WO2008044546A1 - Polymer solid electrolyte, electrochemical device, and actuator element - Google Patents

Polymer solid electrolyte, electrochemical device, and actuator element Download PDF

Info

Publication number
WO2008044546A1
WO2008044546A1 PCT/JP2007/069281 JP2007069281W WO2008044546A1 WO 2008044546 A1 WO2008044546 A1 WO 2008044546A1 JP 2007069281 W JP2007069281 W JP 2007069281W WO 2008044546 A1 WO2008044546 A1 WO 2008044546A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
block
polymer block
ionic liquid
solid electrolyte
Prior art date
Application number
PCT/JP2007/069281
Other languages
English (en)
French (fr)
Inventor
Toshinori Kato
Hiroyuki Ohgi
Masayoshi Watanabe
Original Assignee
Kuraray Co., Ltd.
Yokohama National Univercity
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd., Yokohama National Univercity filed Critical Kuraray Co., Ltd.
Priority to KR1020097006966A priority Critical patent/KR101408612B1/ko
Priority to EP07829021A priority patent/EP2071584B1/en
Priority to JP2007558370A priority patent/JP5555407B2/ja
Priority to US12/444,461 priority patent/US8138246B2/en
Priority to AT07829021T priority patent/ATE544161T1/de
Publication of WO2008044546A1 publication Critical patent/WO2008044546A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/005Modified block copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a polymer solid electrolyte containing an ionic liquid and a specific block copolymer as essential components, and an electrochemical device including the polymer solid electrolyte as a constituent element, and thus to an actuator element. .
  • the electrochemical device contains a fluid liquid
  • the device may be physically used when used for a long period of time, when the device is heated from the outside for some reason, or due to equipment failure. It has been pointed out that the electrolyte may leak from the inside of the electrochemical device to the outside when it is damaged.
  • a polymer solid electrolyte in which a solid electrolyte such as lithium perchlorate is blended with a high molecule is known (see, for example, Patent Document 1).
  • a polyether polymer having high affinity with the lithium cation is often used. Since ionic conduction occurs in conjunction with the movement (relaxation) of the polymer chain, the ionic conductivity is low, and it is difficult to say that the performance is sufficient when used as an electrochemical device.
  • high polarity often acetonitrile or propylene carbonate
  • an organic solvent may be added. In this case, however, the danger of ignition “ignition” combustion is unavoidable, as described above.
  • solidification means a “confined” state or a “fixed” state.
  • thermoplastic solid polymer electrolyte one using a graft copolymer as a polymer is considered.
  • a comparative example of Patent Document 1 discloses a solid polymer electrolyte using lithium perchlorate as an electrolyte and a graft copolymer obtained by grafting a polyethylene glycol chain onto polyethylene as a polymer.
  • an ionic liquid is used instead of lithium perchlorate, there is a problem that the force s for obtaining a relatively high ionic conductivity, the mechanical strength is low, and the bleed out of the ionic liquid is likely to occur.
  • Piezoelectric actuators are known that expand and contract an element by applying a voltage of several volts to a ceramic piezoelectric element such as barium titanate and can control displacement in nanometers.
  • the ultrasonic type is known to be driven by generating a shift by a combination of ultrasonic vibration generated by a piezoelectric element or the like and frictional force.
  • the shape memory alloy type actuator changes its shape greatly depending on the temperature, and it operates by changing the temperature.
  • these actuators are made of inorganic materials such as metals and ceramics, so there are limits to flexibility and weight reduction, and the complicated structure makes it difficult to reduce the size! / And! / There is a point.
  • a polymer activator As an activator that can overcome the above problems, a polymer activator has attracted attention in recent years.
  • a polymer actuator has been devised that utilizes morphological changes caused by stimuli such as temperature changes, pH changes, and electric field application of hydrous polymer gels (see, for example, Patent Document 4).
  • stimuli such as temperature changes, pH changes, and electric field application of hydrous polymer gels
  • morphological changes of water-containing polymer gels due to various stimuli are generally very slow and the mechanical strength is low due to the non-uniform cross-linking structure of water-containing polymer gels. Improvement is needed.
  • Electrodes composed of ionic liquid, crystalline polymer, and single-walled carbon nanotubes were bonded to both sides of a solid polymer electrolyte composed of ionic liquid and fluorine-based crystalline polymer.
  • Polymer actuators have been reported (for example, see Non-Patent Document 4). Also reported is a polymer actuator in which a gold foil is bonded as an electrode to a solid electrolyte produced by mixing and curing an ionic liquid, a monomer, and a crosslinking agent (for example, Patent Document 6).
  • the fluorocrystalline polymer is inferior in ionic liquid retention, so when the ionic liquid from the polymer solid electrolyte bleeds out, There is a problem.
  • the ionic liquid is immobilized by crosslinking, the shape selectivity is low! / And! //.
  • Patent Document 1 JP 2004-98199 A
  • Patent Document 2 JP 2004-281147 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-32237
  • Patent Document 4 JP-A 63-309252
  • Patent Document 5 Japanese Patent Laid-Open No. 4 275078
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2005-51949
  • Non-Patent Document 1 Functional Chemistry Series of Electrons and Ions Vol. 2, “The Front Line of Large-Capacity Electric Double Layer Capacitors”, NT
  • Non-Patent Document 2 Journal of American Chemical Society, 127, 4976, 2005
  • Non-Patent Literature 3 Journal of Physical Chemistry, 109, 3886, 2005
  • Non-Patent Literature 4 Future Materials, Vol. 5, 10, 14, 2005
  • An object of the present invention is to provide a polymer solid electrolyte, more specifically, a polymer solid electrolyte containing a specific block copolymer and an ion liquid as essential components, and electricity using the polymer solid electrolyte.
  • the present invention relates to a chemical device, particularly an actuator element.
  • a polymer solid electrolyte containing a block copolymer that satisfies specific requirements and an ionic liquid as essential components has an ionic conductivity, heat resistance, liquid retention, and molding. It was found that the solid electrolyte was excellent, and the solid electrolyte was found to be suitable for use in an electrochemical device, particularly an actuator element, thereby completing the present invention.
  • the present invention relates to an ionic liquid (A) and a polymer block that is compatible with the ionic liquid (A).
  • a polymer solid comprising at least one (P) and a block copolymer (B) having at least one polymer block (Q) that is incompatible with the ionic liquid (A) as an essential component It relates to the electrolyte.
  • the ionic liquid (A) and polymer block (P) are compatible to form one phase (X), and the polymer It is preferable that the block (Q) forms a phase (Y) that is incompatible with the phase (X), and that the phase (X) and the phase (Y) have microphase separation.
  • the ionic liquid (A) is selected from at least one selected from organic cations represented by the following general formulas (I) to (V) and a halogen-containing anion, a mineral acid anion, and an organic acid anion. Force capable of using an ionic liquid composed of at least one kind of anion is preferred. An ionic liquid containing an imidazolium cation represented by the general formula (I) as a cation component is preferred.
  • Ethyl methyl imidazolium bis (trifluoro) Lomethanesulfonyl) imide EMITFSI
  • ethylmethylimidazolium bis (pentafluoroethanesulfoninole) imide EMIPFSI
  • BMITFSI butyl methyl imidazolium bis (trifluoromethanesulfonyl) imide
  • BMIPFSI bis (pentafluoroethanesulfonyl) imide
  • the polymer block (P) that constitutes the block copolymer (B) is an ester of (meth) acrylic acid and an alkenol having 1 to 3 carbon atoms; (meth) acrylic acid and 2 to 4 carbon atoms An alkylene glycol, a monoester with a 4 to 6 dialkylene glycol or a 6 to 9 trialkylene glycol; (meth) acrylic acid and an alkoxy alcohol having 2 to 4 carbon atoms Esters of (meth) acrylic acid and monoalkylene glycol or monoethinoleethenore of dialkylene glycol having 4 to 6 carbon atoms or trianoloxylene glycolenole having 6 to 9 carbon atoms; and (meth) acrylic acid and carbon It is preferably at least one homopolymer block or copolymer block selected from esters with a number 2 to 4 aminoalkanol.
  • the polymer block (Q) constituting the block copolymer (B) is a polymer block having an aromatic bur compound unit as a repeating unit; a crystalline polyolefin block; a methacryl having an alkyl group having 4 or more carbon atoms.
  • the block copolymer (B) is also a polymer block (P) composed of a polymer polyol component, and a polymer composed of a reaction product component of a bifunctional isocyanate and a chain extender.
  • Preferable polyurethane is made of body block (Q).
  • the polymer block (Q) is more preferably composed of a reaction product component of 4,4′-diphenylmethane diisocyanate and 1,4-butanediol.
  • the present invention also relates to an electrochemical device including the polymer solid electrolyte as a constituent element, and in particular, a molded body made of the polymer solid electrolyte and at least bonded to the molded body and insulated from each other.
  • the present invention relates to an actuator element composed of two electrodes, which can be bent or deformed by applying a potential difference between the two electrodes.
  • the polymer solid electrolyte of the present invention has an ionic liquid (A) and one or more polymer blocks (P) that are compatible with the ionic liquid (A), and is incompatible with the ionic liquid.
  • a block copolymer (B) having at least one polymer block (Q) is contained as an essential component.
  • the component consisting of the ionic liquid (A) and the polymer block (P) bears ionic conductivity !, and the component consisting of the polymer block (Q) acts as a physical crosslinking point, resulting in the ionic liquid. Since (A) is solidified, it can maintain its independence without introducing chemical crosslinking.
  • phase (X) consisting of the ionic liquid (A) and the polymer block (P) and the phase (Y) consisting of the polymer block (Q) are microphase separated! /
  • phase (X) and the phase (Y) perform different functions, both ion conductivity and shape retention can be achieved at a high level.
  • the solid polymer electrolyte of the present invention does not have chemical crosslinking, it can be formed into various shapes using various forming methods such as thermoforming, printing, and coating.
  • the electrochemical device using the solid polymer electrolyte described above, particularly the actuator element is derived from the fact that the solid polymer electrolyte is excellent in ion conductivity, liquid retention and moldability, and has high-speed operation. It is excellent in stability and flexibility in shape, and the actuator element can be applied to various uses such as artificial muscles.
  • the polymer solid electrolyte of the present invention has an ionic liquid (A) and one or more polymer blocks (P) that are compatible with the ionic liquid (A), and is non-phased with the ionic liquid (A).
  • a copolymer (B) having at least one polymer block (Q) that is soluble is contained as an essential component.
  • the ionic liquid (A) used in the present invention is also called room temperature molten salt or simply molten salt. It is a salt that exhibits a molten state in a wide temperature range including normal temperature (room temperature).
  • ionic liquids known in the art can be used.
  • a stable liquid that exhibits a liquid state at room temperature or as close to room temperature as possible is preferable.
  • a room temperature molten salt having an ionic conductivity of 0.001 S / cm or more at room temperature is preferably used.
  • Examples of the organic cation constituting the preferred ionic liquid used in the present invention include an imidazolium cation represented by the following general formula (I) and a general formula (II). List the pyridinium cation, the ammonium cation represented by the general formula (III), the phosphonium cation represented by the general formula (IV) and the sulfoyuium cation represented by the general formula (V). .
  • ⁇ 4 are each independently a hydrogen atom, 1 to carbon atoms; linear or partial ⁇ alkyl group having 10, 2 carbon atoms; the 10 linear or branched An alkenyl group, a group having 6 to 6 carbon atoms; a group selected from an aryl group having 15 carbon atoms, an aralkyl group having 20 carbon atoms and a (poly) oxyalkylene group having 230 carbon atoms, and R ′ is a straight chain having 16 carbon atoms.
  • n represents an integer of 0 or more and 5 or less, and two groups out of R 5 R 8 R 9 R 12 and R 13 R 1 5 and a central hetero atom are combined To form a ring structure
  • each alkyl group those having 16 carbon atoms are preferable; those having! To 4 are more preferable, specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n Butynole group and the like.
  • Each alkenyl group preferably has 26 carbon atoms, more preferably 24, and specifically includes a bur group, a 2-propenyl group, and the like.
  • Each aryl group includes a phenyl group, and each aralkyl group includes a benzyl group. It is done.
  • the (poly) oxyalkylene group has the general formula — (R lb — ⁇ ) H (where R lb is
  • a len group or a propylene group, and p represents an integer of 1 to 10).
  • Examples of the case where the two groups together form a ring structure include a case where a pyrrolidine ring or a piperidine ring is formed including the central nitrogen atom in the general formula (IV).
  • the imidazolium cation represented by the general formula (I) is preferable from the viewpoint of ionic conductivity and availability of the ionic liquid.
  • R 1 and R 2 in the general formula (I) are straight-chain or branched alkyl groups having 16 carbon atoms.
  • a linear or branched alkyl group having a number of 14 is more preferable.
  • R 1 and R 2 are more preferably different groups.
  • imidazolium cation represented by the general formula (I) include ethylmethylimidazolium cation (EMI + ), butylmethylimidazolium cation and the like, and ethylmethylimidazolium cation is most preferable.
  • EMI + ethylmethylimidazolium cation
  • butylmethylimidazolium cation and the like ethylmethylimidazolium cation is most preferable.
  • Examples of anions constituting the preferred ionic liquid used in the present invention include halogen-containing anions, mineral anions, organic acid anions, and the like.
  • Examples of halogen-containing anions and mineral anions include PF-CIO CF SO C F SO B
  • organic acid anions examples include R 17 SO R 17 C
  • R 17 is an alkyl group having 16 carbon atoms, an alkenyl group having 26 carbon atoms, 7 1 carbon atoms.
  • sulfonilimide-based anions such as (CF 2 SO 4) N (C 3 F 2 SO 4) N— are preferred.
  • Examples of the ionic liquid preferably used in the present invention include an ionic liquid comprising a combination of the above-described organic cation and anion. These may be used alone or in combination.
  • Examples of preferred ionic liquids include ethylmethyl Noreymidazolium bis (trifluoromethanesulfoninole) imide (EMITFSI), ethylmethinole imidazoliumbis (pentafluoroethanesulfonyl) imide (EMIPFSI), butylmethinomidazolium bis (trifluoromethanesulfoninole) Examples thereof include imide (BMITFSI), butylmethylolimidazolium bis (pentafluoroethanesulfonylimide) (BMIPFSI), and the like. Of these, EMITFSI and EMIPFSI are more preferred from the viewpoint of ionic conductivity of ionic liquids, and EMITFSI is even more preferred from
  • the block copolymer (B) used in the present invention has one or more polymer blocks (P) that are compatible with the ionic liquid (A) and are incompatible with the ionic liquid (A). It is a block copolymer having at least one polymer block (Q).
  • the block copolymer refers to a copolymer in which polymer blocks are linearly connected.
  • the ionic liquid (A) and the polymer block (P) are compatible, and the ionic liquid (A) and the polymer block (Q). Whether or not is incompatible is determined based on the following criteria! For any one of phase transition temperatures such as T a (a dispersion temperature) and Tg (glass transition temperature) of each component measured by dynamic viscoelasticity measurement or DSC measurement of block copolymer (B), Those derived from the P component are derived from the T and Q components
  • phase transition temperature measured by dynamic viscoelasticity measurement or DSC component of molecular solid electrolyte T, which is derived from phase (X) (phase consisting of polymer block (P) and ionic liquid (A)) (Y) T derived from (the phase consisting of polymer block (Q)), and ⁇ ⁇ ⁇ and
  • ⁇ ⁇ is defined as follows: In the above, T, T, T and ⁇
  • the polymer block (P) and the polymer block (Q) may be an addition polymerization type polymer block or a condensation polymerization type polymer block.
  • Examples of the polymer block (P) and the polymer block (Q) include olefin polymer blocks such as polyethylene, polypropylene, polybutene, poly-3-methyl-1-pentene, polyoctene, polyisobutylene; (4-methylstyrene), poly-methylstyrene), polyindene and other styrenic polymer blocks; poly (meth) acrylic acid, poly (meth) acrylic acid, poly (meth) acrylic acid blocks such as poly (vinyl acetate), polyvinyl alcohol and poly (butyral) Polymethyl (meth) acrylate, Polyethyl (meth) acrylate, Poly (2-hydroxy shetyl) (meth) acrylate, Poly (2-aminoethyl) (meth) acrylate, Polybenzyl (meth) acrylate, Poly (n Butylmetatalate), poly (i-butylmetatalate) (Meth) acrylate polymer blocks such as poly (
  • Vinyl polymer blocks such as (meth) acrylonitrile
  • Vinyl ketone polymer blocks such as polymethyl vinyl ketone, polymethyl isopropenyl ketone, polyethylene vinyl ketone, and polyethylene isopropenyl ketone
  • Acrolein polymer blocks such as (meth) acrolein; such as poly (meth) acrylamide, poly (N, N dimethyl) (meth) acrylamide, poly (N, N jetyl) (meth) acrylamide, poly (N isopropyleno) acrylamide (Meth) acrylamide polymer block and the like.
  • a polymer block formed by random copolymerization of the constituent components of the polymer block as described above for example, a random copolymer block such as a styrene-butadiene polymer block can also be used. wear.
  • a polymer block composed of monomers containing a polymer portion in the side chain such as polyalkylene glycol (meth) acrylate, polyalkylene glycol norevinino reetenole, polyethylene (meth) acrylate, polypropylene (meth) acrylate,
  • a polymer block containing such a monomer as a copolymer component can also be used.
  • the production method of the block copolymer ( ⁇ ) containing these constituent components is not particularly limited.
  • a living polymerization method such as a living anion polymerization method, a living cation polymerization method, or a living radical polymerization method, It is possible to cite a method by a reaction between polymers having functional groups at the molecular ends.
  • a conjugation compound is used as a constituent component, some or all of the carbon-carbon double bonds generated by polymerization are hydrogenated (hydrogenated)! There is no particular limitation on the hydrogenation method!
  • a block copolymer as a precursor is dissolved in an organic solvent, and hydrogen is reacted in the presence of a hydrogenation catalyst such as a Ziegler catalyst or a metalocene catalyst. It is possible to select a method to be performed.
  • a hydrogenation catalyst such as a Ziegler catalyst or a metalocene catalyst. It is possible to select a method to be performed.
  • the polymer block ( ⁇ ) constituting the block copolymer ( ⁇ ) is compatible with the ionic liquid ( ⁇ ) as the polymer block ( ⁇ ), and is not compatible with the ionic liquid ( ⁇ ) as the polymer block (Q)! As long as the conditions are satisfied, the polymer block ( ⁇ ) and the polymer block (Q) can be arbitrarily selected from the above-described examples of the polymer block.
  • the force is also preferably an ionic liquid ( ⁇ ⁇ ⁇ ) containing an imidazolium cation represented by the general formula (I) as a cation component, more preferably ethylmethyl.
  • EMITFSI Imidazolium bis (trifluoromethanesulfonyl) imide
  • EMIPFSI ethi Noremethylimidazolium bis (pentafluoroethanesulfoninole) imide
  • BMITFSI Butylmethylimidazolium bis (trifluoromethanesulfonyl) imide
  • BMITFSI Butylmethylimidazolium bis (pentafluoroe)
  • the polymer block (P) includes (meth) atalinoleic acid and carbon number.
  • esters with 1 or 2 alkanols (meth) acrylic acid and 2 to 4 carbon atoms, especially 2 or 3 alkylene glycols, 4 to 6 dialkylene glycols or carbon atoms Monoester with 6-9 trialkylene glycol; (meth) acrylic acid and 2-4 carbon atoms, especially 2 or 3 Esters with oxyxyl alcohol; esters of (meth) acrylic acid with mono- or mono-ethyl ethers of 4-6 carbon dialkylene glycols or 6-9 carbons trialkylene glycols; (meth) acrylic acid A homopolymer block of a monomer selected from an ester with an aminoalkanol having 2 to 4 carbon atoms, particularly 2 or 3 carbon atoms, particularly 2 or 3, an acetate butyl amide, etc., or a copolymer block of any combination can be used.
  • polymer block (P) include polymethyl (meth) acrylate block and polyethylene block and polyethylene block and polyethyl-
  • Poly (diethylene glycol monomethyl ether metatalylate) block polyvinyl acetate block, polyacrylamide block, and the like. These are preferable from the viewpoint of compatibility with ionic liquid (A) and ionic conductivity.
  • the force is also preferably an ionic liquid (A) having an imidazolium cation represented by the general formula (I) as a cation component, more preferably E MITFSI,
  • R represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group having 6 to 14 carbon atoms which may have 1 to 3 substituents; Ar represents 1 A polymer block having a repeating unit of at least one selected from aromatic bur compound units represented by (6 to C carbon atoms that may have 3 substituents; represents 14 aryl groups) Can be used.
  • examples of the aryl group in R and Ar include a phenyl group and a naphthyl group.
  • substituents for these aryl groups include alkyl groups having 1 to 4 carbon atoms, particularly 1 or 2, and alkoxy groups having 1 to 4 carbon atoms, particularly 1 or 2 carbon atoms.
  • the alkyl group in R preferably has 1 to 4 carbon atoms, particularly 1 or 2 carbon atoms, and examples thereof include a methyl group and an ethyl group, and a methyl group is most preferable.
  • Specific examples of the polymer block having the general formula (I) as a repeating unit include a polystyrene block, a poly (4-methylstyrene) block, and a polymethylstyrene) block, which are non-phased with an ionic liquid. From the viewpoints of solubility and shape retention of the polymer electrolyte.
  • the force is also preferably an ionic liquid having the imidazolium cation represented by the general formula (I) as the ionic liquid (A) as a cation component, more preferably E MITFSI,
  • An ionic liquid selected from EMIPFSI, BMITFSI, and BMIPFSI, more preferably EMITFSI or EMIPFSI, and most preferably EMITFSI may be a polymer block (Q), such as a crystalline polyolefin block (for example, a crystalline polyethylene block).
  • Polymer block of polycyclohexyl methacrylate block A polyisobornyl methacrylate block; n
  • a random copolymer block of butyl methacrylate or isobutyl methacrylate and isobornanol methacrylate can also be used, and these are non-phased with an ionic liquid. From the viewpoint of solubility and shape retention of the solid polymer electrolyte.
  • the block copolymer (B) may be a condensation polymerization type block copolymer! /.
  • the ionic liquid (A) preferably has an imidazolium cation represented by the general formula (I) as a cation.
  • Ionic liquid as component more preferably EMITFSI, EMIPFSI, BMITFSI and
  • a polymer block composed of a polymer polyol component can be mentioned. it can.
  • the column f of the high molecular weight polyester include polyester, polyester, polyester, polyol, polyester polycarbonate polyol, and the like.
  • the polyester polyol is, for example, a force for subjecting an ester-forming derivative such as a dicarboxylic acid or an ester thereof or an anhydride and a low molecular weight polyol to a direct esterification or transesterification reaction according to a conventional method, or ring opening of rataton. Manufacture by polymerizing.
  • dicarboxylic acid constituting the polyester polyol those generally used in the production of polyester can be used, and specific examples include succinic acid, glutaric acid, adipic acid, pimelic acid. , Suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, methylsuccinic acid, 2 methyldaltaric acid, 3 methyldaltaric acid, trimethyladipic acid, 2 methyloctanedioic acid, 3,8 dimethyldecanedioic acid, 3,7 dimethyldecanedioic acid Aliphatic dicarboxylic acids such as cycloaliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, and naphthalenedicarboxylic acid.
  • dicarboxylic acids may be used alone or in combination of two or more.
  • the low-molecular polyol constituting the polyester polyol those generally used in the production of polyester can be used, and a low-molecular diol is preferred.
  • the force S such as ⁇ -one-strength prolataton and ⁇ -methyl- ⁇ -valerolataton.
  • polyether polyol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, poly (methyltetramethylene glycol), and the like. These polyether polyols may be used alone or in combination of two or more.
  • polycarbonate polyol for example, those obtained by reacting the above-mentioned low molecular polyol with a carbonate compound such as dialkynocarbonate, dianolene carbonate, diarynocarbonate and the like can be used.
  • a carbonate compound such as dialkynocarbonate, dianolene carbonate, diarynocarbonate and the like
  • dialkyl carbonate examples include dimethyl carbonate and jetyl carbonate.
  • alkylene carbonate include ethylene carbonate
  • diaryl carbonate include diphenyl carbonate.
  • polyester polycarbonate polyol can be obtained, for example, by reacting the above-described low molecular polyol, dicarboxylic acid and carbonate compound simultaneously.
  • Polyester polycarbonate polyol is prepared by a method of synthesizing polyester polyol by the above-described method and reacting it with a carbonate compound, or by a method described above.
  • the polymer block ( ⁇ ) when the block copolymer ( ⁇ ) is polyurethane a polyester polyol block and a polyether polyol block are used. It is more preferable from the viewpoint of compatibility with on-liquid and ion conductivity.
  • the polymer polyol preferably has a number average molecular weight in the range of 500 to 8,000, and more preferably in the range of 700 to 5,000.
  • a polymer solid electrolyte excellent in mechanical performance and moldability can be obtained.
  • the force is preferably ionic liquid (A) having an imidazolium cation represented by the general formula (I) as a cation component.
  • ionic liquid (A) having an imidazolium cation represented by the general formula (I) as a cation component.
  • a polymer block (Q) when an ionic liquid selected from EMITFSI, EMIPFSI, BMITFSI and BMIPFSI, more preferably EMITFSI or EMIPFSI, most preferably EMITFSI is used, a bifunctional isocyanate or a bifunctional isocyanate is used.
  • a polymer block which is a reaction product component of isocyanate and a chain extender as a main component can be mentioned.
  • the bifunctional isocyanate used at this time is not particularly limited.
  • Aromatic diisocyanates such as diisocyanate and toluylene diisocyanate; hexamethylene diisocyanate, isophorone diisocyanate, 4, aliphatic or cycloaliphatic diisocyanate, and the like.
  • These bifunctional isocyanates may be used alone or in combination of two or more.
  • 4,4′-diphenylmethane diisocyanate is preferably used from the viewpoint of reducing compatibility with the ionic liquid.
  • isocyanates that is, monofunctional isocyanates and trifunctional isocyanates or higher polyisocyanates may be used in combination as long as the effects of the present invention are not impaired.
  • the ratio of other isocyanates to the total isocyanate is preferably 5% by mass or less.
  • the chain extender to be used is not particularly limited, but a low molecular weight compound having a molecular weight of 300 or less having 2 or more, particularly 2 active hydrogen atoms capable of reacting with an isocyanato group in the molecule.
  • ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4 bis (/ 3-hydroxyethoxy) benzene, 1,4-cyclohexanediol, bis ( / 3—Hydroxyethinole) diols such as terephthalate and xylylene glycol; hydrazine, ethylenediamine, propylenediamine, xylylenediamine, isophoronediamine, piperazine and its derivatives, phenylenediamine, tolylenediamine And diamides such as adipic acid dihydrazide and isophthalic acid dihydrazide; and amino alcohols such as aminoethyl alcohol and aminopropyl alcohol.
  • These low molecular compounds may be used alone or in combination of two or more.
  • the block copolymer (B) is a polyurethane
  • the polymer block (Q) is composed of 4,4'-diphenylmethane diisocyanate and 1,4 butanediol.
  • the reaction product block is more preferable from the viewpoints of incompatibility with the ionic liquid (A) and shape retention of the polymer solid electrolyte.
  • the mixing ratio of each component is appropriately determined in consideration of the performance of the target polyurethane or high-molecular solid electrolyte.
  • the ratio is determined such that the isocyanate group contained in the bifunctional isocyanate is from 0.9 to 1.2 moles per mole of active hydrogen atoms contained in the polymer polyol and chain extender. It is preferable to use each component.
  • the production method of polyurethane is not particularly limited, and the above-mentioned polymer polyol, difunctional isocyanate and chain extender are used, and a known urethanization reaction technique is used to perform the prepolymer method and the one-shot method. You may manufacture either. Among them, it is preferable to perform melt polymerization in the substantial absence of a solvent, and continuous melt polymerization using a multi-screw extruder is particularly preferable.
  • block copolymer (B) other than those described above, for example, a block copolymer of a thermoplastic polyurethane (TPU) and another polymer, a polyester-based thermoplastic elastomer (TPEE; for example, Aromatic polyester block as hard segment, soft segment As an aliphatic polyether block or a polyester block), a polyamide-based thermoplastic elastomer (TP AE; for example, an aromatic polyamide block as a node segment, an aliphatic polyether block as a soft segment, or For example, those using a polyester block).
  • TPU thermoplastic polyurethane
  • TPEE polyester-based thermoplastic elastomer
  • TP AE polyamide-based thermoplastic elastomer
  • the block copolymer (B) substantially comprises polymer blocks (P) and (Q).
  • Block copolymer (B) The chain structure of polymer blocks (P) and (Q) is not particularly limited.
  • Q -PQ triblock copolymer and Q p Q p Q pentablock copolymer are preferred from the viewpoint of mechanical strength of the obtained polymer solid electrolyte. From the viewpoint of ease of production, QPQ A triblock copolymer is more preferred.
  • block copolymer (B) is polyurethane, TPEE or TPAE, (Q
  • P) type multi-block copolymers are more preferred. Where n is any natural number.
  • the polymer block (P) may be (Ql), (Q2), (Pl), ( ⁇ 2), ( ⁇ 3) (03) ⁇ ⁇ ⁇ ⁇ (Qy) and multiple types! / Where y is an arbitrary natural number.
  • y is an arbitrary natural number.
  • the polymer block (P), (Pl), (P2), (P3)... ( ⁇ ) may be mutually compatible or non-compatible.
  • the polymer block (Q), (Ql), (Q2), (Q3)-(Qy) may be compatible with each other or non-compatible.
  • the polymer solid electrolyte dynamics that it is preferable that there is only one type of polymer block (P) because the resulting polymer solid electrolyte has stable ionic conductivity.
  • the polymer block (Q) is preferably one or two kinds.
  • the mass fraction of the polymer block (P) in the block copolymer (B) is not particularly limited, but is 95% by mass or less from the viewpoint of the mechanical strength of the obtained polymer solid electrolyte.
  • the power S is preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the mass fraction of the polymer block (P) is preferably 5% by mass or more, more preferably 10% by mass or more, It is still more preferable that it is 20 mass% or more.
  • the molecular weight of the block copolymer (B) is not particularly limited, but the number average molecular weight is preferably ⁇ 1 000—2, 000, 000, more preferably ⁇ 5,000—1, 000,000, even more preferably 10,000-500,000.
  • the number average molecular weight is less than 1,000, the block copolymer (B) and the resulting polymer solid electrolyte are inferior in mechanical strength, and when the number average molecular weight exceeds 2,000,000, The viscosity of the block copolymer (B) and the resulting polymer solid electrolyte increases, resulting in poor handling.
  • the block copolymer (B) is blended with 1 part by mass of the ionic liquid (A).
  • the amount is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, from the viewpoint of the mechanical strength of the polymer solid electrolyte.
  • the blending amount of the ionic liquid (A) with respect to 1 part by mass of the block copolymer (B) is preferably 0.1 parts by mass or more. More preferably, it is at least 5 parts by mass.
  • the solid polymer electrolyte of the present invention may contain other components other than the ionic liquid (A) and the block copolymer (B).
  • the other components are not particularly limited as long as they do not detract from the spirit of the present invention.
  • other resins, plasticizers, organic solvents, redox pairs, fillers, pigments, dyes, salts, and the like can be used. These may be used alone or in combination of two or more.
  • the amount used is not particularly limited, but generally it is within the range of 5 to 300 parts by mass as the total of other components with respect to 100 parts by mass of the high molecular solid electrolyte, but the upper limit is preferably 30 parts by mass. Or less, more preferably 20 parts by mass or less.
  • the ionic liquid (A) and the polymer block (P) are dissolved to form one phase ( It is possible to form a polymer (X), and the polymer block (Q) forms a phase (Y) that is incompatible with the phase (X) comprising the ionic liquid (A) and the polymer block (P).
  • the phase (Y) acts as a physical cross-linking point in the polymer solid electrolyte, maintains the overall shape, and improves the mechanical strength.
  • the softening point of the polymer block (Q) forming the phase (Y) is preferably 60 ° C or higher. More preferably, the temperature is 80 ° C or higher, and even more preferably 100 ° C or higher. In addition, there is no particular limitation on the upper limit of the softening point of the polymer block (Q)!
  • the softening point is preferably 300 ° C or less, more preferably 200 ° C or less. Preferably it is 150 ° C or less, more preferable than force S.
  • the softening point as used herein means that the dispersion peak temperature is stored when the polymer block (Q) is amorphous, and the polymer block (Q) is stored rapidly in the dynamic viscoelasticity measurement when it is crystalline. It refers to the temperature at which the elastic modulus decreases (hereinafter sometimes referred to as the flow starting point).
  • Phase (X) and phase ( ⁇ ) are microphase-separated. ! /, I like to do it! / ...
  • micro-phase separation as described above, the functional sharing between the physical crosslinking point phase (phase ( ⁇ )) and the phase (X) where ion conduction occurs is clarified.
  • phase ( ⁇ ) floats in the sea of the phase (X) to form a micro phase separation (phase ( ⁇ ) is a sphere, cylinder or gyroidally).
  • phase (Y) and phase (X) form a lamellar structure, or phase (X) is a micro phase separation structure floating in the sea of phase (Y), phase (X) is cylindrical or gyroidal It is preferable to form a phase-separated structure.
  • the method for producing the solid polymer electrolyte of the present invention is not particularly limited.
  • a method of mechanically kneading the components, a method of removing the solvent after dissolving the ionic liquid (A), the block copolymer (B) and other components in the case of use in an appropriate solvent, a block copolymer A method of impregnating (B) with the ionic liquid (A) can be mentioned. These can be selected appropriately according to the purpose.
  • the solid polymer electrolyte of the present invention is excellent in self-supporting property, mechanical strength, liquid retention and ionic conductivity, the electrolyte for primary and secondary batteries, the electrolyte for electric double layer capacitor, the redox capacitor (SiC) Electrolyte for fuel cell, electrolyte for MEA, binder for secondary battery electrode, binder for electric double layer capacitor electrode, binder for redox capacitor electrode, electrolyte for dye-sensitized solar cell, actuator element It is useful as an electrolyte. In particular, it is promising as an electrolyte for an actuator element because of its excellent liquid retention and mechanical strength.
  • the actuator element of the present invention comprises a molded body made of the above-described polymer solid electrolyte and at least two electrodes joined to the molded body and insulated from each other, and by providing a potential difference between the two electrodes. Curvature and deformation can occur.
  • a molded body made of a solid polymer electrolyte there are no particular restrictions on the method for producing a molded body made of a solid polymer electrolyte.
  • an extrusion molding method, an injection molding method, a compression molding method, a roll molding method, or a cast film after dissolving in an appropriate solvent examples thereof include a method and a method of forming a film by coating. These can be appropriately selected according to the shape of the target molded article.
  • the electrode material is not particularly limited! /, For example, carbon materials such as activated carbon, carbon black, single-walled single-bonn nanotubes, multi-walled carbon nanotubes, vapor-grown carbon fibers; gold, platinum, iridium, Noble metals such as noradium, ruthenium and silver; base metals such as copper and nickel; ruthenium oxide (RuO), titanium oxide (TiO), tin oxide (SnO), dioxide
  • Metal oxides such as ⁇ ); and ⁇ -conjugated conductive polymers such as polyacetylene, polypyrrole, polyaniline, polythiophene, and derivatives thereof.
  • ⁇ -conjugated conductive polymers such as polyacetylene, polypyrrole, polyaniline, polythiophene, and derivatives thereof.
  • carbon materials noble metals, and conjugated conductive polymers. These may be used alone or in combination.
  • the electrode formation method is not particularly limited, and examples thereof include a vacuum deposition method of metals; a sputtering method of metals; an electrolysis method of metals; an electroless plating method of metals; Ink with the above electrode material dissolved or dispersed in a binder
  • examples thereof include a method of coating on a solid electrolyte; a method of bonding a polymer solid electrolyte and a separately prepared electrode sheet or metal foil by pressure bonding or welding.
  • the ink coating method and the welding method are preferable from the viewpoint of ease of production. These methods may be combined.
  • force S can be used to describe a method in which a metal is deposited by vacuum deposition after bonding electrode sheets made of carbon materials.
  • the shape of the actuator element of the present invention is not particularly limited, and examples thereof include membranes, films, sheets, plates, fibers, rods, cubes, cuboids, spheres, rugby balls, and complex shapes. These may be appropriately selected according to the purpose of use.
  • the thickness of the actuator element is not particularly limited as long as it can function as an actuator. For example, when the shape is a film, it is preferable that electrodes are formed on both sides of the film. the thickness from the point of view of the resistance better equipment film itself is 10_ 6 ⁇ ;! CT 1 !!! arbitrariness preferred to be in the range of.
  • the actuator element of the present invention is essentially a piezoelectric element, it can be used as various elements including the actuator element.
  • elements other than the actuator element can be used as sensor elements for detecting pressure, force, displacement, and the like.
  • the element When used as an activator element, the element causes an action by applying an electric field to electrodes that are insulated from each other.
  • the voltage generated when the element is deformed is sensed by connecting an electrode and a voltmeter that are insulated from each other.
  • the actuator element of the present invention can be operated in air, water, vacuum, and organic solvent. Moreover, you may seal suitably according to a use environment. Examples of the sealing material include various resins and metals that are not particularly limited.
  • Solvent heavy-mouthed form (block copolymer) or heavy dimethyl sulfoxide (ionic liquid)
  • a test piece of length X width X thickness 20 mm X 5 mm X 1 mm was cut out from the polymer solid electrolyte sheet, and a wide area dynamic viscoelasticity measuring device (DVE-V4 Using a Leos Spectra 1), the measurement was conducted in the tension mode (frequency 11 Hz) and the heating rate 3 ° C / min.
  • DVE-V4 wide area dynamic viscoelasticity measuring device
  • the loss tangent peak temperature transition from the glass state to the liquid state
  • poly (vinylidene fluoride ran-hexafluoro) described later the temperature at which the storage elastic modulus suddenly decreases is taken as the starting point of flow accompanying crystal melting. Observed.
  • a small amount of polymer or solid polymer electrolyte was taken and measured using a DSC-822e manufactured by Mettler. In the measurement, the temperature was raised to 30 ° C / min to room temperature and above, and the heat history was erased by holding for 5 minutes. Thereafter, the temperature was lowered to ⁇ 100 ° C. at 10 ° C./min. — The process of holding at 100 ° C for 5 minutes and then increasing the temperature to 150 ° C at 10 ° C / min was observed.
  • the obtained solid polymer electrolyte was visually checked for the presence or absence of bleed out of the ionic liquid (A) from the electrolyte, and judged according to the following criteria.
  • an actuator element cut to a size of 2 mm x 7 mm was sandwiched between 2 mm in the length direction with copper electrodes, and 5 mm in length was taken out into the air as a measurement cell.
  • Working electrode (2 terminals for potential control and current control) from a potentiostat (“HA-301” manufactured by Hokuto Denko) connected to a copper electrode on one side with a function generator (“HB-104” manufactured by Hokuto Denko)
  • the counter electrode and the reference electrode were connected to the other copper electrode.
  • the cell is fixed, and a potential of ⁇ 1.5 V is applied between the electrodes on both sides of the actuator element.
  • the laser displacement meter (manufactured by Keyence Corporation) operates at a position 4 mm from the element electrode fixing part.
  • Styrene Special grade styrene purchased from Kishida Chemical Co., Ltd. was contacted with alumina to remove the polymerization inhibitor, and it was used after sufficiently publishing with nitrogen to remove dissolved oxygen.
  • Methyl acrylate Contacted with a special grade methyl acrylate purchased from Kishida Chemical Co., Ltd. to remove the polymerization inhibitor by contacting with Zeolum, and thoroughly used nitrogen publishing to remove dissolved oxygen before use. .
  • Ethyl atalylate Contact a zeolite with a special grade ethyl acrylate, purchased from Kishida Chemical Co., to remove the polymerization inhibitor, and thoroughly publish nitrogen before use to remove dissolved oxygen. Using.
  • Methoxyethyl attalylate contact with zeolum to remove methoxyethyl attalylate purchased from Wako Pure Chemical Industries, remove the polymerization inhibitor, and thoroughly publish with nitrogen before use to dissolve dissolved oxygen. Was used after removing.
  • Diethylene glycol monomethyl ether metatalylate Diethylene glycol monomethyl ether metatalylate purchased from Tokyo Chemical Industry Co., Ltd. was purified by distillation under reduced pressure in the presence of calcium hydride.
  • i-Butylmetatalylate i-Butylmetatalylate purchased from Tokyo Kasei Kogyo Co., Ltd. is contacted with Zeolum to remove the polymerization inhibitor, and sufficiently oxygenated to publish dissolved oxygen before use Used after removal.
  • IB-X manufactured by Kyoeisha Chemical Co., Ltd. was purchased and purified by distillation under reduced pressure in the presence of hydrogenated calcium.
  • Tetrahydrofuran A product obtained by purifying a special grade tetrahydrofuran purchased from Kishida Chemical Co., Ltd. by distillation in the presence of sodium monobenzophenone ketyl.
  • 1,1-diphenylethylene 1,1-diphenylethylene purchased from Aldrich was purified by distillation under reduced pressure in the presence of calcium hydride.
  • Lithium chloride Lithium chloride (99. 998%) purchased from Aldrich was used as it was.
  • (13) a, a'-Dibu-mouthed p-xylene; ⁇ , ⁇ , -Dibromo-xylene purchased from Aldrich was diluted with tetrahydrofuran and used as a 0.095 ⁇ solution.
  • Acetonitrile A special grade acetonitrile obtained from Kishida Chemical Co., Ltd. was brought into contact with Zeorum and thoroughly used for nitrogen publishing to remove dissolved oxygen before use.
  • Copper bromide (I) Special grade copper bromide (I) manufactured by Wako Pure Chemical Industries, Ltd. was used as it was.
  • Copper chloride (I) Special grade copper chloride (I) manufactured by Wako Pure Chemical Industries, Ltd. was used as it was.
  • Copper chloride (II) Special grade copper chloride (II) manufactured by Wako Pure Chemical Industries, Ltd. was used as it was.
  • HMTETA Hexamethinoretriethylenetetramine
  • 1,1,4,7,10,10 Hexamethyltriethylenetetramine purchased from Anole Doritzi It was.
  • Jetyl meso 2,5 dibromoadipate Jetinole meso-2,5 dibromoadipate purchased from Aldrich was used as it was.
  • Toluene Special grade toluene purchased from Kishida Chemical was brought into contact with Zeolum and thoroughly used for nitrogen publishing to remove dissolved oxygen before use.
  • Promotetan Promotetan purchased from Tokyo Chemical Industry Co., Ltd. was used as it was.
  • Lithium bis (trifluoromethylsulfonyl) imide Lithium bis (trifluoromethylsulfonyl) imide purchased from Tokyo Chemical Industry was used as it was.
  • Cyclohexane A special grade cyclohexane purchased from Kishida Chemical Co., Ltd. was brought into contact with Zeolum and thoroughly used for nitrogen publishing to remove dissolved oxygen before use. (28) Butylmethylimidazolium tetrafluoroborate (BMIBF); Tokyo Chemical Industry
  • Thermoplastic polyurethane (1) “Kuramylon U3190” manufactured by Kuraray (from polyester polyol consisting of 3 methyl 1,5-pentanediol and adipic acid, 4,4'-diphenylmethane diisocyanate and 1,4 butanediol
  • Thermoplastic polyurethane melt viscosity at 200 ° C. 15. OkPa 's) was used as it was.
  • Thermoplastic polyurethane (2) “Kuramylon U8180” made by Kuraray (from polyester polyol consisting of 3 methyl 1,5 pentanediol and adipic acid, 4,4'-diphenylmethane diisocyanate and 1,4 butanediol
  • Thermoplastic polyurethane melt viscosity at 200 ° C. 18. OkPa's) was used as it was.
  • Activated carbon ⁇ -50FJ manufactured by Kuraray Chemical Co. was used as it was.
  • Acetylene black “Denka Black” manufactured by Denki Kagaku was purchased and used as it was.
  • the polymer was reprecipitated in a large excess of methanol, and the polymer was filtered and collected. The polymer was vacuum dried at 50 ° C. for 24 hours to remove residual solvent and water.
  • the polymer block (P) is converted into a polymethylmethacrylate (PMMA) block.
  • HMTETA in acetonitrile solution (concentration: 0.3 mol / L) 2.08 mL (0.62 mmol as HMTETA) was added, and polymerization was further performed for 5 hours.
  • a polymer block (P) was obtained as a polymethyl acrylate (PMA) block, sometimes 10).
  • PMA polymethyl acrylate
  • polystyrene b polyethylene acrylate—b polystyrene (hereinafter B — There was a case of 11).
  • the polymer was reprecipitated in a large excess of methanol, and the polymer was filtered and collected. The polymer was vacuum dried at 50 ° C. for 24 hours to remove residual solvent and water.
  • the polymer block (Q1) is polystyrene
  • the polymer block (P) is polydiethylene glycol monomethyl ether methacrylate
  • the polymer block (Q2) is poly (i-butyl methacrylate-ran isobol).
  • a 500 mL separable flask was equipped with a mechanical double stirrer equipped with a stirring blade, a three-way cock and a cooling pipe. To this, 250 mL of cyclohexane and 50 mL (0.58 mol) of 1-methylimidazo monore were charged. 1 Methylimidazole was not completely dissolved in cyclohexane and was separated into two phases. While stirring this solution, 130 mL (l. 74 mmol) of promoethane was added dropwise at room temperature over 1 hour. After completion of dropping, the mixture was heated to 80 ° C and refluxed for 24 hours. As the reaction progressed, a white solid precipitated.
  • ⁇ , L / D 36; divided into three zones (front, center, and rear) of the heating zone) and fed to the front of the heating zone to carry out polyurethane forming reaction by continuous melt polymerization at 260 ° C did.
  • Polystyrene with hydroxyl group at one end b Hydrogenated poly (butadiene / isoprene) b Polystyrene (Kuraray Septon HG-252) at 100g / min, continuously fed to the center of the above twin screw extruder The reaction mixture was reacted with the polyurethane-forming reaction described above.
  • distearyl phosphate is added to the rear part of the above twin screw extruder (feed amount: 13 mg / min), and the resulting melt is continuously extruded into water in the form of a strand, followed by a pelletizer.
  • the pellet was obtained by cutting.
  • the obtained pellets were dehumidified and dried at 80 ° C. for 4 hours to obtain polystyrene b hydrogenated poly (butadiene / isoprene) b polystyrene mono b-TPU.
  • a 500 mL separable flask was equipped with a mechanical double stirrer equipped with a stirring blade, a three-way cock and a condenser.
  • 200 mL of tonoleene, 33 mL (288 mmol) of styrene and (polyethylene glycol) methyl ether metatalylate [ester of poly (ethylene glycol) monomethyl ether) and methacrylic acid] 15 g (number average molecular weight 1100) 13.6 mmol) was added to give a solution.
  • a magnetic stirring bar was placed in a 300 mL eggplant flask and a three-way cock was attached. 150 mL of toluene and 25 g (lOOmmol) of 4,4,1-diphenylmethane diisocyanate were added thereto. While maintaining the room temperature, 9 g (100 mmol) of 1,4 butanediol was added dropwise thereto, and then the stirring was continued overnight at room temperature. The obtained reaction solution is concentrated using an evaporator, and then vacuum-dried at 50 ° C to obtain a polycondensate of 4,4'-diphenylmethane diisocyanate and 1,4 butanediol. It was.
  • the obtained polymer solid electrolyte was subjected to hot press molding at 200 ° C. using a mold having a thickness of 1 mm, a length of 10 cm, and a width of 18 cm to obtain a polymer solid electrolyte sheet.
  • Table 1 shows the molecular structure of the block copolymer (B) used in Examples described later;! -20.
  • Block copolymers B-l, B-10, B-11, B-12, B-13 and B-14 are block copolymers obtained in Reference Examples 1 to 6, respectively.
  • Block copolymers B-2 to B-9 were produced in the same manner as in Reference Example 1 except that the amount of each component used was changed.
  • Table 3 shows the composition of the polymer solid electrolyte prepared by the same method as Reference Example 10 using (PSt-g-PEG) and EMITFSI.
  • Table 4 shows the compositions of the solid polymer electrolyte E-22 produced in Comparative Reference Example 3 and the solid polymer electrolyte E-23 produced by the same method as Comparative Reference Example 3.
  • Table 6 shows the results of dynamic viscoelasticity measurements for block copolymers ( ⁇ -4) to ( ⁇ -7) and ( ⁇ -15) to ( ⁇ -20).
  • ⁇ ⁇ ⁇ ⁇ ⁇ force-derived from either polystyrene or poly (i-ptylmetatalylate-ran-isoboler-metaclera '') is a force whose measuring force was unknown; 114 ( : Had a ⁇ and was at a temperature higher than that!
  • Table 7 shows the results of DSC measurement performed on the PSt-g-PEG produced in Comparative Reference Example 1 and the polymer solid electrolyte (E 1-21) used for this.
  • Table 8 shows the results of dynamic viscoelastic measurements of P (VDF / HFP) and polymer solid electrolytes (E-22) and (E-23) using the same.
  • Table 9 shows the composition of the solid polymer electrolyte prepared by the same method as in Reference Example 10.
  • thermoplastic polyurethane (1) thermoplastic polyurethane (2), polystyrene obtained in Reference Example 8, hydrogenated poly (butadiene / isoprene) b-polystyrene b-TPU, and polymer solids using these Table 10 shows the results of dynamic viscoelasticity measurements performed on electrolytes (E-24) to (E-26).
  • the morphology of the polymer solid electrolyte (E-5) was observed. The result is shown in figure 2.
  • the dark part is the phase (Y) (PSt phase)
  • the thin part is the phase (X) (PMMA + ionic liquid phase)
  • the ionic liquid (A) is polymer block ( The polymer block (Q) forms a phase (Y) that is incompatible with the ionic liquid (A) and forms a phase (X). And I ’m so powerful.
  • Measurement Example 14 shows that in the solid polymer electrolyte of the present invention, the phase (X) and the phase (Y) are incompatible with each other and form a microphase separation structure. .
  • Measurement Examples 1 to 10 Table 6
  • Comparative Measurement Examples 2 to 3 Table 8
  • the ionic liquid (A) is selectively compatible with the polymer block (P) to form the phase (X) in the comparative force between the reference measurement examples 9 to 11 and the measurement examples 11 to 13 in Table 10, while the polymer block (Q) forms an incompatible phase (Y) with this!
  • Example 2 To 23, a solid electrolyte was obtained, whereas in Comparative Examples 4 and 5, neither solid electrolyte was obtained and it was difficult to use as a polymer solid electrolyte. .
  • the ionic conductivity of the solid polymer electrolyte of the present invention is excellent in liquid retention with shows a high value, Sarukoto force s I power in suitably used for an electrochemical device comprising Akuchiyueta element RU
  • Comparative Measurement Example 46 the solid polymer electrolyte in which the ionic liquid (A) is held by the graft copolymer or P (VDF / HFP) is excellent in ionic conductivity but inferior in liquid retention. It can be seen that electrolyte leakage tends to occur when used as a chemical device, particularly as an actuator element.
  • the polymer solid electrolyte of the present invention has excellent breaking strength, and should be suitably used as an electrolyte for an electrochemical device, particularly an actuator element. I can help you.
  • the phase (X) formed by the polymer block (P) and the ionic liquid (A) and the phase formed by the polymer block (Q) ( Y) is formed, and phase (X) and phase (Y) are microphase-separated.
  • the polymer solid electrolyte membrane of the present invention not only exhibits practically satisfactory ionic conductivity, but also has excellent ionic liquid (A) retention.
  • the polymer solid electrolyte membrane of the present invention can be used at a higher temperature than a conventionally known polymer solid electrolyte using P (VDF / HFP).
  • Activated carbon (“YP-50F” manufactured by Kuraray Chemical Co., Ltd.) 0.lg, acetylene black (“Denka Black” manufactured by Denki Kagaku Co., Ltd.) 0 ⁇ 06g, P (VDF / HFP) (Akema “Kyner # 28 01 ”) 0.04g and EMITFSI 0.3g were taken and crushed well with a pestle to form a massive electrode material.
  • a vertical cutter (“PF-20” manufactured by Nishiwaki Seisakusho Co., Ltd.) was used to cut out the cut film from the center of the film into a width of 2 mm and a length of 7 mm. At this time, the tester confirmed that the electrodes on both sides were insulated!
  • the actuator element of the present invention generates a displacement quickly as a voltage is applied, and can be effectively used as an actuator.
  • the solid polymer electrolyte of the present invention exhibits practically satisfactory ionic conductivity and is excellent in ionic liquid retention, so that it does not easily cause a problem of liquid leakage when used as an electrochemical device. It has excellent heat resistance and mechanical strength, and can be suitably used for electrochemical devices such as actuator elements.
  • the electrochemical device of the present invention and thus the actuator element, generates a quick displacement in response to voltage application, and can operate stably for a long period of time due to the liquid retention property and mechanical strength of the polymer solid electrolyte used. Therefore, it can be suitably used in the fields of medical equipment, micromachines, industrial robots and personal robots. Brief Description of Drawings
  • FIG. 1 is a schematic diagram of an apparatus used in an actuator operation test.
  • Fig. 2 It is a figure showing the results of the morphology observation of the polymer solid electrolyte (E-5) (Measurement Example 8).
  • FIG. 3 A diagram showing the results of an operation test performed on the actuator element created in Example 24.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Hybrid Cells (AREA)

Description

明 細 書
高分子固体電解質、電気化学デバイス及びァクチユエータ素子
技術分野
[0001] 本発明は、イオン液体と特定のブロック共重合体とを必須成分とする高分子固体電 解質、及び該高分子固体電解質を構成要素として含む電気化学デバイス、ひいて はァクチユエータ素子に関する。
背景技術
[0002] 近年、二次電池やキャパシタをはじめとした電気化学デバイスを高性能化し、また は安全性を高めるために、従来用いられてきた電解質に代えて新たな電解質を使用 する検討が数多くなされてきた。
[0003] 従来こういった電解質としては、一般に、電気化学的に比較的安定な有機溶媒に、 イオン化合物を溶解させた液体電解質が用いられてきた (例えば非特許文献 1参照)
。し力、しこの場合、電気化学デバイスの内部に流動性を有する液体を含有するため、 長時間使用した場合やデバイスが何らかの理由で外部から加熱された場合、あるい は機器の故障により物理的に損壊した場合に、電解液が電気化学デバイスの内部か ら外部に漏出する可能性があることが指摘されていた。
[0004] 電解液の液漏れを防止してさらに安全性を高めるために、従来用いられてきた液 体の電解質に代えて、ゲル電解質や高分子固体電解質を応用する検討が数多くな されてきている(例えば非特許文献 1参照)。し力、しながら、この場合においても、ゲル 電解質、あるいは高分子固体電解質が可燃性であるため加熱時に電解質の引火ま たは発火、燃焼とレ、つた危険性は克服されて!/、なレ、。
[0005] さらに安全性を高めたものとして、例えば過塩素酸リチウムなどの固体電解質を高 分子に配合した高分子固体電解質が知られている (例えば特許文献 1参照)。この場 合、リチウムカチオンとの親和性の高いポリエーテル系高分子が用いられることが多 い。イオン伝導はポリマー鎖の運動 (緩和)とリンクして起こるためイオン伝導率が低く 、電気化学デバイスとして用いる場合には性能的に十分であるとは言い難い。これを 克服するために、しばしばァセトニトリルやプロピレンカーボネートといった高極性の 有機溶媒を添加する場合があるがこの場合は上記と同様、引火 '発火'燃焼といった 危険性が避けられない。
[0006] こういった問題に対し、近年、新しい電解質であるイオン液体を固体化した固体電 解質に関する検討が報告されている (例えば、特許文献 2、 3及び非特許文献 2、 3参 照)。イオン液体は一般的に不燃性であるため電解質の引火または発火、燃焼といつ た危険性が克服されるとともに、固定化されているため電気化学デバイスからの電解 液の液漏れの課題についても、大きく改善される。これらにおいてはイオン液体とェ ポキシ化合物もしくはメタタリレートモノマーなどとを混合し、化学的に架橋又は重合 することでイオン液体が固体化されるため、得られた固体化物はもはや熱可塑性を 有しておらず、熱成形や溶液キャスト、印刷法、コーティング法により任意の形状に成 形することが不可能であるという問題があった。なお、上記でイオン液体は実際に固 体になる訳ではなぐしたがって、「固体化」は「閉じ込められた」状態とか「固定化さ れた」状態を意味する。
[0007] また熱可塑性の高分子固体電解質としては、高分子としてグラフト共重合体を用い るものが考えられる。例えば特許文献 1の比較例に電解質として過塩素酸リチウムを 用い、高分子としてポリエチレンにポリエチレングリコール鎖がグラフトしたグラフト共 重合体を用いた高分子固体電解質が開示されている。ここで、過塩素酸リチウムの 代りにイオン液体を用いる場合には、比較的高いイオン伝導率が得られる力 s、その力 学強度は低ぐまたイオン液体のブリードアウトが起こりやすい問題があり、性能の安 定性や長期使用に対する安定性、取り扱いに劣るとレ、う問題がある。
[0008] 一方で、医療機器やマイクロマシンなどの分野においては小型でかつ軽量なァク チユエータの必要性が高まっている。また産業用ロボットやパーソナルロボットなどの 分野にお!/、ても軽量で柔軟性に富むァクチユエータへの必要性が高まって!/、る。
[0009] ァクチユエータを小型化すると慣性力よりも摩擦や粘性力が支配的となるため、モ ータゃエンジンのような慣性力を利用してエネルギーを運動に変換する機構は、超 小型機械用のァクチユエータとして用いることが困難であるとレ、われてレ、る。これまで に提案されている超小型ァクチユエータの作動原理としては、静電引力型、圧電型、 超音波式、形状記憶合金式等が知られている。静電引力型ァクチユエータは電極と なる板や棒を対極に引き付けるもので、数十 m離れた対極との間に 100V程度の 電圧をかけて、電極をたわませるものが知られている。圧電型ァクチユエータはチタ ン酸バリウムなどのセラミックの圧電素子に数 Vの電圧をかけて素子を伸縮させるもの で、ナノメートル単位の変位を制御できるものが知られている。また超音波式は圧電 素子などで発生させた超音波振動と摩擦力との組合せで、ずれを生じさせることで駆 動させるものが知られている。形状記憶合金式ァクチユエータは温度によって大きく 形状が変化し、温度を変化させることで作動させる。しかし、これらのァクチユエータ は金属、セラミック等の無機物質を材料としているため柔軟化、軽量化に限度があり、 また構造が複雑であるため小型化が容易ではな!/、と!/、つた問題点がある。
[0010] 上記問題点を克服できるァクチユエータとして、高分子ァクチユエータが近年注目 されている。例えば、含水高分子ゲルの温度変化、 pH変化、電場印加等の刺激によ る形態変化を利用した高分子ァクチユエータが考案されている (例えば、特許文献 4 参照)。しかしながら、含水高分子ゲルの種々の刺激による形態変化は一般に非常 に遅ぐまた含水高分子ゲルの不均一な架橋構造に由来して力学強度も低いため、 実際にァクチユエータとして利用するには更なる改良が必要である。
[0011] 上記の課題を克服すベぐイオン交換樹脂膜とその両面に接合した電極とからなり 、前記イオン交換樹脂膜の含水状態において、前記イオン交換樹脂膜に電位差を 力、けて湾曲及び変形を生じさせることを特徴とする高分子ァクチユエータが考案され ている(例えば、特許文献 5参照)。しなしながら、上記した高分子ァクチユエ一タはそ の動作に水が必須であるため、動作環境は湿潤環境に限られるといった問題がある
[0012] この課題を克服すベぐイオン液体とフッ素系結晶性高分子からなる高分子固体電 解質の両面に、イオン液体と結晶性高分子と単層カーボンナノチューブからなる電 極を張り合わせた高分子ァクチユエータが報告されている(例えば、非特許文献 4参 照)。また、イオン液体、モノマー及び架橋剤を混合し硬化させることで作製した固体 電解質に電極として金箔を張り合わせた高分子ァクチユエータが報告されて!/、る (例 えば、特許文献 6)。し力もながら、前者の場合、フッ素系結晶性高分子はイオン液体 の保液性に劣るため高分子固体電解質からのイオン液体がブリードアウトするといつ た問題がある。一方、後者ではイオン液体を架橋により固定化するため、形状選択性 が低!/、と!/、つた問題があった。
特許文献 1 :特開 2004— 98199号公報
特許文献 2:特開 2004— 281147号公報
特許文献 3 :特開 2006— 32237号公報
特許文献 4 :特開昭 63— 309252号公報
特許文献 5:特開平 4 275078号公報
特許文献 6:特開 2005— 51949号公報
非特許文献 1 :電子とイオンの機能化学シリーズ Vol. 2, 「大容量電気二重層キヤ パシタの最前線」, ェヌティーエス
非特許文献 2 Journal of American ChemicalSociety, 127号, 4976頁 , 2005年
非特許文献 3 Journal of Physical Chemistry, 109号, 3886頁, 2005年 非特許文献 4 :未来材料, 第 5号, 第 10巻, 14頁, 2005年
発明の開示
発明が解決しょうとする課題
[0013] 本発明の目的は、高分子固体電解質、より詳細には特定のブロック共重合体とィォ ン液体とを必須成分として含む高分子固体電解質、及び該高分子固体電解質を用 いた電気化学デバイス、特にァクチユエータ素子に関する。
課題を解決するための手段
[0014] 本発明者らは、鋭意検討した結果、特定の要件を満たすブロック共重合体とイオン 液体とを必須成分として含む高分子固体電解質が、イオン伝導性、耐熱性、保液性 及び成形性に優れていることを見出し、またこの固体電解質が電気化学デバイス、特 にァクチユエータ素子に好適に用いることができることを見出し、本発明を完成した。
[0015] すなわち本発明は、イオン液体 (A)と、イオン液体 (A)と相溶である重合体ブロック
(P)を 1つ以上有し、イオン液体 (A)と非相溶である重合体ブロック(Q)を 1つ以上有 するブロック共重合体 (B)とを必須成分として含有する高分子固体電解質に関する。 イオン液体 (A)と重合体ブロック(P)とは相溶して 1つの相(X)をなし、かつ重合体 ブロック(Q)が相(X)とは非相容である相(Y)をなし、相(X)と相(Y)がミクロ相分離 していること力 S好ましい。
[0016] イオン液体 (A)としては後記一般式 (I)〜 (V)で表される有機カチオンから選ばれ る少なくとも 1種と含ハロゲンァニオン、鉱酸ァ二オン及び有機酸ァニオンから選ばれ る少なくとも 1種のァニオンとからなるイオン液体を用いることができる力 一般式 (I) で表されるイミダゾリウムカチオンをカチオン成分とするイオン液体が好ましぐェチル メチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミド(EMITFSI)、ェチルメ チルイミダゾリゥムビス(ペンタフルォロエタンスルホニノレ)イミド(EMIPFSI)、ブチル メチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミド(BMITFSI)及びブチル メチルイミダゾリゥムビス(ペンタフルォロェタンスルホニル)イミド(BMIPFSI)から選 ばれる少なくとも 1種であること力 Sより好ましく、 EMITFSIもしくは EMIPFSIがより一 層好ましぐ EMITFSIがもっとも好ましい。
[0017] ブロック共重合体 (B)を構成する重合体ブロック(P)は (メタ)アクリル酸と炭素数 1 〜3のアル力ノールとのエステル;(メタ)アクリル酸と炭素数 2〜4のアルキレングリコ ール、炭素数 4〜6のジアルキレングリコール又は炭素数 6〜9のトリアルキレングリコ ールとのモノエステル;(メタ)アクリル酸と炭素数 2〜4のアルコキシアル力ノールとの エステル;(メタ)アクリル酸と炭素数 4〜6のジアルキレングリコールもしくは炭素数 6 〜9のトリアノレキレングリコーノレのモノメチノレもしくはモノエチノレエーテノレとのエステノレ ;及び (メタ)アクリル酸と炭素数 2〜4のアミノアルカノールとのエステルから選ばれる 少なくとも 1種の単独重合体ブロックもしくは共重合体ブロックであることが好ましい。
[0018] ブロック共重合体 (B)を構成する重合体ブロック(Q)は芳香族ビュル化合物単位を 繰返し単位とする重合体ブロック;結晶性ポリオレフインブロック;炭素数 4以上のアル キル基を有するメタクリル酸アルキルエステルの重合体ブロック;ポリシクロへキシルメ タクリレートブロック;ポリイソボルニルメタタリレートブロック;又は n—ブチルメタクリレ ートもしくはイソブチルメタタリレートとイソボルニルメタタリレートとのランダム共重合体 ブロックであることが好まし!/、。
[0019] 上記とは別に、ブロック共重合体 (B)は、また、高分子ポリオール成分からなる重合 体ブロック (P)と、二官能イソシァネートと鎖延長剤との反応生成物成分からなる重合 体ブロック(Q)とからなるポリウレタンであることが好ましレ、。
上記重合体ブロック(Q)は、 4, 4'ージフエニルメタンジイソシァネートと 1 , 4ーブタ ンジオールとの反応生成物成分からなることがより好ましい。
[0020] 本発明は、また、上記高分子固体電解質を構成要素とする電気化学デバイスに関 し、特に、上記高分子固体電解質からなる成形体と、該成形体に接合し互いに絶縁 された少なくとも 2つの電極とからなり、 2つの電極間に電位差を与えることにより湾曲 もしくは変形を生じさせ得るァクチユエータ素子に関する。
発明の効果
[0021] 本発明の高分子固体電解質は、イオン液体 (A)と、イオン液体 (A)と相溶である重 合体ブロック(P)を 1つ以上有し、イオン液体と非相溶である重合体ブロック(Q)を 1 つ以上有するブロック共重合体 (B)を必須成分として含有する。このとき、イオン液体 (A)と重合体ブロック (P)からなる成分はイオン伝導性を担!/、、重合体ブロック(Q)か らなる成分は物理架橋点として作用し、結果としてイオン液体 (A)を固体化するため 、化学架橋を導入せずとも自立性を保持できる。特に、イオン液体 (A)と重合体プロ ック (P)からなる相(X)と重合体ブロック(Q)からなる相(Y)とがミクロ相分離して!/、る 場合には、相(X)と相(Y)とがそれぞれ異なる機能を果たすので、イオン伝導性と形 状保持性などとが高いレベルで両立される。また、本発明の高分子固体電解質は化 学架橋を有していないため、熱成形、印刷法、コーティング法など、種々の成形法を 利用し、種々の形に成形することができる。
[0022] また上記した高分子固体電解質を用いた電気化学デバイス、特にァクチユエータ 素子は、高分子固体電解質がイオン伝導性、保液性及び成形性に優れている点に 由来し、高速動作性、安定性及び形状自由度に優れ、ァクチユエータ素子をより多 様な用途、例えば人工筋肉等の用途に適用できるようになる。
発明を実施するための最良の形態
[0023] 本発明の高分子固体電解質は、イオン液体 (A)と、イオン液体 (A)と相溶である重 合体ブロック (P)を 1つ以上有し、イオン液体 (A)と非相溶である重合体ブロック(Q) を 1つ以上有する共重合体 (B)を必須成分として含有する。
[0024] 本発明で用いるイオン液体 (A)とは、常温溶融塩または単に溶融塩などとも称され るものであり、常温 (室温)を含む広い温度域で溶融状態を呈する塩である。
本発明においては、従来より知られた各種のイオン液体を使用することができる力 常温又は可及的に常温に近い温度において液体状態を呈し安定なものが好ましい 。本発明においては、常温溶融塩であって、常温におけるイオン伝導率が 0. 001S /cm以上のものが好ましく用いられる。
[0025] 本発明におレ、て用いられる好適なイオン液体を構成する有機カチオンの例として は、下記した一般式 (I)で表されるイミダゾリウムカチオン、一般式 (II)で表されるピリ ジニゥムカチオン、一般式(III)で表されるアンモニゥムカチオン、一般式(IV)で表さ れるホスホニゥムカチオン及び一般式 (V)で表されるスルホユウムカチオンを挙げる こと力 Sでさる。
[0026] [化 1]
Figure imgf000008_0001
(!) (| |) (H I) (IV) (V)
[0027] [式中、 〜 4は、それぞれ独立に、水素原子、炭素数 1〜; 10の直鎖状もしくは分 岐状のアルキル基、炭素数 2〜; 10の直鎖状もしくは分岐状のアルケニル基、炭素数 6〜; 15のァリール基、炭素数 7 20のァラルキル基、及び炭素数 2 30の(ポリ)ォ キシアルキレン基から選ばれる基を表し、 R'は炭素数 1 6の直鎖状もしくは分岐状 のアルキル基を表し、 nは 0以上 5以下の整数を表し、 R5 R8 R9 R12及び R13 R 15のうち、それぞれ 2つの基及び中央の複素原子が共同して環構造を形成してもよい
[0028] 上記で、各アルキル基としては炭素数 1 6のものが好ましぐ;!〜 4のものがより好 ましぐ具体的にはメチル基、ェチル基、 n プロピル基、 i プロピル基、 n ブチノレ 基等が挙げられる。各アルケニル基としては炭素数 2 6のものが好ましぐ 2 4のも のがより好ましく、具体的にはビュル基、 2—プロぺニル基等が挙げられる。各ァリー ル基としてはフエニル基等が挙げられ、各ァラルキル基としてはベンジル基等が挙げ られる。 (ポリ)ォキシアルキレン基としては一般式—(Rlb—〇) H (式中、 Rlbはェチ
P
レン基もしくはプロピレン基を表し、 pは 1〜; 10の整数を表す)が挙げられる。 2つの基 が共同して環構造を形成する場合として、例えば一般式 (IV)において中心の窒素 原子を含んでピロリジン環もしくはピぺリジン環を形成する場合などが挙げられる。
[0029] これらのうちでもイオン液体のイオン伝導性、入手容易性の観点から一般式 (I)で 表されるイミダゾリウムカチオンが好ましい。このうちでも、イオン液体の融点、イオン 伝導率の観点から一般式 (I)における R1及び R2は炭素数 1 6の直鎖状もしくは分 岐状のアルキル基であることが好ましぐ炭素数 1 4の直鎖状もしくは分岐状のアル キル基であることがより好ましぐ R1と R2が異なる基であることがより一層好ましい。一 般式 (I)で表されるイミダゾリウムカチオンの具体例としては、ェチルメチルイミダゾリウ ムカチオン(EMI+)、ブチルメチルイミダゾリウムカチオン等が挙げられ、ェチルメチ ルイミダゾリウムカチオンがもっとも好ましい。
[0030] 本発明において用いられる好適なイオン液体を構成するァニオンの例としては、含 ハロゲンァニオン、鉱酸ァ二オン、有機酸ァニオン等を挙げることができる。含ハロゲ ンァニオン及び鉱酸ァ二オンの例としては PF― CIO CF SO C F SO B
6 4 3 3 4 9 3
F― (CF SO ) N― (C F SO ) N― (CF SO ) C― AsF― SO 2— (CN) N
4 3 2 2 2 5 2 2 3 2 3 6 4 2 NO—等を挙げること力 Sできる。また有機酸ァニオンの例としては R17SO R17C
3 3
O― [R17は炭素数 1 6のアルキル基、炭素数 2 6のアルケニル基、炭素数 7 1
2
2のァラノレキノレ基、炭素数 8 14のァラルケニル基、炭素数 2 8のアルコキシアル キノレ基、炭素数 3 8のァシルォキシアルキル基、炭素数;!〜 6のスルホアルキル基、 又は炭素数 6〜; 14のァリール基 (フエニル基、ナフチル基等)を表し、複数の環状構 造もしくは分岐構造を含んでいても構わない]等を挙げることができる。これらのうちで もイオン液体のイオン伝導率及び入手容易性の観点から PF― CIO― CF SO _
6 4 3 3
C F S〇― BF― (CF SO ) N― (C F SO ) N—及び(CN) N—が好ましぐ特
4 9 3 4 3 2 2 2 5 2 2 2
に(CF SO ) N (C F SO ) N—等のスルホ二ルイミド系ァニオンが好ましい。
3 2 2 2 5 2 2
[0031] 本発明に好適に用いられるイオン液体の例としては上記した有機カチオンとァニォ ンとの組合せからなるイオン液体を挙げることができる。これらは単独で用いてもよい し、複数を組み合わせて用いてもよい。好ましいイオン液体の例としては、ェチルメチ ノレイミダゾリゥムビス(トリフルォロメタンスルホ二ノレ)イミド(EMITFSI)、ェチルメチノレ イミダゾリゥムビス(ペンタフルォロェタンスルホニル)イミド(EMIPFSI)、ブチルメチ ノレイミダゾリゥムビス(トリフルォロメタンスルホ二ノレ)イミド(BMITFSI)、ブチルメチノレ イミダゾリゥムビス(ペンタフルォロエタンスルホニルイミド) (BMIPFSI)等を挙げるこ とができる。これらのうちでも、イオン液体のイオン伝導性の観点から EMITFSI及び EMIPFSIがより好ましぐさらに入手容易性の観点から EMITFSIがより一層好まし い。
[0032] 本発明で用いるブロック共重合体 (B)は、イオン液体 (A)と相溶である重合体プロ ック (P)を 1つ以上有し、イオン液体 (A)と非相溶である重合体ブロック(Q)を 1っ以 上有するブロック共重合体である。本発明において、ブロック共重合体とは、重合体 ブロック同士が線状に繋がっている共重合体を指す。
[0033] 本発明にお!/、て、イオン液体 (A)と重合体ブロック (P)とが相溶であるか否かの判 断、及びイオン液体 (A)と重合体ブロック(Q)とが非相溶であるか否かの判断は、以 下の判定基準にお!/、てなされる。ブロック共重合体 (B)の動的粘弾性測定又は DSC 測定により測定される各成分の T a ( a分散温度)、 Tg (ガラス転移温度)などの相転 移温度のいずれか 1つについて、 P成分に由来するものを T 、 Q成分に由来するもの
P
を T とする。一方、ブロック共重合体 (B)とイオン液体 (A)とを必須成分として含む高
Q
分子固体電解質の動的粘弾性測定あるいは DSC成分により測定される相転移温度 について、相(X) (重合体ブロック(P)とイオン液体 (A)からなる相)に由来するものを T、相(Y) (重合体ブロック(Q)からなる相)に由来するものを Tとして、 Δ Τ 及び
X Y P
Δ Τ をそれぞれ下記式のように定義する。なお、上記において、 T 、T 、T及び Τ
Q P Q X Y
は同じ測定方法で測定されたもの、例えば α分散温度もしくはガラス転移温度である ことを要する。
[0034] Δ Τ =
Ρ I Τ Τ Ρ X I
Δ Τ = I Τ Τ
Q Q Υ I
[0035] この 2つの指標 Δ Τ及び Δ Τ について、 Δ Τ > 2 Δ Τであるときにイオン液体
P Q P Q
(Α)は重合体ブロック(Ρ)と相容で、かつ重合体ブロック(Q)とは非相容であると見な す。 [0036] 本発明で用いるブロック共重合体 (B)の構成成分である重合体ブロック (P)及び重 合体ブロック(Q)の例にっレ、て述べる。重合体ブロック(P)及び重合体ブロック(Q) は付加重合系の重合体ブロックであっても、縮合重合系の重合体ブロックであっても よい。
[0037] 重合体ブロック(P)及び重合体ブロック(Q)の例としては、ポリエチレン、ポリプロピ レン、ポリブテン、ポリ 3—メチルー 1 ペンテン、ポリオクテン、ポリイソブチレン等の ォレフィン系重合体ブロック;ポリスチレン、ポリ(4—メチルスチレン)、ポリ —メチ ルスチレン)、ポリインデン等のスチレン系重合体ブロック;ポリ酢酸ビュル、ポリビニ ノレアルコール、ポリビュルブチラール等の酢酸ビュル系重合体ブロック;ポリ(メタ)ァ クリル酸、ポリメチル (メタ)アタリレート、ポリェチル (メタ)アタリレート、ポリ(2—ヒドロキ シェチル)(メタ)アタリレート、ポリ(2—アミノエチル)(メタ)アタリレート、ポリベンジル( メタ)アタリレート、ポリ(n ブチルメタタリレート)、ポリ(i ブチルメタタリレート)、ポリ( t ブチルメタタリレート)、ポリシクロへキシルメタタリレート、ポリイソボルニルメタクリレ ート、ポリアダマンチルメタタリレート等の(メタ)アクリル酸エステル系重合体ブロック; ポリブタジエン、水添ポリブタジエン、ポリイソプレン、水添ポリイソプレン、ポリ(1 , 3— シクロへキサジェン)、水添ポリ(1 , 3—シクロへキサジェン)等の共役ジェン系重合 体ブロック;ポリメチノレビニノレエーテノレ、ポリエチノレビニノレエーテノレ、ポリイソブチノレビ ニルエーテル、ポリエトキシェチルビュルエーテル等のビュルエーテル系重合体ブロ ック;ポリ塩化ビュル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリへキサフルォロ プロピレン、ポリトリフルォロエチレン、ポリテトラフルォロエチレン等のハロゲン含有ビ ニル系重合体ブロック;(メタ)アクリロニトリル等のアクリロニトリル系重合体ブロック;ポ リメチルビ二ルケトン、ポリメチルイソプロぺニルケトン、ポリェチルビ二ルケトン、ポリエ チルイソプロぺニルケトン等のビニルケトン系重合体ブロック;ポリ(メタ)ァクロレイン 等のァクロレイン系重合体ブロック;ポリ(メタ)アクリルアミド、ポリ(N, N ジメチル) ( メタ)アクリルアミド、ポリ(N, N ジェチル)(メタ)アクリルアミド、ポリ(N イソプロピ ノレ)アクリルアミド等の (メタ)アクリルアミド系重合体ブロック等を挙げることができる。
[0038] また上記には列記しては!/、な!/、が、上述したような重合体ブロックの構成成分がラ ンダム共重合されて構成される重合体ブロック;ポリエチレンオキサイド、ポリエチレン グリコール、ポリプロピレンオキサイド、ポリプロピレングリコール、ポリテトラヒドロフラン 等のポリエーテル系重合体ブロック;ポリエチレンテレフタレート、ポリブチレンテレフ タレート、ポリエチレンナフタレート、ポリ( ε —力プロラタトン)、ポリ( /3 -メチノレ- δ -バ レロラタトン)等のポリエステル系重合体ブロック;ポリアミド— 6、ポリアミド 6, 6、ポリ アミド、— 6, 12、ポリアミド、— 6Τ、ポリアミド、— 12Τ、ポリアミド、— 9Τ等のポリアミド、系重 合体ブロック;ポリイミド系重合体ブロック;ポリジメチルシロキサン等のシロキサン系重 合体ブロック等も挙げること力 Sできる。また上記には列記していないが、上述したよう な重合体ブロックの構成成分がランダム共重合して構成する重合体ブロック、例えば スチレン ブタジエン重合体ブロック等のランダム共重合体ブロックも用いることがで きる。また例えばポリアルキレングリコール (メタ)アタリレート、ポリアルキレングリコー ノレビニノレエーテノレ、ポリエチレン(メタ)アタリレート、ポリプロピレン(メタ)アタリレート 等のポリマー部分を側鎖に含むモノマー類からなる重合体ブロック、又はかかるモノ マー類を共重合体成分として含む重合体ブロックも用いることができる。
[0039] これらの構成成分を含むブロック共重合体 (Β)の製造方法としては特に制限はな いが、例えばリビングァニオン重合法、リビングカチオン重合法、リビングラジカル重 合法などのリビング重合法や、分子末端に官能基を有するポリマー間の反応による 方法等を挙げること力 Sできる。また共役ジェン化合物を構成成分とした場合、重合に より生成した炭素 炭素二重結合は、その一部もしくは全部が水素添加(水添)され て!/、てもよ!/、。水添の方法に特に制限はな!/、が、例えば有機溶媒に前駆体となるブ ロック共重合体を溶解し、チーグラー触媒やメタ口セン触媒等の水添触媒の存在下 に水素を反応させる方法等を選択することができる。
[0040] ブロック共重合体 (Β)を構成する重合体ブロック(Ρ)としてイオン液体 (Α)と相溶す る成分、重合体ブロック(Q)としてイオン液体 (Α)と相溶しな!/、成分を選択するとレ、う 条件を満たす限り、重合体ブロック (Ρ)及び重合体ブロック(Q)は、上記した重合体 ブロックの例の中力 任意に選択することができる。
[0041] イオン液体 (Α)の種類に拘らず、し力も好ましくはイオン液体 (Α)として一般式 (I) で表されるイミダゾリウムカチオンをカチオン成分とするイオン液体、より好ましくはェ チルメチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミド(EMITFSI)、ェチ ノレメチルイミダゾリゥムビス(ペンタフルォロエタンスルホニノレ)イミド(EMIPFSI)、ブ チルメチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミド(BMITFSI)及びブ チルメチルイミダゾリゥムビス(ペンタフルォロェタンスルホニル)イミド(BMIPFSI)か ら選ばれるイオン液体、より一層好ましくは EMITFSIもしくは EMIPFSI、もっとも好 ましくは EMITFSIを用いた場合における重合体ブロック (P)としては、(メタ)アタリノレ 酸と炭素数;!〜 3、特に 1もしくは 2のアル力ノールとのエステル;(メタ)アクリル酸と炭 素数 2〜4、特に 2もしくは 3のアルキレングリコール、炭素数 4〜6のジアルキレングリ コール又は炭素数 6〜9のトリアルキレングリコールとのモノエステル;(メタ)アクリル 酸と炭素数 2〜4、特に 2もしくは 3のアルコキシアル力ノールとのエステル;(メタ)ァク リル酸と炭素数 4〜6のジアルキレングリコールもしくは炭素数 6〜9のトリアルキレン グリコールのモノメチルもしくはモノェチルエーテルとのエステル;(メタ)アクリル酸と 炭素数 2〜4、特に 2もしくは 3のアミノアルカノールとのエステル;酢酸ビュル;アタリ ルアミドなどから選ばれるモノマーの単独重合体ブロックもしくは任意の組合せの共 重合体ブロックを用いることができる。 EMITFSIを選択した場合、重合体ブロック(P )として具体的には、ポリメチル (メタ)アタリレートブロック、ポリェチル (メタ)アタリレート
、ポリ(ジエチレングリコールモノメチルエーテルメタタリレート)ブロック、ポリ酢酸ビニ ルブロック、ポリアクリルアミドブロックなどが挙げられ、これらはイオン液体 (A)との相 溶性及びイオン伝導性の観点から好ましい。
[0042] イオン液体 (A)の種類に拘らず、し力も好ましくはイオン液体 (A)として一般式 (I) で表されるイミダゾリウムカチオンをカチオン成分とするイオン液体、より好ましくは E MITFSI、 EMIPFSI, BMITFSI及び BMIPFSIから選ばれるイオン液体、より一層 好ましくは EMITFSIもしくは EMIPFSI、もっとも好ましくは EMITFSIを用いた場合 における重合体ブロック(Q)としては、一般式 (VI)
[0043] [化 2]
R
—— C-~ CH2— (VI )
Ar [0044] (式中、 Rは水素原子、炭素数 1〜8のアルキル基又は 1〜3個の置換基を有してい てもよい炭素数 6〜; 14のァリール基を表し、 Arは 1〜3個の置換基を有していてもよ い炭素数 6〜; 14のァリール基を表す)で表される芳香族ビュル化合物単位から選ば れる少なくとも 1種を繰返し単位とする重合体ブロックを用いることができる。一般式 (I )中、 R及び Arにおけるァリール基としてはフエニル基、ナフチル基等が挙げられる。 これらのァリール基の置換基としては炭素数 1〜4、特に 1もしくは 2のアルキル基、炭 素数 1〜4、特に 1もしくは 2のアルコキシル基等が挙げられる。 Rにおけるアルキル基 としては炭素数 1〜4、特に 1もしくは 2のもの力 S好ましく、メチル基、ェチル基等が挙 げられ、メチル基がもっとも好ましい。前記一般式 (I)を繰返し単位とする重合体プロ ックとして具体的にはポリスチレンブロック、ポリ(4—メチルスチレン)ブロック、ポリ ーメチルスチレン)ブロック等が挙げられ、これらはイオン液体との非相溶性及び高分 子固体電解質の形状保持性の観点から好ましい。
[0045] イオン液体 (A)の種類に拘らず、し力も好ましくはイオン液体 (A)として一般式 (I) で表されるイミダゾリウムカチオンをカチオン成分とするイオン液体、より好ましくは E MITFSI、 EMIPFSI, BMITFSI及び BMIPFSIから選ばれるイオン液体、より一層 好ましくは EMITFSIもしくは EMIPFSI、もっとも好ましくは EMITFSIを用いた場合 における重合体ブロック(Q)としては、また、結晶性ポリオレフインブロック (例えば結 晶性ポリエチレンブロック、結晶性ポリプロピレンブロック、結晶性ポリ(3—メチルー 1 ペンテン)ブロック等);ポリイソブチルメタタリレートブロック、ポリ(t ブチルメタタリ レート)ブロック等の炭素数 4以上のアルキル基を有するメタクリル酸アルキルエステ ノレの重合体ブロック;ポリシクロへキシルメタタリレートブロック;ポリイソボルニルメタク リレートブロック; n ブチルメタタリレートもしくはイソブチルメタタリレートとイソボル二 ノレメタタリレートとのランダム共重合体ブロック等も用いることができ、これらはイオン液 体との非相溶性及び高分子固体電解質の形状保持性の観点から好ましい。
[0046] また、ブロック共重合体(B)は縮合重合タイプのブロック共重合体であってもよ!/、。
ブロック共重合体 (B)がポリウレタンである場合、イオン液体 (A)の種類に拘らず、 し力、し好ましくはイオン液体 (A)として一般式 (I)で表されるイミダゾリウムカチオンを カチオン成分とするイオン液体、より好ましくは EMITFSI、 EMIPFSI, BMITFSI及 び BMIPFSIから選ばれるイオン液体、より一層好ましくは EMITFSIもしくは EMIP FSI、もっとも好ましくは EMITFSIを用いた場合における重合体ブロック (P)の例とし て、高分子ポリオール成分からなる重合体ブロックを挙げることができる。高分子ポリ 才ーノレの f列としては、ポリエステノレポリ才ーノレ、ポリエーテノレポリ才ーノレ、ポリカーボネ ートポリオール、ポリエステルポリカーボネートポリオール等を挙げることができる。
[0047] ポリエステルポリオールは、例えば、常法に従いジカルボン酸もしくはそのエステル 、無水物などのエステル形成性誘導体と低分子ポリオールとを直接エステル化反応 もしくはエステル交換反応に付す力、、又はラタトンを開環重合することにより製造する こと力 Sでさる。
[0048] ポリエステルポリオールを構成するジカルボン酸としては、ポリエステルの製造に一 般的に使用されているものを使用することができ、具体例としては、コハク酸、グルタ ル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸、ドデカン二酸、 メチルコハク酸、 2 メチルダルタル酸、 3 メチルダルタル酸、トリメチルアジピン酸、 2 メチルオクタン二酸、 3, 8 ジメチルデカン二酸、 3, 7 ジメチルデカン二酸な どの脂肪族ジカルボン酸;シクロへキサンジカルボン酸などの脂環式ジカルボン酸; テレフタル酸、イソフタル酸、オルトフタル酸、ナフタレンジカルボン酸などの芳香族 ジカルボン酸などが挙げられる。これらのジカルボン酸は単独で使用してもよいし、 2 種以上を併用してもよい。これらの中でも、脂肪族ジカルボン酸を使用することが好ま しぐアジピン酸、ァゼライン酸及びセバシン酸の少なくとも 1種を使用することが特に 好ましい。
[0049] ポリエステルポリオールを構成する低分子ポリオールとしては、ポリエステルの製造 において一般的に使用されているものを使用することができ、低分子ジオールが好ま しい。具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコ 一ノレ、プロピレングリコール、 1 , 3 プロパンジォーノレ、 2 メチルー 1 , 3 プロパン ジオール、 1 , 3—ブチレングリコール、 1 , 4 ブタンジオール、 2—メチルー 1 , 4 ブタンジォーノレ、ネオペンタンジォーノレ、 1 , 5—ペンタンジォーノレ、 3—メチノレー 1 , 5—ペンタンジオール、 1 , 6—へキサンジオール、 1 , 8—オクタンジオール、 2—メチ ノレ 1 , 8—オクタンジオール、 2, 7 ジメチルー 1 , 8—オクタンジオール、 1 , 9ーノ ナンジオール、 2 メチルー 1 , 9ーノナンジオール、 2, 8 ジメチルー 1 , 9ーノナン ジオール、 1 , 10 デカンジオール、 2, 2 ジェチルー 1 , 3 プロパンジオールな どの脂肪族ジオール; 1 , 4ーシクロへキサンジオール、シクロへキサンジメタノール、 シクロオクタンジメタノール、ジメチルシクロオクタンジメタノールなどの脂環式ジォー ル; 1 , 4 ビス(/3—ヒドロキシエトキシ)ベンゼンなどの芳香族二価アルコールなど が挙げられる。これらの低分子ポリオールは単独で使用してもよいし、 2種以上を併 用してもよい。
[0050] 前記のラタトンの例としては ε一力プロラタトン、 β—メチルー δ—バレロラタトンな どを挙げること力 Sできる。
[0051] ポリエーテルポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレング リコール、ポリテトラメチレングリコール、ポリ(メチルテトラメチレングリコール)などが挙 げられる。これらのポリエーテルポリオールは単独で使用してもよいし、 2種以上を併 用してもよい。
[0052] ポリカーボネートポリオールとしては、例えば、上述した低分子ポリオールとジアル キノレカーボネート、ァノレキレンカーボネート、ジァリーノレカーボネートなどのカーボネ ート化合物との反応により得られるものを使用できる。ジアルキルカーボネートとして は例えば、ジメチルカーボネート、ジェチルカーボネートなどが挙げられる。アルキレ ンカーボネートとしてはエチレンカーボネートなどが挙げられ、ジァリールカーボネー トとしてはジフエニルカーボネートなどが挙げられる。
[0053] ポリエステルポリカーボネートポリオールは、例えば上述した低分子ポリオール、ジ カルボン酸及びカーボネート化合物を同時に反応させることによって得られる。ポリエ ステルポリカーボネートポリオールは、予め上述した方法によりポリエステルポリオ一 ルを合成し、これをカーボネート化合物と反応させる力、、又は予め上述した方法によ り
ポリカーボネートポリオールを合成し、これをジカルボン酸もしくはそのエステル、無 水物などのエステル形成性誘導体と反応させることによつても得ることができる。
[0054] 上記した中で、ブロック共重合体(Β)がポリウレタンである場合の重合体ブロック(Ρ )としては、ポリエステルポリオールブロック及びポリエーテルポリオールブロックがィ オン液体との相溶性及びイオン伝導性の観点からより好ましい。
[0055] 高分子ポリオールは、数平均分子量が 500〜8, 000の範囲内にあることが好ましく 、 700-5, 000の範囲内にあることがより好ましい。この範囲内にある高分子ポリオ ールを用いたポリウレタンを使用することにより、力学的性能や成形性に優れた高分 子固体電解質を得ることができる。
[0056] ブロック共重合体 (B)がポリウレタンである場合、し力も好ましくはイオン液体 (A)と して一般式 (I)で表されるイミダゾリウムカチオンをカチオン成分とするイオン液体、よ り好ましくは EMITFSI、 EMIPFSI、 BMITFSI及び BMIPFSIから選ばれるイオン 液体、より一層好ましくは EMITFSIもしくは EMIPFSI、もっとも好ましくは EMITFSI を用いた場合における重合体ブロック(Q)の例として、二官能イソシァネートもしくは 二官能イソシァネートを主体とするイソシァネートと鎖延長剤との反応生成物成分で ある重合体ブロックを挙げることカできる。
[0057] このとき用いられる二官能イソシァネートとしては特に制限はなぐ例えば、 4, 4' ジフエニルメタンジイソシァネート、トリレンジイソシァネート、フエ二レンジイソシァネー 4, 4'ージフエニルメタンジイソシァネート、トルイレンジイソシァネートなどの芳香 族ジイソシァネート;へキサメチレンジイソシァネート、イソホロンジイソシァネート、 4, の脂肪族もしくは脂環式ジイソシァネート等を挙げることができる。これらの二官能ィ ソシァネートは単独で用いてもよいし、 2種以上を併用してもよい。これらの中でも 4, 4'ージフエニルメタンジイソシァネートを用いることが、イオン液体との相容性を低下 させる観点から好ましい。
[0058] また本発明の効果を損わない範囲内において、他のイソシァネート、すなわち単官 能イソシァネート、三官能イソシァネート以上のポリイソシァネートを併せて用いてもよ い。他のイソシァネートの全体のイソシァネートに対する割合は 5質量%以下であるこ とが好ましい。
[0059] また用いる鎖延長剤としては特に制限はないが、イソシアナト基と反応し得る活性 水素原子を分子中に 2個以上、特に 2個有する分子量 300以下の低分子化合物を 用いるのが好ましぐ例えば、エチレングリコール、プロピレングリコール、 1 , 4ーブタ ンジオール、 1 , 6—へキサンジオール、 1 , 4 ビス(/3—ヒドロキシエトキシ)ベンゼン 、 1 , 4ーシクロへキサンジォーノレ、ビス(/3—ヒドロキシェチノレ)テレフタレート、キシリ レングリコールなどのジオール類;ヒドラジン、エチレンジァミン、プロピレンジァミン、 キシリレンジァミン、イソホロンジァミン、ピぺラジン及びその誘導体、フエ二レンジアミ ン、トリレンジァミンなどのジァミン類;アジピン酸ジヒドラジト、イソフタル酸ジヒドラジド などのジアミド類;ァミノエチルアルコール、ァミノプロピルアルコールなどのアミノアル コール類などが挙げられる。これらの低分子化合物は単独で用いてもよいし、 2種以 上を併用してもよい。これらのなかでも、炭素数 2〜; 10の脂肪族ジオールを用いるこ と力 S好ましく、 1 , 4 ブタンジオールを用いることが工業的経済性及びポリウレタン製 造の容易性の観点からより好ましレ、。
[0060] 上記した中で、ブロック共重合体(B)がポリウレタンである場合の重合体ブロック(Q )としては、 4, 4'ージフエニルメタンジイソシァネートと 1 , 4 ブタンジオールとの反 応生成物ブロックがイオン液体 (A)との非相溶性及び高分子固体電解質の形状保 持性の観点からより好ましい。
[0061] 前記の高分子ポリオール、二官能イソシァネート及び鎖延長剤を反応させてポリウ レタンを製造するにあたり、各成分の混合比率は、 目的とするポリウレタンあるいは高 分子固体電解質の性能を考慮して適宜決定されるが、高分子ポリオール及び鎖延 長剤に含まれる活性水素原子 1モルに対して、二官能イソシァネートに含まれるイソ シアナト基が 0. 9〜; 1. 2モルとなるような割合で各成分を使用することが好ましい。
[0062] ポリウレタンの製造法については特に制限はなぐ前記の高分子ポリオール、ニ官 能イソシァネート及び鎖延長剤を使用し、公知のウレタン化反応技術を利用して、プ レポリマー法及びワンショット法のいずれで製造してもよい。そのうちでも実質的に溶 剤の不存在下に溶融重合することが好ましぐ特に多軸スクリュー型押出機を用いる 連続溶融重合が好ましい。
[0063] また、ブロック共重合体(B)としては、上記した以外でも、例えば熱可塑性ポリウレタ ン (TPU)と他の重合体とのブロック共重合体、ポリエステル系熱可塑性エラストマ一 (TPEE ;例えばハードセグメントとして芳香族ポリエステルブロックを、ソフトセグメント として脂肪族ポリエーテルブロックもしくはポリエステルブロックを用いたものが挙げら れる)、ポリアミド系熱可塑性エラストマ一(TP AE ;例えばノヽードセグメントとして芳香 族ポリアミドブロックを、ソフトセグメントとして脂肪族ポリエーテルブロックもしくはポリ エステルブロックを用いたものが挙げられる)などを用いることができる。
[0064] ブロック共重合体 (B)は実質上重合体ブロック(P)と(Q)からなる。
ブロック共重合体 (B)の重合体ブロック(P)及び (Q)の連鎖構造につ!/、ては特に制 限はなぐ例えば P Qジブロック共重合体、 P Q Pトリブロック共重合体、 Q P —Qトリブロック共重合体、 p Q p Qテトラブロック共重合体、 P-Q-P-Q-P ペンタブロック共重合体、 Q P Q P Qペンタブロック共重合体などが挙げられ る。これらの内でも得られる高分子固体電解質の機械的強度の観点から、 Q -P-Q トリブロック共重合体、 Q p Q p Qペンタブロック共重合体が好ましぐ製造の 容易性の観点からは Q P Qトリブロック共重合体がより好ましい。
[0065] またブロック共重合体(B)がポリウレタン、 TPEE又は TPAEである場合には、(Q
P) 型のマルチブロック共重合体であることがより好ましい。ここで nは任意の自然 数である。
[0066] イオン液体 (A)と相溶である重合体ブロック(P)、及び非相溶である重合体ブロック
(Q)はそれぞれ複数個以上あってもよい。その場合、重合体ブロック (P)が(Pl)、 ( Ρ2)、(Ρ3) · · · (Ρχ)と複数種類あってもよぐ重合体ブロック(Q)が(Ql)、(Q2)、 ( 03) · · · (Qy)と複数種類あってもよ!/、。ここで yはそれぞれ任意の自然数である。 この時重合体ブロック(P)について、(Pl)、(P2)、(P3) . · · (Ρχ)は互いに相容であ つても非相容であってもよい。重合体ブロック(Q)についても、(Ql)、(Q2)、 (Q3) - · · (Qy)は互いに相容であっても非相容であってもよい。特に制限されることはない 力 S、得られる高分子固体電解質が安定したイオン伝導性を有する点から重合体プロ ック (P)は 1種類であることが好ましぐ高分子固体電解質の力学特性の観点或いは ブロック共重合体 (B)の製造容易性の観点から重合体ブロック(Q)は 1種類ないし 2 種類であることが好ましい。
[0067] ブロック共重合体 (B)における重合体ブロック (P)の質量分率について特に制限は ないが、得られる高分子固体電解質の機械的強度の観点から 95質量%以下である こと力 S好ましく、 90質量%以下であることがより好ましぐ 80質量%以下であることがよ り一層好ましい。一方、得られる高分子固体電解質のイオン伝導性の観点から、重合 体ブロック (P)の質量分率は、 5質量%以上であることが好ましぐ 10質量%以上で あること力 り好ましく、 20質量%以上であることがより一層好ましい。
[0068] ブロック共重合体 (B)の分子量については特に制限はないが、数平均分子量で、 好まし <は 1 , 000—2, 000, 000、より好まし <は 5, 000—1 , 000, 000、より一層 好ましくは 10, 000-500, 000である。数平均分子量が 1 , 000未満である場合に は、ブロック共重合体 (B)並びに得られる高分子固体電解質が機械的強度に劣り、 数平均分子量が 2, 000, 000を超える場合には、ブロック共重合体 (B)並びに得ら れる高分子固体電解質の粘度が大きくなり取り扱い性に劣ることとなる。
[0069] イオン液体 (A)とブロック共重合体 (B)を必須成分とする高分子固体電解質にお!/、 て、ブロック共重合体 (B) l質量部に対するイオン液体 (A)の配合量は、高分子固体 電解質の機械的強度の観点から 10質量部以下であることが好ましぐ 5質量部以下 であることがより好ましい。一方、得られる高分子固体電解質のイオン伝導性の観点 から、ブロック共重合体 (B) l質量部に対するイオン液体 (A)の配合量は、 0. 1質量 部以上であることが好ましぐ 0. 5質量部以上であることがより好ましい。
[0070] また、本発明の高分子固体電解質は、イオン液体 (A)及びブロック共重合体 (B)以 外の他の成分を含有していてもよい。他の成分としては、本発明の趣旨を損わない 限り特に制限はなぐ例えば他の樹脂、可塑剤、有機溶媒、レドックス対、フィラー、 顔料、染料、塩等を用いること力できる。これらは単独で用いてもよいし、複数を組み 合わせても用いてもよい。また使用量についても特に制限はないが、一般的には高 分子固体電解質 100質量部に対し、他の成分の合計として 5〜300質量部の範囲 内であるが、上限は好ましくは 30質量部以下であり、より好ましくは 20質量部以下で ある。
[0071] イオン液体 (A)とブロック共重合体 (B)とを必須成分として含む高分子固体電解質 において、イオン液体 (A)と重合体ブロック(P)とが相溶して 1つの相(X)をなし、 つ重合体ブロック(Q)がイオン液体 (A)と重合体ブロック (P)からなる相(X)とは非相 容である相(Y)を形成することが、高分子固体電解質の自立性及び機械的強度の 観点から好ましい。このとき、相(Y)が高分子固体電解質における物理架橋点として 作用し、全体の形状を保持し、機械的強度を向上させることとなる。本発明の高分子 固体電解質をより広い温度範囲において高分子固体電解質として機能させる観点か ら、相(Y)を形成する重合体ブロック(Q)の軟化点は 60°C以上であることが好ましく 、 80°C以上であることがより好ましぐ 100°C以上であることがより一層好ましい。また 、重合体ブロック(Q)の軟化点の上限にっレヽては特に制限はな!、が、軟化点が高す ぎると、軟化点以上に温度を上げてブロック共重合体 (B)又は高分子固体電解質の 熱成形を行う際にブロック共重合体 (B)が熱劣化する場合があるので、軟化点は 30 0°C以下であることが好ましぐ 200°C以下であることがより好ましぐ 150°C以下であ ること力 Sより一層好ましい。なお、ここでいう軟化点とは、重合体ブロック(Q)が非晶性 である場合には《分散ピーク温度を、結晶性である場合には動的粘弾性測定にお いて、急激に貯蔵弾性率が低下する温度(以下、流動開始点と記載することがある) を指す。
[0072] イオン液体 (Α)とブロック共重合体 (Β)とを必須成分として含有する高分子固体電 解質にお!/、て、相(X)と相(Υ)とはミクロ相分離して!/、ることが好まし!/、。ミクロ相分離 することにより、上記した通り物理架橋点相(相(Υ) )とイオン伝導が起こる相である相 (X)の機能分担が明確になり、 自立性及び機械的強度とイオン伝導性とを両立させ ること力 Sできる。ミクロ相分離の形態に特に制限はないが、相(X)が連続性を有して いる方力 Sイオン伝導性が良好であると考えられることから、高分子固体電解質におけ るミクロ相分離の形状としては、相(Υ)が相(X)の海に浮かんだミクロ相分離 (相(Υ) が球、シリンダー状又はジャイロイド状 (gyroidally)等に相分離)構造を形成するか、 相(Y)と相(X)がラメラ構造を形成するか、相(X)が相(Y)の海に浮かんだミクロ相分 離構造の内、相(X)がシリンダー状もしくはジャイロイド状に相分離した構造を形成し ていることが好ましい。
[0073] 本発明の高分子固体電解質の製造方法については特に制限はないが、例えばカロ 熱下にお!/、てイオン液体 (A)、ブロック共重合体 (B)及び用いる場合の他の成分を 機械的に混練する方法や、イオン液体 (A)、ブロック共重合体 (B)及び用いる場合 の他の成分を適当な溶媒に溶解させた後に溶媒を除去する方法、ブロック共重合体 (B)にイオン液体 (A)を含浸させる方法などが挙げられる。これらは目的に応じ、適 宜選択することができる。
[0074] 本発明の高分子固体電解質は、 自立性、機械的強度、保液性及びイオン伝導性 に優れることから、一次及び二次電池用電解質、電気二重層キャパシタ用電解質、 レドックスキャパシタ(シユードキャパシタ)用電解質、燃料電池 MEA用電解質、二次 電池電極用結着材、電気二重層キャパシタ電極用結着材、レドックスキャパシタ電極 用結着材、色素増感型太陽電池用電解質、ァクチユエータ素子用電解質などとして 有用である。特に保液性及び機械的強度の優れる点から、ァクチユエータ素子用電 解質として有望である。
[0075] 本発明のァクチユエータ素子は、上述の高分子固体電解質からなる成形体と、該 成形体に接合し互いに絶縁された少なくとも 2つの電極とからなり、 2つの電極間に 電位差を与えることにより湾曲及び変形を生じさせることができる。
[0076] 高分子固体電解質からなる成形体の製造方法については特に制限はなぐ例えば 押出成形法、射出成形法、圧縮成形法、ロール成形法、適当な溶媒に溶解させた後 にキャスト製膜する方法、コーティングにより製膜する方法等を挙げることができる。こ れらは、 目的とする成形体の形状に応じ適宜選択することができる。
[0077] 電極材料としては特に制限はな!/、が、例えば、活性炭、カーボンブラック、単層力 一ボンナノチューブ、多層カーボンナノチューブ、気相成長炭素繊維等の炭素材料 ;金、白金、イリジウム、ノ ラジウム、ルテニウム、銀等の貴金属類;銅、ニッケル等の 卑金属類;酸化ルテニウム(RuO )、酸化チタン (TiO )、酸化スズ(SnO )、二酸化
2 2 2 イリジウム(IrO )、酸化タンタル (Ta O )、酸化バナジウム (V O )、酸化モリブデン(
2 2 5 2 5
Μοθχ)等の金属酸化物;ポリアセチレン、ポリピロール、ポリア二リン、ポリチォフェン 及びこれらの誘導体等の π共役系導電性高分子等を挙げることができる。これらのう ちでも耐食性の観点から炭素材料、貴金属類、 兀共役系導電性高分子を用いること が好ましい。これらは単独で用いてもよいし、複数を組み合わせて用いてもよい。
[0078] 電極の形成方法としては特に制限はなぐ公知の方法として、例えば、金属類の真 空蒸着法;金属類のスパッタリング法;金属類の電解メツキ法;金属類の無電解メツキ 法;適切なバインダー中に上述した電極材料を溶解もしくは分散させたインキを高分 子固体電解質上に塗布する方法;高分子固体電解質と別途作製した電極シート又 は金属箔とを圧着又は溶着により貼り合わせる方法等を挙げることができる。これらの うちでも、製造の容易性の観点からインキ塗布法及び溶着法が好ましい。また、これ らの方法は複数を組み合わせてもよい。組合せの具体的な例として、炭素材料で作 製した電極シートを貼り合わせた後に、金属を真空蒸着法により蒸着させる方法を挙 げること力 Sでさる。
[0079] 本発明のァクチユエータ素子の形状については特に制限はなぐ例えば、膜、フィ ルム、シート、板、繊維、ロッド、立方体、直方体、球状、ラグビーボール状、複雑な形 状などが挙げられ、これらは使用目的に応じ適宜選択すればよい。またァクチユエ一 タ素子の厚さについても、ァクチユエータとしての機能を発揮し得る限り特に制限は ないが、例えば形状が膜状である場合には、膜の両面に電極が形成されていること が好ましぐ膜自身の抵抗の観点から厚みが 10_6〜; !CT1!!!の範囲にあることが好ま しい。
[0080] 本発明のァクチユエータ素子は、本質的には圧電素子であるため、ァクチユエータ 素子を含む種々の素子として利用することができる。ァクチユエータ素子以外の素子 の例としては、圧力、力、変位等を検知するセンサー素子として利用することができる 。ァクチユエータ素子として利用する場合には、互いに絶縁された電極に電場を印加 することによって素子がァクチユエーシヨンを起こす。センサーとして使用する場合に は、互いに絶縁された電極と電圧計を接続することにより、素子に変形が加えられた 際に発生する電圧をセンシングする。
[0081] 本発明のァクチユエータ素子は、空気中、水中、真空中及び有機溶媒中において 作動させること力 Sできる。また使用環境に応じ、適宜封止を施してもよい。封止材料の 例としては特に制限はなぐ各種樹脂や金属等を用いることができる。
実施例
[0082] 以下、実施例及び比較例並びに参考例を挙げて本発明をさらに具体的に説明す る力 本発明はこれらにより何ら限定されるものではない。また、以下の実施例、比較 例、参考例において用いた測定機器、測定方法及び使用材料を以下に示す。
[0083] (1)核磁気共鳴スペクトル NMR)によるブロック共重合体(B)及びイオン液体 (A)の分子構造の解析
機器 : 日本電子社製核磁気共鳴装置 (JNM— LA 400)
溶媒 : 重クロ口ホルム(ブロック共重合体)又は重ジメチルスルホキシド (イオン 液体)
(2)ゲルパーミエーシヨンクロマトグラフィー(GPC)による数平均分子量 (Mn)、分子 量分布(Mw/Mn)の測定
機器 : 東ソ一社製ゲルパーミエーシヨンクロマトグラフ(HLC— 8020) カラム : いずれも東ソ一社製 TSKgelである GMHXL、 G4000HXL及び G50 00HXLを直列に連結
溶離液 : テトラヒドロフラン、流量 1 · OmL/分
検量泉 : 標準ポリスチレンを用いて作成
検出方法 : 示差屈折率 (RI)
[0084] (3)イオン伝導率測定
機器 : 日置電機社製ケミカルインピーダンスメータ 3532— 80
方法 : 複素インピーダンス法、交流 4端子セルを用いて測定、 25°C/l lRh% で一晩以上、高分子固体電解質を調湿した後に測定。測定温度 25°C。
(4)モルフォロジ一の観察
後述する方法で作製した高分子固体電解質膜を用い、厚さ lOOnm以下の超薄切 片を作製し、四酸化ルテニウム蒸気で染色したのち、透過型電子顕微鏡(日立製作 所社製 H— 7100FA)を用レ、てモルフォロジ一を観察した。
[0085] (5)動的粘弾性測定
高分子固体電解質シートから、縦 X横 X厚さ = 20mm X 5mm X 1mmの試験片を 切り出し、該試験片を用いて、広域動的粘弾性測定装置 (レオ口ジ社製「DVE—V4 FTレオスぺクトラ一」)を使用して、引張りモード(周波数 11Hz)、昇温速度 3°C/分 として測定を行った。測定はブロック共重合体 (B)を用いた高分子固体電解質の場 合では損失正接のピーク温度 (ガラス状態から液体状態への転移)を、後述するポリ ( フッ化ビニリデンー ran—へキサフルォロプロピレン)を用いた高分子固体電解質の 場合では、貯蔵弾性率が急激に低下する温度を結晶融解に伴う流動開始点として 観察した。
(6) DSC測定
重合体又は高分子固体電解質を少量取り、メトラー社製 DSC— 822eを用いて測 定した。測定は、室温力、ら Tg以上の温度まで 30°C/分で昇温したのち 5分間ホール ドし熱履歴を消去した。その後 10°C/分で— 100°Cまで降温した。— 100°Cで 5分 間ホールドした後、 10°C/分で 150°Cまで昇温する過程を観察した。
[0086] (7)引張試験
高分子固体電解質シートをダンベル状に切り出し、万能材料試験機 (インストロンジ ャパン社製 「TM— MS— 134」 )を用い引張速度 20mm/分の条件にお!/、て破断 強度及び破断伸度を測定した。
(8)保液性の観察
得られた高分子固体電解質について、電解質からのイオン液体 (A)のブリードアゥ トの有無を目視で確認し、以下の基準に照らして判断した。
〇:ブリードアウトなし △:ややブリードアウトあり X:明らかにブリードアウトあり [0087] (9)ァクチユエータ動作試験
2mm X 7mmの大きさにカットしたァクチユエータ素子について、図 1に従い、長さ 方向に 2mmを銅製電極で挟み、素子長で 5mm分を空中に出して測定セルとした。 片側の銅製電極にファンクションジェネレータ(北斗電工社製 「HB— 104」 )を接続 したポテンシヨスタツト(北斗電工社製 「HA— 301」)から作用電極(電位制御、電流 制御用の 2端子)を接続し、もう一方の銅製電極に対向電極と参照電極を接続した。 この状態でセルを固定し、ァクチユエータ素子の両側電極間に ± 1. 5Vの電位を印 カロ、素子の電極固定部から 4mmの場所の動作を、レーザー変位計(キーエンス社製
「LC— 2440」 )で計測することで測定を行った。
[0088] 使用した試薬及び溶剤を以下に示す。
(1)スチレン; キシダ化学社より購入した特級スチレンをアルミナに接触させて重合 禁止剤を除去し、使用前に十分に窒素でパブリングを行って溶存酸素を除去してか ら用いた。
(2)メチルメタタリレート; クラレ社製のメチルメタタリレートをゼオラムに接触させて重 合禁止剤を除去し、使用前に十分に窒素でパブリングを行って溶存酸素を除去して から用いた。
(3)メチルアタリレート; キシダ化学社より購入した特級メチルアタリレートをゼオラム に接触させて重合禁止剤を除去し、使用前に十分に窒素パブリングを行って溶存酸 素を除去してから用いた。
(4)ェチルアタリレート; キシダ化学社より購入した特級ェチルアタリレートをゼオラ ムに接触させて重合禁止剤を除去し、使用前に十分に窒素パブリングを行って溶存 酸素を除去してから用いた。
[0089] (5)メトキシェチルアタリレート; 和光純薬社より購入したメトキシェチルアタリレートを ゼオラムに接触させて重合禁止剤を除去し、使用前に十分に窒素でパブリングを行 つて溶存酸素を除去してから用いた。
(6)ジエチレングリコールモノメチルエーテルメタタリレート; 東京化成工業社より購 入したジエチレングリコールモノメチルエーテルメタタリレートを水素化カルシウムの 存在下で減圧蒸留して精製したものを用いた。
(7) i—ブチルメタタリレート; 東京化成工業社より購入した i—ブチルメタタリレートを ゼオラムに接触させて重合禁止剤を除去し、使用前に十分に窒素でパブリングを行 つて溶存酸素を除去してから用いた。
(8)イソボルニルメタタリレート; 共栄社化学社製「IB— X」を購入し、水素化カルシ ゥムの存在下で減圧蒸留して精製したものを用いた。
(9) (ポリエチレングリコール)モノメチルエーテルメタタリレート; アルドリッチ社より購 入した(ポリエチレングリコール)モノメチルエーテルメタタリレート(数平均分子量 1 , 1 00)を減圧下で酸素を除去して用いた。
[0090] (10)テトラヒドロフラン; キシダ化学社より購入した特級テトラヒドロフランをナトリウム 一べンゾフエノンケチル存在下に蒸留して精製したものを用いた。
(11) 1 , 1ージフエニルエチレン; アルドリッチ社より購入した 1 , 1ージフエ二ルェチ レンを水素化カルシウム存在下に減圧蒸留して精製したものを用いた。
(12)塩化リチウム; アルドリッチ社より購入した塩化リチウム(99. 998%)をそのま ま用いた。 ( 13) a , a '—ジブ口モー p キシレン; アルドリッチ社より購入した α , α,—ジブ ロモ一 ρ キシレンをテトラヒドロフランで希釈し、 0. 095Μ溶液として用いた。
( 14) sec ブチルリチウム; アジアリチウム社より、 1. 3Mシクロへキサン溶液として 購入しそのまま用いた。
[0091] ( 15)ァセトニトリル; キシダ化学社より購入した特級ァセトニトリルをゼオラムに接触 させ、使用前に十分に窒素パブリングを行って溶存酸素を除去してから用いた。
( 16)臭化銅 (I); 和光純薬社製の特級臭化銅 (I)をそのまま用いた。
( 17)塩化銅 (I); 和光純薬社製の特級塩化銅 (I)をそのまま用いた。
( 18)塩化銅 (II); 和光純薬社製の特級塩化銅 (II)をそのまま用いた。
( 19) 1 , 1 , 4, 7, 10, 10 へキサメチノレトリエチレンテトラミン(HMTETA); ァノレ ドリツチ社製より購入した 1 , 1 , 4, 7, 10, 10 へキサメチルトリエチレンテトラミンを そのまま用いた。
[0092] (20)トリス(2—ジメチルアミノエチル)ァミン(Me— TREN); トリス(2—アミノエチ
6
ノレ)ァミンとギ酸、ホルムアルデヒドの混合水溶液を還流して得られた生成物を減圧 蒸留して用いた。
(21 )ジェチルー meso 2, 5 ジブロモアジペート; アルドリッチ社より購入したジ ェチノレー meso— 2, 5 ジブロモアジペートをそのまま用いた。
(22)ァゾビスイソブチロニトリル (AIBN); 和光純薬社より購入しメタノールから再結 晶したものを用いた。
(23)トルエン; キシダ化学より購入した特級トルエンをゼオラムに接触させ、使用前 に十分に窒素パブリングを行って溶存酸素を除去してから用いた。
[0093] (24) 1—メチルイミダゾール; 和光純薬社より購入した 1 メチルイミダゾールを水 素化カルシウムの存在下で減圧蒸留して用いた。
(25)プロモェタン; 東京化成工業社より購入したプロモェタンをそのまま用いた。
(26)リチウムビス(トリフルォロメチルスルホニル)イミド; 東京化成工業社より購入し たリチウムビス(トリフルォロメチルスルホニル)イミドをそのまま用いた。
(27)シクロへキサン; キシダ化学社より購入した特級シクロへキサンをゼオラムに接 触させ、使用前に十分に窒素パブリングを行って溶存酸素を除去してから用いた。 (28)ブチルメチルイミダゾリゥムテトラフルォロボレート(BMIBF ); 東京化成工業
4
社より購入しそのまま用いた。
その他、記載のない試薬 ·溶剤は常法に従って精製したものを用いた。
[0094] 使用した材料を以下に示す。
(1)熱可塑性ポリウレタン(1); クラレ製「クラミロン U3190」(3 メチル 1 , 5 ぺ ンタンジオールとアジピン酸からなるポリエステルポリオールと 4, 4'ージフエニルメタ ンジイソシァネートと 1 , 4 ブタンジオールとからなる熱可塑性ポリウレタン; 200°Cで の溶融粘度 15. OkPa' s)をそのまま用いた。
(2)熱可塑性ポリウレタン(2); クラレ製「クラミロン U8180」(3 メチル 1 , 5 ぺ ンタンジオールとアジピン酸からなるポリエステルポリオールと 4, 4'ージフエニルメタ ンジイソシァネートと 1 , 4 ブタンジオールとからなる熱可塑性ポリウレタン; 200°Cで の溶融粘度 18. OkPa' s)をそのまま用いた。
(3)片末端に水酸基を有するスチレン系熱可塑性エラストマ一; クラレ製「セプトン H G— 252」(ポリスチレン b 水添ポリ(ブタジエン/イソプレン) b—ポリスチレンの 片末端に水酸基が付与されたもの)をそのまま用いた。
[0095] (4)高分子ポリオール(1); クラレ製「クラレポリオール P— 1500」(3 メチルー 1 , 5 —ペンタンジオールとアジピン酸とを反応させて製造した数平均分子量が 1500であ るポリエステルジオール)をそのまま用いた。
(5)ポリ(フッ化ビニリデン ran へキサフルォロプロピレン)(P (VDF/HFP) ); アルケマ社製「カイナー 2801」を購入しそのまま用いた。
(6)活性炭; クラレケミカル社製 ΓΥΡ - 50FJをそのまま用いた。
(7)アセチレンブラック; 電気化学社製「デンカブラック」を購入しそのまま用いた。
[0096] 《参考例 1》 ポリスチレン b ポリメチルメタクリレートー b—ポリスチレンの製造
(1)内部の水分を完全に除去した 1Lのナスフラスコに磁気攪拌子を入れて、 3方コッ クを取り付けた。このフラスコ内に、アルゴン雰囲気のグローブボックス内で塩化リチウ ム 370mg (8. 73mmol)を仕込んだ。フラスコをグローブボックスから取り出し、フラス コ内にテトラヒドロフラン 560mLを仕込んだ。このフラスコをドライアイス/メタノール バスに浸け、—78°Cに冷却したのち、 sec ブチルリチウム溶液 2mL (sec ブチル リチウムとして 2· 6mmol)を滴下した。この溶液に、スチレン 33· 9mL (297mmol) をゆっくりと滴下し、 78°Cで 1時間重合を行った。
(2)ここに 1 , 1—ジフエニルエチレン 1 · 54mL (8. 72mmol)を滴下した。シリンジに より極少量の重合液を抜き出し GPC測定を実施したところ、 Mn= 18, 800、 Mw /Mn= l . 15であった。計算により求めた開始剤効率は 63. 3%であった。
(3)— 78°Cを保持しながら、ここにメチノレメタタリレート 26. 9mL (252mmol)をゆつく りと加えた。メチルメタタリレートの添加により、系内は濃赤色から薄い黄色へと変化し た。そのまま重合を 1時間継続し、シリンジにより極少量の重合液を抜き出し GPC測 定を実施したところ、 Mn= 31200、 Mw/Mn= l . 08であり、ポリスチレン一 b— ポリメチルメタタリレートが生成したことを確認した。
[0097] (4)重合液を一 78°Cで保持したまま、 α , α,一ジブロモ一 ρ キシレンのテトラヒドロ フラン溶液 8· 66mL ( a , α,一ジブロモ一 p キシレンとして 0· 823mmol)を滴下 し、 78°Cのまま 2日間攪拌を継続した。ここに少量のメタノールを添加して反応を 停止した。一部をサンプリングし GPC測定を行ったところ、主ピークの Mn = 56, 400 、 Mw/Mn= l . 07であり、 GPC曲線面積比から求めたトリブロック化率は 88% (す なわち、 12%はポリスチレン b—ポリメチルメタタリレートのジブロック体であり)であ つた。
(5)得られた重合液を大過剰の n へキサンに添加してポリマーを再沈することにより 残留した 1 , 1ージフエニルエチレンを除去し、ポリマーをろ過により回収した。得られ た白色粉体をトルエンに再溶解させ、この溶液を水洗し残留したリチウム塩を除去し
、大過剰のメタノールに再沈させ、ポリマーをろ過、回収した。ポリマーは 50°Cで 24 時間真空乾燥し、残留した溶媒及び水を除去して用いた。
(6)以上のようにして、重合体ブロック(P)がポリメチルメタタリレート(PMMA)ブロッ
B—1という場合がある)を得た。 ¾ NMR測定を行ったところ、本ブロック共重合体 中の PSt含量は 58質量%、 PMMA含量は 42質量%であった。
[0098] 《参考例 2》 ポリスチレン b—ポリメチルアタリレート b—ポリスチレンの製造
(1) 2Lの 3つ口フラスコに磁気撹拌子、臭化銅(1) 7. 17g (50mmol)及びジェチル -meso— 2, 5—ジブロモアジペート 3· 6g (10mmol)を仕込んだ後、フラスコ内を 十分に乾燥窒素で置換した。ここにァセトニトリル 955mL及びメチルアタリレート 785 mLを加え室温で 30分撹拌した。その後 50°Cに昇温し、別途調製した HMTETAの ァセトニトリル溶液(濃度 0. 3mol/L) 8. 33mL (HMTETAとして 16. 7mmol)を 加えて重合を開始した。重合開始 2時間後に HMTETAのァセトニトリル溶液 (濃度 0. 3mol/L) 2. 08mL (HMTETAとして 0. 62mmol)を添加し、さらに 5時間重 合を行った。
(2) 5時間後、フラスコを氷水に浸けて重合溶液を冷却し重合を停止した。重合停止 時の重合率は 32%、数平均分子量は 24300、分子量分布 Mw/Mn= l . 04であ つた。
(3)得られた重合溶液をエバポレータで濃縮した後にトルエンで希釈し、続!/、て水で 洗浄を繰り返して残存触媒を除去した。洗浄後、再度エバポレータで濃縮したのちに 大過剰のメタノールで再沈して得られる粘ちような液状物を 70°Cで一晩真空乾燥さ せて、両末端ブロモ化ポリメチルアタリレートを得た。
(4) 2Lの 3つ口フラスコに、(3)で得られた両末端ブロモ化ポリメチルアタリレート 40g 及び磁気撹拌子を仕込み十分に乾燥窒素で置換した。続!/、てスチレン 400gを加え て両末端ブロモ化ポリメチルアタリレートを溶解させた。この溶液を 40°Cに昇温し、別 途調製した臭化銅(1) 0· 7g (2. 5mmol)、Me— TREN 12. 3mL (3. 7mmol)及
6
びァセトニトリル 16mLからなる混合物を添加して重合を開始した。
(5) 40°Cで 5時間重合を行った後、フラスコを氷水につけて重合溶液を冷却し重合 を停止した。重合停止時の重合率は 16%、 Mn= 186400、分子量分布 Mw/Mn = 1. 74であった。
(6)得られた重合溶液を大過剰のメタノールに再沈し、室温で乾燥した後にトルエン に再溶解、水洗を繰り返して残存触媒を除いた後に、大過剰のメタノールで再沈して 得られる固体を 70°Cで一晩乾燥させた。
(7)以上のようにして、重合体ブロック(P)がポリメチルアタリレート(PMA)ブロック、 10という場合がある)を得た。 ¾— NMR測定を行ったところ、本ブロック共重合体中 の PSt含量は 73質量%、 PMA含量は 27質量%であった。
[0100] 《参考例 3》 ポリスチレン b—ポリェチルアタリレート b—ポリスチレンの製造
参考例 2においてメチルアタリレートの代わりにェチルアタリレートを用いたこと、及 び化学量論比を一部変更した以外は同様の操作を行いポリスチレン b ポリェチ ルアタリレート— b ポリスチレン(以下、 B— 11という場合がある)を得た。得られたポ リマーの Mn= 16, 7200、 Mw/Mn= l . 81、ブロック共重合体中の PSt含量は 69 質量%、ポリェチルアタリレート(PEA)含量は 31質量%であった。
[0101] 《参考例 4》 ポリスチレン b ポリメトキシェチルァクリレートー b—ポリスチレンの製 造
参考例 2においてメチルアタリレートの代わりにメトキシェチルアタリレートを用いたこ と、及び化学量論比を一部変更した以外は同様の操作を行いポリスチレン b ポリ メトキシェチルアタリレート— b ポリスチレン (以下、 B— 12という場合がある)を得た 。得られたポリマーの Mn= 144800、 Mw/Mn= l . 52、ブロック共重合体の PSt 含量は 72質量0 /0、ポリメトキシェチルアタリレート(PMOEA)含量は 28質量0 /0であつ た。
[0102] 《参考例 5》 ポリスチレン b ポリ(ジエチレングリコールモノメチルエーテルメタタリ レート) b—ポリスチレンの製造
参考例 1において、メチルメタタリレートの代わりにジエチレングリコールモノメチル エーテルメタタリレートを用いたこと、及び化学量論比を一部変更したこと以外は同様 の作業を行いポリスチレン b ポリ(ジエチレングリコールモノメチルエーテルメタク リレート)— b ポリスチレン (以下、 B— 13という場合がある)を得た。得られたポリマ 一の Mn = 72, 300、Mw/Mn= l . 06、 GPC曲線から求めたトリブロック化率は 9 1 %、 PSt含量は 71質量0 /0、ポリ(ジエチレングリコールモノメチルエーテルメタクリレ ート)(PDEGMOMA)含量は 29質量%であった。
[0103] 《参考例 6》 ポリスチレン b—ポリ(ジエチレングリコールモノメチルエーテルメタタリ レート) b—ポリ(iーブチルメタクリレートー ran—イソボルニルメタタリレート)の製造 (1)内部の水分を完全に除去した内容積 1Lのオートクレーブに塩化リチウム 0. 104 g及びテトラヒドロフラン 450mLを仕込んだ。オートクレーブをドライアイス/メタノー ルバスに浸け、 78°Cに冷却した後、 sec ブチルリチウムのシクロへキサン溶液 0. 67mL (sec ブチルリチウムとして 0· 87mmol)を滴下した。ここにスチレン 18· 4m L (161mmol)をゆっくりと滴下し 78°Cで 1時間重合を行った。
(2)ここに 1 , 1—ジフエ二ルエチレン 0. 45mL (2. 59mmol)を滴下してさらに一 78 °Cで一時間反応を行った。サンプリング口より極少量の重合液を抜き出して GPC測 定を実施したところ、 Mn = 34000、 Mw/Mn= l . 03であった。計算により求めた 開始剤効率は 56. 7%であった。
(3)—78°Cを保持しながら、ここにジエチレングリコールモノメチルエーテルメタクリレ ート 18. 5mL (100mmol)をゆっくりと加えた。そのまま 1時間重合を継続し、サンプ リング口より極少量の重合液を抜き出し GPC測定を実施したところ、 Mn = 58400、 Mw/Mn= l . 05であった。
[0104] (4)— 78°Cを保持しながら、ここにイソボルニルメタタリレート 17· 5mL (77mmol)及 び i ブチルメタタリレート 19. 3mL (121mmol)の混合物をゆっくりと加えた。そのま ま一時間重合を継続した後、少量のメタノールを添加して重合を停止した。
(5)得られた重合液を大過剰の n へキサンに添加してポリマーを再沈することにより 残留した 1 , 1ージフエニルエチレンを除去し、ポリマーをろ過により回収した。得られ た白色粉末をトルエンに再溶解させ、この溶液を水洗し残留したリチウム塩を除去し
、大過剰のメタノールに再沈させ、ポリマーをろ過、回収した。ポリマーは 50°Cで 24 時間真空乾燥し、残留した溶媒及び水を除去して用いた。
(6)以上のようにして、重合体ブロック(Q1)がポリスチレン、重合体ブロック(P)がポリ ジエチレングリコールモノメチルエーテルメタタリレート、重合体ブロック(Q2)がポリ(i ーブチルメタクリレートー ran イソボルニルメタタリレート)であり、ブロックシーケンス 力 S (Q1) - (P) - (Q2)であるブロック共重合体(以下、 B— 14という場合がある)を得 た。 GPC測定より Mn= 134, 200、 Mw/Mn= l . 06、 ifi— NMR測定より本ブロ ック共重合体の PSt含量 24質量%、 PDEGMOMA含量 27質量%、ポリ(i ブチル メタタリレート)(PiBMA)含量 26質量%、ポリイソボルニルメタタリレート(PiBorMA) 含量 23質量%であった。
[0105] 《参考例 7》 ェチルメチルイミダゾリゥムビス(トリフノレオロメチルスルホニル)イミド(E MITFSI)の製造
(1) 500mLのセパラブルフラスコに、攪拌翼を取り付けたメカ二カノレスターラー、 3方 コック及び冷却管を取り付けた。ここにシクロへキサン 250mL及び 1ーメチルイミダゾ 一ノレ 50mL (0. 58mol)を仕込んだ。 1 メチルイミダゾールはシクロへキサンには完 全には溶解せず、 2相に分離した状態であった。この液を攪拌しながら、室温でプロ モェタン 130mL (l . 74mmol)を 1時間かけて滴下した。滴下終了後、 80°Cまでカロ 熱し 24時間還流を行った。反応の進行とともに、白色固体が析出した。
(2)得られた懸濁液につ!/、て、過剰のブロモェタン及びシクロへキサンを減圧留去し て得られる白色固体を酢酸ェチル /イソプロパノール混合溶媒(1/1 v/v)から再 結晶させて精製した。得られた結晶をろ別、 n へキサンで洗浄し、 50°Cで一晩真空 乾燥させた。収量 91g、収率 83%であった。得られた白色固体の1 H— NMR測定か ら、 目的の 3—ェチルー 1ーメチルイミダゾリゥムブロマイド(EMIBr)が生成したことを 確認した。
[0106] (3)上記で得られた EMIBr45g (236mmol)を攪拌翼を取り付けたメカニカルスター ラー及び 3方コックを取り付けた 500mLのセパラブルフラスコに仕込んだ。ここに蒸 留水 120mLを仕込み、 EMIBrを完全に溶解させた。
(4)リチウムビス(トリフルォロメチルスルホニル)イミド 68g (236mmol)を蒸留水 240 mLに溶解させた水溶液を作製した。この水溶液を上記の EMIBr水溶液に、攪拌し ながら滴下した。滴下終了後、 70°Cで 1時間反応を継続した。反応液は 2相に分離し ていた。
(5)得られた 2相の下相を抜き出し、塩化メチレンで希釈し、蒸留水で 3回洗浄した。 洗浄後、 80°Cで 3時間減圧留去を行い、塩化メチレン及び一部の水分を除去した。 得られた無色透明の液体を 120°Cで 3日間真空乾燥することで、系内の水を完全に 除去した。収量 61g、収量 67%であった。得られた無色透明液体の1 H— NMR測定 力、ら、 目的の 3—ェチルー 1—メチルイミダゾリゥムビス(トリフルォロメチルスルホニル )イミド(EMITFSI)が生成して!/、ることを確認した。
[0107] 《参考例 8》 ポリスチレン b 水添ポリ(ブタジエン/イソプレン) b—ポリスチレン — b—TPUの製造 ジブチルスズジアセテート lOOppmを含有する高分子ポリオール(1)、 1 , 4ーブタ ンジオール(BD、鎖延長剤)及び 4, 4 'ージフエニルメタンジイソシァネート(MDI)を 、高分子ポリオール(1): BD : MDIのモル比が 1. 0 : 3. 5 : 4. 5で、かつこれらの合 計供給量が 100g/分となるようにして同軸方向に回転する二軸スクリュー型押出機 (30mm φ、 L/D = 36 ; 加熱ゾーンの前部、中央部、後部の 3つの帯域に分けた) の加熱ゾーンの前部に供給して、 260°Cの連続溶融重合でポリウレタン形成反応を 実施した。片末端に水酸基を有するポリスチレン b 水添ポリ(ブタジエン/イソプ レン) b ポリスチレン(クラレ製 セプトン HG— 252)を 100g/分となるようにして 上記の二軸スクリュー型押出機の中央部に連続供給し、上記のポリウレタン形成反 応による反応混合物と反応させた。次に、上記の二軸スクリュー型押出機の後部にジ ステアリルホスフェートを添加(供給量: 13mg/分)し、得られた溶融物をストランド状 で水中に連続的に押し出し、続いてペレタイザ一で切断してペレットを得た。得られ たペレットを 80°Cで 4時間除湿乾燥することにより、ポリスチレン b 水添ポリ(ブタ ジェン /イソプレン) b ポリスチレン一 b— TPUを得た。 TPU ( =熱可塑性ポリウ レタン)含量は 50質量%、このうち高分子ポリオール(1)に由来する成分は 51質量 %であった(ブロック共重合体全体における高分子ポリオール(1)に由来する重合体 ブロック含量は 25. 5質量%)。
《比較参考例 1》 ポリエチレングリコール鎖を側鎖とするグラフト共重合体の製造
500mLのセパラブルフラスコに攪拌翼を取り付けたメカ二カノレスターラー、 3方コッ ク及び冷却管を取り付けた。ここにトノレエン 200mL、スチレン 33mL (288mmol)及 び(ポリエチレングリコール)メチルエーテルメタタリレート [ポリ(エチレングリコール)モ ノメチルエーテル)とメタクリル酸とのエステル] 15g (数平均分子量 1100であった場 合、 13. 6mmol)を加え、溶液とした。ここにァゾビスイソブチロニトリル 7mgを加え、 窒素雰囲気下にて 80°Cに加温し重合を行った。重合を 5時間行った後、さらにァゾ ビスイソブチロニトリル 5mgを加え、 95°Cに昇温してさらに 3時間重合を行った。重合 終了後、重合液をトルエンで希釈し、大過剰のメタノールに再沈してポリマー(以下、 Pst— g— PEGという場合がある)を得た。得られたポリマーの Mn= 173000、 Mw /Mn= l . 72、 PSt含量 62質量0 /0、ポリ(エチレングリコール)メチルエーテルメタク リレート含量 38質量%であった。
[0109] 《比較参考例 2》 二官能ジイソシァネートと 1 , 4 ブタンジオールからなる重合体の 製造
300mLのナスフラスコに磁気撹拌子を入れて 3方コックを取り付けた。ここにトルェ ン 150mL及び 4, 4,一ジフエニルメタンジイソシァネート 25g (lOOmmol)を加えた。 室温を保持しながら、ここに 1 , 4 ブタンジオール 9g (100mmol)を滴下し、その後 室温で一晩攪拌を継続した。得られた反応液をエバポレータを用いて濃縮し、続い て 50°Cでー晚真空乾燥して 4, 4'ージフエニルメタンジイソシァネートと 1 , 4 ブタン ジオールとの重縮合体を得た。
[0110] 《参考例 9》 高分子固体電解質膜の製造
(1)参考例 1で得られたブロック共重合体 lgをテトラヒドロフラン 20mLに完全に溶解 させた。この溶液に EMITFSI 0. 84gを加えたところ、均一な溶液が得られた。共 重合体(B— l) lg中に含まれる PMMA量は 0. 42gであること力、ら、この高分子固体 電解質において、 EMITFSIと PMMAの組成比は 2/1 (質量比)である。
(2)この溶液を縦 9cm、横 10cm、高さ 3cmのテフロン製ボックスに流し込み、約 200 inの膜とした。得られた膜は 30°Cで一晩真空乾燥した後、飽和塩化リチウム水溶 液を入れたデシケータに入れ、 25°C/1 lRh%で保管した。
(3)このようにして得られた高分子固体電解質膜を、イオン伝導率測定及びァクチュ エータ素子作製に用いた。
[0111] 《参考例 10》 高分子固体電解質シートの製造
(1)参考例 1で得られたブロック共重合体 (B l) 10gをテトラヒドロフラン 50mLに完 全に溶解させた。この溶液に EMITFSI 8. 4gを加え均一な溶液を得た。この溶液 をガラス上に広げ乾燥させた。得られた透明、柔軟な固体を 50°Cで一晩真空乾燥し て高分子固体電解質 (E— 5)を得た。
(2)得られた高分子固体電解質を、厚さ lmm、縦 10cm、横 18cmの金型を用い、 2 00°Cで熱プレス成形を行い、高分子固体電解質シートを得た。
(3)このようにして得られた高分子固体電解質シートを、動的粘弾性測定及び引張 試験に用いた。 [0112] 《比較参考例 3》 ポリ(フッ化ビニリデン ran へキサフルォロプロピレン)ランダム 共重合体を用いた高分子固体電解質の製造
ポリ(フッ化ビニリデン— ran へキサフルォロプロピレン)ランダム共重合体(P (VD F/HFP)、アルケマ社製「カイナー # 2801」)10gを量り取り、ここに EMITFSI 20 gを加え、よく混ぜ合わせてスラリー状の混合物を得た。得られた混合物を 130°C/1 時間加熱することにより、混合物は透明 '均一な液状となった。得られた液状物を室 温で冷却することにより無色透明なゲル状の高分子固体電解質 (E— 22)を得た。
[0113] 後記実施例;!〜 20において用いたブロック共重合体 (B)の分子構造を表 1に示す 。ブロック共重合体 B— l、 B— 10、 B— 11、 B— 12、 B— 13及び B— 14はそれぞれ 参考例 1〜6で得られたブロック共重合体である。ブロック共重合体 B— 2〜B— 9は 使用各成分の使用量を変化させる以外参考例 1と同様にして製造した。
[0114] [表 1]
表 1
Figure imgf000036_0001
氺 GPC主ピークの Mn
* *ポリ(iーブチルメタクリレートー ran イソボルニルメタクリレ一ト)
《実施例;!〜 20》 高分子固体電解質
参考例 10で作製した高分子固体電解質 E— 5、並びにブロック共重合体 (B)として 表 1のブロック共重合体を用い、イオン液体(A)として EMITFSIもしくは BMIBF4を 用い、(A) / (B)質量比を適宜変化させる以外参考例 10と同様にして作製した高分 子固体電解質 E—;!〜 4及び 6〜20を作製した。これらの高分子固体電解質の組成 を表 2に示す。
[0116] [表 2]
表 2
Figure imgf000037_0001
* プロック共重合体 (B)に含まれる重合体ブロック(P)の質量に対する、イオン液体 (A)の
配合量
[0117] 《比較例 1》 高分子固体電解質
比較参考例 1で得られたポリエチレングリコール鎖を側鎖に有するグラフト共重合体
(PSt— g— PEG)及び EMITFSIを用いて参考例 10と同様の手法で作製した高分 子固体電解質の組成を表 3に示す。
[0118] [表 3]
表 3
1 高分子固体 (A) / (B) (A)/ (P) ;
重合体 イオン液体 (A)
電解質 (質量比) (質量比) 」 比較参考例 1の ―—―…― !
1 E— 21 EMITFSI
I J 0. 76 2 !
PSt -g- PEG 1 ― j [0119] 《比較例 2及び比較例 3》 高分子固体電解質
比較参考例 3で作製した高分子固体電解質 E— 22及び比較参考例 3と同様の手 法で作製した高分子固体電解質 E— 23の組成を表 4に示す。
[0120] [表 4]
衮 4
Figure imgf000038_0001
[0121] 《参考測定例;!〜 6》 ブロック共重合体 (B)の動的粘弾性測定
ブロック共重合体(B— 1)、 (B— 10)、 (B— 11)、 (B— 12)、 (B— 13)及び(B— 1 4)につ!/、て動的粘弾性測定を行った結果を表 5に示す。
[0122] [表 5]
表 5
Figure imgf000038_0002
※表中の数字の単位は :„
* Q成分のうち、ボリスチレン及ぴポリ(iーブチルメタクリレートー ran— - · Tソボル二ルメタクリレ
—卜)のどちらに由来する T o;かは測定力 は不明であった力 1 l (i°Cに Τ αを持ち、それ以
上の温度にお 1/、ては形状を保持せず、流動していた。
[0123] 《測定例;!〜 10》 高分子固体電解質の動的粘弾性測定
ブロック共重合体(Ε— 4)〜(Ε— 7)及び(Ε— 15)〜(Ε— 20)について動的粘弾 性測定を行った結果を表 6に示す。
[0124] [表 6]
表 6
Figure imgf000039_0001
Figure imgf000039_0002
※表中の数字の単位はで。
*相 Υのうち、ボリスチレン及びボリ(i一プチルメタタリレート一ran—イソボルエルメタクリレー' 卜)のどちらに由来する Τ α力-、は測定力 は不明であった力;、 114 (:に Τ αを持ち、それ以上 の温度にお!、ては形吠を保持せず、流動していた。
[0125] 《参考測定例 7及び比較測定例 1》 グラフト共重合体及びこれを用いた高分子固体 電解質の動的粘弾性測定
比較参考例 1で製造した PSt— g— PEG、及びこれを用レ、た高分子固体電解質 (E 一 21)について DSC測定を行った結果表 7に示す。
[0126] [表 7]
表 7
Figure imgf000039_0003
※表中の数字の単位は。
※PS;:— g— PEGの測定では、 Tgとは別に、 44 Cに PEGの結晶融解ビークを観測した力;、
高分子固体電解質 (E— 21)では結晶融解ピ一クは観測されず、 Tgのみが観測された。 [0127] 《参考測定例 8及び比較測定例 2及び 3》
P (VDF/HFP)及びこれを用いた高分子固体電解質(E— 22)及び(E— 23)に ついて動的粘弾性測定を行った結果を表 8に示す。
[0128] [表 8]
表 8
Figure imgf000040_0001
※表中の数字の単位は :
[0129] 《実施例 2;!〜 23》
参考例 10と同様の手法で作製した高分子固体電解質の組成を表 9に示す。
[0130] [表 9]
表 9
Figure imgf000040_0002
*ボリスチレン一 b—水添ボリ(ブタジエン/イソプレン)一 b—
* *イオン液体は TPUに対じ'::は 3倍量 (質量換算)になる。
[0131] 《参考測定例 9〜 11及び測定例 11〜 13》 ブロック共重合体及び高分子固体電解 質の動的粘弾性測定
熱可塑性ボリウレタン(1)、熱可塑性ポリウレタン(2)、参考例 8で得られたポリスチ レン b 水添ポリ(ブタジエン/イソプレン) b—ポリスチレン b—TPU、及びこ れらを用いた高分子固体電解質 (E— 24)〜(E— 26)につレ、て動的粘弾性測定を 行った結果を表 10 ίこ示す。
[0132] [表 10] 表 1 0
Figure imgf000041_0001
※表中の数字の単位は
*ポリスチレンので aであると推定される。この温度以上にぉ 、ては試科が流動し動的粘獰性
測定は不可能であった。
[0133] 《比較例 4及び 5》 高分子固体電解質
比較参考例 2で得られた MDIと 1, 4 ブタンジオールとの縮合体と EMITFSI (質 量比 1/3)力もなる電解質(E— 27)、及び高分子ポリオール(1)と EMITFSI (質量 比 1Z3)力、らなる電解質(E— 28)を作製したところ、(E— 27)はペースト状、(E— 2 8)は液状であり、ともに形状を保持することができず、固体電解質としては機能しな 力 た。
[0134] 《測定例 14》 高分子固体電解質のモルフォロジ一観察
高分子固体電解質(E— 5)についてモルフォロジ一観察を行った。結果を図 2に示 す。図中、濃い部分が相(Y) (PSt相)、薄い部分が相(X) (PMMA +イオン液体相
)を示す。
[0135] 表 5及び表 6において、参考測定例 1と測定例 1〜4との比較、参考測定例 2と測定 例 5との比較、参考測定例 3と測定例 6との比較、参考測定例 4と測定例 7との比較、 参考測定例 5と測定例 8及び測定例 10との比較、並びに参考測定例 6と測定例 9と の比較から、イオン液体 (A)は重合体ブロック(P)に選択的に相容して相(X)を形成 し、一方重合体ブロック(Q)はイオン液体 (A)とは相容せず相(Y)を形成して!/、るこ と力わ力る。
また測定例 14 (図 2)より、本発明の高分子固体電解質では相(X)と相 (Y)とは互 いに非相容であり、ミクロ相分離構造を形成していることがわかる。 [0136] また測定例 1〜10 (表 6)と比較測定例 2〜3 (表 8)との比較から本発明の高分子固 体電解質は耐熱性に優れることがわかる。
さらに表 10における参考測定例 9〜 11と測定例 11〜 13との比較力ももイオン液体 (A)は重合体ブロック(P)と選択的に相溶して相(X)を形成し、一方重合体ブロック( Q)はこれとは非相容な相(Y)を形成して!/、ること力 Sわ力、る。
また実施例 2;!〜 23では固体電解質が得られるのに対し、比較例 4及び 5ではいず れも固体の電解質は得られず、高分子固体電解質として使用すること自体が困難で あった。
[0137] 《測定例 15〜33及び比較測定例 4〜6》 高分子固体電解質のイオン伝導率と保液 性
高分子固体電解質 (E— 5)〜(E— 20) (表 6)及び (E— 24)〜(E— 26) (表 9)、 ( E— 2;!)〜(E— 23) (表 3及び表 4)についてイオン伝導率測定及び保液性の観察を 行った結果を表 11に示す。
[0138] [表 11]
表 1 1
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0003
[0139] 測定例 15 33より、本発明の高分子固体電解質のイオン伝導率は高い値を示す と共に保液性に優れ、ァクチユエータ素子を含む電気化学デバイスに好適に利用で さること力 sわ力、る。
また比較測定例 4 6より、イオン液体 (A)をグラフト共重合体又は P (VDF/HFP )によつて保持した高分子固体電解質はイオン伝導性には優れるものの保液性に劣 り、電気化学デバイス、特にァクチユエータ素子として利用する場合に電解液の漏れ が起きやすくなることがわかる。
[0140] 《測定例 34 42及び比較参考例 7 9》 高分子固体電解質の引張試験
高分子固体電解質 (E— 9) (表 2)、(E— 15)〜(E— 19) (表 2) (E— 24)〜(E— 26) (表 9)及び (E— 2!)〜(E— 23) (表 3及び 4)について引張試験を行った。結果 を表 12に示す。
[0141] [表 12]
表 1 2
Figure imgf000044_0001
Figure imgf000044_0002
※比較測定例 7〜8では、引張試験時、治具で試料を固定する際にイオン液体 (A)が滲み出
していることが確認された。
[0142] 測定例 34〜42と比較測定例 7〜9の比較より、本発明の高分子固体電解質は破 断強度に優れており、電気化学デバイス、特にァクチユエータ素子用電解質として好 適に用いることができることがわ力る。
[0143] 以上の結果から分かるように、本発明の高分子固体電解質では、重合体ブロック( P)とイオン液体 (A)のなす相(X)と、重合体ブロック(Q)のなす相(Y)が形成されて おり、かつ相(X)と相(Y)がミクロ相分離している。また、本発明の高分子固体電解 質膜は、実用的に満足し得るイオン伝導性を示すのみならず、イオン液体 (A)の保 液性に優れる。さらには、本発明の高分子固体電解質膜は、従来知られている P (V DF/HFP)を用いた高分子固体電解質に比べ、より高い温度で使用することか可 能である。
[0144] またブロック共重合体(B)を用いた場合、 P (VDF/HFP)に比べ少ない量のィォ ン液体 (A)を用レ、ても優れたイオン伝導率が達成されるとレ、う特徴が見出された。こ のことは高分子固体電解質 E— 17及び E— 18では質量比でポリマー 1に対してそれ ぞれイオン液体 0. 84及び 0. 87を用い(表 2)、高分子固体電解質 E— 22では質量 比でポリマー 1に対してイオン液体 2を用い(表 4)ているのに、イオン伝導率では E— 17及び E— 18の方が E— 22より高いことから明らかである。かかる特長はミクロ相分 離により形成された構造が高いイオン伝導能を持つイオンチャンネルとして作用して いることから生ずると推測される。この効果により、高価なイオン液体の使用量を低減 でき、工業的経済性にも優れていることがわかる。
[0145] 《実施例 24》 高分子固体電解質膜を用いたァクチユエータ素子の作製
(1)乳鉢に活性炭(クラレケミカル社製「YP— 50F」)0. lg、アセチレンブラック(電気 化学社製「デンカブラック」) 0· 06g、 P (VDF/HFP) (アルケマ社製「カイナー # 28 01」)0. 04g及び EMITFSI 0. 3gを取り、乳棒でよくすりつぶし、塊状の電極材料 とした。
(2)得られた塊状の電極材料を、 PETフィルムに挟み、 130°Cで熱プレスすることで 炭素電極フィルムを得た。
(3)続!/、て高分子固体電解質 (E 2)の膜 (膜厚 約 200 m)を (2)で得られた炭 素電極フィルムで挟み、 150°Cで熱プレスすることで、炭素電極フィルム一高分子固 体電解質膜 炭素電極フィルムの構成で積層されたァクチユエ一タフイルムを得た。
(4)このァクチユエ一タフイルムから、垂直カッター(西脇製作所社製「PF— 20」)を 用い、フィルム中央から幅 2mm、長さ 7mmに切り出しァクチユエータ素子とした。こ の時、両側の電極間が絶縁されて!/、ることをテスターで確認した。
(5)このァクチユエータ素子について動作試験を行った結果を図 3に示す。
[0146] 図 3から、本発明のァクチユエータ素子は、電圧印加に伴い素早く変位を発生し、 ァクチユエータとして有効に利用できることがわかる。
産業上の利用可能性
[0147] 本発明の高分子固体電解質は、実用的に満足し得るイオン伝導性を示すと共に、 イオン液体の保液性に優れるため、電気化学デバイスとした際の液漏れの問題が起 き難いだけではなぐ耐熱性や機械的強度にも優れ、ァクチユエータ素子をはじめと した電気化学デバイスに好適に使用できる。
また本発明の電気化学デバイス、ひいてはァクチユエータ素子は、電圧の印加に 応答して素早く変位を発生し、なおかつ用いる高分子固体電解質の保液性や機械 的強度に由来して長期間安定に動作できることから、医療機器やマイクロマシン、産 業用ロボット、パーソナルロボット当の分野において好適に用いることができる。 図面の簡単な説明
[図 1]ァクチユエータ動作試験で用いた装置の概略図である。
園 2]高分子固体電解質 (E— 5)のモルフォロジ一観察の結果を示す図である(測定 例 8)。
園 3]実施例 24で作成したァクチユエータ素子について動作試験を行った結果を示 す図である。

Claims

請求の範囲
[1] イオン液体 (A)と、イオン液体 (A)と相溶である重合体ブロック (P)を 1つ以上有し、 イオン液体 (A)と非相溶である重合体ブロック(Q)を 1つ以上有するブロック共重合 体 (B)とを必須成分として含有する高分子固体電解質。
[2] イオン液体 (A)と重合体ブロック(P)が相溶して 1つの相(X)をなし、かつ重合体ブ ロック(Q)が相(X)とは非相容である相(Y)をなし、相(X)と相(Y)とがミクロ相分離し ている請求項 1記載の高分子固体電解質。
[3] 重合体ブロック (P)及び重合体ブロック(Q)がそれぞれ独立にォレフィン系重合体 ブロック;スチレン系重合体ブロック;酢酸ビュル系重合体ブロック;(メタ)アクリル酸 エステル系重合体ブロック;共役ジェン系重合体ブロック;ビュルエーテル系重合体 ブロック;ハロゲン含有ビュル系重合体ブロック;アクリロニトリル系重合体ブロック;ビ 二ルケトン系重合体ブロック;ァクロレイン系重合体ブロック;(メタ)アクリルアミド系重 合体ブロック;ポリエーテル系重合体ブロック;ポリエステル系重合体ブロック;ポリアミ ド系重合体ブロック;ポリイミド系重合体ブロック;シロキサン系重合体ブロック;スチレ ン系モノマーと共役ジェン系モノマーとのランダム共重合体ブロック;及びポリマー部 分を側鎖に含むモノマー類からなる重合体ブロックから選ばれる請求項 1記載の高 分子固体電解質。
[4] イオン液体 (A)が一般式 (I)で表されるイミダゾリウムカチオン、一般式 (II)で表され るピリジニゥムカチオン、一般式(III)で表されるアンモニゥムカチオン、一般式(IV) で表されるホスホニゥムカチオン及び一般式 (V)で表されるスルホユウムカチオンか ら選ばれる少なくとも 1種の有機カチオンと含ハロゲンァニオン、鉱酸ァ二オン及び有 機酸ァニオンから選ばれる少なくとも 1種のァニオンとからなるイオン液体である請求 項 1記載の高分子固体電解質:
[化 1]
Figure imgf000048_0001
(!) (I D (i n) ( (V)
(式中、 〜 4は、それぞれ独立に、水素原子、炭素数 1〜; 10の直鎖状もしくは分 岐状のアルキル基、炭素数 2〜; 10の直鎖状もしくは分岐状のアルケニル基、炭素数 6〜; 15のァリール基、炭素数 7〜20のァラルキル基、及び炭素数 2〜30の(ポリ)ォ キシアルキレン基から選ばれる基を表し、 R'は炭素数 1〜6の直鎖状もしくは分岐状 のアルキル基を表し、 nは 0以上 5以下の整数を表し、 R5〜R8、 R9〜R12及び R13〜R 15のうち、それぞれ 2つの基及び中央の複素原子が共同して環構造を形成してもよい
[5] イオン液体 (A)を構成する有機カチオンが一般式 (I)で表されるイミダゾリウムカチ オンである請求項 4記載の高分子固体電解質。
[6] イオン液体 (A)がェチルメチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミ ド(EMITFSI)、ェチルメチルイミダゾリゥムビス(ペンタフルォロエタンスルホニノレ)ィ ミド(EMIPFSI)、ブチルメチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミド (BMITFSI)及びブチルメチルイミダゾリゥムビス(ペンタフルォロェタンスルホニル) イミド (BMIPFSI)から選ばれる少なくとも 1種である請求項 5記載の高分子固体電解 質。
[7] イオン液体 (A)がェチルメチルイミダゾリゥムビス(トリフルォロメタンスルホニル)イミ ド(EMITFSI)もしくはェチルメチルイミダゾリゥムビス(ペンタフルォロエタンスルホニ ノレ)イミド (EMIPFSI)である請求項 5記載の高分子固体電解質。
[8] 重合体ブロック(P)が(メタ)アクリル酸と炭素数 1〜3のアル力ノールとのエステル;( メタ)アクリル酸と炭素数 2〜4のアルキレングリコール、炭素数 4〜6のジアルキレング リコール又は炭素数 6〜9のトリアルキレングリコールとのモノエステル;(メタ)アクリル 酸と炭素数 2〜4のアルコキシアル力ノールとのエステル;(メタ)アクリル酸と炭素数 4 〜6のジアルキレングリコールもしくは炭素数 6〜9のトリアルキレングリコールのモノメ チルもしくはモノェチルエーテルとのエステル;及び(メタ)アクリル酸と炭素数 2〜4の アミノアルカノールとのエステルから選ばれる少なくとも 1種の単独重合体ブロックもし くは共重合体ブロックである請求項 1記載の高分子固体電解質。
[9] 重合体ブロック(Q)が芳香族ビュル化合物単位を繰返し単位とする重合体ブロック ;結晶性ポリオレフインブロック;炭素数 4以上のアルキル基を有するメタクリル酸アル キルエステルの重合体ブロック;ポリシクロへキシルメタタリレートブロック;ポリイソボル ニルメタタリレートブロック;又は n ブチルメタタリレートもしくはイソブチルメタクリレー トとイソボルニルメタタリレートとのランダム共重合体ブロックである請求項 1記載の高 分子固体電解質。
[10] ブロック共重合体 (B)力 高分子ポリオール成分からなる重合体ブロック(P)と、二 官能イソシァネートもしくは二官能イソシァネートを主体とするイソシァネートと鎖延長 剤との反応生成物成分からなる重合体ブロック(Q)とからなるポリウレタンであることを 特徴とする請求項 1記載の高分子固体電解質。
[11] 重合体ブロック(Q)が、 4, 4'ージフエニルメタンジイソシァネートと 1 , 4 ブタンジ オールとの反応生成物成分からなることを特徴とする請求項 10記載の高分子固体 電解質。
[12] 請求項 1から 11のいずれか 1項に記載の高分子固体電解質を構成要素とする電気 化学デバイス。
[13] 請求項 1から 11のいずれか 1項に記載の高分子固体電解質からなる成形体と、該 成形体に接合し互いに絶縁された少なくとも 2つの電極とからなり、 2つの電極間に 電位差を与えることにより湾曲もしくは変形を生じさせ得るァクチユエータ素子。
PCT/JP2007/069281 2006-10-06 2007-10-02 Polymer solid electrolyte, electrochemical device, and actuator element WO2008044546A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097006966A KR101408612B1 (ko) 2006-10-06 2007-10-02 고분자 고체 전해질, 전기화학 디바이스 및 액츄에이터 소자
EP07829021A EP2071584B1 (en) 2006-10-06 2007-10-02 Polymer solid electrolyte, electrochemical device, and actuator element
JP2007558370A JP5555407B2 (ja) 2006-10-06 2007-10-02 高分子固体電解質、電気化学デバイス及びアクチュエータ素子
US12/444,461 US8138246B2 (en) 2006-10-06 2007-10-02 Polymer electrolyte, electrochemical device, and actuator element
AT07829021T ATE544161T1 (de) 2006-10-06 2007-10-02 Polymerfeststoff-elektrolyt, elektrochemische vorrichtung und betätigungselement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-274787 2006-10-06
JP2006274787 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044546A1 true WO2008044546A1 (en) 2008-04-17

Family

ID=39282755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069281 WO2008044546A1 (en) 2006-10-06 2007-10-02 Polymer solid electrolyte, electrochemical device, and actuator element

Country Status (8)

Country Link
US (1) US8138246B2 (ja)
EP (1) EP2071584B1 (ja)
JP (1) JP5555407B2 (ja)
KR (1) KR101408612B1 (ja)
CN (1) CN101536114A (ja)
AT (1) ATE544161T1 (ja)
TW (1) TW200832778A (ja)
WO (1) WO2008044546A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104423A1 (ja) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション ポリマー組成物及びそれからなる成型品
JP2009278787A (ja) * 2008-05-15 2009-11-26 Sony Corp アクチュエータ素子
JP2010263693A (ja) * 2009-05-07 2010-11-18 Osaka Univ 有機高分子アクチュエータ
JP2010277935A (ja) * 2009-05-29 2010-12-09 Nissan Motor Co Ltd 非水電解質二次電池
JP2013072829A (ja) * 2011-09-29 2013-04-22 Kuraray Co Ltd 電気化学素子
JP2014514698A (ja) * 2011-03-28 2014-06-19 ポステック アカデミー‐インダストリー ファウンデーション 高分子で置換されたシリコンナノ粒子と自己組織化ブロック共重合体を含む高性能リチウム−ポリマー電池
WO2014185426A1 (ja) * 2013-05-13 2014-11-20 国立大学法人名古屋大学 不揮発なフォトニック材料及びその製法
JP2014532962A (ja) * 2011-10-28 2014-12-08 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド 電気化学セルのためのポリウレタンに由来する電解質系
JP2015505861A (ja) * 2011-10-28 2015-02-26 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド 電気化学セルのためのポリウレタンに由来する膜および/またはセパレーター
CN105254993A (zh) * 2015-11-17 2016-01-20 张建刚 一种导电高分子材料及其制备方法
KR20160008369A (ko) * 2014-07-14 2016-01-22 삼성전자주식회사 전해질, 상기 전해질을 포함하는 리튬전지 및 리튬금속전지, 및 상기 전해질의 제조방법
JPWO2016143787A1 (ja) * 2015-03-10 2017-12-21 国立大学法人山形大学 抗血栓性ブロック共重合体
WO2018062157A1 (ja) * 2016-09-28 2018-04-05 東京応化工業株式会社 相分離構造を含む構造体の製造方法
CN109320954A (zh) * 2011-06-30 2019-02-12 艾恩费斯公司 无卤素聚合物共混物
WO2021251404A1 (ja) * 2020-06-10 2021-12-16 日東シンコー株式会社 硬化性組成物
WO2024058064A1 (ja) * 2022-09-16 2024-03-21 株式会社Eneosマテリアル 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354774B2 (en) * 2007-08-17 2013-01-15 Kuraray Co., Ltd. Dielectric material for polymeric actuator, and polymeric actuator using the same
US20110121681A1 (en) * 2009-11-24 2011-05-26 Joshi Ashok V Electrochemical-based mechanical oscillator
CN101768349B (zh) * 2010-01-25 2012-08-15 北京理工大学 一种离子液体基聚合物电解质
WO2012037171A2 (en) 2010-09-13 2012-03-22 The Regents Of The University Of California Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof
KR101718370B1 (ko) * 2010-09-29 2017-03-22 동우 화인켐 주식회사 고체 폴리머 전해질 조성물 및 이를 이용한 전기 변색 소자
KR101716799B1 (ko) * 2010-09-29 2017-03-16 동우 화인켐 주식회사 겔 폴리머 전해질 조성물 및 이를 이용한 전기 변색 소자
EP2648253A4 (en) 2010-11-29 2017-04-19 JSR Corporation Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries
JP2013081310A (ja) * 2011-10-04 2013-05-02 Canon Inc アクチュエータ
RU2503098C1 (ru) * 2012-07-03 2013-12-27 Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) Твердый полимерный электролит для литиевых источников тока
KR101417305B1 (ko) * 2012-07-23 2014-07-08 포항공과대학교 산학협력단 이온성 액체가 화학적으로 결합된 고분자 전해질막 및 이를 이용한 연료전지
CN104981426B (zh) 2012-09-12 2019-09-17 德雷塞尔大学 作为电池膜的聚合的离子性液体嵌段共聚物
US10530011B1 (en) 2014-07-21 2020-01-07 Imprint Energy, Inc. Electrochemical cells and metal salt-based electrolytes
EP3171977A4 (en) 2014-07-22 2018-06-20 Rensselaer Polytechnic Institute Anion exchange membranes and polymers for use in same
JPWO2016055908A1 (ja) * 2014-10-10 2017-04-27 株式会社半導体エネルギー研究所 蓄電装置
KR102592691B1 (ko) * 2015-04-03 2023-10-24 삼성전자주식회사 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
EP3076470B1 (en) 2015-04-03 2019-10-16 Samsung Electronics Co., Ltd. Lithium secondary battery
KR102466670B1 (ko) * 2015-05-29 2022-11-14 삼성전자주식회사 리튬 전지용 전해질, 및 이를 포함하는 음극 및 리튬 전지
US20190058108A1 (en) * 2015-10-28 2019-02-21 Sabic Global Technologies B.V. Ion dipoles containing polymer compositions
CN105462006B (zh) * 2015-11-30 2017-04-19 深圳市新纶科技股份有限公司 一种防静电丁腈手套及其制作方法
KR101868221B1 (ko) * 2016-03-14 2018-06-15 고려대학교 산학협력단 이온 채널 압력 센서 및 이의 제조방법
KR101918247B1 (ko) * 2016-08-11 2018-11-13 포항공과대학교 산학협력단 전기반응성 액추에이터, 이를 포함하는 기계장치, 및 고분자 전해질
EP3282494B1 (en) * 2016-08-11 2020-07-22 Postech Academy-Industry Foundation Electroactive actuator, mechanical device including the same, and polymer electrolyte
WO2018038202A1 (ja) * 2016-08-25 2018-03-01 日本ゼオン株式会社 イオン性組成物および架橋物
CN109687003A (zh) * 2018-11-29 2019-04-26 大连理工大学 一种基于哌啶的交联型碱性阴离子膜及其制备方法
US20220077460A1 (en) * 2018-12-17 2022-03-10 Carnegie Mellon University Electrode compositions and systems for batteries
TWI740221B (zh) * 2018-12-17 2021-09-21 德商贏創運營有限公司 用於有機電池之改良固體電解質
CN109768320B (zh) * 2018-12-19 2021-05-07 南方科技大学 全固态聚合物电解质及其制备方法和全固态锂离子电池
CN111933864B (zh) * 2019-04-25 2022-12-20 聚电材料股份有限公司 能量储存装置
EP3988581B1 (en) * 2019-06-20 2023-12-06 DIC Corporation Intermediate for block copolymer, block copolymer, and methods for producing same
FR3105590B1 (fr) * 2019-12-23 2022-12-23 Michelin & Cie Materiaux composites piezoelectriques ayant des proprietes piezoelectriques ameliorees
FR3105589B1 (fr) * 2019-12-23 2022-12-30 Michelin & Cie Dispositif piezoelectrique ayant des proprietes piezoelectriques ameliorees
CN113054247B (zh) * 2019-12-27 2022-11-04 张家港市国泰华荣化工新材料有限公司 一种复合型固态电解质及其制备方法和固态锂硫电池
CN113307996B (zh) * 2021-05-20 2023-03-10 西安理工大学 一种兼具疏水性和低介电常数柔性复合膜的制备方法
CN113629294A (zh) * 2021-09-17 2021-11-09 珠海冠宇电池股份有限公司 一种固态电解质及含有该固态电解质的固态电池
CN114411334B (zh) * 2022-01-17 2022-11-29 清华大学 一种电容器薄膜及其制备方法和应用
CN116218118A (zh) * 2023-02-21 2023-06-06 中国科学院苏州纳米技术与纳米仿生研究所 准固态凝胶电解质、其制备方法以及人工肌肉组合体

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309252A (ja) 1987-06-12 1988-12-16 Meidensha Electric Mfg Co Ltd 含水高分子ゲルアクチュエ−タ
JPH04275078A (ja) 1991-02-28 1992-09-30 Agency Of Ind Science & Technol アクチュエータ素子
WO2000001026A1 (fr) * 1998-06-26 2000-01-06 Sanyo Electric Co., Ltd. Batterie au lithium a electrolyte de gel de polymere
JP2002003478A (ja) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N−アルコキシアルキルイミダゾリウム塩、該イミダゾリウム塩からなるイオン性液体ならびにイオン性ゲル
JP2003257240A (ja) * 2002-03-06 2003-09-12 Asahi Glass Co Ltd イオン伝導性ゲルおよびその製造方法
JP2004098199A (ja) 2002-09-06 2004-04-02 Chemiprokasei Kaisha Ltd 固体電解質、それを含む可撓性積層体およびそれよりなる全固体アクチュエータ
JP2004281147A (ja) 2003-03-13 2004-10-07 Sumitomo Bakelite Co Ltd 高分子固体電解質
JP2005051949A (ja) 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd アクチュエータ及びそれを用いた関節駆動機構
JP2006032237A (ja) 2004-07-20 2006-02-02 Dai Ichi Kogyo Seiyaku Co Ltd イオンポリマーゲル電解質およびその前駆体組成物
JP2006310071A (ja) * 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The 固体電解質及びそれを用いたリチウムポリマー電池
JP4275078B2 (ja) 2005-01-13 2009-06-10 三洋電機株式会社 電池の制限電流制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079269A1 (en) * 2001-03-30 2002-10-10 Uab Research Foundation Polymer formation in room temperature ionic liquids
ATE490568T1 (de) * 2001-11-29 2010-12-15 Ube Industries Polymerelektrolytzusammensetzung
US7544445B2 (en) * 2002-06-19 2009-06-09 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
WO2004085567A2 (en) 2003-03-05 2004-10-07 Electrochromix, Inc Electrochromic mirrors and other electrooptic devices
JP4717400B2 (ja) 2004-09-13 2011-07-06 イーメックス株式会社 空中駆動高分子アクチュエータ素子
JP2006125396A (ja) 2005-10-17 2006-05-18 Toshiba Corp アクチュエータ
WO2007142731A2 (en) * 2006-04-04 2007-12-13 The Regents Of The University Of California High elastic modulus polymer electrolytes
JP2007302783A (ja) * 2006-05-11 2007-11-22 Canon Inc 高分子電解質膜及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309252A (ja) 1987-06-12 1988-12-16 Meidensha Electric Mfg Co Ltd 含水高分子ゲルアクチュエ−タ
JPH04275078A (ja) 1991-02-28 1992-09-30 Agency Of Ind Science & Technol アクチュエータ素子
WO2000001026A1 (fr) * 1998-06-26 2000-01-06 Sanyo Electric Co., Ltd. Batterie au lithium a electrolyte de gel de polymere
JP2002003478A (ja) * 2000-06-20 2002-01-09 Japan Science & Technology Corp N−アルコキシアルキルイミダゾリウム塩、該イミダゾリウム塩からなるイオン性液体ならびにイオン性ゲル
JP2003257240A (ja) * 2002-03-06 2003-09-12 Asahi Glass Co Ltd イオン伝導性ゲルおよびその製造方法
JP2004098199A (ja) 2002-09-06 2004-04-02 Chemiprokasei Kaisha Ltd 固体電解質、それを含む可撓性積層体およびそれよりなる全固体アクチュエータ
JP2004281147A (ja) 2003-03-13 2004-10-07 Sumitomo Bakelite Co Ltd 高分子固体電解質
JP2005051949A (ja) 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd アクチュエータ及びそれを用いた関節駆動機構
JP2006032237A (ja) 2004-07-20 2006-02-02 Dai Ichi Kogyo Seiyaku Co Ltd イオンポリマーゲル電解質およびその前駆体組成物
JP4275078B2 (ja) 2005-01-13 2009-06-10 三洋電機株式会社 電池の制限電流制御方法
JP2006310071A (ja) * 2005-04-28 2006-11-09 Nippon Synthetic Chem Ind Co Ltd:The 固体電解質及びそれを用いたリチウムポリマー電池

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Denshi to ion no Kinoukagaku siriiz", DAIYORYO DENKINIJUSO KYAPASITA NO SAIZENSEN, vol. 2
ENU TII ESU: "Series of Chemistry of Function of Electrons and Ions", FRONTIER OF LARGE CAPACITY ELECTRICAL DOUBLE LAYER CAPACITOR, vol. 2
EXPECTED MATERIALS FOR THE FUTURE, vol. 5, no. 10, 2005, pages 14
JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 127, 2005, pages 4976
JOURNAL OF PHYSICAL CHEMISTRY, vol. 109, 2005, pages 3886

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104423A1 (ja) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション ポリマー組成物及びそれからなる成型品
JP2010228455A (ja) * 2008-02-22 2010-10-14 Sansaara Corporation:Kk 成型品の製造方法および成型品防汚複合体の製造方法
JP4576479B2 (ja) * 2008-02-22 2010-11-10 有限会社サンサーラコーポレーション ポリマー組成物及びそれからなる成型品
JPWO2009104423A1 (ja) * 2008-02-22 2011-06-23 有限会社サンサーラコーポレーション ポリマー組成物及びそれからなる成型品
US8519033B2 (en) 2008-02-22 2013-08-27 Sanc Salaam Corporation Polymer composition and molded products formed thereof
US9644091B2 (en) 2008-02-22 2017-05-09 Sanc Salaam Corporation Polymer composition and molded products formed thereof
JP2009278787A (ja) * 2008-05-15 2009-11-26 Sony Corp アクチュエータ素子
JP2010263693A (ja) * 2009-05-07 2010-11-18 Osaka Univ 有機高分子アクチュエータ
JP2010277935A (ja) * 2009-05-29 2010-12-09 Nissan Motor Co Ltd 非水電解質二次電池
JP2014514698A (ja) * 2011-03-28 2014-06-19 ポステック アカデミー‐インダストリー ファウンデーション 高分子で置換されたシリコンナノ粒子と自己組織化ブロック共重合体を含む高性能リチウム−ポリマー電池
CN109320954A (zh) * 2011-06-30 2019-02-12 艾恩费斯公司 无卤素聚合物共混物
JP2013072829A (ja) * 2011-09-29 2013-04-22 Kuraray Co Ltd 電気化学素子
JP2015505861A (ja) * 2011-10-28 2015-02-26 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド 電気化学セルのためのポリウレタンに由来する膜および/またはセパレーター
JP2016201375A (ja) * 2011-10-28 2016-12-01 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド 電気化学セルのためのポリウレタンに由来する膜および/またはセパレーター
JP2014532962A (ja) * 2011-10-28 2014-12-08 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド 電気化学セルのためのポリウレタンに由来する電解質系
WO2014185426A1 (ja) * 2013-05-13 2014-11-20 国立大学法人名古屋大学 不揮発なフォトニック材料及びその製法
KR20160008369A (ko) * 2014-07-14 2016-01-22 삼성전자주식회사 전해질, 상기 전해질을 포함하는 리튬전지 및 리튬금속전지, 및 상기 전해질의 제조방법
KR102207927B1 (ko) 2014-07-14 2021-01-26 삼성전자주식회사 전해질, 상기 전해질을 포함하는 리튬전지 및 리튬금속전지, 및 상기 전해질의 제조방법
JPWO2016143787A1 (ja) * 2015-03-10 2017-12-21 国立大学法人山形大学 抗血栓性ブロック共重合体
CN105254993A (zh) * 2015-11-17 2016-01-20 张建刚 一种导电高分子材料及其制备方法
WO2018062157A1 (ja) * 2016-09-28 2018-04-05 東京応化工業株式会社 相分離構造を含む構造体の製造方法
JPWO2018062157A1 (ja) * 2016-09-28 2019-07-11 東京応化工業株式会社 相分離構造を含む構造体の製造方法
US10995234B2 (en) 2016-09-28 2021-05-04 Tokyo Ohka Kogyo Co., Ltd. Method of producing structure containing phase-separated structure
JP7055101B2 (ja) 2016-09-28 2022-04-15 東京応化工業株式会社 相分離構造を含む構造体の製造方法
WO2021251404A1 (ja) * 2020-06-10 2021-12-16 日東シンコー株式会社 硬化性組成物
WO2024058064A1 (ja) * 2022-09-16 2024-03-21 株式会社Eneosマテリアル 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス

Also Published As

Publication number Publication date
JPWO2008044546A1 (ja) 2010-02-12
KR20090058544A (ko) 2009-06-09
EP2071584B1 (en) 2012-02-01
JP5555407B2 (ja) 2014-07-23
US8138246B2 (en) 2012-03-20
EP2071584A4 (en) 2010-08-25
CN101536114A (zh) 2009-09-16
EP2071584A1 (en) 2009-06-17
US20100035158A1 (en) 2010-02-11
TW200832778A (en) 2008-08-01
KR101408612B1 (ko) 2014-06-17
ATE544161T1 (de) 2012-02-15

Similar Documents

Publication Publication Date Title
JP5555407B2 (ja) 高分子固体電解質、電気化学デバイス及びアクチュエータ素子
Imaizumi et al. Polymer actuators using ion-gel electrolytes prepared by self-assembly of ABA-triblock copolymers
US8012628B2 (en) Polymer electrochemical device
Green et al. Synthesis of imidazolium ABA triblock copolymers for electromechanical transducers
JP2011213862A (ja) イオン伝導性硬化性組成物
KR102330170B1 (ko) 가교 결합 구조를 갖는 프로톤 전도막 및 연료 전지
KR101852031B1 (ko) 페이스트 및 그 도막을 전해질막이나 전극막으로 하는 고분자 트랜스듀서
JP2008252958A (ja) アクチュエータ及びそれに使用する電極
JP5675321B2 (ja) アクチュエータ
JP2006050780A (ja) 導電性高分子アクチュエータ
JP2009258008A (ja) 透明性を有する可撓性変形センサ
Guo et al. Multifunctional enhancement of proton-conductive, stretchable, and adhesive performance in hybrid polymer electrolytes by polyoxometalate nanoclusters
JP5638065B2 (ja) 高分子固体電解質、及びそれを用いた高分子トランスデューサ
EP3282494B1 (en) Electroactive actuator, mechanical device including the same, and polymer electrolyte
JPWO2008123064A1 (ja) 電極、及びそれを用いたアクチュエータ
US20220115692A1 (en) Dynamically-bonded supramolecular polymers for stretchable batteries
JP5528967B2 (ja) 電極形成用ペースト及びその塗膜を電極膜とする高分子トランスデューサ
Watanabe et al. Ion gels for ionic polymer actuators
JP5317511B2 (ja) アクチュエータとその電極
US20130082542A1 (en) Actuator
JP2014129496A (ja) 刺激応答性化合物、変形材料およびアクチュエーター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037479.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2007558370

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007829021

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097006966

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12444461

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE