WO2007074614A1 - 二次電池の充電状態推定装置および充電状態推定方法 - Google Patents

二次電池の充電状態推定装置および充電状態推定方法 Download PDF

Info

Publication number
WO2007074614A1
WO2007074614A1 PCT/JP2006/324409 JP2006324409W WO2007074614A1 WO 2007074614 A1 WO2007074614 A1 WO 2007074614A1 JP 2006324409 W JP2006324409 W JP 2006324409W WO 2007074614 A1 WO2007074614 A1 WO 2007074614A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
estimation
secondary battery
remaining capacity
state
Prior art date
Application number
PCT/JP2006/324409
Other languages
English (en)
French (fr)
Inventor
Kenji Tsuchiya
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US12/086,696 priority Critical patent/US8274291B2/en
Priority to EP15177981.6A priority patent/EP2985618B1/en
Priority to CN2006800492635A priority patent/CN101346636B/zh
Priority to EP06834164.3A priority patent/EP1972955B1/en
Publication of WO2007074614A1 publication Critical patent/WO2007074614A1/ja
Priority to US13/067,785 priority patent/US8664960B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a state-of-charge estimation device and a state-of-charge estimation method for a secondary battery, and more specifically, a secondary that sequentially calculates a SOC (State of Charge) indicating a remaining capacity (charge rate) of the secondary battery.
  • SOC State of Charge
  • the present invention relates to a battery state of charge estimation device and a state of charge estimation method. Background art
  • a power supply system is used in which power is supplied to the load device using a chargeable / dischargeable secondary battery, and the secondary battery can be charged while the load device is in operation as required. Yes.
  • hybrid vehicles and electric vehicles equipped with a motor driven by a secondary battery as one of the vehicle driving force sources are equipped with such a power supply system.
  • the stored power of the secondary battery is used as the drive power of the motor for vehicle driving force, and the generator power generated when the motor regenerates and the engine rotates.
  • This secondary battery is charged by the generated power.
  • the state of charge of the secondary battery typically SOC indicating the charge rate with respect to full charge
  • SOC the state of charge of the secondary battery
  • it is arranged so that it does not become a severe use situation that causes deterioration of the battery. I need to hesitate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-306613
  • a battery condition monitoring device that calculates an internal resistance, calculates an open circuit voltage (OCV) using the battery current 'voltage and the calculated internal resistance, and estimates a battery capacity (SOC) from the open circuit voltage.
  • OCV open circuit voltage
  • SOC battery capacity
  • this battery state monitoring device adds the battery current integrated value thereafter to the battery capacity (SOC) immediately before the deviation, thereby increasing the battery capacity (SOC). Is estimated. That is, in Patent Document 1, the estimation accuracy is improved by switching the estimation method according to the battery current range. .
  • Patent Document 2 discloses a charge amount calculation device provided with a SOC calculation method based on battery current integration and other SOC calculation methods.
  • the SOC calculation method to be used is determined based on the error between the SOC calculation value based on the battery current range and the battery current integration and the SOC calculation value based on another method.
  • the internal resistance that sequentially changes according to charging / discharging is calculated based on the slopes of a plurality of sets of battery voltage and battery current measured during charging / discharging.
  • the change in the battery voltage (inter-terminal voltage) of the secondary battery during charging / discharging has a delay with respect to the change in the battery current. That is, when a certain battery current starts to flow or when the battery current is stopped, the battery voltage fluctuates without a stable state until a certain time called relaxation time elapses. If the battery voltage is measured before the relaxation time has elapsed, the accurate output voltage of the secondary battery cannot be measured.
  • the region where the linearity according to the internal resistance appears between the battery current and battery voltage varies depending on the temperature range of the secondary battery.
  • the linearity between the battery current and the battery voltage hardly appears due to the reduced ion exchange current density on the electrode surface.
  • Patent Document 1 discloses switching between the estimation method based on the internal resistance calculation and the estimation method based on the battery current integration according to the battery current range, but the secondary battery temperature condition and the battery current continuity are disclosed. SOC estimation focusing on time has not been performed. Therefore, the estimation error of the internal resistance may cause an error in the estimation of the rechargeable battery open voltage, and hence the remaining capacity (SOC).
  • the present invention has been made to solve the above-mentioned problems, and the object of the present invention is to apply an appropriate SOC estimation method according to the usage state of the secondary battery, and to estimate its estimation accuracy. It is to improve.
  • a secondary battery charge state estimation device is a secondary battery charge state estimation device provided with a detector capable of detecting an input / output current, an output voltage, and a battery temperature.
  • the characteristic storage means stores a characteristic between the open voltage of the secondary battery and the remaining capacity. Whether the state where the input / output current is equal to or lower than the limit current set according to the battery temperature is a stable state where the stable state determination means continues for the voltage stabilization time set according to the battery temperature. Determine whether or not.
  • the first state of charge estimating means determines that the state is stable, Considering the output voltage as an open circuit voltage, the remaining capacity of the secondary battery is estimated based on the characteristics stored in the characteristic storage means.
  • a secondary battery charge state estimation method is a secondary battery charge state estimation method provided with a detector capable of detecting input / output current, output voltage and battery temperature, and includes a stable state determination step, A first charge state estimation step is provided.
  • the stable state determination step whether or not the state where the input / output current is equal to or less than the limit current set according to the battery temperature is a stable state that continues for the voltage stabilization period set according to the battery temperature. judge.
  • the first charging state estimation step when the stable state is determined, the output voltage is regarded as the open voltage of the secondary battery, and the secondary battery is based on the characteristics between the open voltage of the secondary battery and the remaining capacity. Estimate the remaining capacity of the battery.
  • the second state of charge estimation step estimates the remaining capacity of the secondary battery based on a method different from the first state of charge estimation step when it is not determined to be a stable state.
  • the output voltage of the secondary battery is stable and the voltage change in the internal resistance is small (in the stable state), the output voltage is reduced.
  • the SOC of the secondary battery is estimated with reference to the open circuit voltage remaining capacity (SOC) characteristics.
  • the above-mentioned stable state is determined taking into consideration that the relaxation time (voltage stabilization time) and the internal resistance change according to the battery temperature, so there is a strong correlation especially between the open-circuit voltage and the remaining capacity.
  • sOC can be estimated with high accuracy within a certain error by a simple and reliable method in a stable state.
  • the secondary battery charge state estimation device further comprises second charge state estimation means for estimating the remaining capacity of the secondary battery when the stable state determination means does not determine the stable state.
  • This second dragon state estimation means is a method of sequentially calculating the amount of change in the remaining capacity based on the integrated value of the input / output current, or a battery having input / output current, output voltage and battery temperature as input variables.
  • the remaining capacity of the secondary battery is estimated by a model-based method.
  • the method for estimating the state of charge of the secondary battery according to the present invention further includes a second state of charge estimation step for estimating the remaining capacity of the secondary battery when the stable state is not determined in the stable state determination step.
  • This second state of charge estimation step The remaining capacity of the secondary battery can be determined by either calculating the amount of change in the remaining capacity based on the integrated value of the input / output current, or using a battery model that uses the input / output current, output voltage, and battery temperature as input variables. presume.
  • the SOC of the secondary battery can be estimated with high accuracy by a method based on the battery model equation or a method based on current integration when not in the stable state. can do.
  • the second state of charge estimation means calculates the amount of change in the remaining capacity based on the integrated value of the input / output current.
  • the second charge state estimation means selects the first estimation means to estimate the remaining capacity when the continuous execution period is equal to or shorter than the first limit period, while the continuous execution period is the first When the limit period is exceeded and the input / output current is within the specified battery model usable range, the remaining capacity is estimated by selecting the second estimation means.
  • the second state of charge estimation step calculates the secondary capacity by calculating the amount of change in the remaining capacity based on the integrated value of the input / output current.
  • a first estimation step for estimating the remaining capacity of the battery a second estimation step for estimating the remaining capacity of the secondary battery based on a battery model having input / output current, output voltage and battery temperature as input variables; And a time measuring step for measuring a continuous execution period of the remaining capacity estimation by the estimation step of 1.
  • the second charge state estimation step selects the first estimation step and estimates the remaining capacity when the continuous execution period is equal to or shorter than the first j-limit period, while the continuous execution period is the first When the limit period is exceeded and the input / output current is within the specified battery model usable range, the second estimation step is selected to estimate the remaining capacity.
  • the input / output current is the current.
  • the battery model Based on the remaining capacity estimation can be performed.
  • the SOC estimation error is not forcibly selected, so that an increase in estimation error due to an inappropriate selection of the SOC estimation method can be prevented.
  • the second state of charge estimation means when the continuous execution period exceeds the second limit period longer than the first limit period, Regardless of the input / output current, select the second estimation means to estimate the remaining capacity.
  • the SOC estimation based on the current integration continues beyond the limit (second limit period)
  • the SOC estimation based on the battery model is executed and executed. be able to. Therefore, SOC estimation can be performed so that the SOC estimation error due to the current sensor detection error (offset) does not exceed the allowable value.
  • the second state of charge estimation means includes a continuous execution period that exceeds the first limit period, and an input / output current that is outside a predetermined battery model usable range. If so, select the first estimator and estimate the remaining capacity.
  • the SOC estimation based on current integration continues beyond the limit period (first limit period)
  • the input / output current is within the usable range of the battery model.
  • SOC estimation based on the battery model formula is executed. Therefore, the SOC estimation based on the battery model can be forcibly executed to prevent the SOC estimation error from becoming a large value.
  • the limit current in the stable state determination means is set relatively large as the battery temperature increases.
  • the limit current in the stable state determining step is set to be relatively large as the battery temperature increases.
  • the internal resistance of the secondary battery decreases as the battery temperature increases, and conversely as the battery temperature decreases.
  • the current limit can be set so that the voltage change in the internal resistance during the stable state falls below a specified voltage. Therefore, it is possible to suppress the estimation error due to the SOC estimation in which the output voltage of the secondary battery is regarded as an open circuit voltage within a predetermined range ⁇ .
  • the voltage stabilization time in the stable state determination means is set relatively short as the battery temperature rises.
  • the voltage stabilization period in the stable state determining step is set relatively short as the battery temperature increases.
  • the relaxation time until the output voltage of the secondary battery stabilizes decreases as the battery temperature increases, and conversely increases as the battery temperature decreases. Reflecting this point, it is possible to perform SOC estimation in which the terminal voltage is regarded as an open-circuit voltage while the output voltage is stable.
  • a secondary battery charge state estimation device is a secondary battery charge state estimation device provided with a detector capable of detecting input / output current, output voltage, and battery temperature.
  • the first estimating means estimates the remaining capacity of the secondary battery by calculating the change amount of the remaining capacity based on the integrated value of the input / output current.
  • the second estimating means estimates the remaining capacity of the secondary battery based on a battery model having input / output current, output voltage and battery temperature as input variables.
  • the timer measures the continuous execution period of the state of charge estimation by the first estimation means.
  • the selection means determines whether the input / output current is within a predetermined battery model usable range and one of the first and second estimation means based on the continuous execution period obtained by the timing means. To estimate the remaining capacity.
  • a charging state estimation method for a secondary battery is a charging state estimation method for a secondary battery provided with a detector capable of detecting input / output current, output voltage, and battery temperature.
  • a first estimation step the remaining capacity of the secondary battery is estimated by calculating the amount of change in the remaining capacity based on the integrated value of the input / output current.
  • the second estimation step the remaining capacity of the secondary battery is estimated based on the battery model equation with input / output current, output voltage, and battery temperature as input variables.
  • the timing step measures the continuous execution period of remaining capacity estimation in the first estimation step.
  • the selection step is based on the first and second estimation steps based on the determination as to whether the input / output current is within a predetermined battery model usable range and the continuous execution period obtained in the timing step. One of these is selected to estimate the remaining capacity.
  • SOC estimation based on current integration and SOC estimation based on a battery model are performed, and the continuous execution period of SOC estimation based on current integration and the input / output current are
  • the SOC can be estimated by selectively using the battery model based on whether it is within the usable range of the battery model that can ensure the estimation accuracy of the battery model. Therefore, in the configuration in which SOC estimation is performed by switching the above two SOC estimation methods, an increase in estimation error due to inappropriate selection of SOC estimation methods can be prevented, and SOC estimation accuracy can be improved.
  • the selection means selects the first estimation means and remains when the continuous execution period is equal to or less than the first limit period. While estimating the capacity, when the continuous execution period exceeds the first limit period and the input / output current is within the usable range of the battery model, select the second estimator. Estimate remaining capacity.
  • the selecting step selects the first estimating step when the continuous execution period is equal to or shorter than the first limit period.
  • the second estimation step is selected when the continuous execution period exceeds the first limit period and the input / output current is within the specified battery model usable range. Is estimated. '
  • the input / output current can be executed on the condition that is within the current model usable range. This prevents the SOC estimation error from expanding due to continuous SOC estimation based on current integration for a long period due to the detection error (offset) of the current sensor meter.
  • the input / output current is When the model is out of the usable range, the SO c estimation based on the battery model is not forcibly selected, so that an increase in estimation error due to the selection of an inappropriate S ⁇ C estimation method can be prevented.
  • the selection means is configured such that when the continuous execution period exceeds a second limit period longer than the first limit period, Regardless of input / output current, select the second estimation means to estimate the remaining capacity.
  • the SOC estimation based on current integration is continued beyond the limit (second limit period)
  • the SOC estimation based on the battery model is executed once. be able to. Therefore, SOC estimation can be performed so that the SOC estimation error caused by the current sensor detection error (offset) does not exceed the allowable value.
  • the selection means uses the battery model in which the continuous execution period exceeds the first limit period and the input / output current is a predetermined battery model. When it is outside the possible range, select the first estimation means and estimate the remaining capacity.
  • the secondary battery charge state estimation device if SOC estimation based on current integration continues beyond the limit period (first limit period), the input / output current is within the usable range of the battery model.
  • the SOC estimation based on the battery model formula is executed only when it is within. Therefore, the SOC estimation based on the battery model can be forcibly executed to prevent the SOC estimation error from becoming a large value.
  • the secondary battery is a lithium ion battery.
  • the remaining capacity (SOC) ′ of the lithium ion battery having a strong correlation between the open circuit voltage and the remaining capacity can be estimated with high accuracy.
  • FIG. 1 is a schematic block diagram illustrating a configuration of a power supply system including a secondary battery whose remaining capacity (SOC) is estimated by a state-of-charge estimation apparatus or method for estimating a state of charge of a secondary battery according to an embodiment of the present invention.
  • SOC remaining capacity
  • FIG. 2 is a functional block diagram of the SOC estimation unit shown in FIG.
  • Fig. 3 is a conceptual diagram illustrating the setting of the stable current range.
  • Fig. 4 is a conceptual diagram illustrating the setting of the voltage stabilization time.
  • FIG. 5 is a conceptual diagram illustrating the temperature dependence of the internal resistance of the secondary battery.
  • FIG. 6 is a conceptual diagram illustrating the temperature dependence of the relaxation time in the secondary battery.
  • FIG. 7 is a conceptual diagram for explaining an example of the SOC estimation method based on the battery model.
  • FIG. 8 is a circuit diagram showing an example of a battery model.
  • FIG. 9 is a conceptual diagram illustrating an example of a method for calculating circuit constants in the battery model shown in FIG.
  • FIG. 10 is a first flowchart for explaining SOC estimation according to the embodiment of the present invention.
  • FIG. 11 is a second flowchart for explaining SOC estimation according to the embodiment of the present invention.
  • Figure 12 is a conceptual diagram illustrating the setting of the current range in which SOC estimation based on the battery model is possible.
  • FIG. 1 is a schematic diagram illustrating a configuration of a power supply system including a secondary battery whose remaining capacity (SOC) is estimated by a state-of-charge estimation apparatus or a state of charge estimation method for a secondary battery according to an embodiment of the present invention. It is a block diagram.
  • SOC remaining capacity
  • power supply system 5 includes a secondary battery 10 and a load 20.
  • a lithium ion battery is typically used, but the type and form of the secondary battery are not particularly limited.
  • a lithium ion battery is suitable for application of the present invention because it has a strong correlation between open circuit voltage (OCV) and remaining capacity (SOC).
  • the secondary battery 10 includes a temperature sensor 30 that measures the battery temperature T b, an input / output charge / discharge of the secondary battery 10, a current sensor 32 that measures current lb (hereinafter also referred to as battery current I b), A voltage sensor 34 for measuring a voltage Vb between terminals between the positive electrode and the negative electrode (hereinafter also referred to as battery voltage Vb) is provided.
  • the load 20 is driven by the output power from the secondary battery 10.
  • a power generation / feeding element (not shown) is provided so as to be included in the load 20, or provided separately from the load 20, and the secondary battery 10 has a charging current from the power generation / feeding element. It is possible to charge by. Therefore, the battery current I b ⁇ 0 when the secondary battery 10 is discharged, and the battery current I b> 0 when the secondary battery 10 is charged.
  • the electronic control unit (ECU) 50 includes “a SOC estimation unit 60 corresponding to the state-of-charge estimation device J” and a control unit 70.
  • the control unit 70 includes the SOC ( Based on (%), a charge / discharge restriction / prohibition or a charge request is generated for the secondary battery 10.
  • the ECU 50 is typically a microcomputer for executing a predetermined sequence and a predetermined calculation.
  • a computer and a memory (RAM, RQM, etc.) are included in the ECU 50. Detection values from the sensor groups 30, 32, and 34 provided in the secondary battery 10 are input to the ECU 50.
  • the SOC quasi-regulator 60 estimates the SOC by selectively switching a plurality of SOC estimation methods according to the state of the secondary battery 10 according to the functional block shown in FIG. To do.
  • SOC estimation unit 60 includes SOC estimation blocks 100, 110, 120 and a selection switching unit 130 that switches selection between SOC estimation blocks 100-120.
  • the SOC estimation blocks 100 to 120 estimate the SOC by different methods depending on the input state quantity of the secondary battery 10.
  • One of the SOC estimation blocks 100 to 120 specified by the selection switching unit 130 is output as an estimated remaining capacity (SOC) by the SOC estimation unit 60.
  • SOC estimated remaining capacity
  • the SOC estimation block 100 has a map 102 that stores the characteristic relationship between the open circuit voltage OC V of the secondary battery 10 and the SOC (%), which is measured in advance, as a voltage across the terminals of the secondary battery 10.
  • the SOC of the secondary battery 10 is estimated by referring to the map 10 2 assuming that a certain battery voltage Vb is the open circuit voltage OCV.
  • the SOC estimation block 100 is in a state where the battery current lb force is within the stable current range 105 shown in FIG. 3 and continues for the voltage stabilization time T st shown in FIG. 4 (hereinafter also referred to as a stable state). At this time, it is selected by the selection switching unit 130.
  • stable current range 105 is defined as a range of battery current I I b I and I I j d I with respect to limit current I I j d I set according to battery temperature Tb.
  • the limit current I I j d I is set to increase as the battery temperature Tb relatively increases, and is set to decrease as the battery temperature Tb decreases relatively.
  • the SOC estimation error can be grasped by setting the limit current II jd I even if the battery voltage Vb is regarded as the open-circuit voltage OCV and SOC estimation based on Map 102 is executed.
  • the change in the battery voltage Vb accompanying the change in the battery current Ib has a certain delay, and the battery voltage Vb becomes stable after a certain period of time called relaxation time has elapsed. This relaxation time is known to have temperature dependence.
  • the voltage stabilization time T st is set to be relatively short as the battery temperature Tb increases, and the battery temperature Tb becomes relatively low. It is set relatively long according to. As a result, if the battery current Ib continues for the voltage stabilization time Tst or longer, the battery voltage Vb at that time can be regarded as a stable state value.
  • the SOC estimation block 1 10 calculates the previous SOC calculation value and SOC change amount by using the integrated value ⁇ I b of the battery current I b detected by the current sensor 32 as the SOC change amount ⁇ SOC. By adding ⁇ SOC, the SOC of secondary battery 10 is estimated sequentially.
  • the SOC estimation based on current integration can accurately estimate the SOC variation within a short period, the SO C is continuously measured for a long time due to the measurement error (especially offset) of the current sensor 32. If estimation is performed, a bias-like error may occur during SOC estimation. Therefore, for SOC estimation based on current integration, care must be taken so that the estimation does not continue for a long time.
  • the SOC estimation block 120 is configured to perform secondary battery 10 through online estimation based on a battery model that has been created in advance using the state quantity of the secondary battery 10 detected by the sensor as an input variable. Estimate the SOC.
  • the battery model formula described below is only an example, and the battery used in the SOC estimation block 120 For the model, any model can be used as long as the open-circuit voltage and _ or SOC can be calculated using the state quantities of the secondary battery 10 (Tb, Vb, Ib, etc.) as input variables. It is possible to apply.
  • the SOC estimation block 120 uses the state quantities (Tb, Vb, Ib) of the secondary battery 10 as input variables to change the voltage at the internal resistance of the secondary battery 10.
  • Va, Vb in Fig. 7 the SOC of the secondary battery 10 is estimated based on the discharge voltage vs. SOC characteristic similar to the map 102.
  • R s indicates the electrolyte resistance
  • C 1 to C 3 indicate the electric double layer capacity
  • R 1 to R 3 indicate the reaction resistance
  • the resistance R s which is the DC resistance component of the electrolyte resistance, has a degree dependence. Therefore, it is preferable to prepare a map (not shown) for obtaining the electrolyte resistance R s by using the battery temperature Tb as an argument, and sequentially obtain the electrolyte resistance R s.
  • reaction resistances R1 to R3 also have temperature dependence and SOC dependence
  • a two-dimensional map (not shown) that uses the estimated SOC value and the battery temperature Tb as arguments is preliminarily stored. It is preferable to create and sequentially determine reaction resistances R 1 to R 3 by referring to the map.
  • the electric double layer capacities C 1 to C 3 also have temperature and SOC dependencies
  • a two-dimensional map (not shown) with the SOC estimated value and the battery temperature Tb at that time as arguments is used. It is preferable that the electric double layer capacities C 1 to C 3 are obtained in advance and sequentially determined by referring to the map.
  • the equivalent circuit model 150 shown in Fig. 8 can be obtained according to the following equation (1).
  • the voltage change ⁇ V 1 to ⁇ V 3 in the RC parallel circuit can be approximately calculated by the following method. .
  • the circuit constants C 1 to C 3 and R 1 to R 3 are obtained by sampling the battery current I b for each of the voltage changes ⁇ V 1 to ⁇ 3 for each predetermined period. Based on the equation (3) used, the amount of voltage change from the previous calculation to the current calculation can be obtained.
  • ⁇ 1 to ⁇ 3 in the above equation (1) can be obtained according to the following equations (4) to (6).
  • ⁇ t represents the calculation cycle.
  • the voltage change ⁇ at the internal resistance with respect to the battery voltage Vb can be estimated according to the equation (1).
  • the battery current ⁇ b be within a certain range.
  • FIG. 10 and FIG. 11 The flowcharts shown in FIG. 10 and FIG. 11 are executed by the SOC estimation unit 60 at a predetermined cycle according to a predetermined program.
  • SOC estimation unit 60 performs battery current lb force in step S 1 0 within the stable current range 105 shown in FIG. Judges whether the voltage has continued for the specified voltage stabilization time T st or longer. ,
  • the SOC estimation unit 60 determines that the secondary battery 10 is in a stable state. As described above, in the stable state, even if the SOC estimation is performed with the battery voltage Vb regarded as the open circuit voltage OCV, the SOC estimation error is within the allowable error. Therefore, when the secondary battery 10 is in a stable state, the SOC estimation unit 60 regards the battery voltage Vb as the open circuit voltage OCV by step S110.
  • the SOC selection block 100 is selected by the selection switching unit 130.
  • step S100 when NO is determined in step S100, that is, when the secondary battery 10 is not in a stable state, the SOC estimation unit 60 performs SOC estimation based on current integration (SOC estimation block 1 10) according to the flowchart shown in FIG. ) Or SOC estimation based on battery model (SOC estimation block 120).
  • SOC estimation unit 60 determines in step S 150 whether or not the SOC estimation based on current integration has been executed beyond time limit T 1 mt 1. That is, in step S 150, it is determined whether or not the timer value T cnt is T 1 m t 1.
  • the SOC estimation unit 60 performs the current integration with the SOC estimation block 1 1 0 at step S 200.
  • the SOC calculation based on the priority is executed (step S200). Further, the SOC estimation unit 60 updates (increases) the timer value Tcnt at the time of execution of SOC estimation by current integration in step S210.
  • step S 1 50 the SOC estimation unit 60
  • SOC estimation block 120 the ability to perform SOC estimation based on battery model (SOC estimation block 120) instead of SOC estimation based on current integration according to 160 and S 1 70, or SOC estimation based on current integration (SOC estimation block 1 10) Determine whether to continue.
  • the SOC estimation unit 60 determines whether or not the battery current I b falls within the current mode available range 125 shown in FIG.
  • the current model usable range 125 is set in consideration of the temperature dependence of the internal resistance. In other words, in the low temperature range where the internal resistance is relatively large and estimation errors due to the battery model are likely to occur, the battery model is limited to a very low current range. Current model usable range 125 is set to allow SOC estimation. On the other hand, in a high temperature range where the internal resistance is relatively small and the estimation error due to the battery model is expected to be small, SOC estimation based on the battery model is permitted if the battery current is within the steady use range. Thus, the current model usable range 125 is set.
  • step S 160 determines whether or not the current integration continuous time is within the final time limit T 1 mt 2 (T 1 mt 2> Tm 1 t 1).
  • the time limit T 1 mt 1 and the final time limit T 1 mt 2 can be obtained in advance from the relationship between the maximum offset error of the current sensor 32 and the allowable error of SOC estimation that are known in advance. Further, instead of the current integration continuous time, it is also possible to execute the determinations of steps S 1 50 and S 1 70 so that the charge / discharge time during the current integration does not exceed the limit value.
  • step S 1 70 When NO is established in step S 1 70, that is, when the current integration continuous time is equal to or greater than the limit time T 1 mt 1 but within the final limit time T 1 mt 2, the 300 estimator 60 uses the battery model. It is determined that the SOC estimation error based on the current is larger than the SOC estimation error caused by continuing the current integration, and the SOC estimation based on the current integration is continuously executed in step S200. At this time, the SOC estimation unit 60 updates (increases) the timer value T cnt in step S210.
  • the SOC estimation based on the battery model and the SOC estimation based on the current integration are limited by limiting the current integration continuous time considering the offset error of the current sensor and using the battery model according to the battery current limit depending on the battery temperature. The use of both can be selected so that each error factor does not expand.
  • the processing of the flowchart of FIG. 10 is omitted, and the SOC based on the battery model according to the flowchart of FIG. It is also possible to perform SOC estimation by selecting SOC estimation based on estimation and current integration.
  • the present invention can be applied to, for example, estimation of the state of charge of a secondary battery mounted on a hybrid vehicle or an electric vehicle.
  • SOC 100%
  • charge / discharge control is not performed to maintain SOC at a fixed target value, and the need for recharge is detected. Therefore, it is required to accurately estimate the decrease in SOC due to the progress of discharge.
  • SO C 60%
  • the map shown in FIG. 2 corresponds to the “characteristic storage means” in the present invention, and step S 1 0 0 in FIG. Corresponds to “Stable state determination means (Stable state determination step)”.
  • Step S 1 1 0 corresponds to “first charging state estimation means (first charging state estimation step)” in the present invention, and steps S 2 0 0 and S 2 2 0 in FIG.
  • step S 2 0 0 corresponds to “first estimation means (first estimation step)” in the present invention
  • step S 2 2 0 corresponds to “second estimation means (first estimation means (first estimation step)” in the present invention. 2 estimation step) ”.
  • steps S 1 2 0, S 2 1 0 and S 2 3 0 in FIG. 11 correspond to “time measuring means (time measuring step)” in the present invention
  • steps S 1 6 0 and S 1 7 0 Corresponds to “selection means (selection step) J” in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

バッテリ電流(Ib)が、バッテリ温度(Tb)に応じて設定される制限電流(|Ijd|)以下であり、かつバッテリ温度(Tb)に応じて設定される一定時間以上継続して流れている場合に、二次電池(10)は、安定状態であると判定される。二次電池(10)が安定状態のときには、バッテリ電圧(Vb)=開放電圧(OCV)とみなして、開放電圧−SOC特性に基づいてSOC推定を行なう。二次電池の内部抵抗の温度依存性に対応させて制限電流(|Ijd|)を設定することによって、内部抵抗と制限電流(|Ijd|)との積をほぼ一定値(一定電圧)とすることにより、安定状態では、バッテリ電圧(Vb)を開放電圧(OCV)とみなしてSOC推定を行なっても推定誤差を一定範囲内にできる。この結果、安定状態時には簡易かつ確実な方式によってSOCを一定誤差内で高精度に推定することができる。

Description

明細書 二次電池の充電状態推定装置および充電状態推定方法 技術分野
この発明は、 二次電池の充電状態推定装置および充電状態推定方法に関し、 よ り特定的には、 二次電池の残存容量 (充電率) を示す S O C ( State of Charge) を逐次演算する二次電池の充電状態推定装置および充電状態推定方法に 関する。 背景技術
充放電可能な二次電池によつて負荷機器へ電源を供給し、 かつ必要に応じて当 該負荷機器の運転中にも当該二次電池を充電可能な構成とした電源システムが用 いられている。 代表的には、 二次電池によって駆動される電動機を車両駆動力源 の 1つとして備えたハイプリッド自動車や電気自動車等がこのような電源システ ムを搭載している。
ハイプリッド自動車の電源システムでは、 二次電池の蓄積電力が車両駆動力用 電動機の駆動電力として用いられる他、 この電動機が回生発電したときの発電電 力やエンジンの回転に伴って発電する発電機の発電電力によってこの二次電池が 充電される。 このような電源システムでは、 二次電池の充電状態 (代表的には、 満充電に対する充電率を示す S O C ) ,を把握して、 電池の劣化を招くような過酷 な使用状況とならないように配盧する必要がある。 すなわち、 残存容量の推定値 に基づき、 二次電池から出力を得る車両駆動用電動機の出力制限や、 二次電池の 充電要求、 充放電禁止指令等を生成する必要があるため、 残存容量の推定は高精 度に行なわれる必要がある。
し力、しながら、 ハイブリッド自動車への搭載時に代表される、 二次電池の使用 条件や出力条件が広範にわたり、 かつ、 比較的高電力密度の充放電が繰り返し実 行される使用状況では、 残存容量推定が一般に困難となるためその推定精度向上 が課題となる。 したがって、 最も基本的な手法である入出力電流積算に基づいて残存容量の変 化量を逐次演算する方式の他に、 高精度に残存容量を推定するための手法が種々 提案されている。
たとえば、 特開 2000— 30661 3号公報 (以下、 特許文献 1 ) には、 ノく ッテリ使用中に測定したバッテリ電流 (充放電電流) およびバッテリ電圧 (端子 間電圧) の関係から二次電池の内部抵抗を演算し、 バッテリ電流 '電圧および演 算した内部抵抗を用いて開放電圧 (OCV) を演算し、 この開放電圧からバッテ リ容量 (SOC) を推定するバッテリ状態監視装置が開示されている。 さらに、 このバッテリ状態監視装置は、 バッテリ電流が所定範囲外に逸脱した場合には、 逸脱直前のバッテリ容量 (SOC) に対して、 以降のバッテリ電流積算値を加算 することによってバッテリ容量 (SOC) を推定する。 すなわち、 特許文献 1で は、 バッテリ電流範囲に従って、 推定方式を切換えることによって、 推定精度向 上を図っている。.
同様に、 特開 2000— 150003号公報 (以下、 特許文献 2 ) には、 バッ テリ電流積算に基づく SOC算出手法およびその他の SO C算出手法を備えた充 電量演算装置が開示されている。 この充電量演算装置では、 バッテリ電流範囲な らびにバッテリ電流積算に基づく SOC算出値と他の手法に基づく SOC算出値 との誤差に基づいて、 使用する SO C算出手法が決定される。
ここで、 特許文献 1に開示されたバッテリ状態監視装置では、 充放電に従って 逐次変化する内部抵抗を、 充放電中に測定したバッテリ電圧およびバッテリ電流 の複数組の傾きによって算出している。
しかしながら、 充放電中の二次電池のバッテリ電圧 (端子間電圧) の変化は、 バッテリ電流の変化に対して遅れを有することが知られている。 すなわち、 一定 のバッテリ電流が流れ始めたとき、 あるいは、 バッテリ電流が停止されたときに、 緩和時間と呼ばれる一定時間が経過するまでの間はバッテリ電圧が安定状態にな く変動しているため、 当該緩和時間が経過する前にバッテリ電圧を測定すると、 二次電池の正確な出力電圧を測定することができない。
また、 バッテリ電流およびバッテリ電圧の間に内部抵抗に従つた直線性が表れ る領域についても、 二次電池の温度領域によって変化する。 たとえば、 リチウム イオン二次電池は、 低温領域では、 電極表面でのイオン交換電流密度减少により、 バッテリ電流およびバッテリ電圧の間に直線性が表れ難くなる。
これに対して、 特許文献 1は、 内部抵抗演算に基づく推定方式およびバッテリ 電流積算に基づく推定方式をバッテリ電流範囲に従って切換えることを開示する ものの、 二次電池の温度条件およぴバッテリ電流の継続時間に着目した S O C推 定は行なわれていない。 したがって、 内部抵抗の推定誤差によって二次電池の開 放電圧、 ひいては残存容量 (S O C ) 推定に誤差が発生する可能性がある。
さらに、 特許文献 2に開示されたハイブリッド車の充電量演算装置では、 複数 の S O C算出手法間の切換を、ノ ッテリ電流範囲ならびにバッテリ電流積算に基 づく S O C算出値と他の手法に基づく S O C算出値との誤差に基づいて判定して いる。 このため、 内部抵抗が高い電池低温時に大電流が流れ終わった直後では、 ノ ッテリ電流積算に基づく S O C算出手法から他の S O C算出手法に切換えられ るが、 その際に、 特許文献 1で説明したのと同様の理由により内部抵抗の推定誤 差によって S O C推定に大きな誤差を生じる可能性が否定できない。 また、 特許 文献 2についても、 S O C推定における二次電池の温度条件およびバッテリ電流 の継続時間の考慮は十分になされていないため、 残存容量 (S O C ) 推定に誤差 が発生する可能性がある。 発明の開示
この発明は、 上記の問題点を解決するためになされたものであって、 この発明 の目的は、 二次電池の使用状態に合 せて適切な S O C推定方式を適用して、 そ の推定精度を向上させることである。
この発明による二次電池の充電状態推定装置は、 入出力電流、 出力電圧および 電池温度を検出可能な検出器が設けられた二次電池の充電状態推定装置であって、 特性記憶手段と、 安定状態判定手段と、 第 1の充電状態推定手段とを備える。 特 性記憶手段は、 二次電池の開放電圧と残存容量との間の特性を記憶する。 安定状 態判定手段は、 入出力電流が電池温度に応じて設定される制限電流以下である状 態が、 電池温度に応じて設定される電圧安定時間以上継続している安定状態であ るか否かを判定する。 第 1の充電状態推定手段は、 安定状態と判定されたときに、 出力電圧を開放電圧とみなして、 特性記憶手段に記憶された特性に基づいて二次 電池の残存容量を推定する。
この発明による二次電池の充電状態推定方法は、 入出力電流、 出力電圧および 電池温度を検出可能な検出器が設けられた二次電池の充電状態推定方法であって、 安定状態判定ステップと、 第 1の充電状態推定ステップを備える。 安定状態判定 ステップは、 入出力電流が電池温度に応じて設定される制限電流以下である状態 が、 電池温度に応じて設定される電圧安定期間以上継続している安定状態である か否かを判定する。 第 1の充電状態推定ステップは、 安定状態と判定されたとき に、 出力電圧を二次電池の開放電圧とみなして、 二次電池の開放電圧と残存容量 との間の特性に基づいて二次電池の残存容量を推定する。 第 2の充電状態推定ス テツプは、 安定状態と判定されないときに、 第 1の充電状態推定ステップとは異 なる手法に基づいて、 二次電池の残存容量を推定する。
上記二次電池の充電状態推定装置または充電状態推定方法によれば、 二次電池 の出力電圧が安定しており、 かつ内部抵抗における電圧変化が小さい状態 (安定 状態時) には、 出力電圧を開放電圧とみなして、 開放電圧一残存容量 (S O C ) 特性を参照して二次電池の S O Cを推定する。 ここで、 緩和時間 (電圧安定時 間) および内部抵抗が電池温度に応じて変化する点を考慮して上記安定状態を判 定するので、 特に開放電圧および残存容量の間に強い相関関係がある二次電池に ついて、 安定状態時には簡易かつ確実な方式によって s O Cを一定誤差内で高精 度に推定することができる。
好ましくは、 この発明による二次零池の充電状態推定装置は、 安定状態判定手 段によって安定状態と判定されないときに、 二次電池の残存容量を推定する第 2 の充電状態推定手段をさらに備える。 この第 2の充竜状態推定手段は、 入出力電 流の積算値に基づいて残存容量の変化量を逐次算出する手法、 または、 入出力電 流、 出力電圧および電池温度を入力変数とする電池モデルに基づく手法によって、 二次電池の残存容量を推定する。
好ましくは、 この発明による二次電池の充電状態推定方法は、 安定状態判定ス テップにより安定状態と判定されないときに、 二次電池の残存容量を推定する第 2の充電状態推定ステツプをさらに備える。 この第 2の充電状態推定ステップは、 入出力電流の積算値に基づいて残存容量の変化量を逐次算出する手法、 または、 入出力電流、 出力電圧および電池温度を入力変数とする電池モデルに基づく手法 によって、 二次電池の残存容量を推定する。
上記二次電池の充電状態推定装置または充電状態推定方法によれば、 上記安定 状態以外のときには、 電池モデル式に基づく手法または電流積算に基づく手法に より、 二次電池の S O Cを高精度に推定することができる。
さらに好ましくは、 この発明による二次電池の充電状態推定装置では、 第 2の 充電状態推定手段は、 入出力電流の積算値に基づいて残存容量の変化量を算出す ることによって二次電池の残存容量を推定する第 1の推定手段と、 入出力電流、 出力電圧および電池温度を入力変数とする電池モデルに基づいて、 二次電池の残 存容量を推定する第 2の推定手段と、 第 1の推定手段による残存容量推定の連続 実行期間を計時する計時手段とを含む。 さらに、 第 2の充電状態推定手段は、 連 続実行期間が第 1の制限期間以下であるときに、 第 1の推定手段を選択して残存 容量を推定する一方で、 連続実行期間が第 1の制限期間を超え、 かつ、 入出力電 流が所定の電池モデル使用可能範囲内であるときに、 第 2の推定手段を選択して 残存容量を推定する。
また、 さらに好ましくは、 この発明による二次電池の充電状態推定方法では、 . 第 2の充電状態推定ステップは、 入出力電流の積算値に基づいて残存容量の変化 量を算出することによって二次電池の残存容量を推定する第 1の推定ステップと、 入出力電流、 出力電圧および電池温度を入力変数とする電池モデルに基づいて、 二次電池の残存容量を推定する第 2 推定ステツプと、 第 1の推定ステップによ る残存容量推定の連続実行期間を計時する計時ステップとを含む。 さらに、 第 2 の充電状態推定ステップは、 連続実行期間が第 1の j限期間以下であるときに、 第 1の推定ステップを選択して残存容量を推定する一方で、 連続実行期間が第 1 の制限期間を超え、 かつ、 入出力電流が所定の電池モデル使用可能範囲内である ときに、 第 2の推定ステップを選択して残存容量を推定する。
上記二次電池の充電状態推定装置または充電状態推定方法によれば、 電流積算 に基づく S O C推定が制限期間 (第 1の制限期間) 以上連続して実行される場合 には、 入出力電流が電流モデル使用可能範囲であることを条件に、 電池モデルに 基づく残存容量推定を実行することができる。 これにより、 電流センサの検出誤 差 (オフセット) に起因して、 電流積算に基づく S O C推定を長期間連続するこ とによる S O C推定誤差の拡大を防止できる。 さらに、 入出力電流が電池モデル 使用可能範囲外のときには、 電池モデルに基づく S O C推定を無理に選択しない ので、 不適切な S O C推定方式の選択による推定誤差の増大を防止できる。
さらに好ましくは、 この発明による二次電池の充電状態推定装置では、 第 2の 充電状態推定手段は、 連続実行期間が第 1の制限期間よりも長い第 2の制限期間 を超えた場合には、 入出力電流にかかわらず、 第 2の推定手段を選択して残存容 量を推定する。
上記二次電池の充電状態推定装置によれば、 電流積算に基づく S O C推定が限 界 (第 2の制限期間) を超えて継続された場合には、 電池モデルに基づく S O C 推定をー且実行することができる。 したがって、 電流センサの検出誤差 (オフセ ット) に起因する S O C推定誤差が許容値を超えないように S O C推定を実行で さる。
特に、 この発明による二次電池の充電状態推 装置では、 第 2の充電状態推定 手段は、 連続実行期間が第 1の制限期間を超え、 かつ、 入出力電流が所定の電池 モデル使用可能範囲外であるときに、 第 1の推定手段を選択して残存容量を推定 する。
上記二次電池の充電状態推定装置によれば、 電流積算に基づく S O C推定が制 限期間 (第 1の制限期間) を超えて継続した場合には、 入出力電流が電池モデル の使用可能範囲内であるときに限定レて電池モデル式に基づく S O C推定を実行 する。 したがって、 電池モデルに基づく S O C推定を無理に実行して、 S O C推 定誤差が大きな値となることを防止できる。
好ましくは、 この発明による二次電池の充電状態推定装置では、 安定状態判定 手段での制限電流は、 電池温度の上昇に従って、 相対的に大きく設定される。 好ましくは、 この発明による二次電池の充電状態推定方法では、 安定状態判定 ステップでの制限電流は、 電池温度の上昇に従って、 相対的に大きく設定される。 上記二次電池の充電状態推定装置または充電状態推定方法によれば、 電池温度 の上昇に従って二次電池の内部抵抗が低下し、 反対に電池温度の低下に従って内 部抵抗が上昇することを反映することにより、 安定状態時における内部抵抗での 電圧変化が所定電圧以下に収まるように制限電流を設定できる。 したがって、 二 次電池の出力電圧を開放電圧と見なす S O C推定による推定誤差を所定範囲內に 抑えることが可能となる。
また好ましくは、 この発明による二次電池の充電状態推定装置では、 安定状態 判定手段での電圧安定時間は、 電池温度の上昇に従って、 相対的に短く設定され る。
また好ましくは、 この発明による二次電池の充電状態推定方法では、 安定状態 判定ステップでの電圧安定期間は、 電池温度の上昇に従って、 相対的に短く設定 される。 - 上記二次電池の充電状態推定装置または充電状態推定方法によれば、 二次電池 の出力電圧が安定するまでの緩和時間が電池温度の上昇に従って短くなり、 反対 に電池温度の下降に従って長くなる点を反映して、 出力電圧が安定した状態で端 子間電圧を開放電圧と見なす S O C推定を実行することが可能となる。
この発明の他の構成による二次電池の充電状態推定装置は、 入出力電流、 出力 電圧および電池温度を検出可能な検出器が設けられた二次電池の充電状態推定装 置であって、 第 1の推定手段と、 第 2の推定手段と、 計時手段と、 選択手段とを 備える。 第 1の推定手段は、 入出力電流の積算値に基づいて残存容量の変化量を 算出することによって二次電池の残存容量を推定する。 第 2の推定手段は、 .入出 力電流、 出力電圧および電池温度を入力変数とする電池モデルに基づいて、 二次 電池の残存容量を推定する。 計時手 は、 第 1の推定手段による充電状態推定の 連続実行期間を計時する。 選択手段は、 入出力電流が所定の電池モデル使用可能 範囲内であるか否かの判定と、 計時手段により求められた連続実行期間とに基づ いて、 第 1および第 2の推定手段の一方を選択して残存容量を推定する。
この発明の他の局面による二次電池の充電状態推定方法は、 入出力電流、 出力 電圧および電池温度を検出可能な検出器が設けられた二次電池の充電状態推定方 法であって、 第 1の推定ステップと、 第 2の推定ステップと、 計時ステップと、 選択ステップとを備える。 第 1の推定ステップは、 入出力電流の積算値に基づい て残存容量の変化量を算出することによって二次電池の残存容量を推定する。 第 2の推定ステップは、 入出力電流、 出力電圧および電池温度を入力変数とする電 池モデル式に基づいて、 二次電池の残存容量を推定する。 計時ステップは、 第 1 の推定ステツプによる残存容量推定の連続実行期間を計時する。 選択ステップは、 入出力電流が所定の電池モデル使用可能範囲内であるか否かの判定と、 計時ステ ップにより求められた連続実行期間とに基づいて、 第 1および第 2の推定ステツ プの一方を選択して残存容量を推定する。
上記二次電池の充電状態推定装置または充電状態推定方法によれば、 電流積算 に基づく S O C推定と電池モデルに基づく S O C推定とを、 電流積算に基づく S O C推定の連続実行期間および、 入出力電流が電池モデルによる推定精度を確保 できる電池モデル使用可能範囲内であるか否かに基づいて選択的に使用して S O Cを推定できる。 したがって、 上記 2つの S O C推定方式を切換えて S O C推定 を行なう構成において、 不適切な S O C推定方式の選択による推定誤差の増大を 防止して、 S O C推定精度を向上することができる。
好ましくは、 この発明の他の構成による二次電池の充電状態推定装置では、 選 択手段は、 連続実行期間が第 1の制限期間以下 あるときに、. 第 1の推定手段を 選択して残存容量を推定する一方で、 連続実行期間が第 1の制限期間を超え、 か つ、 入出力電流が所定の電池モデル使用可能範囲内であるときに、 第 2の推定手. 段を選択して残存容量を推定する。
好ましくは、 この発明の他の局面による二次電池の充電状態推定方法では、 選 択ステップは、 連続実行期間が第 1の制限期間以下であるときに、 第 1の推定ス テツプを選択して残存容量を推定す 一方で、 連続実行期間が第 1の制限期間を 超え、 かつ、 入出力電流が所定の電池モデル使用可能範囲内であるときに、 第 2 の推定ステップを選択して残存容量を推定する。 '
上記二次電池の充電状態推定装置または充電状態推定方法によれば、 電流積算 に基づく S O C推定が制限期間 (第 1の制限期間) を超えて連続して実行される 場合には、 入出力電流が電流モデル使用可能範囲であることを条件に、 電池モデ ルに基づく残存容量推定を実行することができる。 これにより、 電流センサ計の 検出誤差 (オフセット) に起因して、 電流積算に基づく S O C推定を長期間連続 することによる S O C推定誤差の拡大を防止できる。 さらに、 入出力電流が電池 モデル使用可能範囲外のときには、 電池モデルに基づく S O c推定を無理に選択 しないので、 不適切な S◦ C推定方式の選択による推定誤差の増大を防止できる。 さらに好ましくは、 この発明の他の構成による二次電池の充電状態推定装置で は、 選択手段は、 連続実行期間が第 1の制限期間よりも長い第 2の制限期間を超 えた場合には、 入出力電流にかかわらず、 第 2の推定手段を選択して残存容量を 推定する。
上記二次電池の充電状態推定装置によれば、 電流積算に基づく S O C推定が限 界 (第 2の制限期間) を超えて樺続された場合には、 電池モデルに基づく S O C 推定を一旦実行することができる。 したがって、 電流センサの検出誤差 (オフセ ット) に起因する S O C推定誤差が許容値を超えないように S O C推定を実行で きる。
あるいはさらに好ましくは、 この発明の他の構成による二次電池の充電状態推 定装置では、 選択手段は、 連続実行期間が第 1の制限期間を超え、 かつ、 入出力 電流が所定の電池モデル使用可能範囲外であるときに、 第 1の推定手段を選択し て残存容量を推定する。
上記二次電池の充電状態推定装置によれば、 電流積算に基づく S O C推定が制 限期間 (第 1の制限期間) を超えて継続した場合には、 入出力電流が電池モデル. の使用可能範囲内であるときに限定して電池モデル式に基づく S O C推定を実行 する。 したがって、 電池モデルに基づく S O C推定を無理に実行して、 S O C推 定誤差が大きな値となることを防止できる。
好ましくは、 本発明の適用におい!:、 二次電池は、 リチウムイオン電池である。 上記二次電池の充電状態推定装置によれば、 開放電圧と残存容量との間の相関 関係が強いリチウムイオン電池の残存容量 (S O C )' を高精度に推定することが できる。
したがって、 この発明による二次電池の充電状態推定装置または充電状態推定 方法によれば、 二次電池の使用状態に合わせて適切な S O C推定方式を適用して 推定精度を向上させることができる。 図面の簡単な説明 図 1は、 本発明の実施の形態に従う二次電池の充電状態推定装置または充電状 態推定方法によって残存容量 (S O C) が推定される二次電池を含む電源システ ムの構成を説明する概略プロック図である。
図 2は、 図 1に示した S O C推定部の機能プロック図である。
図 3は、 安定電流範囲の設定を説明する概念図である。
図 4は、 電圧安定時間の設定を説明する概念図である。
図 5は、 二次電池の内部抵抗の温度依存性を説明する概念図である。
図 6は、 二次電池での緩和時間の温度依存性を説明する概念図である。
図 7は、 電池モデルに基づぐ S O C推定手法の一例を説明する概念図である。 図 8は、 電池モデルの一例を示す回路図である。
図 9は、 図 8に示した電池モデル中の回路定数 出手法の一例を説明する概念 図である。
図 1 0は、 本発明の実施の形態による S O C推定を説明する第 1のフローチヤ ートである。
図 1 1は、 本発明の実施の形態による S O C推定を説明する第 2のフローチヤ ートである。
図 1 2は、 電池モデルに基づく S O C推定が可能な電流範囲の設定を説明する 概念図である。 発明を実施するための最良の形態
以下において、 本発明の実施の形摩について図面を参照して詳細に説明する。 なお、 以下では図中の同一または相当部分には同一符号を付してその説明は原則 的に繰返さないものとする。
図 1は、 本発明の実施の形態に従う二次電池の充電状態推定装置または充電状 態推定方法によってその残存容量 (S O C ) が推定される二次電池を含む電源シ ステムの構成を説明する概略ブロック図である。
図 1を参照して、 電源システム 5は、 二次電池 1 0と、 負荷 2 0とを備える。 充放電可能な二次電池 1 0としては、 代表的にはリチウムイオン電池が用いら れるが、 二次電池の種類や形式については特に限定されるものではない。 なお、 リチウムイオン電池は、 開放電圧 (OCV) と残存容量 (SOC) との間に強い 相関関係を有するため、 本発明の適用に適している。
二次電池 10には、 バッテリ温度 T bを測定する温度センサ 30と、 二次電池 10の入出力充放電) 電流 l b (以下、 バッテリ電流 I bとも称する) を測定す る電流センサ 32と、 正極および負極間の端子間電圧 Vb (以下、 バッテリ電圧 Vbとも称する) を測定する電圧センサ 34とが設けられている。
負荷 20は、 二次電池 10からの出力電力によって駆動される。 また、 図示し ない発電 ·給電要素が、 負荷 20に含まれるように設けられ、 あるいは、 負荷 2 0とは別個に設けられるものとし、 二次電池 10は、 当該発電 ·給電要素からの 充電電流によって充電可能であるものとする。 したがって、 二次電池 10の放電 時にはバッテリ電流 I b<0であり、 二次電池 10の充電時にはバッテリ電流 I b〉0である。
電子制御ュニット (ECU : Electronic Control Unit) 50は、 「充電状態 推定装置 J に相当する SOC推定部 60と、 制御部 70とを含む。 制御部 70は、 SOC推定部 60によって推定された SOC (%) に基づき、 二次電池 10の充 放電制限 ·禁止や充電要求を発生する。 なお、 ECU 50は、 代表的には、 予め プログラムされた所定シーケンスおよび所定演算を実行するためのマイクロコン. ピュータおよびメモリ (RAM, RQM等) を含んで構成される。 ECU 50へ は、 二次電池 10に設けられたセンサ群 30, 32, 34からの検出値が入力さ れる。
本発明の実施の形態では、 SOC準定部 60は、 図 2に示す機能ブロック.図に 従って、 複数の SO C推定手法を二次電池 10の状態に応じて選択的に切換えて SOCを推定する。
図 2を参照して、 SOC推定部 60は、 SOC推定ブロック 100, 1 10, 1 20と、 SOC推定ブロック 100〜120間の選択を切換える選択切換部 1 30とを含む。 SOC推定ブロック 100〜1 20は、 入力された二次電池 10 の状態量に応じてそれぞれ異なる手法で SO Cを推定する。 選択切換部 130に よって指定された SO C推定ブロック 100〜120のうちの 1つの出力が、 S OC推定部 60による推定残存容量 (SOC) として出力される。 以下、 各 SOC推定プロック 100〜 120による SO.C推定手法について順 に説明していく。
SOC推定ブロック 100は、 予め測定された、 二次電池 10の開放電圧 OC Vと SOC (%) との間の特性関係を格納したマップ 102を有し、 二次電池 1 0の端子間電圧であるバッテリ電圧 Vbを開放電圧 OCVとみなしてマップ 10 2を参照することにより、 二次電池 10の SOCを推定する。
SOC推定プロック 100は、 バッテリ電流 l b力 図 3に示す安定電流範囲 1 05内であり、 かつ、 図 4に示す電圧安定時間 T s t以上継続している状態 (以下、 安定状態ともいう) であるときに、 選択切換部 130によって選択され る。
図 3を参照して、 安定電流範囲 105は、 バッテリ温度 Tbに応じて設定され る制限電流 I I j d Iに対して、 バッテリ電流 I I b Iく I I j d Iの範囲で定 義される。 制限電流 I I j d Iは、 バッテリ温度 Tbが相対的に上昇するに従つ て大きく設定され、 バッテリ温度 T bが相対的に低下するに従って小さく設定さ れる。 '
これは、 図 5に示されるように、 二次電池 10の内部抵抗 r dが温度依存性を 有し、 高温領域で低抵抗であるのに対し低温領域で高抵抗であることを反映して いる。 すなわち、 図 3に示すように、.内部抵抗 r bの温度依存性に対応させて、 バッテリ温度 Tbが高くなるに従って制限電流 I I j d Iを相対的に大きく設定 し、 バッテリ温度 Tbが相対的に低くなるに従って制限電流 I I j d Iを相対的 に小さく設定することにより、 内部抵抗 r bと電流制限値 I I j d I との積をほ ぼ一定値 (一定電圧) とすることができる。 たとえば、 この一定電圧は、 許容さ れる SCO推定誤差をマップ 102上で開放電圧 OCVに換算した電圧に対応さ せて設定される。
これにより、 安定電流範囲 105内であれば、 内部抵抗での電圧変化 r b · I l b Iがー定量以下とみなすことが可能となる。 したがって、 安定電流範囲 10 5内であれば、 バッテリ電圧 Vbを開放電圧 OCVとみなして、 マップ 102に 基づく SOC推定を実行しても、 SOC推定誤差を制限電流 I I j d Iの設定に よって把握可能な一定範囲内 (許容誤差範囲内) に収めることができる。 また、 図 6に示されるように、 バッテリ電流 I bの変化に伴うバッテリ電圧 V bの変化は、 一定の遅れをもっており、 緩和時間と呼ばれる一定時間の経過後に バッテリ電圧 Vbが安定する。 この緩和時間は、 温度依存性を有することが知ら れている。 具体的には、 図 6に示すように、 バッテリ温度 Tbが相対的に高温領 域 (T 1→T2→T3) となるに従って緩和時間は短くなり、 相対的に低温領域 (Τ 3→Τ 2→Τ 1) なるに従って緩和時間は長くなる。
上記のような緩和時間の温度依存性に従い、 図 4に示すように、 電圧安定時間 T s tは、 バッテリ温度 Tbが高くなるに従って相対的に短く設定され、 バッテ リ温度 Tbが相対的に低くなる.に従って相対的に長く設定される。 これにより、 バッテリ電流 I bが電圧安定時間 T s t以上継続した場合には、, その時点におけ るバッテリ電圧 Vbは、 整定した安定状態値とみなすことができる。
したがって、 上記のように、 バッテリ電流 l bが、 安定電流範囲 105 (図 3) 以内であり、 かつ、 電圧安定時間 T s t (図 4) 以上継続している安定状態 では、 バッテリ電圧 V bを開放電圧◦ C Vとみなして SOCを推定する簡易な推 定方式 (SOC推定ブロック 100) によっても、 SQC推定誤差を許容誤差内 に維持することが可能となる。
再び図 2を参照して、 SOC推定ブロック 1 10は、 電流センサ 32によって 検出されたバッテリ電流 I bの積算値∑ I bを SOCの変化量 Δ SOCとして、 前回の SOC算出値と SOC変化量 Δ SOCとを加算することにより、 二次電池 10の SOCを逐次推定する。
ただし、 電流積算に基づく SO C推定では、 短期間内の SO C変化量を精度よ く推定できるものの、 電流センサ 32の測定誤差 (特にオフセット) の影響によ り、 長時間連続して SO C推定を行なった場合には、 SOC推定時にバイアス状 誤差が発生する可能性がある。 したがって、 電流積算に基づく SO C推定につい ては、 長時間連続して推定を継続することがないように配慮する必要がある。
SOC推定ブロック 1 20は、 以下に説明するように、 センサによって検出さ れた二次電池 10の状態量を入力変数とする、 予め作製された電池モデルに基づ くオンライン推定によって二次電池 10の SOCを推定する。 なお、 以下に説明 する電池モデル式は一例に過ぎず、 SOC推定プロック 120で用いられる電池 モデルについては、 二次電池 10の状態量 (Tb, Vb, I b等) を入力変数と して、 開放電圧および _ または S O Cを算出可能に構成された電池モデルであれ ば、 任意のモデルを適用することが可能である。
本実施の形態では、 図 7に示すように、 SOC推定ブロック 120は、 二次電 池 10の状態量 (Tb, Vb, I b) を入力変数として二次電池 10の内部抵抗 での電圧変化 Δνを推定することによって、 その時点での開放電圧 (OCV = V b-AV) を推定する。 さらに、 推定された開放電圧 (図 7での Va, Vb) を 用いて、 マップ 102と同様の閛放電圧一 SO C特性に基づいて二次電池 10の SOCを推定する。
図 8を参照して、 SOC推定プロック 120で用いられる等価回路モデル 1 5
0は、 開放電圧 OCVとバッテリ電圧 Vbとの電圧差 Δ V = Vb— OCVを求め るための RC直並列回路モデルである。 等価回路モデル 1 50において、 R sは 電解液抵抗を示し、 C 1〜C 3は電気二重層容量を示し、 R 1〜R 3は反応抵抗 を示している。
電解液抵抗の直流抵抗成分である抵抗 R sは 度依存性を有する。 したがって、 バッテリ温度 Tbを引数として電解液抵抗 R sを求めるマップ (図示せず) を予 め作成して、 電解液抵抗 R sを逐次求めることが好ましい。
同様に、 反応抵抗 R 1〜R 3についても温度依存性および SOC依存性を有す るため、 その時点における SO C推定値およびバッテリ温度 Tbを引数とする二 次元マップ (図示せず) を予め作成して、 当該マップの参照により逐次反応抵抗 R 1~R 3を求めることが好ましい。,同様に、 電気二重層容量 C 1〜C 3も温度 依存性および S O C依存性を有するため、 その時点における S O C推定値およぴ バッテリ温度 Tbを引数とする二次元マップ (図示せず) を予め作成して、 当該 マップの参照により逐次電気二重層容量 C 1〜C 3を求めることが好ましい。 なお、 等価回路モデル 1 50における電気二重層容量 C 1〜C 3および反応抵 抗 R 1〜R 3については、 一般的な二次電池の評価手法である交流インピーダン ス応答を測定することによって、 予め求めることができる。 交流インピーダンス 測定では、 図 9に示すように異なる周波数の交流信号を入力し、 インピーダンス の実軸成分 R e Zおよび虚軸成分一 I mZとをプロットしていくことにより、 得 られたプロット波形より、 交流回路定数としての、 反応抵抗 R 1〜R 3およぴ電 気二重層容量 C 1〜C 3を得ることができる。
図 8に示した等価回路モデル 150によって、 下記 (1) 式に従って求めるこ とができる。
Δ V= I b ■ R s + Δ V 1 +厶 V 2 + Δ V 3 ·'·(1)
R C並列回路における電圧変化 Δ V 1〜 Δ V 3については、 以下の方法により 近似的に求めることができる。.
RC並列回路の電流 I (等価回路モデル 1 50ではバッテリ電流 I bに相当) および電圧 V (Δν 1〜Δν3を総称するもの) の間には、 抵抗値 R (R 1〜R 3を総括的に表記するもの) およびキャパシタ容量 C (C 1〜C3を総称的に表 記するもの) とすると、 下記 (2) 式で示される.。
Figure imgf000017_0001
式 (2) に従う微分方程式をオンラインで解,くと計算機負荷が高くなるため、 以下に示すように近似式を導入する。
微小時間における電圧 Vの変動を Δνとし、 時間変化を Δ ΐとすると、 dV/ d t = AV/A tを (2) 式に代入することにより下記 (3) 式が得られる。 丄「― V _AV
AV -(3)
Figure imgf000017_0002
すなわち (3) 式に従えば、 電圧変化 Δ V 1〜Δγ 3のそれぞれについて、 所 定周期毎にバッテリ電流 I bをサンプリングすることにより、 回路定数 C 1〜C 3, R 1〜R 3を用いた (3) 式に基づいて、 前回演算時から今回演算時までの 電圧変化量を得ることができる。
このため、 上記 (1) 式中の厶 1〜厶 3は、 下記 (4) 〜 (6) 式に従つ て求めることができる。 なお、 (4) 〜 (6) 式中において Δ tは演算周期を示 す。 = (前隨) + ^ f¾} …( Δν2 … )
Figure imgf000018_0001
丄 Δν3(前回値) Δί .
Figure imgf000018_0002
+ >■— ·'·(6)
し rvJ J し 3
このように、 所定周期で等価回路モデル 1 50に基づく演算を行なうことによ り、 (1) 式に従ってバッテリ電圧 Vbに対する内部抵抗での電圧変化 Δνを推 定できる。 これにより、 その時点での開放電圧 (OCV = Vb— Δν) を推定し て、 開放電圧一 SOC特性に基づく SOC推定を行なうことができる。
ただし、 電池モデルに基づく SO C推定では、 パ'ッテリ電流 I bが過大である 場合には、 推定誤差が大きくなる可能性がある。 したがって、 電池モデルに基づ く SOC推定を行なう場合には、 バッテリ電流 ί bが一定範囲内であることを条 件とすることが好ましい。
次に、 図 10および図 1 1を用いて、 本発明め実施の形態による SOC推定を 詳細に説明する。 図 10および図 1 1に示されるフローチャートは、 SOC推定 部 60により所定プログラムに従って所定周期で実行されるものとする。
図 10を参照して、 本実施の形態 よる SOC推定ルーチンでは、 SOC推定 部 60は、 ステップ S 1ひ 0により、 バッテリ電流 l b力 図 3に示した安定電 流範囲 105内で、 図 4に示した電圧安定時間 T s t以上継続して流れているか どうかを判定する。 ,
ステップ S 100の YE S判定時には、 SOC推定部 60は、 二次電池 10を 安定状態であると判定する。 上述のように、 安定状態では、 バッテリ電圧 Vbを 開放電圧 O C Vとみなして S O C推定を行なつても S O C推定誤差が許容誤差以 内である。 したがって、 SOC推定部 60は、 二次電池 10を安定状態のときに は、 ステップ S 1 10により、 バッテリ電圧 Vb=開放電圧 OCVとみなして S
OC推定を行なう。 すなわち、 選択切換部 1 30により、 SOC推定ブロック 1 00が選択される。
そして、 SOC推定部 60は、 SOC推定ブロック 100による SOC推定実 行時には、 ステップ S I 20により、 SOC推定ブロック.1 10による電流積算 に基づく SOC推定の実行時に、 電流積算に基づく SOC推定が連続して実行さ れる期間を示す電流積算連続期間をカウントするためのタイマ値 T c n tをリセ ットする (T c n t = 0) 。
一方、 ステップ S 100の NO判定時、 すなわち、 二次電池 10が安定状態で ないときには、 SOC推定部 60は、 図 1 1に示したフローチャートに従って、 電流積算に基づく SOC推定 (SOC推定ブロック 1 10) または、 電池モデル に基づく SOC推定 (SOC推定プロック 120) のいずれかによつて SOCを 推定する。
図 1 1を参照して、 SOC推定部 60は、 ステップ S 1 50により、 電流積算 による SOC推定が制限時間 T 1 m t 1を超えて実行されていないかどうかを判 定する。 すなわち、 ステップ S 150では、 タイマ値 T c n tく T 1 m t 1であ るかどうかが判定される。
電流積算連続時間が制限時間 T l mt 1以内である場合には (ステップ S 1 5 0における YES判定) 、 SOC推定部 60は、 ステップ S 200により、 SO C推定プロック 1 1 0による電流積算に基づく SOC演算を優先的に実行する (ステップ S 200) 。 さらに、 SOC推定部 60は、 ステップ S 210により、 電流積算による SOC推定実行時にはタイマ値 Tc n tを更新 (增加) する。 これに対して、 ステップ S 1 50の NO判定時、 すなわち電流積算による SO C推定が制限時間 T 1 m t 1を超えて連続的に実行されている場合には、 SOC 推定部 60は、 ステップ S 160および S 1 70による判定に従って、 電流積算 に基づく SOC推定に代えて電池モデルに基づく SOC推定 (SOC推定ブロッ ク 120) を実行する力 それとも電流積算による SOC推定 (SOC推定プロ ック 1 10) を継続するかを判定する。
SOC推定部 60は、 ステップ S 160によりバッテリ電流 I bが図 1 2に示 す電流モデノレ使用可能範囲 125に収まっているかどうかを判定する。
図 12を参照して、 電流モデル使用可能範囲 125は、 内部抵抗の温度依存性 を考慮して設定される。 すなわち、 内部抵抗が相対的に大きく電池モデルによる 推定誤差が発生しやすい低温領域では、 ごく低電流範囲に限定して電池モデルに よる SOC推定を許可するように、 電流モデル使用可能範囲 1 25が設定される。 これに対して、 内部抵抗が相対的に小さく電池モデルによる推定誤差が小さくな ると予測される高温領域では、 定常使用範囲内のバッテリ電流であれば電池モデ ルに基づく SOC推定が許可されるように、 電流モデル使用可能範囲 125が設 定される。
再び図 1 1を参照して、 ステップ S 160の YE S判定時、 すなわち、 バッテ リ電流 I bが電池モデル使用可能範囲内である場合には、 SOC推定部 60は、 ステップ S 220により、 電池モデルに基づく SO C推定 (SOC推定ブロック 120) を実行する。 SO C推定部 60は、 電池モデルに基づく SO C推定の実 行時には、 ステップ S 230により、 電流積算連続期間を示すタイマ値 T c n t をリセットする (T c n t = 0) 。
これに対して、 ステップ S 160の NO判定時、 すなわちバッテリ電流 I bが 電池モデル使用可能範囲外 (図 12) である場合には、 SOC推定部 60は、 さ らにステップ S 1 70を実行して、 電流積算連続時間が最終制限時間 T 1 m t 2 (T 1 m t 2〉Tm 1 t 1 ) 以内であるかどうかを判定する。
なお、 制限時間 T 1 m t 1および最終制限時間 T 1 m t 2は、 事前に把握され る電流センサ 32の最大オフセット誤差と SO C推定の許容誤差との関係から予 め求めることができる。 また、 電流積算連続時間に代えて、 電流積算中の充放電 回数ゃ充放電時間が制限値を超えないように、 ステップ S 1 50, S 1 70の判 定を実行することも可能である。
そして、 ステップ S 1 70の NO制定時、 すなわち電流積算連続時間が制限時 間 T 1 m t 1以上であるものの、 最終制限時間 T 1 m t 2以内であるときには、 30〇推定部60は、 電池モデルに基づく SOC推定誤差の方が電流積算を継続 することによる SOC推定誤差よりも大きいと判断して、 ステップ S 200によ り電流積算に基づく SO C推定を継続的に実行する。 このときには、 SOC推定 部 60は、 ステップ S 210によりタイマ値 T c n tを更新 (増加) する。
一方、 ステップ S 1 70の YE S判定時、 すなわちバッテリ電流が電池モデル 使用可能範囲外であっても、 電流積算連続時間が最終制限時間 T l mt 2を超え た場合には、 SOC推定部 60は、 ステップ S 220により電池モデルに基づく SOC推定 (SOC推定ブロック 120) を実行する。 これにより、 電流積算に よる SOC推定の継続による誤差の拡大を考慮して、 その時点で一旦電池モデル に基づく SOC推定が実行される。 このとき、 SOC推定部 60は、 ステップ S 230により、 電流積算連続期間を示すタイマ値 T c n tをリセットする (T c n t = 0) 。
このような制御構造とすることにより、 内部抵抗における電圧変化が S O Cの 許容推定誤差に対応する所定電圧以下である場合 (すなわち安定状態時) には、 電池モデル等を用いることなく、 より簡易かつ確実な方式に従って二次電池 10 の S O Cを許容誤差内で推定することができる。
さらに、 電流センサのオフセット誤差を考慮した電流積算連続時間の制限、 お よびバッテリ温度に応じたバッテリ電流制限に従う電池モデルの使用制限により、 電池モデルに基づく SOC推定および電流積算に基づく SOC推定について、 そ れぞれの誤差要因が拡大しないように両者の使用を選択することができる。
また、 たとえば、 開放電圧と SOCとの間の相関関係があまり強くない二次電 池等では、 図 10のフローチャートの処理を省略して、 図 1 1のフローチャート に従った、 電池モデルに基づく SOC推定および電流積算に基づく SOC推定の 選択によって SO C推定を実行することも可能である。
なお、 本発明は、 たとえばハイブリッド自動車または電気自動車に搭載された 二次電池の充電状態推定に適用可能である。 ただし、 電気自動車に搭載された二 次電池では、 一般に、 満充電 (SOC= 100%) 後には、 SOCを一定目標値 に維持するような充放電制御は行なわれず、 再充電の必要を検知するために放電 の進行による SOC低下を的確に推定することが要求される。 これに対して、 ノヽ イブリツド自動車に搭載された二次電池では、 回生制動時の回生電力を充電する ための一定余裕を維持するように、 SOCを一定目標値 (たとえば SO C= 6 0%) に維持するような充放電制御が必要とされる。 したがって、 ハイブリッド 自動車では二次電池の充放電が頻繁に繰り返されることとなり、 電気自動車と比 較して SOC推定誤差の発生が顕著となる。 したがって、 本発明による二次電池 の充電状態推定装置および充電状態推定方法は、 ハイプリッド自動車への適用に より適していると言える。 ここで本発明の実施の形態と本発明との関係について説明すると、 図 2に示し たマップは本発明における 「特性記憶手段」 に対応し、 図 1 0のステップ S 1 0 0は本発明での 「安定状態判定手段 (安定状態判定ステップ) 」 に対応する。 ま た、 ステップ S 1 1 0は本発明での 「第 1の充電状態推定手段 (第 1の充電状態 推定ステップ) 」 に対応し、 図 1 1のステップ S 2 0 0および S 2 2 0は、 本発 明での 「第 2の充電状態推定手段 (第 2の充電状態推定ステップ) 」 に対応する。 特に、 ステップ S 2 0 0が本発明での 「第 1の推定手段 (第 1の推定ステツ プ) 」 に対応する一方で、 ステップ S 2 2 0は本発明における 「第 2の推定手段 (第 2の推定ステップ) 」 に対応する。 さらに、 図 1 1におけるステップ S 1 2 0、 S 2 1 0および S 2 3 0は、 本発明での 「計時手段 (計時ステップ) 」 に対 応し、 ステップ S 1 6 0および S 1 7 0は、 本発明での 「選択手段 (選択ステツ プ) J に対応する。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および'範囲内でのすべての変更が含まれ ることが意図される。

Claims

請求の範囲
1 . 入出力電流、 出力電圧および電池温度を検出可能な検出器が設けられた二 次電池の充電状態推定装置であって、
前記二次電池の開放電圧と残存容量との間の特性を記憶する特性記憶手段と、 前記入出力電流が前記電池温度に応じて設定される制限電流以下である状態力 前記電池温度に応じて設定される電圧安定時間以上継続している安定状態である か否かを判定する安定状態判定手段と、
前記安定状態と判定されたときに、 前記出力電圧を前記開放電圧とみなして、 前記特性記憶手段に記憶された特性に基づいて前記二次電池の残存容量を推定す る第 1の充電状態推定手段とを備える、 二次電池の充電状態推定装置。
2 . 前記安定状態判定手段によって前記安定状態と判定されないときに、 前記 二次電池の残存容量を推定する第 2の充電状態推定手段をさらに備え、
前記第 2の充電状態推定手段は、 前記入出力電流の積算値に基づいて前記残存 容量の変化量を逐次算出する手法、 または、 前記入出力電流、 前記出力電圧およ び前記電池温度を入力変数とする電池モデルに基づく手法によって、 前記二次電 池の残存容量を推定する、 請求の範囲第 1項記載の二次電池の充電状態推定装置。
3 . 前記第 2の充電状態推定手段は、
前記入出力電流の積算値に基づいて前記残存容量の変化量を算出することによ つて前記二次電池の残存容量を推定する第 1の推定手段と、
前記入出力電流、 前記出力電圧および前記電池温度を入力変数とする電池モデ ルに基づいて、 前記二次電池の残存容量を推定する第 2の推定手段と、
前記第 1の推定手段による残存容量推定の連続実行期間を計時する計時手段と を含み、
前記第 2の充電状態推定手段は、 前記連続実行期間が第 1の制限期間以下であ るときに、 前記第 1の推定手段を選択して前記残存容量を推定する一方で、 前記 連続実行期間が前記第 1の制限期間を超え、 かつ、 前記入出力電流が所定の電池 モデル使用可能範囲内であるときに、 前記第 2の推定手段を選択して前記残存容 量を推定する、 請求の範囲第 2項記載の二次電池の充電状態推定装置。
4 . 前記第 2の充電状態推定手段は、 前記連続実行期間が前記第 1の制限期間 よりも長い第 2の制限期間を超えた場合には、 前記入出力電流にかかわらず、 前 記第 2の推定手段を選択して前記残存容量を推定する、 請求の範囲第 3項記載の 二次電池の充電状態推定装置。
5 . 前記第 2の充電状態推定手段は、 前記連続実行期間が前記第 1の制限期間 を超え、 かつ、 前記入出力電流が前記電池モデル使用可能範囲外であるときに、 前記第 1の推定手段を選択して前記残存容量を推定する、 請求の範囲第 3項記載 の二次電池の充電状態推定装置。
6 . 前記安定状態判定手段での前記制限電流は、 前記電池温度の上昇に従って、 相対的に大きく設定される、 請求の範囲第 1項に記載の二次電池の充電状態推定 装置。
7 . 前記安定状態判定手段での前記電圧安定時間は、 前記電池温度の上昇に従 つて、 相対的に短く設定される、 請求の範囲第 1項に記載の二次電池の充電状態 推定装置。
8 . 入出力電流、 出力電圧および電池温度を検出可能な検出器が設けられた二 次電池の充電状態推定装置であって、
前記入出力電流の積算値に基づいて前記残存容量の変化量を算出することによ . つて前記二次電池の残存容量を推定する第 1の推定手段と、
前記入出力電流、 前記出力電圧および前記電池温度を入力変数とする電池モデ ルに基づいて、 前記二次電池の残存容量を推定する第 2の推定手段と、
前記第 1の推定手段による充電状薛推定の連続実行期間を計時する計時手段と、 前記入出力電流が所定の電池モデル使用可能範囲内であるか否かの判定と、 前 記計時手段により求められた前記連続実行期間とに基づいて、 前記第 1および第 2の推定手段の一方を選択して前記残存容量を推定する選択手段とを備える、 二 次電池の充電状態推定装置。
9 . 前記選択手段は、 前記連続実行期間が第 1の制限期間以下であるときに、 前記第 1の推定手段を選択して前記残存容量を推定する一方で、 前記連続実行期 間が前記第 1の制限期間を超え、 かつ、 前記入出力電流が前記電池モデル使用可 能範囲内であるときに、 前記第 2の推定手段を選択して前記残存容量を推定する、 請求の範囲第 8項記載の二次電池の充電状態推定装置。
1 0 . 前記選択手段は、 前記連続実行期間が前記第 1の制限期間よりも長い第 2の制限期間を超えた場合には、 前記入出力電流にかかわらず、 前記第 2の推定 手段を選択して前記残存容量を推定する、 請求の範囲第 9項記載の二次電池の充 電状態推定装置。
1 1 . 前記選択手段は、 前記連続実行期間が前記第 1の制限期間を超え、 かつ、 前記入出力電流が前記電池モデル使用可能範囲外であるときに、 前記第 1の推定 手段を選択して前記残存容量を推定する、 請求の範囲第 9項記載の二次電池の充 電状態推定装置。
1 2 . 前記二次電池は、 リチウムイオン電池である、 請求の範囲第 1項〜第 1 1項のいずれか 1項に記載の二次電池の充電状態推定装置。
1 3 . 入出力電流、 出力電圧および電池温度を検出可能な検出器が設けられた 二次電池の充電状態推定方法であって、
前記入出力電流が前記電池温度に応じて設定される制限電流以下である状態が、 前記電池温度に応じて設定される電圧安定期間 上継続している安定状態である か否かを判定する安定状態判定ステップと、
前記安定状態と判定されたときに、 前記出力電圧を前記二次電池の開放電圧と みなして、 前記二次電池の開放電圧と残存容量との間の特性に基づいて前記二次 電池の残存容量を推定する第 1の充電状態推定ステップとを備える、 二次電池の 充電状態推定方法。
1 4 . 前記安定状態判定ステップ より前記安定状態と判定されないとぎに前 記二次電池の残存容量を推定する第 2の充電状態推定ステップをさらに備え、 前記第 2の充電状態推定ステップは、 前記入出力電流の積算値に基づいて前記 残存容量の変化量を逐次算出する手法、 または、 前記入出力電流、 前記出力電圧 および前記電池温度を入力変数とする電池モデルに基づく手法によって、 前記二 次電池の残存容量を推定する、 請求の範囲第 1 3項記載の二次電池の充電状態推 定方法。
1 5 . 前記第 2の充電状態推定ステップは、
前記入出力電流の積算値に基づいて前記残存容量の変化量を算出することによ つて前記二次電池の残存容量を推定する第 1の推定ステップと、
前記入出力電流、 前記出力電圧および前記電池温度を入力変数とする電池モデ ノレに基づいて、 前記二次電池の残存容量を推定する第 2の推定ステップと、 前記第 1の推定ステップによる残存容量推定の連続実行期間を計時する計時ス テツプとを含み、
前記第 2の充電状態推定ステップは、 前記連続実行期間が第 1の制限期間以下 であるときに、 前記第 1の推定ステツプを選択して前記残存容量を推定する一方 で、 前記連続実行期間が前記第 1の制限期間を超え、 かつ、 前記入出力電流が所 定の電池モデル使用可能範囲內であるときに、 前記第 2の推定ステップを選択し て前記残存容量を推定する、 請求の範囲第 1 4項記載の二次電池の充電状態推定 方法。
1- 6 . 前記安定状態判定ステップでの前記制限電流は、 前記電池温度の上昇に 従って、 相対的に大きく設定される、 請求の範囲第 1 3項記載の二次電池の充電 状態推定方法。
1 7 . 前記安定状態判定ステップでの前記電庄安定期間は、 前記電池温度の上 昇に従って、 相対的に短く設定される、 請求の範囲第 1 3項項に記載の二次電池 の充電状態推定方法。
1 8 . 入出力電流、 出力電圧および電池温度を検出可能な検出器が設けられた 二次電池の充電状態推定方法であって、
前記入出力電流の積算値に基づいて前記残存容量の変化量を算出することによ つて前記二次電池の残存容量を推定する第 1の推定ステップと、
前記入出力電流、 前記出力電圧および前記電池温度を入力変数とする電池モデ ル式に基づいて、 前記二次電池の残存容量を推定する第 2の推定ステップと、 前記第 1の推定ステップによる残存容量推定の連続実行期間を計時する計時ス テツプと、
前記入出力電流が所定の電池モデル使用可能範囲内であるか否かの判定と、 前 記計時ステップにより求められた前記連続実行期間とに基づいて、 前記第 1およ び第 2の推定ステップの一方を選択して前記残存容量を推定する選択ステップと を備える、 二次電池の充電状態推定方法。
1 9 . 前記選択ステップは、 前記連続実行期間が第 1の制限期間以下であると きに、 前記第 1の推定ステップを選択して前記残存容量を推定する一方で、 前記 連続実行期間が前記第 1の制限期間を超え、 かつ、 前記入出力電流が前記電池モ デル使用可能範囲内であるときに、 前記第 2の推定ステップを選択して前記残存 容量を推定する、 請求の範囲第 1 8項記載の二次電池の充電状態推定方法。
2 0 . 前記二次電池は、 リチウムイオン電池である、 請求の範囲第 1 3項〜第 1 9項のいずれか 1項に記載の二次電池の充電状態推定方法。
PCT/JP2006/324409 2005-12-27 2006-11-30 二次電池の充電状態推定装置および充電状態推定方法 WO2007074614A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/086,696 US8274291B2 (en) 2005-12-27 2006-11-30 Charged state estimating device and charged state estimating method of secondary battery
EP15177981.6A EP2985618B1 (en) 2005-12-27 2006-11-30 Charged state estimating device and charged state estimating method of secondary battery
CN2006800492635A CN101346636B (zh) 2005-12-27 2006-11-30 二次电池的充电状态推定装置与充电状态推定方法
EP06834164.3A EP1972955B1 (en) 2005-12-27 2006-11-30 Charged state estimation device and charged state estimation method of secondary battery
US13/067,785 US8664960B2 (en) 2005-12-27 2011-06-27 Charged state estimating device and charged state estimating method of secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005375730A JP4984527B2 (ja) 2005-12-27 2005-12-27 二次電池の充電状態推定装置および充電状態推定方法
JP2005-375730 2005-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/086,696 A-371-Of-International US8274291B2 (en) 2005-12-27 2006-11-30 Charged state estimating device and charged state estimating method of secondary battery
US13/067,785 Division US8664960B2 (en) 2005-12-27 2011-06-27 Charged state estimating device and charged state estimating method of secondary battery

Publications (1)

Publication Number Publication Date
WO2007074614A1 true WO2007074614A1 (ja) 2007-07-05

Family

ID=38217835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324409 WO2007074614A1 (ja) 2005-12-27 2006-11-30 二次電池の充電状態推定装置および充電状態推定方法

Country Status (6)

Country Link
US (2) US8274291B2 (ja)
EP (2) EP2985618B1 (ja)
JP (2) JP4984527B2 (ja)
KR (1) KR100996693B1 (ja)
CN (2) CN101346636B (ja)
WO (1) WO2007074614A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688899B (zh) * 2007-08-22 2013-06-19 株式会社Lg化学 用于估计电池的开路电压的装置和用于估计电池的充电状态的装置以及相应的控制方法
EP2246956A4 (en) * 2008-02-19 2015-04-08 Toyota Motor Co Ltd VEHICLE AND METHOD FOR ESTIMATING THE CHARGING STATE OF THE RECHARGEABLE BATTERY
EP4142101A1 (en) 2021-08-17 2023-03-01 Yazaki Corporation Storage battery control device, energy storage system, and storage battery control method

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314906B2 (ja) * 2008-02-29 2013-10-16 ニチユ三菱フォークリフト株式会社 作業用車両の制御方法および作業用車両
JP5561916B2 (ja) * 2008-07-11 2014-07-30 ミツミ電機株式会社 電池状態監視装置
JP5349250B2 (ja) 2008-12-01 2013-11-20 カルソニックカンセイ株式会社 電池モデル同定方法
JP2010139260A (ja) * 2008-12-09 2010-06-24 Hitachi Ltd 二次電池の余寿命推定システムおよび余寿命推定方法
US20100215995A1 (en) * 2009-02-10 2010-08-26 National Semiconductor Corporation Magnetic state of charge sensor for a battery
US20100295550A1 (en) * 2009-02-20 2010-11-25 National Semiconductor Corporation Adaptive energy management terminal for a battery
JP4856209B2 (ja) * 2009-03-30 2012-01-18 株式会社東芝 電池性能測定装置、電池制御システム及び車両
US8207706B2 (en) * 2009-08-04 2012-06-26 Honda Motor Co., Ltd. Method of estimating battery state of charge
DE102009049589A1 (de) * 2009-10-16 2011-04-21 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bestimmung und/oder Vorhersage der maximalen Leistungsfähigkeit einer Batterie
US20130069660A1 (en) * 2010-02-17 2013-03-21 Julien Bernard Method for in situ battery diagnostic by electrochemical impedance spectroscopy
JP2011169831A (ja) * 2010-02-19 2011-09-01 Mitsumi Electric Co Ltd 電池状態検知装置及び電池状態検知方法
JP2011223862A (ja) * 2010-03-25 2011-11-04 Sanyo Electric Co Ltd 移動体のシステム制御装置及びこれを搭載した移動体
CN101813754B (zh) * 2010-04-19 2012-09-05 清华大学 一种用于汽车起动照明型铅酸蓄电池的状态估算方法
KR101338639B1 (ko) * 2010-06-07 2013-12-06 미쓰비시덴키 가부시키가이샤 충전 상태 추정 장치
JP2012039725A (ja) * 2010-08-05 2012-02-23 Toyota Motor Corp 充電方法、充電システム
KR101227417B1 (ko) 2010-09-14 2013-01-29 충북대학교 산학협력단 리튬이온전지의 충전상태 추정방법 및 이 방법을 구현하기 위한 시스템
WO2012046266A1 (ja) * 2010-10-05 2012-04-12 トヨタ自動車株式会社 蓄電素子の状態推定方法および状態推定装置
WO2012050014A1 (ja) * 2010-10-15 2012-04-19 三洋電機株式会社 電力管理システム
TW201224485A (en) * 2010-12-02 2012-06-16 Ind Tech Res Inst State-of-charge estimation method and battery control unit
US9026387B2 (en) * 2011-04-01 2015-05-05 Intel Corporation Battery voltage measurement
FR2975501B1 (fr) * 2011-05-20 2013-05-31 Renault Sas Procede d'estimation de l'etat de charge d'une batterie electrique
WO2012176275A1 (ja) 2011-06-21 2012-12-27 トヨタ自動車株式会社 蓄電装置用の充電装置およびそれを搭載する車両
JP5293773B2 (ja) 2011-06-21 2013-09-18 トヨタ自動車株式会社 蓄電装置用の充電装置およびそれを搭載する車両、ならびに充電装置の制御方法
US8947064B2 (en) 2011-09-20 2015-02-03 Infineon Technologies Austria Ag System and method for driving an electronic switch dependent on temperature
JP2013083612A (ja) * 2011-10-12 2013-05-09 Mitsumi Electric Co Ltd 電池状態計測方法及び電池状態計測装置
JP5867039B2 (ja) * 2011-12-09 2016-02-24 コベルコ建機株式会社 ハイブリッド建設機械
WO2013125118A1 (ja) * 2012-02-22 2013-08-29 カルソニックカンセイ株式会社 パラメータ推定装置
KR101486470B1 (ko) * 2012-03-16 2015-01-26 주식회사 엘지화학 배터리 상태 추정 장치 및 방법
WO2013141100A1 (ja) 2012-03-21 2013-09-26 三洋電機株式会社 電池状態推定装置
JP5783122B2 (ja) 2012-04-11 2015-09-24 トヨタ自動車株式会社 電池状態推定装置
JP5751493B2 (ja) * 2012-04-25 2015-07-22 横河電機株式会社 電池監視装置
JP5900160B2 (ja) * 2012-05-28 2016-04-06 ソニー株式会社 二次電池の相対残容量推定方法、相対残容量推定装置、電池パック、電子機器及び電動車両
KR101355973B1 (ko) 2012-05-31 2014-01-27 주식회사 엘지화학 이차 전지의 상태 추정 방법 및 장치
JP5888127B2 (ja) * 2012-06-04 2016-03-16 株式会社豊田自動織機 二次電池の電池容量を推定する方法および装置
CN104364668B (zh) * 2012-06-13 2017-02-22 株式会社Lg化学 估计包括混合正极材料的二次电池的电压的设备和方法
CN104380129B (zh) 2012-06-13 2017-07-07 株式会社Lg 化学 用于估算包含混合正极材料的二次电池的充电状态的设备和方法
JP2014102248A (ja) * 2012-10-24 2014-06-05 Gs Yuasa Corp 蓄電状態検出装置
KR101547006B1 (ko) * 2012-10-26 2015-08-24 주식회사 엘지화학 배터리 잔존 용량 추정 장치 및 방법
KR101547005B1 (ko) * 2012-10-26 2015-08-24 주식회사 엘지화학 배터리 잔존 용량 추정 장치 및 방법
KR101983392B1 (ko) * 2012-11-27 2019-05-29 에스케이이노베이션 주식회사 배터리 충전 상태 추정 장치 및 그 방법
US20150369875A1 (en) * 2013-02-01 2015-12-24 Sanyo Electric Co., Ltd. Battery state estimating device
KR20140100086A (ko) * 2013-02-05 2014-08-14 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
JP6300000B2 (ja) 2013-02-20 2018-03-28 株式会社Gsユアサ 充電状態推定装置、充電状態推定方法
FR3002326B1 (fr) * 2013-02-21 2016-05-27 Renault Sa Evaluation de l'energie extractible d'une batterie de vehicule automobile
WO2014155921A1 (ja) 2013-03-28 2014-10-02 三洋電機株式会社 二次電池の充電状態推定装置及び二次電池の充電状態推定方法
JP6155774B2 (ja) * 2013-04-03 2017-07-05 株式会社Gsユアサ 状態推定装置及び状態推定方法
JP2014204571A (ja) * 2013-04-05 2014-10-27 株式会社マキタ 電動機器システム及びバッテリパック
JP2015011576A (ja) * 2013-06-28 2015-01-19 株式会社東芝 蓄電池駆動車両の運行システム
JP5879016B2 (ja) * 2013-07-23 2016-03-08 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 高電圧バッテリー充電模擬システム及びそれを使用した充電模擬方法
KR20150028095A (ko) 2013-09-05 2015-03-13 주식회사 엘지화학 배터리 팩의 프리차지 저항 산출 장치 및 방법
KR101650415B1 (ko) * 2013-10-14 2016-08-23 주식회사 엘지화학 하이브리드 이차 전지의 전압 추정 장치 및 그 방법
WO2015056963A1 (ko) * 2013-10-14 2015-04-23 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 상태 추정 장치 및 그 방법
WO2015056964A1 (ko) * 2013-10-14 2015-04-23 주식회사 엘지화학 하이브리드 이차 전지의 상태 추정 장치 및 그 방법
KR101632351B1 (ko) * 2013-10-14 2016-06-21 주식회사 엘지화학 하이브리드 이차 전지의 상태 추정 장치 및 그 방법
WO2015056962A1 (ko) * 2013-10-14 2015-04-23 주식회사 엘지화학 하이브리드 이차 전지의 전압 추정 장치 및 그 방법
KR101708885B1 (ko) 2013-10-14 2017-02-21 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 상태 추정 장치 및 그 방법
JP6090102B2 (ja) * 2013-10-17 2017-03-08 トヨタ自動車株式会社 同軸二輪車、及びその制御方法
US9118190B2 (en) * 2013-10-30 2015-08-25 Metal Industries Research & Development Centre Charging balancing system based on battery operating process and method thereof
JP6160473B2 (ja) * 2013-12-20 2017-07-12 トヨタ自動車株式会社 蓄電システム
JP6256682B2 (ja) * 2013-12-24 2018-01-10 三菱自動車工業株式会社 二次電池の管理装置
EP3113277B1 (en) * 2014-04-01 2020-08-05 Furukawa Electric Co. Ltd. Secondary battery state detection device and secondary battery state detection method
JP6287509B2 (ja) * 2014-04-08 2018-03-07 株式会社豊田自動織機 二次電池のsoc推定装置および推定方法
DE102014208865A1 (de) * 2014-05-12 2015-11-12 Robert Bosch Gmbh Verfahren zum Ermitteln der Temperatur einer Batterie
CN104036128A (zh) * 2014-06-06 2014-09-10 哈尔滨工业大学深圳研究生院 一种基于滤波电流的电池soc估计方法
CN104052120B (zh) * 2014-06-20 2016-03-30 东北大学 带自发电系统的石油管道内检测器的电源监控方法及系统
US20160001672A1 (en) * 2014-07-01 2016-01-07 Ford Global Technologies, Llc Equivalent circuit based battery current limit estimations
CN106463988B (zh) * 2014-07-07 2019-07-30 日立汽车系统株式会社 电池控制装置
US10481210B2 (en) 2014-07-14 2019-11-19 Ford Global Technologies, Llc Methods to determine battery cell voltage relaxation time based on cell usage history and temperature
US10074996B2 (en) 2014-08-29 2018-09-11 The Regents Of The University Of Michigan Bulk force in a battery pack and its application to state of charge estimation
KR101709553B1 (ko) * 2014-10-22 2017-02-23 주식회사 엘지화학 전지 soc 추정 방법 및 시스템
JP6706762B2 (ja) * 2015-02-13 2020-06-10 パナソニックIpマネジメント株式会社 二次電池の充電状態推定装置および充電状態推定方法
CN104678316B (zh) * 2015-02-28 2017-08-01 北京交通大学 锂离子电池荷电状态估算方法和装置
JP6728903B2 (ja) * 2015-04-10 2020-07-22 株式会社豊田自動織機 蓄電装置及び蓄電方法
US9789784B2 (en) * 2015-05-13 2017-10-17 Ford Global Technologies, Llc Maintaining a vehicle battery
DE102015013286A1 (de) 2015-10-13 2016-05-25 Daimler Ag Verfahren zum Laden und Entladen eines elektrochemischen Energiespeichers und Lade- und Entladevorrichtung
JPWO2017110578A1 (ja) 2015-12-25 2018-09-06 ローム株式会社 電流監視回路、クーロンカウンタ回路、それらを用いたバッテリ管理システムおよび自動車
JP6830318B2 (ja) 2016-01-15 2021-02-17 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
CN108291944B (zh) * 2016-01-29 2021-03-23 日本汽车能源株式会社 电池管理装置
JP6572823B2 (ja) * 2016-05-13 2019-09-11 トヨタ自動車株式会社 電源システム
WO2018079164A1 (ja) * 2016-10-26 2018-05-03 日立オートモティブシステムズ株式会社 電池制御装置
JP6776904B2 (ja) * 2017-01-13 2020-10-28 株式会社デンソー 電池パック及び電源システム
KR20190073253A (ko) * 2017-12-18 2019-06-26 삼성전자주식회사 배터리 상태 추정 방법 및 장치
JP2019152551A (ja) * 2018-03-05 2019-09-12 株式会社デンソー 電池劣化判定装置
TWI663413B (zh) * 2018-04-24 2019-06-21 聯華聚能科技股份有限公司 Dual self-learning battery estimation system and method
JP7250439B2 (ja) * 2018-05-29 2023-04-03 株式会社日立製作所 電池制御装置、電池制御システム及び電池制御方法
CN112105940A (zh) * 2018-05-31 2020-12-18 住友电气工业株式会社 参数推定装置、参数推定方法以及计算机程序
JP7289113B2 (ja) * 2018-07-25 2023-06-09 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
DE102018212545A1 (de) * 2018-07-27 2020-01-30 Audi Ag Verfahren zum Überwachen eines Zustands einer Batterie, Überwachungseinrichtung und Kraftfahrzeug
JP6973334B2 (ja) * 2018-08-30 2021-11-24 トヨタ自動車株式会社 二次電池の劣化状態推定方法および二次電池システム
JP2020038146A (ja) * 2018-09-05 2020-03-12 トヨタ自動車株式会社 二次電池システムおよび二次電池のsoc推定方法
KR102695521B1 (ko) * 2018-09-20 2024-08-14 삼성전자주식회사 배터리 상태 추정 장치 및 방법
JP7128709B2 (ja) * 2018-10-04 2022-08-31 日本たばこ産業株式会社 吸引成分生成装置
JP7010191B2 (ja) * 2018-10-23 2022-02-10 トヨタ自動車株式会社 二次電池システムおよび二次電池の充電制御方法
KR102598962B1 (ko) * 2018-12-12 2023-11-06 현대자동차주식회사 차량 제어기의 업데이트 제어 장치 및 방법, 그리고 차량 시스템
JP7006627B2 (ja) * 2019-01-21 2022-01-24 株式会社デンソー モータ制御装置及びモータ
US11186198B2 (en) * 2019-05-31 2021-11-30 Ford Global Technologies, Llc Methods and systems for vehicle battery cell failure detection and overcharge protection
KR20210039186A (ko) * 2019-10-01 2021-04-09 주식회사 엘지화학 배터리 전력 산출 장치 및 방법
KR102471890B1 (ko) 2020-08-03 2022-11-29 삼성에스디아이 주식회사 배터리 팩의 시뮬레이션 방법
CN112816876B (zh) * 2020-12-28 2021-12-07 湖南航天捷诚电子装备有限责任公司 一种用于可充电电池的低温电池剩余电量估算方法及装置
JP2022157734A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 劣化状態推定システム、劣化状態推定方法、及びプログラム
WO2023054443A1 (ja) * 2021-09-28 2023-04-06 本田技研工業株式会社 バッテリ特性推定装置、バッテリ特性推定方法、およびプログラム
CN114035059B (zh) * 2021-11-08 2024-07-16 东软睿驰汽车技术(沈阳)有限公司 显示soc精度的计算方法、装置和电子设备
KR20230165067A (ko) * 2022-05-26 2023-12-05 주식회사 엘지에너지솔루션 배터리 진단 장치 및 방법
WO2023243421A1 (ja) * 2022-06-17 2023-12-21 株式会社デンソー 容量推定装置及び容量推定方法
CN117269774B (zh) * 2023-11-20 2024-04-12 羿动新能源科技有限公司 一种动力电池的soc的修正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331714A (ja) * 1993-05-27 1994-12-02 Seiko Epson Corp バッテリ残存容量計
JPH11307137A (ja) * 1998-04-15 1999-11-05 Denso Corp 二次電池の残存容量検出装置
JP2000150003A (ja) 1998-11-10 2000-05-30 Nissan Motor Co Ltd ハイブリッド車の充電量演算方法および充電量演算装置
JP2000306613A (ja) 1999-04-20 2000-11-02 Nissan Motor Co Ltd バッテリ状態監視装置
JP2003307556A (ja) * 2002-02-15 2003-10-31 Yazaki Corp バッテリの開回路電圧推定方法及び装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558281A (en) * 1982-06-12 1985-12-10 Lucas Industries Battery state of charge evaluator
US5280231A (en) * 1990-07-02 1994-01-18 Nippondenso Co., Ltd. Battery condition detecting apparatus and charge control apparatus for automobile
JP3253495B2 (ja) * 1995-07-25 2002-02-04 矢崎総業株式会社 電池残存容量測定装置
JP3415740B2 (ja) * 1997-04-14 2003-06-09 本田技研工業株式会社 バッテリ充電装置
JP3536581B2 (ja) * 1997-04-16 2004-06-14 日産自動車株式会社 ハイブリッド電気自動車の発電制御装置
US6313606B1 (en) * 1997-06-03 2001-11-06 Sony Corporation Method and apparatus for detecting battery capacity
KR100241899B1 (ko) * 1997-07-16 2000-02-01 윤종용 휴대형 무선통신 단말기에서 배터리의 잔여 전원 표시장치및 방법
KR100425352B1 (ko) * 1998-05-28 2004-03-31 도요다 지도샤 가부시끼가이샤 전지 충전상태의 추정장치 및 전지 열화상태의 추정방법
CN1230962C (zh) * 1999-09-09 2005-12-07 丰田自动车株式会社 电池容量测量与剩余容量计算系统
US6417668B1 (en) * 2001-01-31 2002-07-09 International Truck International Property Company, L.L.C. Vehicle battery condition monitoring system
DE10207659B4 (de) * 2001-02-23 2006-09-28 Yazaki Corp. Verfahren und Vorrichtung zum Schätzen einer Klemmenspannung einer Batterie, Verfahren und Vorrichtung zum Berechnen einer Leerlaufspannung einer Batterie sowie Verfahren und Vorrichtung zum Berechnen der Batteriekapazität
US6366054B1 (en) * 2001-05-02 2002-04-02 Honeywell International Inc. Method for determining state of charge of a battery by measuring its open circuit voltage
DE10131170C1 (de) * 2001-06-29 2002-09-12 Georg Ziegler Vorrichtung zur Steuerung des Betriebes einer Fahrzeugbatterie
DE10131765A1 (de) 2001-06-30 2003-01-09 Bosch Gmbh Robert Verfahren und Vorrichtun gzur Batteriezustandserkennung
AU2003245472A1 (en) * 2002-06-13 2003-12-31 Snap-On Technologies, Inc. Integrated battery service system
JP4228760B2 (ja) * 2002-07-12 2009-02-25 トヨタ自動車株式会社 バッテリ充電状態推定装置
AU2003289321A1 (en) * 2002-12-11 2004-06-30 Japan Storage Battery Co., Ltd. Battery charged condition computing device and battery charged condition computing method
WO2004068157A1 (de) 2003-01-30 2004-08-12 Robert Bosch Gmbh Zustandsgrössen- und parameterschätzer mit mehreren teilmodellen für einen elektrischen energiespeicher
US7324902B2 (en) * 2003-02-18 2008-01-29 General Motors Corporation Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
JP4258348B2 (ja) * 2003-10-23 2009-04-30 日産自動車株式会社 バッテリの劣化診断装置及び車載電源装置の制御装置
JP4583765B2 (ja) * 2004-01-14 2010-11-17 富士重工業株式会社 蓄電デバイスの残存容量演算装置
JP4211715B2 (ja) * 2004-08-23 2009-01-21 株式会社デンソー 車載電源システム
JP4116609B2 (ja) * 2004-11-04 2008-07-09 パナソニックEvエナジー株式会社 電源制御装置、電動車両および電池制御ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06331714A (ja) * 1993-05-27 1994-12-02 Seiko Epson Corp バッテリ残存容量計
JPH11307137A (ja) * 1998-04-15 1999-11-05 Denso Corp 二次電池の残存容量検出装置
JP2000150003A (ja) 1998-11-10 2000-05-30 Nissan Motor Co Ltd ハイブリッド車の充電量演算方法および充電量演算装置
JP2000306613A (ja) 1999-04-20 2000-11-02 Nissan Motor Co Ltd バッテリ状態監視装置
JP2003307556A (ja) * 2002-02-15 2003-10-31 Yazaki Corp バッテリの開回路電圧推定方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1972955A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688899B (zh) * 2007-08-22 2013-06-19 株式会社Lg化学 用于估计电池的开路电压的装置和用于估计电池的充电状态的装置以及相应的控制方法
EP2246956A4 (en) * 2008-02-19 2015-04-08 Toyota Motor Co Ltd VEHICLE AND METHOD FOR ESTIMATING THE CHARGING STATE OF THE RECHARGEABLE BATTERY
EP4142101A1 (en) 2021-08-17 2023-03-01 Yazaki Corporation Storage battery control device, energy storage system, and storage battery control method

Also Published As

Publication number Publication date
EP2985618B1 (en) 2020-10-14
JP4984527B2 (ja) 2012-07-25
US20090001992A1 (en) 2009-01-01
US8274291B2 (en) 2012-09-25
CN103163474B (zh) 2014-07-16
US8664960B2 (en) 2014-03-04
EP1972955B1 (en) 2015-09-02
EP1972955A4 (en) 2012-08-15
KR20080088617A (ko) 2008-10-02
JP2011215151A (ja) 2011-10-27
CN103163474A (zh) 2013-06-19
US20110257914A1 (en) 2011-10-20
EP1972955A1 (en) 2008-09-24
JP5240320B2 (ja) 2013-07-17
EP2985618A1 (en) 2016-02-17
KR100996693B1 (ko) 2010-11-25
CN101346636B (zh) 2013-03-13
JP2007178215A (ja) 2007-07-12
CN101346636A (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
JP5240320B2 (ja) 二次電池の充電状態推定装置および充電状態推定方法
EP2325664B1 (en) State estimating device for secondary battery
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
JP4097182B2 (ja) 二次電池の分極電圧推定方法、二次電池の残存容量推定方法および装置、並びに電池パックシステム
JP4649101B2 (ja) 二次電池の状態検知装置および状態検知方法
JP6668905B2 (ja) 電池劣化推定装置
JP6534746B2 (ja) 電池制御装置及び電池システム
JP6066163B2 (ja) 開路電圧推定装置、状態推定装置及び開路電圧推定方法
WO2008068446A1 (en) Battery management system
KR102274383B1 (ko) 자동차 차량 배터리의 에너지량 평가
JP2021524138A (ja) バッテリー管理装置、バッテリー管理方法及びバッテリーパック
EP3505946B1 (en) Battery state estimation device and battery state estimation method
JPH07151841A (ja) 電池残存容量計測装置
JP5911407B2 (ja) バッテリの健全度算出装置および健全度算出方法
JP3551767B2 (ja) バッテリの放電量測定装置
JP5737138B2 (ja) 電池の制御装置及び電池の制御方法
JP2022526179A (ja) バッテリの充電状態を初期化するための方法
JP2021524127A (ja) バッテリー管理装置、バッテリー管理方法及びバッテリーパック
JP2000221249A (ja) バッテリ充電状態検出装置
JPH1138107A (ja) 二次電池の残存容量推定方法
JP2003257504A (ja) 二次電池の過放電検出方法
JP2004245673A (ja) 蓄電体の残存容量推定方法、装置および蓄電体パック
JP2004045235A (ja) 内部抵抗推定方法、充電状態推定方法及びエンジン始動判定方法
JP2003051341A (ja) 電池の残容量計
JP2024144806A (ja) 状態検知システムおよび状態検知方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680049263.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12086696

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087018393

Country of ref document: KR