JP3807847B2 - 工作機械の制御方法 - Google Patents

工作機械の制御方法 Download PDF

Info

Publication number
JP3807847B2
JP3807847B2 JP09677898A JP9677898A JP3807847B2 JP 3807847 B2 JP3807847 B2 JP 3807847B2 JP 09677898 A JP09677898 A JP 09677898A JP 9677898 A JP9677898 A JP 9677898A JP 3807847 B2 JP3807847 B2 JP 3807847B2
Authority
JP
Japan
Prior art keywords
base
axis
traveling plate
distance
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09677898A
Other languages
English (en)
Other versions
JPH11114777A (ja
Inventor
陽一 山川
浩充 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP09677898A priority Critical patent/JP3807847B2/ja
Publication of JPH11114777A publication Critical patent/JPH11114777A/ja
Application granted granted Critical
Publication of JP3807847B2 publication Critical patent/JP3807847B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Units (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械の制御方法に関するもので、特にパラレルリンク機構による工作機械の制御方法に関するものである。
【0002】
【従来の技術】
従来、パラレルリンク機構を用いた工作機械として、特開平9−66480号公報に開示される「工具ハンドおよびそれを用いた工作機械」がある。これによると、直交座標系で与えられる工具先端の位置および姿勢の指令値に対しこの指令値を各アクチュエータの出力値(各サーボモータの回転角)に変換している。
【0003】
即ち、図13の模式図に示すようなパラレルリンク機構による工作機械の場合、直交座標系の指令値(X1,Y1,Z1,A1,B1,C1)から出力座標系の指令値(U1,u1,V1,v1,W1,w1)への変換は、例えばu軸においては、所定角度Kで基台1に固定されているu軸(ボールネジ4u)の直交座標系における直線の方程式を求め、次に第1番目の指令値(X1,Y1,Z1,A1,B1,C1)にトラベリングプレート2が移動されたときのボールジョイント7uの座標Tuを直交座標系にて算出した後、この座標Tuを中心とした半径R(ロッド5uの長さR)の球の方程式を求め、更にこの球の方程式と先に求めた直線の方程式とから当該球と直線の交点を算出しこの交点とu軸の原点Ouとの距離を求めてこの値を出力座標系に変換された指令値u1とすることにより行われる。
【0004】
そして、この変換には、基台1に固定されるボールネジ4の所定角度Kやロッド5の長さRの他、基台1に対するボールネジ4の取付位置によるオフセット値、トラベリングプレート2に対するロッド5の取付位置によるオフセット値等の機構パラメータが必要であり、それぞれ設計値を用いるのが通常である。
【0005】
【発明が解決しようとする課題】
しかしながら、この種のパラレルリンク機構の工作機械によると、前述した機構パラメータは、ボールネジ4、ロッド5、ボールジョイント6、7等の機構部品の加工誤差や組付誤差等によって設計値と異なる値になり、少なからずとも誤差を有する。そのため、この機構パラメータの誤差が要因となって、直交座標系の指令値からアクチュエータの出力値への変換にも誤差を生じ、実際の工具先端の位置および姿勢制御に誤差が発生するという問題がある。
【0006】
この機構パラメータの誤差は、例えばマシニングセンタのような各軸(X,Y,Z)を重ね合わせた構成による機構であれば独立した各軸の位置決め誤差を測定することで比較的容易に求めることができるが、全ての機構パラメータの誤差の合成値が位置決め誤差となるパラレルリンク機構においては、単に位置決め誤差を測定しただけでは各機構パラメータを求めることはできない。また、工場出荷前の調整や客先での再調整等において、数十個に及ぶ全ての機構パラメータを極めて正確に、例えば10μm以内の誤差で測定することは現実的ではない。
【0007】
本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、パラレルリンク機構を高精度に制御し得る工作機械の制御方法を提供することにある。
【0010】
【課題を解決するための手段】
上述した目的を達成するため、請求項1の工作機械の制御方法では、外部に固定される基台と、この基台にパラレルリンク機構を介して保持されるトラベリングプレートと、このトラベリングプレートに取付けられる工具と、前記パラレルリンク機構を駆動する複数のアクチュエータと、直交座標系で与えられる指令値を前記アクチュエータの出力値に変換して前記アクチュエータを制御する制御装置と、を備え
前記制御装置
前記トラベリングプレートの位置および姿勢の指令値とこの指令値による駆動制御後の前記トラベリングプレートと所定点との距離を、前記トラベリングプレートに配設される治具と、前記所定点と前記治具との間に介在し、両者の距離を測定する測定装置とを用い、前記所定点として3点以上の点のそれぞれについて、前記工具軸線上の2点もしくは同一直線上にない3点との距離が測定された一次元測定値に基づいて、駆動制御の誤差を補正する機構パラメータを算出し、
直交座標系で与えられる指令値を、前記機構パラメータに基づき前記アクチュエータの出力値に変換し、
前記アクチュエータを制御する工作機械の制御方法であって:
前記機構パラメータが、前記距離をアクチュエータ座標と機構パラメータとの関数としてとらえられ、当該関数を機構パラメータについて全微分したときの偏微分係数が、当該機構パラメータの設計値近傍における当該関数の傾きとして数値計算により求められ、前記偏微分係数を当該傾きに置き換えた関数式を用いて算出されることを技術的特徴とする。
【0011】
また、請求項では、請求項において、前記一次元測定値は、前記トラベリングプレートに配設される治具と、前記所定点と前記治具との間に介在し、両者の距離を測定する測定装置とを用い、前記所定点として3点以上の点のそれぞれについて、前記工具軸線上の2点もしくは同一直線上にない3点との距離が測定されることを技術的特徴とする。
【0012】
さらに、請求項では、請求項において、前記パラレルリンク機構は、
前記基台に所定の傾斜角度αで放射状に固定され、2本ずつ等間隔に配置された6本のガイドと、
前記ガイドの長手方向に移動可能に各々のガイドに設けられた6つのスライドテーブルと、
前記6つのスライドテーブルを独立して移動させる駆動装置と、
一端が第1対偶を介して前記スライドテーブルの各々に連結され、他端が第2対偶を介して前記トラベリングプレートに連結される6本のロッドと、
からなることを技術的特徴とする。
【0013】
さらにまた、請求項では、請求項1又は請求項2において、前記機構パラメータは、
(1) 前記第1対偶の回転中心と第2対偶の回転中心の間の離隔量L、
(2) 前記基台に対する前記ガイドの垂直面内における傾斜角度α、
(3) 前記基台の厚さ方向基準位置から前記ガイドの基台固定位置までの離隔量B3、
(4) 前記基台の中心に垂直に位置する基台第1軸に直交しかつ前記ガイドの反基台方向に延びる基台第2軸から前記ガイドの基台固定位置までの離隔量B2、 (5) 前記基台第1軸および第2軸にそれぞれ直交する基台第3軸から前記ガイドの基台固定位置までの離隔量B1、
(6) 前記基台第2軸に対する前記ガイドの水平面内における傾斜角度β、
(7) 前記トラベリングプレートの厚さ方向基準位置から前記第2対偶の回転中心までの離隔量TP3、
(8) 前記トラベリングプレートの中心に垂直に位置するトラベリングプレート第1軸に直交しかつ前記ロッドの前記第1対偶側に延びるトラベリングプレート第2軸から前記第2対偶の回転中心までの離隔量TP2、
(9) 前記トラベリングプレート第1軸および第2軸にそれぞれ直交するトラベリングプレート第3軸から前記第2対偶の回転中心までの離隔量TP1、
のうちの少なくとも1つであることを技術的特徴とする。
【0014】
請求項1の発明では、直交座標系で与えられる指令値が駆動制御の誤差を補正する機構パラメータに基づきアクチュエータの出力値に変換され、その出力値により制御されるアクチュエータによってパラレルリンク機構が駆動される。即ち、
パラレルリンク機構を構成する機構部品に加工誤差や組付誤差等があっても、直交座標系で与えられる工具先端の位置および姿勢の指令値を各アクチュエータの出力値に高精度に変換することができ、パラレルリンク機構を高精度に制御することができる。
測定器として例えばDBB(ダブルボールバー)のみを用意すれば良く、また、測定が容易であるため、測定が短時間で完了する。
また、測定した距離rを基に解析的に算出される各機構パラメータを、制御装置の内部パラメータに置き換えることによって、直交座標系で与えられる工具先端の位置および姿勢の指令値を各サーボモータの出力値に高精度に変換することができる。これにより、ボールネジ、ロッド、ボールジョイント等の機構部品に加工誤差や組付誤差等が生じ設計値と異なる値になっても機械的に校正をすることなく、トラベリングプレートを高精度に制御でき、工場出荷前調整時や現地調整時における調整工数を大幅に削減する効果がある。
【0016】
請求項の発明では、3点以上のそれぞれの所定点についてトラベリングプレートとの距離を、工具軸線上の2点もしくは同一直線上にない3点との距離を測定する。即ち、3点以上の所定点からの距離を測定することで、トラベリングプレートのX、Y、Z座標が分かり、長さの異なる治具を交換し(或るいは、長さの異なる測定装置に交換)、更に該所定点からの距離を測定することで、トラベリングプレートのA軸、B軸を特定することができる。そして、トラベリングプレートを移動しながら上記距離を測定することで、駆動制御の誤差を補正する機構パラメータを算出することができる。
【0017】
請求項の発明では、工作機械のパラレルリンク機構は、基台に所定の傾斜角度αで放射状に固定されるガイドと、このガイドの長手方向に移動可能に設けられたスライドテーブルと、このスライドテーブルを独立して移動させる駆動装置と、一端が第1対偶を介してスライドテーブルの各々に連結され、他端が第2対偶を介してトラベリングプレートに連結されるロッドとからなる。したがって、パラレルリンク機構を構成するこれらの機構部品に加工誤差や組付誤差等があっても、直交座標系で与えられる工具先端の位置および姿勢の指令値を各アクチュエータの出力値に高精度に変換することができ、パラレルリンク機構を高精度に制御することができる。
【0018】
請求項の発明では、機構パラメータは、前記(1) から(9) までのうちの少なくとも1つであることから、これらのうちで少なくとも誤差を知りたい機構パラメータの数と同数の既知の位置および形状からなる突起部を設け、トラベリングプレートに取付けられた測定装置により、これらの突起部に対するトラベリングプレートの移動誤差を測定して駆動制御の誤差を補正する機構パラメータを算出することができる。
【0019】
【発明の実施の形態】
以下、本発明による工作機械の制御方法の実施形態について図を参照して説明する。
図1は本実施形態の工作機械10を適用した工作機械全体の構成を示した図である。工作機械10は門型のフレーム50の天井に支持柱51を介して取付けられており、この支柱51の下方にはテーブル52が位置している。そして、このテーブル52には、加工時には図示しない工作物が載置され、また後述する機構パラメータの測定時には測定治具60が載置される。
【0020】
工作機械10は、本来、図示された測定器40の代わりに図示しない工具を取付け、それを制御装置70による移動制御によって所望の位置に移動させ工作物を加工するものであるが、ここでは、工場出荷前調整時や現地調整時における工作機械10の第1実施形態、即ち、機構パラメータを算出するために用いる測定器40を取付けた工作機械10およびその制御方法について説明する。
【0021】
図2に示すように工作機械10は、主に、支持柱51によって外部に固定される基台11と、測定器40やドリル等の工具を取付けるトラベリングプレート12と、このトラベリングプレート12を前述の基台11に連結する6本のアーム14U、14u、14V、14v、14W、14wとから構成されている。(以下、特に断らない限り「14U、14u、14V、14v、14W、14w」等の記載を「14U−w」等と総称して記載する。)
【0022】
基台11は6角形状からなる平板部材であり、周囲に3組の支持部11Uと11u、11Vと11v、11Wと11wが等間隔に設けられており、この各支持部11U−wに後述するアーム14U−wが平行する2本を1組として3方向に放射状に取付けられている。
【0023】
各アーム14U−wの構成は、全て同様であるため、アーム14Uを代表して説明すると、アーム14Uはロッド15Uおよびガイド20Uとから構成されており、後述するようにロッド15Uの長さは所定長さLに設定されている。
ガイド20Uは、ベース22U、スライドテーブル26U、ボールネジ24Uおよびモータ位置検出用エンコーダ31Uが取付けられたサーボモータ25Uから構成されている。
【0024】
ベース22Uは断面形状がコ型をした部材であり、ベース22Uは基台11に対して所定角度α(例えば45度)に傾斜して放射状に基台11の支持部11Uに固定されている。そして、このベース22Uにはその長手方向にスライドテーブル26Uが摺動可能に支持されている。また、ベース22Uにはスライドテーブル26Uの図示しないナットと螺合するボールネジ24Uが回動可能に支持されており、ベース22Uに固定され前記ボールネジ24Uに連結されるサーボモータ25Uを駆動することにより、ボールネジ24Uを回動し、結果としてスライドテーブル26Uをベース22Uの長手方向に移動するようになっている。
【0025】
前述したスライドテーブル26Uにはロッド15Uがボールジョイント16Uにより連結され、ボールジョイント16Uを支点としてロッド15Uはスライドテーブル26Uに対して3次元方向に揺動可能となっている。また、ロッド15の他端はトラベリングプレート12Uにボールジョイント17Uにて連結され、ボールジョイント17Uを支点としてロッド15Uはトラベリングプレート12Uに対して3次元方向に揺動可能となっている。
【0026】
トラベリングプレート12は基台11よりも小さな6角形状からなる平板部材であり、前述したロッド15Uの他端がボールジョイント17Uにより同一平面上に連結されている。トラベリングプレート12の下部は測定器40やドリル等の工具を取付可能な形状を有している。
【0027】
引き続き、第1実施形態に係る測定方法について説明する。図3および図4に示すように、測定器40は、主に、トラベリングプレート12の下部に取付けられるダイヤルゲージ44、45、46、ミラー49と、トラベリングプレート12の上部に取付けられる角度計47、48とから構成されており、トラベリングプレート12のX軸、Y軸、Z軸方向の位置誤差量をダイヤルゲージ44、45、46によりそれぞれ測定し、A軸、B軸、C軸の角度誤差量を角度計47、48、ミラー49によりそれぞれ測定する。
【0028】
ダイヤルゲージ44、45、46は支持部41を介してトラベリングプレート12に取付けられており、その取付位置は、後述するように測定時のトラベリングプレート12が所定位置に移動したときにそれぞれの測定部44a、45a、46aが測定治具60の基準ピン63に当接可能な部位に設定されている。ダイヤルゲージ44により測定されたX軸方向の位置誤差量、ダイヤルゲージ45により測定されたY軸方向の位置誤差量、ダイヤルゲージ46により測定されたZ軸方向の位置誤差量は、後述する制御装置70にそれぞれ出力され機構パラメータを算出するために用いられる。
【0029】
ミラー49も支持部41を介してトラベリングプレート12に取付けられており、図3の紙面垂直方向から照射されるレーザ光を反射可能に位置している。ミラー49の鏡面49aに反射するレーザ光を図略のセンサにより受光することによってC軸の角度誤差を測定する。
【0030】
一方、トラベリングプレート12の上部に取付けられる角度計47、48は、トラベリングプレート12の傾き状態を検出することで、それぞれA軸、B軸の角度誤差量を測定している。そして、角度計47により測定されたA軸の角度誤差量および角度計48により測定されたB軸の角度誤差量もそれぞれ制御装置70に出力され、前述したセンサによるC軸の角度誤差量と併せて機構パラメータを算出するため用いられる。
【0031】
次に、図5を参照して測定治具60の構成を説明する。
測定治具60は、例えば円板状に形成されたプレート61とその面上に設けられる複数(例えば9本)の基準ピン63とから構成される。この基準ピン63が設けられる位置および基準ピン63の姿勢(長さ、太さ等の形状)は、所定の条件によって決められており、位置については図6による平面図に示すように例えば同一円周上に等間隔に配置される。
【0032】
ここで、基準ピン63の本数を9本に設定しているが、これは後述するように算出する機構パラメータの数が9個であることに起因しているため、諸条件から求める機構パラメータの数が6個であれば6本の基準ピン63により測定治具60を構成しても良い。
【0033】
引き続き、図6を参照して制御装置70の構成について説明する。
制御装置70は、CPU71、メモリ72、インタフェイス(I/F)73、74から構成されている。メモリ72には後述する機構パラメータ算出処理および実加工処理を実行するためのプログラムが記憶されている。インタフェイス73には、前述したサーボモータ25U−wを駆動するデジタルサーボユニット81〜86が接続されている。各デジタルサーボユニット81〜86はCPU71からの指令値に基づいてサーボモータ25U−wをそれぞれ駆動し、各モータ位置検出用エンコーダ31U−wからのに出力によってフィードバック制御を行う。そして、サーボモータ25U−wによって駆動されるスライドテーブル26U−wを所望の位置にそれぞれ移動することにより、結果として、6本のロッド15U−wを介して連結されるトラベリングプレート12を所望の位置および姿勢に制御するようになっている。
【0034】
インタフェイス74には、後述する加工データ等を入力するキーボード(KB)76、加工データや現在の工作機械10の状態等を表示する画像表示装置(CRT)77、加工データを記憶する外部記憶装置(例えばハードディスク)78が接続されている。
【0035】
次に、図7〜12を参照して機構パラメータを算出するための制御装置70による工作機械10の制御方法を説明する。
機構パラメータは各アーム14U−wのそれぞれの軸(U、u、V、v、W、w)につき9個ずつ存在するが、前述したように各アーム14U−wの構成は全て同様であるため、ここでは代表的にアーム14Uに着目して各機構パラメータを説明する。
【0036】
図8〜12に示すように、9個の機構パラメータは、(1) ボールジョイント16Uの回転中心とボールジョイント17Uの回転中心の間の離隔量L、(2) 基台11に対するガイド20Uの垂直面内における傾斜角度α、(3) 基台11の厚さ方向基準位置K1に対して、ガイド20Uが固定される支持部11Uの基準位置K2のオフセット量B3、(4) X軸に対するガイド20Uが固定される支持部11Uの基準位置K2のオフセット量B2、(5) Y軸に対するガイド20Uが固定される支持部11Uの基準位置K2のオフセット量B1、(6) X軸に対するガイド20の水平面内における傾斜角度β、(7) トラベリングプレート12の厚さ方向基準位置K4に対するボールジョイント17Uの回転中心K5のオフセット量TP3、(8) X軸に対するボールジョイント17Uの回転中心のオフセット量TP2、(9) Y軸に対するボールジョイント17Uの回転中心のオフセット量TP1である。
【0037】
したがって、機構パラメータの総数は9(L,α,β,B1〜3,TP1〜3)個×6(U,u,V,v,W,w)軸=54個になるため、工作機械10の出荷前の調整時や客先メンテナンスにおける再調整時において、これらの機構パラメータを10μm以内の誤差で測定して求めることは、極めて困難であり現実的ではない。
【0038】
そこで、第1実施形態では、所定数の測定値を基に解析的に機構パラメータを算出することにより、前述した問題を解決している。つまり、先に説明したトラベリングプレート12に取付けられた測定器40と、テーブル52に載置される測定治具60とにより、指令値に従って移動した工具先端(ここでは測定器40の各ダイヤルゲージの先端)の目標位置に対する駆動制御の誤差を実測し、その測定値から算出した各機構パラメータを制御装置70の内部パラメータに置き換えることによって、直交座標系で与えられる工具先端の位置および姿勢の指令値から各サーボモータ31U−wの出力値への高精度変換を可能にしている。
【0039】
ここで、測定器40による測定値から各機構パラメータを求める演算方法について説明する。まず、アクチュエータの座標から工具先端の座標に変換する数式を次の数1に示す。
【0040】
【数1】
Figure 0003807847
【0041】
この数1によって、工具先端を目的位置に移動させるにはアクチュエータ軸(ボール24U)上のスライドテーブル26Uをどこまで移動させなければならないかを求めることができる。
ここで、工具先端座標(X,Y,Z,A,B,C)を定数とした場合、数1は機構パラメータの関数として捉えることができるため、数1を次式の数2に変形する。
【0042】
【数2】
Figure 0003807847
【0043】
この数2は、各アクチュエータ軸(i=1〜6)ごとに成り立ち、また1軸に対して9個の機構パラメータが存在する。したがって、各アクチュエータ軸ごとの9個の変数を求めるために軸ごとに9元連立方程式を解く必要がある。そのため、上述したように測定治具60によって9本の基準ピン63を用いて9箇所の目標位置に対する駆動制御の誤差を実測するのである。これにより、9つの式が得られるため、アクチュエータ軸ごとに個々に9元連立方程式を解き、6軸分合計54個の機構パラメータを算出する。
【0044】
しかし、前記機構パラメータの関数は非線形方程式であるため、数2の数式からは直接、各機構パラメータを求めることはできない。そこで、数3に示すニュートン法による収束計算、即ち( ベクトルdin−ベクトルdin+1) の値が収束するまで数3の計算を繰り返すことにより機構パラメータを求める。
【0045】
【数3】
Figure 0003807847
【0046】
具体的には、機構パラメータの理想値をベクトルPi の初期値ベクトルPi1とし、ある点Xj におけるアクチュエータ座標の計算値(ベクトルP=ベクトルPi1)を次式の数4にし、測定器40による測定値をdi0とすると、
【0047】
【数4】
Figure 0003807847
【0048】
数3により、次式の数5が得られる。この数5の収束計算によりアクチュエータ軸1軸に対する機構パラメータが算出される。したがって、この収束計算を各軸(i=1〜6)ごとに行うことで、54個すべての機構パラメータを求めることができる。
【0049】
【数5】
Figure 0003807847
【0050】
なお、工具先端座標(X,Y,Z,A,B,C)のうち、工作機械10の使用条件から機能や性能等に影響しない座標が存在すれば、その座標に関する誤差は測定を省略することができる。例えばZ軸の回転方向がドリル(工具)の回転方向に対応する場合には、C軸の誤差は加工に影響を及ぼさないので特に測定する必要がなく、C軸の誤差は0であるとして上記の演算を行って機構パラメータを算出することができる。
【0051】
制御装置70による工作機械10の制御は、図7に示す機構パラメータ算出処理によって行われる。
まず制御装置70には、測定治具60に設けられた各基準ピンの直交座標系の指令値(X,Y,Z,A,B,C)が入力される(S21)。即ち、前述した基準ピン63においては9本分の指令値が入力される。次に、目標位置とする基準ピン63の番号を決める変数nの初期化処理を行い(S23)、続いて第1番目の基準ピン63の所定位置を目標位置にするため変数nを0から1にするインクリメント処理を行う(S25)。
【0052】
そして、第1番目の基準ピン63の直交座標系指令値を出力座標系指令値(U,u,V,v,W,w)に変換した出力指令値を各サーボモータ25U−wに出力する処理(S27)を行い、測定器40が取付けられたトラベリングプレート12を目標とする第1番目の基準ピン63の位置に移動させる。トラベリングプレート12の移動が完了すると、測定器40を構成するダイヤルゲージ44、45、46、角度計47、48およびセンサによって、トラベリングプレート12のX軸、Y軸、Z軸方向の位置誤差量およびA軸、B軸、C軸の角度誤差量をそれぞれ測定する(S29)。
【0053】
第1番目の基準ピン63による各誤差量の測定を終えると、測定を終えた基準ピンが最後の基準ピンであるか否かを判断する(S31)。ここでは、まだ第1番目の基準ピン63を測定したばかりであるから、この判断はNoとなり、前述したステップ25の変数nのインクリメント処理に処理を移行する。即ち、次の第2番目の基準ピン63に移るために変数nを2に変更する。
【0054】
第2番目の基準ピン63についても前述の第1番目の基準ピンと同様にステップ27、29の処理を行い、第2番目の基準ピン63による各誤差量を測定する。このようにして第2番目から第9番目までの基準ピン63の各誤差量を測定し終えたところで、最後の基準ピンになる第9番目の基準ピンにおいては先に説明したステップ31の判断処理がYesになるため、次のステップ33に処理を移行する。
【0055】
ステップ33では、第1番目から第9番目までの全ての基準ピンに対し測定した各誤差量から上述した各機構パラメータを算出する処理を行い、次いでこの算出した各機構パラメータを、予め設定されていた内部パラメータに置き換える処理を行い(S35)、全ての処理が終了する。
【0056】
なお、各機構パラメータの算出は、測定した各誤差をキーボード76から入力することにより、制御装置70によって行うことができる。この場合、算出した各機構パラメータを、メモリ72に記憶された内部パラメータに直接置き換えることができる。また、測定した各誤差を外部コンピュータに入力することにより、外部コンピュータによって各機構パラメータを算出するようにしても良い。この場合は、外部コンピュータにより算出された各機構パラメータをキーボード76から入力することによって、メモリ72に記憶された内部パラメータと書き換える必要がある。
【0057】
以上説明したように、既知の位置および姿勢からなる複数の基準ピン63に対して得られる各誤差量を基に解析的に算出される各機構パラメータを、制御装置70の内部パラメータに置き換えることによって、直交座標系で与えられる工具先端の位置および姿勢の指令値を各サーボモータ31U−wの出力値に高精度に変換することができる。これにより、ボールネジ24U−W、ロッド15U−w、ボールジョイント16U−w、17U−w等の機構部品に加工誤差や組付誤差等が生じ設計値と異なる値になっても機械的に校正をすることなく、トラベリングプレート12を高精度に制御でき、工場出荷前調整時や現地調整時における調整工数を大幅に削減する効果がある。
【0058】
引き続き、第2実施形態に係る工作機械の制御方法について図14〜図18を参照して説明する。この第2実施形態の工作機械及び制御装置の構成は、図1及び図6を参照して上述した第1実施形態とほぼ同様である。但し、第1実施形態では、図6を参照して上述したように制御装置70に測定器40が接続され、X、Y、Zの座標、A、B、C軸を測定して機構パラメータを推定したが、この第2実施形態においては、2点間の距離の変位を測定するDBB(ダブルボールバー)160が測定器40の代わりに接続される。
【0059】
図14は、第2実施形態の制御方法における測定の概要を示している。この第2実施形態では、2点間の距離の変位を測定するDBB160を用いて、トラベリングプレート12を移動しながら、固定点(ボールの中心)Sとの距離を測定することで、機構パラメータを推定する。
【0060】
図15(A)に断面を示すようにDBB160は、両端にボール(鉄球)164、166の配設されたバー162から成る。バー162は、一対のバー162A、162Bを収縮可能に組み合わせてあり、内部に収縮した変位量を出力する検出装置168が配設されている。この検出装置(DBB160)168からの変位量に基づき、制御装置70(図6参照)は、該バー162の長さ、即ち、ボール164の中心とボール166の中心との距離rを検出する。
【0061】
ここで、トラベリングプレート12に治具140を取り付け、図1に示すテーブル52に設けられた定盤(図示せず)にその位置が既知の固定点S1を設ける。この治具140と固定点S1の先端は、DBB160の鉄球164、166を保持できるように磁化されている。ここでDBB160を45°程度傾けることで、トラベリングプレート12のZ方向の誤差を距離rから検出できるようにする。この状態でトラベリングプレート12を動かし円を描かせる。この描かせる円(指令値)の平面図(図14を上側から見た図)を図15(B)に示す。そして、実際にトラベリングプレート12が描いた軌跡を図15(C)に示す。図中に示すように上述した機構パラメータの誤差量に応じて軌跡が指令値上の円形から外れる。このため、トラベリングプレート12の移動中の距離rを何ポイントか求め、後述するように測定した距離rから最小自乗法により、誤差が最小となるように機構パラメータを推定する。
【0062】
この測定について、図16、図17を参照して更に詳細に説明する。ここでは、その位置が既知の固定点として3点(固定点S1、S2、S3)を取り測定を行う。図17中に示すように固定点S1、S2、S3の内、固定点S1を工作機械10のX軸上に取り、固定点S2と固定点S3とをY軸と平行に取り、固定点S1、S2、S3が正三角形になるようする。ここでは、固定点S1、S2、S3を1辺300mmの正三角形とすることで、長さ300mmのDBB160にて位置を更正し、固定点間の距離を正確に設定できるようにしてある。
【0063】
図16(A)に示すように固定点S1、固定点S2、固定点S3からの距離を測定することで、トラベリングプレート12に取り付けられた第1の治具140の先端座標(X、Y、Z座標)が分かる。更に、第1の治具140を長さの長い第2の治具142に付け替えて、同様に、固定点S1、固定点S2、固定点S3からの距離を測定することで、トラベリングプレート12のA軸及びB軸の姿勢が分かる。
【0064】
まず、固定点S1に対して、短い第1の治具140の取り付けられた状態で図中に示すように円を描かせ、該円上の10ポイント程度における距離rを測定する。そして、固定点S2、固定点S3に対して、同様に短い第1の治具140の取り付けられた状態で円を描かせ、10ポイント程度において距離rを測定する。引き続き、治具を第2の長い治具142に付け替え、各固定点S1、S2、S3に対して、円を描かせ、10ポイント程度において距離rを測定する。この測定した距離rに基づき後述するように機構パラメータを推定する。
【0065】
なお、上述した6回の測定では、工具の回転方向の姿勢(C軸)することができない。これは、パラレルリンク式の工作機械においては、C軸の誤差は問題とならないので測定を省略したのである。ここで、C軸の誤差を推定する際には、図16(B)に示すような,同一直線上にない3箇所にDDB160の鉄球164を保持できるようにした治具143を用いて、それぞれの固定点S1、S2、S3とこの同一直線上にない3点との距離を測定することで、C軸の姿勢を測定することも可能である。
【0066】
上述した例では、長さの異なる治具を付け替えて測定を行っているが、工具軸線上の2点と各固定点S1、S2、S3との距離が測定できさえすればよいので、工具軸線上の2箇所にDBB160の鉄球164を保持できるようにした単一の治具を用いても同様に測定できる。更に、上述した例では、トラベリングプレート12に円を描かせた。これは、DBB160のバー162の伸縮範囲、即ち、測定できる距離の範囲が狭いため、距離を大きく変えることなく複数のポイントにおいて測定できるようにするためである。即ち、トラベリングプレート12を半円状、矩形状に移動させ、複数のポイントで距離の測定を行うことでも可能であるが、円形に移動させる方が測定は行い易いからである。更に、上述した例では、固定点S1、S2、S3を正確に正三角形を描かせるように配置することで、測定誤差を小さくしているが、固定点は、任意の位置に配置することができる。
【0067】
引き続き、距離rから機構パラメータを算出する方法について説明する。上述した第1実施形態では、ニュートン法を使用したが、第2実施形態では、Taylorの微分補正法を応用して機構パラメータを推定する。
まず、DBB160のデータは、距離(円の半径)rの一次元量である。そこで、半径rとアクチュエータ座標、機構パラメータとの関係を次の数6のように置く。なお、図14中に示すように、固定点側のボールの中心Sは、固定座標となるため、半径rはアクチュエータ座標と機構パラメータの関数となる。
【数6】
Figure 0003807847
【0068】
ここで、両辺をパラメータの変化について全微分すると次の数7のようになる。上述した第1実施形態と同様に、各アクチュエータ軸(i=1〜6)毎に9個の機構パラメータ(6×9=54)が存在している。
【数7】
Figure 0003807847
【0069】
dpi の推定値をepi とし、その計算結果とdrとの差を残差e 、∂g/∂piをαi とすると上記数7は、次の数8のように表すことができる。
【数8】
Figure 0003807847
【0070】
上記数6中のg の関数形は分からないため、機構パラメータを図17のグラフに示すように設計値(pi)の近傍で適当にふって(pi−Δp 、pi+Δp )、順変換を行い、線形に近似したときの傾きをαi とする。また、この値はアクチュエータ座標の値によっても異なるので、アクチュエータ座標の各点において逐次計算する。n個の測定点に対する残差の平方和をSeとすると、次の数9のように表すことができる。
【数9】
Figure 0003807847
【0071】
ここで各パラメータについて偏微分を行うと次の数10が成立する。
【数10】
Figure 0003807847
同様に他のパラメータについても計算できる。
【0072】
偏微分値を0とすると次の数11としてパラメータを表すことができる。
【数11】
Figure 0003807847
この数11から、各パラメータの誤差(機構パラメータ)を求める。即ち、上述した半径(距離)rのデータについて計算を繰り返し、機構パラメータの値を収束させる。
【0073】
この第2実施形態では、第1実施形態と測定方法と比較して測定器としてDBB160のみを用意すれば良く、また、測定が容易であるため、測定を短時間で完了できる利点がある。
【0074】
以上説明したように、第2実施形態の制御方法においては、測定器(DBB)160にて測定した距離rを基に解析的に算出される各機構パラメータを、制御装置70の内部パラメータに置き換えることによって、直交座標系で与えられる工具先端の位置および姿勢の指令値を各サーボモータ31U−wの出力値に高精度に変換することができる。これにより、ボールネジ24U−W、ロッド15U−w、ボールジョイント16U−w、17U−w等の機構部品に加工誤差や組付誤差等が生じ設計値と異なる値になっても機械的に校正をすることなく、トラベリングプレート12を高精度に制御でき、工場出荷前調整時や現地調整時における調整工数を大幅に削減する効果がある。
【0075】
【発明の効果】
請求項1の発明では、直交座標系で与えられる指令値が駆動制御の誤差を補正する機構パラメータに基づきアクチュエータの出力値に変換され、その出力値により制御されるアクチュエータによってパラレルリンク機構が駆動されるため、パラレルリンク機構を構成する機構部品に加工誤差や組付誤差等があっても、直交座標系で与えられる工具先端の位置および姿勢の指令値を各アクチュエータの出力値に高精度に変換することができる。これにより、パラレルリンク機構の加工誤差や組付誤差等に拘らずパラレルリンク機構を高精度に制御できる効果がある。
測定器として例えばDBB(ダブルボールバー)のみを用意すれば良く、また、測定が容易であるため、測定が短時間で完了する。
【0076】
請求項の発明では、3点以上の所定点からの距離を測定することで、トラベリングプレートのX、Y、Z座標が分かり、長さの異なる治具を交換し(或るいは、長さの異なる測定装置に交換)、更に該所定点からの距離を測定することで、トラベリングプレートのA軸、B軸を特定することができる。そして、トラベリングプレートを移動しながら上記距離を測定することで、駆動制御の誤差を補正する機構パラメータを算出することができる。
【0077】
請求項の発明では、3点以上の所定点からの距離を測定することで、トラベリングプレートのX、Y、Z座標が分かり、長さの異なる治具を交換し(或るいは、長さの異なる測定装置に交換)、更に該所定点からの距離を測定することで、トラベリングプレートのA軸、B軸を特定することができる。そして、トラベリングプレートを移動しながら上記距離を測定することで、駆動制御の誤差を補正する媒介変数を算出することができる。
【0078】
請求項3の発明では、工作機械のパラレルリンク機構は、基台に所定の傾斜角度αで放射状に固定されるガイドと、このガイドの長手方向に移動可能に設けられたスライドテーブルと、このスライドテーブルを独立して移動させる駆動装置と、一端が第1対偶を介してスライドテーブルの各々に連結され、他端が第2対偶を介してトラベリングプレートに連結されるロッドとからなる。したがって、パラレルリンク機構を構成するこれらの機構部品に加工誤差や組付誤差等があっても、直交座標系で与えられる工具先端の位置および姿勢の指令値を各アクチュエータの出力値に高精度に変換することができ、パラレルリンク機構を高精度に制御可能にする効果がある。
【0079】
請求項4の発明では、(1) 前記第1対偶の回転中心と第2対偶の回転中心の間の離隔量L、(2) 前記基台に対する前記ガイドの垂直面内における傾斜角度α、(3) 前記基台の厚さ方向基準位置から前記ガイドの基台固定位置までの離隔量B3、(4) 前記基台の中心に垂直に位置する基台第1軸に直交しかつ前記ガイドの反基台方向に延びる基台第2軸から前記ガイドの基台固定位置までの離隔量B2、(5) 前記基台第1軸および第2軸にそれぞれ直交する基台第3軸から前記ガイドの基台固定位置までの離隔量B1、(6) 前記基台第2軸に対する前記ガイドの水平面内における傾斜角度β、(7) 前記トラベリングプレートの厚さ方向基準位置から前記第2対偶の回転中心までの離隔量TP3、(8) 前記トラベリングプレートの中心に垂直に位置するトラベリングプレート第1軸に直交しかつ前記ロッドの前記第1対偶側に延びるトラベリングプレート第2軸から前記第2対偶の回転中心までの離隔量TP2、(9) 前記トラベリングプレート第1軸および第2軸にそれぞれ直交するトラベリングプレート第3軸から前記第2対偶の回転中心までの離隔量TP1、のうちの少なくとも1つが媒介変数であることから、これらのうちで少なくとも誤差を知りたい媒介変数の数と同数の既知の位置および形状からなる突起部を設け、トラベリングプレートに取付けられた測定装置により、これらの突起部に対するトラベリングプレートの移動誤差を測定して駆動制御の誤差を補正する媒介変数を算出することができる効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る工作機械の制御方法により制御される工作機械全体の機械的構成を示す斜視図である。
【図2】図1に示す工作機械の機械的構成を示す斜視図である。
【図3】測定器と基準ピンを示す説明図である。
【図4】図4に示すIV方向矢視による矢視図である。
【図5】測定治具を示す平面図である。
【図6】図1に示す工作機械の制御装置の構成を示すブロック図である。
【図7】第1実施形態の制御装置による各処理の流れを示すフローチャートである。
【図8】機構パラメータL、α、B1を示す説明図である。
【図9】機構パラメータTP1、TP2を示す説明図である。
【図10】図8に示すJ1部分を拡大した説明図で、機構パラメータB3を示すものである。
【図11】図8に示すJ2部分を拡大した説明図で、機構パラメータTP3を示すものである。
【図12】図10に示すXII 方向矢視による説明図で、機構パラメータβ、B2を示すものである。
【図13】パラレルリンク機構による工作機械の座標系を示す模式図である。
【図14】第2実施形態に係るパラレルリンク機構の測定を示す模式図である。
【図15】図15(A)はDBBの断面図であり、図15(B)はパラレルリンク機構の移動指令値に基づく軌跡であり、図15(C)のパラレルリンク機構の実際の移動軌跡である。
【図16】図16(A)、図16(B)は、第2実施形態に係るパラレルリンク機構の測定を示す模式図である。
【図17】第2実施形態に係るパラレルリンク機構における測定時の固定点の平面図である。
【図18】機構パラメータを順変換して線形に近似したグラフである。
【符号の説明】
10 工作機械
11 基台
12 トラベリングプレート
14U−w アーム(パラレルリンク機構)
15U−w ロッド(パラレルリンク機構)
16U−w ボールジョイント(パラレルリンク機構、第1対偶)
17U−w ボールジョイント(パラレルリンク機構、第2対偶)
20U−w ガイド(パラレルリンク機構)
22U−w ベース(パラレルリンク機構)
24U−w ボールネジ(パラレルリンク機構、アクチュエータ)
25U−w サーボモータ(アクチュエータ)
26U−w スライドテーブル(パラレルリンク機構)
40 測定器(測定装置)
44、45、46 ダイヤルゲージ(測定装置)
47、48 角度計(測定装置)
49 ミラー(測定装置)
63 基準ピン(突起部)
70 制御装置
140、142 治具
160 DBB(測定装置)
164、166 ボール
K1 (基台の厚さ方向基準位置)
K2 (ガイドの基台固定位置)
K4 (トラベリングプレートの厚さ方向基準位置)
K5 (第2対偶の回転中心)
S1、S2、S3 固定点

Claims (3)

  1. 外部に固定される基台と、この基台にパラレルリンク機構を介して保持されるトラベリングプレートと、このトラベリングプレートに取付けられる工具と、前記パラレルリンク機構を駆動する複数のアクチュエータと、直交座標系で与えられる指令値を前記アクチュエータの出力値に変換して前記アクチュエータを制御する制御装置と、を備え
    前記制御装置
    前記トラベリングプレートの位置および姿勢の指令値とこの指令値による駆動制御後の前記トラベリングプレートと所定点との距離を、前記トラベリングプレートに配設される治具と、前記所定点と前記治具との間に介在し、両者の距離を測定する測定装置とを用い、前記所定点として3点以上の点のそれぞれについて、前記工具軸線上の2点もしくは同一直線上にない3点との距離が測定された一次元測定値に基づいて、駆動制御の誤差を補正する機構パラメータを算出し、
    直交座標系で与えられる指令値を、前記機構パラメータに基づき前記アクチュエータの出力値に変換し、
    前記アクチュエータを制御する工作機械の制御方法であって:
    前記機構パラメータが、前記距離をアクチュエータ座標と機構パラメータとの関数としてとらえられ、当該関数を機構パラメータについて全微分したときの偏微分係数が、当該機構パラメータの設計値近傍における当該関数の傾きとして数値計算により求められ、前記偏微分係数を当該傾きに置き換えた関数式を用いて算出されることを特徴とする工作機械の制御方法。
  2. 前記パラレルリンク機構は、前記基台に所定の傾斜角度αで放射状に固定され、2本ずつ等間隔に配置された6本のガイドと、前記ガイドの長手方向に移動可能に各々のガイドに設けられた6つのスライドテーブルと、前記6つのスライドテーブルを独立して移動させる駆動装置と、一端が第1対偶を介して前記スライドテーブルの各々に連結され、他端が第2対偶を介して前記トラベリングプレートに連結される6本のロッドと、からなることを特徴とする請求項に記載の工作機械の制御方法。
  3. 前記機構パラメータは、(1) 前記第1対偶の回転中心と第2対偶の回転中心の間の離隔量L、(2) 前記基台に対する前記ガイドの垂直面内における傾斜角度α、(3) 前記基台の厚さ方向基準位置から前記ガイドの基台固定位置までの離隔量B3、(4) 前記基台の中心に垂直に位置する基台第1軸に直交しかつ前記ガイドの反基台方向に延びる基台第2軸から前記ガイドの基台固定位置までの離隔量B2、(5) 前記基台第1軸および第2軸にそれぞれ直交する基台第3軸から前記ガイドの基台固定位置までの離隔量B1、(6) 前記基台第2軸に対する前記ガイドの水平面内における傾斜角度β、(7) 前記トラベリングプレートの厚さ方向基準位置から前記第2対偶の回転中心までの離隔量TP3、(8) 前記トラベリングプレートの中心に垂直に位置するトラベリングプレート第1軸に直交しかつ前記ロッドの前記第1対偶側に延びるトラベリングプレート第2軸から前記第2対偶の回転中心までの離隔量TP2、(9) 前記トラベリングプレート第1軸および第2軸にそれぞれ直交するトラベリングプレート第3軸から前記第2対偶の回転中心までの離隔量TP1、のうちの少なくとも1つであることを特徴とする請求項1又は請求項2に記載の工作機械の制御方法。
JP09677898A 1997-08-11 1998-03-25 工作機械の制御方法 Expired - Fee Related JP3807847B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09677898A JP3807847B2 (ja) 1997-08-11 1998-03-25 工作機械の制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-228875 1997-08-11
JP22887597 1997-08-11
JP09677898A JP3807847B2 (ja) 1997-08-11 1998-03-25 工作機械の制御方法

Publications (2)

Publication Number Publication Date
JPH11114777A JPH11114777A (ja) 1999-04-27
JP3807847B2 true JP3807847B2 (ja) 2006-08-09

Family

ID=26437953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09677898A Expired - Fee Related JP3807847B2 (ja) 1997-08-11 1998-03-25 工作機械の制御方法

Country Status (1)

Country Link
JP (1) JP3807847B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727005B2 (ja) * 1999-09-24 2005-12-14 義昭 垣野 パラレルメカニズムを用いた工作機械の誤差補正方法
KR100471749B1 (ko) * 2002-11-06 2005-03-17 재단법인서울대학교산학협력재단 3자유도 병렬기구를 이용한 미세 운동기와 미세 부품 가공기
DE20303367U1 (de) * 2003-02-28 2003-07-24 Faude, Dieter, 71116 Gärtringen Roboter für Werkzeuge
AU2005211244B2 (en) * 2004-02-04 2010-02-04 Mazor Robotics Ltd Verification system for robot pose
JP4638327B2 (ja) 2005-10-17 2011-02-23 新日本工機株式会社 パラレルメカニズム装置、パラレルメカニズム装置のキャリブレーション方法、キャリブレーションプログラム、及び記録媒体
JP4626499B2 (ja) * 2005-11-25 2011-02-09 株式会社ジェイテクト パラレルメカニズム及びそのキャリブレーション方法
US7905765B2 (en) 2005-11-24 2011-03-15 Jtekt Corporation Parallel mechanism, calibration method for use in the same, and machine tool including the same
CN101947785A (zh) * 2010-08-30 2011-01-19 苏州博实机器人技术有限公司 一种可重构并联机器人
CN101947784A (zh) * 2010-08-30 2011-01-19 苏州博实机器人技术有限公司 一种可拆装模块化并联机器人
CN103624767A (zh) * 2013-04-27 2014-03-12 张家港诺信自动化设备有限公司 一种作业型并联机器人
CN103465256A (zh) * 2013-09-27 2013-12-25 苏州凯欧机械科技有限公司 一种新型大刚度空间定位机器人
JP6267086B2 (ja) * 2014-09-10 2018-01-24 ファナック株式会社 伝達角度算出方法、伝達角度補正装置、ロボットの制御方法およびロボットの制御装置

Also Published As

Publication number Publication date
JPH11114777A (ja) 1999-04-27

Similar Documents

Publication Publication Date Title
KR101158772B1 (ko) 수치제어 공작기계 및 수치제어 장치
US7503125B2 (en) Coordinate measuring method and device
US7676942B2 (en) Multi-axis positioning and measuring system and method of using
JP2510216B2 (ja) 産業用ロボットのセンサを校正するための方法
JP4660779B2 (ja) 移動装置の位置誤差評価方法およびその評価結果に基づく移動精度向上方法
US6587802B1 (en) Calibration device for a parallel kinematic manipulator
JP3807847B2 (ja) 工作機械の制御方法
JP2014215079A (ja) 幾何偏差測定方法、及び、幾何偏差計測装置
CN113618738B (zh) 一种机械臂运动学参数标定方法及系统
JP2002263973A (ja) 工作機械
WO1993008449A1 (en) Measuring the accuracy of multi-axis machines
JP2002273676A (ja) 工作機械の制御方法
JP2002096232A (ja) 工作機械の制御方法
JP2983941B2 (ja) 3次元自動計測装置用計測誤差補正方法
JP5963792B2 (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JPS63302310A (ja) 座標測定機の測定ボリューム内の点の絶対位置を決定する方法および装置
CN106796095B (zh) 操作坐标测量设备的方法、坐标测量设备和计算机程序
JP2012079358A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP2016154039A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JPH09237112A (ja) 誤差補正機能を備えた工作機械
JP2012104153A (ja) エラーマップ作成方法及び装置並びにエラーマップ作成機能を有した数値制御工作機械
JP5667437B2 (ja) ロボットの外部軸の計測方法、ロボットの教示データ作成方法、およびロボットのコントローラ
JPH0774964B2 (ja) ロボットの位置決め誤差補正方法
JP2018128350A (ja) 位置検出装置、ステージ装置、および形状測定装置
JPH0238913A (ja) ワークの寸法検査方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees