WO2009057229A1 - エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械 - Google Patents

エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械 Download PDF

Info

Publication number
WO2009057229A1
WO2009057229A1 PCT/JP2007/071750 JP2007071750W WO2009057229A1 WO 2009057229 A1 WO2009057229 A1 WO 2009057229A1 JP 2007071750 W JP2007071750 W JP 2007071750W WO 2009057229 A1 WO2009057229 A1 WO 2009057229A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
feed shaft
measurement
rotation angle
machining
Prior art date
Application number
PCT/JP2007/071750
Other languages
English (en)
French (fr)
Inventor
Norio Mori
Tadashi Kasahara
Tadahiro Nishiguchi
Original Assignee
Makino Milling Machine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP15002431.3A priority Critical patent/EP2975475B1/en
Priority to CA2704365A priority patent/CA2704365C/en
Priority to US12/740,126 priority patent/US8786243B2/en
Priority to EP07831481.2A priority patent/EP2208572B1/en
Priority to PCT/JP2007/071750 priority patent/WO2009057229A1/ja
Priority to EP10004807.3A priority patent/EP2221692B1/en
Application filed by Makino Milling Machine Co., Ltd. filed Critical Makino Milling Machine Co., Ltd.
Priority to KR1020107008406A priority patent/KR101158772B1/ko
Priority to CN2007801014014A priority patent/CN101842189B/zh
Priority to KR1020107008254A priority patent/KR101088843B1/ko
Priority to JP2009538903A priority patent/JP5058270B2/ja
Publication of WO2009057229A1 publication Critical patent/WO2009057229A1/ja
Priority to US12/769,939 priority patent/US8680806B2/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33078Error table, interpolate between two stored values to correct error
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37123Extensible ball bar with potentiometer, lvdt
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39056On line relative position error and orientation error calibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49344Surface, 5-axis surface machining
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50057Compensation error by probing test, machined piece, post or pre process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50297Compensation of positioning error due to a-axis, b-axis tool rotation

Definitions

  • the present invention relates to measurement and correction of errors in a numerically controlled machine tool having a configuration in which a main shaft and a table are relatively movable and a linear feed shaft and a rotary feed shaft.
  • Japanese Patent Application Laid-Open No. 2 0 4-2 7 2 8 8 7 has three linear movement axes (X, Y, ⁇ ) orthogonal to each other and two rotary feed axes (A, C) orthogonal to each other
  • X, Y, ⁇ linear movement axes
  • A, C rotary feed axes
  • Japanese Patent Laid-Open No. 9 2 3 7 1 1 2 discloses a method for correcting an error of a tool unit of a machine tool of a parallel link mechanism based on an error map.
  • the error map has an error map calculated from the difference between the command value and detection value of the position and orientation of the tool unit tip, corresponding to the scale point of the work space at the tool unit tip. ing.
  • This system has at least one support base equipped with a number of distance sensors, a connecting means for connecting to a head at one end, and a small gage tool type consisting of an elongated cylinder having a sphere at the other end. Both have one device.
  • the sphere is placed adjacent to the distance sensor.
  • the distance sensor is able to move to any position at any time to measure the distance away from the sphere. This determines the position in the Cartesian coordinate space.
  • the correction method disclosed in Japanese Patent Publication No. 6-8 8 1 9 2 and Japanese Patent Laid-Open No. 2 0 0 4 2 7 2 8 8 7 corrects the shaft misalignment of the rotating shaft, and the shaft itself. There was a problem that it was not possible to correct errors that change depending on the undulation and the position of the linear feed axis.
  • the error map disclosed in Japanese Patent Application Laid-Open No. 9 1 2 3 7 1 1 2 is based on the error at the tip of a tool unit driven by a parallel link mechanism as table data. There is a problem that cannot be applied to machine tools with The measurement method disclosed in WO 2 0 4 4/0 3 4 1 6 4 pamphlet measures the deviation of the center position of the reference sphere. Therefore, when the tool length or tool protrusion length changes, there is a problem that the deviation of the tool tip position caused by the error in the relative attitude between the spindle and the table cannot be corrected. Disclosure of the invention
  • An object of the present invention is to solve the above-described problems of the prior art, and an object of the present invention is to provide an error map for accurately correcting errors of a machine tool having a linear feed shaft and a rotary feed shaft.
  • a production method and apparatus, and a numerically controlled machine tool having an error map creation function are provided.
  • an error map creation method for a numerically controlled machine tool having a linear feed shaft and a transfer shaft and configured so that the spindle and the table can move relative to each other
  • an error map generation method including the process of storing corresponding to the rotation angle of.
  • a plurality of measurement areas are defined within a movable range of the linear feed axis, a measurement point is defined in each measurement area, and at least each measurement area is defined.
  • An error map generation method is provided in which one measurement point is determined so that the measurement point in the adjacent measurement region and the coordinate position of the linear feed axis are the same.
  • the position of the adjacent measurement points is set so that the interval between the adjacent measurement points is constant.
  • An error map creation method is provided in which measurement points are determined so that the difference in error or attitude error is constant.
  • the step of measuring the relative position and the relative posture includes: a known reference sphere having an outer dimension provided on one of the spindle and the table; and a displacement sensor provided on the other.
  • the linear feed shaft is controlled so that the relative position between the center of the reference sphere and the displacement sensor does not change theoretically when the rotary feed shaft is operated using the measuring device having
  • the rotary feed shaft is positioned at a plurality of measurement points, and the displacement sensor measures the displacement of the position of the reference sphere at each measurement point. From the measured displacement and the coordinate value at the time of measurement, the relative position and the relative An error map creation method for obtaining a posture is provided.
  • the step of measuring the relative position and the relative posture includes processing the test piece or work attached to the table by positioning the rotary feed shaft at a plurality of rotation angles, The transfer axis is positioned at one of the multiple rotation angles, and the displacement between the machining surface when machining at one rotation angle and the machining surface when machining at another rotation angle is performed.
  • an error map creation method for measuring and calculating the relative position and the relative posture from the measured displacement and the coordinate value at the time of measurement.
  • the rotary feed shaft in the step of measuring the relative position and the relative posture, is positioned at a plurality of rotation angles, and a test piece attached to the table at each rotation angle or Machining three surfaces of the workpiece, positioning the rotary feed shaft at one of the plurality of rotation angles, machining at the three rotation surfaces when machining at the one rotation angle and other rotation angles Measure the position difference and inclination difference with the three machined surfaces with the probe probe attached to the spindle, and measure the difference in position and inclination and the machine coordinate value at the time of measurement.
  • An error map creation method for obtaining the relative position and the relative attitude is provided.
  • the linear feed shaft and the rotation A step of determining a plurality of measurement points in a movable range of the feed shaft, and the rotary feed shaft is positioned at a plurality of rotation angles at the determined measurement points, and attached to the table at each of the positioned rotation angles.
  • Measuring the position error at each rotation angle to determine the posture error at each rotation angle, measuring the processed test piece or workpiece surface of the workpiece, and measuring the rotation angle for each rotation angle The step of obtaining the position of the intersection of the three planes including the machining surface added in step 3, and the intersection of the three planes including the machining surface when the rotary feed shaft is positioned at the one rotation angle and the other rotation angle. Determining the position error at each measurement point from the difference in position with the intersection of the three planes including the machining surface when the workpiece is positioned and machining, and the obtained attitude error, and calculating the position error and the attitude error described above.
  • An error map generation method is provided, including a step of storing corresponding to the position of the linear feed shaft and the rotation angle of the rotary feed shaft.
  • the spindle and the table are configured to be relatively movable, the linear feed shaft and the rotation
  • a step of determining a plurality of measurement points in a movable range of the feed shaft, and the rotary feed shaft is positioned at a plurality of rotation angles at the determined measurement points, and attached to the table at each of the positioned rotation angles.
  • Cuboid test topy Process the three orthogonal surfaces of the workpiece or workpiece, and measure the machining surface of the machined test piece or workpiece, and determine the inclination of the machining surface and the machining surface at each rotation angle.
  • the process of obtaining the posture error at each measurement point from the difference between the slope of the machined surface when machined and the three planes including the machined surface when machining with the rotary feed shaft positioned at the one rotation angle Obtaining a position error at each measurement point from the difference in position between the intersection point and the intersection point of the three planes including the machined surface when machining with positioning at another rotation angle and the obtained attitude error; and
  • the position error and the posture error are And a step of storing the linear feed shaft in correspondence with the position of the linear feed shaft and the rotation angle of the rotary feed shaft.
  • the spindle and the table A measuring device for measuring the position of the reference sphere by the sensor at a desired measurement point, and measurement data measured by the measuring device.
  • a calculation unit that calculates the position error and orientation error of the spindle and the table based on the coordinate value of the measurement point, and the linear feed axis at the measurement point that calculates the position error and orientation error calculated by the calculation unit.
  • an error map creating device comprising: a storage unit that stores the position corresponding to the position and the rotation angle of the rotary feed shaft.
  • a reference provided on one of the spindle and the table is provided.
  • a measuring device that measures the position of the reference sphere with the sensor at a desired measurement point, the measurement data measured by the measurement device, and the spindle based on the coordinate value of the measurement point.
  • a calculation unit for calculating the position error and the posture error of the table, and the position error and the posture error calculated by the calculation unit are stored in correspondence with the position of the linear feed shaft and the rotation angle of the rotary feed shaft at the measurement point.
  • a numerically controlled machine tool having an error map creation function comprising:
  • a numerically controlled machine tool having a linear feed shaft and a rotary feed shaft so that the main shaft and the table can be moved relative to each other, a test piece or a work attached to the table
  • a measuring device having a sensor provided on the spindle and measuring a processed surface of the test piece or workpiece by the sensor at a desired measuring point; measurement data measured by the measuring device; and the measuring point
  • a calculation unit that calculates a position error and an attitude error of the spindle and the table based on the coordinate values of the position, and the position error and the attitude error calculated by the calculation unit, and the position of the linear feed axis at the measurement point and the position
  • a numerically controlled machine tool having a storage unit that stores information corresponding to the rotation angle of the rotary feed shaft and an error map creation function.
  • the numerical control machine tool corrects the command position or the position command of the linear feed shaft or the rotary feed shaft based on the position error and the posture error stored in the storage unit.
  • a numerically controlled machine tool having an error map generation function that further includes a section is provided.
  • the position error and the posture error of the numerically controlled machine tool having the linear feed axis and the rotary feed axis are measured, An error map can be created.
  • the error data of the position error and the attitude error that change as the feed axis moves are stored separately, and the position command is corrected based on this error data. Therefore, according to the present invention, the tool tip or the machining point of the tool can be accurately positioned at the target position even if the tool length or the tool protrusion length changes.
  • the measurement point with the same coordinate position of the linear feed axis is set in the adjacent measurement area, the influence of the measurement device mounting error can be eliminated. Also, if the distance between adjacent measurement points is set so that the difference in error is constant, the amount of error map data can be reduced while maintaining the desired accuracy of correction.
  • an error map is created by measuring a processed test piece or workpiece, it can be corrected including errors caused by deflection of the spindle and tool due to rotation of the spindle and deflection of the machine and tool due to cutting load. it can.
  • the command position is the position of the destination of the feed axis commanded by the machining program
  • the position command is the command pulse sent from the interpolation unit to the servo unit based on the command position, command speed, etc. Of these, it is a command to control the position of the feed axis.
  • FIG. 1 is a side view of a numerically controlled machine tool according to the present invention.
  • FIG. 2 is a block diagram showing one embodiment of a numerical control device for a numerically controlled machine tool according to the present invention.
  • FIG. 3 is an explanatory diagram showing lattice points in the three-dimensional coordinate space.
  • Figure 4 shows the 2D data sheet associated with each grid point in Figure 3. It is explanatory drawing which shows (map map overnight).
  • FIG. 5 is an explanatory diagram showing a state in which the reference sphere attached to the tip of the tool is being measured by the measuring device attached to the pallet.
  • Fig. 6 shows the measurement range of a reference sphere with spindles of different lengths as seen from the Y-axis direction.
  • FIG. 7 is an explanatory diagram showing a method for determining a plurality of measurement regions.
  • FIG. 8 is a flowchart for explaining the first measurement method for measuring the position error and the posture error.
  • FIG. 9 is a detailed flowchart of M3 in the flowchart of FIG.
  • FIG. 10 is an explanatory diagram showing the posture error with two variables.
  • FIG. 11 is a diagram showing an example of a spindle rotating machine in which a reference sphere is mounted on the pallet side and a measuring device is mounted on the spindle side.
  • FIG. 12 is a diagram showing an example of a table rotation type machine in which a measuring device is mounted on a table and a reference sphere is mounted on a spindle.
  • FIG. 13 is a flowchart for explaining the second measurement method for measuring the position error and the posture error.
  • FIG. 14 is an explanatory view showing a state in which each plane is machined only by the operation of the linear feed axis.
  • Fig. 15 is a development view of five faces of a rectangular parallelepiped showing the machining locations for each indexing angle.
  • FIG. 16 is an explanatory view showing a state in which a lattice-like surface is being machined on the workpiece at the index angles of the rotary feed shafts B and C.
  • FIG. 17 is an explanatory diagram showing a state in which each measurement surface determined at a predetermined angle is being measured.
  • FIG. 18 is an explanatory diagram for explaining a method for obtaining the intersection of three planes.
  • Figure 19 shows a flowchart showing an example of a correction method using an error map. It is the first time.
  • the numerically controlled machine tool includes a numerical control device that operates the machine according to a machining program.
  • Fig. 1 shows the configuration of a 5-axis horizontal machining center with two rotary feed shafts on the main shaft side.
  • the machining center 1 includes a bed 2 installed on the floor, a column 3 erected on the bed 2 so as to be linearly movable in the Z-axis direction, and a vertical motion to the column 3. And a headstock 5 that can move linearly in the Y-axis direction.
  • a bracket 5 a is supported on the head stock 5 so as to be rotatable in the C-axis direction around an axis parallel to the Z-axis.
  • the spindle head 4 is supported on the bracket 5 a so as to be rotatable in the A-axis direction around the axis parallel to the X-axis.
  • a spindle for gripping the tool is rotatably supported on the spindle head 4.
  • the machining center 1 is provided with a table 6 that is erected on the bed 2 at a position facing the spindle head 4 and that can move linearly in the X-axis direction that is perpendicular to the paper surface.
  • the work 7 is held on the table 6 via the kettle 8.
  • FIG. 2 is a block diagram showing the configuration of a numerical controller 2 0 that controls the position of the feed axis of the machine tool.
  • the numerical control device 20 shown in FIG. 2 has a function of correcting the position error and the posture error of the machine tool, and reads and interprets the machining program 2 1 to interpret the command speed and command of each feed axis.
  • Position command recognizing means 24 a calculation unit for calculating a position error and a posture error of the measurement point based on the measurement data measured by the measuring device 50 and the coordinates of the measurement point, and Error data storage means 2 5 for storing the calculated position error and posture error in correspondence with the position of the linear feed axis and the rotation angle of the rotary feed axis, and the error stored in the position command and error data storage means 25
  • Correction data calculation means 2 6 for calculating correction data for correcting the position command from the data
  • correction pulse calculation means 2 7 for obtaining a correction pulse for correcting the position command based on the correction data
  • command pulse and correction And adding means 2 8 for outputting a pulse obtained by adding the pulse to the support portion 29.
  • the motor 30 of each feed shaft is driven by the drive current amplified by the servo unit 29, and moves each feed shaft.
  • the support unit 29 controls the feed shafts to move to desired positions at desired speeds based on speed feedback from the motor 30 and position feedback from a position detector (not shown). Yes.
  • the present invention also includes an apparatus configured to acquire and correct a command position from the reading / interpretation unit 22 and to input the corrected command position to the interpolation unit so that the motion is moved to a desired position.
  • the error map sets each grid point 3 1 at the desired position in each of the linear feed axes X, Y, and ⁇ in the Cartesian coordinate system.
  • the two-dimensional array table 3 3 corresponding to the rotation angle of the rotary feed shaft as shown in Fig. 4 is associated.
  • the error map is made up of a five-dimensional array of X, Y, Z, A, and C.
  • the error map is composed of a plurality of error data 34 measured by positioning each feed axis at a desired measurement point.
  • the error data 3 4 includes a position error 3 4 a and an attitude error 3 4 b.
  • the position error 3 4 a is an error in the relative position between the spindle and the table, and is a three-dimensional coordinate value (X, y) generated when the feed shaft is positioned at a predetermined position or rotation angle.
  • z) is the position error represented by. In other words, the difference between the theoretical position commanded by the position command and the actual position is the position error.
  • the attitude error 3 4 b is an error in the relative attitude between the spindle and the table, and is an error expressed by an inclination angle generated when the feed axis is positioned at a predetermined position or rotation angle.
  • the difference between the theoretical tilt commanded by the position command and the actual tilt is the posture error.
  • the measurement interval of the error data 34 is set so that the difference between the position error 34a or the posture error 34b between adjacent measurement points becomes a predetermined value. In other words, increase the measurement interval when the difference in error between adjacent measurement points is small, and decrease the measurement interval when the error difference is large. By increasing the measurement interval of the part with a small error difference, the data amount can be reduced and the burden on the memory can be reduced. By narrowing the measurement interval of the part with a large error difference, the correction accuracy can be maintained. .
  • a measurement method for measuring the position error 3 4 a and the attitude error 3 4 b of a machine tool having the rotary feed axes A and C on the spindle side will be described. As shown in FIG. 5 and FIG.
  • the measuring device 50 is attached to the main shaft of a spindle-rotating machine tool via a support shaft 40, and the spherical center P l,? Mounted on a reference sphere 5 2 with a distance 1 and L 2 known to 2 and a pallet 54 fixed to the table, with non-contact sensors 55 in the X, Y and Z directions Sensor bracket 5 3.
  • the non-contact sensor 55 can measure the distance to the reference sphere 52 in each direction without contact.
  • the sensor of the present invention includes not only a non-contact type sensor but also a contact type sensor.
  • the measurement range of each rotary feed axis A and C is equal pitch or unequal pitch.
  • Divide by H and measure by moving the linear feed axis simultaneously so that the center position of the reference sphere 52 is maintained at each division point (measurement point).
  • equal pitch means that measurement points are determined for each predetermined angle, and the angular interval between adjacent measurement points is equal.
  • unequal pitch is a point that exceeds the specified error value. The error interval is only at, and the angular interval between adjacent measurement points is unequal.
  • the center position P 1 of the reference sphere 52 is measured by the measuring device 50 having the non-contact sensor 55 in each direction X, Y, and ⁇ which are orthogonal to each other.
  • the present invention includes a case where a support shaft whose length can be adjusted is used.
  • the control point is set to the intersection of the rotation center of the first rotation feed shaft C and the rotation center of the second rotation feed shaft A.
  • the relative attitude is the relative inclination between the spindle and the table.
  • the sensor bracket 5 3 of the measuring device 50 is mounted so as to be rotatable around an axis parallel to the Z axis, so if you want to measure all 360 degrees, make the sensor bracket 5 3 parallel to the Z axis. Rotate 90 degrees around the axis and measure four times.
  • the measurement area is divided into multiple areas. At that time, measure the operating range of the linear feed axes X, Y and ⁇ in the first measurement area 70 0 a as a reference using a laser measuring instrument, indicator, etc. Adjust so that it has.
  • the present invention considers the measurement result without adjusting the accuracy of the operation range of the linear feed axes X, ⁇ , ⁇ in the first measurement area 70 a, and corrects the error. Includes the case of calculation. This is because the measurement results in the first measurement region 70 a are limited to errors that occur when the rotary feed axes A and C are rotated.
  • the measurement points in the measurement areas 70 a and 70 b are determined so that one or more measurement points 71 having the same linear feed axis coordinate values as the measurement points in the adjacent measurement area exist. This is performed so that the mounting error of the measuring device 5 0 does not affect the measurement result between the first measurement region 70 a and the other measurement region 70 b.
  • the installation error of the measuring device 50 can be obtained.
  • the same measurement results as when measuring all measurement areas in one step can be obtained.
  • the attitude error is obtained as follows.
  • the relative inclination between the spindle and the table is calculated from the command value of the rotation angle of the rotary feed axes A and C.
  • the angle between the axis of rotation of the spindle and the line perpendicular to the workpiece mounting surface of the icale is taken as the relative orientation of the spindle and the table.
  • the relative inclination of the table is obtained as follows.
  • the relative inclination between the spindle and the table is calculated from the command value of the rotation angle of the rotary feed axes A and C.
  • the angle between the axis of rotation of the spindle and the line perpendicular to the workpiece mounting surface of the icale is taken as the relative orientation of the spindle and the table.
  • the posture error is expressed by the angle difference i with respect to the Z axis seen from the X axis direction, the angle difference j with respect to the Z axis seen from the Y axis direction, and the angle difference k with respect to the Y axis seen from the Z axis direction.
  • the present invention includes the case where the posture error is represented by two angles I and J as shown in FIG. Next, the position error is obtained as follows.
  • the control point Is set at the intersection of the rotation center of the first rotary feed shaft C and the rotation center of the second rotary feed shaft A.
  • the position of the theoretical control point is the same regardless of the rotation angle of the rotary feed shaft. Will not change. Therefore, find the position of the commanded control point from the command values of the linear feed axes X, Y, and Z.
  • the position of the control point is the relative position between the reference point of the table and the control point of the spindle.
  • the position of the point at the distance L 2 in the direction from P 2 to P 1 is obtained, and this is determined as the actual control point position.
  • the vector between the commanded control point position and the actual control point position is obtained, and this is used as the position error.
  • the vector of the position error is divided into X, Y and ⁇ axis components and expressed in the form of (X, y, ⁇ ).
  • the present invention includes the case where the position error vector is expressed in other forms.
  • FIG. 11 shows an embodiment in which a reference sphere 52 is mounted on the pallet 54 and a displacement detection probe 58 is mounted on the spindle in a spindle rotating machine.
  • the displacement detection probe 58 is configured to be displaced in the normal direction of the measurement point of the object to be measured, and can detect the amount of the displacement.
  • FIG. 12 shows an embodiment in which the present invention is applied to a table rotating machine having rotary feed shafts B and C on the table side. Also in the embodiment shown in FIGS. 11 and 12, the error of the feed axis can be measured by the same principle as the embodiment shown in FIG.
  • FIG. 13 shows a flowchart of this measurement method.
  • the position error is measured by processing the test piece or workpiece on the machine without using a special measurement device, and measuring the processed test piece or workpiece with the probe probe attached to the spindle. as well as This is a method for obtaining an attitude error.
  • a cubic test piece is used.
  • each plane of the test piece 60 (frame-like reference machining surface 6 1) with the X, Y and ⁇ axis directions as normal directions is operated without operating the rotary feed shaft. Process.
  • the reason why the reference machining surface 61 is in the shape of a frame is to accurately determine the posture error even when a large number of measurement points are used, and it is more accurate to measure the tilt using the entire length of the test piece 60. This is because the posture error is required.
  • a pole end mill is used as the cutting tool 63.
  • the reference machining surface 61 is a reference for measuring the posture error at a predetermined rotation angle of the rotary feed shaft.
  • the rotary feed shaft is indexed to each measurement point, and three mutually orthogonal surfaces of the test piece 60 are machined only by the operation of the linear feed shaft.
  • a predetermined place is assigned according to the index angle of the rotary feed shaft.
  • the rotary feed axis is indexed to each measurement point, and ⁇ 1 0 to ⁇ 14 on the reference machining surface 6 1 are measured with the Yuchi probe 6 4, and ⁇ 1 0 and P 1 1 Find the actual slope of the line passing through, the actual slope of the line passing through P 1 0 and P 1 2, and the actual slope of the line passing through ⁇ 1 3 and ⁇ 1 4.
  • the attitude error is the difference between the three actual inclinations obtained and the theoretical three inclinations calculated from the position command of the rotary feed axis during measurement.
  • the rotary feed shaft is indexed to ⁇ axis 0 degrees and C axis 0 degrees, which are the standard rotation angles, and the machined surfaces 5 15 to ⁇ 20 are machined at each rotation angle. Machining surface with the rotary feed axis indexed to ⁇ axis 0 degree and C axis 0 degree and indexed to positions ⁇ 1 8 to ⁇ 2 0 and other rotation angles. Then, the difference between the processed surfaces P 15 to P 17 is calculated.
  • a difference in position and / or inclination between a machined surface machined at one rotation angle and a machined surface machined at another rotation angle is called a displacement of the machined surface.
  • the present invention includes a case where a test piece or a workpiece is machined with a machine tool having a rotary feed shaft on the main shaft side, and a position error and a posture error are obtained from the measurement result of the machined surface.
  • the error obtained by the above method is associated with the positions of the linear feed axes X, Y, and ⁇ ⁇ and the rotation angles of the rotary feed axes ⁇ and C, and is stored as an error map.
  • the command position of the machining program 21 is decoded by the reading / interpretation unit 22, and the command pulse of each feed axis X, ⁇ , ⁇ , ⁇ , is obtained for each predetermined interpolation period by the interpolation unit 23.
  • the position command recognizing means 24 recognizes the position commands of the feed axes X, Y, Z, A, and C every predetermined interpolation period from this command pulse.
  • the error data 3 4 is acquired, and the correction data based on the acquired error data 3 4 Ask for.
  • the error data is interpolated from the error data of the nearby measurement point by a well-known interpolation method such as the internal interpolation method. Determine the correction data based on the error data after interpolation. The calculated correction data is added to the command pulse position command to obtain a new position command for each interpolation cycle. In this way, the position command is corrected and each feed axis can be positioned with high accuracy.
  • the correction method described here is a correction method for avoiding this singularity problem.
  • the B axis is a rotary feed shaft around an axis parallel to the Y axis.
  • FIG. 19 is a flowchart of this correction method.
  • the following formula is used to calculate the position correction vector based on the tool attitude and attitude error, the tool position and position error, and the tool protrusion length.
  • dX2 Lx (tan (J + dJ) / ((tan (I + dI)) 2 + (tan (J + dJ)) 2 + l) 1/2
  • step S 1 the command position and command attitude commanded from the position command output from the interpolation unit 23 are recognized.
  • step S 1 the error data corresponding to the command position is obtained from the error map.
  • step S2 a position correction vector for correcting the position error is calculated from the position error 3 4a of the error data 34.
  • step S5 the posture correction value obtained in step S5 is added to the command posture read in step S3 to obtain a corrected posture.
  • step S7 the corrected command point is obtained from the corrected posture and the tool protrusion length obtained in step S6.
  • step S4 the command point before correction is obtained from the commanded posture read in step S3 and the tool protrusion length.
  • step S8 a command vector for correcting the position of the command point for correcting the posture error by subtracting the command point before correction obtained in step S4 from the command point after correction obtained in step S7 is obtained. calculate. This is called an attitude correction vector.
  • the attitude correction vector is the tool tip when the transfer axis is rotated to correct the attitude error using the control point as a fulcrum. This is a vector that represents the magnitude and direction of movement.
  • the posture correction vector obtained in step S8 and the position correction vector obtained in step S2 are added.
  • the command point is the position of the tip of the tool (tool tip position).
  • the tool tip position is the actual position of the tip of the tool, the position of the machining point at the tip of the tool, the tip of the pole end mill. This is the center of the hemisphere.
  • the tool tip position error is corrected only by the movement of the linear feed axis. Therefore, when correcting the posture error 3 4 b, the rotary feed axis does not rotate, avoiding the singularity problem. Can do.
  • an error map can be created by measuring a position error and an attitude error of a working machine having a plurality of rotary feed axes.
  • the created error map stores the position error and posture error as separate error data, the tool tip position is targeted by correcting the position command based on this error data. It can be positioned with high accuracy and can be processed with high accuracy.
  • the numerical control device 20 calculates a position error and a posture error of the measurement point based on the measurement data measured by the measurement device 50 and the coordinates of the measurement point, Error data storage means 2 5 for storing the position error and the attitude error calculated by the calculation unit in correspondence with the position of the linear feed axis and the rotation angle of the rotary feed axis, and a numerical control device 2 It is also possible for a personal computer or other device in place of 0 to include a calculation unit and error data storage means 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

直線送り軸及び回転送り軸を有して主軸とテーブルとが相対移動可能に構成された数値制御工作機械において、直線送り軸及び回転送り軸の可動範囲内に設定された複数の測定点で、直線送り軸及び回転送り軸の動作により生じる位置誤差と姿勢誤差を測定し、測定された位置誤差及び姿勢誤差を直線送り軸の位置及び回転送り軸の回転角度に対応したエラーマップとして記憶する。

Description

明 細 書 エラーマツプ作成方法及び装置並びにエラーマツプ作成機能を有し た数値制御工作機械 技術分野
本発明は、 主軸とテーブルとが相対的に移動可能な構成であると 共に、 直線送り軸と回転送り軸とを有する数値制御工作機械の誤差 の測定及び補正に関する。 背景技術
一般に、 直線送り軸と回転送り軸を有する工作機械においては、 送り軸を移動指令に従って動かしたときに誤差が生じるため、 工具 を所望の位置に位置決めすることは難しい。 このため、 精度の高い 加工を行う場合には、 機械の誤差に応じて補正が行われている。 補 正を行うためには、 補正の前段階として機械の誤差が正確に測定さ れている必要がある。 誤差の測定及び補正を行う従来の技術として 、 以下で開示されている技術が知られている。
特公平 6 — 8 8 1 9 2号公報では、 互いに直交する 2つの回転送 り軸 (A、 B ) を有する工作機械の 2つの回転送り軸の軸ずれ (軸 中心の位置ずれ) を予め測定しておき、 この軸ずれを加味して 2つ の回転送り軸の座標を求めることが開示されている。
特開 2 0 0 4 - 2 7 2 8 8 7号公報では、 互いに直交する 3軸の 直線移動軸 (X、 Y、 Ζ ) と、 互いに直交する 2つの回転送り軸 ( A、 C ) を有する工作機械において、 実際に機械が移動すべき機械 位置を、 回転軸中心及び主軸旋回中心のずれ量に基づいて求め、 駆 動制御手段により、 直線移動軸及び回転送り軸を求めた機械位置へ 移動することにより、 工具先端の位置を補正する技術が開示されて いる。
特開平 9 一 2 3 7 1 1 2号公報では、 パラレルリンク機構の工作 機械の工具ュニッ トの誤差を誤差マップに基づいて補正する方法が 開示されている。 誤差マップは、 工具ユニッ ト先端の作業空間の格 子点に対応して、 工具ュニッ ト先端の位置及び姿勢の指令値と検出 値との差から演算により算出された誤差デ一夕を有している。
また、 国際公開第 2 0 0 4 / 0 3 4 1 6 4号パンフレツ トでは、 数値制御工作機械のへッ ド及び Z又はテーブルを測定し、 補正し、 試験するために、 数値制御システムで自動化され、 統合されたシス テム及びプ Πセスを開示する 。 このシステムは、 多数の距離センサ を備えた少なく とち一つのサポートベースと、 一端にヘッ ドに連結 する連結手段を有し 、 他端に球を有する細長いシリ ンダからなるゲ ージツール型の少な < とも一つのデバイスと、 を備えている。 球は 距離センサに隣接して配置されている。 距離センサは、 球から離れ ている距離を測定するために 、 いつでも如何なる位置にも動く こと ができるようになつている これによつて、 デカルト座標空間内の 位置が決定される
特公平 6 ― 8 8 1 9 2号公報及び特開 2 0 0 4— 2 7 2 8 8 7号 公報で開示されている補正方法は、 回転軸の軸ずれを補正するもの であり、 軸自体のうねりや直線送り軸の位置によって変化する誤差 等は補正できない問題があった。 特開平 9 一 2 3 7 1 1 2号公報で 開示されている誤差マップは、 パラレルリ ンク機構によって駆動さ れる工具ユニッ ト先端の誤差をテーブルデータとしたものであり、 直線送り軸と回転送り軸を有する工作機械に適用できない問題があ つた。 国際公開第 2 0 0 4 / 0 3 4 1 6 4号パンフレッ トで開示さ れている測定方法では、 基準球の中心位置のずれを測定しているだ けなので、 工具長や工具突き出し長さが変化したとき、 主軸とテ一 ブルの相対姿勢の誤差によって発生する工具先端の位置のずれを補 正できない問題があつた。 発明の開示
本発明は、 前述の従来技術の問題点を解決することを課題として おり、 本発明の目的は、 直線送り軸及び回転送り軸を有する工作機 械の誤差を精度良く補正するためのエラ一マップ作成方法及び装置 並びにエラーマツプ作成機能を有した数値制御工作機械を提供する ことである。
上記目的を達成するために、 本発明によれば、 直線送り軸及び回 転送り軸を有して主軸とテーブルとが相対移動可能に構成された数 値制御工作機械のエラーマツプ作成方法において、 前記直線送り軸 及び前記回転送り軸の可動範囲に複数の測定点を定める工程と、 前 記定めた測定点における主軸とテーブルとの相対位置及び相対姿勢 を測定する工程と、 前記求めた相対位置及び Z又は相対姿勢と送り 軸の位置決めの指令データとから各測定点の位置誤差及び/又は姿 勢誤差を求める工程と、 前記位置誤差及び前記姿勢誤差を前記直線 送り軸の位置及び前記回転送り軸の回転角度に対応して記憶するェ 程と、 を含むエラ一マップ作成方法が提供される。
また、 本発明によれば、 前記複数の測定点を定める工程は、 前記 直線送り軸の可動範囲内に複数の測定領域を定め、 各測定領域に測 定点を定め、 それぞれの測定領域の少なく とも一つの測定点は隣の 測定領域の測定点と前記直線送り軸の座標位置が同一になるように 測定点を定めるエラ一マップ作成方法が提供される。
また、 本発明によれば、 前記複数の測定点を定める工程は、 隣り 合う測定点の間隔が一定になるように、 又は隣り合う測定点の位置 誤差若しくは姿勢誤差の差が一定になるように測定点を定めるエラ 一マツプ作成方法が提供される。
また、 本発明によれば、 前記相対位置及び相対姿勢を測定するェ 程は、 前記主軸及び前記テーブルの一方に設けられた外形寸法が既 知の基準球と他方に設けられた変位センサとを有した測定装置を用 い、 前記回転送り軸を動作させたときに前記基準球の中心と前記変 位センサとの相対位置が理論的に変化しないように前記直線送り軸 を制御しながら、 前記回転送り軸を複数の測定点に位置決めし、 前 記変位センサで各測定点における前記基準球の位置の変位を測定し 、 測定した前記変位と測定時の座標値とから前記相対位置及び前記 相対姿勢を求めるエラーマップ作成方法が提供される。
また、 本発明によれば、 前記相対位置及び相対姿勢を測定するェ 程は、 前記回転送り軸を複数の回転角度に位置決めして前記テープ ルに取り付けられたテス トピース又はワークを加工し、 前記回転送 り軸を前記複数の回転角度のうち 1つの回転角度に位置決めし、 前 記 1つの回転角度で加工したときの加工面と他の回転角度で加工し たときの加工面との変位を測定し、 測定した前記変位と測定時の座 標値とから前記相対位置及び前記相対姿勢を求めるエラ一マツプ作 成方法が提供される。
また、 本発明によれば、 前記相対位置及び相対姿勢を測定するェ 程は、 前記回転送り軸を複数の回転角度に位置決めし、 それぞれの 回転角度で前記テ一ブルに取り付けられたテス トピース又はワーク の 3面を加工し、 前記回転送り軸を前記複数の回転角度のうちの 1 つの回転角度に位置決めし、 前記 1つの回転角度で加工したときの 3つの加工面と他の回転角度で加工したときの 3つの加工面との位 置の差及び傾きの差を前記主軸に取り付けられた夕ツチプローブで 測定し、 測定した前記位置の差及び傾きの差と測定時の機械座標値 とから前記相対位置及び前記相対姿勢を求めるエラーマツプ作成方 法が提供される。
また、 本発明によれば、 直線送り軸及び回転送り軸を有して主軸 とテーブルとが相対移動可能に構成された数値制御工作機械のエラ 一マップ作成方法において、 前記直線送り軸及び前記回転送り軸の 可動範囲に複数の測定点を定める工程と、 前記定めた測定点で前記 回転送り軸を複数の回転角度に位置決めし、 該位置決めしたそれぞ れの回転角度で前記テーブルに取り付けられた直方体のテス トピー ス又はワークの直交する 3面を加工する工程と、 前記回転送り軸を 前記複数の回転角度のうち 1つの回転角度に位置決めして加工した ときの加工面の傾きを他の回転角度に位置決めして測定し、 各回転 角度における姿勢誤差を求める工程と、 加工したテス トピース又は ワークの加工面を測定し、 それぞれの回転角度毎に該回転角度で加 ェした加工面を含む 3平面の交点の位置を求める工程と、 前記回転 送り軸を前記 1つの回転角度に位置決めして加工したときの加工面 を含む 3平面の交点と他の回転角度に位置決めして加工したときの 加工面を含む 3平面の交点との位置の差及び前記求めた姿勢誤差か ら各測定点における位置誤差を求める工程と、 前記位置誤差及び前 記姿勢誤差を前記直線送り軸の位置及び前記回転送り軸の回転角度 に対応して記憶する工程と、 を含むエラーマップ作成方法が提供さ れる。
また、 本発明によれば、 直線送り軸及び回転送り軸を有して主軸 とテーブルとが相対移動可能に構成された数値制御工作機械のエラ —マツプ作成方法において、 前記直線送り軸及び前記回転送り軸の 可動範囲に複数の測定点を定める工程と、 前記定めた測定点で前記 回転送り軸を複数の回転角度に位置決めし、 該位置決めしたそれぞ れの回転角度で前記テーブルに取り付けられた直方体のテス トピー ス又はワークの直交する 3面を加工する工程と、 加工したテス トピ ース又はワークの加工面を測定し、 それぞれの回転角度毎に該回転 角度で加工した加工面の傾き及び該加工面を含む 3平面の交点の位 置を求める工程と、 前記回転送り軸を前記複数の回転角度のうち 1 つの回転角度に位置決めして加工したときの加工面の傾きと他の回 転角度に位置決めして加工したときの加工面の傾きとの差から各測 定点における姿勢誤差を求める工程と、 前記回転送り軸を前記 1つ の回転角度に位置決めして加工したときの加工面を含む 3平面の交 点と他の回転角度に位置決めして加工したときの加工面を含む 3平 面の交点との位置の差及び前記求めた姿勢誤差から各測定点におけ る位置誤差を求める工程と、 前記位置誤差及び前記姿勢誤差を前記 直線送り軸の位置及び前記回転送り軸の回転角度に対応して記憶す る工程と、 を含むエラーマップ作成方法が提供される。
また、 本発明によれば、 直線送り軸及び回転送り軸を有して主軸 とテーブルとが相対移動可能に構成された数値制御工作機械のエラ 一マップ作成装置において、 前記主軸及び前記テ一ブルの一方に設 けられた基準球と他方に設けられたセンサとを有し、 所望の測定点 で前記センサにより前記基準球の位置を測定する測定装置と、 前記 測定装置で測定した測定データと前記測定点の座標値に基づいて前 記主軸と前記テーブルの位置誤差及び姿勢誤差を演算する演算部と 、 前記演算部で演算した位置誤差及び姿勢誤差を前記測定点におけ る前記直線送り軸の位置及び前記回転送り軸の回転角度に対応させ て記憶する記憶部と、 を具備するエラーマツプ作成装置が提供され る。
また、 本発明によれば、 直線送り軸及び回転送り軸を有して主軸 とテーブルとが相対移動可能に構成された数値制御工作機械におい て、 前記主軸及び前記テーブルの一方に設けられた基準球と他方に 設けられたセンサとを有し、 所望の測定点で前記センサにより前記 基準球の位置を測定する測定装置と、 前記測定装置で測定した測定 データと前記測定点の座標値に基づいて前記主軸と前記テーブルの 位置誤差及び姿勢誤差を演算する演算部と、 前記演算部で演算した 位置誤差及び姿勢誤差を前記測定点における前記直線送り軸の位置 及び前記回転送り軸の回転角度に対応させて記憶する記憶部と、 を 具備するエラーマツプ作成機能を有した数値制御工作機械が提供さ れる。
また、 本発明によれば、 直線送り軸及び回転送り軸を有して主軸 とテーブルとが相対移動可能に構成された数値制御工作機械におい て、 前記テーブルに取り付けられたテス トピース又はワークと、 前 記主軸に設けられたセンサを有し、 所望の測定点で前記センサによ り前記テス トピース又はワークの加工面を測定する測定装置と、 前 記測定装置で測定した測定データと前記測定点の座標値に基づいて 前記主軸と前記テーブルの位置誤差及び姿勢誤差を演算する演算部 と、 前記演算部で演算した位置誤差及び姿勢誤差を前記測定点にお ける前記直線送り軸の位置及び前記回転送り軸の回転角度に対応さ せて記憶する記憶部と、 を具備するエラ一マップ作成機能を有した 数値制御工作機械が提供される。
また、 本発明によれば、 前記数値制御工作機械は、 前記記憶部に 記憶された位置誤差及び姿勢誤差に基づいて、 前記直線送り軸又は 前記回転送り軸の指令位置又は位置指令を補正する補正部を更に具 備するエラーマツプ作成機能を有した数値制御工作機械が提供され る。
本発明のエラーマップ作成方法及び装置並びにエラーマツプ作成 機能を有した数値制御工作機械によれば、 直線送り軸及び回転送り 軸を有した数値制御工作機械の位置誤差及び姿勢誤差を測定して、 エラーマップを作成することができる。 本発明で作成されたエラー マップは、 送り軸が移動することによって変化する位置誤差と姿勢 誤差の誤差データが別々に記憶されており、 この誤差データに基づ いて位置指令を補正する。 したがって、 本発明によれば、 工具長や 工具突き出し長さが変化しても工具先端又は工具の加工点を目標位 置に高精度に位置決めすることができる。 また、 隣り合う測定領域 で直線送り軸の座標位置が同一の測定点を設定した場合、 測定装置 の取り付け誤差による影響を排除することができる。 また、 隣り合 う測定点の間隔を誤差の差が一定になるように設定した場合、 所望 の捕正精度を維持したまま、 エラーマップのデータ量を削減ことが できる。 また、 加工したテス トピース又はワークを測定してエラ一 マップを作成した場合、 主軸の回転による主軸や工具の振れ、 切削 負荷による機械や工具のたわみ等により発生する誤差も含めて補正 することができる。
本発明における指令位置とは加工プログラムで指令された送り軸 の移動先の位置のことであり、 位置指令とは指令位置や指令速度等 に基づいて補間部からサーポ部へ送出される指令パルスのうち、 送 り軸の位置を制御するための指令のことである。 図面の簡単な説明
本発明の上記並びに他の目的、 特徴及び利点は、 添付図面に関連 した以下の好適な実施の形態の説明により一層明らかになろう。 図 1は、 本発明に係る数値制御工作機械の側面図である。
図 2は、 本発明に係る数値制御工作機械の数値制御装置の一つの 実施の形態を示すブロック図である。
図 3は、 3次元座標空間の格子点を示す説明図である。
図 4は、 図 3の各格子点に関係付けられる 2次元のデータシート (マップデ一夕) を示す説明図である。
図 5は、 工具の先端に装着された基準球を、 パレッ トに装着され た測定装置で測定している状態を示す説明図である。
図 6は、 長さの異なる支軸を有した基準球の測定範囲を Y軸方向 からみた図である。
図 7は、 複数の測定領域の決定方法を示す説明図である。
図 8は、 位置誤差及び姿勢誤差を測定する第 1 の測定方法を説明 するフローチヤ一トである。
図 9は、 図 8のフローチャートの M 3の詳細フローチャートであ る。
図 1 0は、 姿勢誤差を 2変数で表す説明図である。
図 1 1は、 パレッ ト側に基準球が装着され、 主軸側に測定装置が 装着された主軸回転型の機械の一例を示す図である。
図 1 2は、 テーブルに測定装置が装着され、 主軸に基準球が装着 されたテーブル回転型の機械の一例を示す図である。
図 1 3は、 位置誤差及び姿勢誤差を測定する第 2の測定方法を説 明するフローチャートである。
図 1 4は、 各平面を直線送り軸の動作のみで加工している状態を 示す説明図である。
図 1 5は、 割り出し角度毎の加工する場所を示す直方体の 5面の 展開図である。
図 1 6は、 回転送り軸 B , Cの割り出し角度で、 ワークに格子状 の面を加工している状態を示す説明図である。
図 1 7は、 所定の角度に割り出された各測定面を測定している状 態を示す説明図である。
図 1 8は、 3平面の交点を求める方法を説明する説明図である。 図 1 9は、 エラーマップを用いた補正方法の一例を示すフローチ ャ一卜である。 発明を実施するための最良の形態
以下、 添付図面を参照して、 本発明の好ましい実施の形態を説明 する。 本発明に係る数値制御工作機械は、 機械を加工プログラムに したがって動作させる数値制御装置を備えている。 図 1 には、 主軸 側に 2つの回転送り軸を有した 5軸の横形マシニングセンタの構成 が示されている。 図 1 を参照すると、 マシニングセンタ 1は、 フロ ァ上に設置されているべッ ド 2 と、 ベッ ド 2上で Z軸方向に直動可 能に立設されたコラム 3 と、 コラム 3に鉛直方向である Y軸方向に 直動可能な主軸台 5 とを備えている。 主軸台 5には、 ブラケッ ト 5 aが Z軸に平行な軸周りの C軸方向に回転可能に支持されている。 ブラケッ ト 5 aには、 主軸頭 4が X軸に平行な軸周りの A軸方向に 回転可能に支持されている。 主軸頭 4には、 工具を把持する主軸が 回転可能に支持されている。
また、 マシニングセン夕 1は、 ベッ ド 2上で主軸頭 4に対向する 位置に立設され、 紙面に垂直な方向である X軸方向に直動可能なテ 一ブル 6 を備えている。 テーブル 6にはィケ一ル 8 を介してワーク 7が保持されている。
図 2には、 工作機械の送り軸の位置を制御する数値制御装置 2 0 の構成がブロック図で示されている。
図 2に示す数値制御装置 2 0は、 工作機械の位置誤差及び姿勢誤 差を補正する機能を備えたものであり、 加工プログラム 2 1 を読み 取り、 解釈して各送り軸の指令速度及び指令位置を演算する読取解 釈部 2 2 と、 各送り軸における送りを直線補間したり円弧補間した りするために指令位置や指令速度等に基づいて指令パルスを演算す る補間部 2 3 と、 指令パルスを取得して各送り軸への位置指令を認 識する位置指令認識手段 2 4と、 測定装置 5 0で測定された測定デ 一夕と測定点の座標とに基づいて測定点の位置誤差及び姿勢誤差を 演算する演算部と、 この演算部で演算した位置誤差及び姿勢誤差を 直線送り軸の位置及び回転送り軸の回転角度に対応させて記憶する 誤差データ記憶手段 2 5 と、 位置指令と誤差デ一夕記憶手段 2 5に 記憶された誤差データとから位置指令を補正するための補正データ を演算する補正データ演算手段 2 6 と、 補正データに基づいて位置 指令を補正する補正パルスを求める補正パルス演算手段 2 7 と、 指 令パルスと補正パルスとを加えたパルスをサ一ポ部 2 9 に出力する 加算手段 2 8 とを備えている。
各送り軸のモータ 3 0は、 サーボ部 2 9によって増幅された駆動 電流によって駆動され、 各送り軸を移動させるようになつている。 サ一ポ部 2 9は、 モータ 3 0からの速度フィードバックと図示しな い位置検出装置からの位置フィードバックとに基づいて各送り軸が 所望の速度で所望の位置に移動するように制御している。
本発明は、 読取解釈部 2 2から指令位置を取得して補正し、 補正 された指令位置を補間部に入力することでモー夕が所望の位置に移 動するように構成した装置も含む。
次に、 エラーマップ作成方法について説明する。 エラーマップは 、 図 3に示すように直交座標系の直線送り軸 X、 Y、 Ζの各軸方向 の所望の位置にある各格子点 3 1 を設定し、 各格子点 3 1のそれぞ れに、 図 4に示すような回転送り軸の回転角度に対応した 2次元配 列デ一夕 3 3が関連付けされている。 すなわち、 エラーマップは、 X、 Y、 Z、 A、 Cの 5次元配列のデ一夕で構成されている。
エラーマップは、 各送り軸を所望の測定点に位置決めして測定し た複数の誤差データ 3 4から構成されている。 また、 誤差データ 3 4は、 位置誤差 3 4 aと姿勢誤差 3 4 bとから構成されている。 ここで、 位置誤差 3 4 aとは、 主軸とテ一ブルとの相対位置の誤 差であって、 送り軸を所定の位置又は回転角度に位置決めしたとき に生じる 3次元座標値 ( X , y , z ) で表される位置の誤差である 。 すなわ.ち、 位置指令で指令された理論的な位置と、 実際の位置と の差が位置誤差である。
姿勢誤差 3 4 bとは、 主軸とテーブルとの相対姿勢の誤差であつ て、 送り軸を所定の位置又は回転角度に位置決めしたときに生じる 傾き角度で表される誤差である。 すなわち、 位置指令で指令された 理論的な傾きと、 実際の傾きとの差が姿勢誤差である。
ここで、 誤差データ 3 4の測定間隔は、 隣り合う測定点における 位置誤差 3 4 a又は姿勢誤差 3 4 bの差が所定値になるように設定 されている。 言い換えると、 隣り合う測定点における誤差の差が少 ない場合は測定間隔を広げ、 誤差の差が大きい場合は測定間隔を狭 める。 誤差の差の少ない部分の測定間隔を広げることでデータ量を 削減してメモリの負担を減らすことができ、 誤差の差が大きい部分 の測定間隔を狭めることで補正の精度を保持することができる。 次に、 主軸側に回転送り軸 A, Cを有する工作機械の位置誤差 3 4 a及び姿勢誤差 3 4 bを測定する測定方法の一例について説明す る。 図 5、 図 6に示すように、 測定装置 5 0は、 主軸回転型の工作 機械の主軸に支軸 4 0 を介して装着され、 外形寸法及び制御点から 球中心 P l 、 ? 2までの距離 1 、 L 2が既知の基準球 5 2 と、 テ —ブルに固定されているパレッ ト 5 4に装着され、 X方向、 Y方向 、 Z方向に非接触センサ 5 5を有したセンサブラケッ ト 5 3 とを備 えている。 非接触センサ 5 5は各方向で基準球 5 2までの距離を非 接蝕で測定することができる。 なお、 本発明のセンサは非接触式の センサだけではなく接触式のセンサも含む。
測定は、 各回転送り軸 A、 Cの測定範囲を等ピッチ又は不等ピッ チで分割し、 その各分割点 (測定点) で基準球 5 2の中心位置を維 持するように直線送り軸を同時に動作させ、 測定する。 ここで、 等 ピッチとは、 所定の角度毎に測定点を定め、 隣り合う測定点の角度 間隔を等間隔にすることであり、 不等ピッチとは、 例えば、 誤差の 規定値を超えたポイントでのみ誤差デ一夕を有し、 隣り合う測定点 の角度間隔が不等間隔になることである。
図 9に示すように、 先ず、 基準球 5 2の中心位置 P 1 を、 互いに 直交する各方向 X、 Y、 Ζで、 非接触センサ 5 5 を有する測定装置 5 0により測定する。 実際の相対姿勢と実際の制御点を求めるため に、 図 6に示すように支軸 4 0 の長さが異なる基準球を装着して、 再度基準球 5 2の中心位置 Ρ 2 を測定する。 長さの異なる支軸 4 1 a, 4 1 bを装着してそれぞれ測定することで主軸とテーブルの相 対姿勢を求めることができる。
本発明は長さを調節することができる支軸を用いる場合も含む。 本実施の形態では、 制御点を第 1の回転送り軸 Cの回転中心と第 2 の回転送り軸 Aの回転中心との交点に設定している。 また、 相対姿 勢とは、 主軸とテーブルの相対的な傾きのことである。
測定装置 5 0のセンサブラケッ ト 5 3は、 Z軸に平行な軸線周り に回転可能に取り付けられているので、 3 6 0度全てを測定したい 場合、 センサブラケッ ト 5 3を Z軸に平行な軸線周りに 9 0度ずつ 回転させて 4回測定を行えばよい。
図 7、 図 8に示すように、 測定すべき領域が広い場合は測定領域 を複数に分けて測定する。 その際、 基準となる第 1 の測定領域 7 0 aの直線送り軸 X、 Y、 Ζの動作範囲をレーザ測定器、 インジケ一 夕などを用いて測定し、 要求精度に対して十分な精度を有するよう に調整しておく。 本発明は、 第 1の測定領域 7 0 aの直線送り軸 X 、 Υ、 Ζの動作範囲の精度を調整せずに測定結果を考慮して誤差を 演算する場合を含む。 これは、 第 1の測定領域 7 0 aにおける測定 結果を回転送り軸 A、 Cを回転させたときに生じる誤差のみにする ためである。
また、 測定領域 7 0 a、 7 0 bの測定点は、 隣の測定領域の測定 点と同一の直線送り軸座標値を有する測定点 7 1が 1つ以上存在す るように定める。 これは、 第 1の測定領域 7 0 aと他の測定領域 7 0 b との間で測定装置 5 0 の取り付け誤差が測定結果に影響を与え ないようにするために行われる。
同一の直線送り軸座標値を有する測定点での測定結果の差から回 転送り軸の回転角度の違いによる誤差を減算すれば測定装置 5 0の 取り付け誤差を求めることができ、 この取り付け誤差を各測定領域 の測定結果から減算することによって、 全ての測定領域を 1回の段 取りで測定したときと同様の測定結果が得られる。
次に、 位置誤差と姿勢誤差の演算方法について説明する。 先ず、 姿勢誤差を以下のように求める。 回転送り軸 A、 Cの回転角度の指 令値から指令された主軸とテーブルの相対的な傾きを求める。 ここ では主軸の回転軸線とィケールのワーク取り付け面に垂直な線との なす角度を主軸とテーブルの相対姿勢としている。 測定した 2箇所 の基準球 5 2の中心位置 P 1 、 P 2から P 1及び P 2を通る線とィ ケールのワーク取り付け面に垂直な線とのなす角度を求め、 これを 実際の主軸とテーブルの相対的な傾きとする。 指令された主軸とテ —ブルの相対的な傾きと実際の主軸とテーブルの相対的な傾きとの 差を求め、 これを姿勢誤差とする。 姿勢誤差は X軸方向から見た Z 軸に対する角度の差 i 、 Y軸方向から見た Z軸に対する角度の差 j 、 Z軸方向から見た Y軸に対する角度の差 kで表す。 本発明は、 図 1 0に示すように姿勢誤差を 2つの角度 I 、 J で表す場合も含む。 次に、 位置誤差を以下のように求める。 本実施の形態では制御点 を第 1の回転送り軸 Cの回転中心と第 2の回転送り軸 Aの回転中心 との交点に設定しているので、 回転送り軸がどの回転角度であって も理論的な制御点の位置は変わらない。 そこで、 直線送り軸 X、 Y 、 Zの指令値から指令された制御点の位置を求める。 ここで制御点 の位置とはテーブルの基準点と主軸の制御点との相対的な位置のこ とである。 前述の姿勢誤差を求める工程で求めた P 1及び P 2を通 る線上で、 P 2から P 1の方向に L 2の距離にある点の位置を求め 、 これを実際の制御点の位置とする。 指令された制御点の位置と実 際の制御点の位置との間のべク トルを求め、 これを位置誤差とする 。 位置誤差のベク トルは、 X、 Y、 Ζ軸方向の成分に分けられ (X , y , ζ ) の形で表す。 本発明は、 位置誤差のベク トルを他の形で 表す場合も含む。
図 1 1 には、 主軸回転型の機械において、 パレッ ト 5 4側に基準 球 5 2が装着され、 主軸側に変位検出プローブ 5 8が装着された実 施の形態が示されている。 変位検出プローブ 5 8は、 被測定物の測 定点の法線方向に変位するように構成され、 その変位の量を検出す ることができる。
また、 図 1 2には、 テーブル側に回転送り軸 B、 C軸を有するテ —ブル回転型の機械に本発明を適用した実施の形態が示されている 。 図 1 1及び図 1 2に示す実施の形態においても、 図 5に示す実施 の形態と同じ原理で送り軸の誤差を測定することができる。
次に、 テーブル側に回転送り軸 B、 Cを有する工作機械の位置誤 差 3 4 a及び姿勢誤差 3 4 bを測定する測定方法の一例について説 明する。 図 1 3には、 この測定方法のフローチヤ一卜が示されてい る。 この測定方法は、 特別な測定装置を用いずに、 機上でテス 卜ピ ース又はワークを加工し、 加工されたテス トピース又はワークを主 軸に取り付けた夕ツチプローブで測定することにより位置誤差及び 姿勢誤差を求める方法である。 本実施の形態では立方体のテス トピ ースを用いる。
図 1 3に示すように、 先ず、 回転送り軸 B、 Cの位置誤差及び姿 勢誤差が必要な精度に対して十分小さい回転角度 (本実施の形態で は B軸 0度、 C軸 0度) に割り出し、 図 1 4に示すように X、 Y、 Ζ軸方向を法線方向とするテス トピース 6 0の各平面 (枠状の基準 加工面 6 1 ) を回転送り軸を動作させずに加工する。
基準加工面 6 1 を枠状にする理由は、 測定点を多数にした場合で も正確に姿勢誤差を求めるためであり、 テス トピース 6 0の全長を 使用して傾きを測定した方がより正確に姿勢誤差を求められるため である。 ここで、 切削工具 6 3にはポールエンドミルを用いる。 基 準加工面 6 1は、 回転送り軸の所定の回転角度における姿勢誤差を 測定するための基準となる。
続いて、 図 1 6に示すように、 回転送り軸を各測定点に割り出し 、 テス トピース 6 0の互いに直交する 3面を直線送り軸の動作のみ で加工する。 加工する場所は図 1 5のように、 回転送り軸の割り出 し角度に応じて所定の場所を割り当てる。
次に、 図 1 7 に示すように、 回転送り軸を各測定点に割り出し、 基準加工面 6 1 の Ρ 1 0 〜 Ρ 1 4を夕ツチプローブ 6 4で測定し、 Ρ 1 0 と P 1 1 を通る線の実際の傾き、 P 1 0 と P 1 2 を通る線の 実際の傾き及び Ρ 1 3 と Ρ 1 4を通る線の実際の傾きを求める。 求 めた実際の 3つの傾きと測定時の回転送り軸の位置指令から演算し た理論的な 3つの傾きとの差を姿勢誤差とする。
そして、 図 1 8に示すように、 回転送り軸を基準の回転角度であ る Β軸 0度、 C軸 0度に割り出し、 各回転角度で加工した加工面 Ρ 1 5 〜 Ρ 2 0 を測定し、 回転送り軸を Β軸 0度、 C軸 0度に割り出 して加工した加工面 Ρ 1 8 〜 Ρ 2 0の位置と他の回転角度に割り出 して加工したときの加工面 P 1 5 〜 P 1 7の位置との差を求める。 本発明では一つの回転角度で加工された加工面と他の回転角度で 加工された加工面との位置の差及び/又は傾きの差を加工面の変位 と呼ぶ。
加工面 P 1 8 〜 P 2 0 の測定データから姿勢誤差が無いと仮定し た場合の加工面 P 1 8 〜 P 2 0 を含む 3平面の交点 P 2 1 を求める 。 加工面 P 1 5 〜 P 1 7 の測定データと求めた姿勢誤差とから加工 面 P 1 5 〜 P 1 7 を含む 3平面の交点 P 2 2 を求める。 求めた交点 P 2 1 と交点 P 2 2 との差分を位置誤差とする。 本発明は、 主軸側 に回転送り軸を有した工作機械でテス トピース又はワークを加工し 、 その加工面の測定結果から位置誤差及び姿勢誤差を求める場合も 含む。
前述の方法で求めた誤差は、 図 4に示すように、 直線送り軸 X、 Y、 Ζの位置及び回転送り軸 Β、 Cの回転角度に関連付けされ、 ェ ラーマップとして記憶される。
次に、 位置誤差及び姿勢誤差を含むエラーマップを用いた位置指 令の補正方法について、 回転送り軸 A、 Cを有する主軸回転型の機 械 (図 1 、 2参照) を例にして説明する。
先ず、 加工プラグラム 2 1 の指令位置を読取解釈部 2 2で解読し 、 補間部 2 3で所定の補間周期毎に各送り軸 X、 Υ、 Ζ、 Α、 の 指令パルスを求める。
続いて、 位置指令認識手段 2 4において、 この指令パルスから所 定の補間周期毎に各送り軸 X、 Y、 Z、 A、 Cの位置指令を認識す る。
位置指令における各送り軸の位置が誤差データ記憶手段 2 5 に記' 憶された測定点の位置と同一の場合は誤差データ 3 4を取得し、 取 得した誤差データ 3 4に基づいて補正データを求める。 位置指令に おける各送り軸の位置が誤差データ記憶手段 2 5に記憶された測定 点の位置と同一でない場合、 近傍の測定点の誤差データから内揷法 などの周知の補間方法により補間して誤差データを求め、 補間後の 誤差デ一夕に基づいて補正デ一夕を求める。 求めた補正デ一夕を指 令パルスの位置指令に加算して、 補間周期毎の新たな位置指令とす る。 このようにして、 位置指令が補正され、 各送り軸を高精度に位 置決めすることができる。
次に、 補正データ演算手段 2 6で演算する補正値を 3次元座標値 で表し、 位置指令を補正する補正方法について説明する。 例えば、 C軸が 0度のときに機械が本来有しない B軸方向に姿勢誤差がある 場合、 この B軸方向の姿勢誤差を補正するためには回転送り軸を大 きく回転させなければならないという問題がある。 本発明では、 こ の問題を特異点問題と呼ぶ。 ここで説明する補正方法は、 この特異 点問題を回避するための補正方法である。 なお、 B軸は Y軸に平行 な軸周りの回転送り軸である。
図 1 9は、 この補正方法のフローチャートである。 また、 この方 法で工具の姿勢及び姿勢誤差、 工具の位置及び位置誤差、 工具の突 き出し長に基づいて位置補正べク トルを求めるための計算式が以下 で示されている。
L:指令点から工具先端位置までの距離
[I, J, K]:指令工具姿勢
[dl, dJ, dK]:姿勢誤差
[dXl, dYl, dZl] :位置誤差
[dX2, dY2, dZ2]:姿勢誤差によって発生する工具先端位置誤差 [dX3, dY3, dZ3]:工具先端位置誤差
dX2=Lx (tan(J+dJ)/((tan(I+dI))2 + (tan(J + dJ)) 2 + l) 1 / 2
-tan(J)/((tan(I)H(tan(J))2 + l) 1 / z) dY2=LX (tan (l + dl)/((taii(l + dl))2 + (tan (J + dJ)) 2 + l) 1 / 2
-tan (I)/((tan (I) 2† (tan (J))2 + l) 1 / 2)
dZ2=LX (l/( (tan (I + dl) ) 2 + (tan (J + dJ) ) 2 +1) 172
-l/ ((tan (I))2 + (tan (J)) 2 + l) 1 / 2)
dX3=dXl+dX2
dY3-dYl+dY2
dZ3=dZl+dZ2
先ず、 ステップ S 0において、 補間部 2 3から出力された位置指 令から指令された指令位置及び指令姿勢を認識する。 ステップ S 1 では、 指令位置に対応する誤差デ一夕 3 4をエラーマツプから取得 する。 ステップ S 2では、 誤差データ 3 4の位置誤差 3 4 aから位 置誤差を補正するための位置補正べク トルを算出する。
一方、 誤差データ 3 4の姿勢誤差 3 4 bからは、 ステップ S 5に おいて姿勢補正値を算出する。 ステップ S 6では、 ステップ S 5で 求めた姿勢補正値を、 ステップ S 3 において読み取った指令姿勢に 加算して補正後の姿勢を求める。 ステップ S 7では、 ステップ S 6 で求めた補正後の姿勢と工具の突き出し長から補正後の指令点を求 める。
ステップ S 4では、 ステップ S 3で読み取った指令姿勢と工具の 突き出し長から補正前の指令点を求める。 ステップ S 8では、 ステ ップ S 7で求めた補正後の指令点からステップ S 4で求めた補正前 の指令点を減算して姿勢誤差を補正するための指令点の位置の補正 ベク トルを算出する。 これを姿勢補正ベク トルと呼ぶ。
姿勢補正べク トルは、 主軸に保持されている工具を基端を制御点 とした場合、 制御点を支点として姿勢誤差を補正するように回転送 り軸を回転させたときに、 工具の先端が移動する大きさと方向を表 すべク トルである。 最後に、 ステップ S 9において、 ステップ S 8で求めた姿勢補正 べク トルとステップ S 2で求めた位置補正べク トルを加算する。 本発明における指令点とは工具の先端の位置 (工具先端位置) の ことであり、 工具先端位置とは、 実際の工具の先端の位置、 工具の 先端部の加工点の位置、 ポールエンドミルの先端部の半球の中心等 のことである。
前述のように工具先端位置の誤差を直線送り軸の移動のみによつ て補正するので、 姿勢誤差 3 4 bの補正をするとき回転送り軸が回 転せず、 特異点問題を回避することができる。
このように本実施の形態によれば、 複数の回転送り軸を有するェ 作機械の位置誤差及び姿勢誤差を測定して、 エラ一マップを作成す ることができる。 また、 作成されたエラ一マップは、 位置誤差及び 姿勢誤差が別々の誤差デ一夕として記憶されているため、 この誤差 デ一夕に基づいて位置指令を補正することで、 工具先端位置を目標 位置に高精度に位置決めすることができ、 高精度に加工することが できる。
なお、 本発明は前述の実施の形態に限定されるものではなく、 本 発明の骨子を逸脱しない範囲で種々変形して実施することができる 。 例えば、 本実施形態では、 数値制御装置 2 0が、 測定装置 5 0で 測定された測定データと測定点の座標とに基づいて測定点の位置誤 差及び姿勢誤差を演算する演算部と、 この演算部で演算した位置誤 差及び姿勢誤差を直線送り軸の位置及び回転送り軸の回転角度に対 応させて記憶する誤差データ記憶手段 2 5 と、 を備えているが、 数 値制御装置 2 0 に代わるパーソナルコンピュータやその他の装置が 演算部や誤差データ記憶手段 2 5を備えることも可能である。

Claims

請 求 の 範 囲
1 . 直線送り軸及び回転送り軸を有して主軸とテーブルとが相対 移動可能に構成された数値制御工作機械のエラーマップ作成方法に おいて、
前記直線送り軸及び前記回転送り軸の可動範囲に複数の測定点を 定める工程と、
各測定点における前記主軸と前記テーブルとの相対位置及び相対 姿勢を測定する工程と、
各測定点の位置誤差及び/又は姿勢誤差を求める工程と、 前記位置誤差及び前記姿勢誤差を前記直線送り軸の位置及び前記 回転送り軸の回転角度に対応して記憶する工程と、
を含むことを特徴とした、 数値制御工作機械のエラーマップ作成方 法。
2 . 前記複数の測定点を定める工程は、 前記直線送り軸の可動範 囲内に複数の測定領域を定め、 各測定領域に前記測定点を定め、 そ れぞれの測定領域の少なく とも一つの前記測定点は、 隣の測定領域 の測定点と前記直線送り軸の座標位置とが同一になるように測定点 を定める、 請求項 1 に記載の数値制御工作機械のエラーマップ作成 方法。
3 . 前記複数の測定点を定める工程は、 隣り合う測定点の間隔が 一定になるように、 又は隣り合う測定点の位置誤差又は姿勢誤差の 差が一定になるように測定点を定める、 請求項 1又は 2に記載の数 値制御工作機械のエラーマツプ作成方法。
4 . 前記相対位置及び相対姿勢を測定する工程は、 前記主軸及び 前記テーブルの一方に設けられた外形寸法が既知の基準球と他方に 設けられた変位センサとを有した測定装置を用い、 前記回転送り軸 を動作させたときに前記基準球の中心と前記変位センサとの相対位 置が理論的に変化しないように前記直線送り軸を制御しながら、 前 記回転送り軸を複数の測定点に位置決めし、 前記変位センサで各測 定点における前記基準球の位置の変位を測定し、 測定した前記位置 の変位と測定時の座標値とから前記相対位置及び前記相対姿勢を求 める、 請求項 1ないし 3のいずれか 1項に記載の数値制御工作機械 のエラーマップ作成方法。
5 . 前記相対位置及び相対姿勢を測定する工程は、 前記回転送り 軸を複数の回転角度に位置決めして前記テーブルに取り付けられた テス トピース又はワークを加工し、 前記回転送り軸を前記複数の回 転角度のうち 1つの回転角度に位置決めし、 前記 1つの回転角度で 加工したときの加工面と他の回転角度で加工したときの加工面との 位置の変位を測定し、 測定した前記位置の変位と測定時の座標値と から前記相対位置及び前記相対姿勢を求める、 請求項 1ないし 3 の いずれか 1項に記載の数値制御工作機械のエラ一マップ作成方法。
6 . 前記相対位置及び相対姿勢を測定する工程は、 前記回転送り 軸を複数の回転角度に位置決めし、 それぞれの回転角度で前記テ一 ブルに取り付けられたテス トピース又はワークの 3面を加工し、 前 記回転送り軸を前記複数の回転角度のうちの 1つの回転角度に位置 決めし、 前記 1つの回転角度で加工したときの 3つの加工面と他の 回転角度で加工したときの 3つの加工面との位置の差及び傾きの差 を前記主軸に取り付けられたタツチプローブで測定し、 測定した前 記位置の差及び傾きの差と測定時の機械座標値とから前記相対位置 及び前記相対姿勢を求める、 請求項 1ないし 3のいずれか 1項に記 載の数値制御工作機械のエラーマツプ作成方法。
7 . 直線送り軸及び回転送り軸を有して主軸とテーブルとが相対 移動可能に構成された数値制御工作機械のエラーマツプ作成方法に おいて、
前記直線送り軸及び前記回転送り軸の可動範囲に複数の測定点を 定める工程と、
前記定めた測定点で前記回転送り軸を複数の回転角度に位置決め し、 該位置決めしたそれぞれの回転角度で前記テーブルに取り付け られた直方体のテス トピース又はワークの直交する 3面を加工する 工程と、
前記回転送り軸を前記複数の回転角度のうち 1つの回転角度に位 置決めして加工したときの加工面の傾きを他の回転角度に位置決め して測定し、 各回転角度における姿勢誤差を求める工程と、
加工したテス トピース又はワークの加工面を測定し、 それぞれの 回転角度毎に該回転角度で加工した加工面を含む 3平面の交点の位 置を求める工程と、
前記回転送り軸を前記 1つの回転角度に位置決めして加工したと きの加工面を含む 3平面の交点と他の回転角度に位置決めして加工 したときの加工面を含む 3平面の交点との位置の差及び前記姿勢誤 差から各測定点における位置誤差を求める工程と、
前記位置誤差及び前記姿勢誤差を前記直線送り軸の位置及び前記 回転送り軸の回転角度に対応して記憶する工程と、
を含むことを特徴とした、 数値制御工作機械のエラーマップ作成方 法。
8 . 直線送り軸及び回転送り軸を有して主軸とテーブルとが相対 移動可能に構成された数値制御工作機械のエラーマツプ作成方法に おいて、
前記直線送り軸及び前記回転送り軸の可動範囲に複数の測定点を 定める工程と、
前記定めた測定点で前記回転送り軸を複数の回転角度に位置決め し、 該位置決めしたそれぞれの回転角度で前記テーブルに取り付け られた直方体のテス トピース又はワークの直交する 3面を加工する 工程と、
加工したテス トピース又はワークの加工面を測定し、 それぞれの 回転角度毎に該回転角度で加工した加工面の傾き及び該加工面を含 む 3平面の交点の位置を求める工程と、
前記回転送り軸を前記複数の回転角度のうち 1つの回転角度に位 置決めして加工したときの加工面の傾きと他の回転角度に位置決め して加工したときの加工面の傾きとの差から各測定点における姿勢 誤差を求める工程と、
前記回転送り軸を前記 1つの回転角度に位置決めして加工したと きの加工面を含む 3平面の交点と他の回転角度に位置決めして加工 したときの加工面を含む 3平面の交点との位置の差及び前記求めた 姿勢誤差から各測定点における位置誤差を求める工程と、
前記位置誤差及び前記姿勢誤差を前記直線送り軸の位置及び前記 回転送り軸の回転角度に対応して記憶する工程と、
を含むことを特徴とした、 数値制御工作機械のエラーマップ作成方 法。
9 . 直線送り軸及び回転送り軸を有して主軸とテーブルとが相対 移動可能に構成された数値制御工作機械のエラーマップ作成装置に おいて、
前記主軸及び前記テーブルの一方に設けられた基準球と他方に設 けられたセンサとを有し、 所望の測定点で前記センサにより前記基 準球の位置を測定する測定装置と、
前記測定装置で測定した測定データと前記測定点の座標値とに基 づいて、 前記測定点の位置誤差及び姿勢誤差を演算する演算部と、 前記演算部で演算した位置誤差及び姿勢誤差を前記測定点におけ る前記直線送り軸の位置及び前記回転送り軸の回転角度に対応させ て記憶する記憶部と、
を具備することを特徴とした、 数値制御工作機械のエラーマップ作 成装置。
1 0 . 直線送り軸及び回転送り軸を有して主軸とテーブルとが相 対移動可能に構成された数値制御工作機械において、
前記主軸及び前記テーブルの一方に設けられた基準球と他方に設 けられたセンサとを有し、 所望の測定点で前記センサにより前記基 準球の位置を測定する測定装置と、
前記測定装置で測定した測定データと前記測定点の座標値とに基 づいて、 前記測定点の位置誤差及び姿勢誤差を演算する演算部と、 前記演算部で演算した位置誤差及び姿勢誤差を前記測定点におけ る前記直線送り軸の位置及び前記回転送り軸の回転角度に対応させ て記憶する記憶部と、
を具備することを特徴とした、 エラ一マップ作成機能を有した数値 制御工作機械。
1 1 . 直線送り軸及び回転送り軸を有して主軸とテーブルとが相 対移動可能に構成された数値制御工作機械において、
前記テ一ブルに取り付けられたテス トピース又はワークと、 前記主軸に設けられたセンサを有し、 所望の測定点で前記センサ により前記テス トピース又はワークの加工面を測定する測定装置と 前記測定装置で測定した測定データと前記測定点の座標値とに基 づいて、 前記測定点の位置誤差及び姿勢誤差を演算する演算部と、 前記演算部で演算した位置誤差及び姿勢誤差を前記測定点におけ る前記直線送り軸の位置及び前記回転送り軸の回転角度に対応させ て記憶する記憶部と、 を具備することを特徴としたエラーマップ作成機能を有した数値制 御工作機械。
1 2 . 前記記憶部に記憶された位置誤差及び姿勢誤差に基づいて 前記直線送り軸又は前記回転送り軸の指令位置又は位置指令を補正 する補正部を更に具備する、 請求項 1 0又は 1 1 に記載のエラーマ ップ作成機能を有した数値制御工作機械。
PCT/JP2007/071750 2007-11-02 2007-11-02 エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械 WO2009057229A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2704365A CA2704365C (en) 2007-11-02 2007-11-02 Method and device for preparing error map and numerically controlled machine tool having error map preparation function
US12/740,126 US8786243B2 (en) 2007-11-02 2007-11-02 Method and device for preparing error map and numerically controlled machine tool having error map preparation function
EP07831481.2A EP2208572B1 (en) 2007-11-02 2007-11-02 Method and device for preparing error map and numerically controlled machine tool having error map preparation function
PCT/JP2007/071750 WO2009057229A1 (ja) 2007-11-02 2007-11-02 エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
EP10004807.3A EP2221692B1 (en) 2007-11-02 2007-11-02 Numerically controlled machine tool and numerical control device
EP15002431.3A EP2975475B1 (en) 2007-11-02 2007-11-02 Method for preparing error map and numerically controlled machine tool having error map preparation function
KR1020107008406A KR101158772B1 (ko) 2007-11-02 2007-11-02 수치제어 공작기계 및 수치제어 장치
CN2007801014014A CN101842189B (zh) 2007-11-02 2007-11-02 误差映象的生成方法及装置,以及具有误差映象生成功能的数值控制机床
KR1020107008254A KR101088843B1 (ko) 2007-11-02 2007-11-02 에러맵 작성방법 및 장치와 에러맵 작성기능을 가진 수치제어 공작기계
JP2009538903A JP5058270B2 (ja) 2007-11-02 2007-11-02 エラーマップ作成方法
US12/769,939 US8680806B2 (en) 2007-11-02 2010-04-29 Numerically controlled machine tool and numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/071750 WO2009057229A1 (ja) 2007-11-02 2007-11-02 エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/740,126 A-371-Of-International US7475999B2 (en) 2006-04-26 2007-04-25 Illumination of vehicle instrument
US12/769,939 Division US8680806B2 (en) 2007-11-02 2010-04-29 Numerically controlled machine tool and numerical control device

Publications (1)

Publication Number Publication Date
WO2009057229A1 true WO2009057229A1 (ja) 2009-05-07

Family

ID=40590638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071750 WO2009057229A1 (ja) 2007-11-02 2007-11-02 エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械

Country Status (7)

Country Link
US (2) US8786243B2 (ja)
EP (3) EP2208572B1 (ja)
JP (1) JP5058270B2 (ja)
KR (2) KR101158772B1 (ja)
CN (1) CN101842189B (ja)
CA (1) CA2704365C (ja)
WO (1) WO2009057229A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010397A1 (ja) * 2009-07-22 2011-01-27 株式会社牧野フライス製作所 誤差補正方法及び工作機械
JP2011044081A (ja) * 2009-08-24 2011-03-03 Jtekt Corp 工作機械の制御装置
JP2011152613A (ja) * 2010-01-27 2011-08-11 Okuma Corp 多軸工作機械の加工精度確認方法及び加工精度確認用加工物
JP2011173234A (ja) * 2011-01-15 2011-09-08 Ken Kobayashi 工作機械の制御方法
EP2390622A1 (de) * 2010-05-28 2011-11-30 Dr. Johannes Heidenhain GmbH Messvorrichtung
JP2012014335A (ja) * 2010-06-30 2012-01-19 Fanuc Ltd 多軸加工機用数値制御装置
CN102789197A (zh) * 2011-05-19 2012-11-21 大连光洋科技工程有限公司 数控机床加工信息的表达系统
JP2013218684A (ja) * 2012-04-05 2013-10-24 Fidia Spa Cnc工作機械の誤差を補正する装置
US9327408B2 (en) 2014-03-12 2016-05-03 Fanuc Corporation Robot control device detecting contact with external environment
WO2018092243A1 (ja) * 2016-11-17 2018-05-24 株式会社Fuji 作業位置補正方法および作業ロボット
WO2018092236A1 (ja) * 2016-11-17 2018-05-24 株式会社Fuji 作業ロボットおよび作業位置補正方法
JP2020047310A (ja) * 2019-12-23 2020-03-26 株式会社ニコン 加工装置の補正方法および加工装置
WO2021206172A1 (ja) * 2020-04-10 2021-10-14 株式会社牧野フライス製作所 加工方法
WO2022118709A1 (ja) * 2020-12-01 2022-06-09 株式会社日立製作所 計算機、パラメータ推定処理方法、及びパラメータ推定処理プログラム

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063533B2 (en) * 2009-03-27 2015-06-23 Mitsubishi Electric Corporation Multi-spindle translation control for multiple coordinate systems
JP5293389B2 (ja) * 2009-05-07 2013-09-18 株式会社ジェイテクト 工作機械の制御装置
JP4676549B2 (ja) * 2009-09-10 2011-04-27 ファナック株式会社 軌跡表示装置及び該軌跡表示装置を備えた工作機械
WO2011104757A1 (ja) * 2010-02-25 2011-09-01 三菱電機株式会社 数値制御装置
EP2634655B1 (en) * 2010-10-27 2019-02-20 Makino Milling Machine Co., Ltd. Numerical control method of machine tool, and numerical control device
WO2012101788A1 (ja) * 2011-01-26 2012-08-02 三菱電機株式会社 誤差表示装置及び誤差表示方法
US8676373B2 (en) * 2011-02-23 2014-03-18 GM Global Technology Operations LLC Global offset compensation for a CNC machine
CN102501137B (zh) * 2011-11-03 2014-01-15 西安交通大学 一种主轴径向回转精度在线监测装置
CN103128521B (zh) * 2011-11-22 2015-02-18 成都飞机工业(集团)有限责任公司 一种确定零件加工基准的方法及专用工具球
KR20130086773A (ko) * 2012-01-26 2013-08-05 두산인프라코어 주식회사 비전 기반 공작물 셋업 방법
JP5852467B2 (ja) * 2012-02-23 2016-02-03 オークマ株式会社 数値制御装置
KR101715195B1 (ko) * 2012-03-30 2017-03-10 마키노 밀링 머신 주식회사 워크의 가공방법, 공작기계, 공구경로 생성장치 및 공구경로 생성 프로그램
CN102744648B (zh) * 2012-06-19 2014-06-25 西安瑞特快速制造工程研究有限公司 一种数控机床回转工作台误差测量与分离的方法
CN102759900B (zh) * 2012-06-29 2014-11-05 上海三一精机有限公司 一种机床主轴热误差的测试系统及测试方法
JP5915436B2 (ja) * 2012-07-27 2016-05-11 ブラザー工業株式会社 数値制御装置とピッチ誤差算出方法
CN104703755B (zh) * 2012-10-11 2017-10-24 株式会社牧野铣床制作所 刀具路径生成方法、机床的控制装置及刀具路径生成装置
CN104756025B (zh) * 2012-10-30 2017-11-14 株式会社牧野铣床制作所 工件安装信息报告装置
EP2915625B1 (en) * 2012-10-30 2019-12-04 Makino Milling Machine Co., Ltd. Machine tool control device and machine tool
US9222769B2 (en) 2012-12-08 2015-12-29 Grale Technologies High speed metrology with numerically controlled machines
JP2014238782A (ja) * 2013-06-10 2014-12-18 オークマ株式会社 工作機械の制御方法
JP5746270B2 (ja) 2013-06-20 2015-07-08 ファナック株式会社 穴あけ加工を行う工作機械の数値制御装置
JP5792251B2 (ja) 2013-09-27 2015-10-07 ファナック株式会社 誤差補正量作成装置
JP6184363B2 (ja) * 2014-03-31 2017-08-23 オークマ株式会社 工作機械の制御方法及び制御装置
JP2016083729A (ja) * 2014-10-27 2016-05-19 オークマ株式会社 幾何誤差同定システム、及び幾何誤差同定方法
JP2016155185A (ja) * 2015-02-23 2016-09-01 オークマ株式会社 工作機械の誤差同定方法
JP6595273B2 (ja) * 2015-09-11 2019-10-23 Dmg森精機株式会社 数値制御装置
US10203682B2 (en) 2016-06-14 2019-02-12 Doosan Machine Tools Co., Ltd. Position controller for controlling a rotation center of a tilting head
EP3327524B1 (en) 2016-11-29 2023-04-05 GF Machining Solutions AG Kinematic calibration
JP6705017B2 (ja) * 2016-12-13 2020-06-03 株式会社Fuji 作業ロボットの目的位置補正方法
JP6484261B2 (ja) * 2017-01-19 2019-03-13 ファナック株式会社 数値制御装置
US10050008B1 (en) * 2017-01-24 2018-08-14 Asm Technology Singapore Pte Ltd Method and system for automatic bond arm alignment
JP6496338B2 (ja) 2017-03-14 2019-04-03 ファナック株式会社 工作機械の制御システム
JP6474450B2 (ja) 2017-04-17 2019-02-27 ファナック株式会社 工作機械の制御システム
JP6514264B2 (ja) * 2017-04-20 2019-05-15 ファナック株式会社 工作機械の制御システム
JP7035727B2 (ja) * 2018-03-30 2022-03-15 日本電産株式会社 キャリブレーション精度の評価方法及び評価装置
IT201800007230A1 (it) * 2018-07-16 2020-01-16 Macchina utensile a controllo numerico
JP6823024B2 (ja) * 2018-09-11 2021-01-27 ファナック株式会社 ロボットのキャリブレーションシステムおよびキャリブレーション方法
CN109333156B (zh) * 2018-11-12 2019-11-26 电子科技大学 一种用于五轴数控机床rtcp检测的误差与姿态同步标定方法
CN109781042B (zh) * 2018-12-21 2021-01-19 西安交通大学 一种主轴回转误差测量装置
JP7021130B2 (ja) * 2019-01-16 2022-02-16 ファナック株式会社 モータ内の巻線の層間短絡を検出する短絡検出装置、モータ制御装置及び数値制御システム
DE102019110508A1 (de) * 2019-04-23 2020-10-29 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zum Steuern eines Koordinatenmessgerätes und Koordinatenmessgerät
CN111890123B (zh) * 2019-05-06 2022-02-08 四川大学 一种刀具前刀面轴向倾角在机检测计算方法
IT201900012681A1 (it) 2019-07-23 2021-01-23 Parpas S P A Metodo di funzionamento di una macchina utensile a controllo numerico e dispositivo di rilevamento per implementare tale metodo
US11487268B2 (en) 2019-07-25 2022-11-01 Pratt & Whitney Canada Corp. Method of calibrating a machine having at least two rotation axes
JP6959389B2 (ja) * 2020-04-15 2021-11-02 株式会社ソディック 多軸加工機、多軸加工機の回転中心測定方法およびプログラム
WO2022067594A1 (zh) * 2020-09-30 2022-04-07 成都飞机工业(集团)有限责任公司 五轴联动数控机床旋转轴线位置误差检测方法及检测装置
CN112526927B (zh) * 2021-02-18 2021-06-08 成都飞机工业(集团)有限责任公司 面向五轴数控机床旋转轴空间定位误差快速优化补偿方法
CN114234877B (zh) * 2022-02-28 2022-06-14 成都飞机工业(集团)有限责任公司 一种用于R-test仪器的位移传感器矢量标定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688192B2 (ja) 1989-04-21 1994-11-09 株式会社牧野フライス製作所 5軸nc工作機械
JPH09237112A (ja) 1996-02-29 1997-09-09 Toyoda Mach Works Ltd 誤差補正機能を備えた工作機械
JP2003121134A (ja) * 2001-10-16 2003-04-23 Canon Inc 運動精度の測定方法
WO2004034164A1 (en) 2002-10-11 2004-04-22 Fidia S.P.A. System and process for measuring, compensating and testing numerically controlled machine tool heads and/or tables
JP2004272887A (ja) 2003-02-19 2004-09-30 Fanuc Ltd 数値制御装置及び数値制御方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348903A (ja) 1989-07-17 1991-03-01 Ishikawa Pref Gov 数値制御装置
US5257460A (en) * 1991-06-18 1993-11-02 Renishaw Metrology Limited Machine tool measurement methods
JPH0688192A (ja) * 1991-08-28 1994-03-29 Nisshin Steel Co Ltd 加工性に優れた合金化溶融亜鉛めっき鋼板及びその製造方法
CA2082790A1 (en) 1991-12-02 1993-06-03 R. David Hemmerle Automated maintenance system for computer numerically controlled machines
JPH06332524A (ja) * 1993-05-20 1994-12-02 Fanuc Ltd 数値制御装置における速度制御方法
JP3174704B2 (ja) 1994-11-29 2001-06-11 ファナック株式会社 位置誤差補正機能付き数値制御装置
JPH0922311A (ja) * 1995-07-05 1997-01-21 Fanuc Ltd Cncの円弧加工制御方式
IT1303170B1 (it) 1998-07-10 2000-10-30 Fidia Spa Procedimento e sistema per la realizzazione della compensazione deglierrori statici su macchine utensili a controllo numerico
DE19858154B4 (de) * 1998-12-16 2008-01-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Einrichtung zur Kalibrierung von bewegbaren Vorrichtungen mit mindestens einem teilweise unbestimmten Geometrieparameter
WO2000042553A2 (en) 1999-01-15 2000-07-20 Harmony Software, Inc. Method and apparatus for processing business information from multiple enterprises
JP4034906B2 (ja) 1999-04-27 2008-01-16 株式会社ミツトヨ 表面性状測定機
JP2001142515A (ja) * 1999-11-18 2001-05-25 Tomikazu Kamiya 切削シミュレーション方法
DE10046092A1 (de) * 2000-09-18 2002-04-11 Siemens Ag Verfahren zur Kompensation von statischen Positionsfehlern und Orientierungsfehlern
US7245982B2 (en) * 2002-10-11 2007-07-17 Fidia S.P.A. System and process for measuring, compensating and testing numerically controlled machine tool heads and/or tables
US7283889B2 (en) * 2003-02-19 2007-10-16 Fanuc Ltd Numerical control device, and numerical control method
JP4066906B2 (ja) * 2003-08-08 2008-03-26 株式会社ジェイテクト 数値制御装置及びncデータ作成装置
JP3977302B2 (ja) * 2003-08-13 2007-09-19 キヤノン株式会社 露光装置及びその使用方法並びにデバイス製造方法
CN1258431C (zh) * 2004-03-31 2006-06-07 清华大学 数控机床误差补偿方法及其系统
JP4609015B2 (ja) 2004-09-21 2011-01-12 セイコーエプソン株式会社 走査光学系、画像表示装置及び電子機器
JP4290639B2 (ja) * 2004-12-01 2009-07-08 三菱電機株式会社 数値制御装置及び数値制御工作機械
JP2006289524A (ja) * 2005-04-06 2006-10-26 Fanuc Ltd 加工物設置誤差測定装置
JP2007034986A (ja) 2005-07-29 2007-02-08 Seiko Epson Corp 特許情報管理システム、特許情報管理方法、プログラム、及び記録媒体
GB0525306D0 (en) * 2005-12-13 2006-01-18 Renishaw Plc Method of machine tool calibration
JP4510755B2 (ja) 2005-12-21 2010-07-28 株式会社牧野フライス製作所 工具刃先位置演算方法及び工作機械
JP5280665B2 (ja) * 2007-10-26 2013-09-04 オークマ株式会社 手動シフト操作機能を備えた数値制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688192B2 (ja) 1989-04-21 1994-11-09 株式会社牧野フライス製作所 5軸nc工作機械
JPH09237112A (ja) 1996-02-29 1997-09-09 Toyoda Mach Works Ltd 誤差補正機能を備えた工作機械
JP2003121134A (ja) * 2001-10-16 2003-04-23 Canon Inc 運動精度の測定方法
WO2004034164A1 (en) 2002-10-11 2004-04-22 Fidia S.P.A. System and process for measuring, compensating and testing numerically controlled machine tool heads and/or tables
JP2004272887A (ja) 2003-02-19 2004-09-30 Fanuc Ltd 数値制御装置及び数値制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2208572A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010397A1 (ja) * 2009-07-22 2011-01-27 株式会社牧野フライス製作所 誤差補正方法及び工作機械
JP5355693B2 (ja) * 2009-07-22 2013-11-27 株式会社牧野フライス製作所 誤差補正方法及び工作機械
JP2011044081A (ja) * 2009-08-24 2011-03-03 Jtekt Corp 工作機械の制御装置
JP2011152613A (ja) * 2010-01-27 2011-08-11 Okuma Corp 多軸工作機械の加工精度確認方法及び加工精度確認用加工物
EP2390622A1 (de) * 2010-05-28 2011-11-30 Dr. Johannes Heidenhain GmbH Messvorrichtung
JP2012014335A (ja) * 2010-06-30 2012-01-19 Fanuc Ltd 多軸加工機用数値制御装置
CN102331743A (zh) * 2010-06-30 2012-01-25 发那科株式会社 多轴加工机用数值控制装置
US8350514B2 (en) 2010-06-30 2013-01-08 Fanuc Corporation Numerical controller for multi-axis machine
CN102331743B (zh) * 2010-06-30 2013-06-26 发那科株式会社 多轴加工机用数值控制装置
JP2011173234A (ja) * 2011-01-15 2011-09-08 Ken Kobayashi 工作機械の制御方法
CN102789197B (zh) * 2011-05-19 2016-06-22 科德数控股份有限公司 数控机床加工信息的表达系统及其表达方法
CN102789197A (zh) * 2011-05-19 2012-11-21 大连光洋科技工程有限公司 数控机床加工信息的表达系统
JP2013218684A (ja) * 2012-04-05 2013-10-24 Fidia Spa Cnc工作機械の誤差を補正する装置
US9645217B2 (en) 2012-04-05 2017-05-09 Fidia S.P.A. System and method for error correction for CNC machines
US9327408B2 (en) 2014-03-12 2016-05-03 Fanuc Corporation Robot control device detecting contact with external environment
WO2018092243A1 (ja) * 2016-11-17 2018-05-24 株式会社Fuji 作業位置補正方法および作業ロボット
WO2018092236A1 (ja) * 2016-11-17 2018-05-24 株式会社Fuji 作業ロボットおよび作業位置補正方法
JP2020047310A (ja) * 2019-12-23 2020-03-26 株式会社ニコン 加工装置の補正方法および加工装置
JP7192758B2 (ja) 2019-12-23 2022-12-20 株式会社ニコン 加工装置および加工方法
WO2021206172A1 (ja) * 2020-04-10 2021-10-14 株式会社牧野フライス製作所 加工方法
JP2021168043A (ja) * 2020-04-10 2021-10-21 株式会社牧野フライス製作所 加工方法
JP7026718B2 (ja) 2020-04-10 2022-02-28 株式会社牧野フライス製作所 加工方法
WO2022118709A1 (ja) * 2020-12-01 2022-06-09 株式会社日立製作所 計算機、パラメータ推定処理方法、及びパラメータ推定処理プログラム

Also Published As

Publication number Publication date
CN101842189B (zh) 2011-11-16
CA2704365A1 (en) 2009-05-07
EP2221692A2 (en) 2010-08-25
EP2975475A1 (en) 2016-01-20
CN101842189A (zh) 2010-09-22
US20100244762A1 (en) 2010-09-30
KR101158772B1 (ko) 2012-06-22
US8680806B2 (en) 2014-03-25
US8786243B2 (en) 2014-07-22
EP2975475B1 (en) 2019-05-08
KR20100047906A (ko) 2010-05-10
JP5058270B2 (ja) 2012-10-24
JPWO2009057229A1 (ja) 2011-03-10
US20100207567A1 (en) 2010-08-19
KR20100054864A (ko) 2010-05-25
EP2208572A1 (en) 2010-07-21
KR101088843B1 (ko) 2011-12-06
EP2208572B1 (en) 2016-09-07
EP2221692A3 (en) 2013-10-09
CA2704365C (en) 2015-05-05
EP2208572A4 (en) 2013-10-09
EP2221692B1 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2009057229A1 (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
CN101866163B (zh) 数值控制机床及数值控制装置
JP5030653B2 (ja) 数値制御工作機械及び数値制御装置
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
JP5355037B2 (ja) 精度測定方法及び数値制御工作機械の誤差補正方法並びに誤差補正機能を有した数値制御工作機械
JP4510755B2 (ja) 工具刃先位置演算方法及び工作機械
JP5317627B2 (ja) 誤差補正方法
JP5963792B2 (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP2016154039A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP2012079358A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP5956952B2 (ja) 数値制御工作機械
JPH07266194A (ja) 工具刃先位置計測補正装置
JP2018128328A (ja) 工作機械の幾何誤差測定方法
JP3807847B2 (ja) 工作機械の制御方法
JP5355693B2 (ja) 誤差補正方法及び工作機械
JP2012033203A (ja) 数値制御工作機械
JP2012104153A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
CA2717291C (en) Numerically controlled machine tool and numerical control device
JP2787872B2 (ja) 数値制御装置
JP2023030891A (ja) 多軸加工機および多軸加工機の回転中心測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780101401.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009538903

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107008254

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2007831481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007831481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12740126

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2704365

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3080/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE