WO2008032843A1 - Dispositif électroluminescent organique - Google Patents

Dispositif électroluminescent organique Download PDF

Info

Publication number
WO2008032843A1
WO2008032843A1 PCT/JP2007/068008 JP2007068008W WO2008032843A1 WO 2008032843 A1 WO2008032843 A1 WO 2008032843A1 JP 2007068008 W JP2007068008 W JP 2007068008W WO 2008032843 A1 WO2008032843 A1 WO 2008032843A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic layer
organic
repeating unit
polymer compound
Prior art date
Application number
PCT/JP2007/068008
Other languages
English (en)
French (fr)
Inventor
Takeshi Yamada
Original Assignee
Sumitomo Chemical Company, Limited
Sumation Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited, Sumation Co., Ltd. filed Critical Sumitomo Chemical Company, Limited
Priority to CN200780041903.2A priority Critical patent/CN101536207B/zh
Priority to KR1020097007366A priority patent/KR101463271B1/ko
Priority to US12/440,626 priority patent/US8927115B2/en
Priority to EP07807412A priority patent/EP2063473A4/en
Publication of WO2008032843A1 publication Critical patent/WO2008032843A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium

Definitions

  • the present invention relates to an organic electoluminescence device, and more particularly to a laminated polymer organic electroluminescence device.
  • organic electroluminescence devices have attracted attention because they can easily emit light of many colors in addition to low voltage driving and high brightness.
  • Polymer materials are being studied as one of the materials used to fabricate organic-electric-luminescence elements.
  • Organic electroluminescence devices that are made by laminating this polymer material include those made by laminating polyphenylene vinylene and alkoxy-substituted polyphenylene vinylene, and those made by laminating polyphenylene vinylene and cyanogenated polyphenylene vinylene.
  • Etc. have been proposed (Japanese Patent Laid-Open No. 3-273083, International Publication No. 944082983 pamphlet). However, these devices have a problem that sufficient luminous efficiency cannot be obtained.
  • an anode and an organic light emitting layer (specifically, a hole transport polymer layer including a hole transport material located on the anode side, and a layer laminated on the hole transport polymer layer, A light emitting polymer layer containing a dopant light emitting material located on the electron transport layer side), and an organic electroluminescent device in which an electron transport layer and a cathode are laminated has been proposed. Open 2 0 0 1-0 5 2 8 6 7). However, this device has a problem that sufficient performance cannot be obtained in terms of luminous efficiency and driving voltage.
  • An object of the present invention is to provide an organic electoluminescence device that is excellent in luminous efficiency and driving voltage.
  • the present invention firstly An electrode composed of an anode and a cathode, a first organic layer containing a hole transporting polymer compound provided between or in contact with the anode, the first organic layer, and the cathode An organic electroluminescence device having a second organic layer containing an electron-transporting polymer compound provided in contact with the first organic layer,
  • the hole transporting polymer compound satisfies the following formula (1):
  • I p 1 represents the absolute value (eV) of the ionization potential of the hole transporting polymer compound
  • W a represents the absolute value (eV) of the work function of the anode.
  • the electron transporting polymer compound satisfies the following formula (2) and the following formula (3), and Wc -E a 2 ⁇ 0.5 (2)
  • Wc represents the absolute value (eV) of the work function of the cathode
  • E a 2 represents the absolute value (eV) of the electron affinity of the electron transport polymer
  • I p 2 represents the electron transport property. This represents the absolute value (eV) of the ionization potential of the polymer compound, and W a has the same meaning as above.
  • At least one of the first organic layer and the second organic layer contains a luminescent material satisfying the following formula (4) and the following formula (5);
  • I p 3 represents the absolute value (eV) of the ionization potential of the luminescent material
  • E a 3 represents the absolute value (eV) of the electron affinity of the luminescent material
  • I p 1 and E a 2 represent It has the same meaning as above.
  • the present invention provides a planar light source and a display device using the organic electroluminescence element or the organic electroluminescence element obtained by the production method.
  • the organic-electric-luminescence device of the present invention includes a first electrode comprising an electrode comprising an anode and a cathode, and a hole transporting polymer compound provided between or in contact with the anode.
  • the hole transporting polymer compound satisfies the above formula (1)
  • the dragon transporting polymer compound satisfies the above formula (2) and the above formula (3)
  • the first organic layer and At least one of the second organic layers contains a light-emitting material that satisfies the formula (4) and the formula (5), and is from the first organic layer or from the first organic layer and the second organic layer.
  • the ionization potential and the electron affinity of the hole transporting polymer compound, the electron transporting polymer compound, and the luminescent material are values measured by a cyclic portammetry method.
  • the working electrode is a glass-bonded electrode
  • the counter electrode is platinum
  • the reference electrode is AgZAg + .
  • a thin film is formed on the working electrode by the casting method.
  • the potential is measured in a 0.1 M tetrafluoroboric acid-tetra-n-butyl ammonium [CH 3 (CH 2 ) 3 ] 4 N ⁇ BF 4 acetonitrile solution.
  • the scanning range is 0 to 150 OmV on the oxidation side and -290 OmV to OmV on the reduction side.
  • the value of the work function of the anode is obtained as a photoelectron emission start point by ultraviolet rays irradiated from a deuterium lamp using a photoelectron spectrometer (trade name: AC-2, manufactured by Riken Keiki Co., Ltd.). .
  • the work function of the cathode uses the value obtained from the measurement by the thermionic emission method, but when it cannot be obtained from the measurement by the thermionic emission method, the value obtained from the measurement by the photoelectron emission method. Is used.
  • the above formula (1) represents the difference between the absolute value I P 1 of the ionization potential of the hole transporting molecular compound and the absolute value W a of the work function of the anode.
  • the difference is less than 0.5 eV, and the ease of hole injection from the anode or one or more adjacent layers to the first organic layer containing the hole transporting polymer compound is reduced. From the viewpoint, it is preferably less than 0.47 eV, and more preferably less than 0.3 eV.
  • Formula (2) represents the difference between the absolute value Wc of the work function of the cathode and the absolute value E a 2 of the electron affinity of the electron transporting polymer compound.
  • the difference is less than 0.5 eV, and preferably less than 0.35 eV from the viewpoint of ease of electron injection from the cathode to the second organic layer containing the electron transporting polymer compound. More preferably, it is less than 0.3 eV.
  • Equation (3) represents the difference between the absolute value I P 2 of the ionization potential of the electron transporting polymer compound and the absolute value W a of the work function of the anode.
  • the difference is 0.5 eV or more, and a gap is formed between the ionization potentials I 1 and 1 p 2 of the first organic layer to block the holes, and the first organic layer is regenerated in the first organic layer.
  • it is preferably 0.7 to 1.5 eV, and 0.9 to 1.2. More preferably, it is eV.
  • Equation (4) represents the absolute value of the difference between the absolute value I p 3 of the ionization potential of the luminescent material and the absolute value I P 1 of the ionization potential of the hole transporting polymer compound.
  • the absolute value of the difference is less than 0.5 eV, and is preferably less than 0.3 eV from the viewpoint of ease of hole injection from the hole-transporting polymer compound to the light-emitting material. More preferably less than 2 eV.
  • the above formula (5) is the absolute value E a 2 of the electron affinity of the electron transporting polymer compound and the luminescent material.
  • the absolute value of the difference from the absolute value E a 3 of the electron affinity of the material.
  • the absolute value of the difference is less than 1.0 eV, and from the viewpoint of ease of electron injection from the electron transporting polymer compound to the light emitting material, it is preferably less than 0.98 eV, More preferably less than 0.7 eV
  • the above formulas (P) and (Q) are defined by the values of X and y on the CIE color coordinates of the emission color of the organic electroluminescent device of the present invention. It is.
  • the emission color satisfying this range is not so-called white, but is obtained from emission with a narrower spectrum width, and is the primary color of light itself (ie, red, blue or green) or a color close to them.
  • the anode For the production of the anode, methods such as vacuum deposition, sputtering, ion plating, and plating are used. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the anode may be a single layer or two or more layers. The anode material may be used alone or in combination of two or more.
  • the thickness of the anode can be appropriately adjusted in consideration of light transmittance and electric conductivity.
  • the thickness is 10 nm to l 0 / zm, preferably 20 nm to 1 m. More preferably, it is 50 nm to 500 nm.
  • a hole injection layer (usually a layer having an average thickness of 1 to 200 nm) is formed on the positive electrode separately from the first organic layer. May be formed.
  • known conductive polymers phthalocyanine derivatives, polythiophene derivatives, etc.
  • aromatic amine-containing polymers copper phthalocyanine, molybdenum oxide
  • the hole injection layer can be formed using a material such as amorphous force, carbon fluoride, polyamine compound or the like.
  • a layer made of a metal oxide, a metal fluoride, an organic insulating material, or the like (usually a layer having an average thickness of 2 nm or less) may be provided.
  • the cathode is usually transparent or semi-transparent.
  • a material having a low work function is preferable, for example, alkaline metals such as lithium, sodium, potassium, rubidium, and cesium, and alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium.
  • An alloy with one or more of platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite, and a graphite intercalation compound are used.
  • alloys include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the cathode may be a single layer or two or more layers. Further, the cathode material may be used alone or in combination of two or more.
  • the thickness of the cathode can be appropriately adjusted in consideration of electric conductivity and durability, but is, for example, 10 nm to l 0 / xm, preferably 20 nm to 1 / xm. More preferably, it is 50 nm to 500 nm.
  • an electron injection layer (usually a layer having an average film thickness of 2 nm or less) different from the second organic layer may be formed on the cathode.
  • a protective layer may be further provided to protect the device.
  • the electrode, the first organic layer, the first The organic layer 2 is usually formed on a substrate.
  • This substrate may be any substrate that does not change when the electrode is formed and the organic layer is formed. Examples of the material include glass, plastic, polymer film, silicon, and the like. Transparent or translucent Are preferred. In the case of an opaque substrate, the opposite electrode (that is, the electrode far from the substrate) is preferably transparent or translucent.
  • the substrate can be flat or fibrous.
  • the hole transporting polymer compound contained in the first organic layer is not particularly limited as long as it satisfies the above formulas (1) to (5). Is not limited, but usually has a function of injecting and transporting holes from the anode or from other layers on the anode side, and includes, for example, ⁇ and ⁇ conjugated polymers and amine compounds It can be appropriately selected from polymer materials. In addition, the hole transporting polymer compound may be used alone or in combination of two or more.
  • hole transporting polymer compound examples include “polymer EL materials” (co-authored by Toshihiro Onishi and Tamami Koyama, Kyoritsu Publishing Co., Ltd., published in 2004, first edition) Specifically, W099Z13692 published specification, W099 / 48160 published specification,
  • a high hole transporting property having a repeating unit composed of an arylene group which may have a substituent, and a repeating unit composed of Z or a divalent heterocyclic group which may have a substituent.
  • Molecular compounds hereinafter referred to as “polyarylene-based hole-transporting polymer compounds”.
  • the polyarylene-based hole-transporting polymer compound has a repeating unit consisting of an arylene group that may have a substituent, and a substituent.
  • the total proportion of the “repeating unit consisting of a divalent heterocyclic group” may be 20 to 100 mol%, more preferably 50 to 99 mol%.
  • the number of carbon atoms constituting the ring of the arylene group is usually about 6 to 60.
  • the “carbon number constituting the ring” does not include the carbon number of the substituent described later, and the same applies hereinafter.
  • Specific examples of arylene groups include phenylene, biphenylene, evening phenylene, naphthalenedyl, anthracenedyl, phenanthrene, pen pentyl, indene, heptadiol. Group, indasenzyl group, triphenylenedyl group, binaphthyl group, phenylnaphthylene group, stilbenyl group, fluorenedyl group and the like.
  • a divalent heterocyclic group means an atomic group formed by removing two hydrogen atoms from a heterocyclic compound.
  • the number of carbon atoms constituting the ring of the divalent heterocyclic group is usually about 3 to 60.
  • Specific examples of the divalent heterocyclic group include a pyridine-diyl group, a diazaphenylene group, a quinoline diyl group, a quinoxaline diyl group, an acridine diyl group, a bibilidyl diyl group, a phenanthoxylin diyl group, and A in the following formula (6b).
  • R ′ and R ′ ′ are as described later.
  • polyarylene-based hole-transporting polymer compound examples include “a repeating unit composed of an arylene group optionally having a substituent” represented by the following formula (6 a), and / or
  • R la , R lb , R, R ld , R 2a , R 2b , R 2e and R 2d are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • An alkylphenyl group in which one or more hydrogen atoms on the ring are substituted with an alkyl group having 1 to 20 carbon atoms, an alkoxy in which one or more hydrogen atoms on the benzene ring are substituted with an alkoxy group having 1 to 20 carbon atoms Represents a phenyl group, an alkylcarbonyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 20 carbon atoms, or a strong loxyl group having 1 to 20 carbon atoms, wherein R lb and R, and R 2b and R 2c
  • A represents a 2 carbon atoms and two atoms or atomic group forming a connexion 5- or 6-membered ring such together with the carbon atoms on the ring Y on the ring X
  • R la , R lb , R lc , R 2a , R 2b and R 2c have the same meaning as described above, where R ′ b and R, and R 2b and R 2c together form a ring. You may do it.
  • alkyl group having 1 to 20 carbon atoms examples include a straight chain alkyl group such as a methyl group, an ethyl group, and an n-propyl group, and a branch having one or more branches in a chain such as an isopropyl group and a tert-butyl group.
  • Alkyl groups, cycloalkyl groups having a saturated ring with 3 or more carbon atoms, etc. I can get lost.
  • phenylalkyl, alkylphenyl, and alkylcarbonyl groups examples include o
  • alkyl moiety in R is the same as described and exemplified in the section of the alkyl group.
  • Examples of the carboxyl group include those in which the alkyl moiety in these groups is the same as those explained and exemplified in the section of the alkyl group.
  • alkoxy group having 1 to 20 carbon atoms examples include those in which the groups described and exemplified in the above-mentioned alkyl group form a group via an oxygen atom.
  • phenylalkoxy group examples include those in which the alkoxy moiety in these groups is the same as described and exemplified in the section of the alkoxy group.
  • R, R ′ and R ′ ′ each independently represent a hydrogen atom, an alkyl having 1 to 20 carbon atoms, Group, a C1-C20 alkoxy group, a phenylalkyl group in which one or more terminal hydrogen atoms of the alkyl group are substituted with a phenyl group, and one or more terminal hydrogen atoms of the alkoxy group are phenyl A phenyl alkoxy group substituted with a group, a phenyl group, a phenoxy group, an benzene ring, an alkylphenyl group in which one or more hydrogen atoms on the ring are substituted with an alkyl group having 1 to 20 carbon atoms, 1 on a benzene ring An alkoxyphenyl group in which one or more hydrogen atoms are substituted with an alkoxy group having 1 to 20 carbon atoms, an alkylcarbonyl group having 1 to 20 carbon atoms, an alkoxycarbon
  • R, R, and R ′ ′ are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, and / or 1 to 2 carbon atoms. It is a phenyl group substituted with one or more alkoxy groups of 0, the solubility of the hole-transporting polymer material in a solvent, and the “divalent complex which may have a substituent” From the viewpoint of easiness of synthesis of a raw material monomer of a repeating unit consisting of a cyclic group.
  • R, R ′ and R ′ ′ are represented by R la , R lb , R, R ld , R 2 a , R 2 b , R and R 2 d in the formula (6 a). This is the same as that specifically explained and exemplified as the group to be represented.
  • Examples of the repeating unit represented by the above formula (6a) or the above formula (6b) include the following structures.
  • the hydrogen atom on the benzene ring is an alkyl group having 1 to 20 carbon atoms, or 1 to 2 carbon atoms.
  • One or more hydrogen atoms on a phenyl group, phenoxy group, or benzene ring have 1 to 2 carbon atoms
  • the repeating unit represented by the formula (6 a) includes a solubility of the hole transporting polymer material in a solvent, and a repeating unit composed of an arylene group which may have a substituent. From the viewpoint of the ease of synthesis of the monomer and the hole transportability, those represented by the following formula (A) are preferable.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms substituted with one or more hydrogen atoms on the benzene ring. Represents a formed phenyl group.
  • R 1 and R 2 are preferably an alkyl group having 1 to 20 carbon atoms.
  • the hole transporting polymer compound is composed of a repeating unit composed of an arylene group which may have a substituent and a divalent heterocyclic group which may have Z or a substituent.
  • a repeating unit composed of a divalent residue of an aromatic amine compound which may have a substituent.
  • the ratio of the repeating unit consisting of the divalent residue of the aromatic amine compound to the total 1 mol of the repeating unit consisting of the arylene group and the repeating unit consisting of the divalent heterocyclic group is usually: 0.1 to 10 moles.
  • the repeating unit composed of a divalent residue of the aromatic amine compound is preferably a repeating unit represented by the following formula (7).
  • Ar 4 , Ar 5 , Ar 6 and Ar 7 each independently represents an arylene group or a divalent heterocyclic group.
  • Ar 8 , 8! ⁇ And 8 ⁇ are respectively Independently represents an aryl group or a monovalent heterocyclic group, o and p each independently represent 0 or 1.
  • arylene group and divalent heterocyclic group are the same as those described above.
  • the aryl group usually has 6 to 60 carbon atoms, specifically, for example, a phenol group or the like.
  • the monovalent heterocyclic group means an atomic group formed by removing one hydrogen atom from a heterocyclic compound, and specifically, for example, a pyridyl group.
  • repeating unit represented by the formula (7) examples include a repeating unit represented by the following formula.
  • the hydrogen atom on the aromatic ring is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a phenylalkyl in which one or more terminal hydrogen atoms of the alkyl group are substituted with a phenyl group.
  • a phenyl alkoxy group in which one or more terminal hydrogen atoms of the alkoxy group are substituted with a phenyl group, a phenyl group, a phenoxy group, or one or more hydrogen atoms on the benzene ring are alkyl having 1 to 20 carbon atoms.
  • An alkoxy group having 1 to 20 alkoxy groups may be substituted with a group having 1 to 20 carbon atoms.
  • these groups are specifically represented as groups represented by R la , R lb , R lc , R ld , R 2a , R 2b , R 2c and R 2d in the formula ( 6a ). This is the same as described and exemplified.
  • R 7 , R 8 and R 9 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or one or more terminal hydrogen atoms of the alkyl group.
  • the groups represented by R 7 , R 8 and R 9 are specifically R la , R lb , R lc , R ′ d , R 2 in the formula (6 a). This is the same as those specifically explained and exemplified as the groups represented by a , R 2 b , R 2 c and R 2 d .
  • repeating unit represented by the formula (8) those represented by the following formula (B) are soluble in the solvent of the hole transporting polymer material, and have a substituent. From the viewpoint of the ease of synthesis of the raw material monomer of the repeating unit consisting of a divalent residue of a good aromatic amine compound, hole transportability and ionization potential.
  • R represents an alkyl group having 1 to 20 carbon atoms
  • w is an integer of 0 to 5.
  • the two Rs may be bonded to each other to form a ring.
  • repeating units represented by the formulas (7), (8) and (B) may contain only one type or two or more types.
  • the alkyl group having 1 to 20 carbon atoms represented by R represents R la , R lb , R, R ld , R 2a , R 2b , R 2c and the like in the formula (6a). This is the same as those specifically explained and exemplified as the group represented by R 2d .
  • hole transporting polymer compound examples include polyvinylcarbazole and derivatives thereof, polysiloxane derivatives having aromatic amines in the side chain or main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, Examples include polyaniline and derivatives thereof, polythiophene and derivatives thereof, poly (p-phenylenevinylene) and derivatives thereof, and specifically, JP-A 63-70257, JP-A 63-175860 Selected from those described in JP-A-2-135359, JP-A-2-135361, JP-A-2-209988, JP-A-3-37992, JP-A-3-152184, etc. Are illustrated.
  • polysiloxane having an aromatic amine in the side chain or main chain and a derivative thereof those having a hole transporting aromatic amine in the side chain or main chain are preferable.
  • the thickness of the first organic layer varies depending on the material used, and may be adjusted so that the driving voltage and the luminous efficiency are appropriate.
  • I nn! ⁇ preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the electron-transporting polymer compound contained in the second organic layer is not particularly limited as long as it satisfies the formulas (1) to (5). Although it is not limited in terms of material, it usually has a function of injecting and transporting electrons from the cathode or from other layers on the cathode side, and has a function of transporting 7T and ⁇ conjugated polymers, electron transporting groups. Polymers contained in the molecule can be used as appropriate. Specifically, among the examples described in the section of the hole transporting polymer compound and those described in the literature describing the hole transporting polymer compound, the formulas (1) to ( A polymer material satisfying the condition 5) can be used. The electron transporting polymer compound may be used alone or in combination of two or more.
  • an electron transporting polymer having a repeating unit composed of an arylene group which may have a substituent and / or a repeating unit composed of a divalent heterocyclic group which may have a substituent.
  • a compound hereinafter referred to as “polyarylene-based electron transporting polymer compound”.
  • the polyarylene-based electron-transporting polymer compound has a repeating unit consisting of an arylene group which may have a substituent and a substituent in the entire repeating unit from the viewpoint of electron mobility.
  • the total proportion of the “repeating unit consisting of a divalent heterocyclic group” may be 20 to 100 mol%, more preferably 50 to 99 mol%.
  • the number of carbon atoms constituting the ring of the arylene group, the specific example of the arylene group, the number of carbon atoms constituting the ring of the divalent heterocyclic group, and the specific example of the divalent heterocyclic group are as follows: This is the same as that described in the section of the polyarylenic pore-transporting polymer compound.
  • Examples of the polyarylene-based electron-transporting polymer compound include “a repeating unit composed of an arylene group optionally having a substituent” represented by the above formula (6 a), and / or the above formula (6 b
  • a repeating unit composed of an arylene group optionally having a substituent represented by the above formula (6 a)
  • / or the above formula (6 b In view of electron mobility, those having a “repeating unit consisting of a divalent heterocyclic group which may have a substituent” represented by formula (1) are preferred.
  • the atom and atomic group represented by A in the formula (6 b) are the same as those described and exemplified above, and the repeat represented by the formula (6 a) or the formula (6 b)
  • the unit is the same as described and exemplified in the section of the polyarylene-based hole transporting polymer compound.
  • the electron transporting polymer compound is a repeating unit composed of an arylene group which may have a substituent and a repeating unit composed of Z or a divalent heterocyclic group which may have a substituent.
  • a repeating unit consisting of a divalent residue of an aromatic amine compound which may have a substituent
  • an arylene group which may have a substituent A repeating unit consisting of a divalent residue of an aromatic amine compound optionally having a repeating unit and a substituent. More preferably, it has a return unit.
  • the molar ratio of the repeating unit consisting of the divalent residue of the aromatic amine compound to the total of 1 mol of the repeating unit consisting of the arylene group and the divalent heterocyclic group is usually more than 0 mol. . Less than 1 mole.
  • the repeating unit composed of an arylene group which may have a substituent is preferably a repeating unit represented by the formula (A).
  • the repeating unit composed of a divalent residue of the aromatic amine compound is preferably a repeating unit represented by the formula (7).
  • the definitions and specific examples of the aryl group, arylene group, monovalent heterocyclic group and divalent heterocyclic group in the formula (7) are the same as those described above.
  • Specific examples of the repeating unit represented by the formula (7) are the same as those explained and exemplified in the section of the polyarylene hole transporting polymer compound.
  • repeating units composed of divalent residues of these aromatic amine compounds those represented by the following formula (C) have solubility in the solvent of the electron transporting polymer material and a substituent. It is preferable from the viewpoint of the ease of synthesis of the raw material monomer of the repeating unit consisting of a divalent residue of an aromatic amine compound and the luminous efficiency.
  • R 3 and R 4 each independently represents an alkyl group having 1 to 20 carbon atoms, and w is an integer of 0 to 5.
  • a plurality of w may be the same or different.
  • R 3 and R 4 they may be the same or different.
  • the alkyl group having 1 to 20 carbon atoms represented by R 3 and R 4 represents R la , R lb , R lc , R ld , R 2 a in the formula (6 a).
  • R 2 b , R 2 c and R 2 d are the same as those specifically explained and exemplified as the groups represented by R 2 d .
  • w is 0 or 1
  • R 3 and R 4 are alkyl groups having 1 to 6 carbon atoms.
  • the thickness of the second organic layer differs depending on the material used, and may be adjusted so that the driving voltage and the luminous efficiency are appropriate.
  • l nm to lim preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the hole transporting polymer compound and the electron transporting polymer compound used in the present invention may be any of an alternating copolymer, a random polymer, a block polymer, or a graft copolymer, and an intermediate between them.
  • a polymer having a typical structure, for example, a random copolymer having a block property may be used.
  • a graft copolymer is preferable.
  • a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer is also included.
  • the terminal groups of the hole-transporting polymer compound and the electron-transporting polymer compound have a polymerizable active group as they are, the light-emitting characteristics and life of the resulting device can be reduced when used for device fabrication. Since it may decrease, it is preferably protected with a stable group.
  • the terminal group is preferably one having a conjugated bond continuous with the conjugated structure of the main chain. For example, a structure in which the terminal group is bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond. Can be mentioned. Specifically, substituents described in Chemical formula 10 of JP-A-9-45478 are exemplified.
  • the number average molecular weight of the hole transporting polymer compound and the electron transporting polymer compound is preferably about 10 3 to 10 8 and more preferably about 10 4 to 10 6 in terms of polystyrene. .
  • Examples of the method for synthesizing the hole transporting polymer compound and the electron transporting polymer compound include, for example, a method of polymerizing from a monomer corresponding to a desired polymer by a Suzuki coupling reaction, a method of polymerizing by a Grignard reaction, Examples include a method of polymerizing with a Ni (0) catalyst, a method of polymerizing with an oxidizing agent such as FeCl 3, a method of electrochemically oxidatively polymerizing, a method of decomposing an intermediate polymer having an appropriate leaving group, and the like.
  • the method of polymerizing by Suzuki coupling reaction, the method of polymerizing by Grignard reaction, and the method of polymerizing by Ni (0) catalyst are preferable because of easy reaction control.
  • polymerization is performed after purifying the monomer before polymerization by a method such as distillation, sublimation purification, and recrystallization.
  • a method such as distillation, sublimation purification, and recrystallization.
  • the hole transporting polymer compound and the electron transporting polymer compound are other than a charge transport function.
  • a luminescent material is used by mixing with one or both of these polymer compounds.
  • the light-emitting material contained in the first organic layer and / or the second organic layer is “organic EL display” (Shizuo Tokito, Chiba Adachi, Hideyuki Murata, co-authored) OHM Co., Ltd. Published 2004, 1st edition, 1st edition)
  • the fluorescent materials or triplet light emitting materials described on pages 17-48, 83-99, 101-120 can be used.
  • Low molecular fluorescent materials include, for example, naphthalene derivatives, anthracene and derivatives thereof, perylene and derivatives thereof, polymethine-type, xanthene-type, coumarin-type, cyanine-type and the like, 8-hydroxyquinoline metal complexes, Metal complexes of 8-hydroxyquinoline derivatives, aromatic amines, tetraphenylcyclopentene and derivatives thereof, tetraphenylbutadiene and derivatives thereof, and the like can be used.
  • Specific examples of the luminescent material include copolymers composed of repeating units represented by the following formula, those described in JP-A-57-51781, JP-A-59-194393, and the like. It is done.
  • triplet light-emitting complexes that are triplet light-emitting materials include I r (ppy) 3 , Btp 2 I r (acac) with iridium as the central metal, P tOEP with platinum as the central metal, and europium as the central metal Eu (TTA) 3 phen and the like.
  • triplet light-emitting complexes can be found in Nature, (1998), 395, 151, Appl. Phys. Lett.
  • a polymer light-emitting material that includes the structure of these materials in the molecular structure, or a polymer light-emitting material that exhibits specific light emission itself is also a hole transporting high molecular compound.
  • the hole-transporting polymer compound contained in the first organic layer And the ratio of the luminescent material mixed with the electron transporting polymer compound contained in Z or the second organic layer is 0 for each organic layer with respect to the total of all components contained in the organic layer. It is 01% by weight to 50% by weight, preferably 0.05% by weight to 10% by weight.
  • the electroluminescent device of the present invention emits light in a region where the values of X and y on the CIE color coordinates satisfy the formula (P) or the formula (Q).
  • Such an emission color is obtained by having a single emission spectrum of light emitted from the element, or when there are two or more emission spectra of light. It can be obtained by combining with other emission spectra with weak intensity or by combining emission spectra similar to each other. Note that “single emission spectrum” means that light is emitted from only one compound or material.
  • X is 0 :! to 0.2
  • y is 0 :!
  • All of the luminescent materials contained in the first and Z or the second organic layer, and the emission wavelength is about 400 to 530 nm. What is necessary is just to choose from what emits light with the spectrum which it has.
  • a copolymer having an equimolar amount of the repeating unit represented by the formula (A) and the repeating unit represented by the formula (B) is a hole transporting polymer compound
  • the polymer consisting only of the repeating unit represented by (A) is an electron transporting polymer compound
  • 90 mol% of the repeating unit represented by the formula (A) is represented by the formula (C).
  • the hole-transporting polymer compound and the electron-transporting polymer compound are the same as described above, but the light-emitting material is selected from materials whose fluorescence spectrum shows red, and the light-emitting material is the first material. When 50% by weight is mixed with the organic layer, red light emission is obtained.
  • the organic electoluminescence device of the present invention may be manufactured by any method, for example, by the following method.
  • a method of forming a film from a solution or the like is used for manufacturing the first organic layer and the second organic layer.
  • film formation from solution for example, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire barco coating method, dip coating method, spray coating method, Coating methods such as screen printing, flexographic printing, offset printing, and ink jet printing can be used.
  • a printing method such as a screen printing method, a flexographic printing method, an offset printing method, and an ink jet printing method is preferable because pattern formation and multicolor coating are easy.
  • Ink is usually used for film formation from the above solution.
  • This ink comprises the hole transporting polymer compound or the electron transporting polymer compound, and a solvent.
  • the solvent is not particularly limited, but is preferably a solvent that can dissolve or uniformly disperse components other than the solvent constituting the ink, that is, a hole transporting polymer compound, an electron transporting polymer compound, and a luminescent material.
  • the solvent include chlorine-based solvents such as black mouth form, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, black mouth benzene, o-dichlorobenzene, tetrahydrofuran, dioxane and the like.
  • Ether solvents aromatic hydrocarbon solvents such as toluene and xylene, cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, etc.
  • Aliphatic hydrocarbon solvents such as acetone, methyl ethyl ketone, cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, ethyl cellosolve acetate, ethylene glycol, ethylene glycol monobutyl ether , Ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, di Methoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, glycerin, polyhydric alcohols such as 1,2-hexanediol and derivatives thereof, methanol, ethanol, propanol, isopropanol, cyclohexanol, etc.
  • ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone
  • ester solvents such as ethyl acetate, butyl acetate,
  • Alcohol solvents such as dimethyl sulfoxide, N-methyl-2-pyrrolidone And amide solvents such as N, N-dimethylformamide.
  • the said solvent may be used individually by 1 type, or may use 2 or more types together.
  • aromatic hydrocarbon solvents from the viewpoints of solubility of hole transporting polymer compounds, electron transporting polymer compounds, luminescent materials, etc., uniformity during film formation, and viscosity characteristics Hydrocarbon solvents, ester solvents, and ketone solvents are preferred.
  • the ratio of the solvent in the ink is 1% by weight to 99.9% by weight with respect to the solute (that is, the total weight of the hole transporting polymer compound, the electron transporting polymer compound, and the light emitting material). It is preferably 60% to 99.5% by weight, more preferably 80% to 99.0% by weight.
  • the viscosity of the ink varies depending on the printing method, but when the ink passes through the discharge device, such as the ink jet print method, the viscosity is used to prevent clogging and bending during the discharge. Is preferably in the range of 1 to 20 mPa ⁇ s at 25.
  • a second organic layer can be provided in contact with the insolubilized first organic layer.
  • a soluble precursor or a polymer having a soluble substituent is used, and the precursor is converted into a conjugated polymer by heat treatment, or the substituent is separated.
  • a method of using a hole transporting polymer having a crosslinking group in the molecule, a monomer or a macromolecule that causes a crosslinking reaction by heat, light, electron beam, etc. The method etc. which mix one are illustrated.
  • Examples of the hole transporting polymer compound having a crosslinking group in the molecule include the hole transporting polymer compound having a crosslinking group in a side chain.
  • Examples of such crosslinking groups include vinyl, acetylene, butenyl, acryl, acrylate, acrylamide, methacryl, methacrylate, methacrylamide, vinyl ether, vinylamino, silanol, and small groups.
  • a group having a member ring for example, a cyclopropyl group, a cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group, etc.
  • a group containing a lactone group, a lactam group, or a siloxane derivative can also be used.
  • a monomer having an acrylate group or a methacrylate group is particularly preferable.
  • the monofunctional monomer having an acrylate group or a methacrylate group examples include 2-ethylhexyl carbitol acrylate, 2-hydroxyethyl acrylate and the like.
  • Specific examples of the bifunctional monomer having an acrylate group or a methacrylate group include 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate.
  • Specific examples of other polyfunctional monomers having an acrylate group or a methacrylate group include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pen erythritol trimethacrylate, pen erythritol tetraacrylate.
  • Pentaerythritol tetramethacrylate Dipentaerythritol pentaacrylate, Dipentaerythritol pentamethacrylate, Dipentaerythritol! ⁇ One hexahexylate, dipentaerythritol hexamethacrylate, etc.
  • the content of the crosslinking group in the hole transporting polymer compound having a crosslinking group in the molecule is usually 0.1 to 30% by weight, preferably 0.5 to 20% by weight. More preferably, it is 1 to 10% by weight.
  • monomers and macromers that cause a crosslinking reaction include those having a polystyrene-equivalent weight average molecular weight of 2000 or less and having two or more of the above-mentioned crosslinking groups.
  • Examples of the cross-linking reaction of a polymer having a cross-linking group and a monomer or macromer that causes a cross-linking reaction include reactions that occur by heating, light, irradiation with an electron beam or the like.
  • the reaction may be performed in the presence of a thermal polymerization initiator, a photopolymerization initiator, a thermal polymerization initiation assistant, a photopolymerization initiation assistant, or the like.
  • the temperature is lower than the temperature at which the characteristics are degraded by decomposition of the material.
  • it is 50: to 300, preferably 100 to 250.
  • thermal polymerization initiator that can be used in combination
  • those generally known as radical polymerization initiators can be used.
  • radical polymerization initiators for example, 2, 2′-azobisisoptyronitrile, 2, 2'-azobis (2,4-dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) and other azo compounds; benzoyl peroxide, lauroyl belloxide, t- Butylperoxypivalate, organic peroxides such as 1,1'-bis (t-butylperoxy) cyclohexane, and hydrogen peroxide.
  • the peroxide may be used together with a reducing agent to form a redox initiator.
  • Each of these thermal polymerization initiators can be used alone or in combination of two or more.
  • the reaction temperature when using the thermal polymerization initiator in combination is, for example, 40 to 250, and preferably 50 to 200.
  • ultraviolet rays may be irradiated at an irradiation intensity of 0.01 mW / cm 2 or more for 1 second to 3600 seconds, preferably 30 seconds to 600 seconds.
  • Examples of the photopolymerization initiator include an active radical generator that generates an active radical when irradiated with light, and an acid generator that generates an acid.
  • Examples of the active radical generator include a acetophenone photopolymerization initiator, a benzoin photopolymerization initiator, a benzophenone photopolymerization initiator, a thixanthone photopolymerization initiator, and a triazine photopolymerization initiator. Each of these photopolymerization initiators can be used alone or in combination of two or more.
  • the organic electroluminescence device of the present invention includes a planar light source, a segment display device, a dot matrix display device, a display device such as a liquid crystal display device, a backlight of the display device, etc.
  • a planar light source a segment display device
  • a dot matrix display device a display device such as a liquid crystal display device
  • a backlight of the display device etc.
  • Examples will be shown below for illustrating the present invention in more detail, but the present invention is not limited to these examples.
  • the number average molecular weight in terms of polystyrene is determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • two TSKgel SuperHM-H (trade name) manufactured by Tosoh Corporation and TSKgel SuperH2000 (trade name) manufactured by Tosoh Corporation (4.6 ⁇ I. d. X 15cm) is used as a column
  • a differential refractometer manufactured by Shimadzu Corporation, trade name: SHIMADZU RID-10A
  • THF tetrahydrofuran
  • the ionization potential and electron affinity of the hole transporting polymer compound, the electron transporting polymer compound and the luminescent material are measured by the cyclic pollen method.
  • the conditions are as follows.
  • a function generator and a potentiostat are used.
  • a glass carbon electrode is used as the working electrode, and a thin film is formed on the sample by casting.
  • platinum as the counter electrode and AgZAg + as the reference electrode, measure the potential in 0.1 M tetrafluoroborate-tetra-n-butylammonium [CH 3 (CH 2 ) 3 ] 4 N ⁇ BF 4 in acetonitrile solution. .
  • the scanning range is 0 to 1500 mV on the oxidation side and -2900 mV to 0 mV on the reduction side.
  • the oxidation potential and reduction potential are each read from the displacement point of the potential wave curve.
  • the ionization potential (I p) and electron affinity (Ea) are calculated from the oxidation potential and reduction potential by the following equations (8) and (9).
  • E a [(reduction potential) +0.45 + 4.5] e V (9)
  • I TO indium-tin oxide
  • the value of the work function is obtained as a starting point of photoelectron emission by ultraviolet excitation using a photoelectron spectrometer (trade name: AC-2, manufactured by Riken Keiki Co., Ltd.).
  • Barium a metal with a low work function, is used for the cathode.
  • the value of the work function is (JHMichaelson et al., Journal of Applied Phisics Vol. 48, No. 11, P. 729 (1977)), and 2.70 eV (this is a value determined by the thermal electron emission method).
  • Toluene 23 ml was added to prepare a monomer solution.
  • This monomer solution was heated in a nitrogen atmosphere, and 50 mg of palladium acetate at 1.2 mg, 9.5 mg of lithium s (2-methoxyphenyl) phosphine, and 20 wt% tetraethylammonium hydroxide aqueous solution 10 2 g was added.
  • the resulting solution was then heated to 105 and stirred for 4 hours. Thereto was added 366 mg of phenylboric acid dissolved in 1.5 mL of toluene, and the mixture was stirred at 105 for 2 hours.
  • the hole-transporting polymer compound thus obtained had a polystyrene-equivalent number average molecular weight of 9.3 ⁇ 10 4 and a polystyrene-equivalent weight average molecular weight of 3.2 ⁇ 10 5 .
  • the hole-transporting polymer compound is presumed to have 50: 42.5: 7.5 (molar ratio) of repeating units represented by the following structural formula from the charged raw materials.
  • Methyl trioctyl ammonium chloride (trade name: Aricot 336, Aldrich Co.) 0.23 g and toluene 2 Om 1 were added to prepare a monomer solution. Under a nitrogen atmosphere, this monomer solution was heated, to which 0.8 mg of palladium acetate with 5 O: and 4.5 mg of tris (2-methoxyphenyl) phosphine were added, and heated at 85. Next, the resulting solution was heated to 105 T: dropwise with 2 M aqueous sodium carbonate solution (8.4 g) and stirred for 1 hour.
  • the polymer thus obtained has a number average molecular weight in terms of polystyrene 2. a 0X 10 4, weight average molecular weight in terms of polystyrene was 3. 9 X 10 4. Further, this polymer (light-emitting material) is presumed to have a repeating unit represented by the following formula in a 1: 1 (molar ratio) from the charged raw materials.
  • a monomer solution was prepared by adding 0.65 g of methyltrioctylammonium chloride (trade Lolo p name: Alicoat 336, Aldrich Co.) and toluene 5 Om1. Under a nitrogen atmosphere, this monomer solution was heated, to which a solution obtained by adding 1. lmg of palladium acetate and 12.3 mg of tris (2-methoxyphenyl) phosphine was added, and 17.5 wt% sodium carbonate. Stir at 95 for 5 hours while adding 9.7 g of aqueous solution dropwise did. To the resulting solution, 0.09 g of phenylboric acid was added and stirred at 95 for 3 hours.
  • methyltrioctylammonium chloride trade Lolo p name: Alicoat 336, Aldrich Co.
  • the washed organic layer was dropped into about 1 L of methanol to precipitate a polymer, and the precipitate was filtered and dried to obtain a solid. Dissolve this solid in approximately 50 OmL of toluene to obtain a crude product solution, and then pass the crude product solution through an alumina column that has been preliminarily passed through toluene, and add this crude product solution dropwise to approximately 1.5 L of methanol.
  • the polymer was precipitated, and the precipitate was filtered and dried to obtain an electron transporting polymer compound (ionization potential: 5.91 eV, electron affinity: 2.36 eV).
  • the thus obtained electron-transporting polymer compound had a polystyrene-equivalent number average molecular weight of 2.3 ⁇ 10 5 and a polystyrene-equivalent weight average molecular weight of 5.0 ⁇ 10 5 .
  • the electron-transporting polymer compound is presumed to have repeating units represented by the following structural formula in a 1: 0.03 (molar ratio) from the raw materials charged.
  • a hole transporting polymer compound and a light emitting material are dissolved in the same weight of xylene to transport holes.
  • a light emitting material mixed solution (concentration: 1.0% by weight) was prepared.
  • the electron transporting polymer compound was dissolved in xylene to prepare an electron transporting polymer compound solution (concentration: 0.4% by weight).
  • a thin film having a thickness of 60 nm was formed by spin coating using a solution obtained by filtering the suspension of 2) with a 0.2 m membrane filter, and dried on a hot plate at 200 for 10 minutes.
  • a thin film having a thickness of 40 nm was formed by spin coating using the hole transporting polymer compound / luminescent material mixed solution obtained above. Thereafter, it was heat-treated at 200 on a hot plate in a nitrogen atmosphere for 15 minutes.
  • electron transporting polymer compound solution obtained above on the hole transporting polymer compound layer (first organic layer) containing the light-emitting material thus formed electron transport is performed by spin coating.
  • a functional polymer compound layer (second organic layer) was formed.
  • the rotation speed during spin coating was adjusted so that the combined thickness of the hole transporting polymer compound layer and the electron transporting polymer compound layer was about 60 nm.
  • the substrate on which the first organic layer and the second organic layer were laminated was heated on a hot plate in a nitrogen atmosphere at 130 for 10 minutes to remove the solvent.
  • the device thus fabricated was introduced into a vacuum deposition machine, and metal barium was deposited at about 5 nm as a cathode, and then aluminum was deposited at about 80 nm to produce an organic electoluminescence device. Degree of vacuum metal vapor deposition was initiated after reaching below IX 10- 4 P a.
  • the work function of the anode was 5.0 eV
  • the work function of the cathode was 2.7 eV.
  • the first presence Red EL emission was observed from the aircraft layer.
  • the emission luminance when a voltage of 4 V was applied was 8 2 c dZ m 2 , and the peak wavelength of the emission spectrum was 6 25 nm.
  • the resulting organic electoluminescence device was driven at a constant current of 15 O mAZ cm 2 and the time change in luminance was measured.
  • the initial luminance was 3 220 cd / m 2 and the time until the luminance was reduced to half. was 10 hours.
  • the organic electoluminescence device of the present invention obtained in Example 1 emits light with a practical luminance of about 100 c dZm 2 at a driving voltage as low as 4 V, and is 0.25 c dZA at the same voltage. Shows relatively high luminous efficiency. Therefore, the organic electroluminescent element of the present invention is excellent in the balance between luminous efficiency and driving voltage. Industrial applicability
  • the organic electoluminescence device of the present invention is excellent in the balance between luminous efficiency and driving voltage.
  • This organic electoluminescence device usually has a long life and a variety of luminescent colors. Therefore, the organic electoluminescence device of the present invention includes a curved light source, a planar light source such as a planar light source (for example, lighting for interior lighting, etc.), a segment display device (for example, a segment type display element, etc.), It is suitable for dot matrix display devices (for example, dot matrix flat displays), liquid crystal display devices (for example, liquid crystal display devices, liquid crystal display backlights), display devices such as advertisement display devices, and the like.
  • a planar light source such as a planar light source (for example, lighting for interior lighting, etc.)
  • a segment display device for example, a segment type display element, etc.
  • dot matrix display devices for example, dot matrix flat displays
  • liquid crystal display devices for example, liquid crystal display devices, liquid crystal display backlights

Description

明細書 有機エレクト口ルミネッセンス素子 技術分野
本発明は、 有機エレクト口ルミネッセンス素子、 特には積層型高分子有機エレクト口 ルミネッセンス素子に関する。
背景技術
近年、 低電圧駆動、 高輝度に加えて多数の色の発光が容易に得られる点から、 有機ェ レクト口ルミネッセンス素子が注目されている。 そして、 有機エレクト口ルミネッセン ス素子の作製に用いられる材料の一つとして、 高分子材料が検討されている。
この高分子材料を積層してなる有機エレクト口ルミネッセンス素子としては、 ポリフ ェニレンビニレンとアルコキシ置換ポリフエ二レンビニレンとを積層してなるもの、 ポ リフエ二レンビニレンとシァノ化ポリフエ二レンビニレンとを積層してなるもの等が提 案されている (特開平 3— 2 7 3 0 8 7号公報、 国際公開第 9 4 0 2 9 8 8 3号パン フレット) 。 しかし、 これらの素子には、 十分な発光効率が得られないという問題があ る。
その他にも、 陽極と有機発光層 (具体的には、 陽極側に位置する正孔輸送材料を含む 正孔輸送ポリマー層と、 この正孔輸送ポリマー層上に積層され、 該正孔輸送材料を含ま ず、 該電子輸送層側に位置するドーパント発光材料を含有する発光ポリマー層とからな る。 ) と電子輸送層と陰極とが積層された有機エレクト口ルミネッセンス素子が提案さ れている (特開 2 0 0 1 - 0 5 2 8 6 7号公報) 。 しかし、 この素子には、 発光効率、 駆動電圧の観点で十分な性能が得られないという問題がある。
発明の開示
本発明の目的は、 発光効率、 駆動電圧に優れる有機エレクト口ルミネッセンス素子を 提供することにある。
本発明者等は、 上記課題を解決すべく鋭意検討した結果、 本発明をなすに至った。 本発明は第一に、 陽極及び陰極からなる電極と、 該電極間に該陽極に接して又は近接して設けられた正 孔輸送性高分子化合物を含有する第 1の有機層と、 第 1の有機層及び該陰極の間に第 1 の有機層に接して設けられた電子輸送性高分子化合物を含有する第 2の有機層とを有す る有機エレクトロルミネッセンス素子であって、
該正孔輸送性高分子化合物が下記式 (1) を満たすものであり、
I p 1— Wa <0. 5 (1)
(式中、 I p 1は正孔輸送性高分子化合物のイオン化電位の絶対値 (eV) を表し、 W aは陽極の仕事関数の絶対値 (eV) を表す。 )
該電子輸送性高分子化合物が下記式 (2) 及び下記式 (3) を満たすものであり、 Wc -E a 2 <0. 5 (2)
I p 2 -Wa ≥0. 5 (3)
(式中、 Wcは陰極の仕事関数の絶対値 (eV) を表し、 E a 2は電子輸送性高分子化 合物の電子親和力の絶対値 (eV) を表し、 I p 2は電子輸送性高分子化合物のイオン 化電位の絶対値 (eV) を表し、 W aは上記と同じ意味を有する。 )
第 1の有機層及び第 2の有機層の少なくとも一方が下記式 ( 4 ) 及び下記式 ( 5 ) を満 たす発光性材料を含有し、
I I p 3 - I p 1 I <0. 5 (4)
I E a 2 -E a 3 I <1. 0 (5)
(式中、 I p 3は発光性材料のイオン化電位の絶対値 (eV) を表し、 E a 3は発光性 材料の電子親和力の絶対値 (eV) を表し、 I p 1及び E a 2は上記と同じ意味を有す る。 )
第 1の有機層から、 又は第 1の有機層及び第 2の有機層から、 C I E色座標上の X及び yの値が下記式 (P) 又は下記式 (Q) を満たす領域の色で発光する上記有機エレクト 口ルミネッセンス素子を提供する。
x<0. 28又は x〉0. 44 かつ y≥0 (P)
0. 28≤x≤0. 44 かつ y≤0. 24又は y≥0. 46 (Q) 本発明は第二に、 前記有機エレクト口ルミネッセンス素子の製造方法であって、 前記 第 1の有機層を不溶化した後、 不溶ィヒされた第 1の有機層に接して第 2の有機層を設け ることを特徴とする有機エレクトロルミネッセンス素子の製造方法を提供する。
本発明は第三に、 前記有機エレクト口ルミネッセンス素子又は前記製造方法で得られ た有機エレクトロルミネッセンス素子を用いてなる面状光源及び表示装置を提供する。 発明を実施するための形態
—有機エレクト口ルミネッセンス素子—
本発明の有機エレクト口ルミネッセンス素子は、 陽極及び陰極からなる電極と、 該電 極間に該陽極に接して又は近接して設けられた正孔輸送性高分子ィヒ合物を含有する第 1 の有機層と、 第 1の有機層及び該陰極の間に第 1の有機層に接して設けられた電子輸送 性高分子化合物を含有する第 2の有機層とを有するものであって、 該正孔輸送性高分子 化合物が前記式 (1) を満たすものであり、 該竜子輸送性高分子化合物が前記式 (2) 及び前記式 (3) を満たすものであり、 第 1の有機層及び第 2の有機層の少なくとも一 方が前記式 (4) 及び前記式 (5) を満たす発光性材料を含有し、 第 1の有機層から、 又は第 1の有機層及び第 2の有機層から、 C I E色座標上の X及び yの値が前記式 (P ) 又は前記式 (Q) を満たす領域の色で発光するものである。 ここで、 「陽極に接して 又は近接して設けられた」 とは、 陽極に直に接して設けられた場合及び陽極に接しない で近くに設けられた場合の両方を意味する。
本明細書において、 正孔輸送性高分子化合物、 電子輸送性高分子化合物及び発光性材 料のイオン化電位及び電子親和力は、 サイクリックポルタンメトリ一法によって測定し た値である。 測定では、 作用極にはグラス力一ボン電極、 対極には白金、 参照電極には AgZAg+を用い、 作用極の上に測定する物質をキャスト法によって薄膜を形成させ る。 そして、 電位測定は、 0. 1Mのテトラフルォロほう酸ーテトラー n—プチルアン モニゥム [CH3 (CH2) 3]4N · BF4のァセトニトリル溶液中で行う。 走査範囲は、 酸化側を 0~150 OmVとし、 還元側を— 290 OmV〜OmVとする。 酸化電位及 び還元電位は、 それぞれ、 電位波のカーブの変位点から読み取る。 イオン化ポテンシャ ル (I p) の絶対値と電子親和力 (Ea) の絶対値は、 酸化電位及び還元電位の値から 次式により算出される。
I P = [ (酸化電位) + 0. 45 + 4. 5] eV Ea= [ (還元電位) + 0. 45 + 4. 5] e V
本明細書において、 陽極の仕事関数の値は、 光電子分光装置 (理研計器 (株) 製、 商 品名: AC— 2) を用い、 重水素ランプから照射された紫外線による光電子放出開始点 として求められる。
本明細書において、 陰極の仕事関数は、 熱電子放出法による測定から求めた値を用い るが、 熱電子放出法による測定から求められない場合には、 光電子放出法による測定か ら求めた値を用いる。
前記式 (1) は、 正孔輸送性 分子化合物のイオン化電位の絶対値 I P 1と、 陽極の 仕事関数の絶対値 W aとの差を表す。 その差は、 0. 5 eV未満であり、 陽極又はそれ に隣接する 1種若しくは複数種の層から正孔輸送性高分子化合物を含有する第 1の有機 層への正孔注入の容易さの観点から、 0. 47 eV未満であることが好ましく、 0. 3 eV未満であることがより好ましい。
前記式 (2) は、 陰極の仕事関数の絶対値 Wcと、 電子輸送性高分子化合物の電子親 和力の絶対値 E a 2との差を表す。 その差は、 0. 5 eV未満であり、 陰極から電子輸 送性高分子化合物を含有する第 2の有機層への電子注入の容易さの観点から、 0. 35 eV未満であることが好ましく、 0. 3 eV未満であることがより好ましい。
前記式 (3) は、 電子輸送性高分子ィ匕合物のイオン化電位の絶対値 I P 2と、 陽極の 仕事関数の絶対値 W aとの差を表す。 その差は、 0. 5 eV以上であり、 第 1の有機層 のイオン化電位 I 1と 1 p 2との間にギャップを設けて正孔をブロックし、 第 1の有 機層内での再結合を促進する観点、 かつ残余の正孔が第 2の有機層に注入され層内で再 結合する観点から、 0. 7〜1. 5 eVであることが好ましく、 0. 9〜1. 2 eVで あることがより好ましい。
前記式 (4) は、 発光性材料のイオン化電位の絶対値 I p 3と、 正孔輸送性高分子化 合物のイオン化電位の絶対値 I P 1との差の絶対値を表す。 その差の絶対値は、 0. 5 eV未満であり、 正孔輸送性高分子化合物から発光性材料への正孔注入の容易さの観点 から、 0. 3 eV未満であることが好ましく、 0. 2 eV未満であることがより好まし い。
前記式 (5) は、 電子輸送性高分子化合物の電子親和力の絶対値 E a 2と、 発光性材 料の電子親和力の絶対値 E a 3との差の絶対値を表す。 その差の絶対値は、 1 . 0 e V 未満であり、 電子輸送性高分子化合物から発光性材料への電子注入の容易さの観点から 、 0 . 9 8 e V未満であることが好ましく、 0 . 7 e V未満であることがより好ましい 前記式 (P ) 及び (Q) は、 本発明の有機エレクト口ルミネッセンス素子の発光色を 、 C I E色座標上の X及び yの値で定義したものである。 この範囲を満たす発光色は、 いわゆる白色ではなく、 よりスペクトルの幅の狭い発光から得られるものであって、 光 の原色そのもの (即ち、 赤、 青又は緑) 乃至それらに近い色である。
本発明の有機エレクト口ルミネッセンス素子において、 陽極は、 通常、 透明又は半透 明である。 このような陽極としては、 例えば、 電気伝導度の高い金属酸化物、 金属硫化 物又は金属を用いることができ、 通常、 これらを薄膜にして用いる。 陽極としては、 光 透過率が高いものが好適に利用でき、 その他の有機層の種類によって、 適宜、 選択すれ ばよい。 陽極の材料としては、 例えば、 酸化インジウム、 酸化亜鉛、 酸化スズ、 及びそ れらの複合体であるインジウム ·スズ ·オキサイド (I T O) 、 インジウム ·亜鉛 'ォ キサイド等からなる導電性ガラスを用いて作製された膜 (例えば、 N E S A等) や、 金 、 白金、 銀、 銅等が用いられ、 I T O、 インジウム ·亜鉛 ·オキサイド、 酸化スズが好 ましい。 陽極の作製には、 真空蒸着法、 スパッタリング法、 イオンプレーティング法、 メツキ法等の方法が用いられる。 また、 陽極として、 ポリア二リン又はその誘導体、 ポ リチォフェン又はその誘導体等の有機の透明導電膜を用いてもよい。 なお、 陽極は、 一 層であっても二層以上であってもよい。 前記陽極の材料は、 一種単独で用いても二種以 上を併用してもよい。
陽極の厚さは、 光の透過性と電気伝導度とを考慮して、 適宜調整することができるが 、 例えば、 1 0 n m~ l 0 /z mであり、 好ましくは 2 0 nm~ 1 mであり、 さらに好 ましくは 5 0 n m〜5 0 0 n mである。
本発明の有機エレクト口ルミネッセンス素子では、 電荷注入を容易にするために、 陽 極上に、 第 1の有機層とは別に正孔注入層 (通常、 平均厚さ 1〜2 0 0 n mの層) を形 成してもよい。 この場合には、 公知の導電性高分子 (フタロシアニン誘導体、 ポリチォ フェン誘導体等) 、 芳香族ァミン含有ポリマー、 銅フタロシアニン、 モリブデン酸化物 、 アモルファス力一ボン、 フッ化カーボン、 ポリアミン化合物等の材料を用いて前記正 孔注入層を形成することができる。 また、 金属酸化物、 金属フッ化物、 有機絶縁材料等 からなる層 (通常、 平均厚さ 2 nm以下の層) を設けてもよい。
本発明の有機エレクト口ルミネッセンス素子において、 陰極は、 通常、 透明又は半透 明である。 このような陰極の材料としては、 仕事関数の小さいものが好ましく、 例えば 、 リチウム、 ナトリウム、 カリウム、 ルビジウム、 セシウム等のアルカリ金属、 ベリリ ゥム、 マグネシウム、 カルシウム、 ストロンチウム、 バリウム等のアルカリ土類金属、 アルミニウム、 スカンジウム、 バナジウム、 亜鉛、 イットリウム、 インジウム、 セリウ ム、 サマリウム、 ユーロピウム、 テルビウム、 イッテルビウム等の金属、 及びそれらの うち 2つ以上の合金、 又はそれらのうち 1つ以上と、 金、 銀、 白金、 銅、 マンガン、 チ タン、 コバルト、 ニッケル、 タングステン、 錫のうち 1つ以上との合金、 グラフアイト 、 グラフアイト層間化合物等が用いられる。 合金としては、 例えば、 マグネシウム一銀 合金、 マグネシウム一インジウム合金、 マグネシウム一アルミニウム合金、 インジウム —銀合金、 リチウム—アルミニウム合金、 リチウム一マグネシウム合金、 リチウム—ィ ンジゥム合金、 カルシウム—アルミニウム合金等が挙げられる。 なお、 陰極は、 一層で あっても二層以上であってもよい。 また、 前記陰極の材料は、 一種単独で用いても二種 以上を併用してもよい。
陰極の厚さは、 電気伝導度や耐久性を考慮して、 適宜調整することができるが、 例え ば、 1 0 nm~ l 0 /x mであり、 好ましくは 2 0 n m~ 1 /x mであり、 さらに好ましく は 5 0 n m〜 5 0 0 n mである。
陰極の作製には、 真空蒸着法、 スパッタリング法、 金属薄膜を熱圧着するラミネ一卜 法等の方法が用いられる。 本発明の有機エレクト口ルミネッセンス素子では、 陰極上に 、 第 2の有機層とは別の電子注入層 (通常、 平均膜厚 2 n m以下の層) を構成してもよ レ^ この場合には、 アルカリ金属やアルカリ土類金属をド一プした有機材料、 これらの 金属の有機酸との塩ゃ錯体等の材料、 導電性高分子、 金属酸化物、 金属フッ化物、 有機 絶縁材料等を用いて前記電子注入層を形成することができる。 陰極を作製した後、 さら に保護層を設けて素子を保護してもよい。
本発明の有機エレクト口ルミネッセンス素子において、 前記電極、 第 1の有機層、 第 2の有機層等は、 通常、 基板上に形成される。 この基板は、 電極を形成し、 有機層を形 成する際に変化しないものであればよく、 その材料としては、 ガラス、 プラスチック、 高分子フィルム、 シリコン等が例示されるが、 透明又は半透明のものが好ましい。 不透 明な基板である場合には、 反対の電極 (即ち、 該基板から遠い方の電極) が透明又は半 透明であることが好ましい。 基板には、 平板、 繊維状のものが使用できる。
陽極と陰極とを基板上に形成する順番は特に制限されず、 トップェミッション型、 ポ トムェミッション型の素子構造に応じて、 適宜、 選択することができる。
本発明の有機エレクト口ルミネッセンス素子において、 第 1の有機層に含有される正 孔輸送性高分子化合物としては、 前記式 (1 ) 〜 ( 5 ) を満たすものであれば、 特に材 料的には制限されないが、 通常、 陽極から、 又は陽極側にある他の層から正孔が注入さ れ、 輸送する機能を有するものであり、 例えば、 π及び σ共役系高分子、 ァミン化合物 を含有する高分子材料から適宜選択することができる。 なお、 正孔輸送性高分子化合物 は、 一種単独で用いても二種以上を併用してもよい。
正孔輸送性高分子化合物としては、 「高分子 E L材料」 (大西敏博、 小山珠美 共著 共立出版 2004年刊 初版版第 1刷発行) 33〜58頁に記載の材料から選択されるものが 例示され、 具体的には、 W099Z13692号公開明細書、 W099/48160号公開明細書、
GB2340304A, WO00/53656号公開明細書、 W001/19834号公開明細書、 W000/55927号公開明 細書、 GB2348316、 WO00/46321号公開明細書、 WO00/06665号公開明細書、 W099/54943号 公開明細書、 W099/54385号公開明細書、 US5777070、 W098/06773号公開明細書、
W097/05184号公開明細書、 WO00/35987号公開明細書、 W000/53655号公開明細書、
W001/34722号公開明細書、 W099/24526号公開明細書、 WO00/22027号公開明細書、
WOOO/22026号公開明細書、 W098/27136号公開明細書、 US573636、 W098/21262号公開明細 書、 US574192K W097/09394号公開明細書、 W096/29356号公開明細書、 W096/10617号公 開明細書、 EP0707020, WO95/07955号公開明細書、 特開 2001-181618号公報、 特開 2001- 123156号公報、 特開 2001-3045号公報、 特開 2000-351967号公報、 特開 2000- 303066号公 報、 特開 2000- 299189号公報、 特開 2000- 252065号公報、 特開 2000- 136379号公報、 特開 2000-104057号公報、 特開 2000-80167号公報、 特開平 10- 324870号公報、 特開平 10- 114891号公報、 特開平 9-111233号公報、 特開平 9-45478号公報等に開示されているポリ フルオレン、 その誘導体及び共重合体、 ポリアリ一レン、 その誘導体及び共重合体、 ポ リアリーレンビニレン、 その誘導体及び共重合体、 芳香族ァミン及びその誘導体の (共 ) 重合体から選択されるものが例示される。
これらの中でも、 置換基を有していてもよいァリーレン基からなる繰り返し単位、 及 び Z又は置換基を有していてもよい 2価の複素環基からなる繰り返し単位を有する正孔 輸送性高分子化合物 (以下、 「ポリアリーレン系正孔輸送性高分子化合物」 という) が 好ましい。 ポリアリーレン系正孔輸送性高分子化合物は、 正孔の移動度の観点から、 全 繰り返し単位に占める"置換基を有していてもよいァリ一レン基からなる繰り返し単位 及び置換基を有していてもよい 2価の複素環基からなる繰り返し単位" の合計割合が 2 0〜 1 0 0モル%であるものが好ましく、 5 0〜9 9モル%であるものがさらに好まし レ^ ここで、 ァリ一レン基の環を構成する炭素数は、 通常、 6 ~ 6 0程度である。 なお 、 「環を構成する炭素数」 には、 後述の置換基の炭素数は含まず、 以下、 同じである。 ァリーレン基の具体例としては、 フエ二レン基、 ビフエ二レン基、 夕一フエ二レン基、 ナフタレンジィル基、 アントラセンジィル基、 フエナントレンジィル基、 ペン夕レンジ ィル基、 インデンジィル基、 ヘプタレンジィル基、 インダセンジィル基、 トリフエニレ ンジィル基、 ビナフチルジィル基、 フエ二ルナフヂレンジィル基、 スチルベンジィル基 、 フルオレンジィル基等が挙げられる。 2価の複素環基とは、 複素環式化合物から水素 原子 2個を取り除いてなる原子団を意味する。 2価の複素環基の環を構成する炭素数は 通常 3〜6 0程度である。 2価の複素環基の具体例としては、 ピリジン—ジィル基、 ジ ァザフエ二レン基、 キノリンジィル基、 キノキサリンジィル基、 ァクリジンジィル基、 ビビリジルジィル基、 フエナント口リンジィル基、 下記式 (6 b ) において Aがー O— 、 一 S—、 ― S e—、 —N (R ' ' ) —又は— S i (R ' ) (R ' ) 一である基等が挙 げられる。 ここで、 R ' 及び R ' ' は、 後述のとおりである。
ポリアリーレン系正孔輸送性高分子化合物としては、 下記式 (6 a ) で表される"置 換基を有していてもよいァリ一レン基からなる繰り返し単位" 、 及び/又は
Figure imgf000010_0001
(式中、 Rla、 Rlb、 R 、 Rld、 R2a、 R2b、 R2e及び R2dは、 それぞれ独立に、 水 素原子、 炭素数 1~20のアルキル基、 炭素数 1〜20のアルコキシ基、 該アルキル基 の耒端水素原子がフエニル基で置換されたフエニルアルキル基、 該アルコキシ基の末端 水素原子がフエニル基で置換されたフエニルアルコキシ基、 フエニル基、 フエノキシ基 、 ベンゼン環上の 1つ以上の水素原子が炭素数 1〜20のアルキル基で置換されたアル キルフエニル基、 ベンゼン環上の 1つ以上の水素原子が炭素数 1~20のアルコキシ基 で置換されたアルコキシフエニル基、 炭素数 1〜20のアルキルカルポニル基、 炭素数 1~20のアルコキシカルポニル基、 又は炭素数 1〜20の力ルポキシル基を表す。 こ こで、 Rlbと R 、 及び R2bと R2cは、 それぞれ一緒になつて環を形成していてもよい o )
下記式 (6 b) で表される"置換基を有していてもよい 2価の複素環基からなる繰り返 し単位"
Figure imgf000010_0002
(式中、 Aは、 環 X上の 2個の炭素原子と環 Y上の 2個の炭素原子と一緒になつて 5員 環又は 6員環を形成する原子又は原子群を表し、 Rla、 Rlb、 Rlc, R2a、 R2b及び R 2cは、 前記と同じ意味を有する。 ここで、 R'bと R 、 及び R2bと R2cは、 それぞれ一 緒になって環を形成していてもよい。 )
を有するものが、 正孔の移動度の観点から好ましい。
炭素数 1〜20のアルキル基としては、 例えば、 メチル基、 ェチル基、 n—プロピル 基等の直鎖アルキル基、 イソプロピル基、 tert-ブチル基等の鎖中に 1つ以上の分岐を 持つ分岐アルキル基、 炭素原子が 3員以上の飽和環を構成したシクロアルキル基等が挙 げられる。
フエニルアルキル基、 アルキルフエニル基、 アルキルカルボニル基としては、 例えば o
一- 、
、 これらの基 、 Rにおけるアルキル部分が前記アルキル基の項で説明し例示したものと同様
s- ,o- であるもの等が挙げられる。
カルボキシル基としては、 例えば、 これらの基におけるアルキル部分が前記アルキル 基の項で説明し例示したものと同様であるもの等が挙げられる。
炭素数 1〜2 0のアルコキシ基としては、 例えば、 前記アルキル基の項で説明し例示 したものが酸素原子を介して基を構成するもの等が挙げられる。
フエニルアルコキシ基、 アルコキシフエニル基、 アルコキシカルボニル基としては、 これらの基におけるアルコキシ部分が前記アルコキシ基の項で説明し例示したものと同 様であるもの等が挙げられる。
前記式 (6 b ) 中、 Aで表される原子又は原子群の具体例としては、 下記式で表され る原子、 基等が挙げられるが、 これらに限定されるものではない。 ヽ S ヽ
II o"。、'o
R 0
Figure imgf000011_0001
R R R A R R R H R R , H RR ¾ R¼ R 0
O
N -3く 0
Figure imgf000011_0002
ヽ I \ / \ /
0=P-S 0=P-S=0 s-s=o o:s- s=o
I„ / \\
R R" O b o o o o o o o
(式中、 R、 R ' 及び R ' ' は、 それぞれ独立に、 水素原子、 炭素数 1〜2 0のアルキ ル基、 炭素数 1〜 2 0のアルコキシ基、 該アルキル基の 1つ以上の末端水素原子がフエ ニル基で置換されたフエニルアルキル基、 該アルコキシ基の 1つ以上の末端水素原子が フエニル基で置換されたフエニルアルコキシ基、 フエニル基、 フエノキシ基、 ベンゼン 環上の 1つ以上の水素原子が炭素数 1〜 2 0のアルキル基で置換されたアルキルフエ二 ル基、 ベンゼン環上の 1つ以上の水素原子が炭素数 1〜 2 0のアルコキシ基で置換され たアルコキシフエニル基、 炭素数 1〜2 0のアルキルカルボ二ル基、 炭素数 1〜2 0の アルコキシカルポニル基、 炭素数 1〜2 0のカルボキシル基を表す。 )
前記 R、 R, 及び R ' ' は、 水素原子、 炭素数 1〜2 0のアルキル基、 炭素数 1〜2 0のアルコキシ基、 炭素数 1〜 2 0のアルキル基及び 又は炭素数 1 ~ 2 0のアルコキ シ基で 1つ以上置換されたフエニル基であることが、 該正孔輸送性高分子材料の溶媒へ の溶解性、 及び該"置換基を有していてもよい 2価の複素環基からなる繰り返し単位" の原料モノマ一の合成の容易さの観点から好ましい。 これらの R、 R ' 及び R ' ' は、 具体的には、 前記式 (6 a ) 中の Rl a、 Rl b、 R 、 Rl d、 R2 a、 R2 b、 R 及び R2 d で表される基として具体的に説明し例示したものと同様である。
上記式 (6 a ) 又は上記式 (6 b ) で表される繰り返し単位としては、 下記の構造が 例示される。
Figure imgf000012_0001
Figure imgf000013_0001
(式中、 R、 R ' 及び R ' ' は、 前述で定義したとおりである。 また、 式中、 ベンゼン 環上の水素原子は、 炭素数 1〜2 0のアルキル基、 炭素数 1〜2 0のアルコキシ基、 該 アルキル基の 1つ以上の末端水素原子がフエニル基で置換されたフエニルアルキル基、 該アルコキシ基の 1つ以上の末端水素原子がフエニル基で置換されたフエニルアルコキ シ基、 フエニル基、 フエノキシ某、 ベンゼン環上の 1つ以上の水素原子が炭素数 1 ~ 2 0のアルキル基で置換されたアルキルフエニル基、 ベンゼン環上の 1つ以上の水素原子 が炭素数 1 ~ 2 0のアルコキシ基で置換されたアルコキシフエニル基、 炭素数 1〜2 0 のアルキルカルボ二ル基、 炭素数 1〜2 0のアルコキシカルボ二ル基、 炭素数 1〜2 0 の力ルポキシル基で置換されていてもよい。 ベンゼン環の隣接位に 2つの置換基が存在 する場合、 それらが互いに結合して環を形成してもいてよい。 )
前記式 (6 a ) で表される繰り返し単位としては、 該正孔輸送性高分子材料の溶媒へ の溶解性、 該"置換基を有していてもよいァリ一レン基からなる繰り返し単位" の原料 モノマーの合成の容易さ、 及び正孔輸送性の観点から、 下記式 (A) で表されるものが 好ましい。
Figure imgf000014_0001
(式中、 R1及び R2はそれぞれ独立に、 水素原子、 炭素数 1〜2 0のアルキル基、 又は 炭素数 1〜 2 0のアルキル基でベンゼン環上の水素原子の 1つ以上が置換されたフエ二 ル基を表す。 )
これらの基は、 具体的には、 前記式 (6 a ) 中の Rl a、 Rl b、 Rl c、 Rl d、 R2 a、 R 2 b、 R 及び R2 dで表される基として具体的に説明し例示したものと同様である。 R1 及び R2は、 好ましくは炭素数 1〜 2 0のアルキル基である。
前記正孔輸送性高分子化合物は、 置換基を有していてもよいァリ一レン基からなる繰 り返し単位及び Z又は置換基を有していてもよい 2価の複素環基からなる繰り返し単位 に加えて、 置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り返 し単位を有することが好ましい。 この場合、 該ァリーレン基からなる繰り返し単^ Ϊ及び 該 2価の複素環基からなる繰り返し単位の合計 1モルに対する、 芳香族ァミン化合物の 2価の残基からなる繰り返し単位の割合は、 通常、 0. 1〜10モルである。
芳香族ァミン化合物の 2価の残基からなる繰り返し単位としては、 下記式 (7 ) で表 される繰り返し単位が好ましい。
Figure imgf000015_0001
(式中、 Ar4、 Ar5、 A r 6及び A r 7は、 それぞれ独立に、 ァリ一レン基又は 2価の 複素環基を表す。 Ar8、 八!^及び八 ^は、 それぞれ独立に、 ァリール基又は 1価の 複素環基を表す。 o及び pは、 それぞれ独立に、 0又は 1を表す。 )
前記式(7)中、 ァリ一レン基及び 2価の複素環基の定義、 具体例は、 前記と同様であ る。 ァリール基は、 炭素数が、 通常、 6〜60のものであり、 具体的には、 例えばフエ ;ル基等である。 また、 1価の複素環基は、 複素環式化合物から水素原子 1個を取り除 いてなる原子団を意味し、 具体的には、.例えばピリジル基等である。
前記式 (7) で表される繰り返し単位の具体例としては、 下記式で表される繰り返し 単位が挙げられる。
Figure imgf000016_0001
上記式中、 芳香環上の水素原子は、 炭素数 1~20のアルキル基、 炭素数 1〜20の アルコキシ基、 該アルキル基の 1つ以上の末端水素原子がフエニル基で置換されたフエ ニルアルキル基、 該アルコキシ基の 1つ以上の末端水素原子がフエニル基で置換された フエニルアルコキシ基、 フエニル基、 フエノキシ基、 ベンゼン環上の 1つ以上の水素原 子が炭素数 1〜20のアルキル基で置換されたアルキルフエニル基、 ベンゼン環 Jの 1 つ以上の水素原子が炭素数 1~20のアルコキシ基で置換されたアルコキシフエニル基 、 炭素数 1~20のアルキルカルポニル基、 炭素数 1〜20のアルコキシ力ルポニル基 、 炭素数 1〜20の力ルポキシル基で置換されていてもよい。 これらの基は、 具体的に は、 前記式 (6 a) 中の Rla、 Rlb、 Rlc、 Rld、 R2a、 R2b、 R2c及び R2dで表され る基として具体的に説明し例示したものと同様である。 また、 芳香環の隣接位に 2つの 置換基が存在する場合、 それらが互いに結合して環を形成していてもよい。
上記式 (7 ) で表される繰り返し単位の中で、 下記式 (8 ) で表される繰り返し単位 が好ましい。
Figure imgf000017_0001
(式中、 R7、 R8及び R9は、 それぞれ独立に、 炭素数 1〜2 0のアルキル基、 炭素数 1〜2 0のアルコキシ基、 該アルキル基の 1つ以上の末端水素原子がフエニル基で置換 されたフエニルアルキル基、 該アルコキシ基の 1つ以上の末端水素原子がフエニル基で 置換されたフエニルアルコキシ基、 フエニル基、 フエノキシ基、 ベンゼン環上の 1っ以 上の水素原子が炭素数 1〜 2 0のアルキル基で置換されたアルキルフエニル基、 ベンゼ ン環上の 1つ以上の水素原子が炭素数 1〜2 0のアルコキシ基で置換されたアルコキシ フエニル基、 炭素数 1 ~ 2 0のアルキルカルボ二ル基、 炭素数 1〜2 0のアルコキシ力 ルポニル基、 炭素数 1 ~ 2 0の力ルポキシル基を表す。 X及び yはそれぞれ独立に 0〜 4の整数であり、 zは 1又は 2であり、 wは 0〜5の整数である。 R7、 R8及び R9が 複数存在する場合には、 各々、 同一であっても異なっていてもよい。 R7が複数存在す る場合には、 2つの R7は互いに結合して環を形成していてもよい。 )
前記式 (8 ) 中、 R7、 R8及び R9で表される基は、 具体的には、 前記式 (6 a ) 中 の Rl a、 Rl b、 Rl c、 R' d、 R2 a、 R2 b、 R2 c及び R2 dで表される基として具体的に説 明し例示したものと同様である。
前記式 (8 ) で表される繰り返し単位としては、 下記式 (B ) で表されるものが、 該 正孔輸送性高分子材料の溶媒への溶解性、 該"置換基を有していてもよい芳香族ァミン 化合物の 2価の残基からなる繰り返し単位" の原料モノマーの合成の容易さ、 正孔輸送 性及びィオン化ポテンシャルの観点から好ましい。
Figure imgf000018_0001
(式中、 Rは、 炭素数 1〜20のアルキル基を表し、 wは 0~5の整数である。 Rが複 数存在する場合には、 それらは同一であっても異なっていてもよい。 Rが複数存在する 場合には、 2つの Rは互いに結合して環を形成していてもよい。 )
また、 前記式 (7) 、 (8) 、 (B) で表される繰返し単位は、 1種のみ含んでいても 、 2種以上含んでいてもよい。
前記式 (B) 中、 Rで表される炭素数 1〜20のアルキル基は、 前記式 (6 a) 中の Rla、 Rlb、 R 、 Rld、 R2a、 R2b、 R2c及び R2dで表される基として具体的に説明 し例示したものと同様である。
正孔輸送性高分子化合物としては、 その他にも、 ポリビニルカルバゾール及びその誘 導体、 側鎖又は主鎖に芳香族ァミンを有するポリシロキサン誘導体、 ピラゾリン誘導体 、 ァリールァミン誘導体、 スチルベン誘導体、 トリフエ二ルジァミン誘導体、 ポリア二 リン及びその誘導体、 ポリチォフェン及びその誘導体、 ポリ (p—フエ二レンビニレン ) 及びその誘導体等が例示され、 具体的には、 特開昭 63- 70257号公報、 特開昭 63- 175860号公報、 特開平 2- 135359号公報、 特開平 2- 135361号公報、 特開平 2-209988号公報 、 特開平 3-37992号公報、 特開平 3-152184号公報に記載されているもの等から選択され るものが例示される。
側鎖又は主鎖に芳香族ァミンを有するポリシロキサン及びその誘導体としては、 正孔 輸送性の芳香族ァミンを側鎖又は主鎖に有するものが好ましい。
本発明の有機エレクト口ルミネッセンス素子において、 第 1の有機層の厚さは、 用い る材料によって最適値が異なり、 駆動電圧と発光効率が適度な値となるように調整すれ ばよいが、 例えば、 I nn!〜 Ι μιτであり、 好ましくは 2 nm〜500 nmであり、 さ らに好ましくは 5 nm〜 200 nmである。
本発明の有機エレクト口ルミネッセンス素子において、 第 2の有機層に含有される電 子輸送性高分子化合物としては、 前記式 (1) 〜 (5) を満たすものであれば、 特に材 料的には制限されないが、 通常、 陰極から、 又は陰極側にある他の層から電子が注入さ れ、 輸送する機能を有するものであり、 7T及び σ共役系高分子、 電子輸送性基を分子中 に含む高分子が適宜使用できる。 具体的には、 前記正孔輸送性高分子化合物の項で説明 •例示したものや、 前記正孔輸送性高分子化合物が記載された文献に記載されたものの うち、 前記式 (1 ) 〜 (5 ) の条件を満たす高分子材料が使用できる。 なお、 電子輸送 性高分子化合物は、 一種単独で用いても二種以上を併用してもよい。
これらの中でも、 置換基を有していてもよいァリーレン基からなる繰り返し単位、 及 び/又は置換基を有していてもよい 2価の複素環基からなる繰り返し単位を有する電子 輸送性高分子化合物 (以下、 「ポリアリーレン系電子輸送性高分子化合物」 という) が 好ましい。 ポリアリ一レン系電子輸送性高分子化合物は、 電子の移動度の観点から、 全 繰り返し単位に占める"置換基を有していてもよいァリ一レン基からなる繰り返し単位 及び置換基を有していてもよい 2価の複素環基からなる繰り返し単位" の合計割合が 2 0〜1 0 0モル%であるものが好ましく、 5 0 ~ 9 9モル%であるものがさらに好まし レ^ ここで、 ァリ一レン基の環を構成する炭素数、 ァリ一レン基の具体例、 2価の複素 環基の環を構成する炭素数、 及び 2価の複素環基の具体例は、 前記ポリアリ一レン系正 孔輸送性高分子化合物の項で説明したものと同様である。
ポリアリ一レン系電子輸送性高分子化合物としては、 前記式 (6 a ) で表される"置 換基を有していてもよいァリーレン基からなる繰り返し単位" 、 及び/又は前記式 (6 b ) で表される"置換基を有していてもよい 2価の複素環基からなる繰り返し単位" を 有するものが、 電子の移動度の観点から好ましい。 前記式 (6 b ) 中の Aで表される原 子、 原子群は、 前記で説明し例示したものと同様であり、 前記式 (6 a ) 又は前記式 ( 6 b ) で表される繰り返し単位は、 前記ポリアリーレン系正孔輸送性高分子化合物の項 で説明し例示したものと同様である。
前記電子輸送性高分子化合物は、 置換基を有していてもよいァリ一レン基からなる繰 り返し単位及び Z又は置換基を有していてもよい 2価の複素環基からなる繰り返し単位 に加えて、 置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り返 し単位を有することが好ましく、 置換基を有していてもよいァリ一レン基からなる繰り 返し単位及び置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り 返し単位を有することがより好ましい。 この場合、 ァリーレン基、 2価の複素環基から なる繰り返し単位の合計 1モルに対する、 芳香族ァミン化合物の 2価の残基からなる繰 り返し単位のモル比率は、 通常、 0モルを超え 0. 1モル未満である。 また、 置換基を有 していてもよいァリ一レン基からなる繰り返し単位としては、 前記式 (A) で表される 繰り返し単位が好ましい。
芳香族ァミン化合物の 2価の残基からなる繰り返し単位としては、 前記式 (7 ) で表 される繰り返し単位が好ましい。 前記式 (7 ) 中のァリール基、 ァリ一レン基、 1価の 複素環基、 2価の複素環基の定義、 具体例は、 前記と同様である。 前記式 (7 ) で表さ れる繰り返し単位の具体例は、 前記ポリアリーレン系正孔輸送性高分子化合物の項で説 明し例示したものと同様である。
これら芳香族ァミン化合物の 2価の残基からなる繰り返し単位のうち、 下記式 (C) で表されるものが、 該電子輸送性高分子材料の溶媒への溶解性、 置換基を有していても よい芳香族ァミン化合物の 2価の残基からなる繰り返し単位" の原料モノマ一の合成の 容易さ、 及び発光効率の観点から好ましい。
Figure imgf000020_0001
(式中、 R3及び R4はそれぞれ独立に炭素数 1〜2 0のアルキル基を表し、 wは 0〜5 の整数である。 複数存在する wは、 同一であっても異なっていてもよい。 R3及び R4が 複数存在する場合には、 各々、 同一であっても異なっていてもよい。 )
前記式 (C) 中、 R3、 R4で表される炭素数 1〜2 0のアルキル基は、 前記式 (6 a ) 中の Rl a、 Rl b、 Rl c、 Rl d、 R2 a、 R2 b、 R2 c及び R2 dで表される基として具体的 に説明し例示したものと同様である。 好ましくは、 wが 0又は 1であり、 R3及び R4が 炭素数 1〜 6のアルキル基である。
本発明の有機エレクト口ルミネッセンス素子において、 第 2の有機層の厚さは、 用い る材料によって最適値が異なり、 駆動電圧と発光効率が適度な値となるように調整すれ ばよいが、 例えば、 l nm〜 l i mであり、 好ましくは 2 n m〜 5 0 0 n mであり、 さ らに好ましくは 5 n m〜 2 0 0 n mである。 本発明に用いられる正孔輸送性高分子化合物及び電子輸送性高分子化合物は、 交互共 重合体、 ランダム重合体、 ブロック重合体又はグラフト共重合体のいずれであってもよ いし、 それらの中間的な構造を有する高分子、 例えば、 ブロック性を帯びたランダム共 重合体であってもよい。 高い電荷輸送性能を発現し、 その結果、 高効率化、 低駆動電圧 ィ匕、 長寿命化できる観点から、 完全なランダム共重合体よりブロック性を帯びたランダ ム共重合体、 ブロック共重合体又はグラフト共重合体が好ましい。 なお、 主鎖に枝分か れがあり末端部が 3つ以上ある高分子や、 所謂デンドリマ一も含まれる。
前記正孔輸送性高分子化合物及び前記電子輸送性高分子化合物の末端部分は、 重合活 性基がそのまま残っていると、 素子の作製に用いた場合、 得られる素子の発光特性や寿 命が低下する可能性があるので、 安定な基で保護されていることが好ましい。 末端基と しては主鎖の共役構造と連続した共役結合を有しているものが好ましく、 例えば、 炭素 一炭素結合を介してァリール基又は 1価の複素環基と結合している構造が挙げられる。 具体的には、 特開平 9-45478号公報の化 10に記載の置換基等が例示される。
前記正孔輸送性高分子化合物及び前記電子輸送性高分子化合物は、 数平均分子量がポ リスチレン換算で 103〜108程度であることが好ましく、 104〜106程度であることがより 好ましい。
前記正孔輸送性高分子化合物及び前記電子輸送性高分子化合物の合成方法としては、 例えば、 所望の重合体に応じたモノマーから Suzukiカツプリング反応により重合する方 法、 Gr ignard反応により重合する方法、 Ni (0)触媒により重合する方法、 FeCl3等の酸化 剤により重合する方法、 電気化学的に酸化重合する方法、 適切な脱離基を有する中間体 高分子の分解による方法等が挙げられる。 これらのうち、 Suzukiカップリング反応によ り重合する方法、 Gr ignard反応により重合する方法、 Ni (0)触媒により重合する方法が 、 反応制御が容易である点で好ましい。
前記正孔輸送性高分子化合物及び前記電子輸送性高分子化合物の純度は、 素子の発光 特性に影響を与えるため、 重合前のモノマーを蒸留、 昇華精製、 再結晶等の方法で精製 した後に重合することが好ましく、 また合成後、 再沈精製し、 クロマトグラフィーによ る分別等の純ィヒ処理をすることが好ましい。
前記正孔輸送性高分子化合物及び前記電子輸送性高分子化合物は、 電荷輸送機能以外 に発光機能を有しているものも好適に利用できるが、 本発明においては、 発光性材料を これらの高分子化合物のどちらか一方又は両方と混合して用いる。
本発明の有機エレクト口ルミネッセンス素子において、 第 1の有機層及び/又は第 2 の有機層に含有される発光性材料としては、 「有機 E Lディスプレイ」 (時任静夫、 安 達千波矢、 村田英幸 共著 株式会社オーム社 平成 16年刊 第 1版第 1刷発行) 17〜 48頁、 83〜99頁、 101〜120頁に記載の蛍光材料又は三重項発光材料が利用できる。 低分 子の蛍光材料としては、 例えば、 ナフタレン誘導体、 アントラセン及びその誘導体、 ぺ リレン及びその誘導体、 ポリメチン系、 キサンテン系、 クマリン系、 シァニン系等の色 素類、 8—ヒドロキシキノリンの金属錯体、 8—ヒドロキシキノリン誘導体の金属錯体 、 芳香族ァミン、 テトラフエニルシクロペン夕ジェン及びその誘導体、 テトラフェニル ブタジエン及びその誘導体等を用いることができる。 前記発光性材料の具体例としては 、 下記式で表される繰り返し単位からなる共重合体、 特開昭 57-51781号公報、 特開昭 59-194393号公報に記載されているもの等が挙げられる。
Figure imgf000022_0001
三重項発光材料である三重項発光錯体としては、 例えば、 イリジウムを中心金属とす る I r (ppy) 3、 Btp2 I r (acac) , 白金を中心金属とする P tOEP、 ユーロピウムを中心金属と する Eu (TTA) 3 phen等が挙げられる。
Figure imgf000023_0001
三重項発光錯体の具体例は、 Nature, (1998), 395, 151、 Appl. Phys. Lett.
(1999), 75(1), 4、 Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105 (Organic Light- Emitting Materials and Devices I V), 119、 J. Am. Chem. Soc., (2001), 123, 4304 、 Appl. Phys. Lett., (1997), 71(18), 2596、 Syn. Met., (1998), 94(1), 103、 Syn. Met., (1999), 99(2), 1361、 Adv. Mater., (1999), 11(10), 852
Ipn. J. Appl. Phys., 34, 1883 (1995)等に記載されている。
前記蛍光材料、 三重項発光材料と共に、 これらの材料が有する構造を分子構造中に含 む高分子発光材料、 又はそれ自身が特定の発光を示す高分子発光材料も、 正孔輸送性高 分子化合物及び Z又は電子輸送性高分子化合物に混合して用いられる (以下、 前記蛍光 材料、 前記三重項発光材料及び前記高分子発光材料を総称して 「発光性材料」 という) 本発明のエレクト口ルミネッセンス素子において、 第 1の有機層に含有される正孔輸 送性高分子化合物及び Z又は第 2の有機層に含有される電子輸送性高分子化合物に混合 される発光性材料の割合は、 各有機層において、 該有機層に含まれる全成分の合計に対 して、 0. 01重量%〜50重量%でぁり、 好ましくは 0. 05重量%〜10重量%である。
本発明のエレクトロルミネッセンス素子は、 C I E色座標上の X及び yの値が前記式 ( P ) 又は前記式 (Q) を満たす領域の色で発光する。 このような発光色は、 素子から 出射される光の発光スぺクトルが単一であることにより、 又は光の発光スぺクトルが 2 つ以上の場合には、 1つの強度の強い発光スペクトルと他の強度の弱い発光スペクトル との組み合わせ、 若しくは互いに相似した発光スぺクトルの組み合わせであることによ り得られる。 なお、 「発光スペクトルが単一である」 とは、 1種の化合物又は材料のみ から発光することを意味する。
例えば、 C I E色座標上の値で Xが 0 . :!〜 0 . 2であり、 yが 0 . :!〜 0 . 3であ る、 本発明の有機エレクト口ルミネッセンス素子において、 青色発光を得るためには、 第 1の有機層に含有される正孔輸送性高分子化合物、 第 2の有機層に含有される電子輸 送性高分子化合物、 並びに第 1及び Z又は第 2の有機層に含有される発光性材料の全て を、 発光波長でおよそ 4 0 0 n m〜5 3 0 n mの部分にピークを有するスぺクトルで発 光するものから選択すればよい。
より具体的には、 前記式 (A) で表される繰り返し単位と、 前記式 (B) で表される 繰り返し単位とを等モル有する共重合体を正孔輸送性高分子化合物とし、 前記式 (A) で表される繰り返し単位のみからなる重合体を電子輸送性高分子化合物とし、 かつ前記 式 (A) で表される繰り返し単位を 9 0モル%、 前記式 (C) で表される繰り返し単位 を 1 0モル%有する共重合体を発光性材料として第 1の有機層に 5重量%混合して用い た場合、 青色発光が得られる。
また、 正孔輸送性高分子化合物及び電子輸送性高分子化合物は前記と同じであるが、 発光性材料を、 その蛍光スペクトルが赤色を示す材料から選択し、 かつ該発光性材料を 第 1の有機層に 5 0重量%混合して用いた場合、 赤色発光が得られる。 本発明の有機エレクト口ルミネッセンス素子は、 如何なる方法で製造してもよいが、 例えば、 以下の方法で製造することができる。
本発明の有機エレクト口ルミネッセンス素子において、 第 1の有機層及び第 2の有機 層の製造には、 溶液から製膜する方法等が用いられる。 溶液からの製膜には、 例えば、 スピンコート法、 キャスティング法、 マイクログラビアコート法、 グラビアコート法、 バ一コート法、 ロールコート法、 ワイア一バーコ一卜法、 ディップコート法、 スプレー コート法、 スクリーン印刷法、 フレキソ印刷法、 オフセット印刷法、 インクジェットプ リント法等の塗布法を用いることができる。 これらの中でも、 パターン形成や多色の塗 分けが容易であるという点で、 スクリーン印刷法、 フレキソ印刷法、 オフセット印刷法 、 インクジエツトプリント法等の印刷法が好ましい。
上記の溶液からの製膜には、 通常、 インクが用いられる。 このインクは、 前記正孔輸 送性高分子化合物又は前記電子輸送性高分子化合物と、 溶媒とを含んでなるものである 。 この溶媒は、 特に制限されないが、 前記インクを構成する溶媒以外の成分、 即ち、 正 孔輸送性高分子化合物、 電子輸送性高分子化合物、 発光性材料等を溶解又は均一に分散 できるものが好ましい。 前記溶媒としては、 クロ口ホルム、 塩化メチレン、 1, 2—ジ クロロェタン、 1 , 1 , 2—トリクロロェタン、 クロ口ベンゼン、 o—ジクロロべンゼ ン等の塩素系溶媒、 テトラヒドロフラン、 ジォキサン等のエーテル系溶媒、 トルエン、 キシレン等の芳香族炭化水素系溶媒、 シクロへキサン、 メチルシクロへキサン、 n—べ ンタン、 n—へキサン、 n—ヘプタン、 n—オクタン、 n—ノナン、 n—デカン等の脂 肪族炭化水素系溶媒、 アセトン、 メチルェチルケトン、 シクロへキサノン等のケトン系 溶媒、 酢酸ェチル、 酢酸プチル、 ェチルセルソルブアセテート等のエステル系溶媒、 ェ チレングリコール、 エチレングリコールモノブチルエーテル、 エチレングリコールモノ ェチルェ一テル、 エチレングリコールモノメチルエーテル、 ジメトキシェタン、 プロピ レングリコール、 ジエトキシメタン、 トリエチレングリコールモノェチルエーテル、 グ リセリン、 1, 2—へキサンジオール等の多価アルコール及びその誘導体、 メタノール 、 エタノール、 プロパノール、 イソプロパノール、 シクロへキサノール等のアルコール 系溶媒、 ジメチルスルホキシド等のスルホキシド系溶媒、 N—メチル—2—ピロリドン 、 N, N—ジメチルホルムアミド等のアミド系溶媒が例示される。 なお、 前記溶媒は、 一種単独で用いても二種以上を併用してもよい。
これらのうち、 正孔輸送性高分子化合物、 電子輸送性高分子化合物、 発光性材料等の 溶解性、 成膜時の均一性、 粘度特性等の観点から、 芳香族炭化水素系溶媒、 脂肪族炭化 水素系溶媒、 エステル系溶媒、 ケトン系溶媒が好ましぐ、 トルエン、 キシレン、 ェチル ベンゼン、 ジェチルベンゼン、 トリメチルベンゼン、 n—プロピルベンゼン、 i —プロ ピルベンゼン、 n—ブチルベンゼン、 i 一ブチルベンゼン、 s —ブチルベンゼン、 ァニ ソ一ル、 エトキシベンゼン、 1—メチルナフタレン、 シクロへキサン、 シクロへキサノ ン、 シクロへキシルベンゼン、 ビシクロへキシル、 シクロへキセニルシクロへキサノン 、 n—ヘプチルシクロへキサン、 n—へキシルシクロへキサン、 2—プロビルシクロへ キサノン、 2—ヘプタノン、 3—ヘプタノン、 4—ヘプタノン、 2—ォクタノン、 2— ノナノン、 2—デカノン、 ジシクロへキシルケトンが好ましく、 キシレン、 ァニソ一ル 、 シクロへキシルベンゼン、 ビシクロへキシルのうち少なくとも 1種類を含むことがよ り好ましい。
また、 インク中の溶媒の割合は、 溶質 (即ち、 正孔輸送性高分子化合物、 電子輸送性 高分子化合物、 及び発光性材料の全重量) に対して 1重量%〜99. 9重量%であり、 好ま しくは 60重量%〜99. 5重量%であり、 さらに好ましくは 80重量%〜99. 0重量%である。 ィンクの粘度は印刷法によって異なるが、 ィンクジエツトプリント法等のようにィン クが吐出装置を経由するものの場合には、 吐出時の目づまりや飛行曲がりを防止するた めに、 粘度が 25でにおいて l〜20mPa · sの範囲であることが好ましい。
また、 第 1の有機層と第 2の有機層とを積層する際に、 両層の混合を防止するために 、 第 1の有機層を不溶化することが好ましい。 例えば、 前記第 1の有機層を不溶化した 後、 不溶化された第 1の有機層に接して第 2の有機層を設けることで行うことができる 。 前記第 1の有機層を不溶化する処理としては、 可溶性の前駆体や可溶性の置換基を有 する高分子を用いて、 熱処理により前駆体を共役系高分子に転換したり、 該置換基を分 解することで溶解性を低下させたりして不溶化する方法や、 架橋基を分子内に有する正 孔輸送性高分子を用いる方法、 熱、 光、 電子線等により架橋反応を生ずるモノマーやマ クロマ一を混合する方法等が例示される。 前記架橋基を分子内に有する正孔輸送性高分子化合物としては、 側鎖に架橋基を有す る前記正孔輸送性高分子化合物が例示される。 このような架橋基としては、 例えば、 ビ ニル基、 アセチレン基、 ブテニル基、 アクリル基、 ァクリレート基、 アクリルアミド基 、 メタクリル基、 メタクリレート基、 メタクリルアミド基、 ビニルエーテル基、 ビエル アミノ基、 シラノール基、 小員環 (例えば、 シクロプロピル基、 シクロブチル基、 ェポ キシ基、 ォキセタン基、 ジケテン基、 ェピスルフイド基等) を有する基、 ラクトン基、 ラクタム基、 又はシロキサン誘導体を含有する基等がある。 また、 これらの基の他に、 エステル結合やアミド結合を形成可能な基の組み合わせ等も用いることができる。 例え ば、 エステル基とアミノ基、 エステル基とヒドロキシル基等の組み合わせである。 その 中でも、 とりわけァクリレート基又はメタクリレート基を有するモノマーが好ましい。 ァクリレート基又はメタクリレート基を有する単官能モノマーの具体例としては、 2 —ェチルへキシルカルビトールァクリレート、 2—ヒドロキシェチルァクリレート等が 挙げられる。 ァクリレート基又はメタクリレート基を有する 2官能モノマーの具体例と しては、 1, 6—へキサンジォ一ルジァクリレート、 1, 6—へキサンジオールジメタ クリレート、 エチレングリコールジァクリレート、 エチレングリコールジメタクリレー ト、 ネオペンチルグリコ一ルジァクリレート、 ネオペンチルグリコ一ルジメタクリレー ト、 トリエチレングリコ一ルジァクリレート、 トリエチレングリコールジメタクリレ一 ト、 3—メチルペンタンジォ一ルジァクリレート、 3—メチルペンタンジオールジメ夕 クリレート等が挙げられる。 その他のァクリレート基又はメタクリレート基を有する多 官能モノマーの具体例としては、 トリメチロールプロパントリァクリレート、 トリメチ ロールプロパントリメタクリレート、 ペンタエリスリトールトリァクリレート、 ペン夕 エリスリトールトリメタクリレート、 ペン夕エリスリトールテトラァクリレート、 ペン タエリスリトールテトラメタクリレート、 ジペン夕エリスリトールペンタァクリレート 、 ジペンタエリスリトールペンタメタクリレート、 ジペンタエリスリ! ^一ルへキサァク リレート、 ジペンタエリスリトールへキサメタクリレート等が挙げられる。
前記架橋基を分子内に有する正孔輸送性高分子化合物における該架橋基の含有率は、 通常、 0 . 0 1〜3 0重量%であり、 好ましくは 0 . 5 ~ 2 0重量%であり、 より好ま しくは 1〜1 0重量%である。 架橋反応を生ずるモノマーやマクロマ一としては、 ポリスチレン換算の重量平均分子 量が 2000以下であり、 上記架橋基を二つ以上有するものが例示される。
架橋基を有する高分子や架橋反応を生ずるモノマ一やマクロマ一の架橋反応としては 、 加熱や光、 電子線等照射により起こる反応が例示される。 熱重合開始剤、 光重合開始 剤、 熱重合開始助剤、 光重合開始助剤等の存在下で前記反応を行ってもよい。
加熱して不溶化する場合、 材料の分解により特性が低下する温度以下であれば特に制 限はないが、 例えば、 50:〜 300でであり、 100で〜 250でが好ましい。
加熱して不溶化する場合、 併用できる熱重合開始剤としては、 一般的にラジカル重合 開始剤として知られているものが使用でき、 例えば、 2 , 2 ' —ァゾビスイソプチロニ トリル、 2, 2 ' ーァゾビス一 (2, 4—ジメチルバレロニトリル) 、 2 , 2 ' —ァゾ ビス (4ーメトキシ— 2 , 4—ジメチルバレロニトリル) 等のァゾ化合物;ベンゾィル ペルォキシド、 ラウロイルベルォキシド、 t—ブチルペルォキシピバレ一卜、 1, 1 ' 一ビス (t一ブチルペルォキシ) シクロへキサン等の有機過酸化物;及び過酸化水素が 挙げられる。 ラジカル重合開始剤として過酸化物を用いる場合には、 過酸化物を還元剤 とともに用いてレドックス型開始剤としてもよい。 これらの熱重合開始剤はそれぞれ 1 種単独で又は 2種以上を組み合わせて用いることができる。
熱重合開始剤を併用する場合の反応温度は、 例えば、 40で〜 250でであり、 50で〜 200 が好ましい。
光重合開始剤を用いた光重合では、 紫外線を 0. 01mW/cm2以上の照射強度で 1秒〜 3600 秒間、 好ましくは 30秒〜 600秒照射すればよい。
光重合開始剤は、 光を照射されることによって活性ラジカルを発生する活性ラジカル 発生剤、 酸を発生する酸発生剤等が挙げられる。 活性ラジカル発生剤としては、 例えば 、 ァセトフエノン系光重合開始剤、 ベンゾイン系光重合開始剤、 ベンゾフエノン系光重 合開始剤、 チォキサントン系光重合開始剤、 トリアジン系光重合開始剤等が挙げられる 。 これらの光重合開始剤は、 それぞれ 1種単独で又は 2種以上を組み合わせて用いるこ とができる。
本発明の有機エレクト口ルミネッセンス素子は、 面状光源、 セグメント表示装置、 ド ットマトリックス表示装置、 液晶表示装置等の表示装置、 該表示装置のバックライト等 として用いることができる。 以下、 本発明をさらに詳細に説明するために実施例を示すが、 本発明はこれらに限定 されるものではない。
ポリスチレン換算の数平均分子量はゲルパーミエ一シヨンクロマトグラフィー (GP C) により求める。 また、 G PC測定の際には、 (株)東ソ一製の TSKgel SuperHM-H (商 品名) 2本と(株)東ソ一製の TSKgel SuperH2000 (商品名) (4.6匪 I. d. X 15cm) 1本 とをカラムとして用い、 ポリマ一溶出時間の検出には、 示差屈折率計 (島津製作所製、 商品名: SHIMADZU RID-10A) を用い、 移動相にはテトラヒドロフラン (THF) を用い る。
正孔輸送性高分子化合物、 電子輸送性高分子化合物及び発光性材料のイオン化電位及 び電子親和力は、 サイクリックポル夕ンメトリ一法によって測定する。 その条件は以下 の通りである。
ファンクションジェネレータ一とポテンシヨスタツトを用いる。 作用極としてグラス カーボン電極を用い、 その上にサンプルをキャスト法によって薄膜を形成する。 対極に は白金、 参照電極に AgZAg+を用い、 0. 1Mのテトラフルォロほう酸—テトラー n—プチルアンモニゥム [CH3 (CH2) 3]4N · BF4のァセトニトリル溶液中で電位 測定を行う。 走査範囲は酸化側を 0〜1500mV、 還元側を— 2900mV〜0mV とする。 酸化電位及び還元電位はそれぞれ、 電位波のカーブの変位点から読み取る。 ィ オン化ポテンシャル (I p) と電子親和力 (Ea) は、 酸化電位及び還元電位の値から 次式 (8) (9) によって計算する。
I p= [ (酸化電位) +0. 45 + 4. 5] e V (8)
E a = [ (還元電位) +0. 45 + 4. 5] e V (9) 陽極には、 I TO (インジウム—スズ酸化物) を用いる。 その仕事関数の値は、 光電 子分光装置 (理研計器 (株) 製、 商品名: AC— 2) を用い、 紫外線励起による光電子 放出開始点として求める。
陰極には、 仕事関数の低い金属であるバリウムを用いる。 その仕事関数の値は、 文献 (J.H.Michaelsonら、 Journal of Applied Phisics Vol.48, No.11, P. 729 (1977年) ) に記載から 2. 70 e V (これは熱電子放出法によって求めた値である) とした。
<合成例 1 > (正孔輸送性高分子化合物の合成)
ジムロート冷却器を接続した 20 OmL三つ口丸底フラスコに、 下記式で表される化 合物 A 1. 59 g (3.00 mm o 1 ) 、
Figure imgf000030_0001
下記式で表される化合物 C 0.19 g (0.45mmo 1 ) 、 及び
Figure imgf000030_0002
トルエン 23m 1を加えて、 モノマ一溶液を調製した。 窒素雰囲気下、 このモノマー溶 液を加熱し、 そこへ、 50 で酢酸パラジウム 1. 2mg、 卜リス (2—メトキシフ ェニル) ホスフィン 9. 5mg、 及び 20重量%テトラェチルアンモニゥムヒドロキ シド水溶液 10. 2 gを注加した。 次いで、 得られた溶液を 105でに加熱した後、 4時間攪拌した。 そこへ、 トルエン 1. 5mLに溶解したフエニルホウ酸 366mg を加え、 105でで 2時間攪拌した。 得られた溶液に、 N, N—ジェチルジチ才力ルバ ミド酸ナトリウム三水和物 0. 6 g、 及びイオン交換水 9mLを加え、 65でで 2 時間攪拌した。 こうして得られた溶液の有機層を水層と分離した後、 有機層を 2 M塩酸 約 70mL (1回) 、 10重量%酢酸ナトリウム水溶液 約 70mL ( 1回) 、 イオン 交換水 約 70mL (3回) の順番で洗浄した。 有機層をメタノール 約 800mLに 滴下し、 ポリマーを沈殿させ、 沈殿物を濾過後乾燥し固体を得た。 この固体をトルエン 約 9 OmLに溶解させて粗生成物溶液とし、 あらかじめトルエンを通液したシリカゲル Zアルミナカラムに粗生成物溶液を通液し、 この粗生成物溶液をメタノール 約 800 mLに滴下しポリマーを沈殿させ、 沈殿物を濾過後乾燥し、 正孔輸送性高分子化合物 ( イオン化電位: 5. 46 e V) を得た。
こうして得られた正孔輸送性高分子化合物は、 ポリスチレン換算の数平均分子量が 9 . 3 X 104であり、 ポリスチレン換算の重量平均分子量が 3. 2X 105であった。 ま た、 正孔輸送性高分子化合物は、 仕込み原料から、 下記構造式で示される繰り返し単位 を、 50 : 42. 5 : 7. 5 (モル比) で有してなるものと推測される。
Figure imgf000031_0001
<合成例 2> (発光性材料の合成)
ジムロート冷却器を接続した 20 OmLセパラブルフラスコに、 前記化合物 A 0. 76 g (1. 4mmo 1 ) 、 下記式で表される化合物 D 0. 94 g (1. 5mmo 1 ) 、
Figure imgf000032_0001
メチルトリオクチルアンモニゥムクロライド (商品名:ァリコ一ト 336、 アルドリツ チ社製) 0. 23 g、 及びトルエン 2 Om 1を加えて、 モノマ一溶液を調製した。 窒 素雰囲気下、 このモノマ一溶液を加熱し、 そこへ、 5 O :で酢酸パラジウム 0. 8m g、 及びトリス (2—メトキシフエ二ル) ホスフィン 4. 5mgを加え、 85でに加 熱した。 次いで、 得られた溶液を、 2 M炭酸ナトリウム水溶液 8. 4 gを滴下しなが ら 105T:に加熱した後、 1時間攪拌した。 得られた溶液に、 トルエン 0. 8mLに溶 解した t一ブチルフエニルホウ酸 134mgを加え 105でで 2時間攪拌した。 得ら れた溶液に、 N, N—ジェチルチオ力ルバミド酸ナトリウム三水和物 0. 3 g、 ィォ ン交換水 5mLを加え、 65でで 2時間攪拌した。 こうして得られた溶液の有機層を 水層と分離した後、 有機層をイオン交換水 約 2 OmLで 3回洗浄した。 洗浄後の有機 層をメタノール 約 23 OmLに滴下し、 ポリマーを沈殿させ、 沈殿物を濾過後乾燥し 固体を得た。 この固体をトルエン 約 5 OmLに溶解させて粗生成物溶液とし、 あらか じめトルエンを通液したシリカゲル Zアルミナカラムに粗生成物溶液を通液し、 この粗 生成物溶液をメタノール 約 23 OmLに滴下し、 ポリマーを沈殿させ、 沈殿物を濾過 後乾燥し、 重合体 (発光性材料) (イオン化電位: 5. 52 eV、 電子親和力: 3. 2 9 e V) を得た。
こうして得られた重合体 (発光性材料) は、 ポリスチレン換算の数平均分子量が 2. 0X 104であり、 ポリスチレン換算の重量平均分子量が 3. 9 X 104であった。 また 、 この重合体 (発光性材料) は、 仕込み原料から、 下記式で示される繰り返し単位を、 1 : 1 (モル比) で有してなるものと推測される。
Figure imgf000033_0001
<合成例 3> (電子輸送性高分子化合物の合成)
ジムロート冷却器を接続した 15 OmL筒型フラスコに、 前記化合物 A 2. 65 g (5. Ommo 1 ) 、 下記式で表される化合物 E 2. 58 g (4. 7mmo l) 、
Figure imgf000033_0002
下記式で表される化合物 F 0. 21 g (0. 3mmo 1 ) 、
Figure imgf000033_0003
メチルトリオクチルアンモニゥムクロライド (商ロロ p名:ァリコート 336、 アルドリツ チ社製) 0. 65 g、 及びトルエン 5 Om 1を加えて、 モノマー溶液を調製した。 窒素雰囲気下、 このモノマー溶液を加熱し、 そこへ、 酢酸パラジウム 1. lmg、 及 びトリス (2—メトキシフエニル) ホスフィン 12. 3mgを加えて得られた溶液を 、 17. 5重量%炭酸ナトリウム水溶液 9. 7 gを滴下しながら 95でで 5時間攪拌 した。 得られた溶液に、 フエニルホウ酸 0. 09 gを加え、 95でで 3時間攪拌した。 そこへ、 トルエン 60gを加え、 得られた溶液を 75でで 30分攪拌した。 得られた溶 液に、 N, N—ジェチルチオ力ルバミド酸ナトリウム三水和物 3. 0 g> 及びイオン 交換水 30 gを加え、 得られた溶液を 75X:で 3時間攪拌した。 こうして得られた溶 液の有機層を水層と分離した後、 有機層を、 イオン交換水 約 40mL (1回) 、 10 重量%酢酸水溶液 約 50mL (1回) 、 イオン交換水 約 50mL (2回) の順番で 洗浄した。 洗浄後の有機層をメタノール約 1 Lに滴下し、 ポリマ一を沈殿させ、 沈殿物 を濾過後乾燥し固体を得た。 この固体をトルエン約 50 OmLに溶解させて粗生成物溶 液とし、 あらかじめトルエンを通液したアルミナカラムに粗生成物溶液を通液し、 この 粗生成物溶液をメタノール約 1. 5 Lに滴下しポリマーを沈殿させ、 沈殿物を濾過後乾 燥し、 電子輸送性高分子化合物 (イオン化電位: 5. 91 e V、 電子親和力: 2. 36 e V) を得た。
こうして得られた電子輸送性高分子化合物は、 ポリスチレン換算の数平均分子量が 2 . 3 X 105であり、 ポリスチレン換算の重量平均分子量が 5. 0X 105であった。 ま た、 電子輸送性高分子化合物は、 仕込み原料から、 下記構造式で示される繰り返し単位 を、 1 : 0. 03 (モル比) で有するものと推測される。
Figure imgf000034_0001
<合成例 4 > (正孔輸送性高分子化合物 Z発光性材料混合溶液の調製)
正孔輸送性高分子化合物及び発光性材料を同じ重量ずっキシレンに溶解し、 正孔輸送 性高分子化合物 発光性材料混合溶液 (濃度: 1. 0重量%) を調製した。
<合成例 5 > (電子輸送性高分子化合物溶液の調整)
電子輸送性高分子化合物をキシレンに溶解し、 電子輸送性高分子化合物溶液 (濃度: 0. 4重量%) を調製した。
<実施例 1> (有機エレクト口ルミネッセンス素子の作製)
スパッタ法により 150 nmの厚みで I TO膜を付けたガラス基板上に、 ポリ (3, 4) エチレンジォキシチォフェン Zポリスチレンスルホン酸 (スタルクヴィテック社製 、 商品名: B a y t r o n P CH 8000 ) の懸濁液を 0. 2 mメンブランフィル ターで濾過した液を用いて、 スピンコートにより 60 nmの厚みで薄膜を形成し、 ホッ トプレート上で 200で、 10分間乾燥した。 次に、 上記で得た正孔輸送性高分子化合 物/発光性材料混合溶液を用いて、 スピンコートにより 40 nmの膜厚で薄膜を形成し た。 その後、 窒素雰囲気下のホットプレート上で 200で、 15分間熱処理した。 こう して形成した発光性材料を含む正孔輸送性高分子化合物層 (第 1の有機層) の上に、 上 記で得た電子輸送性高分子化合物溶液を用いて、 スピンコートにより電子輸送性高分子 化合物層 (第 2の有機層) を形成した。 ここで、 正孔輸送性高分子化合物層と電子輸送 性高分子化合物層とを併せた厚さが約 60 nmとなるようにスピンコート時の回転数を 調節した。 その後、 第 1の有機層と第 2の有機層を積層した該基板を、 窒素雰囲気下の ホットプレート上で 130で、 10分間加熱し溶媒を除去した。 こうして作製した素子 を真空蒸着機に導入し、 陰極として金属バリウムを約 5 nm、 次いでアルミニウムを約 80 nm蒸着して有機エレクト口ルミネッセンス素子を作製した。 なお、 真空度が I X 10— 4 P a以下に到達した後に金属の蒸着を開始した。 また、 陽極の仕事関数は 5. 0 eVであり、 陰極の仕事関数は 2. 7 eVであった。
'
<有機エレクトロルミネッセンス素子の評価 >
(1) 発光色の確認
得られた有機エレクト口ルミネッセンス素子に電圧を印加することにより、 第 1の有 機層から、 赤色 E L発光が観測された。 電圧を 4 V印加した際の発光輝度は 8 2 c dZ m2であり、 発光スペクトルのピーク波長は 6 2 5 nmであった。 C I E色座標上の x 及び yの値は、 x = 0. 6 1、 y = 0. 3 4であった。 発光スペクトルより、 正孔輸送 性高分子化合物に混合した発光性材料に起因する赤色発光であることが確認できた。 ま た、 この時の電流効率は 0. 2 5 c d ZAであった。
( 2 ) 寿命
得られた有機エレクト口ルミネッセンス素子を 1 5 O mAZ c m2の定電流で駆動し 、 輝度の時間変化を測定したところ、 初期の輝度が 3 2 0 c d/m2であり、 輝度半減 までの時間は 1 0 7時間であった。
<評価>
実施例 1で得られた本発明の有機エレクト口ルミネッセンス素子は、 4 Vという低い 駆動電圧において約 1 0 0 c dZm2の実用的な輝度で発光し、 同電圧において 0. 2 5 c dZAという比較的高い発光効率を示す。 したがって、 本発明の有機エレクトロル ミネッセンス素子は、 発光効率、 駆動電庄のバランスに優れるものである。 産業上の利用可能性
本発明の有機エレクト口ルミネッセンス素子は、 発光効率、 駆動電圧のバランスに優 れる。 この有機エレクト口ルミネッセンス素子は、 通常、 長寿命であり、 多様性に富ん だ発光色を持つ。 従って、 本発明の有機エレクト口ルミネッセンス素子は、 曲面状光源 、 平面状光源等の面状光源 (例えば、 インテリア用照明等の照明等) ;セグメント表示 装置 (例えば、 セグメントタイプの表示素子等) 、 ドットマトリックス表示装置 (例え ば、 ドットマトリックスのフラットディスプレイ等) 、 液晶表示装置 (例えば、 液晶表 示装置、 液晶ディスプレイのバックライト等) 、 広告表示装置等の表示装置等に好適で ある。

Claims

請求の範囲
1. 陽極及び陰極からなる電極と、 該電極間に該陽極に接して又は近接して設けられ た正孔輸送性高分子化合物を含有する第 1の有機層と、 第 1の有機層及び該陰極の間に 第 1の有機層に接して設けられた電子輸送性高分子化合物を含有する第 2の有機層とを 有する有機エレクトロルミネッセンス素子であって、
該正孔輸送性高分子化合物が下記式 (1) を満たすものであり、
I p 1 -Wa <0. 5 (1)
(式中、 I p 1は正孔輸送性高分子化合物のイオン化電位の絶対値 (eV) を表し、 W aは陽極の仕事関数の絶対値 (eV) を表す。 )
該電子輸送性高分子化合物が下記式 (2) 及び下記式 (3) を満たすものであり、 Wc -E a 2 <0. 5 (2)
I p 2 -Wa ≥0. 5 (3)
(式中、 Wcは陰極の仕事関数の絶対値 (eV) を表し、 E a 2は電子輸送性高分子化 合物の電子親和力の絶対値 (eV) を表し、 I p 2は電子輸送性高分子化合物のイオン 化電位の絶対値 (eV) を表し、 Waは上記と同じ意味を有する。 )
第 1の有機層及び第 2の有機層の少なくとも一方が下記式 (4) 及び下記式 (5) を満 たす発光性材料を含有し、
I I p 3 - I ρ 1 I <0. 5 (4)
I E a 2 -E a 3 I く 1. 0 (5)
(式中、 I p 3は発光性材料のイオン化電位の絶対値 (eV) を表し、 E a 3は発光性 材料の電子親和力の絶対値 (eV) を表し、 I p 1及び E a 2は上記と同じ意味を有す る。 )
第 1の有機層から、 又は第 1の有機層及び第 2の有機層から、 C I E色座標上の X及び yの値が下記式 (P) 又は下記式 (Q) を満たす領域の色で発光する上記有機エレクト 口ルミネッセンス素子。
x<0. 28又は x>0. 44 かつ y≥0 (P)
0. 28≤x≤0. 44 かつ y≤0. 24又は ≥0. 46 (Q)
2. 前記正孔輸送性高分子化合物が、 置換基を有していてもよいァリーレン基からな る繰り返し単位、 及び Z又は置換基を有していてもよい 2価の複素環基からなる繰り返 し単位を有するものである請求項 1に記載の有機エレクト口ルミネッセンス素子。
3. 前記正孔輸送性高分子化合物が、 さらに置換基を有していてもよい芳香族ァミン 化合物の 2価の残基からなる繰り返し単位を有する請求項 2に記載の有機エレクトロル ミネッセンス素子。
4. 前記置換基を有していてもよいァリーレン基からなる繰り返し単位が、 下記式 ( 6 a) で表されるものである請求項 2又は 3に記載の有機エレクト口ルミネッセンス素 子。
Figure imgf000038_0001
(式中、 Rla、 Rlb、 Rlc、 Rld、 R2a、 R2b、 1^ 及び12(|は、 それぞれ独立に、 水 素原子、 炭素数 1~20のアルキル基、 炭素数 1〜20のアルコキシ基、 該アルキル基 の末端水素原子がフエニル基で置換されたフエニルアルキル基、 該アルコキシ基の末端 水素原子がフエニル基で置換されたフエニルアルコキシ基、 フエニル基、 フエノキシ基 、 ベンゼン環上の 1つ以上の水素原子が炭素数 1~20のアルキル基で置換されたアル キルフエニル基、 ベンゼン環上の 1つ以上の水素原子が炭素数 1〜 20のアルコキシ基 で置換されたアルコキシフエニル基、 炭素数 1~20のアルキルカルボ二ル基、 炭素数 1〜20のアルコキシカルボ二ル基、 又は炭素数 1〜20の力ルポキシル基を表す。 こ こで、 Rlbと R 、 及び R2bと R は、 それぞれ一緒になつて環を形成していてもよい
5. 前記置換基を有していてもよい 2価の複素環基からなる繰り返し単位が、 下記式 (6b) で表されるものである請求項 2又は 3に記載の有機エレクト口ルミネッセンス 素子。
Figure imgf000039_0001
(式中、 Aは、 環 X上の 2個の炭素原子と環 Y上の 2個の炭素原子と一緒になつて 5員 環又は 6員環を形成する原子又は原子群を表し、 Rla、 Rlb、 R 、 R2\ R2b及び R 2cは、 前記と同じ意味を有する。 ここで、 Rlbと Rlc、 及び R2bと は、 それぞれ一 緒になって環を形成していてもよい。 )
6. 前記式 (6 a) で表される繰り返し単位が、 下記式 (A) で表されるものである 請求項 4に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000039_0002
(式中、 R1及び R2はそれぞれ独立に、 水素原子、 置換基を有していてもよい炭素数 1 〜20のアルキル基、 又は置換基を有していてもよい炭素数 1~20のアルキル基でベ ンゼン環上の水素原子の 1つ以上が置換されたフエ二ル基を表す。 )
7. 前記置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り返 し単位が、 下記式 (7) で表されるものである請求項 3〜6のいずれか一項に記載の有 機エレクト口ルミネッセンス素子。
Figure imgf000039_0003
(式中、 Ar4、 Ar5、 A r 6及び A r 7は、 それぞれ独立に、 ァリ一レン基又は 2価の 複素環基を表す。 Ar8、 八!^及び八 ^は、 それぞれ独立に、 ァリール基又は 1価の 複素環基を表す。 o及び pは、 それぞれ独立に、 0又は 1を表す。 ) 前記式 (7 ) で表される繰り返し単位が、 下記式 (8 ) で表されるものである請 に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000040_0001
(式中、 R7、 R8及び R9は、 それぞれ独立に、 炭素数 1〜2 0のアルキル基、 炭素数 1 ~ 2 0のアルコキシ基、 該アルキル基の末端水素原子がフエニル基で置換されたフエ ニルアルキル基、 該アルコキシ基の末端水素原子がフエニル基で置換されたフエニルァ ルコキシ基、 フエニル基、 フエノキシ基、 ベンゼン環上の 1つ以上の水素原子が炭素数 :!〜 2 0のアルキル基で置換されたアルキルフエエル基、 ベンゼン環上の 1つ以上の水 素原子が炭素数 1 ~ 2 0のアルコキシ基で置換されたアルコキシフエニル基、 炭素数 1 〜2 0のアルキルカルポニル基、 炭素数 1〜2 0のアルコキシカルポニル基、 炭素数 1 〜2 0の力ルポキシル基を表す。 X及び yはそれぞれ独立に 0〜4の整数であり、 zは 1又は 2であり、 wは 0〜5の整数である。 R7、 R8及び R9が複数存在する場合には 、 各々、 同一であっても異なっていてもよい。 R7が複数存在する場合には、 2つの R7 は互いに結合して環を形成していてもよい。 )
9 . 前記式 (8 ) で表される繰り返し単位が、 下記式 (B) で表されるものである請 求項 8に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000040_0002
(式中、 Rは、 炭素数 1〜2 0のアルキル基を表し、 wは 0〜5の整数である。 Rが複 数存在する場合には、 それらは同一であっても異なっていてもよい。 Rが複数存在する 場合には、 2.つの Rは互いに結合して環を形成していてもよい。 )
10. 前記置換基を有していてもよいァリーレン基からなる繰り返し単位、 及び置換基 を有していてもよい 2価の複素環基からなる繰り返し単位の合計 1モルに対して、 前記 置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り返し単位の割 合が 0.1〜10モルである請求項 3〜 9のいずれか一項に記載の有機エレクト口ルミネッ センス素子。
11. 前記電子輸送性高分子化合物が、 置換基を有していてもよいァリーレン基からな る繰り返し単位、 及び/又は置換基を有していてもよい 2価の複素環基からなる繰り返 し単位を有するものである請求項 1〜10のいずれか一項に記載の有機エレクト口ルミ ネッセンス素子。
12. 前記電子輸送性高分子化合物が、 さらに、 置換基を有していてもよい芳香族アミ ン化合物の 2価の残基からなる繰り返し単位を有する請求項 11に記載の有機エレクト 口ルミネッセンス素子。
13. 前記置換基を有していてもよいァリーレン基からなる繰り返し単位が、 前記式 ( 6 a) で表されるものである請求項 11又は 12に記載の有機エレクト口ルミネッセン ス素子。
14. 前記置換基を有していてもよい 2価の複素環基からなる繰り返し単位が、 前記式 (6 b) で表されるものである請求項 11又は 12に記載の有機エレクト口ルミネッセ ンス素子。
15. 前記式 (6 a) で表される繰り返し単位が、 前記式 (A) で表されるものである 請求項 13に記載の有機エレクトロルミネッセンス素子。
16. 前記置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り返 し単位が、 前記式 (7) で表されるものである請求項 12〜15のいずれか一項に記載 の有機エレクト口ルミネッセンス素子。
17. 前記式 (7) で表される繰り返し単位が、 前記式 (8) で表されるものである請 求項 16に記載の有機エレクト口ルミネッセンス素子。
18. 前記式 (8) で表される繰り返し単位が、 下記式 (C) で表されるものである請 求項 17に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000042_0001
(式中、 R3及び R4は、 それぞれ独立に、 炭素数 1〜20のアルキル基を表し、 wは 0 〜 5の整数である。 複数存在する wは、 同一であっても異なっていてもよい。 R3及び R4が複数存在する場合には、 各々、 同一であっても異なっていてもよい。 )
19. 前記置換基を有していてもよいァリーレン基からなる繰り返し単位、 及び置換基 を有していてもよい 2価の複素環基からなる繰り返し単位の合計 1モルに対して、 前記 置換基を有していてもよい芳香族ァミン化合物の 2価の残基からなる繰り返し単位の割 合が 0モルを超え 0.1モル未満である請求項 12〜18のいずれか一項に記載の有機ェ レクト口ルミネッセンス素子。
20. 前記正孔輸送性高分子化合物が、 加熱又は光若しくは電子線の照射により分子架 橋するものである請求項 1~19のいずれか一項に記載の有機エレクト口ルミネッセン ス素子。
21. 陽極及び陰極からなる電極と、 該電極間に該陽極に接して又は近接して設けられ た正孔輸送性高分子化合物を含有する第 1の有機層と、 第 1の有機層及び該陰極の間に 第 1の有機層に接して設けられた電子輸送性高分子化合物を含有する第 2の有機層とを 有し、
該正孔輸送性高分子化合物が下記式 (1) を満たすものであり、
I p 1一 Wa <0. 5 (1)
(式中、 I p 1は正孔輸送性高分子化合物のイオン化電位の絶対値 (eV) を表し、 W aは陽極の仕事関数の絶対値 (eV) を表す。 )
該電子輸送性高分子化合物が下記式 (2) 及び下記式 (3) を満たすものであり、 Wc -E a 2 <0. 5 (2)
I p 2 -Wa ≥0. 5 (3)
(式中、 Wcは陰極の仕事関数の絶対値 (eV) を表し、 E a 2は電子輸送性高分子化 合物の電子親和力の絶対値 (eV) を表し、 I p 2は電子輸送性高分子化合物のイオン 化電位の絶対値 (eV) を表し、 W aは上記と同じ意味を有する。 ) 第 1の有機層及び第 2の有機層の少なくとも一方が下記式 ( 4 ) 及び下記式 ( 5 ) を満 たす発光性材料を含有し、
I I p 3 - I 1 I <0. 5 (4)
I E a 2— E a 3 I <1. 0 (5)
(式中、 I p 3は発光性材料のイオン化電位の絶対値 (eV) を表し、 E a 3は発光性 材料の電子親和力の絶対値 (e V) を表し、 I p 1及び E a 2は上記と同じ意味を有す る。 )
第 1の有機層から、 又は第 1の有機層及び第 2の有機層から、 C I E色座標上の X及び yの値が下記式 (P) 又は下記式 (Q) を満たす領域の色で発光する有機エレクトロル ミネッセンス素子の製造方法であつて、
x<0. 28又は >0. 44 かつ y≥0 (P)
0. 28≤x≤0. 44 かつ y≤0. 24又は y≥0. 46 (Q) 前記第 1の有機層を不溶化した後、 不溶化された第 1の有機層に接して第 2の有機層 を設けることを特徴とする上記有機エレクト口ルミネッセンス素子の製造方法。
22. 前記第 1の有機層を不溶化する工程が、 前記第 1の有機層に含有される正孔輸送 性高分子化合物を加熱又は光若しくは電子線を照射することにより行われる請求項 21 に記載の製造方法。
23. 請求項 1〜20のいずれか一項に記載の有機エレクト口ルミネッセンス素子を用 いてなる面状光源。
24. 請求項 1〜20のいずれか一項に記載の有機エレクト口ルミネッセンス素子を用 いてなる表示装置。
PCT/JP2007/068008 2006-09-14 2007-09-10 Dispositif électroluminescent organique WO2008032843A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200780041903.2A CN101536207B (zh) 2006-09-14 2007-09-10 有机电致发光元件
KR1020097007366A KR101463271B1 (ko) 2006-09-14 2007-09-10 유기 전계발광 소자
US12/440,626 US8927115B2 (en) 2006-09-14 2007-09-10 Organic electroluminescent device
EP07807412A EP2063473A4 (en) 2006-09-14 2007-09-10 ORGANIC ELECTROLUMINESCENCE ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006249183 2006-09-14
JP2006-249183 2006-09-14

Publications (1)

Publication Number Publication Date
WO2008032843A1 true WO2008032843A1 (fr) 2008-03-20

Family

ID=39183892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068008 WO2008032843A1 (fr) 2006-09-14 2007-09-10 Dispositif électroluminescent organique

Country Status (5)

Country Link
US (1) US8927115B2 (ja)
EP (1) EP2063473A4 (ja)
KR (1) KR101463271B1 (ja)
CN (1) CN101536207B (ja)
WO (1) WO2008032843A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123269A1 (ja) * 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2009267393A (ja) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd 有機エレクトロニクス用材料
WO2010018813A1 (ja) 2008-08-11 2010-02-18 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2010183009A (ja) * 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010183010A (ja) * 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
WO2011099531A1 (ja) 2010-02-10 2011-08-18 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2013125662A1 (ja) 2012-02-23 2013-08-29 三菱化学株式会社 重合体及び有機電界発光素子
JP2014056831A (ja) * 2008-09-30 2014-03-27 Mitsubishi Chemicals Corp 有機薄膜パターニング用基板、有機電界発光素子、並びに有機el表示装置および有機el照明

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293120B2 (ja) * 2008-11-28 2013-09-18 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
KR20230165369A (ko) * 2012-04-09 2023-12-05 미쯔비시 케미컬 주식회사 유기 전계 발광 소자용 조성물 및 유기 전계 발광 소자
CN104411743B (zh) * 2012-06-18 2016-11-02 三菱化学株式会社 高分子化合物、电荷传输性聚合物、有机电致发光元件用组合物、有机电致发光元件、有机el显示装置及有机el照明
US20160233425A1 (en) * 2013-10-01 2016-08-11 Sumitomo Chemical Company, Limited Light emitting device
JP5867580B2 (ja) 2014-06-04 2016-02-24 住友化学株式会社 発光素子
GB201418876D0 (en) * 2014-10-23 2014-12-03 Cambridge Display Tech Ltd Organic light emitting device
WO2016209996A1 (en) 2015-06-23 2016-12-29 University Of Oregon Phosphorus-containing heterocycles and a method for making and using

Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPS6370257A (ja) 1986-09-12 1988-03-30 Fuji Xerox Co Ltd 電子写真用電荷輸送材料
JPS63175860A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd 電子写真感光体
JPH02135361A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02135359A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02209988A (ja) 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd 薄膜エレクトロルミネッセンス素子
JPH0337992A (ja) 1989-07-04 1991-02-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH03152184A (ja) 1989-11-08 1991-06-28 Nec Corp 有機薄膜el素子
JPH03273087A (ja) 1990-03-22 1991-12-04 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子
WO1994029883A1 (en) 1993-06-10 1994-12-22 Cambridge Display Technology Limited Polymers for optical devices
WO1995007955A1 (de) 1993-09-15 1995-03-23 Hoechst Aktiengesellschaft Verwendung von polymeren mit isolierten chromophoren als elektrolumineszenzmaterialien
WO1996010617A1 (de) 1994-09-30 1996-04-11 Hoechst Aktiengesellschaft Poly(paraphenylenvinylen)-derivate und ihre verwendung als elektrolumineszenzmaterialien
EP0707020A2 (de) 1994-10-14 1996-04-17 Hoechst Aktiengesellschaft Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien
WO1996029356A2 (de) 1995-03-20 1996-09-26 Hoechst Aktiengesellschaft OLIGO-p-PHENYLEN-EINHEITEN ENTHALTENDE POLYMERE, VERFAHREN ZU IHRER HERSTELLUNG SOWIE IHRE VERWENDUNG
WO1997005184A1 (en) 1995-07-28 1997-02-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
JPH0945478A (ja) 1995-02-01 1997-02-14 Sumitomo Chem Co Ltd 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
WO1997009394A1 (de) 1995-09-04 1997-03-13 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Polymere mit triarylamin-einheiten als elektrolumineszenzmaterialien
JPH09111233A (ja) 1995-10-16 1997-04-28 Sumitomo Chem Co Ltd 高分子蛍光体、その製造方法及び有機エレクトロルミネッセンス素子
WO1998006773A1 (en) 1996-08-13 1998-02-19 The Dow Chemical Company Poly(arylamines) and films thereof
US5741921A (en) 1994-11-25 1998-04-21 Hoechst Aktiengesellschaft Conjugated polymers containing hetero-spiro atoms and their use as electroluminescence materials
JPH10114891A (ja) 1996-08-21 1998-05-06 Sumitomo Chem Co Ltd 高分子蛍光体および有機エレクトロルミネッセンス素子
WO1998021262A1 (de) 1996-11-13 1998-05-22 Aventis Research & Technologies Gmbh & Co Kg Geordnete poly(arylenvinylen)-terpolymere, verfahren zu ihrer herstellung und ihre verwendung als elektrolumineszenzmaterialien
US5763636A (en) 1995-10-12 1998-06-09 Hoechst Aktiengesellschaft Polymers containing spiro atoms and methods of using the same as electroluminescence materials
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
US5777070A (en) 1997-10-23 1998-07-07 The Dow Chemical Company Process for preparing conjugated polymers
JPH10324870A (ja) 1997-05-23 1998-12-08 Sumitomo Chem Co Ltd 高分子蛍光体および有機エレクトロルミネッセンス素子
WO1999013692A1 (en) 1997-09-05 1999-03-18 Cambridge Display Technology Limited SELF-ASSEMBLED TRANSPORT LAYERS FOR OLEDs
WO1999024526A1 (de) 1997-11-05 1999-05-20 Axiva Gmbh Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzelementen
WO1999048160A1 (en) 1998-03-13 1999-09-23 Cambridge Display Technology Ltd. Electroluminescent devices
WO1999054385A1 (en) 1998-04-21 1999-10-28 The Dow Chemical Company Fluorene-containing polymers and electroluminescent devices therefrom
WO1999054943A1 (en) 1998-04-21 1999-10-28 The Dow Chemical Company Organic electroluminescent devices with improved stability in air
WO2000006665A1 (en) 1998-07-28 2000-02-10 The Dow Chemical Company Organic electroluminescent devices
GB2340304A (en) 1998-08-21 2000-02-16 Cambridge Display Tech Ltd Organic light emitters
JP2000080167A (ja) 1997-07-22 2000-03-21 Sumitomo Chem Co Ltd 正孔輸送性高分子とその製造方法および有機エレクトロルミネッセンス素子
JP2000104057A (ja) 1998-07-27 2000-04-11 Sumitomo Chem Co Ltd 高分子蛍光体および高分子発光素子
WO2000022027A1 (de) 1998-10-10 2000-04-20 Celanese Ventures Gmbh Konjugierte polymere enthaltend 2,7-fluorenyleinheiten mit verbesserten eigenschaften
WO2000022026A1 (de) 1998-10-10 2000-04-20 Celanese Ventures Gmbh Konjugierte polymere, enthaltend spezielle fluoren-bausteine mit verbesserten eigenschaften
JP2000136379A (ja) 1998-06-10 2000-05-16 Sumitomo Chem Co Ltd 高分子蛍光体および有機エレクトロルミネッセンス素子
JP2000160328A (ja) * 1998-11-30 2000-06-13 Idemitsu Kosan Co Ltd 素子用薄膜層の蒸着方法、蒸着装置および有機エレクトロルミネッセンス素子
WO2000035987A1 (de) 1998-12-15 2000-06-22 Celanese Ventures Gmbh Verfahren zur herstellung von derivaten des polyarylenvinylen
WO2000046321A1 (en) 1999-02-04 2000-08-10 The Dow Chemical Company Fluorene copolymers and devices made therefrom
WO2000053656A1 (en) 1999-03-05 2000-09-14 Cambridge Display Technology Limited Polymer preparation
JP2000252065A (ja) 1999-02-25 2000-09-14 Sumitomo Chem Co Ltd 高分子発光素子
WO2000053655A1 (de) 1998-02-13 2000-09-14 Celanese Ventures Gmbh Triptycen-polymere und -copolymere
JP2000252076A (ja) * 1999-03-03 2000-09-14 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子とその製造方法
WO2000055927A1 (en) 1999-03-12 2000-09-21 Cambridge Display Technology Limited Polymers, their preparation and uses
GB2348316A (en) 1999-03-26 2000-09-27 Cambridge Display Tech Ltd Organic opto-electronic device
JP2000299189A (ja) 1999-02-09 2000-10-24 Sumitomo Chem Co Ltd 高分子発光素子ならびにそれを用いた表示装置および面状光源
JP2000303066A (ja) 1999-04-21 2000-10-31 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2000351967A (ja) 1999-04-09 2000-12-19 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2001003045A (ja) 1999-04-21 2001-01-09 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2001052867A (ja) 1999-08-05 2001-02-23 Toyota Motor Corp 有機el素子及びその製造方法
WO2001019834A1 (en) 1999-09-16 2001-03-22 Cambridge Display Technology Limited Preparation of benzenediboronic acid via a disilylated aryl-intermediate
JP2001110569A (ja) * 1999-10-13 2001-04-20 Matsushita Electric Ind Co Ltd 有機発光素子および画像表示装置
JP2001123156A (ja) 1999-08-03 2001-05-08 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
WO2001034722A1 (de) 1999-11-09 2001-05-17 Covion Organic Semiconductors Gmbh Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzvorrichtungen
JP2001181618A (ja) 1999-12-27 2001-07-03 Sumitomo Chem Co Ltd 高分子蛍光体の製造方法および高分子発光素子
JP2002198183A (ja) * 2000-12-26 2002-07-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2003045664A (ja) * 2001-05-23 2003-02-14 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
JP2004527628A (ja) * 2001-05-11 2004-09-09 ケンブリッジ ディスプレイ テクノロジー リミテッド 置換フルオレンポリマー、その製造方法、及びこれを用いた光学装置
WO2005059951A2 (en) * 2003-12-19 2005-06-30 Cambridge Display Technology Limited Optical device comprising a charge transport layer of insoluble organic material and method for the production thereof
JP2005243300A (ja) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及びその製造方法
JP2006032883A (ja) * 2004-06-15 2006-02-02 Canon Inc 発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514878A (en) 1994-03-18 1996-05-07 Holmes; Andrew B. Polymers for electroluminescent devices
KR100702763B1 (ko) * 1999-02-15 2007-04-03 이데미쓰 고산 가부시키가이샤 유기 전자 발광 소자 및 그의 제조 방법
KR100580026B1 (ko) 2001-05-11 2006-05-12 캠브리지 디스플레이 테크놀로지 리미티드 치환된 플루오렌 중합체, 이들의 제조방법 및광학장치에서의 이들의 용도
SG125077A1 (en) * 2001-12-19 2006-09-29 Sumitomo Chemical Co Copolymer, polymer composition and polymer light-emitting device
US20050048314A1 (en) 2003-08-28 2005-03-03 Homer Antoniadis Light emitting polymer devices with improved efficiency and lifetime
US7179543B2 (en) * 2003-10-06 2007-02-20 The Trustees Of Princeton University Doping of organic opto-electronic devices to extend reliability
JP4952247B2 (ja) * 2004-02-26 2012-06-13 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006029226A1 (en) * 2004-09-03 2006-03-16 The Regents Of The University Of California Methods and devices utilizing soluble conjugated polymers
JP4966203B2 (ja) 2004-12-24 2012-07-04 シーディーティー オックスフォード リミテッド 発光装置

Patent Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5751781A (en) 1980-07-17 1982-03-26 Eastman Kodak Co Organic electroluminiscent cell and method
JPS59194393A (ja) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− 改良された電力転換効率をもつ有機エレクトロルミネツセント装置
JPS6370257A (ja) 1986-09-12 1988-03-30 Fuji Xerox Co Ltd 電子写真用電荷輸送材料
JPS63175860A (ja) 1987-01-16 1988-07-20 Fuji Xerox Co Ltd 電子写真感光体
JPH02135361A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02135359A (ja) 1988-11-16 1990-05-24 Fuji Xerox Co Ltd 電子写真感光体
JPH02209988A (ja) 1989-02-10 1990-08-21 Idemitsu Kosan Co Ltd 薄膜エレクトロルミネッセンス素子
JPH0337992A (ja) 1989-07-04 1991-02-19 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JPH03152184A (ja) 1989-11-08 1991-06-28 Nec Corp 有機薄膜el素子
JPH03273087A (ja) 1990-03-22 1991-12-04 Sumitomo Chem Co Ltd 有機エレクトロルミネッセンス素子
WO1994029883A1 (en) 1993-06-10 1994-12-22 Cambridge Display Technology Limited Polymers for optical devices
WO1995007955A1 (de) 1993-09-15 1995-03-23 Hoechst Aktiengesellschaft Verwendung von polymeren mit isolierten chromophoren als elektrolumineszenzmaterialien
WO1996010617A1 (de) 1994-09-30 1996-04-11 Hoechst Aktiengesellschaft Poly(paraphenylenvinylen)-derivate und ihre verwendung als elektrolumineszenzmaterialien
EP0707020A2 (de) 1994-10-14 1996-04-17 Hoechst Aktiengesellschaft Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien
US5741921A (en) 1994-11-25 1998-04-21 Hoechst Aktiengesellschaft Conjugated polymers containing hetero-spiro atoms and their use as electroluminescence materials
JPH0945478A (ja) 1995-02-01 1997-02-14 Sumitomo Chem Co Ltd 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
WO1996029356A2 (de) 1995-03-20 1996-09-26 Hoechst Aktiengesellschaft OLIGO-p-PHENYLEN-EINHEITEN ENTHALTENDE POLYMERE, VERFAHREN ZU IHRER HERSTELLUNG SOWIE IHRE VERWENDUNG
WO1997005184A1 (en) 1995-07-28 1997-02-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
WO1997009394A1 (de) 1995-09-04 1997-03-13 Hoechst Research & Technology Deutschland Gmbh & Co. Kg Polymere mit triarylamin-einheiten als elektrolumineszenzmaterialien
US5763636A (en) 1995-10-12 1998-06-09 Hoechst Aktiengesellschaft Polymers containing spiro atoms and methods of using the same as electroluminescence materials
JPH09111233A (ja) 1995-10-16 1997-04-28 Sumitomo Chem Co Ltd 高分子蛍光体、その製造方法及び有機エレクトロルミネッセンス素子
WO1998006773A1 (en) 1996-08-13 1998-02-19 The Dow Chemical Company Poly(arylamines) and films thereof
JPH10114891A (ja) 1996-08-21 1998-05-06 Sumitomo Chem Co Ltd 高分子蛍光体および有機エレクトロルミネッセンス素子
WO1998021262A1 (de) 1996-11-13 1998-05-22 Aventis Research & Technologies Gmbh & Co Kg Geordnete poly(arylenvinylen)-terpolymere, verfahren zu ihrer herstellung und ihre verwendung als elektrolumineszenzmaterialien
WO1998027136A1 (de) 1996-12-16 1998-06-25 Aventis Research & Technologies Gmbh & Co Kg ARYLSUBSTITUIERTE POLY(p-ARYLENVINYLENE), VERFAHREN ZUR HERSTELLUNG UND DEREN VERWENDUNG IN ELEKTROLUMINESZENZBAUELEMENTEN
JPH10324870A (ja) 1997-05-23 1998-12-08 Sumitomo Chem Co Ltd 高分子蛍光体および有機エレクトロルミネッセンス素子
JP2000080167A (ja) 1997-07-22 2000-03-21 Sumitomo Chem Co Ltd 正孔輸送性高分子とその製造方法および有機エレクトロルミネッセンス素子
WO1999013692A1 (en) 1997-09-05 1999-03-18 Cambridge Display Technology Limited SELF-ASSEMBLED TRANSPORT LAYERS FOR OLEDs
US5777070A (en) 1997-10-23 1998-07-07 The Dow Chemical Company Process for preparing conjugated polymers
WO1999024526A1 (de) 1997-11-05 1999-05-20 Axiva Gmbh Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzelementen
WO2000053655A1 (de) 1998-02-13 2000-09-14 Celanese Ventures Gmbh Triptycen-polymere und -copolymere
WO1999048160A1 (en) 1998-03-13 1999-09-23 Cambridge Display Technology Ltd. Electroluminescent devices
WO1999054385A1 (en) 1998-04-21 1999-10-28 The Dow Chemical Company Fluorene-containing polymers and electroluminescent devices therefrom
WO1999054943A1 (en) 1998-04-21 1999-10-28 The Dow Chemical Company Organic electroluminescent devices with improved stability in air
JP2000136379A (ja) 1998-06-10 2000-05-16 Sumitomo Chem Co Ltd 高分子蛍光体および有機エレクトロルミネッセンス素子
JP2000104057A (ja) 1998-07-27 2000-04-11 Sumitomo Chem Co Ltd 高分子蛍光体および高分子発光素子
WO2000006665A1 (en) 1998-07-28 2000-02-10 The Dow Chemical Company Organic electroluminescent devices
GB2340304A (en) 1998-08-21 2000-02-16 Cambridge Display Tech Ltd Organic light emitters
WO2000022027A1 (de) 1998-10-10 2000-04-20 Celanese Ventures Gmbh Konjugierte polymere enthaltend 2,7-fluorenyleinheiten mit verbesserten eigenschaften
WO2000022026A1 (de) 1998-10-10 2000-04-20 Celanese Ventures Gmbh Konjugierte polymere, enthaltend spezielle fluoren-bausteine mit verbesserten eigenschaften
JP2000160328A (ja) * 1998-11-30 2000-06-13 Idemitsu Kosan Co Ltd 素子用薄膜層の蒸着方法、蒸着装置および有機エレクトロルミネッセンス素子
WO2000035987A1 (de) 1998-12-15 2000-06-22 Celanese Ventures Gmbh Verfahren zur herstellung von derivaten des polyarylenvinylen
WO2000046321A1 (en) 1999-02-04 2000-08-10 The Dow Chemical Company Fluorene copolymers and devices made therefrom
JP2000299189A (ja) 1999-02-09 2000-10-24 Sumitomo Chem Co Ltd 高分子発光素子ならびにそれを用いた表示装置および面状光源
JP2000252065A (ja) 1999-02-25 2000-09-14 Sumitomo Chem Co Ltd 高分子発光素子
JP2000252076A (ja) * 1999-03-03 2000-09-14 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子とその製造方法
WO2000053656A1 (en) 1999-03-05 2000-09-14 Cambridge Display Technology Limited Polymer preparation
WO2000055927A1 (en) 1999-03-12 2000-09-21 Cambridge Display Technology Limited Polymers, their preparation and uses
GB2348316A (en) 1999-03-26 2000-09-27 Cambridge Display Tech Ltd Organic opto-electronic device
JP2000351967A (ja) 1999-04-09 2000-12-19 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2000303066A (ja) 1999-04-21 2000-10-31 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2001003045A (ja) 1999-04-21 2001-01-09 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2001123156A (ja) 1999-08-03 2001-05-08 Sumitomo Chem Co Ltd 高分子蛍光体およびそれを用いた高分子発光素子
JP2001052867A (ja) 1999-08-05 2001-02-23 Toyota Motor Corp 有機el素子及びその製造方法
WO2001019834A1 (en) 1999-09-16 2001-03-22 Cambridge Display Technology Limited Preparation of benzenediboronic acid via a disilylated aryl-intermediate
JP2001110569A (ja) * 1999-10-13 2001-04-20 Matsushita Electric Ind Co Ltd 有機発光素子および画像表示装置
WO2001034722A1 (de) 1999-11-09 2001-05-17 Covion Organic Semiconductors Gmbh Substituierte poly(arylenvinylene), verfahren zur herstellung und deren verwendung in elektrolumineszenzvorrichtungen
JP2001181618A (ja) 1999-12-27 2001-07-03 Sumitomo Chem Co Ltd 高分子蛍光体の製造方法および高分子発光素子
JP2002198183A (ja) * 2000-12-26 2002-07-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2004527628A (ja) * 2001-05-11 2004-09-09 ケンブリッジ ディスプレイ テクノロジー リミテッド 置換フルオレンポリマー、その製造方法、及びこれを用いた光学装置
JP2003045664A (ja) * 2001-05-23 2003-02-14 Honda Motor Co Ltd 有機エレクトロルミネッセンス素子
WO2005059951A2 (en) * 2003-12-19 2005-06-30 Cambridge Display Technology Limited Optical device comprising a charge transport layer of insoluble organic material and method for the production thereof
JP2005243300A (ja) * 2004-02-24 2005-09-08 Sanyo Electric Co Ltd 有機エレクトロルミネッセント素子及びその製造方法
JP2006032883A (ja) * 2004-06-15 2006-02-02 Canon Inc 発光素子

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 11, no. 10, 1999, pages 852
APPL. PHYS. LETT., vol. 71, no. 18, 1997, pages 2596
APPL. PHYS. LETT., vol. 75, no. 1, 1999, pages 4
J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
J. H. MICHAELSON ET AL., JOURNAL OF APPLIED PHISICS, vol. 48, no. 11, 1977, pages 4729
JPN. J. APPL. PHYS., vol. 34, 1995, pages 1883
NATURE, vol. 395, 1998, pages 151
ORGANIC LIGHT-EMITTING MATERIALS AND DEVICES, vol. IV, pages 119
PROC. SPIE-INT. SOC. OPT. ENG., 2001, pages 4105
See also references of EP2063473A4
SHIZUO TOKITO; CHIHAYA ADACHI; HIDEYUKI MURATA: "Organic EL Display", 2004, OHMSHA LTD., pages: 17 - 48
SYN. MET., vol. 94, no. 1, 1998, pages 103
SYN. MET., vol. 99, no. 2, 1999, pages 1361
TOSHIHIRO ONISHI; TAMAMI KOYAMA: "Polymer EL Material", 2004, KYORITSU PUBLICATION, pages: 33 - 58

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8581241B2 (en) 2008-04-02 2013-11-12 Mitsubishi Chemical Corporation Polymer compound, net-like polymer compound produced by crosslinking the polymer compound, composition for organic electroluminescence element, organic electroluminescence element, organic EL display, and organic EL lighting
JP2009267393A (ja) * 2008-04-02 2009-11-12 Hitachi Chem Co Ltd 有機エレクトロニクス用材料
JP2009263665A (ja) * 2008-04-02 2009-11-12 Mitsubishi Chemicals Corp 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2009123269A1 (ja) * 2008-04-02 2009-10-08 三菱化学株式会社 高分子化合物、該高分子化合物を架橋させてなる網目状高分子化合物、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
US8692234B2 (en) 2008-04-02 2014-04-08 Mitsubishi Chemical Corporation Polymer compound, net-like polymer compound produced by crosslinking the polymer compound, composition for organic electroluminescence element, organic electroluminescence element, organic EL display, and organic EL lighting
TWI447143B (zh) * 2008-08-11 2014-08-01 Mitsubishi Chem Corp 電荷輸送性聚合物,有機電致發光元件用組成物,有機電致發光元件,有機el顯示器及有機el照明
US8610112B2 (en) 2008-08-11 2013-12-17 Mitsubishi Chemical Corporation Charge-transporting polymer, composition for organic electroluminescent element, organic electroluminescent element, organic EL display, and organic EL lighting
WO2010018813A1 (ja) 2008-08-11 2010-02-18 三菱化学株式会社 電荷輸送性ポリマー、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2014056831A (ja) * 2008-09-30 2014-03-27 Mitsubishi Chemicals Corp 有機薄膜パターニング用基板、有機電界発光素子、並びに有機el表示装置および有機el照明
JP2010183010A (ja) * 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010183009A (ja) * 2009-02-09 2010-08-19 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
WO2011099531A1 (ja) 2010-02-10 2011-08-18 三菱化学株式会社 重合体、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
US9349961B2 (en) 2010-02-10 2016-05-24 Mitsubishi Chemical Corporation Organic electroluminescent element material, organic electroluminescent element composition, organic electroluminescent element, display device, and lighting device
WO2013125662A1 (ja) 2012-02-23 2013-08-29 三菱化学株式会社 重合体及び有機電界発光素子
KR20140129045A (ko) 2012-02-23 2014-11-06 미쯔비시 가가꾸 가부시끼가이샤 중합체 및 유기 전계 발광 소자
US9299933B2 (en) 2012-02-23 2016-03-29 Mitsubishi Chemical Corporation Polymer and organic electroluminescent element

Also Published As

Publication number Publication date
EP2063473A4 (en) 2010-11-10
KR101463271B1 (ko) 2014-11-18
US20090212693A1 (en) 2009-08-27
CN101536207B (zh) 2011-12-21
CN101536207A (zh) 2009-09-16
US8927115B2 (en) 2015-01-06
EP2063473A1 (en) 2009-05-27
KR20090084814A (ko) 2009-08-05

Similar Documents

Publication Publication Date Title
WO2008032843A1 (fr) Dispositif électroluminescent organique
JP2008098619A (ja) 有機エレクトロルミネッセンス素子
TWI293964B (en) Polymeric fluorescent substance, production thereof and polymer light-emitting device
JP5454527B2 (ja) 白色発光素子
TWI531603B (zh) 聚合體組成物及使用該聚合體組成物之高分子發光元件
WO2006118345A1 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5661982B2 (ja) 高分子化合物、発光材料及び発光素子
WO2007043495A9 (ja) 共重合体およびそれを用いた高分子発光素子
JP5211448B2 (ja) 高分子材料およびそれを用いた素子
WO2006070896A1 (ja) 高分子化合物およびそれを用いた素子
WO2008016067A1 (fr) Composé polymère et dispositif polymère luminescent
WO2008111658A1 (ja) 高分子化合物およびそれを含む組成物
WO2007055407A1 (ja) 共役高分子化合物およびそれを用いた高分子発光素子
WO2003000821A1 (fr) Procedes de production d&#39;un materiau fluorescent polymere, et element luminescent polymere
JP5248910B2 (ja) 有機エレクトロルミネッセンス素子および該素子を用いた表示装置
JP2007180020A (ja) 白色有機エレクトロルミネッセンス素子
WO2006132355A1 (ja) 芳香族グラフト重合体
KR20080007611A (ko) 유기 전계 발광용 고분자 조성물
WO2007063896A1 (ja) 高分子系材料及びそれを用いた高分子発光素子
US20100165604A1 (en) White organic electroluminescent device
WO2007142252A1 (ja) 高分子化合物および高分子発光素子
EP1962564B1 (en) White organic electroluminescent device
JP5140945B2 (ja) 高分子組成物及びそれを用いた高分子発光素子
JP2009091559A (ja) 金属錯体を含む組成物及びそれを用いた素子
WO2005078003A1 (ja) 電気変換発光ポリマー及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041903.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807412

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007807412

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12440626

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020097007366

Country of ref document: KR