パンフレットに例示されている。また、溶液の濃度は飽和濃度を超えてもよいが、好ましくは、常温または加熱溶液中での飽和濃度の10~100%、さらには30~100%で添加される。
 上記多価金属塩のうち、水溶性の多価金属塩として、硫酸アルミニウム及び各種ミョウバン類が挙げられる。本発明の輸送方法によれば、低輸送速度による吸水性樹脂粉体の破壊抑制と輸送配管中での閉塞等による輸送効率低下の防止という相反関係にある課題を両立させることが可能である。このため、本発明の輸送方法は、水溶性の多価金属塩を含む吸水性樹脂粉体において効果的である。多価金属塩を含む吸水性樹脂粉体は、表面が滑りにくく、表面での摩擦係数が大きい。特に、硫酸アルミニウム等の水溶性の多価金属塩の場合、この摩擦係数の増加が顕著である。この摩擦係数の大きさに起因して、閉塞現象が生じやすい。この閉塞現象を抑制する目的で空気圧が高くされた場合、輸送配管における吸水性樹脂粉体の移動速度(初期線速Vx及び末端線速Vy)が大きくなり、吸水性樹脂粉体のダメージが大きくなる。本発明は、初期線速Vx及び末端線速Vyを低下させつつ閉塞現象を抑制しうるので、水溶性の多価金属塩を含む吸水性樹脂粉体において効果的である。また、本発明は、初期線速Vx及び末端線速Vyを抑制しうるので、擦れ合いによって粉体表面から多価金属塩が剥離することが抑制される。よって、多価金属塩に起因する物性向上効果が損なわれにくい。
 (C)無機粒子
 粒子状吸水剤は、吸水性樹脂の表面に、通液性向上や吸湿時のブロッキング防止のために無機粒子、特に水不溶性無機粒子(水不溶性微粒子)を配合することができる。この無機粒子としては、具体的には例えば、二酸化珪素や酸化チタン等の金属酸化物、天然ゼオライトや合成ゼオライト等の珪酸(塩)、カオリン、タルク、クレー、ベントナイト等が挙げられる。このうち二酸化珪素及び珪酸(塩)がより好ましく、コールターカウンター法により測定された平均粒子径が0.001~200μmの二酸化珪素及び珪酸(塩)がさらに好ましい
 また、粒子吸水剤の優れた吸湿流動性(吸水性樹脂又は吸水剤が吸湿した後の粉体の流動性)と優れた消臭機能とを発揮させるために、粒子吸水剤に亜鉛と珪素、又は亜鉛とアルミニウムを含む複合含水酸化物を配合することもできる。
 無機粒子を配合する場合、輸送性の低下や輸送時の物性低下が大きいという問題が見出されているが、本発明では、初期線速Vx(輸送配管の始点における吸水性樹脂粉体の線速度)を抑制しうるので、擦れ合いによって粉体表面から無機粒子が剥離することが抑制され、その結果、無機粒子に起因する物性向上効果が損なわれにくい。したがって、本発明の方法が好適に適用できる。
 (D)ポリアミン化合物(多価アミン化合物)
 粒子状吸水剤の通液性向上、保形性向上などを目的として、ポリアミンを添加できる。例えば、水溶性ポリアミンポリマー、より具体的には重量平均分子量が200~1000000である、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミンなどが例示できる。粒子状吸水剤において、これらは吸水性樹脂表面被覆または架橋に使用される。吸水性樹脂に適用できるポリアミンポリマーは例えば、米国特許出願公開第2003/069359号明細書、米国特許出願公開第2005/0245684号明細書、国際公開第2006/082197号パンフレット、国際公開第2006/074816号パンフレット、国際公開第2006/082189号パンフレット、国際公開第2008/025652号パンフレット、国際公開第2008/025656号パンフレット、国際公開第2008/025655A1などで例示される。
 (E)通液性向上剤
 通液性向上剤とは、後述する食塩水流れ誘導性(SFC)が6(10-7・cm・s・g-1)以上である吸水性樹脂又は吸水剤の食塩水流れ誘導性(SFC)を10(10-7・cm・s・g-1)以上向上させる添加剤をいう。これらは好適にはイオン的スペーサー(カチオン)または立体的スペーサー(微粒子)として粒子間の隙間を維持拡大して通液性を向上される化合物である。したがって、前述の(A)~(D)に例示された添加剤であっても、この通液性向上剤に該当する場合もある。本発明の輸送方法では、この通液性向上剤は、上記(B)~(D)であるのが好ましい。
 これらの中でも、上記(B)で例示される、イオン的スペーサーとなりうる硫酸アルミニウム、カリウムミョウバンミョウバン等の水溶性の多価金属塩が、食塩水流れ誘導性(SFC)を向上させる点で好ましい。
 通液性向上剤の粒子状吸水剤中の存在形態は、粒子状であってもよく、全体に分子レベルで被覆(通常、溶液で被覆)してもよく、それらを併用してもよい。ただし、通液性向上剤は、吸水性樹脂表面全体により均一に添加しやすく、通液性向上剤の偏析等がない点から、水溶液形態で使用されることが好ましい。通液性向上剤は、吸水性樹脂に対して、0.001~10重量%の割合で用いることが好ましく、0.01~5重量%の割合で用いることがより好ましい。
 (F)界面活性剤
 粒子状吸水剤は、界面活性剤を含むことが好ましい。界面活性剤の存在のより、粉体特性(粉体流動性や吸湿時の流動性等)を向上しうる。特に、吸水性樹脂の表面に界面活性剤を含むことが好ましい。
 界面活性剤としては、脂肪酸塩や高級アルコール硫酸塩等のアニオン性界面活性剤や、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリステアレート等のソルビタン脂肪酸エステル等のノニオン性界面活性剤、ココナットアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩等のカチオン性界面活性剤や両性界面活性剤が例示される。その他米国特許第6107358号に記載の界面活性剤が本発明に適応できる。なお、界面活性剤の添加方法としては特に限定されず、好ましくは、米国特許第6228930号、米国特許第6458921号、米国特許第7153910号及び米国特許第7378453号に例示の造粒工程で添加される。また、界面活性剤の添加時期もまた、特に制限されず、(ア)重合工程で、界面活性剤をアクリル酸水溶液中に添加して、界面活性剤の存在下で重合を行なう;(イ)重合工程で、界面活性剤を重合後の含水ゲルに添加する;(ウ)乾燥工程で、界面活性剤を乾燥中もしくは後に添加する;(エ)粉砕・分級工程で、乾燥物の粉砕または分級中もしくは後に界面活性剤を添加する;(オ)表面架橋工程で、表面架橋中もしくは後に界面活性剤を添加する;(カ)最終産物である吸水性樹脂に添加する、など、いずれの時期でもよい。ただし、表面に含むには表面架橋工程の前後に添加すればよい。
 界面活性剤の使用量は、吸水性樹脂100重量部に対し、好ましくは0.0005~0.012重量部、より好ましくは0.0005~0.001重量部、さらに好ましくは0.001~0.0045重量部、特に好ましくは0.0015~0.004重量部である。0.0005重量部未満では、流動性、かさ密度の向上が不十分となる場合がある。一方、0.012重量部を越えると、吸収液の表面張力が低下するという問題があり、またその添加量に見合っただけの効果が発揮できない場合があり、非経済的である。
 本発明で使用される界面活性剤は、上記界面活性剤に限定されるものではない。上記界面活性剤の中で、安全性の面からノニオン性界面活性剤が好ましく、その中でもソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが特に好ましい。また、本発明で使用される界面活性剤のHLB(親水性-疎水性バランス)は特に限定されるものではないが、好ましくは8~18、より好ましくは、9~17、さらに好ましくは10~17の範囲である。HLBが上記の範囲である場合、より好適に粒子状吸水剤の流動性、かさ密度を向上させることができる。
 (G)キレート剤
 本発明で用いられる吸水性樹脂粉体は、着色防止、耐尿性向上などのために、キレート剤を含んでもよい。キレート剤を混合する工程は特に限定されないが、前記単量体あるいは単量体溶液に、キレート剤を混合することが好ましい。上記キレート剤としては特に制限されず、例えば、欧州特許出願公開第1426157号及び国際公開第2007/28751号、国際公開第2008/90961号に例示のキレート剤を使用することができる。効果の面から好ましくは、キレート剤の分子量が100~1000である水溶性有機キレート剤である。具体的に好ましいキレート剤としては、イミノ二酢酸、ヒドロキシエチルイミノ二酢酸、ニトリロ三酢酸、ニトリロ三プロピオン酸、エチレンジアミン四酢酸、ヒドロキシエチレンジアミン三酢酸、ヘキサメチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸およびこれらの塩等のアミノカルボン酸系金属キレート剤やエチレンジアミン-N,N’-ジ(メチレンホスフィン酸)、エチレンジアミンテトラ(メチレンホスフィン酸)、ポリメチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、1-ヒドロキシエチリデンジホスホン酸、およびこれらの塩等のアミノ多価リン酸化合物である。キレート剤の使用量は、吸水性樹脂粉体に含まれる吸水性樹脂100質量部に対して0.001質量部以上、好ましくは0.05質量部以上、さらに好ましくは0.1質量部以上であり、また、吸水性樹脂100質量部に対して、1質量部以下、好ましくは0.5質量部以下、さらに好ましくは0.2質量部以下であることが望ましい。
 上記(B)及び(C)は、表面処理剤として好適に用いられうる。本願において表面処理とは、吸水性樹脂表面あるいは表面近傍の領域が、化学的あるいは物理的に修飾されていることを意味する。ここで、化学的修飾とは、何らかの化学結合(共有結合やイオン結合)を伴った修飾の状態を意味し、物理的修飾とは化学的な結合を伴わない、物理的な被覆、付着を意味する。
 (H)滑剤(すべり性向上剤)
 粒子状吸水剤は、滑剤を含むことが好ましい。特に、吸水性樹脂の表面に滑剤を含むことが好ましい。「滑剤」とは、互いに滑りあう二面間にあって、摩擦(抵抗)を減少させる働きをする物質をいう。本発明に用いることのできる滑剤は、常温(25℃)および常圧(0.101MPa)にて固体の滑剤であれば特に限定されるものではない。滑剤は米国特許第7473739号明細書、国際公開第2008/120742号パンフレットなどに例示され、これらに例示された滑剤を本発明でも好ましく使用することができる。例えば、炭化水素系滑剤、脂肪酸系滑剤(好ましくはC12以上)、脂肪酸アミド系滑剤、エステル系滑剤、アルコール系滑剤(グリコールないし高級アルコール)、金属石鹸滑剤等が挙げられる。中でも、滑剤としての作用を有するとともに安定剤としての作用も有するという点において、米国特許第7282262号明細書に例示の金属石鹸滑剤を用いることが好ましい。
 滑剤と混合する際の吸水性樹脂の粉体温度は、通常室温以上とされるが、粒子状吸水剤の安定した吸水特性や流下速度、かさ密度を得るためには、好ましくは40℃以上、より好ましくは50℃以上で混合される。吸水性樹脂100重量%に対して、好ましくは0.0001~0.1重量%、より好ましくは0.01~0.05重量%、特に好ましくは0.001~0.01重量%である。
 特に本発明では、通液性を向上させる添加剤として(B)多価金属塩が好ましい。多価金属塩は、添加後、混合されることが好ましい。混合する装置としては、上記表面架橋剤の同じ混合装置16を挙げることができる。
 なお、多価金属塩は、水溶液として吸水性樹脂粒子(粒子状吸水性樹脂)と混合することが好ましい。水溶液の液滴の大きさは適宜調整されうる。ただし、多価金属イオン(例えば、アルミニウムイオン)が吸水性樹脂粒子の内部に浸透・拡散することを防ぐ観点から、水溶液は飽和濃度に対して50%以上の濃度が好ましく、より好ましくは60%以上の濃度、さらに好ましくは70%以上の濃度、さらに好ましくは80%以上の濃度、特に好ましくは90%以上の濃度である。もちろん、飽和濃度(=飽和濃度に対して100%)であってもよい。また、同様の理由で、水の使用量は吸水性樹脂の重量に対して0.1~30重量%、さらには0.2~10重量%程度であり、添加後は必要により乾燥してもよい。
 [整粒工程]
 前述した粉砕工程及び分級工程において、その粒径が調整されたにも関わらず、表面架橋工程または冷却工程後の粒子状吸水剤には、大きな粒径を有する凝集物が含まれる場合がある。この凝集物は、主として、表面架橋剤の混合時や、表面架橋反応時において生成されうる。この整粒工程では粒度を再調整する目的で、この凝集物の解砕処理及び分級処理が行なわれる。この解砕処理及び分級処理の順序及び回数は、特に限定されない。この整粒工程では、例えば、粒子状吸水剤に対して、先ず分級処理がなされる。この分級処理では、ふるいや気流分級機などの分級装置が用いられ、粒径の大きな凝集物や粒径が小さい微粉が除去されうる。そして、この分級処理により得られる凝集物には解砕処理が施され、凝集物を構成する粒子が個々の粒子に解き分けられる。この解砕処理には、例えばナイフカッター式解砕機が用いられる。この解砕処理により得られた解砕物に対しては、上記分級処理が再度実施されて、粒径が小さい微粉が除去されつつ、所望の粒径(好ましくは、重量平均粒子径200~800μm)を有する粒子状吸水剤が得られうる。生産性の観点から、この整粒工程は、上記冷却工程の後に実施されるのが好ましい。ただし、本願発明の方法では、この整粒工程投入前の粒子状吸水剤に大きな粒径を有する凝集物が含まれない場合においては、この整粒工程は実施されなくてもよい。この整粒工程は、必要により本発明の輸送方法にさらに含まれていてもよい他の工程である。
 [包装工程]
 包装工程は、粒子状吸水剤が包装される工程である。整粒工程がなされる場合、包装工程では前述の整粒工程で整粒された粒子状吸水剤が包装される。例えば、この包装工程では、貯蔵用のホッパーに移された粒子状吸水剤が、上記充填装置24を用いて貯蔵バックに充填される。貯蔵バックに充填された粒子状吸水剤が、所定の検査を経て製品として出荷される。整粒方法は米国特許第7347330号明細書、米国特許出願公開第2005/0113252号明細書などに例示されている。
 [微粉リサイクル工程]
 微粉リサイクル工程は、微粉低減などの諸目的のため、分級などで除去した微粉(例えば150μm未満の粒子を主成分、特に70重量%以上含む粒子)を吸水性樹脂の製造工程に戻す工程であり、好ましくは、重合工程ないし乾燥工程にリサイクルされることで、微粉の除去および再利用が可能である。すなわち、本発明の一実施形態では、前記吸水性樹脂粉体が吸水性樹脂の微粉リサイクル物を含む。かかるリサイクル工程では微粉をそのまま戻してもよく、後述する造粒工程において造粒してからリサイクルしてもよい。リサイクル方法としては、重合機、好ましくはニーダーなどの攪拌重合機に微粉を混合して一体化したり、重合後に重合ゲルと微粉またはその造粒物とを別途混合、例えば、ミートチョッパーで(解砕)混合したり、乾燥機中で混合したりすればよい。
 従来、微粉造粒物の破壊や再生に由来するとも推定されるが、かかる微粉リサイクル工程を含む吸水性樹脂、すなわち、微粉リサイクル品を含む吸水性樹脂は輸送工程で物性が低下し易い傾向にあったが、本発明では微粉リサイクル工程で微粉も除去され物性も向上する上に、空気輸送時の輸送効率の低下を伴わずに衝撃が抑制されるため、かかる問題もない。好ましい微粉リサイクル方法は、例えば、米国特許第6133193号明細書、米国特許第6228930号明細書、米国特許第5455284号明細書、米国特許第5342899号明細書、米国特許出願公開第2008/0306209号明細書に例示され、重合工程、ゲル粉砕工程、乾燥工程など、吸水性樹脂の製造工程に微粉を添加することで微粉量は低減される。また、微粉のリサイクル量は例えば製造量の1~30重量%、さらには5~25重量%、特に8~20重量%程度で適宜決定される。また、微粉は乾燥粉末のまま、あるいは、必用により水を添加してゲル化して製造工程にリサイクルされ、特に、単量体および/または(乾燥前や重合中の)ゲルにリサイクルされる。
 [造粒工程]
 造粒工程は、微粉に、水性液を添加して、造粒粒子を得る工程である。この微粉は、例えば、上記分級工程で得られうる。微粉は、他の工程(粉砕工程や整粒工程等)の雰囲気中から微粉捕捉装置26により収集されたものであってもよい。この微粉捕捉装置26は、例えば微粉を捕捉しうるフィルターを備えている。造粒粒子は複数の微粉よりなる。造粒粒子の重量平均粒子径は、20mm以下、好ましくは0.3~10mm、さらに好ましくは0.35~5mmである。なお、造粒は微粉のみ(例;150μm通過物)で行ってもよく、微粉を含む粒子全体(150μm通過物を所定量含む、850μm通過物の吸水性樹脂粉体)で行ってもよい。
 造粒工程で得られる造粒粒子はそのまま造粒品としても使用してもよいが、好ましくは、上記工程のいずれかに投入される。生産効率の観点から、この造粒粒子は、微粉リサイクル工程として上記乾燥工程に投入されて上記重合ゲルの共存下で乾燥させられるのが好ましい。図1に示されているように、この製造設備2では、微粉捕捉装置26に繋げられている輸送部6は造粒装置28に繋げられている。この造粒装置28は、輸送部6で乾燥設備10に繋げられている。微粉捕捉装置26から排出される微粉は、輸送部6により輸送されて造粒装置28に投入される。この微粉も、吸水性樹脂粉体である。この造粒装置28で形成された造粒粒子は、輸送部6により輸送されて、乾燥装置10に投入される。粒子状吸水剤が造粒粒子であることは、光学顕微鏡によって個々の粒子が形状を保ったまま複数集まり凝集している事実や、吸液時に複数の不連続粒子として膨潤する事実から確認できる。
 [貯蔵工程]
 本発明の吸水性樹脂粉体の輸送方法は、吸水性樹脂粉体の貯蔵工程を含むことが好ましい。該貯蔵工程で使用する装置を、本発明では「ホッパー」と称する。ホッパーとは、吸水性樹脂粉体を一時的または長期的に貯蔵保管しておく装置であり、本発明では、特定形状であればサイロ状(縦長形状)のものも含む。具体的には、図2に示すような、受けホッパー40、加圧タンクホッパー32、貯蔵ホッパー42などの装置が挙げられる。なお、図2の詳細については、後述する。
 ホッパーを使用することで、吸水性樹脂粉体を損傷破壊することなく、定量的にマスフローで各工程において使用される装置にフィードすることが可能となる。これにより、高機能・高物性の吸水性樹脂がロット毎の変動なく安定的に生産することができる。
 図3に本発明の一実施形態に使用されうるホッパーの概略図を示す。ホッパーの形状としては、粉体、特に吸水性樹脂粉体の搬送性、移送性の観点から、図3左図に示されるような逆角錐台形状または逆円錐台形状、ならびに図3右図に示されるような逆角錐台の最大口径部分に同形状の角柱が付加された形状や逆円錐台の最大口径部分に同形状の円柱が付加された形状が好ましく使用される。また、ホッパーの最大口径(直径)と高さとの比(ホッパーの最大口径/ホッパーの高さ、例えば、図3中の「R1/H」)は1/10~10/1、さらには1/3~3/1、特に1/2~2/1の範囲である。ここで、「ホッパーの高さ」は、図3左図に示されるような逆角錐台形状や逆円錐台形状の場合には、逆角錐台部または逆円錐台部の高さ(図3左図中の「H」)を指す。また、図3右図に示されるような逆角錐台形状や逆円錐台形状に角柱や円柱が付加された形状の場合には、逆角錐台部または逆円錐台部の高さに角柱部分または円柱部分の高さを加えた合計高さ(図3右図中の「H’」)を指す。また、ホッパーが円筒でない場合、ホッパーの最大口径は、その最大断面積に相当する円の直径に換算して規定される。逆角錐台または逆円錐台の形状として、逆角(ないし逆円)と錐台の比率としては、錐台の方の高さが小さい方、ホッパー断面の形状において、ホームベース形状であり、その三角部分の断面積が主である。すなわち、吸水性樹脂粉体の主成分、好ましくは50重量%以上、さらに好ましくは80重量%以上がホッパーの角錐ないし円錐の部分に貯蔵されてなる。
 本発明では、コーン部傾斜角が45度以上かつ絞り率が0.3~0.8という特定の形状を有するホッパーを使用することが好ましい。コーン部傾斜の上限は90度未満が好ましい。本明細書において、「コーン部傾斜角」とは、図3に示されるように、設置されたホッパーの水平面に対する側壁面の傾斜角のことである。本発明のホッパーのコーン部傾斜角はより好ましくは50度以上、さらに好ましくは60~90度、特に好ましくは65~85度、最も好ましくは68~85度とされる。なお、側壁面が直線でない場合、その側壁面全体から求められる角度の平均値にて規定される。
 また、本明細書において、「絞り率」とは、ホッパー上面の開口部の口径(ホッパー上部の最大口径部(R1))およびホッパー底面の開口部(ホッパー排出部の口径(R2))で規定される比をパーセントで表わした比率(R2/R1×100)の値である。ホッパーの絞り率は、好ましくは30~80%であり、より好ましくは35~80%、さらに好ましくは40~80%、特に好ましくは40~70%とされる。なお、口径が円でない場合、例えば、楕円や多角形の場合、その断面積に相当する円に換算して規定される。上記範囲のホッパーを使用した場合は所望の高物性の吸水性樹脂を安定して生産することができる。
 また、ホッパー内での吸水性樹脂粉体の充填率(平均)は0体積%を超えて90体積%以下であり好ましくは10~80体積%、さらに好ましくは30~80体積%、特に好ましくは40~80体積%とされる。本明細書において、「充填率」とはホッパー内容積に対する充填される吸水性樹脂の体積比(体積%)で規定され、前記範囲に制御することで吸水性樹脂の移送性が良好となる。
 ホッパーの材質としては特に限定されないが、ステンレス鋼が好ましく、その内面の表面粗さ等は後述する空気輸送装置が有する配管に準じる。
 ホッパー内での吸水性樹脂の滞留時間(平均)も制御することが好ましく、滞留時間としては、ホッパー内に充填される吸水性樹脂量にも依存するが、好ましくは24時間以下、より好ましくは12時間以下、さらに好ましくは6時間以下、特に好ましくは2時間以下とされる。滞留時間が24時間を超える場合は物性の低下やブロッキングを生じる可能性があるため好ましくない。なお、ホッパー内での吸水性樹脂の滞留時間(平均)の下限は、特に制限されないが、可能な限り短いことが好ましい。
 なお、本発明で最も効果を発揮する実施形態としては、本発明の方法は、例えば1時間当たり100kg以上、好ましくは500kg以上、特に好ましくは1t以上の生産量で吸水性樹脂を製造する際の輸送方法に適用される。
 さらに、ホッパーが加熱されることが好ましく、その表面温度は、好ましくは40~120℃、さらに好ましくは50~90℃、特に好ましくは60~80℃の範囲である。また、ホッパーに貯蔵される吸水性樹脂粉体も加熱されることが好ましく、その温度は、好ましくは40~120℃、さらに好ましくは50~90℃、特に好ましくは60~80℃の範囲である。前記温度より低い場合は、物性値の低下や物性値のフレ幅の増加、吸水性樹脂の凝集の発生する場合がある。また、前記温度よりも温度が高い場合は、物性値の低下や物性値のフレ幅の増加に加え、吸水性樹脂の着色が発生する場合がある。
 また、該ホッパーに貯蔵される吸水性樹脂粉体の含水率は、特に制限されないが、好ましくは0.1~30重量%、より好ましくは0.1~10重量%である。前記含水率の範囲とすることにより吸水性樹脂粉体を該ホッパー内に貯蔵(または充填)する際に、ダメージの低減、物性の低下を抑止することができる。
 ホッパーは、各工程で粉体(吸水性樹脂粉体)を取り扱う場合に、乾燥工程以降の少なくとも1ヶ所以上で粉体を貯蔵した後に前記粉体を排出する際に、各工程で適用される。すなわち、ホッパーは、乾燥工程中;粉砕・分級工程中;表面架橋工程中;乾燥工程と粉砕・分級工程との間;粉砕・分級工程と表面架橋工程との間;表面架橋工程以降の最終製品として得られた吸水性樹脂をコンテナバッグ等に充填する工程(充填工程)中またはその後;表面架橋工程と充填工程との間、など、いずれの時期でもよい。また、上記各時期中、ホッパーを、1ヶ所設置しても、あるいは2ヶ所以上設置してもよい。さらに、後者の場合、複数のホッパーの設置位置は、連続して設置してもあるいはホッパー間に他の工程(あるいは装置)を設置してもよい。
 該ホッパーを使用した貯蔵工程への前工程からの吸水性樹脂粉体の搬送や、貯蔵工程から次工程への搬送は、好ましくは後述の空気輸送にて行われる。本発明の好ましい一実施形態に係る輸送方法は、空気輸送工程後に吸水性樹脂粉体を貯蔵する工程を有する。かような形態によれば、衝撃による物性低下がなく、かつ高物性の品質を安定的して維持できるため好ましい。
 本発明に係る粒子状吸水剤の製造工程の概略は以上である。次に、本発明に係る輸送(搬送)方法について説明する。
 本発明において、空気輸送は、上記各工程により生成した吸水性樹脂粉体(粒子状吸水性樹脂及び粒子状吸水剤)の輸送に適用される。空気輸送は、図1に示す輸送部6が行なう。重合装置8と乾燥装置10との間、混合装置16と加熱装置18との間、及び、造粒装置28と乾燥装置10との間では、被輸送物が湿っているため空気輸送は適さない(ただし、空気輸送の適用を排除する趣旨ではない)が、他の輸送部6では、被輸送物(吸水性樹脂粉体)が乾燥した状態であるため、空気輸送が好適に用いられうる。本発明において、空気輸送は、図1の輸送部6のうちの少なくとも1箇所又は2箇所以上で用いられる。空気輸送が採用されない輸送部6には、例えば、コンベア等の機械的輸送が採用されうる。
 図2は、本発明の一実施形態に使用されうる空気輸送装置30の概略図である。空気輸送装置30は、加圧タンクホッパー32、輸送配管34、二次空気用配管(図示せず)、バルブ37、二次空気用バルブ36及びコンプレッサー38を有する。コンプレッサー38は、バルブ37を介して、加圧タンクホッパー32に接続されている。コンプレッサー38により、加圧タンクホッパー32内が加圧されうる。またコンプレッサー38は、バルブ37を介して、輸送配管34に接続されている。コンプレッサー38は、輸送配管34の空気を供給しうる。二次空気は、バルブ36を介して供給される。二次空気は、バルブ36を経由して、二次空気用配管に供給される。コンプレッサー38は、二次空気用配管の空気(二次空気)を供給しうる。図2では、一つのコンプレッサー38が記載されているが、コンプレッサー38は複数であってもよい。なお、二次空気を供給する方法は各種存在し、本実施形態の方法に限定されない。
 図2の実施形態において、空気輸送装置30は、受けホッパー40から貯蔵ホッパー42へと吸水性樹脂粉体を輸送する。例えば、空気輸送装置30が、工程Xを行う装置と工程Yを行う装置とを連結している場合を考える。工程X及び工程Yは限定されない。工程Yは工程Xの次の工程である。この場合、受けホッパー40には工程Xにより生じた吸水性樹脂粉体が貯留される。また、空気輸送装置30により輸送された吸水性樹脂粉体は、貯蔵ホッパー42に貯留され、工程Yに供される。すなわち、本実施形態においては、工程Xの後にホッパー(40、32)が設けられ、該ホッパーに吸水性樹脂粉体が貯蔵された後(貯蔵工程)、該吸水性樹脂粉体が輸送配管34を介して空気輸送され(空気輸送工程)、輸送された吸水性樹脂粉体は工程Yの前にホッパー(42)に貯蔵される(貯蔵工程)。なお、貯蔵ホッパー42は、後述される図5の実施形態においては、貯蔵部に相当する。受けホッパー40に貯留された吸水性樹脂粉体は、バルブ44が開かれることにより、加圧タンクホッパー32に落下する。次に、バルブ44が閉じられ、加圧タンクホッパー32に加圧された空気が導入される。この空気(一次空気)の圧力により、加圧タンクホッパー32の内部の吸水性樹脂粉体が、輸送配管34の内部を移動し、貯蔵ホッパー42に至る。
 本発明では一次空気のみでも空気輸送は可能であるが、更に二次空気が用いられることにより、より好ましい輸送がなされる。本明細書において、二次空気41とは、二次空気用配管を経由して輸送配管34に供給される空気である。これに対して、二次空気用配管を経由せずに輸送配管34に供給される空気は、本願において一次空気とも称される。一次空気には、加圧タンクホッパー32から輸送配管34に流入する空気や、コンプレッサー38から直接輸送配管34に供給される空気が含まれる
 図4は、本発明の輸送方法の一実施形態の概略構成を示す図である。この輸送方法では、工程Xにより得られた吸水性樹脂粉体が、工程Yを行う装置へと輸送される。工程Yは、工程Xの次工程である。工程Xは限定されないし、工程Yも限定されない。
 図4に示す実施形態では、3つの空気輸送装置(A、B及びC)が用いられている。吸水性樹脂粉体の輸送は、輸送装置Aからスタートし、輸送装置B及び輸送装置Cを経て、貯蔵部に至る。この貯蔵部は、工程Yを行う装置に吸水性樹脂粉体を供給するための貯蔵部である。この貯蔵部は、工程Yを行う装置の一部である。
 輸送装置Aと輸送装置Bとは、輸送配管P1により連結されている。輸送装置Bと輸送装置Cとは、輸送配管P2により連結されている。輸送装置Cと貯蔵部とは、輸送配管P3により連結されている。すなわち、輸送装置Aと、輸送装置Bと、輸送装置Cとは、輸送配管によって直列的に接続されている。このように、本願発明の吸水性樹脂粉体の輸送方法は、一つの輸送区間に2つ以上の空気輸送装置が用いられ、前記2つ以上の空気輸送装置が輸送配管によって直列的に接続されている点に特徴を有する。
 本願において、「一つの輸送区間」とは、吸水性樹脂粉体を輸送するための連続した区間である。図4に示す実施形態において、輸送区間の始点B1は、輸送装置Aと輸送配管P1との接続点であり、輸送区間の終点F1は、輸送配管P3と貯蔵部との接続点である。この場合、始点B1から終点F1までの区間が、「一つの輸送区間」である。始点B1から終点F1までの間に、3つの輸送装置が輸送配管P1,P2及びP3によって直列的に接続されている。なお、輸送配管は、水平方向又は垂直方向に直線的に設置される以外に、平面的、立体的又は多角形状に曲げられて設置される場合もあり、この場合、曲がり部の曲率半径は、2m以上とされるのが好ましい。一つの輸送区間における曲がり部の数は、好ましくは2箇所以上10箇所以下であり、より好ましくは2箇所以上5箇所以下とされる。また、配管の内径は生産量に応じて決定されるが、好ましくは30mm~300mm、さらに好ましくは50mm~200mm、特に好ましくは70~160mm程度である。
 図5は、図4を若干詳しく記載した輸送部6の概略構成図である。
 図4に示すように、輸送装置Aは、受けホッパーHaと、加圧タンクTa(加圧タンクホッパー)と、バルブ(Va1、Va2)とを有している。受けホッパーHaと加圧タンクTaとは、バルブVa1を介して連結されている。バルブVa2は、加圧タンクTaと輸送配管P1との間に設けられている。
 輸送装置Bは、受けホッパーHbと、加圧タンクTbと、バルブ(Vb1、Vb2)とを有している。受けホッパーHbと加圧タンクTbとは、バルブVb1を介して連結されている。バルブVb2は、加圧タンクTbと輸送配管P2との間に設けられている。
 輸送装置Cは、受けホッパーHcと、加圧タンクTcと、バルブ(Vc1、Vc2)とを有している。受けホッパーHcと加圧タンクTcとは、バルブVc1を介して連結されている。バルブVc2は、加圧タンクTcと輸送配管P3との間に設けられている。
 図示しないが、加圧タンク(Ta、Tb、Tc)には、コンプレッサーが接続されている。このコンプレッサーにより、加圧タンク(Ta、Tb、Tc)は加圧されうる。加圧タンク(Ta、Tb、Tc)内の圧力は、大気圧よりも高くされうる。また、図示しないが、加圧タンク(Ta、Tb、Tc)には、圧抜きバルブが設けられている。圧抜きバルブを開くことにより、加圧タンク(Ta、Tb、Tc)内の圧力が大気圧にまで低下し、加圧状態が解除されうる。加圧タンク(Ta、Tb、Tc)内の圧力は適宜調整されうる。
 なお、受けホッパー(Ha、Hb、Hc)には、吸水性樹脂粉体の受け入れに伴い導入される輸送空気を清浄にして外部に排出するためのフィルターが装備されているのが好ましく、このフィルターはバッグフィルターであるのが好ましい。
 受けホッパー(Ha、Hb、Hc)は、それぞれ加圧タンク(Ta、Tb、Tc)の上側に配置されている。バルブ(Va1、Vb1、Vc1)が開かれると、それぞれ受けホッパー(Ha、Hb、Hc)内にある吸水性樹脂粉体が加圧タンク(Ta、Tb、Tc)内に落下する。このようにして、吸水性樹脂粉体が加圧タンク(Ta、Tb、Tc)に供給される。なお、加圧タンク(Ta、Tb、Tc)に吸水性樹脂粉体を供給する際には、加圧タンク(Ta、Tb、Tc)が圧抜きされ、加圧タンク(Ta、Tb、Tc)の加圧状態は解除される。
 従来の輸送方法では、一つの輸送区間あたり一つの輸送装置が用いられていた。これに対して本実施形態では、一つの輸送区間あたり、複数(3つ)の輸送装置が用いられる。本実施形態では、輸送装置Aに加えて、輸送装置B及び輸送装置Cが直列的に連結されて用いられる。
 以下、各輸送装置の動作について、順を追って説明する。
 まず、輸送装置Aによる輸送について、説明する。工程Xを終えた吸水性樹脂粉体は、受けホッパーHaに供給される。換言すれば、受けホッパーHaが吸水性樹脂粉体を受け入れる(受け入れステップ1a)。ステップ1aにおいて、バルブVa1は閉じられている。次に、バルブVa1が開かれて、吸水性樹脂粉体が受けホッパーHaから加圧タンクTaに送られる(送粉ステップ2a)。ステップ2aにおいて、バルブVa2は閉じられている。また、ステップ2aにおいて、加圧タンクTa内の圧力は、大気圧と同じである。次に、バルブVa1及びバルブVa2が閉じられて、加圧タンクTa内が加圧される(加圧ステップ3a)。図示されないコンプレッサーから空気が供給されることにより、加圧タンクTaが加圧される。次に、バルブVa2が開かれ、加圧タンクTaから受けホッパーHbへと吸水性樹脂粉体が送られる(輸送ステップ4a)。ステップ4aにおいては、図示されないコンプレッサーから空気が供給されることにより、加圧タンクTaが加圧されると共に、輸送配管P1に輸送空気が送られる。ステップ4aにおいて、バルブVa1は閉じられている。
 次に、輸送装置Bによる輸送が説明される。上記輸送ステップ4aにより、受けホッパーHbが吸水性樹脂粉体を受け入れる(受け入れステップ1b)。即ち、上記輸送ステップ4aと、受け入れステップ1bとは、同時に進行する。受け入れステップ1bにおいて、バルブVb1は閉じられている。次に、バルブVb1が開かれて、吸水性樹脂粉体が受けホッパーHbから加圧タンクTbへと送られる(送粉ステップ2b)。ステップ2bにおいて、バルブVb2は閉じられている。また、ステップ2bにおいて、加圧タンクTb内の圧力は、大気圧と同じである。次に、バルブVb1及びバルブVb2が閉じられて、加圧タンクTb内が加圧される(加圧ステップ3b)。図示されないコンプレッサーから空気が供給されることにより、加圧タンクTbが加圧される。次に、バルブVb2が開かれ、加圧タンクTbから受けホッパーHcへと吸水性樹脂粉体が送られる(輸送ステップ4b)。ステップ4bにおいては、図示されないコンプレッサーから空気が供給されることにより、加圧タンクTbが加圧されると共に、輸送配管P2に輸送空気が送られる。ステップ4bにおいて、バルブVb1は閉じられている。
 次に、輸送装置Cによる輸送が説明される。上記輸送ステップ4bにより、受けホッパーHcが吸水性樹脂粉体を受け入れる(受け入れステップ1c)。即ち、上記輸送ステップ4bと、受け入れステップ1cとは、同時に進行する。受け入れステップ1cにおいて、バルブVc1は閉じられている。次に、バルブVc1が開かれて、吸水性樹脂粉体が受けホッパーHcから加圧タンクTcへと送られる(送粉ステップ2c)。ステップ2cにおいて、バルブVc2は閉じられている。また、ステップ2cにおいて、加圧タンクTc内の圧力は、大気圧と同じである。次に、バルブVc1及びバルブVc2が閉じられて、加圧タンクTc内が加圧される(加圧ステップ3c)。図示されないコンプレッサーから空気が供給されることにより、加圧タンクTcが加圧される。次に、バルブVc2が開かれ、加圧タンクTcから貯蔵部へと吸水性樹脂粉体が送られる(輸送ステップ4c)。ステップ4cにおいては、図示されないコンプレッサーから空気が供給されることにより、加圧タンクTcが加圧されると共に、輸送配管P3に輸送空気が送られる。ステップ4cにおいて、バルブVc1は閉じられている。なお、加圧状態における加圧タンク内の圧力は、0.05MPa以上0.7MPa以下とされるのが好ましく、0.1MPa以上0.3MPa以下とされるのがより好ましい。
 工程Xを終えた吸水性樹脂粉体は、輸送装置A、輸送配管P1、輸送装置B、輸送配管P2、輸送装置C、輸送配管P3の順に移動し、工程Yに係る貯蔵部に至る。輸送装置Aによる輸送、輸送装置Bによる輸送及び輸送装置Cによる輸送が直列的に継承されて、工程Xと工程Yとの間の輸送が達成される。従来の輸送では、輸送装置B及び輸送装置Cは設けられていなかった。
 図6は、本実施形態の輸送のタイミングチャートの一例を示す図である。このタイミングチャートでは、チャートの左側から右側に向かって時間が経過している。例えば、受けホッパーHaでは、時刻t1から時刻t2までの間に受け入れステップ1aがなされ、時刻t2から時刻t3までの間に送粉ステップ2aがなされ、時刻t3から時刻t4までの間に受け入れステップ1aがなされる。また例えば、加圧タンクTaでは、時刻t1から時刻t2までの間に輸送ステップ4aがなされ、時刻t2から時刻t3までの間に受け入れステップ2aがなされ、時刻t3から時刻t4までの間に輸送ステップ4aがなされる。
 バルブの開閉のタイミングは、ステップの切り替えのタイミングと相関する。例えば、輸送装置Aにおいて、時刻t2では、バルブVa1が「閉」から「開」に切り替えられ、かつ、バルブVa2が「開」から「閉」に切り替えられる。例えば、輸送装置Aにおいて、時刻t3では、バルブVa1が「開」から「閉」に切り替えられ、かつ、バルブVa2が「閉」から「開」に切り替えられる。
 図6に示すタイミングチャートでは、輸送装置Aと輸送装置Bとの間でステップ切り替えのタイミングが一致し、かつ、輸送装置Bと輸送装置Cとの間でもステップ切り替えのタイミングが一致している。個々の輸送装置A、B及びCのそれぞれについて、配管ブローや圧抜き等の作業時間が相違しうるため、図6のようにタイミングを完全に一致させることは、現実には困難である。また、図6のタイミングチャートでは、加圧ステップ等に要する時間が考慮されていない。図6のタイミングチャートは、3つの輸送装置が同時に作動しうることを示す目的で簡略的に記載されている。
 図6に示すように、各輸送装置による輸送ステップは、同時に進行しうる。本実施形態では、輸送ステップ4aと、輸送ステップ4bと、輸送ステップ4cとが同時に進行している。このように、輸送装置Aによる輸送と、輸送装置Bによる輸送と、輸送装置Cによる輸送とは、同時に実施されうる。この輸送の同時進行により、輸送効率(単位時間あたりの輸送量)が向上しうる。
 上記した輸送効率や物性低下等の問題は、工業的スケールの生産において顕在化しやすい。この観点から、本発明の輸送方法では、吸水性樹脂粉体の輸送量が1000kg/hr以上であるのが好ましい。[kg/hr]は、1時間あたりの輸送量(kg)を意味する。末端線速Vyを低下させる観点から、吸水性樹脂粉体の輸送量は10000kg/hr以下であるのが好ましく、8000kg/hr以下であるのが好ましい。
 図6に示すように、各輸送装置における受け入れステップもまた、同時に進行しうる。本実施形態では、受けホッパーHaへの受け入れステップ1aと、受けホッパーHbへの受け入れステップ1bと、受けホッパーHcへの受け入れステップ1とが同時に実施されうる。また、加圧タンクTaへの受け入れステップ2aと、加圧タンクTbへの受け入れステップ2bと、加圧タンクTcへの受け入れステップ2cとは、同時に実施されうる。この同時進行により、輸送効率が向上しうる。
 図6に示すように、同一の輸送装置において、受けホッパーによる受け入れステップと、加圧タンクによる輸送ステップとは同時になされうる。例えば、輸送装置Aにおいて、受け入れステップ1aと、輸送ステップ4aとは同時になされうる。加圧タンクによる輸送ステップの時間を利用して、吸水性樹脂粉体を受けホッパーに移送しておくことにより、その後になされる移送(受けホッパーから加圧タンクへの移送)が円滑になされうる。
 本実施形態では、同一の受けホッパーにおいて、受け入れステップと送粉ステップとは同時に実施されないという制約がある。また、本実施形態では、同一の加圧タンクにおいて、受け入れステップと輸送ステップとが同時に実施されないという制約がある。これらの制約の範囲内において、複数の輸送装置が同時並行的に作動しうる。なお、上記バルブ(Va1、Va2、Vb1、Vb2、Vc1、Vc2)がロータリーバルブ等の連続供給式バルブに変更された場合、上記制約を排除することが可能である。しかし、ロータリーバルブを用いた場合、該ロータリーバルブの回転部において噛み込みが発生し、吸水性樹脂粉体の破壊(粒子破壊)が発生しうる。またこの場合、ロータリーバルブ部分での空気漏れ等に起因して加圧圧力が変動し、輸送が不安定となりうる。これらの粒子破壊や輸送の不安定化を回避するためには、上記制約は受けるものの、開閉式バルブを用いるのが好ましい。
 なお、ステップの切り替えは、自動制御によってなされうる。この自動制御は、各種の自動検知データに基づいてなされうる。この自動検知データとしては、例えば、受けホッパー内の粉体量、加圧タンク(加圧タンクホッパー)内の粉体量、加圧タンク(加圧タンクホッパー)内の圧力等が挙げられる。受けホッパー内又は加圧タンク(加圧タンクホッパー)内の粉体量の検知は、例えば、粉体の上面(粉面)の位置を検知することによりなされうる。この粉面位置の検知は、超音波式や静電容量式等の公知の方法によりなされうる。これらの検知データに基づいて、自動制御がなされうる。自動制御は、シーケンサーやコンピュータ等による公知の方法によりなされうる。
 好ましくは、受けホッパーの粉面の検知結果に基づき、上記バルブの開閉及び空気輸送装置の起動が自動制御される。例えば、受けホッパーHaの粉面の位置が所定の上限値を超えたという検知結果に基づき、閉じていたバルブVa1が開かれ、バルブVa2が閉じられ、輸送装置が停止されるような制御がなされる。逆に、例えば、受けホッパーHaの粉面の位置が所定の下限値未満となったという検知結果に基づき、開いていたバルブVa1が閉じられ、バルブVa2が開かれ、輸送装置が起動されるような制御がなされる。
 好ましくは、上記加圧タンク内の圧力の検知結果に基づき、上記バルブの開閉及び空気輸送装置の起動が自動制御される。例えば、加圧タンクTa内の圧力が所定の上限値を超えたという検知結果に基づき、閉じていたバルブVa2が開かれ、輸送装置が起動されるような制御がなされる。逆に、例えば、加圧タンクTa内の圧力が所定の下限値未満となったという検知結果に基づき、閉じていたバルブVa1が開かれ、バルブVa2が閉じられ、輸送装置が停止されるような制御がなされる。これらの自動制御のプログラムは、輸送効率等を考慮して決定されうる。
 輸送部6による輸送は、高濃度空気輸送とされている。輸送装置(A、B、C)は、高濃度空気輸送装置である。図4及び図5においては図示されていないが、後述される図7に示すように、輸送装置(A、B、C)は、それぞれ、二次空気を輸送配管(P1、P2、P3)に供給する二次空気用配管(S1、S2、S3)を有していてもよい。
 図7は、輸送配管P1及びこの二次空気用配管S1を示す断面図である。また図7は、輸送配管P2及び輸送配管P3についても図示している。即ち、輸送配管P2には二次空気用配管S2が併設されており、輸送配管P3には二次空気用配管S3が併設されている。以下、輸送装置Aについてのみ説明がなされるが、輸送装置B及び輸送装置Cについても同様である。二次空気用配管S1は、輸送配管P1に併設されて延在している。輸送配管P1は、二次空気導入孔hsを有している。輸送配管P1の長手方向の複数位置に、二次空気導入孔hsが設けられている。複数位置の二次空気導入孔hsのそれぞれに、二次空気用配管S1が連結されている。なお、図7では、二次空気導入孔hsが内径の大きな孔として記載されているが、実際には、二次空気導入孔hsは、ノズル(エアノズル)である。
 二次空気導入孔hsから導入された空気により、被輸送物である吸水性樹脂粉体が、分断される。分断された吸水性樹脂粉体は、プラグPgを形成しながら輸送配管P1内を移動する(図7参照)。このように、高濃度空気輸送とは、プラグPgを形成させながら吸水性樹脂粉体を空気輸送することである。ただし、実際には、図7のように形状の整ったプラグPgが輸送中常に維持されていることは稀である。実際の高濃度空気輸送では、次の一連の挙動が繰り返されつつ、輸送がなされる。この一連の挙動とは、輸送配管の底に粉体の堆積層が形成され、この堆積層が成長して丘状の塊となり、この塊がさらに成長してプラグPgとなり、このプラグPgが移動し、このプラグPgが崩壊するという挙動である。輸送装置A、B及びCは、高濃度空気輸送装置である。本願において高濃度空気輸送装置とは、高濃度空気輸送を実現しうる装置を意味する。
 末端固気比が10(kg-樹脂/kg-空気)以上であれば、一般的に高濃度空気輸送であると定義される。末端固気比とは、輸送配管の末端Emにおける固気比である。この固気比とは、吸水性樹脂粉体の質量(kg)を、空気の質量(kg)で割って得られる値であり、単位は、(kg-樹脂/kg-空気)である。末端固気比は、空気輸送時における単位時間あたりの吸水性樹脂粉体の輸送量を、その単位時間あたりの輸送に消費された空気質量で除することにより算出される。例えば、1分間に輸送された吸水性樹脂粉体の量が100kgであり、その1分間に消費された空気量が10kgであった場合、固気比は100/10=10となる。消費された空気量の質量測定が難しい場合、圧力及び空気の体積流量をフローメータ等により求め、それらの値から空気の平均分子量を用いて算出しても良い。
 本実施形態では、一つの輸送区間に3つの空気輸送装置が具備され、これらの空気輸送装置が輸送配管(P1、P2、P3)によって直列的に接続されている。この構成により、一つの輸送区間が複数の輸送装置によって分割されるため、単一の輸送装置による輸送距離が低減される。例えば、上記実施形態において、輸送区間の始点B1から終点F1までの距離が100mであるとする。この場合、従来であれば、100mの輸送配管が必要であった。これに対して上記実施形態では、例えば、輸送配管P1の長さを33.3mとし、輸送配管P2の長さを33.3mとし、輸送配管P3の長さを33.3mとすることができる。即ち、単一の輸送装置による輸送距離が、輸送区間の距離よりも短くされうる。
 このような空気輸送装置の直列的な接続は、輸送区間が長い場合において有効性が高い。この観点から、一つの上記輸送区間に含まれる輸送配管の合計長さLtが50m以上であるのが好ましく、70m以上がより好ましく、100m以上がより好ましい。輸送装置の台数を抑制する観点から、合計長さLtは、1000m以下が好ましく、500m以下がより好ましく、200m以下がより好ましい。例えば図4に示す実施形態において、この合計長さLtとは、輸送配管P1の長さLp1と、輸送配管P2の長さLp2と、輸送配管P3の長さLp3との合計である。即ち、
Figure JPOXMLDOC01-appb-M000001
である。
 末端線速Vyを低くしつつ閉塞現象を抑制する観点から、一つの輸送区間に含まれる各輸送配管の長さLpは、50m以下が好ましく、40m以下がより好ましく、35m以下がより好ましい。長さLpを小さくするため輸送装置の台数を過度に増加させた場合、輸送効率がかえって低下する場合がある。この観点から、長さLpは、30m以上が好ましい。図4に示す実施形態では、輸送配管P1の長さLp1が、長さLpの一例であり、輸送配管P2の長さLp2も、長さLpの一例であり、輸送配管P3の長さLp3も、長さLpの一例である。
 上記長さLpを短くする観点から、輸送装置による輸送区間の分割は、均等とされるのが好ましい。よって、一つの輸送区間に直列的に接続された空気輸送装置の台数をN(Nは2以上の整数)としたとき、その輸送区間における合計長さLtと、その輸送区間に含まれる全ての輸送配管の長さLpとは、次の関係式(1)を満たすのが好ましく、関係式(2)を満たすのがより好ましい。
Figure JPOXMLDOC01-appb-M000002
 単一の輸送装置による輸送距離が長い場合、閉塞現象(詰まり)を抑制しつつ輸送効率を高めるには、高い加圧が必要である。この高い加圧に起因して、輸送配管末端における線速度が大きくなる。線速度(「線速」とも称する)とは、吸水性樹脂粉体の移動速度であり、空気の移動速度と実質同一である。この線速度の大きさは、輸送配管の長手方向に沿って測定される。線速度は、例えば、配管中を流れる単位時間あたりの空気流量をフローメータ等により測定し、この測定値を輸送配管の断面積で除することにより算出できる。図4及び図5が示すように、本実施形態では、輸送配管の末端Emは、3箇所存在する。
 本願において、輸送配管の始点Kmにおける吸水性樹脂粉体の線速度は、初期線速Vxとも称される。また、輸送配管の始点Kmにおける空気の圧力は、初期圧力Pxとも称される。そして、上記輸送配管の末端Emにおける吸水性樹脂粉体の線速度は、末端線速Vyとも称される。また、輸送配管の末端Emにおける空気の圧力は、末端圧力Pyとも称される。
 同一の輸送配管において、空気の圧力は、輸送配管の末端Emに近づくほど低下しやすい。同一の輸送配管において、末端圧力Pyは初期圧力Pxよりも小さい。一方、同一の輸送配管において、線速度は、輸送配管の末端Emに近づくほど速くなりやすい。同一の輸送配管において、末端線速Vyは初期線速Vxよりも大きい。通常、末端線速Vyは、同一の輸送配管における最大線速である。
 末端線速Vyが小さくなると、粒子と輸送配管との衝突速度や、粒子同士の衝突速度が小さくなる。つまり、小さい末端線速Vyにより、吸水性樹脂粉体が受けるダメージが抑制されうる。吸水性樹脂粉体の物性低下を抑制する観点から、末端線速Vyは、15m/s以下が好ましく、13m/s以下がより好ましく、10m/s以下がより好ましい。上述した通り、本発明では、複数の輸送装置による輸送が同時に進行しうるため、末端線速Vyの低下と輸送効率とが両立しうる。輸送効率の観点から、末端線速Vyは、7m/s以上が好ましい。
 二次空気が用いられる場合、末端線速Vyが上記好ましい範囲となるように、二次空気の供給を調整することが好ましい。
 前述したように、高濃度空気輸送は、低濃度空気輸送と比較して低速である。しかし本発明は、複数の輸送装置による輸送を同時に進行させうるので、低速輸送の条件下において輸送効率を向上させうる。上述した末端線速Vyの好ましい範囲は、高濃度空気輸送に適した速度範囲である。
 本発明に係る輸送区間は、分岐した輸送ルートを有していてもよい。この場合、分岐している輸送ルートのそれぞれについて、本発明が成立しうる。例えば、輸送区間の始点B1と終点との中間に位置する分岐点D1で輸送区間が二股に分岐している場合を考える。この場合、輸送区間の終点F1は2箇所存在することになる。この2箇所の終点F1を、それぞれ第一の終点F11及び第二の終点F12とするとき、この分岐した輸送区間には、以下の第一ルートと、以下の第二ルートとが認識されうる。
 第一ルート:輸送区間の始点B1から、分岐点D1を経由して、第一の終点F11にまで至るルート。
 第二ルート:輸送区間の始点B1から、分岐点D1を経由して、第二の終点F12にまで至るルート。
 この場合、例えば、上記第一ルートにおいて輸送装置が直列的に連結されていれば、本発明が成立しうる。同様に、上記第二ルートにおいて輸送装置が直列的に連結されていれば、本発明が成立しうる。なお、分岐点D1は、輸送配管の分岐によって形成されていてもよいし、輸送装置によって形成されていてもよい。
 受けホッパーには、微粉を捕捉しうるフィルターが設けられることが好ましい。このフィルターは、受けホッパー内の気体中に存在する微粉を捕捉しうる。減圧吸引等によって受けホッパー内の気体をフィルターに通過させることにより、微粉が捕捉されうる。このフィルターとしては、バッグフィルターが好ましい。このフィルターにより、微粉の低減を図りつつ、空気輸送がなされうる。フィルターとしては、メンブレンフィルターが好ましい。このメンブレンフィルターは、捕集効率に優れる。またこのメンブレンフィルターは、微粉を容易にふるい落とすことができるため目詰まりしにくく、使用による捕集効率の低下が少ない。このフィルターとして、JIS12種カーボンブラック(粒径:0.03μm~0.2μm)の捕集効率に優れるフィルターが好ましい。微粉を効率よく収集しうる観点から、この捕集効率は、90%以上が好ましく、95%以上がより好ましく、99.9%以上がさらに好ましく、99.99%以上が特に好ましい。この捕集効率は、例えば、JIS B9908形式1の方法により測定される。簡易的には、捕集効率は市販のダスト計により計測することができる。この捕集効率は、フィルター通過前の微粉量及びフィルター通過後の微粉量に基づいて実質的に得られうる。具体的には、フィルター通過前の微粉量W0(mg/m)と、フィルター通過後の微粉量Wf(mg/m)とから、下記式により捕集効率が算出されうる。なお、このダスト計としては、例えば、柴田科学製の商品名「P5Lデジタルダストメーター」が挙げられる。
Figure JPOXMLDOC01-appb-M000003
 輸送配管の材質は、ステンレス鋼とされるのが好ましい。輸送配管の内面は、鏡面仕上げとされているのが好ましい。この鏡面仕上げにより、吸水性樹脂粉体が受けるダメージが抑制されうる。ステンレス鋼が鏡面仕上げされることにより、ダメージ抑制効果がさらに高まる。ステンレス鋼としては、SUS304、SUS316、SUS316L等が挙げられる。また鏡面仕上げとは、JIS B 0601-1982で規定される表面粗さが6.3S以下に平滑化されていることを意味する。この「S」とは、表面凹凸の最大高さ(μm)の最大値を意味する。このような表面粗さは、触針式表面粗さ測定器(JIS B 0651)又は光波干渉式表面粗さ測定器(JIS B 0652)等により測定されうる。
 輸送中の吸水性樹脂粉体の温度を制御する方法は限定されない。好ましくは、ホッパー等の貯蔵タンク又は輸送配管を外部から加熱する手段が用いられうる。例えば、貯蔵タンク及び/又は輸送配管の外面に銅パイプを配置し、この銅パイプ内にスチームを通過させることにより、吸水性樹脂粉体の温度を所定温度以上に維持することができる。また輸送配管は、屋外には出さないのが好ましい。輸送中の吸水性樹脂粉体の温度を制御する観点から、輸送配管は、屋内に配置するのが好ましい。
 [吸水性樹脂粉体の物性]
 (粒子形状)
 吸水性樹脂粉体の粒子形状は限定されない。この粒子形状として、球状、略球状、(粉砕物である)不定形破砕状、棒状、多面体状、ソーセージ状(例;米国特許第4973632号明細書)、皺を有する粒子(例;米国特許第5744564号明細書)などの粉末が挙げられる。それらは一次粒子(single particle)でもよく、造粒粒子でもよく、一次粒子と造粒粒子との混合物でもよい。また、粒子は発泡した多孔質でもよい。好ましくは、不定形破砕状の一次粒子および/又はそれらの造粒粒子が挙げられる。
 (粒度)
 表面架橋前および/または最終製品における吸水性樹脂(吸水性樹脂粉体)の質量平均粒子径(D50)は、好ましくは200~600μm、より好ましくは200~550μm、さらに好ましくは250~500μm、特に好ましくは350~450μmである。また、150μm未満の粒子が少ないほどよく、通常0~5質量%、好ましくは0~3質量%、特に好ましくは0~1質量%に調整される。さらに、850μm以上の粒子が少ないほどよく、通常0~5質量%、好ましくは0~3質量%、特に好ましくは0~1質量%に調整される。粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.40、より好ましくは0.27~0.37、さらに好ましくは0.25~0.35とされる。これらの測定方法については、標準篩を用いた手法として、例えば、国際公開第2004/069915号パンフレットやEDANA-ERT420.2-02に記載されている。
 表面架橋後、さらには輸送後における吸水性樹脂粉体の、生理食塩水に対する無加圧下吸水倍率(CRC)は15g/g以上が好ましい。表面架橋前の吸水性樹脂粉体の無加圧下吸水倍率(CRC)は特に制限されないが、15g/g以上が好ましい。この吸水性樹脂粉体が用いられたオムツ等の吸収性物品は、体液などをよく吸収する。この観点から、この表面架橋後または表面架橋前の吸水倍率(CRC)は20g/g以上がより好ましく、25g/gがさらに好ましく、30g/g以上が特に好ましい。吸収性物品の性能の観点から、この吸水倍率(CRC)は大きいほど好ましい。ただし、吸水性樹脂粉体が安定に製造でき低コストで得られるという観点から、この吸水倍率(CRC)は60g/g以下が好ましく、50g/g以下がより好ましく、35g/g以下が特に好ましい。なお、本発明において、無加圧下吸水倍率(CRC)は、自由膨潤倍率(GV)と同義であり、CRCをGVと称する場合もある。
 無加圧下吸収倍率(CRC)の測定では、約0.2gの吸水性樹脂粉体を準備する。そしてまず、この吸水性樹脂粉体の質量W1を測定する。この吸水性樹脂粉体を、不織布製の袋(60mm×85mm)に均一に入れる。この袋を、25±2℃に調温された生理食塩水中に30分間浸漬させる。次に、この袋を引き上げて、遠心分離機(株式会社コクサン製、型式H-122小型遠心分離機)に投入する。この遠心分離機を、250G(250×9.81m/s )の条件で3分間運転する。その後の袋の質量W2(g)を測定する。一方、吸水性樹脂粉体を含まない袋についても同様の処理を行ない、その質量W3(g)を測定される。下記数式により、無加圧下吸収倍率(CRC)が算出される。
Figure JPOXMLDOC01-appb-M000004
 表面架橋後、さらには輸送後の吸水性樹脂粉体の、加圧下での生理食塩水の加圧下吸水倍率(AAP:Absorbency against Presure)(ERT442.2-02、但し、荷重50g/cm)は、好ましくは15~50g/g、より好ましくは18~45g/g、特に好ましくは20~45g/g、最も好ましくは20~45g/gの範囲である。この吸水性樹脂粉体が用いられたオムツ等の吸収性物品は、体液などをよく吸収する。なお、加圧下吸水倍率(AAP)は、0.9%塩化ナトリウム水溶液に対する1時間、21g/cmでの荷重下膨潤後の吸水倍率(単位;g/g)である。なお、以下本願実施例では、「AAP」は、荷重を50g/cmに変更した以外は同様にして測定した値とする。
 吸水性樹脂粉体の0.69質量%生理食塩水流れ誘導性(以下、SFCともいう)は、吸水性樹脂粉体または吸水剤の膨潤時の液透過性を示す値である。このSFCの値が大きいほど、吸水性樹脂粉体は高い液透過性を有することを示している。吸水性樹脂粉体(表面架橋されたポリアクリル酸(塩)系吸水性樹脂粉体)のSFCは、10(×10-7・cm・s・g-1)以上が好ましく、20~1000(×10-7・cm・s・g-1)がより好ましく、30~500(×10-7・cm・s・g-1)がさらに好ましい。本発明では、初期線速Vxが抑制されうるので、輸送中におけるSFCの低下が抑制されうる。このような評価は、米国特許第5849405号明細書に記載されたSFC試験に準じて行われる。
 なお、一般に、AAP、CRC及びSFCは、相反する傾向にあるが、上記範囲とすることでこれらの物性のバランスがとれた吸水性樹脂が提供できる。
 輸送前後における吸水性樹脂粉体の含水率(1gから180℃で3時間の乾燥減量で規定)は好ましくは5重量%以下であり、より好ましくは3%重量以下である。この規定は、吸水性樹脂粉体が表面架橋前の吸水性樹脂、および表面架橋後の粒子状吸水性樹脂のいずれに対しても、同様に当てはまるものである。一定量の水、好ましくは0.1重量%以上、より好ましくは0.5重量%以上の水は、吸収速度や輸送後の物性を維持・向上させるという利点がある。含水率の調整には、加熱条件や必要により水の添加量を適宜調整すればよい。
 本発明の輸送方法では、吸水性樹脂粉体の優れた物性が安定に保持されかつ閉塞現象が抑制されうるという観点から、気流を構成する気体として、乾燥された気体が用いられるのが好ましい。この気体の露点は-10℃以下であることが好ましく、-15℃以下であることがより好ましく、-20℃以下であることが特に好ましい。乾燥された気体を用いる以外に、加熱された気体が用いられてもよい。加熱方法としては、特に限定されないが、熱源を用いて気体を直接加熱してもよいし、上記輸送部や配管を加熱することにより、通される気体を間接的に加熱してもよい。この加熱された気体の温度は、30℃以上であることが好ましく、50℃以上であることがより好ましく、70℃以上であることがさらに好ましい。
 本発明の空気輸送は、加圧輸送であってもよいし、減圧輸送であってもよい。減圧輸送の場合、輸送装置の吸引力により吸水性樹脂粉体が輸送される。この場合、配管の内部圧力が、大気圧よりも低くされる。好ましくは、本発明の空気輸送は、上記実施形態のように、加圧輸送とされる。加圧輸送の場合、輸送装置から発生する高い圧力により吸水性樹脂粉体が輸送される。上記実施形態は、加圧輸送である。加圧輸送では、配管の内部圧力が、大気圧よりも高くされる。加圧状態とされることにより、輸送装置や配管の内部に塵や埃等が侵入しにくい。この加圧輸送は、吸水性樹脂粉体に含まれる異物の低減に寄与しうる。異物の低減は、吸水性樹脂粉体の物性向上に寄与しうる。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。なお、本明細書では、「質量部」は「重量部」と、「質量%」は「重量%」と同義である。また、以下におけるSFCの測定方法は前述した通りである。
 (吸水性樹脂粉体の製造例1)
 重合工程(ベルト上での静置重合)、ゲル細粒化(解砕)工程、乾燥工程、粉砕工程、分級工程、表面架橋工程(表面架橋剤の噴霧工程、加熱工程)、冷却工程、整粒工程及び各工程間の輸送工程が連結されてなる、各工程を連続して行うことができる吸水性樹脂の連続製造装置(1時間あたり約1500Kgの生産能力)を用いて、吸水性樹脂粉体を連続製造した。
 まず、単量体水溶液(1)として、75モル%が中和されたアクリル酸部分ナトリウム塩の水溶液を作製した。この単量体水溶液(1)は、内部架橋剤としてのポリエチレングリコールジアクリレート(平均n数9)を含み、このポリエチレングリコールジアクリレートの含有割合は、単量体の全モル数に対して0.06モル%とした。上記単量体水溶液(1)において、上記単量体(上記アクリル酸部分ナトリウム塩)の濃度は、38質量%とした。得られた単量体水溶液(1)を定量ポンプで連続フィードし、配管の途中で窒素ガスを連続的に吹き込み、単量体水溶液(1)における酸素濃度を0.5ppm以下にした。なお、上記「平均n数」とは、ポリエチレングリコール鎖中のエチレンオキシド重合度の平均数を意味する。
 次に、単量体水溶液(1)に、過硫酸ナトリウムとL-アスコルビン酸とをラインミキシングにて連続混合した。このラインミキシングにおいて、過硫酸ナトリウムの混合比率は、単量体1モル当たり0.12gとし、L-アスコルビン酸の混合比率は、単量体1モル当たり0.005gとした。このラインミキシングにより得られた連続混合物を、両端に堰を有する平面スチールベルトに厚み約30mmで供給して、連続的に30分間静置水溶液重合を行い、含水ゲル状架橋重合体(1)を得た。この含水ゲル状架橋重合体(1)を孔径7mmのミートチョッパーで約2mmの粒径に細分化し、これを連続通風バンド乾燥機の移動する多孔板上に厚みが50mmとなるように広げて載せ、185℃で30分間乾燥し、乾燥重合体を得た。当該乾燥重合体の全量を3段ロールミルに連続供給することで粉砕した。この3段ロールミルのロールギャップは、上から順に、1.0mm/0.55mm/0.42mmであった。この粉砕の後、目開き850μmおよび150μmの金属篩網を有する篩い分け装置で分級して、850~150μmの粒子が約98質量%でありかつ150μm未満の粒子の割合が約2質量%である吸水性樹脂粉体(粒子状吸水性樹脂)(1)を得た。この吸水性樹脂粉体(1)のCRCは、35g/gであった。
 さらにこの吸水性樹脂粉体(1)を高速連続混合機(タービュライザー/1000rpm)に1500kg/hrで連続供給しつつ、表面処理剤溶液をスプレーで噴霧し混合した。この表面処理剤溶液は、1,4-ブタンジオール、プロピレングリコール及び純水の混合液であった。具体的には、この表面処理剤溶液は、吸水性樹脂100質量部に対して、1,4-ブタンジオール0.3質量部、プロピレングリコール0.5質量部及び純水2.7質量部の割合で混合された。次いで、得られた混合物をパドルドライヤーにより連続的に198℃にて40分間加熱処理したのち、同様のパドルドライヤーを用いて60℃まで強制冷却した(冷却工程)。さらに、篩い分け装置で850μm通過物を分級し、850μmオン品(850μm非通過物)は再度粉砕された後、前記850μm通過物と混合することで、全量が850μm通過物である整粒された製品としての吸水性樹脂粉体Aを得た。なお、吸水性樹脂粉体AのCRCは30.5(g/g)であり、SFCは、30.0(×10-7・cm・s・g-1)であり、AAPは25.5(g/g)であった。
 (吸水性樹脂粉体の製造例2)
 上記冷却工程において、50質量%硫酸アルミニウム水溶液を、吸水性樹脂粉体(1)100質量部に対して1質量%添加したこと以外は製造例1と同様にして、吸水性樹脂粉体Bを得た。なお、吸水性樹脂粉体BのCRCは30.0(g/g)であり、SFCは、50.0(×10-7・cm・s・g-1)であり、AAPは24.5(g/g)であった。
 (吸水性樹脂粉体の製造例3)
 重合工程(ベルト上での静置重合)、ゲル細粒化(解砕)工程、乾燥工程、粉砕工程、分級工程、表面架橋工程(表面架橋剤の噴霧工程、加熱工程)、冷却工程、整粒工程及び各工程間の輸送工程が連結されてなる、各工程を連続して行うことができる吸水性樹脂の連続製造装置(1時間あたり約1500Kgの生産能力)を用いて、吸水性樹脂粉体を連続製造した。
 まず、単量体水溶液(2)として、75モル%が中和されたアクリル酸部分ナトリウム塩の水溶液を作製した。この単量体水溶液(2)は、内部架橋剤としてのポリエチレングリコールジアクリレート(平均n数9)を含み、このポリエチレングリコールジアクリレートの含有割合は、単量体の全モル数に対して0.1モル%とした。上記単量体水溶液(2)において、上記単量体(上記アクリル酸部分ナトリウム塩)の濃度は、38質量%とした。得られた単量体水溶液(2)を定量ポンプで連続フィードし、配管の途中で窒素ガスを連続的に吹き込み、単量体水溶液(2)における酸素濃度を0.5ppm以下にした。
 次に、単量体水溶液(2)に、過硫酸ナトリウムとL-アスコルビン酸とをラインミキシングにて連続混合した。このラインミキシングにおいて、過硫酸ナトリウムの混合比率は、単量体1モル当たり0.12gとし、L-アスコルビン酸の混合比率は、単量体1モル当たり0.005gとした。このラインミキシングにより得られた連続混合物を、両端に堰を有する平面スチールベルトに厚み約30mmで供給して、連続的に30分間静置水溶液重合を行い、含水ゲル状架橋重合体(2)を得た。この含水ゲル状架橋重合体(2)を孔径7mmのミートチョッパーで約2mmの粒径に細分化し、これを連続通風バンド乾燥機の移動する多孔板上に厚みが50mmとなるように広げて載せ、185℃で30分間乾燥し、乾燥重合体を得た。当該乾燥重合体の全量を3段ロールミルに連続供給することで粉砕した。この3段ロールミルのロールギャップは、上から順に、1.0mm/0.4mm/0.3mmであった。この粉砕の後、目開き710μmおよび150μmの金属篩網を有する篩い分け装置で分級して、710~150μmの粒子が約98質量%でありかつ150μm未満の粒子の割合が約2質量%である吸水性樹脂粉体(粒子状吸水性樹脂)(2)を得た。この吸水性樹脂粉体(2)のCRCは、33g/gであった。
 さらにこの吸水性樹脂粉体(2)を高速連続混合機(タービュライザー/1000rpm)に1500kg/hrで連続供給しつつ、表面処理剤溶液をスプレーで噴霧し混合した。この表面処理剤溶液は、1,4-ブタンジオール、プロピレングリコール及び純水の混合液であった。具体的には、この表面処理剤溶液は、吸水性樹脂100質量部に対して、1,4-ブタンジオール0.4質量部、プロピレングリコール0.6質量部及び純水3.0質量部の割合で混合された。次いで、得られた混合物をパドルドライヤーにより連続的に200℃にて40分間加熱処理したのち、同様のパドルドライヤーを用いて60℃まで強制冷却した(冷却工程)。この冷却工程において、50%硫酸アルミニウム水溶液を吸水性樹脂粉体(2)100質量部に対して1質量%添加した。さらに、篩い分け装置で710μm通過物を分級し、710μmオン品は再度粉砕された後、前記710μm通過物と混合することで、全量が710μm通過物である整粒された製品としての吸水性樹脂粉体Cを得た。なお、吸水性樹脂粉体CのCRCは27.0(g/g)であり、SFCは、120.0(×10-7・cm・s・g-1)であり、AAPは23.8(g/g)であった。
(吸水性樹脂粉体の製造例4)
 3段ロールミルで粉砕し710~150μm分級したのち、特開2001-079829号に準じて、除去した微粉(150μm通過物)約12重量%を含水ゲル状架橋重合体(2)と一緒にミートチョッパーで混錬することで、微粉リサイクルを行う以外は製造例3と同様に行ない、製造例2とほぼ同粒度でCRCが33g/gの吸水性樹脂粉体(粒子状吸水性樹脂)(3)を得た。電子顕微鏡による観察では、吸水性樹脂粉体(3)は710~150μmの粒径の粒子に微粉が一体化した造粒物を含んでおり、吸水性樹脂粉体(2)に比べて、微粉リサイクルによって、収率向上および吸水速度(例;VortexやFSR/測定法については米国特許第6849665号明細書を参照)が向上する。なお、同様の含水ゲルへの微粉リサイクルは、ミートチョッパーに代えて、連続ニーダーでも可能である。
 [実施例1]
 図4及び図5に示す輸送部6と同様の輸送部を用い、3つの輸送装置を直列的に連結して、吸水性樹脂粉体の輸送試験を行った。試験時間は、各輸送機それぞれが各1回の輸送を行うのに要した総時間として、約10分間であった。吸水性樹脂粉体としては、製造例1で得られた吸水性樹脂粉体Aを用いた。輸送配管(P1、P2、P3)の内径はいずれも83.1mmであった。輸送配管(P1、P2、P3)はそれぞれ水平部と垂直部とを有しており、輸送配管P1の長さは、水平部が38mでありかつ垂直部が5mであった。輸送配管P2の長さは、水平部が34mでありかつ垂直部が5mであった。輸送配管P3の長さは、水平部が37mでありかつ垂直部が20mであり、P3の末端部は貯蔵ホッパーに接続された。末端線速Vyは、輸送配管P1の末端Emにおいて9.9m/sであり、輸送配管P2の末端Emにおいて10.5m/sであり、輸送配管P3の末端Emにおいて11.5m/sであった。稼働時における輸送装置Aの単位時間あたりの輸送能力は5972kg/hrであった。稼働時における輸送装置Bの単位時間あたりの輸送能力は6327kg/hrであった。稼働時における輸送装置Cの単位時間あたりの輸送能力は6674kg/hrであった。ここでいう「輸送能力」とは、各輸送機において1回の輸送に要した総時間(輸送準備、粉体投入、加圧、輸送及び配管ブローを総和した時間)を1時間当たりの輸送量に換算した値である。輸送区間全体における単位時間あたりの輸送量は4500kg/hrであった。
 ここで、輸送区間全体における単位時間あたりの輸送量が、先に述べた各輸送装置の輸送能力と合致しない理由について述べておく。輸送能力とは、所定の輸送条件下において装置が発揮しうる最大の輸送能力を示す。実際の運転では、その輸送能力以下で運転される。よって、輸送区間全体における単位時間あたりの輸送量が、先に述べた各輸送装置の輸送能力と合致しない場合がある。輸送区間全体における単位時間あたりの輸送量である4500kg/hrとは、吸水性樹脂粉体の生産速度を意味している。
 輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、30.5(g/g)、SFCは、29.8(×10-7・cm・s・g-1)、AAPは25.2(g/g)であった。輸送によるSFC低下率は0.8%であった。輸送配管の閉塞現象は見られなかった。なお、輸送前のSFCがSf1とされ、輸送後のSFCがSf2とされたとき、SFC低下率Rs(%)は次の式より算出されうる。
Figure JPOXMLDOC01-appb-M000005
 [実施例2]
 吸水性樹脂粉体Aに代えて、吸水性樹脂粉体Bを用いて、吸水性樹脂粉体の輸送試験を行った。この際、稼働時における輸送装置Aの単位時間あたりの輸送能力は5673kg/hrであった。稼働時における輸送装置Bの単位時間あたりの輸送能力は6010kg/hrであった。稼働時における輸送装置Cの単位時間あたりの輸送能力は6340kg/hrであった。輸送区間全体における単位時間あたりの輸送量は4500kg/hrであった。その他は実施例1と同様にして輸送実験を行った。輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、30.0(g/g)、SFCは、49.8(×10-7・cm・s・g-1)、AAPは24.5(g/g)であった。輸送によるSFC低下率は0.4%であった。輸送配管の閉塞現象は見られなかった。
 [比較例1]
 実施例1の輸送部から輸送装置B及びCを取り除き、輸送区間の始点B1から輸送区間の終点F1までを一つの輸送配管P4で連結した他は、実施例1と同様の輸送部を用いて、吸水性樹脂粉体の輸送試験を行った。この輸送配管の長さは、水平部が105mでありかつ垂直部が20mであった。この輸送配管P4の末端における末端線速Vyは27.9m/sであった。単位時間当たりの輸送能力は6984kg/hrであった。輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、30.3(g/g)、SFCは、26.3(×10-7・cm・s・g-1)、AAPは24.9(g/g)であった。輸送によるSFC低下率は12.5%であった。輸送配管の閉塞現象は見られなかった。
 [比較例2]
 輸送配管P4の末端における末端線速Vyを9.9m/sとした他は、比較例1と同様にして輸送実験を行った。その結果、試験途中に閉塞現象が発生し、輸送が中断された。
 [比較例3]
 輸送配管P4の末端における末端線速Vyを9.9m/sとし、吸水性樹脂粉体Aに代えて吸水性樹脂粉体Bを用いた他は、比較例1と同様にして輸送実験を行った。その結果、試験途中に閉塞現象が発生し、輸送が中断された。
 [実施例3]
 図4及び図5に示す輸送部6よりも輸送装置が一つ少ない輸送部を用い、2つの輸送装置を直列的に連結して、吸水性樹脂粉体の輸送試験を行った。実施例3で用いた輸送部6を図8に示す。図8に示す輸送装置(A、B)は、実施例1で用いられた輸送装置と同じである。試験時間は、各輸送機それぞれ各1回の輸送を行うのに要した総時間として、約7分間であった。
 吸水性樹脂粉体として、製造例2で得られた吸水性樹脂粉体Bが用いられた。第一の輸送配管P1及び第二の輸送配管P2の内径は、いずれも83.1mmであった。輸送配管(P1、P2)はそれぞれ水平部と垂直部とを有しており、第一の輸送配管P1の長さは水平部が40mでありかつ垂直部が5mであった。第二の輸送配管P2の長さは水平部が39mでありかつ垂直部が20mであった。P2の末端部は貯蔵ホッパーに接続された。末端線速Vyは、輸送配管P1の末端Emにおいて11.4m/s、輸送配管P2の末端Emにおいて8.3m/sであった。稼働時における輸送装置Aの単位時間あたりの輸送能力は6329kg/hrであった。稼働時における輸送装置Bの単位時間あたりの輸送能力は5330kg/hrであった。輸送区間全体における単位時間あたりの輸送量は4500kg/hrであった。輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、30.0(g/g)、SFCは、49.6(×10-7・cm・s・g-1)、AAPは24.4(g/g)であった。輸送によるSFC低下率は0.8%であった。輸送配管の閉塞現象は見られなかった。
 [比較例4]
 実施例3の輸送部から輸送装置Bを取り除き、輸送区間の始点B1から輸送区間の終点F1までを一つの輸送配管P5で連結した他は、実施例1と同様の輸送部を用いた。この輸送配管の長さは、水平部が75mでありかつ垂直部が20mであった。この輸送配管P5の末端における末端線速Vyは19.4m/sであった。単位時間当たりの輸送能力は6571kg/hrであった。輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、30.2(g/g)、SFCは、46.0(×10-7・cm・s・g-1)、AAPは24.2(g/g)であった。輸送によるSFC低下率は8%であった。輸送配管の閉塞現象は見られなかった。
 [比較例5]
 輸送配管P5の末端における末端線速Vyを10m/sとした他は、比較例4と同様にして輸送実験を行った。その結果、試験途中に閉塞現象が発生し、輸送が中断された。
 [実施例4]
 吸水性樹脂粉体Aに代えて、吸水性樹脂粉体Cを用いて、吸水性樹脂粉体の輸送試験を行った。具体的には、図4及び図5に示す輸送部6と同様の輸送部を用い、3つの輸送装置を直列的に連結して、吸水性樹脂粉体の輸送試験を行った。試験時間は、各輸送機それぞれが各1回の輸送を行うのに要した総時間として、約10分間であった。輸送配管(P1、P2、P3)の内径は、いずれも83.1mmであった。輸送配管(P1、P2、P3)はそれぞれ水平部と垂直部を有しており、輸送配管P1の長さは水平部が38mでありかつ垂直部が5mであった。輸送配管P2の長さは水平部が34mでありかつ垂直部が5mであった。輸送配管P3の長さは水平部が37mでありかつ垂直部が20mであった。輸送配管P3の末端部は貯蔵ホッパーに接続された。末端線速Vyは、輸送配管P1の末端Emにおいて9.9m/s、輸送配管P2の末端Emにおいて10.5m/s、輸送配管P3の末端Emにおいて11.5m/sであった。稼働時における輸送装置Aの単位時間あたりの輸送能力は6151kg/hrであった。稼働時における輸送装置Bの単位時間あたりの輸送能力は6580kg/hrであった。稼働時における輸送装置Cの単位時間あたりの輸送能力は6940kg/hrであった。輸送区間全体における単位時間あたりの輸送量は4500kg/hrであった。輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、27.0(g/g)、SFCは、118(×10-7・cm・s・g-1)、AAPは23.8(g/g)であった。輸送によるSFC低下率は1.7%であった。輸送配管の閉塞現象は見られなかった。
 [比較例6]
 実施例4の輸送部から輸送装置B及びCを取り除き、輸送区間の始点B1から輸送区間の終点F1までを一つの輸送配管P4で連結した他は、実施例4と同様の輸送部を用いた。この輸送配管の長さは、水平部が105mでありかつ垂直部が20mであった。吸水性樹脂粉体Cを用いて、吸水性樹脂粉体の輸送試験を行った。この輸送配管P4の末端における末端線速Vyは27.9m/sであった。単位時間当たりの輸送能力は7350kg/hrであった。輸送区間の終点F1に到達した輸送試験後の吸水性樹脂粉体のCRCは、26.8(g/g)、SFCは、102(×10-7・cm・s・g-1)、AAPは23.6(g/g)であった。輸送によるSFC低下率は15%であった。輸送配管の閉塞現象は見られなかった。
 [比較例7]
 輸送配管P4の末端における末端線速Vyを9.9m/sとした他は、比較例6と同様にして輸送実験を行った。その結果、試験途中に閉塞現象が発生し、輸送が中断された。
 [実施例5]
 実施例4において、吸水性樹脂粉体Cに代えて、製造例4で得られた微粉リサイクル品を含む吸水性樹脂粉体(3)を用いて、吸水性樹脂粉体の輸送試験を行った。その結果、輸送による微粉再生も実質殆どなく、輸送配管の閉塞現象は見られなかった。
 [比較例8]
 比較例6において、製造例4で得られた微粉リサイクル品を含む吸水性樹脂粉体(3)を用いて、吸水性樹脂粉体の輸送試験を行った。その結果、輸送による微粉再生および粉塵の発生が見られた。
 実施例及び比較例の仕様及び評価結果を、下記の表1、表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 以上の結果に示されるように、実施例は、比較例よりも評価が高い。これらの結果から、本発明の優位性は明らかである。
 本発明にかかる吸水性樹脂粉体の輸送方法は、例えば、紙オムツや生理用ナプキン、失禁パッド等の吸収体を含む衛生材料等に利用される吸水性樹脂粉体の製造工程において好適に適用されうる。

Claims (18)

  1.  製造工程中の吸水性樹脂粉体を、輸送配管を経由して空気輸送する吸水性樹脂粉体の輸送方法であって、一つの輸送区間に2つ以上の空気輸送装置が用いられ、前記2つ以上の空気輸送装置が輸送配管によって直列的に接続されている、吸水性樹脂粉体の輸送方法。
  2.  一つの前記輸送区間に含まれる輸送配管の合計長さLtが50m以上である、請求項1に記載の輸送方法。
  3.  一つの前記輸送区間に含まれる各輸送配管の長さLpが40m以下である、請求項1または2に記載の輸送方法。
  4.  前記吸水性樹脂粉体の輸送配管末端での線速度が15m/s以下である、請求項1~3のいずれか1項に記載の輸送方法。
  5.  前記空気輸送装置が加圧タンク及び受けホッパーを有している、請求項1~4のいずれか1項に記載の輸送方法。
  6.  前記加圧タンクと前記受けホッパーとの間にはバルブが具備されており、前記受けホッパーの粉面の検知結果に基づき、前記バルブの開閉及び空気輸送装置の起動が自動制御される、請求項5に記載の輸送方法。
  7.  前記加圧タンクと前記受けホッパーとの間にはバルブが具備されており、前記加圧タンク内の圧力の検知結果に基づき、前記バルブの開閉及び空気輸送装置の起動が自動制御される、請求項5または6に記載の輸送方法。
  8.  一つの輸送区間に含まれる輸送配管の合計長さLtが100m以上である、請求項1~8のいずれか1項に記載の輸送方法。
  9.  前記空気輸送装置が高濃度空気輸送装置である、請求項1~8のいずれか1項に記載の輸送方法。
  10.  空気輸送された吸水性樹脂粉体を貯蔵する工程を含む、請求項1~9のいずれか1項に記載の輸送方法。
  11.  前記吸水性樹脂粉体の輸送量が1000kg/hr以上である、請求項1~10のいずれか1項に記載の輸送方法。
  12.  前記吸水性樹脂粉体が多価アルコールによって表面架橋されている、請求項1~11のいずれか1項に記載の輸送方法。
  13.  前記吸水性樹脂粉体が多価金属塩を含む、請求項1~12のいずれか1項に記載の輸送方法。
  14.  前記吸水性樹脂粉体が無機粒子を含む、請求項1~13のいずれか1項に記載の輸送方法。
  15.  輸送前及び輸送後における前記吸水性樹脂粉体の、0.69質量%生理食塩水流れ誘導性(SFC)が10(10-7・cm・s・g-1)以上である、請求項1~14のいずれか1項に記載の輸送方法。
  16.  前記吸水性樹脂粉体が、連続ベルト重合または連続ニーダー重合により得られる不定形破砕形状のポリアクリル酸(塩)系吸水性樹脂である、請求項1~15のいずれか1項に記載の輸送方法。
  17.  前記吸水性樹脂粉体が、微粉リサイクル工程を含む製造工程で得られるポリアクリル酸(塩)系吸水性樹脂である、請求項1~16のいずれか1項に記載の輸送方法。
  18.  前記吸水性樹脂粉体が、150~250℃で表面架橋されてなるポリアクリル酸(塩)系吸水性樹脂である、請求項1~17のいずれか1項に記載の輸送方法。
PCT/JP2009/056159 2008-03-28 2009-03-26 吸水性樹脂粉体の輸送方法 WO2009119756A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09724168A EP2263957B1 (en) 2008-03-28 2009-03-26 Method of transporting absorbent resin powder
CN200980111363.XA CN101980937B (zh) 2008-03-28 2009-03-26 吸水性树脂粉体的输送方法
US12/935,052 US9175142B2 (en) 2008-03-28 2009-03-26 Transportation method for water-absorbing resin powder substance
JP2010505785A JP5710966B2 (ja) 2008-03-28 2009-03-26 吸水性樹脂粉体の輸送方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008086570 2008-03-28
JP2008-086570 2008-03-28
JP2008-117167 2008-04-28
JP2008117167 2008-04-28
JP2008242697 2008-09-22
JP2008-242697 2008-09-22

Publications (1)

Publication Number Publication Date
WO2009119756A1 true WO2009119756A1 (ja) 2009-10-01

Family

ID=41113942

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2009/056161 WO2009119758A1 (ja) 2008-03-28 2009-03-26 吸水性樹脂粉体の輸送方法
PCT/JP2009/056157 WO2009119754A1 (ja) 2008-03-28 2009-03-26 吸水性樹脂の製造方法
PCT/JP2009/056159 WO2009119756A1 (ja) 2008-03-28 2009-03-26 吸水性樹脂粉体の輸送方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/056161 WO2009119758A1 (ja) 2008-03-28 2009-03-26 吸水性樹脂粉体の輸送方法
PCT/JP2009/056157 WO2009119754A1 (ja) 2008-03-28 2009-03-26 吸水性樹脂の製造方法

Country Status (6)

Country Link
US (3) US8410223B2 (ja)
EP (4) EP3023369B1 (ja)
JP (3) JP5710966B2 (ja)
CN (3) CN101980937B (ja)
BR (1) BRPI0909479A2 (ja)
WO (3) WO2009119758A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114058A1 (ja) 2009-03-31 2010-10-07 株式会社日本触媒 粒子状吸水性樹脂の製造方法
WO2011099586A1 (ja) * 2010-02-10 2011-08-18 株式会社日本触媒 吸水性樹脂粉末の製造方法
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
KR101714705B1 (ko) * 2015-10-16 2017-03-09 삼성중공업(주) 머드 생성 장치
KR101794793B1 (ko) 2017-06-05 2017-11-08 이호영 Pvc 안정제 파우더 제조 장치
KR20190015234A (ko) * 2016-05-31 2019-02-13 바스프 에스이 초흡수제의 제조 방법

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104673A2 (de) * 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
CN101400589B (zh) * 2006-03-14 2011-07-13 巴斯夫欧洲公司 吸水性聚合物颗粒的气动输送方法
EP2135669B1 (en) * 2007-03-29 2019-10-30 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for producing the same
JP5710966B2 (ja) * 2008-03-28 2015-04-30 株式会社日本触媒 吸水性樹脂粉体の輸送方法
US9023951B2 (en) 2009-08-27 2015-05-05 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
WO2011042429A1 (de) * 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2546283B1 (en) * 2010-03-08 2020-07-22 Nippon Shokubai Co., Ltd. Drying method for granular water-containing gel-like cross-linked polymer
WO2011115221A1 (ja) 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
CN102858815B (zh) 2010-04-26 2016-07-06 株式会社日本触媒 聚丙烯酸(盐)、聚丙烯酸(盐)系吸水性树脂及其制造方法
BR112012027407B1 (pt) 2010-04-26 2020-04-07 Nippon Catalytic Chem Ind resina absorvedora de água tipo ácido poliacrílico (sal), material sanitário contendo a mesma, método para produzir e identificar a mesma e método para produzir ácido poliacrílico (sal)
CN103261243B (zh) * 2010-12-17 2016-08-17 株式会社日本触媒 聚丙烯酸(盐)系吸水性树脂及其制造方法
JP5663038B2 (ja) 2011-01-28 2015-02-04 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
US9567414B2 (en) 2011-01-28 2017-02-14 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
WO2012119969A1 (de) * 2011-03-08 2012-09-13 Basf Se Verfahren zur herstellung von wasserabsorbierenden polymerpartikeln mit verbesserter permeabilität
CN102849465A (zh) * 2012-08-09 2013-01-02 中冶赛迪工程技术股份有限公司 一种高炉重力除尘灰气力输送方法
CN104822740B (zh) 2012-12-03 2020-08-11 株式会社日本触媒 聚丙烯酸(盐)系吸水性树脂及其制造方法
JP5952431B2 (ja) 2013-01-29 2016-07-13 株式会社日本触媒 吸水性樹脂材料及びその製造方法
CN103159035A (zh) * 2013-03-21 2013-06-19 中煤科工集团武汉设计研究院 长距离管道输煤主信道光通信系统
US10662300B2 (en) 2013-05-10 2020-05-26 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbent resin
CN103303685A (zh) * 2013-07-01 2013-09-18 克莱德贝尔格曼华通物料输送有限公司 一种气力输送的方法
JP6108402B2 (ja) 2014-03-07 2017-04-05 株式会社日本製鋼所 水素吸蔵合金の充填方法
WO2015166777A1 (ja) * 2014-04-28 2015-11-05 日本ゼオン株式会社 電気化学素子電極用複合粒子の製造方法
CN106661239B (zh) * 2014-10-08 2019-08-13 株式会社Lg化学 高吸水性树脂造粒体的制造方法
EP3165542B1 (en) * 2014-10-08 2020-12-02 LG Chem, Ltd. Method of preparing superabsorbent polymer
EP3279239B1 (en) 2015-04-02 2022-06-01 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbing agent that has polyacrylic acid (salt)-based water-absorbing resin as main component
US10961358B2 (en) 2016-09-30 2021-03-30 Nippon Shokubai Co., Ltd. Water-absorbing resin composition
DE102017206842A1 (de) * 2017-04-24 2018-10-25 Coperion Gmbh Verfahren zur pneumatischen Förderung von Kunststoffgranulat
KR102589018B1 (ko) 2018-05-16 2023-10-16 가부시키가이샤 닛폰 쇼쿠바이 흡수성 수지의 제조 방법
KR102461120B1 (ko) * 2018-12-07 2022-10-28 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN113454008B (zh) * 2019-01-18 2023-04-18 特里高亚科技有限公司 用于转移固体颗粒的系统和方法
EP3736234B1 (de) * 2019-05-10 2024-07-03 Coperion GmbH Förderanlage und verfahren zur pneumatischen förderung von kunststoffgranulat
JP7365575B2 (ja) * 2019-08-09 2023-10-20 三菱マテリアル株式会社 鉱石連続供給装置
WO2021049738A1 (ko) * 2019-09-11 2021-03-18 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR102541494B1 (ko) 2019-09-11 2023-06-08 주식회사 엘지화학 고흡수성 수지의 제조 방법
KR20220049068A (ko) 2020-10-13 2022-04-21 삼성전자주식회사 흡습제 교체 장치 및 이를 포함하는 공기 건조 시스템
EP4083115B1 (en) * 2020-10-29 2024-05-08 Lg Chem, Ltd. Preparation method of super absorbent polymer

Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US534289A (en) 1895-02-19 Art of blasting
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4973632A (en) 1988-06-28 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production process for water-absorbent resin
JPH07250410A (ja) * 1994-03-09 1995-09-26 Nippon Densetsu Kogyo Co Ltd 通線用管路アダプタ
US5455284A (en) 1990-07-09 1995-10-03 Chemische Fabrik Stockhausen Gmbh Process for the production of water-swellable products using superfines of water-swellable polymers
US5744564A (en) 1991-03-19 1998-04-28 The Dow Chemical Company Wrinkled absorbent particles of high effective surface area having fast absorption rate
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
JP2001079829A (ja) 1999-06-25 2001-03-27 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
WO2002042379A1 (fr) 2000-11-22 2002-05-30 Nippon Shokubai Co., Ltd Composition d'agents d'absorption d'eau et procede de production, article absorbant et matiere absorbante
JP2002212331A (ja) * 2001-01-22 2002-07-31 Mitsubishi Chemicals Corp 高吸水性樹脂粒子の製造方法
US20020128618A1 (en) 2000-12-29 2002-09-12 Basf Aktiengesellschaft Hydrogels
US20030069359A1 (en) 2001-01-26 2003-04-10 Kazushi Torii Water-absorbing agent and production process therefor, and water-absorbent structure
US6559239B1 (en) 1998-11-26 2003-05-06 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
US20040048955A1 (en) 2002-06-06 2004-03-11 Katsuyuki Wada Water-absorbent composition,process for production thereof,absorbent and absorbing product
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
EP1426157A1 (en) 2001-07-03 2004-06-09 Nippon Shokubai Co., Ltd. Continuous manufacturing method for hygroscopic resin powder and powder level detector used therefor
WO2004069915A2 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
JP2004345804A (ja) 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法
JP2005053604A (ja) * 2003-08-05 2005-03-03 Chubu Regional Bureau Ministry Of Land Infrastructure & Transport 水蒸気を主体としたガスによる物体輸送装置及び物体輸送方法
US20050113252A1 (en) 2003-09-05 2005-05-26 Koji Miyake Method of producing particle-shape water-absorbing resin material
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US20050245684A1 (en) 2002-08-26 2005-11-03 Thomas Daniel Water absorbing agent and method for the production thereof
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7049366B2 (en) 2001-12-19 2006-05-23 Nippon Shokubai Co., Ltd. Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
WO2006074816A1 (de) 2005-01-13 2006-07-20 Basf Aktiengesellschaft Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2007028751A2 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
EP1824910A2 (en) 2004-12-10 2007-08-29 Nippon Shokubai Co.,Ltd. Method for production of modified water absorbent resin
WO2007104673A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104676A1 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104657A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2008025655A2 (en) 2006-08-31 2008-03-06 Basf Se Polyamine coated superabsorbent polymers having transient hydrophobicity
WO2008025652A1 (en) 2006-08-31 2008-03-06 Basf Se Polyamine-coated superabsorbent polymers
WO2008025656A1 (en) 2006-08-31 2008-03-06 Basf Se Superabsorbent polymers having superior gel integrity, absorption capacity, and permeability
US7347330B2 (en) 2003-05-27 2008-03-25 Nippon Shokubai Co., Ltd. Method for sizing of water-absorbent resin
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
WO2008090961A1 (ja) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. 粒子状吸水性ポリマーおよびその製造方法
WO2008120742A1 (ja) 2007-03-29 2008-10-09 Nippon Shokubai Co., Ltd. 粒子状吸水剤及びその製造方法
US20080306209A1 (en) 2005-12-29 2008-12-11 Uwe Stueven Production of a Water-Absorbing Resin to Which a Particulate Additive is Admixed
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2657677C3 (de) * 1976-12-20 1979-11-15 Mittelmann Gmbh & Co Kg, 5928 Laasphe Verfahren und Vorrichtung zur pneumatischen Förderung von Schüttgütern, zähfließenden Massen, Schlämmen o.dgl. in einer rohrförmigen Förderrinne
JPS5516874A (en) 1978-07-21 1980-02-05 Hitachi Plant Eng & Constr Co Ltd Pipe for conveying granular material
JPS57166227A (en) 1981-04-01 1982-10-13 Kayaba Ind Co Ltd Transfer device of massive granule
US4985518A (en) * 1981-10-26 1991-01-15 American Colloid Company Process for preparing water-absorbing resins
DE3307902A1 (de) * 1983-03-05 1984-09-06 Kurt Dipl.-Ing. 6380 Bad Homburg Bojak Anlage zum transport von feststoffen in rohrleitungen mittels fluessigem oder gasfoermigem transportmittel
JPS6413330A (en) 1987-07-03 1989-01-18 Mitsui Shipbuilding Eng Coanda jet type conveying device
JPH0615574B2 (ja) 1987-08-26 1994-03-02 積水化成品工業株式会社 吸水性樹脂の製造方法
JP2530668B2 (ja) 1987-11-12 1996-09-04 株式会社日本触媒 改良された吸水性樹脂の製造法
US4900200A (en) * 1988-06-22 1990-02-13 Matsui Manufacturing Co., Ltd. Method for transporting powdered or granular materials by pneumatic force with a transport pipe of smaller diameter relative to particale size
US5228930A (en) 1989-07-31 1993-07-20 Mitsubishi Materials Corporation Rare earth permanent magnet power, method for producing same and bonded magnet
DE4020780C1 (ja) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
JPH0475918A (ja) 1990-07-17 1992-03-10 Sato Kensetsu Kogyo Kk 空気輸送装置
US5188714A (en) * 1991-05-03 1993-02-23 The Boc Group, Inc. Stainless steel surface passivation treatment
US5342899A (en) 1991-05-16 1994-08-30 The Dow Chemical Company Process for recycling aqueous fluid absorbents fines to a polymerizer
JPH0741991B2 (ja) 1991-08-27 1995-05-10 株式会社日本アルミ 粉粒体の空気輸送方法及び粉粒体の空気輸送装置
JP2953229B2 (ja) 1992-12-25 1999-09-27 日立プラント建設株式会社 低速高濃度輸送装置
JP2619790B2 (ja) 1993-06-03 1997-06-11 デンカエンジニアリング株式会社 付着性粉粒体の輸送方法
EP0789047B1 (en) 1994-10-26 2005-12-21 Nippon Shokubai Co., Ltd. Water absorptive resin composition and method of manufacturing the same
EP0812873B2 (en) 1995-12-27 2018-10-24 Nippon Shokubai Co., Ltd. Water absorbent and process and equipment for the production thereof
US6254990B1 (en) 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin
JP3671789B2 (ja) * 2000-01-13 2005-07-13 株式会社村田製作所 部品の取扱装置および取扱方法
JP4739534B2 (ja) * 2000-01-20 2011-08-03 株式会社日本触媒 吸水性樹脂の取扱方法
JP3632750B2 (ja) * 2000-06-01 2005-03-23 信越化学工業株式会社 塩化ビニル系樹脂粉体の空気移送方法
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
DE10127427A1 (de) * 2001-06-06 2002-12-12 Bayer Ag Verfahren und Vorrichtung zur pneumatischen Förderung von geschnittenen Glasfasern
US6716894B2 (en) 2001-07-06 2004-04-06 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and uses
JP2004043102A (ja) 2002-07-11 2004-02-12 Tosoh Corp 塩化ビニル系樹脂の輸送方法
US7193006B2 (en) * 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
US8247491B2 (en) * 2003-02-10 2012-08-21 Nippon Shokubai Co., Ltd. Water-absorbent resin composition and its production process
RU2333229C2 (ru) 2003-06-24 2008-09-10 Ниппон Шокубаи Ко., Лтд. Водопоглощающая композиция на основе смол, способ ее изготовления (варианты), поглотитель и поглощающее изделие на ее основе
EP1516884B2 (en) * 2003-09-19 2023-02-22 Nippon Shokubai Co., Ltd. Water-absorbent resin having treated surface and process for producing the same
US20050288182A1 (en) * 2004-06-18 2005-12-29 Kazushi Torii Water absorbent resin composition and production method thereof
EP1844080B1 (de) * 2005-01-28 2014-10-29 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel durch vertropfungspolymerisation in der gasphase
AU2006331887B2 (en) * 2005-12-21 2011-06-09 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, heat transfer component with improved corrosion and fouling resistance, and method for reducing fouling
US8703859B2 (en) * 2006-03-27 2014-04-22 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin composition
US7790840B2 (en) * 2006-05-24 2010-09-07 Eastman Chemical Company Crystallizing conveyor
US8314173B2 (en) * 2007-01-29 2012-11-20 Basf Se Method for producing white and color-stable water-absorbing polymer particles having high absorbency and high saline flow conductivity
US20110042612A1 (en) 2007-01-29 2011-02-24 Ulrich Riegel Method for Producing White and Color-Stable Water-Absorbing Polymer Particles Having High Absorbency and High Saline Flow Conductivity
JP2008260280A (ja) * 2007-03-20 2008-10-30 Mitsubishi Chemicals Corp ペレット形状のポリエステルの輸送方法および貯蔵方法
ITVR20070083A1 (it) * 2007-06-12 2008-12-13 Moretto Spa Impianto per il trasporto pneumatico a velocita' controllata di materiale granulare e procedimento di controllo della velocita' di convogliamento
SA08290542B1 (ar) * 2007-08-28 2012-11-14 نيبون شوكوباي كو. ، ليمتد طريقة لإنتاج راتنج ماص للماء
CN101970316B (zh) * 2008-03-13 2013-06-12 株式会社日本触媒 吸水性树脂的制造方法
JP5710966B2 (ja) * 2008-03-28 2015-04-30 株式会社日本触媒 吸水性樹脂粉体の輸送方法
JP5560192B2 (ja) * 2008-09-16 2014-07-23 株式会社日本触媒 吸水性樹脂の製造方法および通液性向上方法
DE102009007012A1 (de) * 2009-01-31 2010-08-05 Hettich Holding Gmbh & Co. Ohg Pneumatische Druckluft-Rohrförderanlage
CN102574941B (zh) * 2009-10-09 2015-09-16 巴斯夫欧洲公司 用于再润湿表面后交联吸水性聚合物颗粒的方法
WO2011042429A1 (de) * 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
EP2535369B1 (en) * 2010-02-10 2021-03-24 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
WO2011115221A1 (ja) * 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
WO2011155540A1 (ja) * 2010-06-08 2011-12-15 株式会社日本触媒 粒子状吸水性樹脂の製造方法
JP5767821B2 (ja) * 2011-02-04 2015-08-19 ユニ・チャーム株式会社 吸収体の製造装置、及び製造方法
US8742026B2 (en) * 2011-03-08 2014-06-03 Basf Se Process for producing water-absorbing polymer particles with improved permeability

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US534289A (en) 1895-02-19 Art of blasting
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US4783510A (en) 1986-06-04 1988-11-08 Taiyo Fishery Co., Ltd. Process for improving a water absorbent polyacrylic acid polymer and an improved polymer produced by said process
US4973632A (en) 1988-06-28 1990-11-27 Nippon Shokubai Kagaku Kogyo Co., Ltd. Production process for water-absorbent resin
US5455284A (en) 1990-07-09 1995-10-03 Chemische Fabrik Stockhausen Gmbh Process for the production of water-swellable products using superfines of water-swellable polymers
US5744564A (en) 1991-03-19 1998-04-28 The Dow Chemical Company Wrinkled absorbent particles of high effective surface area having fast absorption rate
JPH07250410A (ja) * 1994-03-09 1995-09-26 Nippon Densetsu Kogyo Co Ltd 通線用管路アダプタ
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
US6107358A (en) 1996-08-23 2000-08-22 Nippon Shokubai Co., Ltd. Water-absorbent resin and method for production thereof
US6228930B1 (en) 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6458921B1 (en) 1997-06-18 2002-10-01 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US7153910B2 (en) 1997-06-18 2006-12-26 Nippon Shokubai: Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
US6559239B1 (en) 1998-11-26 2003-05-06 Basf Aktiengesellschaft Method for the secondary cross-linking of hydrogels with N-acyl-2-oxazolidinones
JP2001079829A (ja) 1999-06-25 2001-03-27 Nippon Shokubai Co Ltd 吸水性樹脂およびその製造方法
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US6817557B2 (en) 2000-01-20 2004-11-16 Nippon Shokubai Co., Ltd. Process for transporting, storing, and producing a particulate water-absorbent resin
WO2002042379A1 (fr) 2000-11-22 2002-05-30 Nippon Shokubai Co., Ltd Composition d'agents d'absorption d'eau et procede de production, article absorbant et matiere absorbante
US20020128618A1 (en) 2000-12-29 2002-09-12 Basf Aktiengesellschaft Hydrogels
US6849665B2 (en) 2000-12-29 2005-02-01 Basf Aktiengesellschaft Absorbent compositions
JP2002212331A (ja) * 2001-01-22 2002-07-31 Mitsubishi Chemicals Corp 高吸水性樹脂粒子の製造方法
US20030069359A1 (en) 2001-01-26 2003-04-10 Kazushi Torii Water-absorbing agent and production process therefor, and water-absorbent structure
EP1426157A1 (en) 2001-07-03 2004-06-09 Nippon Shokubai Co., Ltd. Continuous manufacturing method for hygroscopic resin powder and powder level detector used therefor
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7049366B2 (en) 2001-12-19 2006-05-23 Nippon Shokubai Co., Ltd. Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
US20040048955A1 (en) 2002-06-06 2004-03-11 Katsuyuki Wada Water-absorbent composition,process for production thereof,absorbent and absorbing product
US20050245684A1 (en) 2002-08-26 2005-11-03 Thomas Daniel Water absorbing agent and method for the production thereof
WO2004069936A1 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
WO2004069915A2 (en) 2003-02-10 2004-08-19 Nippon Shokubai Co., Ltd. Particulate water-absorbing agent
US7282262B2 (en) 2003-02-10 2007-10-16 Nippon Shokubai Co., Ltd. Particulate water absorbent containing water absorbent resin as a main component
US20060204755A1 (en) 2003-02-10 2006-09-14 Kazushi Torii Walter-absorbing agent
US7378453B2 (en) 2003-03-14 2008-05-27 Nippon Shokubai Co., Ltd. Surface crosslinking treatment method of water-absorbing resin powder
JP2004345804A (ja) 2003-05-22 2004-12-09 Nippon Shokubai Co Ltd 吸水性樹脂粉体の輸送方法
US7347330B2 (en) 2003-05-27 2008-03-25 Nippon Shokubai Co., Ltd. Method for sizing of water-absorbent resin
JP2005053604A (ja) * 2003-08-05 2005-03-03 Chubu Regional Bureau Ministry Of Land Infrastructure & Transport 水蒸気を主体としたガスによる物体輸送装置及び物体輸送方法
US7201941B2 (en) 2003-08-27 2007-04-10 Nippon Shokubai Co., Ltd. Process for production of surface-treated particulate water-absorbent resin
US20050113252A1 (en) 2003-09-05 2005-05-26 Koji Miyake Method of producing particle-shape water-absorbing resin material
US7473739B2 (en) 2004-02-05 2009-01-06 Nippon Shokubai Co., Ltd. Particulate water absorbent agent and production method thereof, and water absorbent article
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
EP1824910A2 (en) 2004-12-10 2007-08-29 Nippon Shokubai Co.,Ltd. Method for production of modified water absorbent resin
WO2006074816A1 (de) 2005-01-13 2006-07-20 Basf Aktiengesellschaft Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes
WO2006082197A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2006082189A1 (en) 2005-02-01 2006-08-10 Basf Aktiengesellschaft Polyamine-coated superabsorbent polymers
WO2007028751A2 (de) 2005-09-07 2007-03-15 Basf Se Neutralisationsverfahren
US20080306209A1 (en) 2005-12-29 2008-12-11 Uwe Stueven Production of a Water-Absorbing Resin to Which a Particulate Additive is Admixed
WO2007104676A1 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104657A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104673A2 (de) 2006-03-14 2007-09-20 Basf Se Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2008025656A1 (en) 2006-08-31 2008-03-06 Basf Se Superabsorbent polymers having superior gel integrity, absorption capacity, and permeability
WO2008025652A1 (en) 2006-08-31 2008-03-06 Basf Se Polyamine-coated superabsorbent polymers
WO2008025655A2 (en) 2006-08-31 2008-03-06 Basf Se Polyamine coated superabsorbent polymers having transient hydrophobicity
WO2008090961A1 (ja) 2007-01-24 2008-07-31 Nippon Shokubai Co., Ltd. 粒子状吸水性ポリマーおよびその製造方法
WO2008120742A1 (ja) 2007-03-29 2008-10-09 Nippon Shokubai Co., Ltd. 粒子状吸水剤及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2263957A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010114058A1 (ja) 2009-03-31 2010-10-07 株式会社日本触媒 粒子状吸水性樹脂の製造方法
US9976001B2 (en) 2010-02-10 2018-05-22 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin powder
WO2011099586A1 (ja) * 2010-02-10 2011-08-18 株式会社日本触媒 吸水性樹脂粉末の製造方法
JP5605855B2 (ja) * 2010-02-10 2014-10-15 株式会社日本触媒 吸水性樹脂粉末の製造方法
US10307506B2 (en) 2010-03-12 2019-06-04 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US9272068B2 (en) 2010-03-12 2016-03-01 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
US9233186B2 (en) 2010-03-12 2016-01-12 Nippon Shokubai Co., Ltd. Process for producing water-absorbing resin
KR101714705B1 (ko) * 2015-10-16 2017-03-09 삼성중공업(주) 머드 생성 장치
KR20190015234A (ko) * 2016-05-31 2019-02-13 바스프 에스이 초흡수제의 제조 방법
JP2019518116A (ja) * 2016-05-31 2019-06-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超吸収体の製造方法
JP6991161B2 (ja) 2016-05-31 2022-01-13 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体の製造方法
KR102528637B1 (ko) 2016-05-31 2023-05-03 바스프 에스이 초흡수제의 제조 방법
KR101794793B1 (ko) 2017-06-05 2017-11-08 이호영 Pvc 안정제 파우더 제조 장치

Also Published As

Publication number Publication date
CN101980937A (zh) 2011-02-23
CN101980937B (zh) 2014-01-08
WO2009119758A1 (ja) 2009-10-01
WO2009119754A1 (ja) 2009-10-01
US20110088806A1 (en) 2011-04-21
BRPI0909479A2 (pt) 2015-12-22
EP2263957A1 (en) 2010-12-22
EP2261148A4 (en) 2011-11-02
EP2263957A4 (en) 2011-11-09
CN101981090A (zh) 2011-02-23
EP2261148B1 (en) 2013-02-13
EP2258749A1 (en) 2010-12-08
CN101980936B (zh) 2014-07-23
CN101980936A (zh) 2011-02-23
US8410223B2 (en) 2013-04-02
EP2263957B1 (en) 2013-02-13
EP3023369A1 (en) 2016-05-25
JP5710966B2 (ja) 2015-04-30
US9096732B2 (en) 2015-08-04
JP5323053B2 (ja) 2013-10-23
US9175142B2 (en) 2015-11-03
EP2261148A1 (en) 2010-12-15
JPWO2009119758A1 (ja) 2011-07-28
US20110110730A1 (en) 2011-05-12
US20110028670A1 (en) 2011-02-03
JPWO2009119754A1 (ja) 2011-07-28
CN101981090B (zh) 2013-03-13
EP3023369B1 (en) 2019-06-26
JPWO2009119756A1 (ja) 2011-07-28
EP2258749A4 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5710966B2 (ja) 吸水性樹脂粉体の輸送方法
JP5635397B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP7083020B2 (ja) 吸水性樹脂粉末、及びその製造方法
US9138505B2 (en) Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
US9233186B2 (en) Process for producing water-absorbing resin
JPWO2009123193A1 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2015133498A1 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
BRPI0909479B1 (pt) Método para produção de uma resina de absorção de água

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111363.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505785

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009724168

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12935052

Country of ref document: US