JP5317627B2 - 誤差補正方法 - Google Patents

誤差補正方法 Download PDF

Info

Publication number
JP5317627B2
JP5317627B2 JP2008277096A JP2008277096A JP5317627B2 JP 5317627 B2 JP5317627 B2 JP 5317627B2 JP 2008277096 A JP2008277096 A JP 2008277096A JP 2008277096 A JP2008277096 A JP 2008277096A JP 5317627 B2 JP5317627 B2 JP 5317627B2
Authority
JP
Japan
Prior art keywords
error
feed shaft
machining
rotary feed
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008277096A
Other languages
English (en)
Other versions
JP2010108085A (ja
Inventor
忠 笠原
一成 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2008277096A priority Critical patent/JP5317627B2/ja
Publication of JP2010108085A publication Critical patent/JP2010108085A/ja
Application granted granted Critical
Publication of JP5317627B2 publication Critical patent/JP5317627B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工作機械の誤差補正方法に関する。
工作機械には、直線送り軸と回転送り軸を有するものがあり、それらによって、テーブルに保持されたワークに対して、主軸に装着された工具の先端の位置および姿勢を制御することにより、所望の加工が行われる。この際、一般に、送り軸による動作によって実際に工具の先端が移動させられる位置には、工作機械の製造公差などのために誤差が生じるので、高精度の加工を行うためには、このような誤差を補正する必要がある。
このような工作機械における誤差の補正方法の一例が特許文献1に開示されている。同文献では、互いに直交する2方向をそれぞれ軸心とする2つの回転送り軸を有する工作機械において、両回転送り軸の軸心間のずれを測定によって予め求めている。そして、求めたずれに応じて各送り軸の送り量を補正することによって、加工精度を向上させている。
特公平6−88192号公報
工作機械の工具の先端の位置の誤差には、上記の従来技術における回転送り軸間のずれの他にも、各回転送り軸のうねりなどの他の構造的な公差による送り量の誤差や、直線送り軸に起因する誤差も寄与すると考えられる。したがって、より高精度の加工を可能にするためには、種々の要因による誤差を精度良く補正することが求められる。
本発明の目的は、工作機械において、種々の要因による誤差を精度良く補正できる誤差補正方法を提供することにある。
また、本発明によれば、直線送り軸及び回転送り軸を有する数値制御工作機械の誤差補正方法において、
前記回転送り軸を基準割出し角度を含む複数の回転角度に位置決めし、位置決めしたそれぞれの回転角度でテーブルに取り付けられた直方体のテストピース又はワークの互いに直交する3面を加工する工程と、
加工したテストピース又はワークの3面の各面内における1点の位置を基準割出し角度に位置決めして測定する工程と、
測定した3点を頂点とした三角形の重心、垂心、内心又は外心の座標位置を演算して加工点とする工程と、
基準割出し角度における加工点と各加工点の位置に基づいて前記加工点における位置誤差を求める工程と、
前記位置誤差を前記加工点の位置及び前記回転送り軸の回転角度に対応させて記憶する工程と、
前記記憶された位置誤差に基づいて前記直線送り軸又は前記回転送り軸の指令位置又は位置指令を補正する工程と、
を含むことを特徴とした数値制御工作機械の誤差補正方法が提供される。
また、本発明によれば、直線送り軸及び回転送り軸を有する数値制御工作機械の誤差補正方法において、
前記回転送り軸を基準割出し角度を含む複数の回転角度に位置決めし、位置決めしたそれぞれの回転角度でテーブルに取り付けられた直方体のテストピース又はワークの互いに直交する3面を加工する工程と、
前記回転送り軸を前記複数の回転角度のうち1つの回転角度に位置決めして加工したときの加工面の傾きを基準割出し角度に位置決めして測定し、各回転角度における姿勢誤差を求める工程と、
加工したテストピース又はワークの3面の各面内における1点の位置を測定する工程と、
測定した3点を頂点とした三角形の重心、垂心、内心又は外心の座標位置を演算して加工点とする工程と、
基準割出し角度における加工点と各加工点の位置及び前記姿勢誤差から前記加工点における位置誤差を求める工程と、
前記位置誤差及び前記姿勢誤差を前記加工点の位置及び前記回転送り軸の回転角度に対応させて記憶する工程と、
前記記憶された姿勢誤差及び位置誤差に基づいて前記直線送り軸又は前記回転送り軸の指令位置又は位置指令を補正する工程と、
を含むことを特徴とした数値制御工作機械の誤差補正方法が提供される。
本発明によれば、工作機械において、種々の要因による誤差を精度良く補正できる誤差補正方法を提供することができる。
以下、図面を参照して本発明の実施の形態について説明する。
図2は、本実施の形態に係る工作機械としてのマシニングセンタ1を示している。このマシニングセンタ1は、矢印X,Y,Zによって示す3つの直線送り軸と、矢印A,Cによって示す2つの回転送り軸を有する5軸制御の横形マシニングセンタである。
より詳細に述べると、工作機械1は、フロア上などに動かないように設置されるベッド2を有している。ベッド2の上面には、コラム3が、Z軸方向に直線移動可能に取り付けられている。コラム3には、主軸台5が、鉛直方向であるY軸方向に直線移動可能に取り付けられている。主軸台5には、ブラケット5aが、回転送り軸を介してZ軸に平行な軸周りのC方向に回転可能に支持されている。ブラケット5aには、主軸頭4が、Z軸に垂直な軸周りのA方向に回転可能に支持されている。主軸頭4には、切削工具などが取り付けられる主軸9が回転可能に支持されている。詳細には示していないが、主軸9には、種々の切削工具や測定具などを着脱するための把持具などの機構が備えられている。
また、マシニングセンタ1は、ベッド2の上面に、紙面に垂直な方向であるX軸方向に直線移動可能にテーブル6が取り付けられている。テーブル6には、必要に応じてイケール8を介して、主軸9に対面するようにワーク7を保持することができるようになっている。
なお、本発明に係る工作機械は、図2に示すものに限られず、回転送り軸がテーブル側に設けられたものであってもよく、また、主軸が鉛直方向に向けられた立形の構成を有していてもよい。回転送り軸は、例えば、図1のA,C方向の代わりに、C方向と、Y軸の軸線周りの回転方向に相当するB方向の回転送り軸を設けてもよい。
マシニングセンタ1では、数値制御によって、イケール8に保持されたワーク7に対して、主軸9に取り付けられた工具が所定の位置に移動させられ、所望の加工が行われる。このために、マシニングセンタ1には、数値制御装置20が接続されている。図3は、この数値制御装置20を示すブロック図である。
数値制御装置20には、ワーク7に対して所望される加工の加工量や加工箇所などの情報が所定の形態で記述された加工プログラム10が入力される。数値制御装置20は、加工プログラム10を読み取り、解釈して、所望の加工を行うために必要な各送り軸の動作に応じた各送り軸への指令速度や指令位置を演算する読取解釈部21を有している。読取解釈部21には、読取解釈部21において演算された指令位置や指令速度等に基づき、直線補間や円弧補間を行って、各送り軸に送り動作をさせるための指令パルスを演算する補間部22が続いている。補間部22の指令パルスは、サーボ部23に入力され、サーボ部23で増幅されて、各送り軸のモータ30の駆動電流が生成される。サーボ部23やモータ30は、図3では、便宜上、1つのみを示しているが、各送り軸毎に備えられ、各モータ30によって各送り軸が動作させられる。サーボ部23は、モータ30からの速度フィードバックや、不図示の位置検出装置からの位置フィードバックに基づいて各送り軸が所望の位置に所望の速度で移動するように制御を行う機能を有している。
本実施の形態では、数値制御装置20は、マシニングセンタ1の動作の誤差を補正する機能を備えており、このために、誤差データ演算処理部24を有している。誤差データ演算処理部24は、タッチプローブ52の検出信号に基づいて誤差データを演算する。誤差データ演算処理部24で演算された誤差データは、誤差データ記憶手段25に保存される。
誤差データ記憶手段25に記憶された誤差データは、加工プログラム10に応じた加工処理時に各送り軸の動作を補正するのに利用され、このために、誤差データ記憶手段25は、補正データ演算手段27に接続されている。補正データ演算手段27は、補間部22のパルス信号を取得して各送り軸への指令位置を認識する位置指令認識手段26を介して得られた指令位置情報と、誤差データ記憶手段25に記憶された誤差データから補正データを演算する。補正データ演算手段27で算出された補正データは、補正パルス演算手段28で補正パルスに変換され、この補正パルスが、補間部22からのパルス信号に加算手段29において加算されることによって、誤差の補正が行われる。なお、読取解釈部21からの指令位置に対して、補正データに応じた補正を行い、補正された指令位置を補間部22に入力する構成としてもよい。
次に、誤差データ演算処理部24による誤差データの算出方法について説明する。図1は、この算出方法のフローチャートである。
まず、ステップQ1において、図4に示すように、テストピース60に基準加工面61の加工を行う。すなわち、イケール8にテストピース60を固定し、主軸9に切削工具51を装着して、回転送り軸を基準割出し角度にした状態で、直線送り軸を動作させてX,Y,Zの各軸に垂直な平面を基準加工面61x,61y,61zとして形成する。
この際、本実施の形態では、立方体のテストピース60を用い、切削工具51としてはボールエンドミルを用いるのが好ましい。基準割出し角度は、例えば、各回転送り軸の角度位置が(A,C)=(0,0)の位置であり、この基準割出し角度では、立方体のテストピース60は、大幅に削らなくても基準加工面61を形成できるように、各辺が、X,Y,Z軸にほぼ平行になるように配置するのが好ましい。テストピース60は、測定専用のものではなく、ワークを用いてもよい。
基準加工面61の加工は、回転送り軸を基準割出し角度位置から動かさずに、直線送り軸のみを動作させて行う。本実施の形態では、図4に示すように、基準加工面61zは、テストピース60の一面の四辺に沿った枠状の面とし、基準加工面61x,61yは、基準加工面61zに沿うように、それぞれ対面する2面で図4での上方の辺に沿って側面に形成している。
次に、ステップQ2〜Q6において、後のステップで位置を測定して誤差データを得るための平面状の複数の加工面を形成する。この際、各回転送り軸を種々の割出し角度にした時の誤差を求めるため、図5に示すように、テストピース60の各面を複数の領域に分割し、分割された各領域に、回転送り軸を各割出し角度にした状態で加工面を加工する。各割出し角度にした状態毎に、テストピース60の互いに直交する3面にそれぞれ加工面を形成する。これは、互いに直交する3面の各面での測定で、各軸方向の誤差量が求まるので、X,Y,Zの3軸全ての方向についての誤差量を求めるためには、3面のそれぞれで測定を行う必要があるためである。加工面の形成は、図6に示すように、回転送り軸を動作させることなく、直線送り軸のみを動作させて行う。
次に、ステップQ7で回転送り軸を基準割出し角度に戻す。そして、ステップQ8において、ステップQ1で加工した基準加工面61と、ステップQ4で加工した加工面の位置を測定する。この際、図7に示すように、位置の測定は、主軸9にタッチプローブ52を装着し、X,Y,Z軸に平行な方向にそれに対応する直線送り軸によってタッチプローブ52を移動させて行う。すなわち、この直線送り軸による移動時に、タッチプローブ52によってテストピース60との接触が検知された時点での、当該直線送り軸の位置が、測定しようとする面の、当該直線送り軸方向の位置として測定される。
次に、ステップQ9において、ステップQ8で測定した基準加工面61の位置と、各加工面の位置との間の相対位置から、各送り軸を種々の位置にした時に生じる、工具の先端の位置の誤差を求める。すなわち、マシニングセンタ1が製造公差などの無い理想的なものとした場合の相対位置と、測定結果から得られる相対位置の差が誤差として求まる。
次に、ステップQ10において、誤差データを誤差データ記憶手段25に保存する。誤差データは、ステップQ9で求めた誤差の値を各送り軸の位置に関係付けたエラーマップの形式で保存する。
このエラーマップは、X,Y,Zの各直線送り軸およびA,Cの各回転送り軸の位置によって指定される複数(k個)のマップ点(Xk,Yk,Zk,Ak,Ck)に、(dXk,dYk,dZk)の誤差値が割り当てられた形式を有している。このエラーマップにおける誤差値(dXk,dYk,dZk)は、各マップ点(Xk,Yk,Zk,Ak,Ck)に対応する位置に工具の先端を位置させようとした時に、先端に生じる位置のずれに相当し、すなわち、この誤差値(dXk,dYk,dZk)分だけ、各直線送り軸X,Y,Zの送り量を補正することによって、誤差を補正するのに利用することができる。
ステップQ8では、互いに直交する3軸方向の一組の誤差値(dXk,dYk,dZk)が、ステップQ4において形成した、各割出し角度の状態で互いに直交する3面に形成された3つの加工面上のそれぞれでの測定結果によって得られる。すなわち、例えば、図7の3点P1,P2,P3での測定で、3軸方向の一組の誤差値が得られ、点P5,P6,P7での測定で、他の組の誤差値が得られる。
このようにして得られた一組の誤差値(dXk,dYk,dZk)が割り当てられるマップ点の各回転送り軸方向の位置(Ak,Ck)は、該当する3面をステップQ4で形成した時の各回転送り軸方向の位置とする。一方、一組の誤差値(dXk,dYk,dZk)が割り当てられるマップ点の直線送り軸方向の位置(Xk,Yk,Zk)は、該当する3面のそれぞれの実際の測定点から、これら3つの測定点を頂点とする三角形の重心を求め、この点の座標値とする。
以上の工程によって、誤差値が各送り軸の位置に関係付けられたエラーマップの形式での誤差データが得られる。この誤差データは、加工プログラム10に応じた加工動作時に、補正データ演算手段27によって読み出され、工具の先端の位置の誤差を補正するのに用いられる。この際、エラーマップでは、誤差データの算出時に形成し測定した加工面の数に応じた数のマップ点に誤差値が割り当てられている。したがって、実際の各加工点での補正値は、その加工点の近傍のマップ点における誤差値から、内挿法などの周知の補間方法により補間して求める。
以上説明した本実施の形態によれば、各送り軸を各位置に位置決めした時の工具の先端の位置の誤差をエラーマップの形式の誤差データとして保存し、この誤差データを用いて、加工処理時に各送り軸の送り量を補正することによって、加工精度を向上させることができる。エラーマップの形式を用いることによって、各回転送り軸および各直線送り軸の種々の要因によって生じる誤差を総合的に補正することができる。
また、本実施の形態では、互いに直交する3軸方向の誤差量を求めるために互いに直交する3つの面で測定を行っている。このため、3つの面での測定点は互いに異なっているが、それによって得られた3軸方向の誤差値のマップ点を、3つの面での3つの測定点の重心とすることによって、実際の測定点とマップ点とのずれを最小限に抑えることができる。したがって、重心を用いる手法によれば、簡便な手法で、補正の精度を確保することができ、好ましい。すなわち、重心を用いる手法によれば、各測定点での測定結果によって得られる誤差値を各測定点に厳密に対応するマップ点に関連付けてエラーマップを作成した場合に生じる、各マップ点に、一軸方向の誤差値しか割り当てられなくなるなどのため扱いが難しくなるといった問題を生じることがなく、また、精度の低下を抑えられる。
なお、上記の実施の形態は、本発明を例示するものであり、特許請求項の範囲に規定する本発明の範囲内で種々の変更が可能である。
例えば、上記の実施の形態では、互いに直交する3つの面上の3つの測定点での測定で得られる誤差値のマップ点を、3つの測定点を頂点とする三角形の重心とする構成を示した。しかし、マップ点は、測定点とマップ点との距離を小さく抑えることができる点を選択すればよく、3つの測定点の位置関係などに応じて、例えば、垂心、外心、内心などを選択してもよい。
また、3つの測定点間があまり離れないようにするために、テストピースとしては、小さなものを用いるのが好ましい。この場合、広い範囲のマップ点にわたる誤差データを得るために、マシニングセンタ1のイケール8におけるテストピース60の固定位置を変えて測定を行うのが好ましい。
この際、誤差値が割り当てられるマップ点の間隔は、補正精度を確保するために、例えば、互いに隣接するマップ点間の距離が一定の大きさになるようにしたり、互いに隣接するマップ点間での誤差値の差が所定の大きさ以下となるようにしたりなど、適切な間隔になるようにするのが好ましい。このために、上述のようなテストピース60の固定位置を適切にずらして、複数回の測定を行うことができる。また、テストピース60の位置はずらさずに、テストピース60上の各面において、各割出し角度についての測定に用いる領域の位置を入れ替えて測定を行うようにしてもよい。テストピース60を付け替えるなどして複数回の測定を行う場合には、各回の測定における測定点の少なくとも1つを同一の点とするのが好ましく、それによって、複数回の測定における測定結果の整合をとることができる。
基準加工面61および各加工面の位置の測定は、マシニングセンタ1にタッチプローブ52を装着して行う構成を示した。この構成によれば、マシニングセンタ1自体を用いて誤差データを得ることができ、他の装置を必要とないので、簡便に誤差データを得られ、好ましい。しかし、マシニングセンタ1とは別の測定装置を利用できるのであれば、それを利用して基準加工面61および各加工面の位置を測定してもよい。また、基準加工面61は、工具51とタッチプローブ52の先端位置の差などの影響を補償するために形成し測定するのが好ましいが、このような影響が無視できるほど小さい場合や、他の方法で補償できる場合には、省略してもよい。
また、基準加工面61や加工面は、互いに直交する3つの面に形成する構成を示した。この構成によれば、X,Y,Zの各直線送り軸の補正量の算出が容易であり、また補正の精度も確保することができ、好ましい。しかし、一般には、互いに非平行の3つの面に基準加工面61や加工面を形成すればよい。すなわち、それによって、3つの面のそれぞれで、互いに非平行な方向成分についての測定を行うことができ、それらの方向成分の測定値を、マシニングセンタ1の各直線送り軸の方向に対応する方向などの、適切な所望の方向成分の値に適宜変換することができ、それによって、適切な補正が可能となる。このような処理をできるようにするためには、より厳密には、基準加工面61や加工面を形成する3つの面は、それらの法線ベクトルが互いに線形独立である必要がある。
また、上述の実施の形態では、誤差を、工具の先端の位置のずれとして捕らえる構成を示したが、これを、姿勢のずれ、または回転送り軸の角度位置のずれと、X,Y,Zの直線送り軸方向のずれとに分解して捕らえる構成としてもよい。図8は、このような変形例における誤差データの算出方法のフローチャートを示している。図8において、図1と同様の部分には同一の符号を付しており、詳細な説明は省略する。
この変形例では、ステップQ2〜Q6で複数の加工面を形成した後に、ステップR1〜R6において、姿勢誤差を求める。すなわち、まず、ステップR2で、加工面を形成した際の複数の割出し角度のいずれかの状態にする。そして、ステップR3において、図9に示すように、主軸9にタッチプローブ52を装着して基準加工面61の測定を行い、ステップR4において、基準加工面61の測定データから、該当する割出し角度の状態とした時の姿勢誤差を求める。
より詳細に説明すると、ステップR3では、図9に示すように、基準加工面(第1の基準加工面)61z上の3点P10,P11,P12と基準加工面(第2の基準加工面)61x上の2点P13,P14の位置を測定する。すると、ステップR4において、点P10〜P14の測定位置から、基準加工面61x,61y,61zの各面の向きを求めることができ、それと、マシニングセンタ1が製造公差などの無い理想的なものとした場合の各基準加工面61x,61y,61zの向きとの差から姿勢誤差を求めることができる。
姿勢誤差は、X,Y,Z軸の各軸周りの各方向についての角度ずれ(Ik,Jk,Kk)として求めることができる。あるいは、マシニングセンタ1の回転送り軸の送り方向(A,B,Cのうちの2つの方向)についての回転角度ずれの形で姿勢誤差を求めてもよい。また、基準加工面(第1の基準加工面)61zと、基準加工面(第2の基準加工面)61xは、直交していなくても非平行に形成しておけば、各方向の姿勢誤差を求めることができる。
この際、各点P10〜P14は、それぞれ立方体のテストピース60の頂点付近の位置とするのが好ましい。それによって、テストピース60の大きさを最大限に生かして、各面における3点P10〜P12または2点P13,P14の測定点をできるだけ離れた位置にとることができ、その結果、姿勢誤差の測定精度を高めることができる。このように、互いに離れた測定点P10〜P12、およびP13,P14を取ることができる点で、基準加工面61zを直方体のテストピース60の一面の縁に沿った枠状とし、基準加工面61x,61yを一面の辺に沿った形状とする上述の構成は好ましい。
その後の工程は、図1に示す上述の実施の形態の場合とほぼ同様であるが、図1でのステップQ9に代わる図8でのステップQ9’では、姿勢誤差を考慮して位置誤差を求める。すなわち、図10に模式的に示すように、回転送り軸の回転中心M周りに姿勢誤差dθがある場合、ワークに対する工具の先端の直線送り軸方向の相対位置、すなわち加工位置Sは、姿勢誤差dθに応じてずれることになる。この加工位置Sのずれは、ベクトルMSと、このベクトルMSを姿勢誤差dθ分だけ該当する回転送り軸の回転中心周りに回転させたベクトルMS’との差分ベクトルdSによって与えられる。
そこで、図3に示す上述の実施の形態において求められる工具の先端の位置の誤差から、各回転送り軸周りの姿勢誤差分に対応する上述のような加工位置のずれを差し引いたものを位置誤差として求める。そして、ステップQ10に代わるステップQ10’において、上記の姿勢誤差と位置誤差を組みにしてエラーマップに保存する。このような姿勢誤差と位置誤差とによれば、各回転送り軸を姿勢誤差分だけ補正すると共に、各直線送り軸を位置誤差分だけ補正することによって、工具の先端のワークに対する姿勢および位置が適切に調整される。
なお、上記のように、姿勢誤差に応じた加工位置Sのずれを求める際には、3軸の各方向についての誤差値からなる一組の誤差値を求めるために測定を行う3点(図10に例として示すS1,S2,S3)を頂点とする重心の位置を加工位置Sとして計算を行うのが好ましい。このように重心を用いる手法によれば、マップ点を重心とする場合と同様に、簡便な手法で、補正の精度を確保することができ、好ましい。すなわち、実際の測定点S1,S2,S3での、姿勢誤差に応じた加工位置のずれを、厳密に、各測定点S1,S2,S3と回転送り軸の中心Mとを結ぶベクトルを姿勢誤差分回転させた時の変位として扱うのに比べて、重心を用いる手法によれば、処理を簡素化することができ、また、精度の低下を生じることもないと考えられる。なお、重心の代わりに、垂心、外心、内心などを選択してもよいのも同様である。
また、姿勢誤差の補正については、工作機械では、回転送り軸が2つ設けられるのが普通であるが、誤差の方向が、設けられている回転送り軸による回転方向ではない方向(設けられている2つの回転送り軸の回転中心軸の両方に直交する軸を回転中心とする回転方向)となる場合が考えられる。この場合、回転送り軸の角度位置によって補正を行おうとすると、誤差がわずかでも、各回転送り軸が大きく動作させられることになる。そこで、このような場合には、姿勢誤差の補正を行わずに、上記の実施の形態において示したような直線送り軸の動作によって補正を行うようにすれば、微小な補正で済み、補正動作をより適切なものとすることができる。
図2の数値制御装置における誤差データの算出方法のフローチャートである。 本発明の実施の形態に係る工作機械であるマシニングセンタを示す側面図である。 図1のマシニングセンタに付属する数値制御装置を示すブロック図である。 図3に示す誤差データの算出方法において、テストピースに基準加工面を加工している様子を示す斜視図である。 図3に示す誤差データの算出方法において、テストピースの、様々な姿勢で加工面を加工する領域の割り振りを示す図である。 図5の各領域に加工面を形成している様子を示す斜視図である。 図3に示す誤差データの算出方法において、各加工面の位置を測定している様子を模式的に示す斜視図である。 図3の変形例の誤差データの算出方法のフローチャートである。 図8に示す誤差データの算出方法において、各割出し角度の状態での姿勢誤差を測定している様子を示す斜視図である。 図8に示す誤差データの算出方法において、姿勢誤差を考慮して位置誤差を求める方法の原理を説明するための図である。
符号の説明
1 マシニングセンタ(工作機械)
6 テーブル
7 ワーク
9 主軸
20 数値制御装置
24 誤差データ演算処理部

Claims (2)

  1. 直線送り軸及び回転送り軸を有する数値制御工作機械の誤差補正方法において、
    前記回転送り軸を基準割出し角度を含む複数の回転角度に位置決めし、位置決めしたそれぞれの回転角度でテーブルに取り付けられた直方体のテストピース又はワークの互いに直交する3面を加工する工程と、
    加工したテストピース又はワークの3面の各面内における1点の位置を基準割出し角度に位置決めして測定する工程と、
    測定した3点を頂点とした三角形の重心、垂心、内心又は外心の座標位置を演算して加工点とする工程と、
    基準割出し角度における加工点と各加工点の位置に基づいて前記加工点における位置誤差を求める工程と、
    前記位置誤差を前記加工点の位置及び前記回転送り軸の回転角度に対応させて記憶する工程と、
    前記記憶された位置誤差に基づいて前記直線送り軸又は前記回転送り軸の指令位置又は位置指令を補正する工程と、
    を含むことを特徴とした数値制御工作機械の誤差補正方法
  2. 直線送り軸及び回転送り軸を有する数値制御工作機械の誤差補正方法において、
    前記回転送り軸を基準割出し角度を含む複数の回転角度に位置決めし、位置決めしたそれぞれの回転角度でテーブルに取り付けられた直方体のテストピース又はワークの互いに直交する3面を加工する工程と、
    前記回転送り軸を前記複数の回転角度のうち1つの回転角度に位置決めして加工したときの加工面の傾きを基準割出し角度に位置決めして測定し、各回転角度における姿勢誤差を求める工程と、
    加工したテストピース又はワークの3面の各面内における1点の位置を測定する工程と、
    測定した3点を頂点とした三角形の重心、垂心、内心又は外心の座標位置を演算して加工点とする工程と、
    基準割出し角度における加工点と各加工点の位置及び前記姿勢誤差から前記加工点における位置誤差を求める工程と、
    前記位置誤差及び前記姿勢誤差を前記加工点の位置及び前記回転送り軸の回転角度に対応させて記憶する工程と、
    前記記憶された姿勢誤差及び位置誤差に基づいて前記直線送り軸又は前記回転送り軸の指令位置又は位置指令を補正する工程と、
    を含むことを特徴とした数値制御工作機械の誤差補正方法
JP2008277096A 2008-10-28 2008-10-28 誤差補正方法 Expired - Fee Related JP5317627B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277096A JP5317627B2 (ja) 2008-10-28 2008-10-28 誤差補正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277096A JP5317627B2 (ja) 2008-10-28 2008-10-28 誤差補正方法

Publications (2)

Publication Number Publication Date
JP2010108085A JP2010108085A (ja) 2010-05-13
JP5317627B2 true JP5317627B2 (ja) 2013-10-16

Family

ID=42297504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277096A Expired - Fee Related JP5317627B2 (ja) 2008-10-28 2008-10-28 誤差補正方法

Country Status (1)

Country Link
JP (1) JP5317627B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101228327B1 (ko) * 2010-11-15 2013-01-31 삼성테크윈 주식회사 영점 조정 장치 및 영점 조정 방법
KR101378142B1 (ko) 2012-06-28 2014-03-25 인제대학교 산학협력단 황삭 가공을 위한 공구 경로 생성방법
KR101474974B1 (ko) * 2013-06-18 2014-12-22 한국기계연구원 공구의 각도 조절을 이용한 미세패턴 가공 방법
CN104625880B (zh) * 2014-12-23 2015-12-30 电子科技大学 一种五轴机床刀具姿态及刀尖点位置误差同步检测机构
JP6845612B2 (ja) * 2016-03-07 2021-03-17 中村留精密工業株式会社 工作機械における機械精度の測定方法及び装置
JP6649348B2 (ja) * 2017-11-21 2020-02-19 ファナック株式会社 工具寿命判定装置
CN210413777U (zh) * 2018-09-28 2020-04-28 常州星宇车灯股份有限公司 调整多轴数控机床精度偏差的工装

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2720202B2 (ja) * 1989-07-05 1998-03-04 日立電子エンジニアリング株式会社 基板露光装置におけるギャップ制御方法
JP3174704B2 (ja) * 1994-11-29 2001-06-11 ファナック株式会社 位置誤差補正機能付き数値制御装置
JP3541980B2 (ja) * 1995-03-28 2004-07-14 株式会社安川電機 視覚センサ付きロボットにおけるキャリブレーション方法
JP3839122B2 (ja) * 1997-03-14 2006-11-01 株式会社アマダ レーザ加工機の撮像装置ユニット
JP4291313B2 (ja) * 2005-09-13 2009-07-08 住友重機械工業株式会社 ヘッド作動制御装置及び制御方法及びステージ装置

Also Published As

Publication number Publication date
JP2010108085A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5317627B2 (ja) 誤差補正方法
JP5030653B2 (ja) 数値制御工作機械及び数値制御装置
JP5058270B2 (ja) エラーマップ作成方法
JP6295070B2 (ja) 多軸工作機械の幾何誤差同定方法及び多軸工作機械
US8494800B2 (en) Method and program for identifying mechanical errors
JP5911565B2 (ja) 工作機械の干渉判定方法および干渉判定装置
US10118227B2 (en) Machine tool and workpiece flattening method
JP4510755B2 (ja) 工具刃先位置演算方法及び工作機械
JP5355037B2 (ja) 精度測定方法及び数値制御工作機械の誤差補正方法並びに誤差補正機能を有した数値制御工作機械
JP2016083729A (ja) 幾何誤差同定システム、及び幾何誤差同定方法
JP2015203567A (ja) 計測システム
JP5444590B2 (ja) ワーク基準点機上検出方法及びその方法を用いた加工装置
JP2008268118A (ja) 形状測定方法及び装置
JP5956952B2 (ja) 数値制御工作機械
JP6803043B2 (ja) 工作機械の幾何誤差測定方法
JP2014135068A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP2012033203A (ja) 数値制御工作機械
JP2012079358A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP2016154039A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP6642593B2 (ja) 加工装置の補正方法および加工装置
JP2003121134A (ja) 運動精度の測定方法
JPWO2011010397A1 (ja) 誤差補正方法及び工作機械
JP6623061B2 (ja) 工作機械及び工作機械の制御方法
JP7266511B2 (ja) 工作機械における対象物の位置計測方法及び位置計測システム、位置計測プログラム
JP2012104153A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5317627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees