WO2007060884A1 - 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材 - Google Patents

中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材 Download PDF

Info

Publication number
WO2007060884A1
WO2007060884A1 PCT/JP2006/322961 JP2006322961W WO2007060884A1 WO 2007060884 A1 WO2007060884 A1 WO 2007060884A1 JP 2006322961 W JP2006322961 W JP 2006322961W WO 2007060884 A1 WO2007060884 A1 WO 2007060884A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
hollow silica
silica fine
weight
substrate
Prior art date
Application number
PCT/JP2006/322961
Other languages
English (en)
French (fr)
Inventor
Ryota Sueyoshi
Ryo Muraguchi
Masayuki Matsuda
Mitsuaki Kumazawa
Toshiharu Hirai
Original Assignee
Catalysts & Chemicals Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co., Ltd. filed Critical Catalysts & Chemicals Industries Co., Ltd.
Priority to JP2007546417A priority Critical patent/JP5078620B2/ja
Priority to CN2006800439281A priority patent/CN101312909B/zh
Priority to EP06832840.0A priority patent/EP1972598B1/en
Priority to US12/085,367 priority patent/US20090286070A1/en
Priority to KR1020087015336A priority patent/KR101365382B1/ko
Publication of WO2007060884A1 publication Critical patent/WO2007060884A1/ja
Priority to US13/352,870 priority patent/US9441095B2/en
Priority to US14/698,579 priority patent/US9834663B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/149Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres

Definitions

  • the present invention relates to hollow silica fine particles whose surface is treated with a silane compound, and a method for producing the same.
  • the present invention also relates to a transparent film-forming composition containing the hollow silica fine particles, and a substrate having a transparent film on the surface thereof, which is obtained by curing the transparent film-forming composition.
  • hollow silica particles having a particle diameter of about 0.1 to 380 ⁇ m are known (see Patent Document 1 and Patent Document 2).
  • alkaline silica silicate aqueous solution active silica is precipitated on a core made of a material other than silica, and the material is removed without destroying the silica shell, thereby producing a hollow particle having a dense silica shell force. This method is known (see Patent Document 3).
  • micron-sized spherical silica particles having a core-shell structure in which the outer peripheral portion is a shell and the central portion is hollow, and the shell is denser on the outer side and has a coarser concentration gradient structure on the inner side are known (Patent Document 4). reference).
  • the applicant of the present application first obtains nanometer-sized composite oxide fine particles having a low refractive index by completely covering the surface of porous inorganic oxide fine particles with silica or the like. (See Patent Document 5), and further, a silica coating layer is formed on the core particles of the composite oxide composed of silica and an inorganic acid other than silica, so that an inorganic acid other than silica is formed. It is proposed that nanometer-sized silica-based fine particles with a low refractive index having cavities inside can be obtained by removing particles and coating silica if necessary (see Patent Document 6). ).
  • Patent Document 8 (a) —general formula: RSi (OR 2) [R: hydrocarbon group having 1 to 6 carbon atoms, R: carbon
  • trialkoxysilane is calculated as RSiO.
  • the coating film can be whitened by limiting the amount of silica fine particles. There is a description about being suppressed.
  • Patent Document 9 (A) acetyl cetatoate compound and (B) inorganic compound fine particles are uniformly dissolved or dispersed in a mixed solvent of water and an organic solvent. Proposes a method of using an inorganic compound particle having an average particle size of 50 nm or less as an inorganic compound particle for preventing whitening of a transparent film obtained by applying a coating liquid for coating formation to a substrate and curing it. .
  • Patent Document 10 as an antireflective film that does not cause the surface to be scratched by abrasion or the like and does not peel off the low refractive index layer, at least one on the transparent plastic film substrate has 2 per molecule.
  • Inorganic fine particles with an average particle size of 0.5 to: LOOnm were added to a matrix composed of UV-cured resin, the main component of which is a polyfunctional monomer containing at least one (meth) ataryloxy group
  • An antireflection film characterized by having a low refractive index layer containing silica fine particles of LOOnm has been proposed.
  • the use of inorganic fine particles of less than 20 Onm By scattering There is a description that the hard coat layer can suppress whitening.
  • Patent Document 11 includes a base material and a transparent film provided on the surface of the base material.
  • the bright film comprises (0 a matrix containing a fluorine-substituted alkyl group-containing silicone component and inorganic compound particles having a GO outer shell layer and porous or hollow inside, and in the transparent film Transparent, characterized by maintaining porosity or cavities
  • An invention relating to a coated substrate is disclosed.
  • a transparent coating comprising such hollow silica fine particles and a binder is a characteristic unique to hollow silica fine particles. 1.25 ⁇ : Low refractive index of about L 45 can be realized, but whitening of the coating occurs.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-330606
  • Patent Document 2 Japanese Patent Laid-Open No. 7-0113137
  • Patent Document 3 Japanese Translation of Special Publication 2000-500113
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-0129318
  • Patent Document 5 JP-A-7-133105
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-233611
  • Patent Document 7 Japanese Patent Laid-Open No. 4-348147
  • Patent Document 8 JP-A-1-306476
  • Patent Document 9 Japanese Patent Laid-Open No. 4-247427
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2004-326100
  • Patent Document 11 Japanese Unexamined Patent Application Publication No. 2002-79616
  • a coating composition containing hollow silica fine particles and a binder is prepared and a transparent film is formed on a substrate
  • a composition containing ordinary silica fine particles and a binder is prepared, and a transparent film is similarly formed.
  • a transparent film having a low refractive index can be obtained as compared with the case where it is formed, when hollow silica fine particles are used, there is a problem that whitening (whitening) easily occurs in the transparent film.
  • further improvements have been required for scratch resistance and adhesion.
  • the present invention has been made to solve such a problem, and even when a coating composition containing hollow silica fine particles and a binder is prepared and a transparent film is formed on a substrate, it is transparent.
  • An object of the present invention is to provide a hollow silica fine particle capable of suppressing whitening of a film and exhibiting excellent scratch resistance and adhesion, and a method for producing the same.
  • the present invention also provides a transparent film-forming composition containing hollow silica fine particles capable of exhibiting such excellent effects, and a substrate with a transparent film obtained by curing the transparent film-forming composition. For the purpose.
  • An object of the present invention is to further provide a substrate with a transparent film, in which hollow silica fine particles are unevenly distributed in a transparent film of the substrate with a transparent film, and a composition for forming a transparent film therefor. It is what.
  • the present invention provides a substrate with a transparent film in which hollow silica fine particles and metal oxide fine particles are unevenly distributed in the transparent film of the substrate with a transparent film, and a composition for forming a transparent film therefor, respectively. It is intended to be provided.
  • an average particle diameter measured by a dynamic light scattering method is 5 to 300 nm, a specific surface area is 50 to 1500 m 2 Zg, and a cavity is formed inside the outer shell.
  • the hollow silica fine particles are characterized by exhibiting a weight loss of 1.0% by weight or more in a temperature range of 200 ° C. to 500 ° C. by thermogravimetry (TG). .
  • the second invention of the present application is characterized in that the hollow silica fine particles have a positive DTA peak in a differential heat retention measurement (DTA) in a temperature range of 200 ° C. to 500 ° C.
  • a third invention of the present application is characterized in that the hollow silica fine particles have an organic group bonded directly to a silicon atom on the surface thereof.
  • the hollow silica fine particles have a saturated or unsaturated hydrocarbon group having 1 to 18 carbon atoms or a halogen atom having 1 to 18 carbon atoms in which an organic group directly bonded to a silicon atom on the surface thereof is saturated. ⁇ It is characterized by one or more selected hydrocarbon bases.
  • an organosol having a silica concentration of 1 to 70% by weight in which hollow silica fine particles are dispersed is prepared, and the organosol is mixed with a silane compound and a silane compound in a temperature range of 30 ° C to 300 ° C.
  • the addition amount of the silane compound is in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the hollow silica fine particles, and the addition amount of the alkali catalyst is Above A method for producing hollow silica fine particles characterized by being in the range of 20 to 2, OOOppm with respect to the organosol.
  • a seventh invention of the present application is a composition for forming a transparent film, comprising the hollow silica fine particles according to any one of the first to fourth inventions and a binder.
  • the eighth invention of the present application is a substrate with a transparent film, characterized in that the transparent film-forming composition according to the seventh invention has a transparent film on the surface.
  • the hollow silica fine particles according to the fourth aspect are represented by the following general formula:
  • It has an organic group of (1) or general formula (2) and shows a weight loss of 1.5% by weight or more in a temperature range of 200 ° C to 500 ° C by thermogravimetry (TG). It is the hollow silica fine particle characterized.
  • R is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • R is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • the hollow silica fine particles according to the fourth aspect of the present invention are represented by the following general formula:
  • the eleventh aspect of the present invention relates to the seventh aspect of the present invention.
  • the surface charge amount (Q) of the hollow silica fine particles contained in the composition for forming a transparent film is in the range of 5 to 20 / ⁇ / 8.
  • composition for transparent film formation characterized.
  • the concentration (C) of the hollow silica fine particles contained in the composition for forming a transparent film according to the eleventh aspect is 0.1 to 20% by weight, the solid content of the binder,
  • composition for forming a transparent film is characterized in that the concentration (C) is in the range of 1 to 50% by weight and the solvent is a polar solvent.
  • the composition for forming a transparent film according to the seventh invention has a surface charge amount (Q)
  • A)] is a composition for forming a transparent film, wherein the value is in the range of ⁇ 95 ⁇ eqZg.
  • the concentration (C) of the hollow silica fine particles contained in the composition for forming a transparent film according to the thirteenth aspect is 0.1 to 20% by weight, and the metal oxide Fine particles
  • the concentration of the child (C) is in the range of 0.1 to 20% by weight
  • the transparent film forming composition is in the range of 1 to 50% by weight, and the transparent film forming composition is characterized in that the solvent is a polar solvent.
  • the fifteenth invention of the present application has a transparent coating (film thickness ⁇ ! To lOOOOnm) on the surface, which is a cured film of the transparent film-forming composition according to the eleventh invention or the twelfth invention.
  • a sixteenth aspect of the present application is the substrate with a transparent coating according to the fifteenth aspect, wherein the hollow silica fine particles are unevenly distributed and the dispersed state is a single layer or a multilayer. It is.
  • the seventeenth invention of the present application has a transparent film (film thickness ⁇ ! To lOOOOnm), on which the transparent film-forming composition according to the thirteenth invention or the fourteenth invention is cured, on the surface.
  • a substrate with a coating wherein the hollow silica fine particles are unevenly distributed and dispersed on the outer surface side from the intermediate point in the thickness direction of the transparent coating, and are on the substrate side from the intermediate point in the thickness direction.
  • a substrate with a transparent coating characterized in that the metal oxide fine particles are unevenly distributed and dispersed.
  • the hollow silica fine particles are unevenly distributed and the dispersed state is a single layer or a multilayer, and the metal oxide fine particles are unevenly distributed.
  • the substrate with a transparent coating is characterized in that the dispersed state is a single layer or a multilayer.
  • the average particle diameter measured by a dynamic light scattering method is 5 to 300 nm
  • the specific surface area is 50 to 1500 m 2 Zg
  • a cavity is formed inside the outer shell.
  • Hollow silica fine particles and measured by thermogravimetry (TG) in the temperature range of 200 ° C to 500 ° C. 1.
  • TG thermogravimetry
  • the surface charge (Q) is in the range of S SO / z eqZg
  • an organosol having a silica concentration of 1 to 70% by weight in which hollow silica fine particles are dispersed is prepared, and a silane compound and a silane compound are added to the organosol in a temperature range of 30 ° C to 300 ° C.
  • Z or a polyfunctional acrylate ester resin having a hydrophobic functional group and an alkali catalyst are added, and the water content is 0.1 to 50% by weight with respect to the amount of silica compound.
  • a method for producing hollow silica fine particles comprising reacting the hollow silica fine particles.
  • a transparent film obtained by applying the composition for forming a transparent film containing the hollow silica fine particles of the present invention and a binder to a substrate is a low refractive index film having a refractive index of 1.25 to L45.
  • it is excellent in scratch resistance and adhesion, in which discoloration such as whitening of the film hardly occurs.
  • the transparent film is excellent in chemical resistance and water resistance. For example, it is difficult to leave a drip mark after wiping off a water droplet or a condensed water droplet dripped on the transparent film according to the present invention. It has the effect of.
  • the hollow silica fine particles can be produced efficiently.
  • the transparent coating in which predetermined hollow silica fine particles are unevenly distributed in the transparent coating is characterized by the properties based on the hollow silica fine particles (antireflection properties, antistatic properties). Etc.) are strongly expressed.
  • the transparent film-coated substrate of the present invention the transparent film in which the predetermined hollow silica fine particles and the predetermined metal oxide fine particles are unevenly distributed in the respective layers in the transparent film is described above based on the hollow silica fine particles. In addition to the characteristics, various characteristics based on the metal oxide fine particles are strongly expressed easily.
  • the composition for forming a transparent film of the present invention which contains the predetermined hollow silica fine particles and the predetermined metal oxide fine particles, is obtained by performing the coating treatment once to form the hollow silica fine particles and the metal oxide particles in the transparent film. Soot fine particles are unevenly distributed in layers. A transparent coating or a substrate with a transparent coating can be obtained.
  • the hollow silica fine particles of the present invention are hollow silica fine particles having an average particle diameter of 5 to 300 nm, a specific surface area of 50 to 1500 m 2 Zg, and having cavities formed inside the outer shell. ),
  • the hollow silica fine particles are characterized by exhibiting a weight loss of 1.0% by weight or more in a temperature range of 200 ° C. to 500 ° C.
  • such hollow silica fine particles are usually characterized by showing a positive DTA peak in differential heat retention measurement in a temperature range of 200 ° C to 500 ° C.
  • the hollow silica fine particles of the present invention are usually produced by subjecting the surface of conventionally known hollow silica fine particles to a surface treatment with a silane compound. Specifically, an organosilyl group (monoganosilyl, diorganosilyl or triorganosilyl group) is bonded to the surface of the hollow silica fine particles by a hydrolysis reaction between silanol groups on the surface of the hollow silica particles and the silanic compound.
  • the hollow silica fine particle of the present invention has an organic group directly bonded to a large number of silicon atoms on the surface thereof.
  • Such an organic group directly bonded to a silicon atom has a structure such as Si-O-SiA (A is an organic group) due to the reaction between the silanic compound and the surface silanol group of the hollow silica fine particles.
  • thermogravimetry analysis is a measurement of the change in the weight of the sample due to the rise (fall) in the sample's ambient temperature with respect to the temperature.
  • the weight change curve for the change in temperature is TG. It is called a curve.
  • the differential thermal analysis detects the temperature difference between the reference and the sample by the electromotive force of the thermocouple provided in the sample container, and measures the change in heat with respect to the temperature.
  • the calorific value change curve with respect to temperature change is called DTA curve.
  • the hollow silica fine particles of the present invention exhibit excellent effects not found in conventional silica fine particles or hollow silica fine particles. Regarding this excellent effect, specifically, when a composition for forming a transparent film obtained by blending the hollow silica fine particles of the present invention into a binder is cured on a substrate, for example, it has good properties. A substrate with a transparent coating can be obtained. In particular, compared with the case where a substrate with a transparent coating is prepared using a composition for forming a transparent coating composed of conventional silica fine particles or hollow silica fine particles, whitening (whitening) that occurs in the transparent coating is suppressed. It has succeeded in improving the scratch resistance and adhesion.
  • the transparent coating is whitened, resulting in insufficient scratch resistance and adhesion.
  • the organosilyl group is a substituent that is firmly bonded to the surface of the hollow silica fine particles, and suppresses aggregation of the silica fine particles in the transparent film, which causes whitening of the transparent film. It is guessed that it contributes to doing.
  • the presence of the organosilyl group contributes to the improvement of the dispersibility of the silica fine particles in the organosol and the transparent coating, and the densification of the transparent coating by chemical bonding with the binder resin. It is presumed to impart scratch resistance and adhesion.
  • the surface treatment is performed by a method not corresponding to the method for producing hollow silica fine particles of the present invention.
  • the hollow silica fine particles a decrease in mature weight of 1.0% by weight or higher at 200 ° C or higher is not observed, so that the surface-treated step force and the strong bond are not formed.
  • the effect as seen in the hollow silica fine particles of the present invention is hardly exhibited as in the case of the conventional hollow silica fine particles.
  • the hollow silica fine particles of the present invention in addition to the thermogravimetric characteristics, also in the differential heat retention characteristics, a specific peak is observed at 200 ° C to 500 ° C. In the case of hollow silica fine particles that have been surface-treated by a method that does not correspond to the method for producing silica fine particles or the hollow silica fine particles of the present invention, such a peak cannot be seen.
  • the peak of the DTA curve represents an exothermic reaction accompanying the elimination of an organic group.
  • the peak of the DTA curve usually appears in the temperature range (200 ° C. to 500 ° C.) where the thermogravimetric characteristics appear.
  • the average particle size of the hollow silica fine particles of the present invention is preferably in the range of 5 to 300 nm. Hollow silica fine particles having an average particle diameter in this range are preferred for obtaining a transparent film. Hollow silica fine particles with an average particle diameter of less than 5 nm are difficult to obtain! On the other hand, when the thickness exceeds 300 nm, light scattering increases, and the reflection becomes large in the thin film, so that the antireflection function cannot be exhibited. As a more preferable average particle size range of the hollow silica fine particles of the present invention, a range of 10 to 200 nm is recommended, and a range of 10 to LO Onm is more preferable.
  • the specific surface area of the hollow silica fine particles of the present invention is preferably in the range of 50 to 1500 m 2 / g in order to obtain the dispersibility and stability of the hollow silica fine particles in the solvent or in the film formation.
  • it is less than 5 Om 2 / g, it is difficult to obtain hollow silica fine particles having a low refractive index.
  • it exceeds 1500 m 2 / g, the dispersion stability of the hollow silica fine particles is lowered, which is not desirable.
  • a range of 50 to 200 m 2 / g is recommended.
  • the hollow silica fine particles of the present invention are required to exhibit a weight loss of 1.0% by weight or more in thermogravimetry in a temperature range of 200 ° C to 500 ° C.
  • a substrate with a transparent coating formed by blending hollow silica fine particles with a thermal weight loss of less than 1.0% by weight whitening occurs, resulting in insufficient scratch resistance and adhesion.
  • thermogravimetric reduction temperature Those having a thermal weight loss of 1.05% by weight or more are preferred in the range of 200 to 500 ° C. 1. Those showing a decrease in mature weight of 5% by weight or more are more preferred.
  • the hollow silica fine particles of the present invention preferably exhibit a peak in the differential heat retention measurement in the temperature range of 200 ° C to 500 ° C in the differential heat retention measurement. Yes. Usually, when the thermogravimetric decrease is shown in the same temperature range, at least one peak is also confirmed in the differential heat retention measurement.
  • the hollow silica fine particle of the present invention has an organic group directly bonded to a silicon atom on the surface thereof.
  • the type of organic group it has an affinity with a binder for preparing a transparent film-forming composition, particularly an organic resin, and is obtained by curing the transparent film-forming composition on a substrate.
  • the substrate is not limited as long as it does not cause whitening of the transparent film and does not impair scratch resistance and adhesion.
  • a hydrocarbon group or a carbon atom or a different atom other than a hydrogen atom is not limited. It may be a hydrocarbon group containing an atom.
  • the hydrocarbon group may be aliphatic, aromatic, saturated hydrocarbon group, or unsaturated hydrocarbon group. Further, it may contain a double bond or a triple bond or may have an ether bond.
  • hetero atom examples include an oxygen atom, a nitrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a sulfur atom, a silicon atom, a boron atom, an aluminum atom, a magnesium atom, a sodium atom, a lithium atom, a calcium atom, Examples include potassium atom, but are not limited thereto.
  • Preferable examples of the organic group directly bonded to the silicon atom include an organic group having a saturated or unsaturated hydrocarbon group having 1 to 18 carbon atoms and a halogenated hydrocarbon group having 1 to 18 carbon atoms. The group can be mentioned.
  • the hollow silica fine particles of the present invention are usually dispersed in an organic solvent.
  • Silica thick The degree is preferably 1 to 70% by weight, more preferably 3 to 40% by weight, more preferably 3 to 40% by weight.
  • the hollow silica fine particles of the present invention have the following general formula (1) from the viewpoints of adhesion to the substrate of the transparent coating containing the hollow silica fine particles of the present invention, prevention of whitening of the coating, and scratch resistance.
  • R is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • R is a divalent hydrocarbon group having 1 to 12 carbon atoms
  • the hollow silica fine particles of the present invention preferably have an organic group represented by the following general formula (3).
  • the hollow silica fine particles of the present invention have an average particle diameter of 5 to 300 nm and a specific surface area of 50 to 1500 m 2 Zg measured by a dynamic light scattering method, and cavities are formed inside the outer shell.
  • Hollow silica fine particles, and thermogravimetry (TG) shows a weight loss of 1.0% or more in the temperature range of 200 ° C to 500 ° C, and retains differential heat in the same temperature range.
  • DTA it is a hollow silica fine particle having a positive DTA peak and having an organic group directly bonded to a silicon atom on the surface thereof.
  • hollow silica fine particles of the present invention use known hollow silica fine particles as a raw material. It is. Generally, hollow silica fine particles have pores in the outer shell. In the hollow silica fine particles of the present invention, pores in the outer shell may be present, or the pores may disappear due to heating during the process of the production method as described below. .
  • hollow silica fine particles used as the raw material of the present invention those having an average particle diameter of 5 to 300 nm and a specific surface area of 50 to 1500 m 2 Zg are used.
  • the raw material hollow silica fine particles include, for example, an aqueous solution of silicate and Z or acidic silicic acid solution, and an alkali-soluble inorganic compound aqueous solution, an alkaline aqueous solution of pHIO or higher, or pHIO in which seed particles are dispersed as required.
  • a core particle dispersion in which the molar ratio of silica and an inorganic compound other than silica is in the range of 0.3 to 1.0 is prepared by adding to the above alkaline aqueous solution at the same time.
  • the first silica coating layer is formed on the particles, and then an acid is added to the dispersion to remove part or all of the elements constituting the core particles (Patent Document 6).
  • an organosol of hollow silica fine particles having a silica solid content in the range of 1 to 70% by weight is prepared.
  • a silica sol having hollow silica fine particles prepared using water as a dispersion medium is solvent-substituted to obtain an organosol.
  • an organosol having a silica solid content of 1 to 70% by weight is used by using an ultrafiltration membrane or a rotary evaporator.
  • an organic solvent is used as a solvent when the solvent is replaced.
  • the type of organic solvent is not particularly limited as long as it does not adversely affect the surface coating of the hollow silica fine particles with the silanic compound.
  • solvents such as alcohols, glycols, esters, ketones, nitrogen compounds, aromatics and the like can be used. Usually, alcohols such as methanol and ethanol are selected.
  • silica solid content depending on the type of solvent, 70% by weight or more is not practical if the content is less than 1% by weight, where the hollow silica fine particles are difficult to disperse in the solvent.
  • an organosol having a silica concentration of 1 to 70% by weight is prepared, Silane compound and alkali catalyst are mixed in the range of 30 ° C to 300 ° C, and the amount of water is 0.1 to 50% by weight with respect to the amount of silica. It is characterized by reacting.
  • the amount of the silanic compound added is usually 1 to 50 parts by weight per 100 parts by weight of the hollow silica fine particles. If it is less than 1 part by weight, the proportion of untreated hollow silica fine particles increases, which is not preferable. On the other hand, when it exceeds 50 parts by weight, the silane compound becomes excessive, which is not economical.
  • the amount of Silane compound added is preferably 3 to 25 parts by weight.
  • the silane compound applied to the production method of the present invention is R SIX (R is an organic group, X is water n (4-n)
  • n is an integer of 0-3), specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyl Trimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyljetoxysilane, phenyltriethoxysilane, diphenylmethoxysilane, isobutyltrimethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, burturis (j8-methoxyethoxy) ) Silane, 3, 3, 3—Trifluoropropyltrimethyoxysilane, Methyl 3,3,3—Trifluoropropyldimethoxysilane, j8 (3,4 Tesylsilane, ⁇ -Glycidoxy
  • silanes having an acrylic group silanes having a methacryl group, 3,3,3-trifluoropropyltrimethoxysilane and the like are particularly preferable.
  • the amount of the alkali catalyst added is not particularly limited, but it depends on the type of the alkali catalyst.
  • the alkali catalyst is preferably used for the organosol in which the hollow silica fine particles are dispersed. It is preferable to add in the range of ⁇ 2,000ppm! /. If it is less than 20 ppm, the reaction of the silane compound on the surface of the hollow silica fine particles may not sufficiently proceed. On the other hand, when added over 2,000 ppm, the dispersibility when hollow silica fine particles are dispersed in the binder may be reduced due to excess alkali, and the alkali catalyst is a composition for forming a transparent film. The effect of remaining in the object occurs.
  • alkali catalyst is not particularly limited, but ammonia, alkali metal hydroxides, amine compounds and the like are preferably used. Alternatively, these alkalis may be added in the form of an aqueous solution.
  • the water content in the reaction solution is preferably 0.1 to 50% by weight, more preferably 10% by weight or less, and further preferably 5% by weight or less based on the amount of silica.
  • the surface treatment is effectively carried out by the reaction between the surface of the hollow silica fine particles and the silane compound.
  • the amount is less than 1% by weight, the surface treatment efficiency is low and a stable surface treatment is not performed.
  • the silane compounds tend to react with each other, and as a result, the surface treatment of the hollow silica fine particles is not performed. It will be enough.
  • the reaction temperature when the silane compound is reacted with the hollow silica fine particles is less than 30 ° C, and the reaction rate is not practical.
  • the boiling point of the solvent of the organosol usually, the evaporation of the solvent may cause an increase in the water content, etc., but this is not preferable.
  • the reaction may be carried out at temperatures up to. A temperature range of 40 ° C to below the boiling point of the solvent is recommended for this reaction temperature.
  • reaction time for reacting the hollow silica fine particles with the silane compound is less than 0.1 hour, the reaction may not sufficiently proceed, which is not practical. On the other hand, even if the reaction is continued for more than 100 hours, no improvement is seen in the yield, etc. There is no need to continue.
  • the reaction time is preferably in the range of 3 to 30 hours.
  • the order of adding the silanic compound and the alkali catalyst to the hollow silica fine particle-dispersed organosol is not particularly limited. 1) The alkali catalyst may be added first, and then the silane compound may be added. 2) Silane compound may be added first, followed by addition of alkali catalyst. 3) Silane compound and alkali catalyst may be added simultaneously, but 1) Or the order of addition in 2) is recommended.
  • An organosol having a silica concentration of 1 to 70% by weight in which hollow silica fine particles of the present invention are dispersed is prepared, and a silane compound and an alkali catalyst are added to the organosol in a temperature range of 30 ° C. to 300 ° C.
  • the silane compound and the hollow silica fine particles are reacted under the condition that the water content is 0.1 to 50% by weight with respect to the amount of the silane compound.
  • Hollow silica in which the addition amount is in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the hollow silica fine particles, and the addition amount of the alkali catalyst is in the range of 20 to 2, OOOppm with respect to the organosol.
  • a fine particle production method is recommended.
  • the hollow silica fine particles obtained by this production method showed a weight loss of 1.0% by weight or more in the temperature range of 200 ° C to 500 ° C by thermogravimetry (TG).
  • TG thermogravimetry
  • DTA differential heat retention measurement
  • a positive DTA peak is shown, and such a composition for forming a transparent film comprising hollow silica fine particles and a binder has good adhesion to the substrate, It is excellent in whitening prevention and scratch resistance.
  • an organosol having a silica concentration of 1 to 70% by weight in which hollow silica fine particles are dispersed is prepared, and the organosol is added to the organosol in a temperature range of 30 ° C to 300 ° C.
  • Silane compound, polyfunctional acrylate ester resin having Z or hydrophobic functional group, and alkali catalyst were added, and the water content was 0.1 to 50% by weight with respect to the amount of silica.
  • An example is a method for producing hollow silica fine particles, which comprises reacting a silane compound with the hollow silica fine particles.
  • Examples of the polyfunctional acrylate ester resin having a hydrophobic functional group that can be used here include pentaerythritol tritalylate, pentaerythritol tetratalylate, trimethylolpropane tri (meth) atarylate, pentaerythritol tetratalylate, Ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexatalate, methylmethacrylate, ethylmethacrylate, butylmethacrylate, isobutylmethacrylate, 2-ethylhexylmethacrylate, iso Decylmethacrylate, n-lauryl acrylate, n-stearyl acrylate, 1,6-hexanediol dimetatalylate, perfluorooctyl methacrylate, trifluoroethyl methacrylate, ure
  • the weight ratio to the hollow silica fine particles (solid content weight of the hydrophobic multifunctional acrylate ester resin Z weight of the hollow silica fine particles) Is not particularly limited, but is usually in the range of 0.001 to 2, or 0.0005 to 1.5.
  • composition for forming a transparent film of the present invention comprises the hollow silica fine particles of the present invention and a binder.
  • the noinder refers to a component that can form a film on the surface of a base material, and is selected from organic resins that meet conditions such as adhesion to the base material, hardness, and coatability.
  • An organic resin, a hydrolyzable organosilicon compound or a partially hydrolyzed condensate thereof is used by being dispersed in a solvent as necessary.
  • polyester resin acrylic resin, urethane resin, vinyl chloride resin, epoxy resin, melamine resin, fluorine resin, silicone resin, petital resin, phenol resin, Vinyl acetate resin, UV curable resin, electron beam cured resin, emulsion resin, water-soluble resin, hydrophilic resin, mixtures of these resins, copolymers of these resins
  • resin for coatings such as modified products, hydrolyzable organosilicon compounds such as alkoxysilanes, and partial hydrolysis condensates thereof.
  • a calo-water-decomposable organosilicon compound as a binder, for example, by adding water and a catalyst (acid or alkali) to a mixture of alkoxysilane and alcohol, partial hydrolysis of the alkoxysilane is performed.
  • a catalyst acid or alkali
  • a method can be used in which a decomposition condensate is prepared and used as a binder.
  • the composition for forming a transparent film of the present invention contains 10 to parts by weight of the binder in terms of solid content with respect to 100 parts by weight (silica part) of the hollow silica fine particles.
  • the amount of the Norder is less than 10 parts by weight, the hardness of the film may not be obtained, or the cured state may not be reached. If the amount exceeds 10,000 parts by weight, the low refractive index function cannot be achieved.
  • a range of preferably 50 to L000 parts by weight is recommended.
  • composition for forming a transparent film of the present invention may contain a photoinitiator, a curing catalyst, and the like depending on the method for curing the binder.
  • photoinitiators and curing catalysts examples include radical initiators such as peroxides, azo compounds, titanium compounds, tin compounds, platinum catalysts, isocyanates, etc. It is not limited to these.
  • the composition for forming a transparent film of the present invention is usually prepared by mixing an organosol in which the hollow silica fine particles of the present invention are dispersed and a binder.
  • the binder may be dispersed in an organic solvent.
  • the composition for forming a transparent film of the present invention can be usually obtained by sufficiently mixing and stirring the mixture in a weight ratio range using a mixer or the like.
  • the composition for forming a transparent film of the present invention contains an organic solvent derived from an organosol or a binder, and is appropriately diluted with an organic solvent depending on the application.
  • composition for forming a transparent film of the present invention is preferably diluted with 100 to 5000 parts by weight of an organic solvent with respect to 100 parts by weight of a solid content comprising the hollow silica fine particles of the present invention and a binder (solid content). Is used.
  • the surface functional groups of the hollow silica fine particles coated on the surface of the substrate to be applied may be performed.
  • solvents include
  • Alcohols such as methanol, ethanol, isopropanol, n-butanol, methyl isocarbinol;
  • Ketones such as acetone, 2-butanone, ethylamyl ketone, diacetone alcohol, isophorone, cyclohexanone;
  • Amides such as N, N dimethylformamide, N, N dimethylacetamide; jetyl ether, isopropyl ether, tetrahydrofuran, 1, 4 dioxane, 3,
  • Ethers such as 4-dihydro 2H pyran
  • Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether;
  • Glyconoleate acetates such as 2-methoxyethinoreacetate, 2-ethoxychetinoreacetate, 2-butoxychetinoreaacetate;
  • Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, and ethylene carbonate;
  • Aromatic hydrocarbons such as benzene, toluene, xylene;
  • Aliphatic hydrocarbons such as hexane, heptane, iso-octane, cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene;
  • Sulfoxides such as dimethyl sulfoxide
  • Examples thereof include pyrrolidones such as N-methyl-2-pyrrolidone and N-octyl 2-pyrrolidone. These dispersion media may be used alone or in combination of two or more. Among these, a polar solvent can be particularly preferably used.
  • composition for forming a transparent film of the present invention may contain a preservative, an antibacterial agent, an antifoaming agent, an ultraviolet deterioration preventing agent, a dye, a leveling agent and the like depending on the purpose and application.
  • the surface charge amount (Q) As a preferred embodiment of the composition for forming a transparent film of the present invention, the surface charge amount (Q)
  • the hollow silica fine particles having A in the range of 5 to 20 ⁇ eqZg, the binder and the polar solvent, and the concentration (C) of the hollow silica fine particles in the range of 0.1 to 20% by weight examples thereof include a composition for forming a transparent film, wherein the concentration (C) as a solid content is in the range of 1 to 50% by weight.
  • the surface charge amount (Q) of the hollow silica fine particles is preferably in the range of 5 to 20 eqZg.
  • the surface charge amount (Q) of the hollow silica fine particles is within the above range, such hollow silica fine particles are contained.
  • the uneven distribution of the hollow silica fine particles is likely to occur, and the intermediate point in the thickness direction of the coating Hollow silica fine particles are unevenly distributed on the outer surface side and dispersed.
  • a specific dispersion state of the hollow silica fine particles there are a single layer shape or a multilayer shape, and there are cases where they are scattered.
  • the hollow silica fine particles When the surface charge amount (Q) of the hollow silica fine particles is less than 5 ⁇ eqZg, the hollow silica fine particles
  • A exceeds 20 / z eqZg, the case where it is not a hollow silica fine particle is usually included.
  • a film obtained by curing the composition for forming a transparent film containing the hollow silica fine particles is easily whitened, and the tendency of the hollow silica fine particles to be uniformly dispersed in the film is increased.
  • the amount of the hollow silica fine particles in the transparent film-forming composition is such that the concentration (C) of the hollow silica fine particles is in the range of 0.1 to 20 wt%, and the solid content of the binder
  • a transparent film-forming composition characterized in that the concentration (C) of is in the range of 1 to 50% by weight.
  • the concentration (C) of the hollow silica fine particles is less than 0.1% by weight, the hollow silica fine particles are not contained.
  • the hollow silica fine particles are unevenly distributed and optical characteristics and electrical characteristics due to dispersion are hardly exhibited.
  • concentration of hollow silica fine particles (C) exceeds 20% by weight, a transparent silica particle containing hollow silica fine particles is contained.
  • the tendency for the hollow silica fine particles to be monodispersed in the film formed by curing the composition for forming a bright film is increased.
  • the concentration of hollow silica fine particles (C) is preferably 1 to 10% by weight.
  • the hollow silica fine particles preferably have an average particle diameter in the range of 5 to 300 nm.
  • a range of 10 to 200 nm is recommended, and a range of 10 to 100 nm is more preferable.
  • the method for producing a composition for forming a transparent film is also applied to the method for producing a composition for forming a transparent film according to a preferred embodiment (1) of the composition for forming a transparent film.
  • the composition for forming a transparent film has a surface strength (QA) of 5 to 20 / ⁇ . It includes metal oxide fine particles having a surface charge amount (QB) in the range of Sl lSO / z eqZg, a binder and a polar solvent.
  • the surface charge amount (QB) of the metal oxide fine particles and the hollow silica fine particles The value of [(QB)-(QA)] is in the range of 20-100; z eqZg, and the concentration of hollow silica fine particles (C PA) is 0.1-20.
  • the surface charge (QA) of the hollow silica fine particles is in the range of 5 to 20 eqZg
  • the surface charge (Q ⁇ ) of the metal oxide fine particles is in the range of 51 to 150 / ⁇ ⁇
  • the surface charge is (Q ⁇ ) and (
  • QA) difference [(QB)-(QA;)] is in the range of 20 to: LOO / z eqZg, so that the transparent film-forming composition is cured to form a transparent film.
  • the metal oxide fine particles are unevenly distributed and dispersed on the substrate side from the intermediate point in the thickness direction, and the hollow silica fine particles are present on the outer surface side from the intermediate point in the thickness direction. The uneven distribution and the tendency to disperse become stronger.
  • the degree (C) is preferably in the range of 1 to LO weight%, respectively.
  • the metal oxide fine particles when a transparent coating is used for the coating film, the metal oxide fine particles are ZrO, TiO, SbO, ZnO, AlO, SnO, or
  • chain particles in which these particles are connected in a chain or silica-based fine particles having a refractive index of 1.45 or less are preferably used.
  • fine particles having a refractive index of usually 1.60 or more, more preferably 1.80 or more are used as metal oxide fine particles.
  • metal oxide fine particles usually 1.60 or more, more preferably 1.80 or more.
  • Tin fluoride doped phosphorus (PTO) or the like is preferably used.
  • the metal oxide fine particles are usually used as Sb.
  • silica-based fine particles whose surfaces are coated with these conductive materials, or silica-based fine particles having cavities inside.
  • metal oxide fine particles those treated with the silanic compound may be used if desired.
  • hollow silica fine particles according to the fifth invention of the present invention may be used.
  • metal oxide fine particles treated by applying metal oxide fine particles instead of hollow silica fine particles may be used.
  • the substrate is coated with the substrate once and the substrate side from the intermediate point in the thickness direction in the transparent film.
  • the metal oxide fine particles are unevenly distributed and dispersed, and the hollow silica fine particles are unevenly distributed and dispersed on the outer surface side from the intermediate point in the thickness direction.
  • a substrate with a transparent coating can be obtained.
  • metal oxide fine particles are further added in the method for producing the transparent film forming composition. Can be performed.
  • the substrate with a transparent film of the present invention is obtained by curing the composition for forming a transparent film of the present invention on a substrate alone or via another film.
  • the material of the base material is not particularly limited as long as it is a solid material capable of forming a film.
  • glass polycarbonate, acrylic resin, PET, TAC (triacetyl cellulose), MS substrate (copolymer of methyl methacrylate and styrene, a polyolefin-based substrate, etc.
  • MS substrate copolymer of methyl methacrylate and styrene, a polyolefin-based substrate, etc.
  • examples include plastic sheets, plastic films, plastic lenses, plastic panels, cathode ray tubes, fluorescent display tubes, and liquid crystal display plates.
  • Examples of the other coatings include a hard coat film, a planarizing film, a high refractive index film, an insulating film, a conductive resin film, a conductive metal fine particle film, a conductive metal oxide fine particle film, and a primer.
  • the layer formed by can be mentioned.
  • the transparent coated substrate of the present invention may be coated for another purpose.
  • the transparent film-coated substrate of the present invention is obtained by applying the transparent film-forming composition to the substrate by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, followed by drying. If necessary, it can be obtained by curing by heating or ultraviolet irradiation.
  • the transparent film-forming composition of the present invention is applied to a substrate, preliminarily dried at 70 ° C. to 100 ° C., and then using a high pressure mercury lamp or a fusion lamp.
  • the wavelength is cured by irradiating with ultraviolet rays in the range of 300 to 1, OOOOmi / Cm 2 according to the absorption wavelength of the initiator.
  • the refractive index of the transparent film formed on the base material of the present invention varies depending on the mixing ratio of the hollow silica-based fine particles and the binder one component and the refractive index of the binder used, but it has a low refractive index of 1.15 to 1.42. It becomes.
  • a transparent coating (film thickness ⁇ ! ⁇ )
  • the hollow silica fine particles having an average particle diameter of 5 to 300 nm are dispersed in a noda on the substrate and the surface thereof. (10OOOOnm), wherein the hollow silica fine particles are unevenly distributed and dispersed on the outer surface side from the middle point in the thickness direction in the transparent film.
  • a substrate with a transparent coating In which the hollow silica fine particles having an average particle diameter of 5 to 300 nm are dispersed in a noda on the substrate and the surface thereof. (10OOOOnm), wherein the hollow silica fine particles are unevenly distributed and dispersed on the outer surface side from the middle point in the thickness direction in the transparent film.
  • hollow silica fine particles are unevenly distributed on the outer surface side from the intermediate point in the thickness direction of the coating, and the hollow silica fine particles are formed in a single layer shape. Or it exists in the form of multiple layers or dots.
  • the transparent coating is caused by antireflection performance due to the low refractive index of the hollow silica fine particles or the conductivity of the hollow silica fine particles. Antistatic performance is strongly expressed.
  • metal oxide fine particles having an average particle size of 1 to 50 nm and the hollow silica fine particles having an average particle size of 5 to 300 nm are dispersed in a binder on the substrate and the surface thereof.
  • the hollow silica fine particles and the metal oxide fine particles each form a single layer or multiple layers, and therefore the properties resulting from the hollow silica fine particles (such as antireflection performance and antistatic performance). ) And properties (scratch properties, adhesion to a substrate, properties based on a high refractive index, conductivity, etc.) resulting from predetermined metal oxide fine particles.
  • composition for forming a transparent film and the substrate with a transparent film containing the hollow silica fine particles of the present invention can be applied to various uses requiring low refractive index, scratch resistance, and adhesion, and the surface of the display It can be used for optical coatings such as coatings and lenses.
  • reaction mother liquor was prepared and heated to 80 ° C.
  • the pH of the reaction mother liquor 10. is 5, and 1.17 wt 0/0 of ⁇ aqueous sodium 9, OOOg as SiO in uterine fluid, 0.83 weight as Al O
  • a fine particle dispersion was obtained. This was washed with an ultrafiltration membrane to obtain a composite oxide fine particle dispersion having a solid concentration of 13% by weight.
  • E chill silicate SiO 28 weight 0/0
  • the dispersion of the silica-based fine particles (2) was again hydrothermally treated at 200 ° C for 11 hours, and then washed with an ultrafiltration membrane while adding 5 L of pure water to adjust the solid content concentration to 20% by weight. did. Then, using an ultrafiltration membrane, the dispersion medium of this dispersion was replaced with ethanol, and the solid content concentration 2 A 0 wt% organosol was prepared.
  • This organosol is an organosol in which hollow silica fine particles having an average particle diameter of 46 nm, a specific surface area of 123 m 2 Zg, and a pore volume of 0.4596 ml Zg are dispersed (hereinafter referred to as “hollow silica sol A”).
  • An organosol consisting of a coated hollow fine particle was prepared.
  • the average particle size was measured by dynamic light scattering method using laser light.
  • the sample silica sol was diluted with 0.58% ammonia water to adjust the silica concentration to 1% by mass, and the average particle size was measured using the following particle size measuring apparatus.
  • a sample obtained by drying 50 ml of sol at 110 ° C for 20 hours was measured by a nitrogen adsorption method (BET method) using a specific surface area measurement device (manufactured by UASA Iotas Co., Ltd., Multisoap 12). Set.
  • HNO is added to 50 ml of silica sol to adjust the pH to 3.5, and 1-propano
  • BET method nitrogen adsorption method
  • 0.5 g of a sample is placed in a measurement cell, degassed for 20 minutes at 300 ° C in a mixed gas stream of nitrogen 30v% Z helium 70v%, and the sample is added to the above sample. Maintain the temperature of liquid nitrogen in a mixed gas stream and allow nitrogen to equilibrate to the sample. Next, the sample temperature was gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the silica sol was calculated using a calibration curve prepared in advance.
  • thermothermal gravimetric simultaneous measurement was performed using a differential thermothermal gravimetric measuring device (Themoplus TG8110, manufactured by Rigaku Corporation).
  • the measurement conditions are an air atmosphere, a temperature rising rate of 10 ° C Z min, and a temperature range of room temperature to 500 ° C.
  • Example 1 For the sample for differential thermothermal gravimetric measurement (TGZDTA) measurement of hollow silica fine particles in Example 1 and all other examples and all comparative examples, after removing the organosol solvent prepared as described above, After thoroughly washing with hexane to remove hexane, it was dried with a vacuum drier and used as a powder sample (15 mg).
  • the coated hollow silica fine particles used in Examples 1 to 10, Comparative Example 3, and Examples 13 to 16 are each kept at a differential heat in a temperature range of 200 ° C. to 500 ° C.
  • DTA when the X axis was temperature and the Y axis was calorific value, each had a positive peak due to an exothermic reaction at the peak position (temperature) shown in Table 1.
  • the surface charge of the hollow silica fine particles or metal oxide fine particles can be measured by using a surface potential titration device (Mutek Co., Ltd. pcd-03), and using a dispersion of hollow silica fine particles or metal oxide fine particles ( The surface charge per gram of the particle (; z eq / g) was determined by titrating with a 0.001N polysalt / diaryldimethylform . So The results are shown in Table 1.
  • each measurement sample (lm ⁇ ) is collected in a syringe, and 0.01 g to 0.02 g is collected from a moisture meter (Karfe Fisher Co., Ltd., Karl Fischer moisture meter MKC). — Measured at 510).
  • Karl Fischer moisture meter MKC Karl Fischer moisture meter MKC
  • An organosol consisting of a coated hollow microparticle with a concentration of 2% by weight was prepared.
  • Organosol consisting of coated hollow fine particles with a concentration of 20% by weight was prepared.
  • An organosol consisting of 1% coated hollow fine particles was prepared.
  • the amount is 200 ppm as ammonia and mixed well.
  • 4 g of acrylic silane KBM5103 manufactured by Shin-Etsu Chemical Co., Ltd.
  • An organosol consisting of 1% coated hollow fine particles was prepared.
  • An organosol made of covered hollow fine particles was prepared.
  • Example 7 200 g of the hollow silica sol A (silica solid content concentration 20% by weight) was prepared, and the solvent was replaced with methanol in an ultrafiltration membrane, and the organosol 100g (water) having a SiO content of 20% by weight.
  • An organosol made of covered hollow fine particles was prepared.
  • An organosol composed of coated hollow fine particles was prepared.
  • KBM503) 4g (equivalent to 20 parts by weight with respect to 100 parts by weight of SiO) is added and filled.
  • Heating was carried out at 50 ° C. for 15 hours while stirring at 1.0 wt% for 2 minutes. After the heating is completed, the reaction solution is cooled to room temperature, washed with an ultrafiltration membrane, and coated with a SiO concentration of 20% by weight. An organosol made of covered hollow fine particles was prepared.
  • KBM503 4g (equivalent to 20 parts by weight per 100 parts by weight of SiO) and 28%
  • the aqueous ammonia solution was adjusted to 400 ppm as ammonia with respect to 100 g of the organosol to prepare a reaction solution (water content was 1.0% by weight with respect to the SiO content). 50
  • the mixture was heated to ° C and heated at 50 ° C with stirring for 15 hours. After heating, the reaction solution is cooled to normal temperature, washed with an ultrafiltration membrane, and coated from hollow fine particles with a SiO concentration of 20% by weight.
  • An organosol was prepared.
  • the amount was 0.5% by weight based on the SiO content.
  • reaction solution water content was 0.5% by weight with respect to the SiO content
  • the reaction solution was used. Warm this to 50 ° C and stir
  • the mixture was heated at 50 ° C for 15 hours. After the heating is completed, the reaction solution is cooled to room temperature, washed with an ultrafiltration membrane, and an organosol made of coated hollow fine particles with a SiO concentration of 20% by weight is obtained.
  • the amount was 0.5% by weight based on the SiO content).
  • An organosol consisting of a coated hollow fine particle was prepared.
  • Example 11 Each transparent film-forming composition obtained in Example 11 was applied to a PET film by a bar coater method and dried at 80 ° C. for 1 minute. I got the material.
  • the coating performance of this substrate with a transparent coating includes whitening prevention, scratch resistance, adhesion, transparent coating refractive index, antiglare properties, pencil hardness, surface resistance, total light transmittance, haze, and wavelength of 550 nm.
  • the light reflectance of was measured. The following measurements were similarly performed for Examples 13 to 16 and Comparative Example 4 shown below, and the results are shown in Table 1.
  • the uncoated PET film had a total light transmittance of 90.7%, a haze of 2.0%, and a reflectance of light having a wavelength of 550 nm of 7.0%.
  • the whitening prevention effect of the substrate with a transparent coating was measured, and the results are shown in Table 1.
  • the whitening prevention effect was evaluated in the following three steps by placing the substrate with a transparent coating in a dryer at a temperature of 80 ° C for 30 minutes and visually observing the presence or absence of cracks or whitening of the coating.
  • the substrate with the transparent coating was measured for scratch resistance, and the results are shown in Table 1.
  • the scratch resistance was evaluated by the following four steps using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the film surface.
  • the refractive index of the transparent coating was measured with an ellipsometer (ULVAC, EMS-1).
  • the back surface of the substrate with the transparent coating was evenly applied with black spray, 2 m away from the 30 W fluorescent lamp, and the reflection of the fluorescent lamp was visually confirmed to evaluate the antiglare property.
  • the pencil hardness was measured with a pencil hardness tester according to JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the surface of the film, and a predetermined load was applied and the film was pulled at a constant speed to observe the presence or absence of scratches.
  • the surface resistance was measured with a surface resistance meter (manufactured by Mitsubishi Yuka Co., Ltd .: LORESTA).
  • the total light transmittance and haze were measured with a haze meter (Nippon Denshoku Co., Ltd., NDH2000).
  • the reflectance of light with a wavelength of 550 nm was measured with a spectrophotometer (JASCO Corporation, Ubest-55).
  • Silica-based hollow fine particle dispersion sol manufactured by Catalytic Chemical Industry Co., Ltd .: Through rear 1420, average particle diameter 60 nm, concentration 20.5 wt%, dispersion medium: isopropanol, particle refractive index 1. 30 as low refractive index component The water content was 0.5% by weight based on the SiO content. To 100 g of this sol
  • a silica-based hollow fine particle-dispersed sol that was surface-treated by stirring for a time was obtained (solid content 20.3%).
  • the coating liquid for transparent film formation (A-1) was applied to a PET film (thickness 100 / ⁇ ⁇ , refractive index 1.65, substrate transmittance 88.0%, Hazel. 0%, reflectance 5.1%).
  • - co - data in applying, after drying for 1 minute at 70 ° C, and a high-pressure mercury lamp (80W / C m) for 1 minute irradiating the cured substrate with a transparent film (1) preparation.
  • the film thickness of the transparent coating at this time was 5 m.
  • silica-based hollow fine particles formed a layer of lOOnm in the upper part, and the lower part was composed of only the matrix and the particles. The existence was not recognized.
  • Silica-based hollow fine particle dispersion sol manufactured by Catalytic Chemical Industry Co., Ltd .: Through rear 1420, average particle size 60 nm, concentration 20.5 wt%, dispersion medium: isopropanol, particles as low refractive index component A refractive index of 1.30 and a water content of 0.5% by weight with respect to the SiO content were used.
  • Metaatari mouthoxypropyltrimethoxysilane 1.88 g (KBM-503 Si 0 component 81.2% manufactured by Shin-Etsu Silicon Co., Ltd.) was mixed, and 28% aqueous ammonia solution was added to 100 g of the organosol.
  • silica-based hollow fine particle dispersion sol (Catalyst Kasei Kogyo Co., Ltd .: Through 1420-120, average particle size 120 nm, concentration 20.5 wt%, dispersion medium: isopropanol, particle refractive index 1.20 The water content was 0.5% by weight based on the SiO content. 100g of this sol
  • Transparent film-forming paint (A-3) is applied to PET film (thickness 100 / ⁇ ⁇ , refractive index 1.65, substrate transmittance 88.0%, Hazel. 0%, reflectance 5.1%).
  • - data in applying, after 1 minute drying at 70 ° C, and a high-pressure mercury lamp (80W / C m) of the cured by irradiation for 1 minute substrate with a transparent film (3) preparation. The film thickness at this time was 5 m. A part of the transparent coating was cut perpendicularly in the vertical direction, and the cross section was observed with a transmission electron microscope. Silica hollow microparticles formed a layer with a thickness of 120 nm at the top, and the bottom was the presence of particles only with the matrix. Was not allowed o
  • Silica-based hollow fine particle dispersion sol manufactured by Catalytic Chemical Industry Co., Ltd .: Through rear 1420, average particle diameter 60 nm, concentration 20.5 wt%, dispersion medium: isopropanol, particle refractive index 1. 30 as low refractive index component The water content was 0.5% by weight based on the SiO content. To 100 g of this sol
  • ATO fine particle dispersion sol as an antistatic high refractive index component (manufactured by Catalytic Chemical Industry Co., Ltd .: ELCO M V-3501, average particle diameter 8 nm, concentration 20.5 wt%, dispersion medium: ethanol, particle refractive index 1.75) was used. 100 g of this sol was mixed with 0.15 g of ⁇ -atarioxypropyltrimethoxysilane (KBM-5103 SiO component 81.2%, manufactured by Shin-Etsu Silicone Co., Ltd.), and ultrapure water 1 was added ( ⁇
  • the surface-treated ATO fine particle dispersed sol was obtained by stirring for 5 hours (solid content: 20.0%).
  • Paint for transparent coating (A-6) TAC film (thickness 80 / ⁇ ⁇ , refractive index 1.48, substrate transmittance 88.0% HazeO. 0%, reflectance 4.8%) coated with a bar coater and, after drying for 1 minute at 70 ° C, it was made regulating a high pressure mercury lamp (80W / C m) of the cured by irradiation for 1 minute substrate with a transparent film (4). The film thickness at this time was 5 m.
  • Silica-based hollow fine particle dispersion sol manufactured by Catalytic Chemical Industry Co., Ltd .: Through rear 1420, average particle diameter 60 nm, concentration 20.5 wt%, dispersion medium: isopropanol, particle refractive index 1. 30 as low refractive index component The water content was 0.5% by weight based on the SiO content.
  • a silica-based hollow particle dispersed sol was obtained by mixing 1 fluorooctyltriethoxysilane l g (AY43-158E 100% manufactured by Toray Dow Co., Ltd.) and stirring the mixture for 5 hours at 40 ° C. (Solid content 20.3%).
  • Paint transparent coating (R-1) on PET film (thickness 100 m, refractive index 1.65, substrate transmittance 88.0%, Hazel. 0%, reflectance 5.1%) data - in coating and dried for 1 minute at 70 ° C, high-pressure mercury lamp (80W / C m) for 1 minute irradiation with a transparent film substrate is cured by the (R -1) was prepared.
  • the film thickness at this time was 5 m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Description

明 細 書
中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜 付基材
技術分野
[0001] 本発明は、シランィ匕合物により表面が処理された中空シリカ微粒子、その製造方法
、該中空シリカ微粒子を含む透明被膜形成用組成物、および、該透明被膜形成用 組成物が硬化した透明被膜を表面に有する基材に関するものである。
背景技術
[0002] 従来、粒径が 0. 1〜380 μ m程度の中空シリカ粒子は公知である(特許文献 1、特 許文献 2参照)。また、珪酸アルカリ金属水溶液力 活性シリカをシリカ以外の材料か らなるコア上に沈殿させ、該材料をシリカシェルを破壊させることなく除去することによ つて、稠密なシリカシェル力 なる中空粒子を製造する方法が公知である(特許文献 3参照)。
さらに、外周部が殻、中心部が中空で、殻は外側が緻密で内側ほど粗な濃度傾斜 構造をもったコア'シェル構造であるミクロンサイズの球状シリカ粒子が公知である(特 許文献 4参照)。
[0003] また、本願出願人は先に、多孔性の無機酸ィ匕物微粒子の表面をシリカ等で完全に 被覆することにより、低屈折率のナノメーターサイズの複合酸化物微粒子が得られる ことを提案すると共に (特許文献 5参照)、さらに、シリカとシリカ以外の無機酸ィ匕物か らなる複合酸ィ匕物の核粒子にシリカ被覆層を形成し、っ 、でシリカ以外の無機酸ィ匕 物を除去し、必要に応じてシリカを被覆することによって、内部に空洞を有する低屈 折率のナノメーターサイズのシリカ系微粒子が得られることを提案して ヽる(特許文献 6参照)。
[0004] また、有機榭脂フィルムに球状のシリカ微粒子を添加することは、公知の技術であり 、得られるフィルムの透明性が向上することが知られている (特許文献 7参照)。
このようなシリカ微粒子を含有するフィルムや透明被膜においては、しばしば、得ら れるフィルムや透明被膜の白化の問題が生じていた。 [0005] 特許文献 8では、(a)—般式: RSi(OR ) 〔R:炭素数 1〜6の炭化水素基、 R:炭素
1 3 1 数 1〜6のアルキル基〕のトリアルコキシシラン 100重量部と、一般式 Si (OR ) 〔R:炭
2 4 2 素数 1〜6のアルキル基〕のテトラアルコキシシラン 20〜 130重量部と力もなる有機ケ ィ素化合物の部分縮合物、(b)トリアルコキシシランを RSiO として計算し、テトラァ
3/2
ルコキシシランを SiOとして計算した前記(a)の部分縮合物(RSiO +SiO ) 100
2 3/2 2 重量部に対し、 0. 05〜200重量部のシリカ微粒子を含有することを特徴とする被覆 用組成物においては、シリカ微粒子の配合量を制限することにより塗膜の白化が抑 制されることについて記載がある。
[0006] 特許文献 9では、(A)ァセチルァセトナトキレ―ト化合物および (B)無機化合物微 粒子が、水と有機溶媒とからなる混合溶媒中に均一に溶解または分散されている透 明被膜形成用塗布液を基材に適用して、硬化して得られる透明被膜の白化防止に ついて、前記無機化合物粒子として、平均粒子径が 50nm以下のものを使用する方 法を提案している。
[0007] 特許文献 10では、擦過等による表面への傷が付き難ぐ低屈折率層の剥離がない ような反射防止フィルムとして、 透明プラスチックフィルム基材上の少なくとも一方に、 1分子中に 2個以上の (メタ)アタリロイルォキシ基を含有する多官能性モノマーを主 成分とする UV硬化型榭脂から構成されるマトリックス中に平均粒径 0. 5〜: LOOnmの 無機微粒子を添加したハードコート層および、その上に有機ケィ素化合物、またはそ れからなる重合体と、有機ケィ素化合物、またはそれからなる重合体との共重合体か らなるマトリックス中に、平均粒径 0. 5〜: LOOnmのシリカ微粒子を添カ卩した低屈折率 層を有することを特徴とする反射防止フィルムが提案されており、同文献中には、 20 Onm未満の無機微粒子を使用することにより光の散乱によるハードコート層が白化を 抑止できる旨の記載がある。
[0008] 中空シリカ微粒子を含有する透明被膜および透明被膜形成用塗布液としては、例 えば、特許文献 11には、基材と、該基材表面に設けられた透明被膜とからなり、該透 明被膜が、(0フッ素置換アルキル基含有シリコーン成分を含むマトリックスと、 GO外殻 層を有し、内部が多孔質または空洞となっている無機化合物粒子とを含み、かつ前 記透明被膜中にお 、て、多孔質または空洞が維持されて 、ることを特徴とする透明 被膜付基材に関する発明が開示されている。しかしながら、このような中空シリカ微粒 子とバインダーを含んでなる透明被膜においては、中空シリカ微粒子固有の特質で ある 1. 25〜: L 45程度の低屈折率は実現できるものの、被膜の白化が発生し易ぐ また、基材に対する密着性および耐擦傷性にっ ヽても一層の改善が求められて 、た
[0009] 特許文献 1 :特開平 6— 330606号公報
特許文献 2:特開平 7— 013137号公報
特許文献 3:特表 2000— 500113号公報
特許文献 4:特開平 11一 029318号公報
特許文献 5 :特開平 7— 133105号公報
特許文献 6:特開 2001— 233611号公報
特許文献 7:特開平 4 - 348147号公報
特許文献 8:特開平 1― 306476号公報
特許文献 9:特開平 4— 247427号公報
特許文献 10:特開 2004— 326100号公報
特許文献 11 :特開 2002— 79616号公報
発明の開示
発明が解決しょうとする課題
[0010] 中空シリカ微粒子とバインダーを含むコーティング組成物を調製して、基材上に透 明被膜を形成した場合、通常のシリカ微粒子とバインダーを含む組成物を調製して、 同様に透明被膜を形成した場合に比べて、低屈折率の透明被膜が得られるものの、 中空シリカ微粒子を用いた場合、透明被膜に白化(白色化)が生じ易!、と 、う問題が あった。また、耐擦傷性や密着性についても、更なる改善が求められていた。
[0011] 本発明は、このような問題を解決するためになされたものであり、中空シリカ微粒子 とバインダーを含むコーティング組成物を調製して、基材上に透明被膜を形成した 場合でも、透明被膜の白化が抑制され、優れた耐擦傷性や密着性を発揮することが 可能な中空シリカ微粒子およびその製造方法を提供することを目的とするものである また、本発明は、そのような優れた効果を発揮できる中空シリカ微粒子を含有する 透明被膜形成用組成物および、該透明被膜形成用組成物を硬化して得られる透明 被膜付基材を提供することを目的とする。
[0012] 本発明は、更に透明被膜付基材の透明被膜中に、中空シリカ微粒子を層状に偏 在させてなる透明被膜付基材およびそのための透明被膜形成用組成物を提供する ことを目的とするものである。また、本発明は、透明被膜付基材の透明被膜中に、中 空シリカ微粒子および金属酸化物微粒子をそれぞれ層状に偏在させてなる透明被 膜付基材およびそのための透明被膜形成用組成物を提供することを目的とするもの である。
課題を解決するための手段
[0013] 本出願の第 1の発明は、動的光散乱法により測定される平均粒子径が 5〜300nm 、比表面積が 50〜1500m2Zgであり、外殻の内部に空洞が形成されてなる中空の シリカ微粒子であって、熱重量測定 (TG)により、 200°C〜500°Cの温度範囲におい て 1. 0重量%以上の重量減少を示すことを特徴とする中空シリカ微粒子である。 本出願の第 2の発明は、前記中空シリカ微粒子が 200°C〜500°Cの温度範囲での 示差熱保持測定 (DTA)にお ヽて正の DTAピークを有することを特徴とする。
[0014] 本出願の第 3の発明は、前記中空シリカ微粒子が、その表面に珪素原子に直接結 合した有機基を有することを特徴とする。
本出願の第 4の発明は前記中空シリカ微粒子が、その表面に有する珪素原子に直 接結合した有機基が飽和または不飽和の炭素数 1〜18の炭化水素基、炭素数 1〜 18のハロゲンィ匕炭化水素基力も選ばれる 1種以上のものであることを特徴とする。
[0015] 本出願の第 5の発明は、中空シリカ微粒子が分散したシリカ濃度 1〜70重量%の オルガノゾルを調製し、 30°C〜300°Cの温度範囲で、該オルガノゾルにシラン化合 物およびアルカリ触媒を添加し、シリカ配合量に対して水分量が 0. 1〜50重量%の 条件で、該シランィ匕合物と該中空シリカ微粒子を反応させることを特徴とする中空シリ 力微粒子の製造方法である。
[0016] 本出願の第 6の発明は、前記シラン化合物の添加量が、前記中空シリカ微粒子 10 0重量部に対して、 1〜50重量部の範囲にあり、前記アルカリ触媒の添加量が、前記 オルガノゾルに対して、 20〜2, OOOppmの範囲にあることを特徴とする中空シリカ微 粒子の製造方法である。
本出願の第 7の発明は、前記第 1〜第 4の 、ずれかの発明に係る中空シリカ微粒 子とバインダーを含むことを特徴とする透明被膜形成用組成物である。
本出願の第 8の発明は、前記第 7の発明に係る透明被膜形成用組成物が硬化した 透明被膜を表面に有することを特徴とする透明被膜付基材である。
[0017] 本出願の第 9の発明は、 前記第 4の発明に係る中空シリカ微粒子が、下記一般式
(1)または一般式 (2)の有機基を有するものであり、熱重量測定 (TG)により、 200°C 〜500°Cの温度範囲において 1. 5重量%以上の重量減少を示すことを特徴とする 中空シリカ微粒子である。
一般式(1): -R-OC (=0) CCH =CH
3 2
(Rは炭素数 1〜12の 2価の炭化水素基)
一般式(2): -R-OC (=0) CH=CH
2
(Rは炭素数 1〜12の 2価の炭化水素基)
[0018] 本出願の第 10の発明は、前記第 4の発明に係る中空シリカ微粒子が、下記一般式
(3)の有機基を有することを特徴とする中空シリカ微粒子である。
一般式(3) : -R-C F H
n a b
(a+b = 2n+ l、 nは 1〜3の整数、 Rは炭素数 1〜12の 2価の炭化水素基) [0019] 本出願の第 11の発明は、前記第 7の発明に係る透明被膜形成用組成物に含まれ る、前記中空シリカ微粒子の表面電荷量 (Q )が 5〜20 /^ /8の範囲にあることを
A
特徴とする透明被膜形成用組成物である。
本出願の第 12の発明は、前記第 11の発明に係る透明被膜形成用組成物に含ま れる前記中空シリカ微粒子の濃度 (C )が 0. 1〜20重量%、バインダーの固形分と
PA
しての濃度 (C )が 1〜50重量%の範囲にあり、溶媒が極性溶媒であることを特徴と する透明被膜形成用組成物である。
[0020] 本出願の第 13の発明は、前記第 7の発明に係る透明被膜形成用組成物が、表面 電荷量 (Q の
A ) 5〜20/^ Ζ 範囲にある中空シリカ微粒子を含み、更に、表面電荷 量 (Q ) 51〜 150 eqZgの範囲にある金属酸ィ匕物微粒子を含み、該金属酸化物 微粒子の表面電荷量 (Q )と該中空シリカ微粒子の表面電荷量 (Q )との差 [ (Q )—
B A B
(Q 20
A ) ]の値が 〜95 μ eqZgの範囲にあることを特徴とする透明被膜形成用組成 物である。
[0021] 本出願の第 14の発明は、前記第 13の発明に係る透明被膜形成用組成物に含ま れる前記中空シリカ微粒子の濃度 (C )が 0. 1〜20重量%、前記金属酸化物微粒
PA
子の濃度 (C )が 0. 1〜20重量%の範囲にあり、ノインダ一の固形分としての濃度(
PB
C )が 1〜50重量%の範囲にあり、溶媒が極性溶媒であることを特徴とする透明被 膜形成用組成物である。
[0022] 本出願の第 15の発明は、前記第 11の発明または前記第 12の発明に係る透明被 膜形成用組成物が硬化した透明被膜 (膜厚 ΙΟΟηπ!〜 lOOOOnm)を表面に有する 透明被膜付基材であって、該透明被膜の厚さ方向の中間点より外表面側に該中空 シリカ微粒子が偏在して、分散してなることを特徴とする透明被膜付基材である。 本出願の第 16の発明は、前記第 15の発明において、前記中空シリカ微粒子の偏 在して、分散している状態が、単層状または多層状であることを特徴とする透明被膜 付基材である。
[0023] 本出願の第 17の発明は、前記第 13の発明または前記第 14の発明に係る透明被 膜形成用組成物が硬化した透明被膜 (膜厚 ΙΟΟηπ!〜 lOOOOnm)を表面に有する 透明被膜付基材であって、該透明被膜の厚さ方向の中間点より外表面側に前記中 空シリカ微粒子が偏在して、分散してなり、該厚さ方向の中間点より基材側には、前 記金属酸ィ匕物微粒子が偏在して、分散してなることを特徴とする透明被膜付基材で ある。
本出願の第 18の発明は、前記第 17の発明において、前記中空シリカ微粒子の偏 在して、分散している状態が、単層状または多層状であり、前記金属酸化物微粒子 の偏在して、分散している状態が、単層状または多層状であることを特徴とする透明 被膜付基材である。
[0024] 本出願の第 19の発明は、動的光散乱法により測定される平均粒子径が 5〜300n m、比表面積が 50〜1500m2Zgであり、外殻の内部に空洞が形成されてなる中空 のシリカ微粒子であって、熱重量測定 (TG)により、 200°C〜500°Cの温度範囲にお いて 1. 0重量%以上の重量減少を示し、同温度範囲における示差熱保持測定 (DT A)において正の DTAピークを有し、その表面に珪素原子に直接結合した有機基を 有する中空シリカ微粒子であって、表面電荷量 (Q )が S SO/z eqZgの範囲にある
A
ことを特徴とする中空シリカ微粒子である。
[0025] 本出願の第 20の発明は、中空シリカ微粒子が分散したシリカ濃度 1〜70重量%の オルガノゾルを調製し、 30°C〜300°Cの温度範囲で、該オルガノゾルにシラン化合 物および Zまたは疎水性官能基を有する多官能アクリル酸エステル榭脂、およびァ ルカリ触媒を添加し、シリカ配合量に対して水分量が 0. 1〜50重量%の条件で、該 シランィ匕合物と該中空シリカ微粒子を反応させることを特徴とする中空シリカ微粒子 の製造方法である。
発明の効果
[0026] 本発明の中空シリカ微粒子とバインダーを含む透明被膜形成用組成物を基材に適 用して得られた透明被膜は、屈折率 1. 25〜: L 45の低屈折率被膜であり、被膜の 白化などの変色が生じ難ぐ耐擦傷性および密着性にも優れる。また、この透明被膜 については、耐薬品性、耐水性にも優れるものであり、例えば、本発明に係る透明被 膜に滴下された水滴または結露した水滴を払拭した後の滴下痕も残り難いなどの効 果を有している。
本発明の製造方法によれば、前記の中空シリカ微粒子を効率的に製造することが できる。
[0027] また、本発明の透明被膜付基材のうち、透明被膜中に所定の中空シリカ微粒子を 層状に偏在させてなる透明被膜については、中空シリカ微粒子に基づく特性 (反射 防止性、帯電防止性など)が強く発現し易くなる。さらに、本発明の透明被膜付基材 のうち、透明被膜中に、所定の中空シリカ微粒子および所定の金属酸化物微粒子を それぞれ層状に偏在させてなる透明被膜については、中空シリカ微粒子に基づく前 記特性に加えて、金属酸化物微粒子に基づく特性諸特性が強く発現し易くなるもの である。特に、本発明の透明被膜形成用組成物であって、所定の中空シリカ微粒子 および所定の金属酸化物微粒子を含むものは、 1回のコーティング処理により、透明 被膜中に中空シリカ微粒子および金属酸ィ匕物微粒子をそれぞれ層状に偏在してな る透明被膜または透明被膜付基材を得ることができる。
発明を実施するための最良の形態
[0028] [中空シリカ微粒子]
本発明の中空シリカ微粒子は、平均粒子径 5〜300nm、比表面積 50〜1500m2 Zgであり、外殻の内部に空洞が形成されてなる中空のシリカ微粒子であって、熱重 量測定 (TG)により、 200°C〜500°Cの温度範囲において 1. 0重量%以上の重量減 少を示すことを特徴とする中空シリカ微粒子である。また、このような中空シリカ微粒 子は、通常、 200°C〜500°Cの温度範囲における示差熱保持測定において、正の D TAピークを示すことを特徴とするものである。
[0029] また、本発明の中空シリカ微粒子は、通常は従来公知の中空シリカ微粒子の表面 をシランィ匕合物で表面処理して製造されるものである。具体的には、中空シリカ微粒 子表面のシラノール基とシランィ匕合物との加水分解反応により、オルガノシリル基 (モ ノォルガノシリル、ジォルガノシリルまたはトリオルガノシリル基)が中空シリカ微粒子 表面に結合するものであり、本発明の中空シリカ微粒子は、その表面に多数の珪素 原子に直接結合した有機基を有するものである。
この様な珪素原子に直接結合した有機基は、シランィ匕合物と中空シリカ微粒子の 表面シラノール基との前記反応により、 Si-O-SiA (Aは有機基)の様な構造をとつ
3
て中空シリカ微粒子表面に結合するものと言われている。
[0030] 前記熱重量測定(Thermogravimetry Analysis)とは、試料の雰囲気温度の上 昇(下降)による試料の重量変化を温度に対して測定するものであり、温度変化に対 する重量変化曲線は TG曲線と呼ばれている。また、前記示差熱保持測定 (Diff ere ntial Thermal Analysis)とは、試料容器に設けられた熱電対の起電力により、リ ファレンスと試料との温度差を検出し、熱量変化を温度に対して測定するものであり、 温度変化に対する熱量変化曲線は DTA曲線と呼ばれている。
[0031] 発熱反応が生じた場合は、 DTA曲線において正のピークが現れることが知られて いる。また、熱重量測定と示差熱保持測定を同時に測定する方法として、示差熱熱 直直同時測定 (ThermogravimetryZDifferential Thermal Analysis^通常「 TG/DTAJと称される。) が知られている。この示差熱熱重量同時測定では、加熱 時における試料の重量変化と吸熱,発熱反応を同時に観測できるため、幅広く物質 の組成や熱的特性の評価が可能である。
[0032] 本発明の中空シリカ微粒子は、従来のシリカ微粒子または中空シリカ微粒子にない 優れた効果を発揮するものである。この優れた効果については、具体的には、本発 明の中空シリカ微粒子をバインダーに配合してなる透明被膜形成用組成物を、例え ば、基材上で硬化させた場合、良好な性状の透明被膜付基材を得ることができる。 特に従来のシリカ微粒子または中空シリカ微粒子を配合してなる透明被膜形成用組 成物を用いて、透明被膜付基材を作製した場合に比べて、透明被膜に生じる白化( 白色化)を抑止し、耐擦傷性および密着性を改良することに成功したものである。
[0033] 即ち、前記熱重量特性を有する本発明の中空シリカ微粒子を配合してなる透明被 膜付基材においては、白化が抑止され、耐擦傷性および密着性が改良される。他方
、従来の中空シリカ微粒子、シランィ匕合物での表面処理を行なっていない中空シリカ 微粒子、 200°C〜500°Cの範囲において顕著な重量減少を示さない中空シリカ微粒 子、さらに、本発明の中空シリカ微粒子の製造方法に依らない方法で表面処理され た中空シリカ微粒子を配合してなる透明被膜付基材では、透明被膜の白化が生じ、 耐擦傷性および密着性が不十分となる。
[0034] これは、本発明の中空シリカ微粒子においては、少なくとも 200°Cまで、中空シリカ 微粒子の表面にオルガノシリル基力 中空シリカ微粒子表面の珪素原子に対して、 例えば、一 Si— O— SIR (Rは有機基)などの構造をとり安定に結合しているため、透
3
明被膜を形成した場合においては、該オルガノシリル基は、中空シリカ微粒子の表 面に強固に結合した置換基として、透明被膜の白化の原因となる透明被膜中におけ るシリカ微粒子の凝集を抑制することに寄与するものと推察される。また、前記オルガ ノシリル基の存在は、オルガノゾルおよび透明被膜中でのシリカ微粒子の分散性の 向上と、バインダー榭脂との化学結合により透明被膜の緻密化に寄与するため、透 明被膜に優れた耐擦傷性および密着性を付与するものと推察される。
[0035] 他方、従来の中空シリカ微粒子の場合は、表面にオルガノシリル基を有さないもの であるので本発明の中空シリカ微粒子に見られるような効果は発揮されないものと言 える。また、本発明の中空シリカ微粒子の製造方法に相当しない方法で表面処理さ れた中空シリカ微粒子の場合は、 200°C以上での 1. 0重量%以上の熟重量減少が 見られないことから、表面処理された段階力も強固な結合は形成されていな力つたも のと考えられ、前記従来の中空シリカ微粒子の場合と同様に本発明の中空シリカ微 粒子に見られるような効果は発揮され難いものと言える。
[0036] 本発明の中空シリカ微粒子においては、前記熱重量特性に加えて、示差熱保持特 性においても、 200°C〜500°Cにおいて、特異的なピークが見られ、前記従来の中 空シリカ微粒子や本発明の中空シリカ微粒子の製造方法に相当しな 、方法で表面 処理された中空シリカ微粒子の場合では、そのようなピークを見ることができない。
DTA曲線のピークは有機基の脱離にともなう発熱反応を表すものであることが知ら れている。本発明においては、通常、前記熱重量特性が現れる温度範囲(200°C〜 500°C)において、 DTA曲線のピークが現れるものである。
[0037] 本発明の中空シリカ微粒子の平均粒子径については 5〜300nmの範囲にあるも のが好適である。平均粒子径がこの範囲にある中空シリカ微粒子は、透明な被膜を 得ることにお ヽて好ま ヽ。平均粒子径が 5nm未満の中空シリカ微粒子は得難!/ヽ。 他方、 300nmを越える場合は、光の散乱が大きくなり、薄膜においては反射が大きく なり、反射防止機能を発揮できなくなる。本発明の中空シリカ微粒子のより好ましい 平均粒子径範囲としては、 10〜200nmの範囲が推奨され、更に好適には、 10〜: LO Onmの範囲が推奨される。
[0038] 本発明の中空シリカ微粒子の比表面積としては、溶媒中または造膜中の中空シリ 力微粒子の分散性および安定性を得るうえで 50〜1500m2/gの範囲が好ましい。 5 Om2/g未満の場合は、低屈折率の中空シリカ微粒子が得難い。他方、 1500m2/g を越える場合は中空シリカ微粒子の分散安定性が低下して望ましくない。本発明の 中空シリカ微粒子のより好ましい範囲としては、 50〜200m2/gの範囲が推奨される
[0039] 本発明の中空シリカ微粒子については、 200°C〜500°Cの温度範囲での熱重量 測定において、 1. 0重量%以上の重量減少を示すことが必要である。熱重量減少が 1. 0重量%未満の中空シリカ微粒子を配合してなる透明被膜付基材では、白化が 発生し、耐擦傷性および密着性ともに不充分になる。熱重量減少については、温度 範囲 200〜500°Cの範囲において 1. 05重量%以上の熱重量減少を示すものが好 ましぐ 1. 5重量%以上の熟重量減少を示すものが更に好ましい。
[0040] 本発明の中空シリカ微粒子については、示差熱保持測定において、 200°C〜500 °Cの温度範囲での示差熱保持測定にお!、て、ピークを示すものであることが好まし い。通常、同温度範囲にて前記熱重量減少を示す場合は、示差熱保持測定におい ても少なくともひとつピークが確認される。
[0041] 本発明の中空シリカ微粒子は、その表面に珪素原子に直接結合した有機基を有す るものである。有機基の種類については、透明被膜形成用組成物を調製する際のバ インダー、特に有機樹脂との親和性があり、該透明被膜形成用組成物を基材上で硬 化して得られる透明被膜付基材において、透明被膜の白化を招かず、耐擦傷性およ び密着性を損なわないものであれば制限されるものではなぐ例えば、炭化水素基ま たは炭素原子、水素原子以外の異原子を含む炭化水素基であっても良い。炭化水 素基は脂肪族であっても、芳香族であってもよぐ飽和炭化水素基であっても、不飽 和炭化水素基であっても良い。また、二重結合または三重結合を含むものであっても よぐエーテル結合を有するものでも良い。
[0042] 前記異原子の例としては、酸素原子、窒素原子、フッ素原子、塩素原子、臭素原子 、硫黄原子、珪素原子、ホウ素原子、アルミニウム原子、マグネシウム原子、ナトリウム 原子、リチウム原子、カルシウム原子、カリウム原子などを挙げることができるがこれら に限定されるものではない。
[0043] 前記珪素原子に直接結合した有機基の好適な例としては、飽和または不飽和の炭 素数 1〜18の炭化水素基、炭素数 1〜18のハロゲンィ匕炭化水素基力も選ばれる有 機基を挙げることができる。具体的には、 3—メタクリロキシプロピル基、 3—アタリロキ シプロピル基、 3, 3, 3—トリフルォロプロピル基、メチル基、フエ-ル基、イソブチル 基、ビュル基、 γ—グリシドキシトリプロピル基、 γ—メタクリロキシプロピル基、 Ν— β (アミノエチル) γ—ァミノプロピル基、 N— j8 (アミノエチル) γ—ァミノプロピル基、 γ —ァミノプロピル基、 Ν—フエニル一 γ—ァミノプロピル基などを挙げることができるが これらに限定されるものではない。
[0044] 本発明の中空シリカ微粒子は、通常、有機溶媒に分散されたものである。シリカ濃 度としては、 1〜70重量%であるものが安定性の面力もみて好ましぐ更に好ましくは 3〜40重量%であるものが推奨される。
[0045] 中空シリカ微粒子の好谪な餱様(1)
本発明の中空シリカ微粒子を含有する透明被膜の基材との密着性、被膜の白化防 止および耐擦傷性の面から見て、本発明の中空シリカ微粒子は、下記一般式(1)ま たは一般式(2)の有機基を有するものであり、熱重量測定 (TG)により、 200°C〜50 0°Cの温度範囲において 1. 5重量%以上の重量減少を示すものが好ましい。
一般式(1): -R-OC (=0) CCH =CH
3 2
(Rは炭素数 1〜12の 2価の炭化水素基)
一般式(2): -R-OC (=0) CH=CH
2
(Rは炭素数 1〜12の 2価の炭化水素基)
[0046] 中 シリカ微粒早の籽谪な能様 (2)
また、前記と同様な理由で、本発明の中空シリカ微粒子が、下記一般式 (3)の有機 基を有するものが好まし 、。
一般式(3) : -R-C F H
n a b
(a +b = 2n+ l、 nは 1〜3の整数、 Rは炭素数 1〜12の 2価の炭化水素基) [0047] 中 シリカ微粒早の籽谪な能様 (3)
本発明の中空シリカ微粒子を含有する透明被膜の基材との密着性、被膜の白化防 止および耐擦傷性に加えて、後記した透明被膜中に中空シリカ微粒子を層状に偏 在させる効果の面から見て、本発明の中空シリカ微粒子は、動的光散乱法により測 定される平均粒子径が 5〜300nm、比表面積が 50〜1500m2Zgであり、外殻の内 部に空洞が形成されてなる中空のシリカ微粒子であって、熱重量測定 (TG)により、 200°C〜500°Cの温度範囲において 1. 0重量%以上の重量減少を示し、同温度範 囲における示差熱保持測定 (DTA)において正の DTAピークを有し、その表面に珪 素原子に直接結合した有機基を有する中空シリカ微粒子であって、表面電荷量 (Q
A
)が 5〜20 μ eq/gの範囲にある中空シリカ微粒子が特に好ましい。
[0048] [中空シリカ微粒子の製造方法]
本発明の中空シリカ微粒子は、原料として公知の中空シリカ微粒子を使用するもの である。一般に中空シリカ微粒子は、外殻に細孔を有するものである。本発明の中空 シリカ微粒子においては、外殻の細孔が存在してもよぐまた、次記するような製造方 法の工程中にて、加熱により細孔が消失して 、てもよ 、。
本発明の原料となる中空シリカ微粒子としては、平均粒子径が 5〜300nm、比表 面積が 50〜 1500m2Zgのものが使用される。
[0049] 原料中空シリカ微粒子は、例えば、珪酸塩の水溶液および Zまたは酸性珪酸液と 、アルカリ可溶の無機化合物水溶液とを、 pHIO以上のアルカリ水溶液または、必要 に応じて種粒子が分散した pHIO以上のアルカリ水溶液中に同時に添加し、シリカと シリカ以外の無機化合物のモル比が 0. 3〜1. 0の範囲にある核粒子分散液を調製 し、これにシリカ源を添加して、核粒子に第 1シリカ被覆層を形成させ、次にこの分散 液に酸を加え、前記核粒子を構成する元素の一部または全部を除去することにより 製造される(特許文献 6)。また、この製造方法により得られた中空のシリカ微粒子の 分散液に、アルカリ水溶液と、有機珪素化合物および Zまたはその部分加水分解物 とを添加し、該微粒子に第 2シリカ被覆層を形成して製造される(特許文献 6)。
[0050] 本発明の中空シリカ微粒子の製造方法においては、最初にシリカ固形分が 1〜70 重量%の範囲にある中空シリカ微粒子のオルガノゾルを調製する。
例えば、水を分散媒として調製された中空シリカ微粒子力 なるシリカゾルを溶媒 置換して、オルガノゾルとする。通常は、限外濾過膜またはロータリーエバポレーター を用いて、シリカ固形分が 1〜70重量%のオルガノゾルとする。
[0051] 水を分散媒として調製された中空シリカ微粒子力もなるシリカゾルについて、溶媒 置換する際の溶媒の種類としては、有機溶媒が用いられる。有機溶媒の種類につい ては、シランィ匕合物による中空シリカ微粒子の表面被覆に悪影響を与えるものでない 力ぎり格別に限定されるものではない。この様な有機溶媒の例としては、アルコール 類、グリコール類、エステル類、ケトン類、窒素化合物類、芳香族類などの溶媒を使 用することができる。通常は、メタノール、エタノールなどのアルコールが選ばれる。 シリカ固形分については、溶媒の種類にもよるが 70重量%以上は、中空シリカ微粒 子が溶媒に分散し難ぐ 1重量%未満では実用的ではない。
[0052] 本発明製造方法においては、シリカ濃度が 1〜70重量%のオルガノゾルを調製し、 30°C〜300°Cの範囲で、シランィ匕合物とアルカリ触媒をカ卩え、シリカ配合量に対して 水分量が 0. 1〜50重量%の条件で中空シリカ微粒子にシランィ匕合物を反応させる ことを特徴とする。
シランィ匕合物の添加量については、通常は、中空シリカ微粒子 100重量部に対し て、 1〜50重量部添加される。 1重量部未満では、未処理の中空シリカ微粒子の割 合が高くなり好ましくない。他方、 50重量部を越える場合は、シラン化合物が過剰と なり、経済的ではない。シランィ匕合物の添加量としては、好適には 3〜25重量部が推 奨される。
本発明製造方法に適用されるシラン化合物は、 R SIX (Rは有機基、 Xは加水 n (4-n)
分解性基、 nは 0〜3の整数)で表されるものであり、具体的には、テトラメトキシシラン 、テトラエトキシシラン、テトライソプロボキシシラン、メチルトリメトキシシラン、ジメチル ジメトキシシラン、フエニルトリメトキシシラン、ジフエ二ルジメトキシシラン、メチルトリエ トキシシラン、ジメチルジェトキシシラン、フエニルトリエトキシシラン、ジフエ二ルジェト キシシラン、イソブチルトリメトキシシラン、ビュルトリメトキシシラン、ビュルトリエトキシ シラン、ビュルトリス(j8—メトキシエトキシ)シラン、 3, 3, 3—トリフルォロプロピルトリメ トキシシラン、メチル 3, 3, 3—トリフルォロプロピルジメトキシシラン、 j8 (3, 4ェ シシラン、 γ—グリシドキシプロピノレメチノレジェトキシシラン、 γ—グリシドキシプロピ ルトリエトキシシラン、 Ίーメタクリロキシプロピルメチルジメトキシシラン、 Ί メタタリ ロキシプロピルトリメトキシシラン、 Ί—メタクリロキシプロピルメチルジェトキシシラン、 7—メタクリロキシプロピルトリエトキシシラン、 Ν— β (アミノエチル) γ—ァミノプロピ ルメチルジメトキシシラン、 Ν— β (アミノエチル) γ—ァミノプロピルトリメトキシシラン、 Ν- β (アミノエチル) γ—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルトリメト キシシラン、 γ—ァミノプロピルトリエトキシシラン、 Ν フエ-ル一 γ—ァミノプロピル トリメトキシシラン、 γ—メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メ チルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシ ラン、フエニルトリクロロシラン、ジフエニルジクロロシラン、ビニルトリクロルシラン、トリメ チルブ口モシラン、ジェチルシラン、アタリロキシプロピルトリメトキシシラン等が挙げら れる。
このうち、特にアクリル基を有するシラン、メタクリル基を有するシラン、 3, 3, 3—トリ フルォロプロピルトリメトキシシランなどが好ましい。
[0054] アルカリ触媒の添加量は、格別に制限されるものではな ヽが、アルカリ触媒の種類 にもよるが、中空シリカ微粒子が分散してなるオルガノゾルに対して、望ましくはアル カリ触媒が 20〜2,000ppmの範囲で添加されることが好まし!/、。 20ppm未満では、 中空シリカ微粒子表面でのシランィ匕合物の反応が充分に進行しな 、場合がある。他 方、 2,000ppmを越えて添カ卩した場合は、余剰のアルカリにより、中空シリカ微粒子 をバインダーに分散させた際の分散性が低下する場合があり、また、アルカリ触媒が 透明被膜形成用組成物中に残存することによる影響が発生する。
アルカリ触媒の種類については、格別に限定されるものではないが、アンモニア、 アルカリ金属の水酸ィ匕物、アミンィ匕合物などが好適に使用される。または、これらアル カリは水溶液の形で添加しても良い。
[0055] 反応液中の水分量については、シリカ配合量に対して 0. 1〜50重量%、より好適 には 10重量%以下、更に好適には 5重量%以下とすることが望ましい。水分量が 0. 1〜50重量%の範囲にあれば、中空シリカ微粒子表面とシランィ匕合物が反応して効 果的に表面処理が行なわれる。 0. 1重量%未満では、表面処理効率が低ぐ安定し た表面処理が行なわれず、 50重量%以上では、シラン化合物同士が反応する傾向 が強まり、結果的に中空シリカ微粒子の表面処理が不充分になる。
[0056] 前記の中空シリカ微粒子にシラン化合物を反応させるときの反応温度については、 30°C未満では、反応速度が遅ぐ実用的ではない。他方、通常は、オルガノゾルの 溶媒の沸点を越える場合は、溶媒の蒸発により、水分割合の増加などを招く場合が あり、好ましくないが、圧力容器を使用して反応を行う場合は、 300°Cまでの温度で 反応させて良い。この反応温度については、好適には 40°Cから溶媒の沸点未満の 温度範囲が推奨される。
また、前記の中空シリカ微粒子にシランィ匕合物を反応させるときの反応時間につい ては、 0. 1時間未満では、充分に反応が進行しない場合があり、実用的ではない。 他方、 100時間を越えて反応させても、収率等に向上は見られず、それ以上の反応 の継続は必要ない。この反応時間については、好適には 3時間〜 30時間の範囲が 推奨される。
[0057] 前記中空シリカ微粒子分散オルガノゾルにシランィ匕合物およびアルカリ触媒を添カロ する順序については、格別に限定はなぐ 1)最初にアルカリ触媒を添加し、次にシラ ン化合物を添加してもよぐ 2)最初にシランィ匕合物を添加して、次にアルカリ触媒を 添加してもよぐまた、 3)シランィ匕合物とアルカリ触媒を同時に添加しても良いが、前 記 1)または 2)の添加順序が推奨される。
[0058] 中 シリカ微粒子の好滴な製诰方法 (1)
本発明の中空シリカ微粒子が分散したシリカ濃度 1〜70重量%のオルガノゾルを 調製し、 30°C〜300°Cの温度範囲で、該オルガノゾルにシラン化合物およびアル力 リ触媒を添加し、シリカ配合量に対して水分量が 0. 1〜50重量%の条件で、該シラ ン化合物と該中空シリカ微粒子を反応させることを特徴とする中空シリカ微粒子の製 造方法においては、特に前記シラン化合物の添加量が、前記中空シリカ微粒子 100 重量部に対して、 1〜50重量部の範囲にあり、前記アルカリ触媒の添加量が、前記 オルガノゾルに対して、 20〜2, OOOppmの範囲にある中空シリカ微粒子の製造方 法が推奨される。
[0059] この製造方法により得られる中空シリカ微粒子は、熱重量測定 (TG)により、 200°C 〜500°Cの温度範囲において、 1. 0重量%以上の重量減少を示し、同温度範囲に おける示差熱保持測定(DTA)において、正の DTAピークを示すものであり、この様 な中空シリカ微粒子とバインダーとを含んでなる透明被膜形成用組成物は、基材との 密着性、被膜の白化防止および耐擦傷性に優れるものとなる。
[0060] 中 シリカ微粒子の好滴な 1¾告方法 (2)
本出願の中空シリカ微粒子の製造方法の別の態様として、中空シリカ微粒子が分 散したシリカ濃度 1〜70重量%のオルガノゾルを調製し、 30°C〜300°Cの温度範囲 で、該オルガノゾルにシランィ匕合物および Zまたは疎水性官能基を有する多官能ァ クリル酸エステル榭脂、およびアルカリ触媒を添加し、シリカ配合量に対して水分量 が 0. 1〜50重量%の条件で、該シラン化合物と該中空シリカ微粒子を反応させるこ とを特徴とする中空シリカ微粒子の製造方法を挙げることができる。 [0061] この製造方法においては、前記製造方法において使用される前記シラン化合物に 代えて、疎水性官能基を有する多官能アクリル酸エステル榭脂あるいは、前記シラン 化合物と疎水性官能基を有する多官能アクリル酸エステル榭脂の混合物が使用され る。
[0062] ここで使用可能な疎水性官能基を有する多官能アクリル酸エステル榭脂としては、 ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、トリメチロ ールプロパントリ(メタ)アタリレート、ペンタエリスリトールテトラアタリレート、ジトリメチロ ールプロパンテトラ(メタ)アタリレート、ジペンタエリスリトールへキサアタリレート、メチ ルメタタリレート、ェチルメタタリレート、ブチルメタタリレート、イソブチルメタタリレート、 2—ェチルへキシルメテクリレート、イソデシルメテクリレート、 n-ラウリルアタリレート、 n ーステアリルアタリレート、 1, 6—へキサンジオールジメタタリレート、パーフルォロォ クチルェチルメタタリレート、トリフロロェチルメタタリレート、ウレタンアタリレート等が挙 げられる。
[0063] 上記疎水性を有する多官能アクリル酸エステル榭脂を用いる場合、中空シリカ微粒 子との重量比(疎水性を有する多官能アクリル酸エステル榭脂の固形分重量 Z中空 シリカ微粒子の重量)は格別に限定されるものではないが、通常は、 0. 001〜2さら には 0. 0005〜1. 5の範囲にあること力 子まし!/ヽ。
[0064] [透明被膜形成用組成物]
本発明の透明被膜形成用組成物は、前記した本発明の中空シリカ微粒子とバイン ダ一とを含むものである。
前記ノ インダ一とは、基材の表面に被膜を形成し得る成分をいい、基材との密着性 や硬度、塗工性等の条件に適合する有機榭脂等から選択して用いられ、有機榭脂、 加水分解性有機珪素化合物またはその部分加水分解縮合物が、必要に応じて溶媒 に分散されて使用される。
[0065] その例としては、ポリエステル榭脂、アクリル榭脂、ウレタン榭脂、塩化ビニル榭脂、 エポキシ榭脂、メラミン榭脂、フッ素榭脂、シリコーン榭脂、プチラール榭脂、フエノー ル榭脂、酢酸ビニル榭脂、紫外線硬化榭脂、電子線硬化榭脂、ェマルジヨン榭脂、 水溶性榭脂、親水性榭脂、これら榭脂の混合物、さらにはこれら榭脂の共重合体や 変性体などの塗料用榭脂、またはアルコキシシラン等の加水分解性有機珪素化合 物およびこれらの部分加水分解縮合物などが挙げられる。なお、バインダーとしてカロ 水分解性有機珪素化合物を用いる場合には、例えば、アルコキシシランとアルコー ルの混合液に、水および触媒 (酸またはアルカリ)をカ卩えることにより、アルコキシシラ ンの部分加水分解縮合物を調製し、これをバインダーとして用いる方法をとることが できる。
[0066] 本発明の透明被膜形成用組成物は、前記中空シリカ微粒子 100重量部 (シリカ分) に対して、前記バインダーを固形分換算で 10〜: ίΟ,ΟΟΟ重量部含むものである。ノ インダー量が 10重量部未満の場合は、被膜の硬度が得られな力つたり、硬化状態に 至らな 、場合がある。 10,000重量部を超える場合は低屈折率機能が果たせな 、。 中空シリカ微粒子 100重量部に対するバインダーの配合量については、好ましくは 5 0〜: L000重量部の範囲が推奨される。
[0067] また、本発明の透明被膜形成用組成物は、バインダーの硬化方法に応じて、光開 始剤、硬化用触媒などを含有することができる。
この様な光開始剤、硬化用触媒の例としては、過酸化物、ァゾィ匕合物等のラジカル 開始剤、チタンィ匕合物、錫化合物、白金触媒、イシシァネートなどを挙げることができ るが、これらに限定されるものではない。
[0068] 本発明の透明被膜形成用組成物は、通常は本発明の中空シリカ微粒子が分散し てなるオルガノゾルとバインダーを混合することにより調製される。ここでバインダーに ついては、前記の通り、有機溶媒で分散されたものであっても良い。オルガノゾルと バインダーの混合については、通常は、前記重量比範囲にて、ミキサーなどを用い て充分に混合攪拌を行 ヽ、本発明の透明被膜形成用組成物とすることができる。 本発明の透明被膜形成用組成物は、オルガノゾルまたはバインダーに由来する有 機溶媒を含むものであり、用途に応じて適宜有機溶剤で希釈される。本発明の透明 被膜形成用組成物は、好適には、本発明の中空シリカ微粒子およびバインダー(固 形分)からなる固形分 100重量部に対して、有機溶媒 100〜5000重量部で希釈さ れたものが使用される。
[0069] 溶媒については、適用する基材ゃ表面被覆された中空シリカ微粒子の表面官能基 の種類に応じて、溶媒置換しても良い。このような溶媒の種類としては、
メタノール、エタノール、イソプロパノール、 n—ブタノール、メチルイソカルビノールな どのアルコール類;
アセトン、 2—ブタノン、ェチルアミルケトン、ジアセトンアルコール、イソホロン、シクロ へキサノンなどのケトン類;
N, N ジメチルホルムアミド、 N, N ジメチルァセトアミドなどのアミド類; ジェチルエーテル、イソプロピルエーテル、テトラヒドロフラン、 1, 4 ジォキサン、 3,
4 -ジヒドロ 2H ピランなどのエーテル類;
2—メトキシエタノール、 2—エトキシエタノール、 2—ブトキシエタノール、エチレングリ コールジメチルエーテルなどのグリコールエーテル類;
2—メトキシェチノレアセテート、 2—ェトキシェチノレアセテート、 2—ブトキシェチノレア セテートなどのグリコーノレエーテノレアセテート類;
酢酸メチル、酢酸ェチル、酢酸イソブチル、酢酸ァミル、乳酸ェチル、エチレンカー ボネートなどのエステル類;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;
へキサン、ヘプタン、 iso—オクタン、シクロへキサンなどの脂肪族炭化水素類; 塩化メチレン、 1, 2—ジクロルェタン、ジクロロプロパン、クロルベンゼンなどのハロゲ ン化炭化水素類;
ジメチルスルホキシドなどのスルホキシド類;
N メチル - 2-ピロリドン、 N -ォクチル 2—ピロリドンなどのピロリドン類 などを例示することができる。これらの分散媒は、 1種単独で使用してもよく 2種以上 を併用してもよい。このうち、特に極性溶媒が好適に使用できる。
また、本発明の透明被膜形成用組成物については、目的、用途に応じて防腐剤、 抗菌剤、消泡剤、紫外線劣化防止剤、染料、レべリング剤などを添加しても良い。 诱明被膜形成用組成物の好滴な
本発明の透明被膜形成用組成物の好適な態様として、表面電荷量 (Q )
Aが 5〜20 μ eqZgの範囲にある前記中空シリカ微粒子、前記バインダーおよび極性溶媒を含 み、該中空シリカ微粒子の濃度 (C )が 0. 1〜20重量%の範囲にあり、ノインダー の固形分としての濃度 (C )が 1〜50重量%の範囲にあることを特徴とする透明被膜 形成用組成物を挙げることができる。
[0071] 前記中空シリカ微粒子の表面電荷量 (Q )としては、 5〜20 eqZgの範囲が好ま
A
しぐさらに好適には、 6〜18 eqZgの範囲にあることが推奨される。中空シリカ微 粒子の表面電荷量 (Q )が前記範囲にある場合、その様な中空シリカ微粒子を含有
A
してなる前記透明被膜形成用組成物を基材上で硬化させて得られる被膜付基材に おいて、中空シリカ微粒子の偏在化現象が生じ易くなり、該被膜の厚さ方向の中間 点より外表面側に中空シリカ微粒子が偏在して、分散する。中空シリカ微粒子の具体 的な分散状態としては、単層状または多層状があり、その他には、点在する場合を挙 げることができる。
[0072] 中空シリカ微粒子の表面電荷量 (Q )が 5 μ eqZg未満の場合は、該中空シリカ微
A
粒子を含有してなる透明被膜形成用組成物を硬化させて得られる被膜中にお ヽて、 中空シリカ微粒子が均一に分散 (単分散)する傾向が強くなる。中空シリカ微粒子の 表面電荷量 (Q )
Aが 20 /z eqZgを超える場合は、通常、中空シリカ微粒子でない場 合が含まれる。また、該中空シリカ微粒子を含有してなる透明被膜形成用組成物を 硬化させて得られる被膜が白化し易くなり、また、中空シリカ微粒子が被膜中に均一 に分散する傾向が強くなる。
[0073] 前記透明被膜形成用組成物における中空シリカ微粒子の量については、中空シリ 力微粒子の濃度 (C )が 0. 1〜20重量%の範囲にあり、バインダーの固形分として
PA
の濃度 (C )が 1〜50重量%の範囲にあることを特徴とする透明被膜形成用組成物 を挙げることができる。
中空シリカ微粒子の濃度 (C )が 0. 1重量%未満の場合、中空シリカ微粒子を含
PA
有してなる透明被膜形成用組成物が硬化してなる被膜中にお 、て、中空シリカ微粒 子が偏在して、分散したことによる光学的特性や電気的特性が発現し難い。中空シリ 力微粒子の濃度 (C )が 20重量%を超えると、中空シリカ微粒子を含有してなる透
PA
明被膜形成用組成物が硬化してなる被膜中に、中空シリカ微粒子が単分散する傾 向が強まる。中空シリカ微粒子の濃度 (C )については、好適には 1〜10重量%の
PA
範囲が推奨される。 [0074] 前記中空シリカ微粒子の平均粒子径としては 5〜300nmの範囲のものが好適に使 用される。本発明の中空シリカ微粒子のより好ましい平均粒子径範囲としては、 10〜 200nmの範囲が推奨され、更に好適には、 10〜100nmの範囲が推奨される。 この透明被膜形成用組成物の好適な態様(1)に係る透明被膜形成用組成物の製 造方法についても、前記透明被膜形成用組成物の製造方法が適用される。
[0075] 诱明被膜形成用組成物の好谪な ¾ (2)
本発明の透明被膜形成用組成物の好適な別の態様として、透明被膜形成用組成 物力 表面電荷量 (Q A )が 5〜20 /Ζ
Figure imgf000022_0001
表面電荷 量(Q B )が Sl lSO /z eqZgの範囲にある金属酸化物微粒子、バインダーおよび極 性溶媒を含むものであり、該金属酸化物微粒子の表面電荷量 (Q B )と該中空シリカ微 粒子の表面電荷量(Q A )との差 [ (Q B )— (Q A ) ]の値が 20〜100 ;z eqZgの範囲にあ り、該中空シリカ微粒子の濃度 (C PA )が 0. 1〜20重量%の範囲にあり、該金属酸ィ匕 物微粒子の濃度 (C PB )が 0. 1〜20重量0 /0の範囲にあり、ノインダ一の固形分として の濃度 (C )が 1〜50重量%の範囲にあることを特徴とする透明被膜形成用組成物 を挙げることができる。
[0076] 中空シリカ微粒子の表面電荷量 (Q A )が 5〜20 eqZgの範囲にあり、金属酸化物 微粒子の表面電荷量 (Q Β )が 51〜150 /^ Ζ の範囲にあり、表面電荷量 (Q Β )と(
Q A )の差 [ (Q B )— (Q A;) ]の値が 20〜: LOO /z eqZgの範囲にあることにより、透明被膜 形成用組成物が硬化して被膜となった際に、該透明被膜中、厚さ方向の中間点より 基材側には、該金属酸化物微粒子が偏在して、分散してなり、該厚さ方向の中間点 より外表面側には、該中空シリカ微粒子が偏在して、分散する傾向が強まる。
[0077] これは中空シリカ微粒子と金属酸ィ匕物微粒子との電気的な反発に起因するものと 推察される。中空シリカ微粒子または金属酸ィ匕物微粒子の表面電荷量あるいは [ (Q
B )— (Q A ) ]の値が、 20 eqZgの未満の場合は、中空シリカ微粒子と金属酸化物微 粒子との電気的な反発が小さいために、両微粒子が分離して分散する傾向が弱まる [ (Q B )— (Q A ) ]の値が、 100 eq/gを超える場合は、両微粒子の表面電荷量の 差が大きぐ中空シリカ微粒子および金属酸ィ匕物微粒子がそれぞれ凝集し易くなる。 [0078] 中空シリカ微粒子の濃度 (C )および金属酸化物微粒子の濃度 (C )については
PA PB
、それぞれ 0. 1〜20重量%の範囲にあることが望ましい。 この範囲にある場合は、 被膜中にお ヽて、中空シリカ微粒子および金属酸ィ匕物微粒子がそれぞれ偏在して、 分散し易くなる。他方、前記範囲を下回る場合は、偏在して、分散したことによる効果 が発揮され難くなり、前記範囲を超える場合は、被膜中において、両微粒子が単分 散する傾向が強まる。中空シリカ微粒子の濃度 (C )および金属酸化物微粒子の濃
PA
度 (C )については、好適には、それぞれ 1〜: LO重量%の範囲が推奨される。
PB
[0079] 前記金属酸ィ匕物微粒子の種類については、透明被膜をノ、ードコート膜に用いる場 合は、金属酸化物微粒子として、 ZrO、 TiO、 Sb O、 ZnO、 Al O、 SnO、あるい
2 2 2 5 2 2 3 2 はこれら粒子が鎖状に連結した鎖状粒子、あるいは前記した屈折率が 1. 45以下の シリカ系微粒子等が好適に使用される。
透明被膜を高屈折率膜として用いる場合は、金属酸ィ匕物微粒子として、通常屈折 率が 1. 60以上、さらには 1. 80以上の微粒子が用いられ、具体的には ZrO、 TiO、
2 2
Sb O、 ZnO、 Al O、 SnO、アンチモンドープ酸化錫、錫ドープ酸化インジウム、酸
2 5 2 2 3 2
化錫ドープリン (PTO)等が好適に使用される。
[0080] また、透明被膜を導電性膜として用いる場合は、金属酸ィ匕物微粒子として、通常 Sb
O、 SnO、アンチモンドープ酸化錫、錫ドープ酸化インジウム、酸化錫ドープリン(P
2 5 2
TO)、あるいはこれら導電性材料で表面を被覆したシリカ系微粒子あるいは内部に 空洞を有するシリカ系微粒子等が挙げられる。
なお、金属酸ィ匕物微粒子については、所望により、前記シランィ匕合物にて、処理さ れたものを使用してもよぐ更には、本発明の第 5の発明に係る中空シリカ微粒子の 製造方法において、中空シリカ微粒子に代えて金属酸ィ匕物微粒子を適用することに より処理された金属酸化物微粒子を使用しても良い。
[0081] 中空シリカ微粒子と金属酸化物微粒子の両方を含有する透明被膜形成用組成物 については、基材への 1回の被覆で、該透明被膜中、厚さ方向の中間点より基材側 には、該金属酸化物微粒子が偏在して、分散してなり、該厚さ方向の中間点より外表 面側には、該中空シリカ微粒子が偏在して、分散してなることを特徴とする透明被膜 付基材を得ることができる。 この透明被膜形成用組成物の好適な態様 (2)に係る透明被膜形成用組成物の製 造方法についても、前記透明被膜形成用組成物の製造方法において、更に金属酸 化物微粒子を添加することにより行うことができる。
[0082] [透明被膜付基材]
本発明の透明被膜付基材は、本発明の透明被膜形成用組成物を基材上で、単独 でまたは他の被膜を介して硬化してなるものである。
当該基材の材質としては、被膜を形成することが可能な固体物であれば格別に制 限されるものではな 、。 例えば、ガラス、ポリカーボネート、アクリル榭脂、 PET、 TA C (トリアセチルセルロース)、 MS基板 (メタクリル酸メチルとスチレンの共重合物、ポリ ォレフィン系基材等が挙げられる。基材の形態としては、プラスチックシート、プラス チックフィルム、プラスチックレンズ、プラスチックパネル、陰極線管、蛍光表示管、液 晶表示板等が挙げられる。
[0083] 前記他の被膜の例としては、ハードコート膜、平坦化膜、高屈折率膜、絶縁膜、導 電性榭脂膜、導電性金属微粒子膜、導電性金属酸化物微粒子膜、プライマーにて 形成された層などを挙げることができる。
なお、本発明の透明被膜付基材上に更に別の目的でコーティングがなされても良 い。
[0084] 本発明の透明被膜付基材は、前記透明被膜形成用組成物をディップ法、スプレー 法、スピナ一法、ロールコート法などの周知の方法で基材に塗布し、乾燥し、更に必 要に応じて、加熱あるいは紫外線照射等により硬化して得ることができる。
紫外線による硬化方法の一例としては、基材に本発明の透明被膜形成用組成物を 塗布し、 70°C〜100°Cにて予備乾燥を行った後、高圧水銀ランプまたはフュージョン ランプを用い、波長は開始剤の吸収波長に合わせて、 300〜l,OOOmi/Cm2の範 囲で紫外線照射して硬化させる。
本発明の基材に形成された透明被膜の屈折率は、中空シリカ系微粒子とバインダ 一成分の混合比率および使用するバインダーの屈折率によっても異なるが、 1. 15 〜1. 42と低屈折率となる。
[0085] 诱明被膜付某材の好谪な 本発明の透明被膜付基材の好適な態様としては、基材およびその表面に、平均粒 子径 5〜300nmの前記中空シリカ微粒子がノインダ一に分散してなる透明被膜 (膜 厚 ΙΟΟηπ!〜 lOOOOnm)が形成されてなる透明被膜付基材であって、該透明被膜 中、厚さ方向の中間点より外表面側には該中空シリカ微粒子が偏在して、分散して なることを特徴とする透明被膜付基材を挙げることができる。
この透明被膜付基材においては、前記の通り、該被膜の厚さ方向の中間点より外 表面側に中空シリカ微粒子が偏在して、分散してなるものであり、中空シリカ微粒子 は、単層状または多層状ないしは点在して存在する。このような分散状態、特に単層 状または多層状に偏在して分散した場合、該透明被膜は、中空シリカ微粒子の低屈 折率に起因する反射防止性能あるいは中空シリカ微粒子の導電性に起因する帯電 防止性能が強く発現される。
[0086] 诱明被蹬付某材の籽谪な餱様 (2)
本発明の透明被膜付基材の別の好適な態様として、基材およびその表面に、平均 粒子径 l〜50nmの金属酸化物微粒子と平均粒子径 5〜300nmの前記中空シリカ 微粒子がバインダーに分散してなる透明被膜 (膜厚 ΙΟΟηπ!〜 lOOOOnm)が形成さ れてなる透明被膜付基材であって、該透明被膜中、厚さ方向の中間点より基材側に は、該金属酸化物微粒子が偏在して、分散してなり、該厚さ方向の中間点より外表面 側には該中空シリカ微粒子が偏在して、分散してなることを特徴とする透明被膜付基 材を挙げることができる。
この透明被膜付基材については、中空シリカ微粒子および金属酸ィ匕物微粒子がそ れぞれ単層または多層を構成するため、中空シリカ微粒子に起因する特性 (反射防 止性能、帯電防止性能など)と、所定の金属酸化物微粒子に起因する特性 (擦傷性 、基材への密着性、高屈折率に基づく特性、導電性など)を併せもつ被膜となる。 産業上の利用可能性
[0087] 本発明の中空シリカ微粒子を含む透明被膜形成用組成物および透明被膜付基材 は、低屈折率、耐擦傷性および密着性が求められる各種用途に適用可能であり、デ イスプレイの表面コーティング、レンズなどの光学用コーティングなどに利用可能であ る。 参考例
[0088] 〔原料となる中空シリカ微粒子の調製〕
平均粒径 5nm、 SiO濃度 20重量0 /0のシリカゾル 100gと純水 1900gとを混合して
2
反応母液を調製し、 80°Cに加温した。この反応母液の pHは 10. 5であり、同母液に SiOとして 1. 17重量0 /0の挂酸ナトリウム水溶液 9, OOOgと、 Al Oとして 0. 83重量
2 2 3
%のアルミン酸ナトリウム水溶液 9, OOOgとを同時に添加した。その間、反応液の温 度を 80°Cに保持した。反応液の pHは、珪酸ナトリウムおよびアルミン酸ナトリウムの 添加直後、 12. 5に上昇し、その後、ほとんど変化しな力つた。添加終了後、反応液 を室温まで冷却し、限外濾過膜で洗浄して固形分濃度 20重量%の SiO ·Α1 Ο
2 2 3一 次粒子分散液を調製した。
[0089] ついで、この SiO ·Α1 Ο一次粒子分散液 500gを採取し、純水 1, 700gを加えて 9
2 2 3
8°Cに加温し、この温度を保持しながら、濃度 0. 5重量%の硫酸ナトリウム 50,400g を添カ卩し、ついで SiOとして濃度 1. 17重量%の珪酸ナトリウム水溶液 3,000gと A1
2 2
Oとしての濃度 0. 5重量%のアルミン酸ナトリウム水溶液 9,000gを添加して複合酸
3
化物微粒子分散液を得た。そして、これを限外濾過膜で洗浄して固形分濃度 13重 量%の複合酸化物微粒子分散液とした。
[0090] この複合酸ィ匕物微粒子分散液 500gに純水 l, 125gをカ卩え、さらに濃塩酸(35. 5 %)を滴下して pHl. 0とし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶 液 10Lと純水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、洗浄 して固形分濃度 20重量%のシリカ系微粒子(1)の分散液を得た。
[0091] 前記固形分濃度 20重量%のシリカ系微粒子(1)の水分散液 1500gと、純水 500g 、エタノール 1, 750gおよび 28%アンモニア水 626gとの混合液を 35°Cに加温した 後、ェチルシリケート(SiO 28重量0 /0) 104gを添加してシリカ被膜を形成した。つい
2
で、純水 5Lを加えながら、限外濾過膜で洗浄して固形分濃度 20重量%のシリカ系 微粒子 (2)の分散液を調製した。
[0092] ついで、再びシリカ系微粒子(2)の分散液を 200°Cにて 11時間水熱処理した後、 純水 5Lを加えながら限外濾過膜で洗浄して固形分濃度 20重量%に調整した。そし て、限外濾過膜を用いて、この分散液の分散媒をエタノールに置換し、固形分濃度 2 0重量%のオルガノゾルを調製した。
このオルガノゾルは、平均粒子径が 46nmで、比表面積が 123m2Zg、細孔容積 0. 4596mlZgの中空シリカ微粒子が分散したオルガノゾル(以下、「中空シリカゾル A」と称する。)である。
実施例 1
[0093] 〔本発明の中空シリカ微粒子の調製〕
前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして lOOppmとなるように加え、充分に混 合し、次に、メタクリルシラン (信越ィ匕学株式会社製 KBM503) 4g (前記 SiO分 100
2 重量部に対して 20重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 6重
2
量%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加 熱終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量%
2
の被覆中空微粒子カゝらなるオルガノゾルを調製した。
[0094] 〔表面被覆された中空シリカゾルの分析〕
このオルガノゾルについて、平均粒子径の測定、比表面積の測定、 200〜500°C での示差熱熱重量同時測定 (TGZDTA)および、微粒子の表面電荷量の測定を行 V、、その結果を後記する他の実施例および比較例の結果と共に表 1に記した。
[0095] 平均粒子径
粒子径分布測定装置 (大塚電子株式会社製、 LP— 510モデル PAR— III、動的光 散乱法による測定原理)を使用して、レーザー光による動的光散乱法により平均粒子 径を測定した。
具体的には、試料シリカゾルを 0. 58%アンモニア水にて希釈して、シリカ濃度 1質 量%に調整し、下記粒径測定装置を用いて平均粒子径を測定した。
[0096] 比表商穑
ゾル 50mlを 110°Cで 20時間乾燥した試料にっ 、て、比表面積測定装置(ュアサ アイォ-タス株式会社製、マルチソープ 12)を用いて窒素吸着法 (BET法)により測 定した。
具体的には、シリカゾル 50mlに HNOを加えて、 pH3. 5に調整し、 1—プロパノー
3
ル 40mlを加え、 110°Cで 20時間乾燥した試料について、乳鉢で粉砕後、マツフル 炉にて 500°C、 1時間焼成し、測定用試料とした。そして、比表面積測定装置 (ユア サアイォ-タス製、型番マルチソープ 12)を用いて窒素吸着法 (BET法)を用いて、 窒素の吸着量から、 BET1点法により比表面積を算出した。
[0097] より具体的には、試料 0. 5gを測定セルに取り、窒素 30v%Zヘリウム 70v%混合ガ ス気流中、 300°Cで 20分間脱ガス処理を行い、その上で試料を上記混合ガス気流 中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流 しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し 、予め作成した検量線により、シリカゾルの比表面積を算出した。
[0098] 示差熱熱重量剛き沏 I定 (TG/DTA)
示差熱熱重量測定装置 (理学電機株式会社製、 Themoplus TG8110)を用い て示差熱熱重量同時測定を行なった。測定条件は、空気雰囲気下、昇温速度 10°C Z分、室温〜 500°Cの温度範囲である。
実施例 1および他の全ての実施例および全ての比較例における中空シリカ微粒子 の示差熱熱重量同時測定 (TGZDTA)測定用の試料については、前記の通り調製 されたオルガノゾルの溶媒を除去した後、へキサンで充分に洗浄を行い、へキサンを 除去した後、減圧乾燥機で乾燥させて粉末の試料 (15mg)として測定に供した。 なお、実施例 1〜実施例 10、比較例 3、実施例 13〜実施例 16にて使用した被覆 中空シリカ微粒子については、それぞれ 200°C〜500°Cの温度範囲での、示差熱保 持測定 (DTA)において、 X軸を温度、 Y軸を発熱量としたとき、いずれも表 1に示し たピーク位置 (温度)に発熱反応による正のピークを有するものであった。
[0099] 微粒子の表面電荷量
中空シリカ微粒子または金属酸化物微粒子の表面電荷量の測定方法は、表面電 位滴定装置 (Mutek (株) pcd-03)を用いて、中空シリカ微粒子または金属酸ィ匕物微粒 子の分散液 (濃度 1重量%、使用量 15g)を 0. 001Nのポリ塩ィ匕ジァリルジメチルァ ンモ-ゥムを用いて滴定し、粒子単位グラム当たりの表面電荷量 (; z eq/g)求めた。そ の結果を表 1に示した。
また、オルガノゾルおよび反応液の水分量の測定については、それぞれ測定試料( lm≡)をシリンジに採取し、 0. 01g〜0. 02gを水分計 (京都電子工業株式会社製、 カールフィッシャー水分計 MKC— 510)にて測定した。他の実施例および比較例に ついても同様に取り扱った。
実施例 2
[0100] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 400ppmとなるように加え、充分に混 合し、次に、メタクリルシラン (信越ィ匕学株式会社製 KBM503) 4g (前記 SiO分 100
2 重量部に対して 20重量部相当)を添加し、反応液 (水分量は SiO分に対して 1. 0重
2
量%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加 熱終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO 20
2濃度 重量% の被覆中空微粒子カゝらなるオルガノゾルを調製した。
実施例 3
[0101] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 200ppmとなるように加え、充分に混 合し、次に、アクリルシラン (信越ィ匕学株式会社製 KBM5103) lg (前記 SiO分 100
2 重量部に対して 5重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 75重
2
量%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加 熱終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO
2濃度 20重量% の被覆中空微粒子カゝらなるオルガノゾルを調製した。
実施例 4
[0102] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水 分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 200ppmとなるように加え、充分に混 合し、次に、アクリルシラン (信越ィ匕学株式会社製 KMB5103) 2g (前記 SiO分 100
2 重量部に対して 10重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 75
2
重量%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。 加熱終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量
2
%の被覆中空微粒子カゝらなるオルガノゾルを調製した。
実施例 5
[0103] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 200ppmとなるように加え、充分に混 合し、次に、アクリルシラン (信越ィ匕学株式会社製 KBM5103) 4g (前記 SiO分 100
2 重量部に対して 20重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 75
2
重量%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。 加熱終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量
2
%の被覆中空微粒子カゝらなるオルガノゾルを調製した。
実施例 6
[0104] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 200ppmとなるように加え、充分に混 合し、次に、 3, 3, 3—トリフロロプロピルトリメトキシシラン lg (前記 SiO分 100重量部
2
に対して 5重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 75重量%)
2
とした。攪拌しながら 50°Cで 15時間加熱を行なった。加熱終了後、反応液を常温ま で冷却し、限外濾過膜で洗浄して、これを 50°Cに加温し、 SiO濃度 20重量%の被
2
覆中空微粒子からなるオルガノゾルを調製した。
実施例 7 [0105] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 200ppmとなるように加え、充分に混 合し、次に、 3, 3, 3—トリフロロプロピルトリメトキシシラン 2g (前記 SiO分 100重量部
2
に対して 10重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 75重量%)
2
とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加熱終 了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量%の被
2
覆中空微粒子からなるオルガノゾルを調製した。
実施例 8
[0106] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして 200ppmとなるように加え、充分に混 合し、次に、 3, 3, 3—トリフロロプロピルトリメトキシシラン) 4g (前記 SiO分 100重量
2
部に対して 20重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 75重量
2
%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加熱 終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量%の
2
被覆中空微粒子からなるオルガノゾルを調製した。
実施例 9
[0107] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。メタクリルシラン (信越ィ匕学株式会
2
社製 KBM503) 4g (前記 SiO分 100重量部に対して 20重量部相当)を添カ卩し、充
2
分に混合し、次に、 28%アンモニア水溶液を前記オルガノゾル 100gに対してアンモ ユアとして 400ppmとなるように加え、これを 50°Cに加温し、反応液(水分量は SiO
2 分に対して 1. 0重量%)とした攪拌しながら 50°Cで 15時間加熱を行なった。加熱終 了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量%の被 覆中空微粒子からなるオルガノゾルを調製した。
実施例 10
[0108] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。メタクリルシラン (信越ィ匕学株式会
2
社製 KBM503) 4g (前記 SiO分 100重量部に対して 20重量部相当)および 28%ァ
2
ンモ-ァ水溶液を前記オルガノゾル 100gに対してアンモニアとして 400ppmとなるよ うにを同時にカ卩え、反応液 (水分量は SiO分に対して 1. 0重量%)とした。これを 50
2
°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加熱終了後、反応液を常 温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量%の被覆中空微粒子から
2
なるオルガノゾルを調製した。
比較例 1
[0109] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量 SiO分に対して 0. 5重量%)を調製した。そこヘメタクリルシラン (信越ィ匕学株式
2
会社製 KBM503) 4g (前記 SiO分 100重量部に対して 20重量部相当)を添加し、
2
反応液 (水分量は SiO分に対して 0. 5重量%)とした。これを 50°Cに加温し、攪拌し
2
ながら 50°Cで 15時間加熱を行なった。加熱終了後、反応液を常温まで冷却し、限外 濾過膜で洗浄して、 SiO濃度 20重量%の被覆中空微粒子カゝらなるオルガノゾルを
2
調製した。
比較例 2
[0110] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水
2
分量は SiO分に対して 0. 5重量%)を調製した。
2
比較例 3
[0111] 前記中空シリカゾル A (シリカ固形分濃度 20重量%) 200gを用意し、限外濾過膜 にて、メタノールへの溶媒置換を行い、 SiO分が 20重量%のオルガノゾル 100g (水 分量は SiO分に対して 0. 5重量%)を調製した。そこへ 28%アンモニア水溶液を前
2
記オルガノゾル 100gに対してアンモニアとして lOppmとなるように加え、充分に混合 し、次に、メタクリルシラン (信越ィ匕学株式会社製、 KBM503) 4g (前記 SiO分 100
2 重量部に対して 20重量部相当)を添加し、反応液 (水分量は SiO分に対して 0. 5重
2
量%)とした。これを 50°Cに加温し、攪拌しながら 50°Cで 15時間加熱を行なった。加 熱終了後、反応液を常温まで冷却し、限外濾過膜で洗浄して、 SiO濃度 20重量%
2
の被覆中空微粒子カゝらなるオルガノゾルを調製した。
実施例 11
[0112] 〔透明被膜形成用組成物の調製〕
上記実施例 1〜実施例 10および比較例 1、比較例 2および比較例 3で得られた各 オルガノゾル 100g (シリカ固形分 20g)とバインダー(アクリル榭脂 [品番ヒタロイド 10 07、 日立化成株式会社製] 3gとを混合し、これに光開始剤(1—ヒドロキシ—シクロへ キシル—フエ-ル―ケトン、商品名ィルガキュア 184)を前記シリカと榭脂の合計量に 対して 3重量%添加して、透明被膜形成用組成物を調製した。
実施例 12
[0113] 〔透明被膜付基材の製造〕
実施例 11で得られた各透明被膜形成用組成物を、 PETフィルムにバーコ一ター 法で塗布し、 80°Cで、 1分間乾燥させて、透明被膜の膜厚が lOOnmの透明被膜付 基材を得た。
[0114] 〔透明被膜付基材の特性と評価〕
この透明被膜付基材の被膜性能として、白化防止、耐擦傷性、密着性、透明被膜 の屈折率、防眩性、鉛筆硬度、表面抵抗値、全光線透過率、ヘーズ、および、波長 5 50nmの光線の反射率を測定した。なお、以下に示す実施例 13〜16および比較例 4についても同様に測定し、結果を表 1に示した。
なお、未塗布の PETフィルムは全光線透過率が 90. 7%、ヘイズが 2. 0%、波長 5 50nmの光線の反射率が 7. 0%であった。
[0115] 密着性
透明被膜付基材の表面にナイフで縦横 lmmの間隔で 11本の平行な傷を付け 10 0個の升目を作り、これにセロファンテープ (登録商標)を接着し、次いで、セロファン テープを剥離したときに被膜が剥離せず残存している升目の数を、以下の 4段階に 分類することによって密着性を評価した。
A: 残存升目の数 95個以上
B: 残存升目の数 90〜94個
C : 残存升目の数 85〜89個
D: 残存升目の数 84個以下
[0116] άィ 方 ih
この透明被膜付基材について白化防止効果を測定し、その結果を表 1に示した。 白化防止効果は、透明被膜付基材を温度 80°Cの乾燥器に 30分間入れて、塗膜の 亀裂や白化の有無を目視観察し、次の 3段階で評価した。
A: 亀裂や白化が無いもの。
B: 亀裂や白化が少し認められるもの。
C : 亀裂や白化がかなり認められるもの。
[0117] 耐擦傷件
この透明被膜付基材について耐擦傷性を測定し、その結果を表 1に示した。耐擦 傷性は、 # 0000スチールウールを用い、荷重 500g/cm2で 50回摺動し、膜の表面 を目視観察し、以下の 4段階で評価した。
A: 筋条の傷が認められない。
B: 筋条に傷が僅かに認められる。
C : 筋条に傷が多数認められる。
D: 面が全体的に削られている。
[0118] 诱明被膜の屈析率
透明被膜の屈折率は、エリプソメーター (ULVAC社製、 EMS- 1)により測定した
[0119] 防眩性
透明被膜付基材の裏面を黒スプレーで均一に塗り、 30Wの蛍光灯から 2m離れ、蛍 光灯の映り込みを目視に確認して防眩性を評価した。 ◎: 蛍光灯が全く見えない。
〇: 蛍光灯がわずかに見える。
Δ : 蛍光灯は見えるが輪郭がぼける。
X: 蛍光灯がはっきり見える。
[0120] 鉛肇硬度
鉛筆硬度は、 JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、被膜表 面に対して 45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引つ張 り、傷の有無を観察した。
[0121] 诱明被膜の表 rif抵抗
表面抵抗を表面抵抗計 (三菱油化 (株)製: LORESTA)で測定した。
[0122] 全光線诱渦率およびヘイズ
全光線透過率およびヘイズは、ヘーズメーター(日本電色株式会社製、 NDH200 0)により測定した。
[0123] 波長 550nmの光線の反射率
波長 550nmの光線の反射率は、分光光度計(日本分光社、 Ubest— 55)により測 し 7こ。
[0124] [表 1]
Figure imgf000036_0001
実施例 13
[0125] [透明被膜形成用塗料 (A-l)の調製]
低屈折率成分として、シリカ系中空微粒子分散ゾル (触媒化成工業 (株)製:スルー リア 1420、平均粒子径 60nm、濃度 20. 5重量%、分散媒:イソプロパノ—ル、粒子 屈折率 1. 30、水分量は SiO分に対して 0. 5重量%)を用いた。このゾル 100gにパ
2
一フルォロォクチルェチルトリエトキシシラン 10g (東レダウコ一-ング製 AY43-158E 100%)を混合し 28%アンモニア水溶液を前記オルガノゾル 100gに対してアンモニア として 400ppmとなるように加え(水分量は、 SiO分に対して、 1重量%)、 40°Cで 5
2
時間攪拌し表面処理したシリカ系中空微粒子分散ゾルを得た(固形分 20. 3%)。
[0126] この表面処理したシリカ系中空微粒子分散ゾルの TG- DTAの重量減(200°C〜500 °C)を測定したところ 4. 5%であった。
この表面処理したシリカ系中空微粒子分散ゾル 15.5gと、へキサエリスリトールトリべ ンタアタリレート(日本ィ匕薬 (株): KAYARAD DPHA) 30gに光開始剤(チバスプシャリ ティ (株)製、ィルガキュア 184、 IPAで溶解、固形分濃度 10%) 0. 42g、およびイソ プロパノ—ルとメチルイソプチルケトンの 1Z1 (重量比)混合溶媒 54. 08gとを充分に 混合して透明被膜形成用塗布液 (A-1)を調製した。
[0127] [透明被膜付基材 (1)の調製] (ハードコート +反射防止)
透明被膜形成用塗布液 (A-1)を PETフィルム (厚さ 100 /ζ πι、屈折率 1. 65、基材透 過率 88. 0%、 Hazel. 0%、反射率 5.1%)にバ—コ―タ—で塗布し、 70°Cで 1分間 乾燥した後、高圧水銀灯 (80W/Cm)を 1分間照射して硬化させて透明被膜付基材 (1 )を調製した。このときの透明被膜の膜厚は 5 mであった。透明被膜の一部を縦方 向に垂直に切断し、断面を透過型電子顕微鏡によって観察したところ、上部にシリカ 系中空微粒子が厚さ lOOnmの層をなしており、下部はマトリックスのみで粒子の存 在は認められなかった。
実施例 14
[0128] [透明被膜形成用塗料 (A-2)の調製]
低屈折率成分として、シリカ系中空微粒子分散ゾル (触媒化成工業 (株)製:スルー リア 1420、平均粒子径 60nm、濃度 20. 5重量%、分散媒:イソプロパノ—ル、粒子 屈折率 1. 30、水分量は SiO分に対して 0. 5重量%)を用いた。このゾル 100gに γ -
2
メタアタリ口ォキシプロピルトリメトキシシラン 1. 88g (信越シリコ一ン株製 KBM-503 Si 0成分 81.2%)を混合し、 28%アンモニア水溶液を前記オルガノゾル 100gに対して
2
アンモニアとして 400ppmとなるように加え(水分量は SiO分に対して 1重量%)、 40
2
°Cで 5時間攪拌し表面処理したシリカ系中空微粒子分散ゾルを得た(固形分 20.3%)
[0129] この表面処理したシリカ系中空微粒子分散ゾルの TG- DTAの重量減(200°C〜500 °C)を測定したところ 3. 8%であった。
この表面処理したシリカ系中空微粒子分散ゾル 15.5gとペンタエリスリトールトリァセ テート(共栄社化学 (株): PE-3A) 24gと、ジェチルアミノエチルメタタリレート(共栄社 化学 (株):ライトエステル DE) 3gに光開始剤 (チバスプシャリティ (株)製ィルガキュア 184、 IPAで溶解、固形分濃度 10%) 0. 42g、およびイソプロパノールとメチルイソ プチルケトンの 1Z1 (重量比)混合溶媒 54. 08gとを充分に混合して透明被膜形成 用塗布液 (A-2)を調製した。
[0130] [透明被膜付基材 (2)の調製] (反射防止)
透明被膜形成用塗布液 (A- 2)を PETフィルム (厚さ 100 m、屈折率 1. 65、基材 透過率 88. 0%、 Hazel. 0%、反射率 5.1%)にバ—コ―タ—で塗布し、 70°Cで 1分 間乾燥した後、高圧水銀灯 (80W/Cm)を 1分間照射して硬化させて透明被膜付基材 (2)を調製した。このときの膜厚は 5 mであった。透明被膜の一部を縦方向に垂直に 切断し、断面を透過型電子顕微鏡によって観察したところ、上部にシリカ系中空微粒 子が厚さ lOOnmの層をなしており、下部はマトリックスのみで粒子の存在は認められ なかった。
実施例 15
[0131] [透明被膜形成用塗料 (A-3)の調製]
低屈折率成分として、シリカ系中空微粒子分散ゾル (触媒化成工業 (株)製:スルーリ ァ 1420— 120、平均粒子径 120nm、濃度 20. 5重量%、分散媒:イソプロパノール 、粒子屈折率 1. 20、水分量は SiO分に対して 0. 5重量%)を用いた。このゾル 100g
2
に γ -ァクリロォキシプロピルトリメトキシシラン 1. 88g (信越シリコ一ン株製 KBM- 510 3 SiO成分 81.6%)を混合し、 28%アンモニア水溶液を前記オルガノゾル 100gに対
2
してアンモニアとして 400ppmとなるように加え(水分量は、 SiO分に対して、 1重量
2
%)、40°Cで 5時間攪拌し表面処理したシリカ系中空微粒子分散ゾルを得た(固形分 20. 3%)。
[0132] この表面処理したシリカ系中空微粒子分散ゾルの TG- DTAの重量減(200°C〜500 °C)を測定したところ 4. 5%であった。
この表面処理したシリカ系中空微粒子分散ゾル 15.5gとパーフルォロェチルアタリレ ート(共栄社ィ匕学 (株): FA-108) 24gと、ジェチルアミノエチルメタタリレート(共栄社 化学 (株):ライトエステル DE) 3gに光開始剤 (チバスプシャリティ (株)製ィルガキュア 184、 IPAで溶解、固形分濃度 10%) 0. 42g、およびイソプロパノールとメチルイソ プチルケトンの 1Z1 (重量比)混合溶媒 57. 08gとを充分に混合して透明被膜形成 用塗料 (A-3)を調製した。
[0133] [透明被膜付基材 (3)の調製] (ハードコート +防眩反射防止)
透明被膜形成用塗料 (A- 3)を PETフィルム (厚さ 100 /ζ πι、屈折率 1. 65、基材透過 率 88. 0%、 Hazel. 0%、反射率 5.1%)にバ—コ―タ—で塗布し、 70°Cで 1分間乾 燥した後、高圧水銀灯 (80W/Cm)を 1分間照射して硬化させて透明被膜付基材 (3)を 調製した。このときの膜厚は 5 mであった。透明被膜の一部を縦方向に垂直に切断 し、断面を透過型電子顕微鏡によって観察したところ、上部にシリカ系中空微粒子が 厚さ 120nmの層をなしており、下部はマトリックスのみで粒子の存在は認められなか つた o
実施例 16
[0134] [透明被膜形成用塗料 (A-4)の調製]
低屈折率成分として、シリカ系中空微粒子分散ゾル (触媒化成工業 (株)製:スルー リア 1420、平均粒子径 60nm、濃度 20. 5重量%、分散媒:イソプロパノ—ル、粒子 屈折率 1. 30、水分量は SiO分に対して 0. 5重量%)を用いた。このゾル 100gにパ
2
一フルォロォクチルェチルトリエトキシシラン 10g (東レダウコ一-ング製 AY43-158E 100%)を混合し 28%アンモニア水溶液を前記オルガノゾル 100gに対してアンモニア として 400ppmとなるように加え(水分量は、 SiO分に対して、 1重量%)、 40°Cで 5 時間攪拌し表面処理したシリカ系中空微粒子分散ゾルを得た(固形分 20. 3%)。
[0135] この表面処理したシリカ系中空微粒子分散ゾルの TG- DTAの重量減(200°C〜500 °C)を測定したところ 4. 5%であった。
帯電防止高屈折率成分として ATO微粒子分散ゾル (触媒化成工業 (株)製: ELCO M V-3501、平均粒子径 8nm、濃度 20. 5重量%、分散媒:エタノール、粒子屈折率 1. 75)を用いた。このゾル 100gに γ -アタリ口ォキシプロピルトリメトキシシラン 0.15g ( 信越シリコーン株製 KBM-5103 SiO成分 81.2%)を混合し超純水を1(^添加し40で
2
で 5時間攪拌し表面処理した ATO微粒子分散ゾルを得た(固形分 20.0%)。
[0136] この表面処理した ATO分散ゾルの TG-DTAの重量減(200°C〜500°C)を測定したと ころ 0.5%であった。
この表面処理したシリカ系中空微粒子分散ゾル 15.5gと、表面処理した ATO微粒子 分散ゾル 30gと、へキサエリスリトールトリペンタアタリレート(日本化薬 (株): KAYARA D DPHA) 27gに光開始剤(チバスプシャリティ (株)製ィルガキュア 184、 IPAで溶解 、固形分濃度 10%) 0. 35g、およびイソプロパノールとメチルイソプチルケトンの 1Z 1 (重量比)混合溶媒 27. 15gとを充分に混合して透明被膜形成用塗料 (A-4)を調製 した。
[0137] [透明被膜付基材 (4)の調製] (ハードコート +帯電防止反射防止)
透明被膜形成用塗料 (A-6) TACフィルム (厚さ 80 /ζ πι、屈折率 1. 48、基材透過率 8 8. 0% HazeO. 0%、反射率 4.8%)にバーコ ターで塗布し、 70°Cで 1分間乾燥し た後、高圧水銀灯 (80W/Cm)を 1分間照射して硬化させて透明被膜付基材 (4)を調 製した。このときの膜厚は 5 mであった。透明被膜の一部を縦方向に垂直に切断し 、断面を透過型電子顕微鏡によって観察したところ、上部にシリカ系中空微粒子が 厚さ lOOnmの層をなしており、下部は ATO微粒子がマトリックス中に存在していた。 比較例 4
[0138] [透明被膜形成用塗料 (R-1)の調製]
低屈折率成分として、シリカ系中空微粒子分散ゾル (触媒化成工業 (株)製:スルー リア 1420、平均粒子径 60nm、濃度 20. 5重量%、分散媒:イソプロパノ—ル、粒子 屈折率 1. 30、水分量は SiO分に対して 0. 5重量%)を用いた。このゾル 100gにパ 一フルォロォクチルェチルトリエトキシシラン lg (東レダウコ一-ング製 AY43-158E 1 00%)を混合し、 40°Cで 5時間攪拌し表面処理したシリカ系中空微粒子分散ゾルを得 た(固形分 20. 3%)。
[0139] この表面処理したシリカ系中空微粒子分散ゾルの TG- DTAの重量減(200°C〜500 °C)を測定したところ 0.6%であった。
この表面処理したシリカ系中空微粒子分散ゾル 10. 54gとペンタエリスリトールトリ アセテート(共栄社ィ匕学 (株): PE- 3A) 24gと、ジェチルアミノエチルメタタリレート(共 栄社化学 (株):ライトエステル DE) 3gに光開始剤 (チバスプシャリティ (株)製、ィルガ キュア 184、 IPAで溶解、固形分濃度 10%) 0. 42g、およびイソプロパノ—ルとメチ ルイソブチルケトンの 1Z1 (重量比)混合溶媒 62. 04gとを充分に混合して透明被膜 形成用塗料 (R-1)を調製した。
[0140] [透明被膜付基材 (R-1)の調製] (ハードコート +反射防止)
透明被膜形成用塗料 (R-1)を PETフィルム (厚さ 100 m、屈折率 1. 65、基材透 過率 88. 0%、 Hazel. 0%、反射率 5.1%)にバ—コ―タ—で塗布し、 70°Cで 1分間 乾燥した後、高圧水銀灯 (80W/Cm)を 1分間照射して硬化させて透明被膜付基材 (R -1)を調製した。このときの膜厚は 5 mであった。透明被膜の一部を縦方向に垂直 に切断し、断面を透過型電子顕微鏡によって観察したところ、シリカ系中空微粒子が 膜中に均一に単分散した形で存在して!/、た。

Claims

請求の範囲
[1] 動的光散乱法により測定される平均粒子径が 5〜300nm、比表面積が 50〜1500 m2Zgであり、外殻の内部に空洞が形成されてなる中空のシリカ微粒子であって、熱 重量測定 (TG)により、 200°C〜500°Cの温度範囲において 1. 0重量%以上の重量 減少を示すことを特徴とする中空シリカ微粒子。
[2] 200°C〜500°Cの温度範囲での示差熱保持測定(DTA)にお!/、て正の DTAピー クを有することを特徴とする請求項 1の中空シリカ微粒子。
[3] 前記中空シリカ微粒子が、その表面に珪素原子に直接結合した有機基を有するこ とを特徴とする請求項 1または請求項 2の中空シリカ微粒子。
[4] 前記有機基が飽和または不飽和の炭素数 1〜18の炭化水素基、炭素数 1〜18の ノ、ロゲンィ匕炭化水素基力も選ばれる 1種以上のものであることを特徴とする請求項 3 の中空シリカ微粒子。
[5] 中空シリカ微粒子が分散したシリカ濃度 1〜70重量%のオルガノゾルを調製し、 30 °C〜300°Cの温度範囲で、該オルガノゾルにシラン化合物およびアルカリ触媒を添 加し、シリカ配合量に対して水分量が 0. 1〜50重量%の条件で、該シラン化合物と 該中空シリカ微粒子を反応させることを特徴とする、請求項 1、請求項 2、請求項 3ま たは請求項 4の中空シリカ微粒子の製造方法。
[6] 前記シラン化合物の添加量が、前記中空シリカ微粒子 100重量部に対して、 1〜5 0重量部の範囲にあり、前記アルカリ触媒の添加量が、前記オルガノゾルに対して、 2 0〜2, OOOppmの範囲にあることを特徴とする請求項 5記載の中空シリカ微粒子の 製造方法。
[7] 請求項 1〜4の ヽずれか記載の中空シリカ微粒子とバインダーとを含むことを特徴と する透明被膜形成用組成物。
[8] 請求項 7記載の透明被膜形成用組成物が硬化した透明被膜を表面に有することを 特徴とする透明被膜付基材。
[9] 前記中空シリカ微粒子が、下記一般式(1)または一般式 (2)の有機基を有するもの であり、熱重量測定 (TG)により、 200°C〜500°Cの温度範囲において 1. 5重量% 以上の重量減少を示すことを特徴とする請求項 4記載の中空シリカ微粒子。 一般式(1): -R-0C (=0) CCH =CH
3 2
(Rは炭素数 1〜12の 2価の炭化水素基)
一般式(2): -R-OC (=0) CH=CH
2
(Rは炭素数 1〜12の 2価の炭化水素基)
[10] 前記中空シリカ微粒子が、下記一般式 (3)の有機基を有することを特徴とする請求 項 4記載の中空シリカ微粒子。
一般式(3) : -R-C F H
n a b
(a+b = 2n+ l、 nは 1〜3の整数、 Rは炭素数 1〜12の 2価の炭化水素基)
[11] 前記透明被膜形成用組成物に含まれる、前記中空シリカ微粒子の表面電荷量 (Q
A
)が 5〜20 eqZgの範囲にあることを特徴とする請求項 7記載の透明被膜形成用組 成物。
[12] 前記透明被膜形成用組成物に含まれる前記中空シリカ微粒子の濃度 (C )が 0. 1
ΡΑ
〜20重量%、バインダーの固形分としての濃度(C )が 1〜50重量%の範囲にあり、 溶媒が極性溶媒であることを特徴とする請求項 11記載の透明被膜形成用組成物。
[13] 前記透明被膜形成用組成物が、表面電荷量 (Q ) 5
A 〜20 ;^(ΙΖ の範囲にある中 空シリカ微粒子を含み、更に、表面電荷量 (Q ) 51
B 〜150 eqZgの範囲にある金 属酸化物微粒子を含み、該金属酸化物微粒子の表面電荷量 (Q )
B と該中空シリカ微 粒子の表面電荷量(Q )との差 [ (Q )— (Q 20〜100 ;z eqZg
A B A ) ]の値が の範囲にあ ることを特徴とする請求項 7記載の透明被膜形成用組成物。
[14] 前記透明被膜形成用組成物に含まれる前記中空シリカ微粒子の濃度 (C )が 0. 1
PA
〜20重量%、前記金属酸化物微粒子の濃度 (C )が 0. 1〜20重量%の範囲にあり
PB
、ノインダ一の固形分としての濃度 (C )が 1〜50重量%の範囲にあり、溶媒が極性 溶媒であることを特徴とする請求項 13記載の透明被膜形成用組成物。
[15] 請求項 11または請求項 12記載の透明被膜形成用組成物が硬化した透明被膜 (膜 厚 ΙΟΟηπ!〜 lOOOOnm)を表面に有する透明被膜付基材であって、該透明被膜の 厚さ方向の中間点より外表面側に該中空シリカ微粒子が偏在して、分散してなること を特徴とする透明被膜付基材。
[16] 前記中空シリカ微粒子の偏在して、分散している状態が、単層状または多層状であ ることを特徴とする、請求項 15記載の透明被膜付基材。
[17] 請求項 13または請求項 14記載の透明被膜形成用組成物が硬化した透明被膜 (膜 厚 ΙΟΟηπ!〜 lOOOOnm)を表面に有する透明被膜付基材であって、該透明被膜の 厚さ方向の中間点より外表面側に前記中空シリカ微粒子が偏在して、分散してなり、 該厚さ方向の中間点より基材側には、前記金属酸ィ匕物微粒子が偏在して、分散して なることを特徴とする透明被膜付基材。
[18] 前記中空シリカ微粒子の偏在して、分散している状態が、単層状または多層状であ り、前記金属酸化物微粒子の偏在して、分散している状態が、単層状または多層状 であることを特徴とする、請求項 17記載の透明被膜付基材。
[19] 動的光散乱法により測定される平均粒子径が 5〜300nm、比表面積が 50〜1500 m2Zgであり、外殻の内部に空洞が形成されてなる中空のシリカ微粒子であって、熱 重量測定 (TG)により、 200°C〜500°Cの温度範囲において 1. 0重量%以上の重量 減少を示し、同温度範囲における示差熱保持測定 (DTA)において正の DTAピー クを有し、その表面に珪素原子に直接結合した有機基を有する中空シリカ微粒子で あって、表面電荷量 (Q )が 5〜20 /^ /8の範囲にあることを特徴とする中空シリカ
A
微粒子。
[20] 中空シリカ微粒子が有機溶媒に分散したシリカ濃度 1〜70重量%のオルガノゾル を調製し、 30°C〜300°Cの温度範囲で、該オルガノゾルにシランィ匕合物および/ま たは疎水性官能基を有する多官能アクリル酸エステル榭脂、およびアルカリ触媒を 添加し、シリカ配合量に対して水分量が 0. 1〜50重量%の条件で、該シラン化合物 と該中空シリカ微粒子を反応させることを特徴とする、請求項 1、請求項 2、請求項 3、 請求項 4または請求項 19の中空シリカ微粒子の製造方法。
PCT/JP2006/322961 2005-11-25 2006-11-17 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材 WO2007060884A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007546417A JP5078620B2 (ja) 2005-11-25 2006-11-17 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材
CN2006800439281A CN101312909B (zh) 2005-11-25 2006-11-17 中空二氧化硅微粒、含有该微粒的透明涂膜形成用组合物、及覆有透明涂膜的基材
EP06832840.0A EP1972598B1 (en) 2005-11-25 2006-11-17 Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating
US12/085,367 US20090286070A1 (en) 2005-11-25 2006-11-17 Hollow Silica Microparticles, Compositions for Forming Transparent Coating Film Containing the Same, and Substrate Having Transparent Coating Film
KR1020087015336A KR101365382B1 (ko) 2005-11-25 2006-11-17 중공 실리카 미립자, 그것을 포함한 투명 피막 형성용조성물, 및 투명 피막 부착 기재
US13/352,870 US9441095B2 (en) 2005-11-25 2012-01-18 Method of producing hollow silica microparticles
US14/698,579 US9834663B2 (en) 2005-11-25 2015-04-28 Composition for forming a transparent coating film including hollow silica particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-340617 2005-11-25
JP2005340617 2005-11-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/085,367 A-371-Of-International US20090286070A1 (en) 2005-11-25 2006-11-17 Hollow Silica Microparticles, Compositions for Forming Transparent Coating Film Containing the Same, and Substrate Having Transparent Coating Film
US13/352,870 Division US9441095B2 (en) 2005-11-25 2012-01-18 Method of producing hollow silica microparticles

Publications (1)

Publication Number Publication Date
WO2007060884A1 true WO2007060884A1 (ja) 2007-05-31

Family

ID=38067115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322961 WO2007060884A1 (ja) 2005-11-25 2006-11-17 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材

Country Status (7)

Country Link
US (3) US20090286070A1 (ja)
EP (1) EP1972598B1 (ja)
JP (2) JP5078620B2 (ja)
KR (1) KR101365382B1 (ja)
CN (1) CN101312909B (ja)
TW (2) TWI488813B (ja)
WO (1) WO2007060884A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035595A (ja) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd ハードコート膜付基材およびハードコート膜形成用塗布液
JP2009035594A (ja) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP2009114010A (ja) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd 球状シリカ粒子およびその製造方法
JP2010150361A (ja) * 2008-12-25 2010-07-08 Jgc Catalysts & Chemicals Ltd シリカ系透明被膜形成用塗布液
KR20100110810A (ko) * 2007-12-07 2010-10-13 이 아이 듀폰 디 네모아 앤드 캄파니 플루오로중합체 에멀젼
JP2010235935A (ja) * 2009-03-10 2010-10-21 Sumitomo Bakelite Co Ltd コーティング組成物及び透明性フィルム
JP2011137097A (ja) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd 透明被膜形成用塗布液ならびに透明被膜付基材、および疎水性金属酸化物粒子の製造方法
JP2012030489A (ja) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP2013032262A (ja) * 2011-06-30 2013-02-14 Dic Corp 表面処理されたシリカ粒子の製造方法、シリカ粒子分散体、及び樹脂組成物
JP2013127065A (ja) * 2011-12-16 2013-06-27 Eternal Chemical Co Ltd 反射防止コーティング組成物及びその調製方法
JP2013224436A (ja) * 2013-06-19 2013-10-31 Jgc Catalysts & Chemicals Ltd 表面処理金属酸化物粒子の製造方法、該粒子を含む透明被膜形成用塗布液および透明被膜付基材
JP2014047130A (ja) * 2012-09-04 2014-03-17 Ishihara Sangyo Kaisha Ltd 内部に空隙を有するフルオロアルミン酸化合物粒子及びその製造方法並びに当該粒子を含有する組成物及び反射防止膜
KR20140037759A (ko) * 2012-09-19 2014-03-27 니끼 쇼꾸바이 카세이 가부시키가이샤 투명피막 형성용 도포액 및 투명피막부 기재
WO2014188924A1 (ja) 2013-05-22 2014-11-27 三井化学株式会社 金属酸化物多孔質粒子、その製造方法、及びその用途
KR20180118202A (ko) * 2016-06-14 2018-10-30 코니카 미놀타 가부시키가이샤 투명 도전 부재 및 유기 일렉트로 루미네센스 소자
WO2020008961A1 (ja) 2018-07-02 2020-01-09 富士フイルム株式会社 加飾フィルム、加飾方法、加飾成型体の製造方法、及び、加飾成型フィルム
WO2020175527A1 (ja) 2019-02-27 2020-09-03 富士フイルム株式会社 積層体
JPWO2019131658A1 (ja) * 2017-12-26 2020-12-17 Agc株式会社 中空シリカ粒子の製造方法
WO2020262270A1 (ja) 2019-06-27 2020-12-30 富士フイルム株式会社 組成物、膜および光センサ
WO2021199748A1 (ja) 2020-03-30 2021-10-07 富士フイルム株式会社 組成物、膜及び光センサ
WO2023054142A1 (ja) 2021-09-29 2023-04-06 富士フイルム株式会社 組成物、樹脂、膜および光センサ

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637639B2 (en) * 2009-11-05 2017-05-02 Akzo Nobel Chemicals International B.V. Aqueous silica dispersion
CN102666383B (zh) * 2009-11-16 2014-07-09 日挥触媒化成株式会社 硅铝溶胶的制造方法、硅铝溶胶、含有该溶胶的透明被膜形成用涂料及带有透明被膜的基材
KR101092573B1 (ko) * 2010-04-06 2011-12-13 주식회사 엘지화학 반사 방지 코팅용 조성물, 반사 방지 필름 및 이의 제조 방법
KR20110121020A (ko) * 2010-04-30 2011-11-07 한국과학기술연구원 구형 산화물 입자 배열시 결함 발생을 감소시키는 방법
WO2011142433A1 (ja) * 2010-05-12 2011-11-17 大日本印刷株式会社 光学積層体、光学積層体の製造方法、偏光板及び画像表示装置
GB201014024D0 (en) * 2010-08-20 2010-10-06 Oxford Energy Technologies Ltd Optical coating
KR101290415B1 (ko) * 2011-04-15 2013-07-26 (주)엘지하우시스 에너지 경화 특성이 우수한 수지 조성물, 그 제조 방법 및 이를 이용한 표면 보호 시트
WO2013168788A1 (ja) * 2012-05-11 2013-11-14 日産化学工業株式会社 膜形成用組成物
JP6079269B2 (ja) 2013-01-29 2017-02-15 コベルコ建機株式会社 起伏部材
US20150056438A1 (en) * 2013-08-21 2015-02-26 Sukgyung AT Co ., Ltd. Hollow Silica Particles, Method of Manufacturing the Same, Composition Including the Same and Sheet with Inner Cavities
TWI512056B (zh) * 2014-10-29 2015-12-11 Univ Nat Cheng Kung 紫外線固化光學膜塗料、紫外線固化光學膜及其製造方法
ES2937719T3 (es) * 2016-05-27 2023-03-30 Neenah Inc Sustratos imprimibles brillantes resistentes a disolventes y sus métodos de fabricación y uso
KR20180052888A (ko) * 2016-11-11 2018-05-21 페인트팜 주식회사 빔 프로젝터 스크린 형성용 도료 조성물 및 빔 프로젝터용 스크린
CN111032570B (zh) * 2017-08-31 2023-09-22 宇部爱科喜模株式会社 黑色粉体及其制造方法
JP6926235B2 (ja) * 2017-12-28 2021-08-25 株式会社アドマテックス 可塑剤組成物、その製造方法、透明フィルム、及び合わせガラス
KR102119467B1 (ko) * 2018-04-26 2020-06-08 (주)아모레퍼시픽 다공성 무기입자의 제조방법 및 다공성 무기입자를 포함하는 광반사용 조성물
WO2020066448A1 (ja) * 2018-09-28 2020-04-02 富士フイルム株式会社 光学フィルム、積層フィルム、タッチパネル
CN110208977A (zh) * 2019-06-13 2019-09-06 京东方科技集团股份有限公司 一种显示装置及显示装置的制备方法
JP7360294B2 (ja) * 2019-09-30 2023-10-12 日揮触媒化成株式会社 シリカを含む外殻の内側に空洞を有する粒子とその製造方法、該粒子を含む塗布液、及び該粒子を含む透明被膜付基材
KR20220144808A (ko) 2020-02-27 2022-10-27 에이지씨 가부시키가이샤 중공 실리카 입자 및 중공 실리카 입자의 제조 방법
CN111394002B (zh) * 2020-03-27 2022-04-05 宁波华显智能科技有限公司 一种含二氧化硅空心球的透明显示膜及其制备方法和应用
CN112940695B (zh) * 2021-02-22 2022-03-29 西南石油大学 页岩地层用纤维二氧化硅复合微球和钻井液及其制备方法和应用
KR102644010B1 (ko) * 2021-09-03 2024-03-07 주식회사 케이씨텍 표면개질된 중공실리카 및 표면개질된 중공실리카 분산액
FR3127404B1 (fr) 2021-09-29 2023-10-13 Oreal Composition cosmétique diluée à longue tenue comprenant des modificateurs sensoriels mixtes
JP2023074970A (ja) * 2021-11-18 2023-05-30 日揮触媒化成株式会社 官能基と珪素を含む外殻と、その内側に空洞を有する粒子の分散液及びその製造方法
KR102639164B1 (ko) * 2021-12-27 2024-02-22 주식회사 케이씨텍 중공 실리카 입자 분산액의 제조방법 및 이를 사용하여 제조된 중공-실리카 입자 분산액
CN114506849B (zh) * 2022-02-24 2023-05-23 山东国瓷功能材料股份有限公司 二氧化硅中空微粒子、其制备方法及所得产品
CN117263190A (zh) * 2022-07-01 2023-12-22 宁波特粒科技有限公司 中空二氧化硅溶胶、其制备方法、涂料组合物及制品
CN115508920A (zh) * 2022-10-20 2022-12-23 宁波甬安光科新材料科技有限公司 用于显示器的抗眩光减反射膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10316406A (ja) * 1997-03-19 1998-12-02 Toray Ind Inc 無機微粒子およびその製造方法
JPH1129318A (ja) * 1997-05-06 1999-02-02 Nippon Millipore Kk ミクロンサイズの球状シリカ粒子とその製造法
JP2000500113A (ja) * 1996-04-22 2000-01-11 ロディア シミ 中空シリカ粒子の製造方法
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2002079616A (ja) * 2000-06-23 2002-03-19 Toshiba Corp 透明被膜付基材、透明被膜形成用塗布液、および表示装置
JP2003192330A (ja) * 2001-10-18 2003-07-09 Mitsubishi Chemicals Corp シリカゲル組成物並びにこれを用いた樹脂充填剤,樹脂組成物及び樹脂成型体
JP2004203683A (ja) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd シリカ系微粒子の製造方法および該シリカ系微粒子を含む被膜付基材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2717167B2 (ja) 1988-06-03 1998-02-18 触媒化成工業株式会社 被覆用組成物
JPH0617476B2 (ja) * 1990-09-04 1994-03-09 工業技術院長 有機基修飾シリカ粒子、その製造方法および該粒子をフィラーとする樹脂組成物
JP2967944B2 (ja) 1991-02-01 1999-10-25 触媒化成工業株式会社 透明被膜形成用塗布液、被膜付基材および液晶表示セル
JPH0686557B2 (ja) 1991-05-27 1994-11-02 信越化学工業株式会社 ポリプロピレンフィルム
JPH06330606A (ja) 1993-05-24 1994-11-29 Soda Koryo Kk 香気性畳
JPH0713137A (ja) 1993-06-29 1995-01-17 Suzuki Yushi Kogyo Kk 液晶内包無機中空微粒子とそれを用いた液晶表示装置
JP3761189B2 (ja) 1993-11-04 2006-03-29 触媒化成工業株式会社 複合酸化物ゾル、その製造方法および基材
US6160067A (en) * 1995-10-03 2000-12-12 Dsm N.V. Reactive silica particles, process for manufacturing the same, use of the same
JP3363106B2 (ja) * 1999-01-14 2003-01-08 株式会社豊田中央研究所 高分子複合材料
JP2004326100A (ja) 2003-04-07 2004-11-18 Toppan Printing Co Ltd 反射防止材
JP2005070318A (ja) * 2003-08-22 2005-03-17 Fuji Photo Film Co Ltd 防眩性反射防止フィルムおよびその製造方法、偏光板並びに画像表示装置
TWI341931B (en) * 2003-12-24 2011-05-11 Fujifilm Corp Antireflection film, polarizing plate and liquid crystal display device
US20050154086A1 (en) * 2003-12-26 2005-07-14 Fuji Photo Film Co., Ltd. Fine inorganic oxide dispersion, coating composition, optical film, antireflection film, polarizing plate, and image display device
JP5046482B2 (ja) * 2003-12-26 2012-10-10 富士フイルム株式会社 無機酸化物微粒子分散物の製造方法、無機酸化物微粒子分散物、コーティング組成物、光学フィルム、反射防止フィルム、偏光板、及び液晶表示装置
US20070275257A1 (en) * 2004-07-21 2007-11-29 Catalysts & Chemicals Industries Co., Ltd Silica-Based Particles, Method of Producing the Same, Paint for Forming Coating Film and Coated

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500113A (ja) * 1996-04-22 2000-01-11 ロディア シミ 中空シリカ粒子の製造方法
JPH10316406A (ja) * 1997-03-19 1998-12-02 Toray Ind Inc 無機微粒子およびその製造方法
JPH1129318A (ja) * 1997-05-06 1999-02-02 Nippon Millipore Kk ミクロンサイズの球状シリカ粒子とその製造法
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2002079616A (ja) * 2000-06-23 2002-03-19 Toshiba Corp 透明被膜付基材、透明被膜形成用塗布液、および表示装置
JP2003192330A (ja) * 2001-10-18 2003-07-09 Mitsubishi Chemicals Corp シリカゲル組成物並びにこれを用いた樹脂充填剤,樹脂組成物及び樹脂成型体
JP2004203683A (ja) * 2002-12-25 2004-07-22 Catalysts & Chem Ind Co Ltd シリカ系微粒子の製造方法および該シリカ系微粒子を含む被膜付基材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNG Y.S. ET AL.: "Hydrophobic modification of silica nanoparticle by using aerosol spray reactor", COLLOIDS AND SURFACES A: PHYSICOCHEMICAL AND ENGINEERING ASPECTS, vol. 236, no. 1-3, 1 April 2004 (2004-04-01), pages 73 - 79, XP003013423 *
See also references of EP1972598A4 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035594A (ja) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP2009035595A (ja) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd ハードコート膜付基材およびハードコート膜形成用塗布液
JP2009114010A (ja) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd 球状シリカ粒子およびその製造方法
JP2011506640A (ja) * 2007-12-07 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロポリマーエマルション
KR20100110810A (ko) * 2007-12-07 2010-10-13 이 아이 듀폰 디 네모아 앤드 캄파니 플루오로중합체 에멀젼
KR101589319B1 (ko) 2007-12-07 2016-01-27 이 아이 듀폰 디 네모아 앤드 캄파니 플루오로중합체 에멀젼
JP2010150361A (ja) * 2008-12-25 2010-07-08 Jgc Catalysts & Chemicals Ltd シリカ系透明被膜形成用塗布液
JP2010235935A (ja) * 2009-03-10 2010-10-21 Sumitomo Bakelite Co Ltd コーティング組成物及び透明性フィルム
JP2011137097A (ja) * 2009-12-28 2011-07-14 Jgc Catalysts & Chemicals Ltd 透明被膜形成用塗布液ならびに透明被膜付基材、および疎水性金属酸化物粒子の製造方法
JP2012030489A (ja) * 2010-07-30 2012-02-16 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP2013032262A (ja) * 2011-06-30 2013-02-14 Dic Corp 表面処理されたシリカ粒子の製造方法、シリカ粒子分散体、及び樹脂組成物
JP2013127065A (ja) * 2011-12-16 2013-06-27 Eternal Chemical Co Ltd 反射防止コーティング組成物及びその調製方法
US9102836B2 (en) 2011-12-16 2015-08-11 Eternal Materials Co., Ltd. Anti-reflection coating composition and process for preparing the same
JP2014047130A (ja) * 2012-09-04 2014-03-17 Ishihara Sangyo Kaisha Ltd 内部に空隙を有するフルオロアルミン酸化合物粒子及びその製造方法並びに当該粒子を含有する組成物及び反射防止膜
JP2014058652A (ja) * 2012-09-19 2014-04-03 Jgc Catalysts & Chemicals Ltd 透明被膜形成用塗布液および透明被膜付基材
KR102052942B1 (ko) 2012-09-19 2019-12-06 니끼 쇼꾸바이 카세이 가부시키가이샤 투명피막 형성용 도포액 및 투명피막부 기재
KR20140037759A (ko) * 2012-09-19 2014-03-27 니끼 쇼꾸바이 카세이 가부시키가이샤 투명피막 형성용 도포액 및 투명피막부 기재
US10045942B2 (en) 2013-05-22 2018-08-14 Mitsui Chemicals, Inc. Porous metal oxide particles, production method thereof and application thereof
WO2014188924A1 (ja) 2013-05-22 2014-11-27 三井化学株式会社 金属酸化物多孔質粒子、その製造方法、及びその用途
JP2013224436A (ja) * 2013-06-19 2013-10-31 Jgc Catalysts & Chemicals Ltd 表面処理金属酸化物粒子の製造方法、該粒子を含む透明被膜形成用塗布液および透明被膜付基材
KR102152159B1 (ko) 2016-06-14 2020-09-04 코니카 미놀타 가부시키가이샤 투명 도전 부재 및 유기 일렉트로 루미네센스 소자
KR20180118202A (ko) * 2016-06-14 2018-10-30 코니카 미놀타 가부시키가이샤 투명 도전 부재 및 유기 일렉트로 루미네센스 소자
JPWO2019131658A1 (ja) * 2017-12-26 2020-12-17 Agc株式会社 中空シリカ粒子の製造方法
JP7160839B2 (ja) 2017-12-26 2022-10-25 Agc株式会社 中空シリカ粒子の製造方法
US11608273B2 (en) 2017-12-26 2023-03-21 AGC Inc. Method for producing hollow silica particles
JP7401627B2 (ja) 2017-12-26 2023-12-19 Agc株式会社 中空シリカ粒子の製造方法
WO2020008961A1 (ja) 2018-07-02 2020-01-09 富士フイルム株式会社 加飾フィルム、加飾方法、加飾成型体の製造方法、及び、加飾成型フィルム
WO2020175527A1 (ja) 2019-02-27 2020-09-03 富士フイルム株式会社 積層体
WO2020262270A1 (ja) 2019-06-27 2020-12-30 富士フイルム株式会社 組成物、膜および光センサ
WO2021199748A1 (ja) 2020-03-30 2021-10-07 富士フイルム株式会社 組成物、膜及び光センサ
WO2023054142A1 (ja) 2021-09-29 2023-04-06 富士フイルム株式会社 組成物、樹脂、膜および光センサ

Also Published As

Publication number Publication date
TWI488813B (zh) 2015-06-21
TW200726717A (en) 2007-07-16
JP5078620B2 (ja) 2012-11-21
US9441095B2 (en) 2016-09-13
EP1972598A4 (en) 2011-11-02
US20120111231A1 (en) 2012-05-10
US20150259512A1 (en) 2015-09-17
KR101365382B1 (ko) 2014-02-19
TW201431785A (zh) 2014-08-16
JPWO2007060884A1 (ja) 2009-05-07
TWI482738B (zh) 2015-05-01
US9834663B2 (en) 2017-12-05
CN101312909B (zh) 2011-11-16
KR20080071608A (ko) 2008-08-04
EP1972598A1 (en) 2008-09-24
EP1972598B1 (en) 2016-06-15
JP2013014506A (ja) 2013-01-24
US20090286070A1 (en) 2009-11-19
CN101312909A (zh) 2008-11-26

Similar Documents

Publication Publication Date Title
JP5078620B2 (ja) 中空シリカ微粒子、それを含む透明被膜形成用組成物、および透明被膜付基材
JP5700458B2 (ja) シリカ系微粒子、被膜形成用塗料および被膜付基材
JP5378771B2 (ja) 反射防止膜付基材および反射防止膜形成用塗布液
JP5757673B2 (ja) 透明被膜付基材および透明被膜形成用塗料
CN101981134A (zh) 有机-无机杂化材料、该材料的光学薄层、含有该材料的光学材料和制造该材料的方法
JP6016548B2 (ja) 透明被膜形成用塗布液および透明被膜付基材
JP5700903B2 (ja) ハードコート膜付基材およびハードコート膜形成用塗布液
WO2014061606A1 (ja) 防汚性反射防止膜、物品およびその製造方法
JP6112753B2 (ja) 透明被膜形成用塗布液ならびに透明被膜付基材、および疎水性金属酸化物粒子の製造方法
KR20080083249A (ko) 하드 코팅막부 기재 및 하드 코팅막 형성용 도포액
JP6895760B2 (ja) シリカ系粒子分散液の製造方法、シリカ系粒子分散液、透明被膜形成用塗布液及び透明被膜付基材
JP2009066965A (ja) 透明被膜付基材および透明被膜形成用塗料
US9194986B2 (en) Optical filters, their production and use
JP2015049319A (ja) 透明基材と防汚性反射防止膜とを備える物品およびその製造方法
JP5241199B2 (ja) 繊維状中空シリカ微粒子の製造方法および反射防止被膜付基材
JP2019044146A (ja) 有機溶剤を含有していない眼鏡レンズ用ハードコーティング液組成物及びその製造方法
JP5680372B2 (ja) 透明被膜付基材および透明被膜形成用塗布液
JP5642535B2 (ja) 新規シリカ系中空微粒子、透明被膜付基材および透明被膜形成用塗料
EP3417016A1 (en) Primer formulations with improved photostability
WO2022107878A1 (ja) 車両用ランプ構造体の防曇方法、防曇剤、親水化剤、防曇膜、及び車両用ランプ構造体
JP5026172B2 (ja) ハードコート膜付基材およびハードコート膜形成用塗布液
JP2014058683A (ja) 透明被膜形成用塗料の製造方法
JP2011068087A (ja) ハードコート膜付基材およびハードコート膜形成用塗布液
JP2005290149A (ja) 透明被膜形成用塗布液および透明被膜付基材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043928.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007546417

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12085367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006832840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087015336

Country of ref document: KR