WO2007052505A1 - イソブテン及び第3級ブタノールの製造方法 - Google Patents

イソブテン及び第3級ブタノールの製造方法 Download PDF

Info

Publication number
WO2007052505A1
WO2007052505A1 PCT/JP2006/321215 JP2006321215W WO2007052505A1 WO 2007052505 A1 WO2007052505 A1 WO 2007052505A1 JP 2006321215 W JP2006321215 W JP 2006321215W WO 2007052505 A1 WO2007052505 A1 WO 2007052505A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
isobutene
reaction
tertiary butanol
tba
Prior art date
Application number
PCT/JP2006/321215
Other languages
English (en)
French (fr)
Inventor
Tatsuo Yamaguchi
Hiroyuki Noda
Toru Watanabe
Shunya Kirino
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2006800408194A priority Critical patent/CN101300211B/zh
Priority to EP06822192.8A priority patent/EP1944282B1/en
Priority to JP2007542611A priority patent/JP5240988B2/ja
Priority to US12/091,016 priority patent/US8637716B2/en
Publication of WO2007052505A1 publication Critical patent/WO2007052505A1/ja
Priority to US14/136,404 priority patent/US9145342B2/en
Priority to US14/836,669 priority patent/US9919283B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • C07C11/09Isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • tertiary butanol (tertiary butanol: hereinafter abbreviated as "TBA") is dehydrated using an alumina catalyst having specific physical properties as a catalyst, and isobutene is obtained in a high yield and high selectivity. From a mixture of water and an olefin mixture containing isobutene and n-butene with high yield, high productivity, and long-term stable and continuous production. It relates to a manufacturing method.
  • Isobutene has recently been in the spotlight as a raw material for isobutene polymers and methyl metatalylate (MMA), and is an important industrial raw material.
  • MMA methyl metatalylate
  • isobutene usually exists as a C4 olefin mixture containing n-butene and the like, it is necessary to separate isobutene from these C4 olefin mixtures.
  • C4 olefin mixture power As one of the methods for producing isobutene, isobutene containing no n-butene is produced by combining a hydration reaction and a dehydration reaction. That is, the C4 olefin mixture power is a method of separating isobutene by selectively hydrating and recovering it as TBA, and dehydrating the obtained TBA to obtain isobutene. Hydrated, recovered and separated TBA is also an important industrial raw material. In particular, demand has increased in recent years because it can be used as a raw material for MMA without being dehydrated.
  • the olefin fin mixture used as a raw material is raffinate 1 (common name "Svent BB”) mainly composed of isobutene and n-butene from which butadiene has been removed from the C4 fraction of the naphtha decomposition step.
  • vent BB common name "Svent BB”
  • C4 fractions containing butenes that can also obtain FCC cracking power of heavy oil.
  • the boiling point difference between isobutene and n-butene is close to 1 ° C or less, which is difficult to distill. Distillation of isobutene by selective hydration reaction has been devised. I came.
  • the method of dehydration reaction has been generally performed in a homogeneous system using a strong acid such as sulfuric acid, but this method uses a strong acid to produce a highly corrosive and corrosion-resistant product.
  • An apparatus is necessary, and it is difficult to treat the waste sulfuric acid discharged after the dehydration reaction, which is not preferable as an industrial production method.
  • various methods have been proposed for carrying out the dehydration reaction in a heterogeneous system using a strongly acidic ion exchange resin containing a sulfonic acid group as a catalyst. As one of them, a method of dehydrating TBA in a temperature range of 80 to 150 ° C.
  • Patent Document 1 Japanese Patent Laid-Open No. 56-10124
  • Patent Document 2 Japanese Patent Publication No. 56-2855
  • Patent Document 3 JP-A 55-64534
  • Patent Document 4 JP-A-11 193255
  • Patent Document 5 Japanese Patent Laid-Open No. 55-51028
  • Patent Document 6 Japanese Patent Laid-Open No. 54-160309
  • Patent Document 7 Japanese Patent Laid-Open No. 55-7213
  • Patent Document 8 Japanese Patent Laid-Open No. 55-62031
  • Patent Document 9 Japanese Patent Publication No. 58-39806
  • Patent Document 10 JP 2000-44497
  • Patent Document 11 JP 2000-43242
  • Patent Document 12 JP 2000-44502
  • Patent Document 13 JP-A-58-116427
  • Patent Literature 14 Shoko 48--10121
  • Patent Document 15 JP-A-4 300840
  • An object of the present invention is to provide a process for producing isobutene stably from TBA with high yield and high selectivity over a long period of time using alumina as a catalyst, and an acid as a catalyst for isobutene and n-butene.
  • An object of the present invention is to provide a method for selectively hydrating isobutene from a hydrocarbon mixture contained therein and continuously producing TBA stably for a long period of time.
  • the inventors of the present invention have made extensive studies focusing on the use of a solid acid catalyst in the gas phase when developing a method for producing isobutene from TBA by an economical method.
  • the carbon deposition on the catalyst surface that causes a decrease in the catalytic activity over time depends on the acid strength of the solid acid, and the stronger the acid strength, the more the generated isobutene cyclizes, dehydrogenates, It is known that carbon deposition is promoted by causing a hydrogen transfer reaction or the like.
  • solid acids such as silica alumina, which are strongly acidic, have a high initial activity, but the decrease in activity over time due to carbon deposition is remarkable.
  • the Na content is in the range of 0.1 to 0.6% by weight in terms of Na 2 O, and the Si content is SiO.
  • a process for producing isobutene comprising a step of reacting
  • the alumina catalyst has a total pore volume in the range of 0.1 to 0.5 ccZg, and a pore volume of pores having a pore radius of 70 A or more is the total pore volume.
  • the tertiary butanol selectively hydrates isobutene from a hydrocarbon mixture containing isobutene and n-butene by using an aqueous catalyst solution containing water and a heteropolyacid catalyst to produce tertiary.
  • a method for continuously producing tertiary butanol comprising:
  • the heteropoly acid is selected from phosphomolybdic acid, phosphomolybdovanadic acid, phosphotandastic acid, linthanum dust vanadic acid, key tungstic acid and their salt strength, each alone or in combination of two or more.
  • An apparatus for continuously producing tertiary butanol comprising: a reactor; the separator; and a bottom liquid pipe for communicating the stirred tank reactor and Z or the distillation column;
  • the above-described stirred tank reactor is a countercurrent reactor that reacts while supplying the catalyst aqueous solution and the raw material hydrocarbon mixture in a countercurrent manner.
  • the material of the part that contacts the catalyst is at least Cr.
  • isobutene can be produced from tertiary butanol stably over a long period of time with a high yield and a high selectivity.
  • a method for producing tertiary butanol a long-term continuous operation is possible by maintaining high reaction activity stably for a long period of time, and a method for producing tertiary butanol is provided with improved production. .
  • catalyst loss and production loss due to shutdown can be greatly reduced, and waste can be reduced and energy can be saved.
  • One embodiment of the present invention relates to a method for producing isobutene by dehydration reaction in the gas phase using tertiary butanol (hereinafter referred to as “TBA”) as a raw material.
  • TSA tertiary butanol
  • the catalyst used for the production of isobutene of the present invention is alumina having a ⁇ -type crystal structure as a main component.
  • the Na content in the alumina catalyst is 0.1 to 0.6% by weight, preferably in terms of Na 2 O.
  • the Mashiku 0.1 to 0.5 wt 0/0 more preferably in the range of from 0.1 to 0.4 wt%, Si content is 0.4 wt% or less in terms of SiO, preferably 0. 3 wt% or less, more preferably 0
  • It is 2 wt 0/0 or less, and a specific surface area force S200 ⁇ 600m 2 Zg, preferably 250 to 600 m 2 Zg, more preferably 300 to 600 m 2 Zg.
  • alumina catalyst used for the production of isobutene is particularly effective in the dehydration reaction is that it is assumed that it has an acid property optimal for the dehydration reaction activity. As the amount of Na increases, the acid sites on the catalyst surface are neutralized and the dehydration reaction yield decreases significantly. In contrast, when alumina exists as an impurity in the alumina catalyst,
  • the specific surface area of the alumina catalyst used for the production of isobutene not only contributes to the dehydration reaction activity, but also has the effect of delaying the decrease in catalytic activity over time due to carbon deposition. ⁇ 600m 2 Zg, preferably 250 ⁇ 600m 2 Zg, more preferably Is 300-600m 2 Zg.
  • the reason is a specific surface area preferably 600 meters 2 Zg hereinafter specific surface area of 600 meters 2 Zg following alumina catalyst, the pore radius to the total pore volume small ⁇ pores of by carbon deposition for a small percentage of This is because the decrease in catalyst activity over time, in which clogging is difficult to occur, is delayed.
  • the alumina catalyst used in the production of isobutene is preferably an alumina catalyst having the above-described properties and also having the following properties. That is, the total pore volume in the alumina catalyst is in the range of 0.1 to 0.5 ccZg, and the pore volume of pores having a pore radius of 70 A or more occupies 60% or more of the total pore volume. It is an alumina catalyst in the range. When the total pore volume of the alumina catalyst and the pore volume occupied by pores with a pore radius of 70 A or more are within the above range, the dehydration reaction yield is high, and the catalytic activity is less decreased over time. .
  • alumina produced by a known method can be used.
  • it can be easily produced by any of a pyrolysis method, a precipitation method, a deposition method, a kneading method, or a combination of these methods.
  • alumina, a nitrate, acetate, alkoxide, sulfate, chloride, alkali aluminate, alum, or the like that generates alumina or alumina hydrate by heating or hydrolysis can be used as the raw material of alumina.
  • alkali for the hydrolysis a strong alkali, alkali carbonate, aqueous ammonia, ammonium carbonate, etc., which can be used without any sodium content, are preferred.
  • the shape of the alumina catalyst used for the production of isobutene may be any powder, granular, spherical, cylindrical, or ring shape, but there is no particular limitation. In practice, it is determined in consideration of the pressure loss of the reactor. The Generally, a spherical shape with a diameter of 0.5 to 20 mm, a cylindrical shape with a diameter and height of 2 to 20 mm, a ring shape with an outer diameter of 4 to 20 mm, an inner diameter of 2 to 16 mm, and a height of 2 to 20 mm are used. Is done.
  • the molding method of the alumina catalyst used in the production of isobutene there is no particular limitation on the molding method of the alumina catalyst used in the production of isobutene.
  • the molding method usually when the spherical form is molded, the rolling granulation method, the Malmerizer one molding method, the fluidized bed There are granulation methods, and when molding a cylindrical or ring-shaped form, an extrusion molding method, a tableting molding method, or the like is adopted, but any method may be used.
  • Touch Pretreatment of the medium is particularly necessary, but pretreatment such as baking treatment may be performed.
  • the conditions for the dehydration decomposition reaction of TBA which is a starting material are as follows. Specifically, the reaction temperature is 200 to 450 ° C, preferably 250 to 420 ° C, more preferably 300 to 400 ° C. A dehydration decomposition temperature within this range is preferable from the viewpoint of dehydration reaction yield and suppression of carbon deposition.
  • the feed rate of the raw material TBA (LHSV) as 0. 1 ⁇ : LOhr _1, preferably 0. 5 ⁇ 5hr _1. From the viewpoint of economy, dehydration reaction yield, and suppression of carbon deposition, a feed rate in this range is preferred.
  • the reaction pressure is not particularly limited, and may be any of reduced pressure, normal pressure, and pressurized, but under pressurized conditions, it can be condensed with industrial-use ordinary coolant, and the reactor size is reduced, and a small amount of catalyst.
  • the point power that can be applied is also advantageous.
  • the TBA vapor as a raw material is generally supplied together with water vapor and an inert gas such as Z or nitrogen.
  • an inert gas such as Z or nitrogen.
  • the operation can be performed only through the TBA vapor. This is because the method for producing isobutene of the present invention is characterized in that the generation of side reactions is small and the carbon deposition is also small.
  • the reaction system in the method for producing isobutene of the present invention is preferably a fixed bed system as a reactor type in which continuous reaction is preferred.
  • the TBA raw material used in the method for producing isobutene of the present invention may be a mixture of a small amount of organic substances that do not cause a chemical reaction under reaction conditions that are not necessarily pure. However, it is preferable that organic substances that cause carbon deposition are not included as much as possible. More preferably, it is a TBA produced by selectively hydrating isobutene from a hydrocarbon mixture containing isobutene and n-butene using an aqueous catalyst solution containing water and a heteropolyacid catalyst.
  • TBA produced by hydration of heteropolyacid has the least amount of impurities such as diisobutene and oxygen-containing compounds, resulting in less carbon precipitation. . This may be due to the high selectivity of the hydration reaction of heteropolyacids.
  • TBA produced by other production methods for example, TBA produced as a by-product in the production of propylene oxide contains a large amount of oxygen-containing compounds such as various ketones and is hydrated with ion-exchange resin.
  • TBA the ester of organic acids and butenes added to increase contact efficiency It is possible that carbon deposition was accelerated because TBA produced without using organic acids contains a large amount of diisobutene. Further, it is possible to use TBA containing moisture, and it is preferable to use a TBA raw material containing a certain amount of moisture from the viewpoint of suppressing carbon deposition. If TBA containing water can be used as a raw material, it is economically advantageous because it does not require a process for refining and removing the azeotropic water of TBA, and it can be frozen at low temperatures. is there. Regarding water concentration, TBA produced using heteropolyacid as a catalyst is more preferred as a raw material because it has a stable and constant water concentration.
  • the method for producing TBS of the present invention is a continuous mixture in which TBA is produced by selectively hydrating isobutene using a hydrocarbon mixture containing isobutene and n-butene and a catalyst aqueous solution containing the catalyst.
  • the accumulative impurities were the cause of the decrease in catalyst activity, the deterioration of catalyst separation, and the decrease in distillation column separation performance.
  • the TBA production method of the present invention uses a recycling system that circulates at least one of a hydrocarbon mixture containing isobutene and n-butene, an aqueous catalyst solution, or TBA, to reduce the accumulation of impurities below a certain concentration.
  • a continuous production apparatus for tertiary butanol relating to the production of TBA of the present invention is provided as a reaction system for ensuring efficient TBA production.
  • the tertiary butanol continuous production apparatus of the present invention comprises at least one stirred tank reactor, a distillation column connected to the stirred tank reactor, and the stirred tank reactor and Z or connected to the distillation tower. And a separator for removing impurities, the separator, and a bottom liquid pipe for communicating the stirred tank reactor and Z or the distillation column.
  • the stirred tank reactor includes a catalyst separator, and the catalyst separator is also connected to the separator.
  • the separator includes an adsorbent column and / or an ion exchange resin column.
  • the stirred tank reactor is provided so that the catalyst aqueous solution and the raw hydrocarbon mixture are countercurrent. It is a countercurrent reactor that reacts while being fed. In this way, high productivity can be realized by reacting while supplying the catalyst aqueous solution and the raw material hydrocarbon mixture in a countercurrent manner. It is also possible to restore the activity that has been reduced by adding the oxidizing agent.
  • a recycling system for raw materials, products, or catalysts can be established through a separator, as will be described later.
  • Impurity removal is a force that can be said to be preferably performed at the site where the impurities are generated or existed. In practice, it was extremely difficult to effectively remove trace amounts of impurities. However, even if it is difficult to remove due to the small amount, concentration of the storage impurities by the recycling system of the present invention makes separation efficiency much easier and enables effective removal with simple equipment.
  • the removal step in the TBA production method of the present invention is carried out in at least one recycling system, which will be described later.
  • a removal step can be performed.
  • the removal step can be performed in a catalyst recycling system. If the unreacted raw material system contains a lot of storage impurities, the removal process can be performed in the recycling system.
  • the removal process can be carried out in the recycling system, and the removal system can be removed in an effective place according to the process. It is preferable to perform a process.
  • Accumulating impurities can also be removed.
  • the heteropolyacid which is a catalyst, has an anion diameter of about 1 nm, and is a larger anion than nitric acid, hydrochloric acid, and sulfuric acid, which are common mineral acids. This results in increased acid strength as protons compared to other mineral acids.
  • the isobutene hydration reaction shows a higher reaction activity than common mineral acids such as nitric acid at the same proton concentration.
  • the interaction between a large anion and isobutene is presumed to be stronger than that of n-butene, and it is thought that high selective hydration reaction characteristics are derived.
  • metal ions such as iron eluted from the reactor and piping materials are estimated.
  • the generation of iron ions, etc. is thought to be caused by the corrosion of the equipment materials such as reactors.
  • ion exchange resin As a result of examining methods for removing these metal ions and the like, it was found that almost metal ions and the like can be selectively adsorbed and removed by ion exchange resin.
  • Activated carbons can be used for the adsorption removal of metal ions, but when metal ions are selectively removed, it is also necessary to select and use the ion-exchange resin power from metal ion removal.
  • Specific examples include cation exchange resins such as sulfonic acid groups, styrene gel types having carboxylic groups, styrene MR types, methacrylic acid MR types, acrylic acid MR types, and acrylic acid gel types. It is preferable to select and use H (acid) type from chelate resin instead of type.
  • TBA which is a hydration reaction product of isobutene
  • JP 2000-44502 A the foaming phenomenon that occurs in the distillation tower is eliminated. It has been found to have a function. Since alcohols are used as an antifoaming agent that suppresses the foaming phenomenon, TBA, the target product of this reaction, is thought to function as an antifoaming agent.
  • the TBA production method of the present invention can suppress deterioration of catalyst separation and deterioration of operability of the distillation column by removing accumulative impurities even if TBA is absent. That is, the surface activity 1 0.0 to 0 stimulable impurity at a concentration in the aqueous catalyst solution to performance having. 1 weight 0/0, preferably from 5.0 to 0.1 weight 0/0, more preferably 3.0 ⁇ 0.1% by weight.
  • the load such as a large amount of adsorbent used for removal increases. Therefore, it is possible to set an optimum concentration level for forces such as the separation situation and the concentration of TBA existing depending on the operating conditions.
  • Adsorbents include inorganic porous materials such as silica, alumina, activated carbon, zeolites, mesopozeolites such as MCM-41 with a large pore diameter, styrene-divinylbenzene having no ion exchange groups, and methacrylate esters.
  • Examples include bridge synthetic organic polymers made from ethylene glycol dimetatalylate and chitosan coconut.
  • a porous adsorbent having a pore size in the range of 0.5 to 500 nm, preferably a porous material having pores in the range of 1 to 250 nm, more preferably 2 to 50 nm. It is. More preferred is a new oily material rather than a hydrophilic material, silica gel organically modified with a silane coupling agent, etc., organically modified alumina, organically modified mesopores such as MCM-41, more preferably synthetic resin Material is preferred U, material.
  • the adsorbent and Z or ion-exchanger By installing a separator such as fat, the storage impurities are concentrated and removed in each recycling system. By vigorous concentration and removal, it becomes possible to maintain the reaction activity of the catalyst stably for a long period of time, and continuous production of TBA is realized.
  • the catalyst used in the method for producing TBS of the present invention can use a substance showing acidity. From the viewpoint of reaction rate, Hammett's acidity function Ho is expressed as -5.6 ⁇ Ho. Material force can also be selected and used. Specific examples of strongly acidic substances include: S102-A1203, Si02—Zr02, Si02—BeO, Si02—Y203, Si02—La203, A1203—Zr02, Ti 02—Zr02, H—Y zeolite, H—ZSM—5, 80 % Of H2S04, Nafion-H, strong acid cation exchange resin, p-toluenesulfonic acid, heteropolyacid, etc. can be selected and used as an acid catalyst.
  • strongly acidic substances include: S102-A1203, Si02—Zr02, Si02—BeO, Si02—Y203, Si02—La203, A1203—Zr02, Ti 02—Zr02, H—Y zeolite, H—ZSM—5, 80 % Of
  • heteropolyacid used in the method for producing TBA of the present invention include H3PMol2 040, ⁇ 6 ⁇ 2 ⁇ 18062, ⁇ 9 ⁇ 1 ⁇ 024, H3AsMol2O40, H8CeMol2042, H9GaMo024, H5IMol2O40, H4SiMol2O40, H4GeMO2 , H5A1W12O40, H6SiV2W10O40, H5SiVWllO40, H4SiW12O40, H5GaW12O40, H9NdW18036, H9CeW18036, H6 P2W18062, acids such as phosphorous H3 H3PW12O40), phosphotungstic acid (H4PVWllO40), and key tungstic acid (H4SiW 12O40) are preferred.
  • the parts used in the TBA production method of the present invention may be, for example, a reaction vessel, a stirring blade, a partition plate, a knocker, a decanter, a settler, a distillation column as a part that comes into contact with an acidic catalyst aqueous solution.
  • materials such as iron such as carbon steel, copper, brass, and aluminum are not preferable because of their corrosive nature.
  • Stainless steel is preferred at the site where the heteropolyacid that is the catalyst contacts, and is a material, and stainless steel can be widely applied.
  • an alloy type stainless steel containing iron, chromium, and nickel is a material having excellent corrosion resistance. More preferably, it contains 17-21% Cr, 8-14% Ni, and austenitic stainless steel with C not more than 0.10%. It can be used as a suitable material. Examples of JIS standards include SUS304, 304 305, 305 308, 316, 316J, 316 317, 317L, and more preferably SUS304. As a mechanism for the specific expression of the corrosion resistance of these materials, the present inventor has proposed that the heteropolyacid and the constituent elements of these materials react specifically with the surface of the material to form a passive layer. Therefore, it is estimated that further corrosion progress can be suppressed.
  • the method for producing TBA of the present invention it has been found that by adding an oxidizing agent, an effect of recovering the catalytic activity is exhibited and the degree of coloring of the slightly colored aqueous catalyst solution is reduced. It is presumed that the catalyst that had been reduced by oxidation was oxidized and the impurities that had hindered the reaction were removed by acid decomposition.
  • an oxidizing agent the method of oxidizing with air or oxygen can improve the activity, but takes a long time. Ozone and electrochemical oxidation methods can also be used as oxidants.
  • An oxidizing agent having a high oxidizing power such as hydrogen peroxide is preferable.
  • an oxidizing agent that does not have a significant effect on the hydration reaction such as hydrogen peroxide, which becomes water after the reaction, such as hydrogen peroxide, which has an oxidizing power equivalent to that of hydrogen peroxide, is preferable. More preferred.
  • the amount and frequency of the oxidizing agent to be added cannot be determined uniquely because it varies depending on the type of oxidizing agent, the degree of decrease in activity due to the usage time of the catalyst, and the amount of accumulative impurities. However, for example, when hydrogen peroxide is used as the oxidizing agent, even if it is added excessively, in the case of hydrogen peroxide, it will decompose over time, so there is no problem even if it is added somewhat excessively.
  • hydrogen peroxide is selected as one of the preferred oxidizing agents.
  • the addition of excess hydrogen peroxide is not preferable because it is wasted from an economic point of view. Therefore, it is determined from time to time based on the results of operation, but in the case where hydrogen peroxide is used as a rough guideline for addition, for example, 0.01 to 5000 ppm / h with respect to the catalyst aqueous solution
  • 0.1 to 3000 ppm / h, more preferably 1 to 1000 ppm / h is added discontinuously or continuously.
  • the temperature range can be selected from room temperature to about 100 ° C. The higher the temperature, the faster the acid-acid reaction rate is.
  • the decomposition of hydrogen peroxide itself tends to occur, so it is preferably 30-80 ° C, more preferably 40-80 ° C. C is preferred.
  • the site where the oxidant is added is preferably a place where an aqueous phase formed from a catalyst and water is formed. If there is no hydrocarbon as much as possible, the part and location are preferred.
  • the analysis was carried out using Rigaku RIX1000 by fluorescent X-ray analysis using a standard sample.
  • the specific surface area was measured by a nitrogen adsorption method using Gemini 2360 manufactured by Shimadzu.
  • the pore volume and pore distribution were measured using a Pore Master GT33 manufactured by QUANTACHROME by the mercury intrusion method.
  • Na content is 0.25 wt% in terms of Na 2 O
  • Si content is 0.06 in terms of SiO.
  • the reaction tube used in Example 1 was filled with 10 ml of Catalyst A, and the temperature of the electric furnace was set to 250 ° C.
  • the reaction was performed as expected. The results are shown in Table 2.
  • the reaction tube used in Example 1 was filled with 10 ml of Catalyst A, and the temperature of the electric furnace was set to 400 ° C.
  • the reaction was carried out as follows. The results are shown in Table 2.
  • a vertical tubular reaction tube made of SUS316 with an inner diameter of 25.4 mm and a length of 280 cm with an oil heating tank was filled with 600 ml of catalyst A, and the temperature of the electric furnace was set to 350 ° C.
  • the catalyst life test under the above conditions was carried out, and the reaction results when the total reaction time was 1800 hours and 9000 hours are shown in Table 3.
  • Example 2 Except for changing the TBA aqueous solution as the raw material, the same catalyst and reaction conditions as in Example 1 were used. The performance was evaluated under the conditions.
  • Comparative Example 8 TBA produced as a by-product in the production of propylene oxide was used, and in Comparative Example 9, hydrated from a hydrocarbon mixture containing isobutene and n-butene in the presence of acetic acid with ion exchanged resin.
  • Comparative Example 10 TBA was used, which was hydrated with an ion exchange resin from a hydrocarbon mixture containing isobutene and n-butene.
  • Table 4 For comparison, the composition of TBA used in Example 1 and the results of the reaction were combined, and the results when the total reaction time was 800 hours are shown in Table 4.
  • catalyst aqueous solution containing about 50% by weight of phosphomolybdic acid and used for continuous reaction for about 1 year and bead-like adsorbent (Made by Mitsubishi Chemical, Sepabead SP207: modified styrene, specific surface area: 6 30m2 / g, highest frequency (Pore diameter: 21 nm) 250 g was brought into contact with stirring at about 60 ° C for 3 hours. Thereafter, the adsorbent was separated and washed with distilled water until the cleaning liquid became colorless and transparent. The adsorbent was air-dried, immersed in 1000 ml of acetone solution and allowed to stand for about 1 hour, and the acetone solution was colored brown.
  • bead-like adsorbent Mode by Mitsubishi Chemical, Sepabead SP207: modified styrene, specific surface area: 6 30m2 / g, highest frequency (Pore diameter: 21 nm) 250 g was brought into contact with stirring at about 60
  • FIG. 1 shows the infrared absorption spectrum of the accumulative impurities obtained by the present invention.
  • This infrared absorption smect is derived from organic compounds such as 1062cm-1, 960cm-1, 880cm-1, 808cm-1, absorption, 2970cm-1, C-H stretching vibration characteristic of Keggin type heteropolyacid. The compound was confirmed as one of the accumulated impurities even though it had an alkyl group and cation.
  • FIG. 2 illustrates a continuous production apparatus as one embodiment for carrying out the TBA production method according to the present invention.
  • the continuous production apparatus of the present invention all the parts such as the stirring tank reactor and piping are made of SUS304 (Crl8.0%, Ni8.0% C: 0.08% or less), and the reaction volume is 10L.
  • Three stirred tank reactors are provided, each consisting of a tank and a 2 L catalyst separator.
  • FIG. 2 illustrates three stirred tank reactors, but the continuous production apparatus of the present invention is not limited to one having three stirred reactors, and at least one A stirred tank reactor is provided.
  • Each hydrocarbon phase (oil phase) and catalyst aqueous solution (aqueous phase) separated by the catalyst separator installed in each reactor are separated and reacted in a flow in which the raw material hydrocarbon and the catalyst aqueous solution are counter-current.
  • the catalyst aqueous solution containing TBA produced by the catalyst separator in the reaction tank is supplied to a packed column distillation column with 20 theoretical plates, and TB A is separated from the top of the distillation column, resulting in a bottom temperature of 70 ° C. In this way, the pressure was controlled so that the bottom force was recovered to recover the catalyst aqueous solution.
  • the bottom liquid piping line is a column filled with 500 ml of acid cation exchange resin (SK1B) manufactured by Mitsubishi Chemical Co., Ltd.
  • Rafnate 1 containing 43% by weight of isobutene was fed in a countercurrent of 20 L / h.
  • the reaction temperature was controlled so that the stirring reaction tank of each reactor would be 70 ° C.
  • an intermittent operation was performed in which 100 ml of 10 wt% hydrogen peroxide-hydrogen water was supplied to the bottom piping of the distillation tower over 1 hour, and the operation was continued for about 2000 hours.
  • the conversion rate of isobutene at the beginning of the reaction was 95%, and the selectivity for TBA excluding water was 99%, and almost the same reaction results were maintained even after 2000 hours.
  • a continuous reaction was carried out in the same manner as in Example 6 except that the acid type cation exchange resin column and the adsorbent column in the bottom liquid piping line of Example 6 were not installed.
  • the conversion rate was maintained at 95% for 100 hours from the start of the reaction, but the increase in the differential pressure of the distillation column was observed after about 150 hours. Furthermore, some turbidity was generated in the unreacted hydrocarbon. Unreacted hydrocarbons were evaporated and the residue was analyzed by X-ray fluorescence. Molybdenum was detected. The reaction was stopped because it was difficult to continue the reaction due to a decrease in the separation performance of the catalyst separation section and a deterioration in the separation of the distillation column.
  • the catalyst aqueous solution was extracted and the catalyst separation performance in Reference Experiment 2 was tested. As a result of repeating 5 times, the average time to form the interface separated into two phases was 160 seconds, and the interface was also unclear. At this time, 50 ml of the catalyst aqueous solution was brought into contact with 30 ml of new adsorbent separation beads to adsorb the amount of accumulated impurities. Thereafter, the amount of accumulative impurities was determined in the same manner as in the reference example, and the amount of accumulative impurities in the catalyst aqueous solution was 11.5 wt%.
  • the reaction was performed in the same manner as in Example 6 except that the oxidation treatment with hydrogen peroxide was not performed.
  • the conversion rate of isobutene at about 10 hours after the reaction was 95%.
  • the reaction operation was kept stable and could be operated for a long time. However, after about 500 hours, the activity decreased gradually, and the isobutene conversion rate at about 1000 hours was 94.2%, and after 2000 hours, it was 93.6%. Was recognized.
  • the material of the stirrer is changed to Hastelloy B (Ni67%, Mo 28%, Fe5%), which is generally considered to have better acid corrosion resistance than SUS304.
  • the same operation as in Example 6 was performed.
  • the conversion of isobutene at about 10 hours after the reaction was 95%.
  • the reaction operation was kept stable and could be operated for a long time.
  • the activity decreased gradually after about 300 hours, and the isobutene conversion rate at about 1000 hours was 94.5%, and 94.1% after 2000 hours. Admitted.
  • As a result of analyzing the aqueous catalyst solution after stopping the reaction it was confirmed that the iron ions increased by 800 ppm and about 700 ppm, and the general anticorrosive strength was predicted.
  • Example 10 The reaction was carried out in the same manner except that the three reactors in Example 6 were replaced with eight mixing reaction units with a structure as shown in FIG. 3 and one counter-current reactor with a volume of 15 L in each mixing reaction unit. . Since the conversion rate of isobutene is as high as 97.5%, the method of supplying the catalyst and raw material to the countercurrent and the high countercurrent reactor! ⁇ Reactivity was confirmed. [0069] [Example 10]
  • the reaction was carried out for 500 hours in the same manner as in Example 6 except that the catalyst was changed to phosphotungstic acid (H3PW12O40) and the proton concentration was set to be the same. After 10 hours of reaction, the conversion of isobutene was 95.2%. After 500 hours, the conversion was 95.2%, and there was no problem in operation.
  • H3PW12O40 phosphotungstic acid
  • the reaction was carried out for 500 hours in the same manner as in Example 6 except that the catalyst was changed to phosphovanadomolybdic acid (H4PVMollO40) and the proton concentration was set to be the same.
  • the conversion rate of isobutene after 10 hours of reaction was 94.7%, and even after 500 hours, the conversion rate was 94.8%, and the problem of operating conditions was quite powerful.
  • the reaction was carried out for 500 hours in the same manner as in Example 6 except that the catalyst was changed to key tungstic acid (H4SiW12O40) and the proton concentration was set to be the same. After 10 hours of reaction, the conversion of isobutene was 95.3%, and even after 500 hours, the conversion was 95.2%, and there was no problem in operation.
  • key tungstic acid H4SiW12O40
  • the method for producing isobutene of the present invention provides a method for producing isobutene from TBA stably over a long period of time with a high yield and a high selectivity.
  • long-term continuous operation can be achieved by maintaining high reaction activity stably for a long period of time.
  • a method of manufacturing TBA that has become possible and has improved production is provided.
  • FIG. 1 shows an infrared absorption spectrum of a storage impurity obtained by the TBA production method.
  • FIG. 2 shows a continuous production apparatus as one embodiment for carrying out the TBA production method of the present invention.
  • FIG. 3 is a schematic view of an example of a reactor used in the method for producing TBA of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明の目的は、イソブテンの製造方法について長期間に亘り安定的に、高収率、高選択率でTBAからイソブテンを製造する方法を提供し、また、TBAの製造方法について、長期間安定に、高い反応活性を維持することで長期の連続運転が可能になり、生産量が向上したTBAの製造方法を提供することである。本発明によれば、Na含有量がNa2Oに換算して0.6重量%以下であり、Na含有量がNaO2に換算して0.4重量%以下であり、且つ、比表面積が200~600m2/gであるアルミナ触媒を用い、脱水分解する温度を200~450°Cとすることを特徴とするイソブテンの製造方法を開示する。  

Description

明 細 書
イソブテン及び第 3級ブタノールの製造方法
技術分野
[0001] 本発明は、触媒として特定の物性を持つアルミナ触媒を用いて第 3級ブタノール (タ ーシャリーブタノール:以下、「TBA」と略する)を脱水し、イソブテンを高収率、高選 択率で、且つ、長期間安定して製造する方法と、イソブテンと n—ブテンを含むォレフ イン混合物と水から、 TBAを高収率、高生産性で、且つ、長期間安定して連続的に 製造する方法に関する。
背景技術
[0002] イソブテンは、イソブテンポリマーやメチルメタタリレート(MMA)の原料として近年 脚光を浴びており、重要な工業原料である。また、イソブテンは、通常、 n—ブテン等 を含む C4ォレフィン混合物として存在するため、これら C4ォレフィン混合物からイソ ブテンを分離する必要がある。
[0003] C4ォレフィン混合物力 イソブテンの製法の 1つとして、水和反応と脱水反応を組 み合わせることにより、 n—ブテンを含まないイソブテンが製造される。即ち、 C4ォレ フィン混合物力もイソブテンを選択的に水和し TBAとして回収することにより分離し、 得られた TBAを脱水することによりイソブテンを得る方法である。また、水和され回収 分離された TBAも重要な工業原料である。特に MMAの原料として、脱水せずに TB Aのまま用いることができるため、近年、需要が増大している。
[0004] 原料となるォレフィン混合物は、主にナフサ分解工程の C4留分から、ブタジエンを 除去したイソブテン及び n—ブテンを主成分とするラフィネート 1 (慣用名「スベント BB 」)である。あるいは、重質油の FCC分解力も得られるブテン類を含む C4留分などが ある。いずれの原料の場合もイソブテンと n—ブテンを含む力 両者の沸点差が 1°C 以下と近いため蒸留分離では困難であり、イソブテンを選択的に水和反応させ反応 分離する方法の工夫がなされてきた。
[0005] 水和反応の方式には、強酸性イオン交換榭脂を用いた充填式固定床反応がある( 例えば、特許文献 1、特許文献 2、及び特許文献 3参照)。この水和反応方法は、触 媒が固定されているため、触媒との分離が良好である一方、接触効率が低いため反 応性が低!、と 、う欠点がある。反応性及び水和反応選択性を高めるために適した溶 媒を用い、反応液を循環し且つ最適循環の範囲で行うという反応性を改良した方法 が開示されている(例えば、特許文献 4参照)。一方、均一系の水和反応では、ベン ゼンスルホン酸等を触媒にする方法が知られている(例えば、特許文献 5参照)。へ テロポリ酸水溶液を触媒として接触させる方法も知られている(例えば、特許文献 6、 特許文献 7、特許文献 8、及び特許文献 9参照)。酸性イオン交換榭脂等を用いた固 定床反応では、反応器から出た生成物の大半を循環させる必要があること、反応原 料の炭化水素と水が混ざり合わないこと、さらに固体であるとイオン交換樹脂との濡 れ性を高め接触効率を上げるための溶媒として、有機酸や、反応生成物である TBA を添加する必要があるなど改良すべき課題が残されて 、る。ヘテロポリ酸は反応性が 高くイソブテンへの選択性も高く優れた方法であるが、プロセス全体に全く課題が無 いわけではなぐいくつかの残された課題があり、その改善がなされてきた (例えば、 特許文献 10、特許文献 11、及び特許文献 12参照)。
[0006] し力しながら、いずれの製造方法の場合にも依然として長期間安定に製造を継続 するには課題が残されている。それぞれの触媒も初期には優れた活性を示すが、年 間という時間軸ではわずかではあるが徐々に触媒活性が低下していくという現象や 触媒分離器の分離能力が低下するなどの現象、蒸留塔の分離性能低下などが経年 変化として生じる。この解決策として、長期間反応に使用した触媒の一部を廃棄し、 新し ヽ触媒を追加すると ヽぅ方法などで連続反応が継続される。近年のグリーンケミ ストリーの観点力もこれらの廃棄物となる量の削減が課題になっている。
[0007] また、脱水反応の方式には、古くは、硫酸等の強酸を用いて均一系で行う方法が 一般的であるが、この方法は強酸を使用するため腐食性が高ぐ耐食性の製造装置 が必要であり、また、脱水反応後に排出される廃硫酸の処理が困難であるため工業 的な製造法としては好ましくない。近年、この問題を解決する方法として、スルホン酸 基を含有する強酸性イオン交換榭脂を触媒として不均一系で該脱水反応を行う方法 力 いくつ力提案されている。その 1つとして、イオン交換榭脂を用いた固定床で、 80 〜150°Cの温度範囲で TBAを脱水する方法を開示している。しかし、この方法で反 応温度が 120°C以下の場合、 TBAとイソブテン、水が平衡関係にあるため、反応後 の水の組成比率が上がって反応速度が低下する。そのため、ワンノ スの転ィ匕率が低 ぐ TBA及び水を多量にリサイクルする必要が生じ、製造プロセスを複雑にしてしまう 。また、 120°Cを超えた温度で反応させようとすると、副反応であるイソブテンの多量 化が進み収率が低下してしまう。(例えば、特許文献 13参照)
[0008] 他方、気相下で固体酸を触媒に用いるイソブテンの製造についても、多くの方法が 知られている。アルコールの脱水反応は多大な吸熱反応であるため、特許文献 14で 実施されているように、通常、気相で 250°C以上の高温で反応を行っている。本脱水 反応の特徴として、生成するイソブテンの多量ィ匕反応によるジイソブテン等の生成が 起こるが、この多量ィ匕を抑制するためにはより高温での反応が好ましい。しかしながら 、温度が高くなるにつれ触媒表面への炭素析出が加速し、経時的な触媒活性の低 下を引き起こし、長期に亘る安定的な工業生産に悪影響を及ぼす。
[0009] アルコールの脱水によるォレフィンの製造において、気相下での固体酸触媒を用 いた反応では、触媒活性を長期に亘つて維持できる触媒の開発は工業的に大変意 義のあることであり、最近になっていくつかの方法が提案されている。その 1つとして、 炭素数が 2〜4までの低級アルコールを脱水して低級ォレフィンを製造する場合に触 媒として γ —アルミナを使用する方法が提案されている (例えば、特許文献 15参照) 。し力しながら、特許文献 15中の記載によれば、実施例中でのイソブテンの製造方 法では原料としてイソブタノールを用いており、 ΤΒΑを原料とした場合にどのような結 果になるかは予想できない。カロえて、目的を達成するためには高い圧力を必要とし、 また、実施例中のイソブテン収率についても満足できるものではない。
[0010] 上記のように、従来法においては、液相における比較的低温で実施する方法、気 相において高温で実施する方法のいずれにも、それぞれに問題点が存在する。また 、気相下での固体酸触媒を用いた方法においては、前述の特許文献 15に関する記 載の通り、気相での固体酸触媒を用いた ΤΒΑからイソブテンを製造する方法におい て、触媒活性を長期に亘つて維持できる触媒に関する提案はなされていないのが現 状である。
特許文献 1:特開昭 56— 10124号 特許文献 2 :特公昭 56— 2855号
特許文献 3 :特開昭 55— 64534号
特許文献 4:特開平 11 193255号
特許文献 5 :特開昭 55— 51028号
特許文献 6 :特開昭 54— 160309号
特許文献 7 :特開昭 55— 7213号
特許文献 8 :特開昭 55— 62031号
特許文献 9 :特公昭 58— 39806号
特許文献 10 :特開 2000 —44497号
特許文献 11 :特開 2000 —43242号
特許文献 12 :特開 2000 —44502号
特許文献 13 :特開昭 58 - - 116427号
特許文献 14:特公昭 48 - - 10121号
特許文献 15 :特開平 4 300840号
発明の開示
発明が解決しょうとする課題
[0011] 本発明の目的は、アルミナを触媒とし、 TBAからイソブテンを長期間に亘り安定的 に、高収率、高選択率で製造する方法と、酸を触媒とし、イソブテンおよび n—ブテン を含有する炭化水素混合物から、イソブテンを選択的に水和し TBAを連続的に長期 間安定して製造する方法を提供することにある。
課題を解決するための手段
[0012] 本発明者等は、経済的な方法により TBAからイソブテンを製造する方法を開発す るにあたり、気相下で固体酸触媒を用いることに着目し、鋭意検討を行った。ところで 、脱水反応条件下では、経時的な触媒活性の低下を引き起こす触媒表面への炭素 析出は、固体酸の酸強度に依存し、酸強度が強いほど、生成したイソブテンが環化、 脱水素、水素移行反応等を起こし炭素析出が促進されることは公知である。シリカァ ルミナ等の一般的に強酸性である固体酸は、初期活性は高いものの、炭素析出によ る経時的な活性低下が顕著であった。そこで、一般的に弱酸性であるアルミナ触媒 のうち、触媒中の Na等の不純物含有量、比表面積や細孔容積が異なる触媒を用い て具体的に検討した結果、驚くべきことに長期に亘つて炭素析出を起こさず高活性 を維持し且つイソブテンの選択率も高いことを見出した。
[0013] また、 TBAの製造において、長期間運転を行っていると緩やかではある力 反応活 性の低下や、触媒分離特性の悪化、蒸留塔の分離能力低下が反応時間の経過と共 に低下する現象のため、不定期にプラントを停止させ、触媒の一部を入れ替えるなど によって、反応性、運転性を修復させなければならない課題がある。本発明者等は、 長期安定運転を実現するために、これらの現象について、徹底的な解析と解決のた めの研究を行ってきた。その結果、 TBAの製造において、触媒活性低下の原因や、 触媒分離の悪化、蒸留塔分離性能低下は、蓄積性の不純物が原因であるという知 見に基づき、本発明を完成するに至った。
[0014] 即ち、本発明の第 1の態様では、
〔1〕 第 3級ブタノールを原料として、イソブテンを製造する方法であって、
Na含有量が Na Oに換算して 0. 1〜0. 6重量%の範囲であり、 Si含有量が SiO
2 2 に換算して 0. 4重量%以下であり、且つ、比表面積が 200〜600m2Zgであるアルミ ナ触媒を用いて、 200〜450°Cの反応温度にて、気相下、脱水反応を行う工程を含 むことを特徴とするイソブテンの製造方法、
〔2〕 前記アルミナ触媒が、触媒中の全細孔容積が 0. 1〜0. 5ccZgの範囲にあり、 且つ、細孔半径 70 A以上の細孔が有する細孔容積が全細孔容積の 60%以上を占 める範囲にあることを特徴とする〔1〕に記載のイソブテンの製造方法。
〔3〕 前記第 3級ブタノールが、イソブテン及び n—ブテンを含む炭化水素混合物か ら、水及びへテロポリ酸触媒を含む触媒水溶液を用いて、選択的にイソブテンを水和 して、第 3級ブタノールを製造する方法によって製造されることを特徴とする〔1〕又は〔 2〕に記載のイソブテンの製造方法、
を提供する。
[0015] また、本発明の第 2の態様では、
〔4〕 イソブテン及び n—ブテンを含む炭化水素混合物から、水及び触媒を含む触媒 水溶液を用いて、選択的にイソブテンを水和して、第 3級ブタノールを連続的に製造 する方法であって、
前記炭化水素混合物、前記触媒及び第 3級ブタノールのうち少なくとも 1種を循環 するリサイクル系を用いて、前記少なくとも 1種をリサイクルさせる工程と、
該リサイクル系から蓄積性不純物の一部を除去する工程と、
を含むことを特徴とする第 3級ブタノールの連続的製造方法、
[5] 前記蓄積性不純物を除去する工程において、多孔質吸着剤及び/又はイオン 交換榭脂を用いることを特徴とする〔4〕記載の製造方法、
〔6〕 前記多孔質吸着剤の細孔半径が、 0. 5〜500nmの範囲であることを特徴とす る〔4〕又は〔5〕に記載の製造方法、
〔7〕 前記触媒力 Hammettの酸度関数 Hoで、 5. 6≥Hoで表される強酸又は 強酸塩であることを特徴とする〔4〕ないし〔6〕のうち何れか一項に記載の製造方法、 〔8〕 前記触媒が、ヘテロポリ酸であることを特徴とする〔4〕ないし〔7〕のうち何れか一 項に記載の製造方法、
〔9〕 前記へテロポリ酸が、リンモリブデン酸、リンモリブドバナジン酸、リンタンダステ ン酸、リンタンダストバナジン酸、ケィタングステン酸及びそれらの塩力 なる群力 選 ばれ、それぞれ単独で、又は 2種類以上のへテロポリ酸を混合して用いることを特徴 とする〔8〕に記載の製造方法、
〔10〕 前記イオン交換樹脂が、陽イオン交換榭脂であることを特徴とする〔5〕に記載 の製造方法、
〔11〕 前記触媒水溶液及び前記炭化水素混合物が、向流となるように供給しながら 反応させる工程を含むことを特徴とする〔4〕ないし〔10〕のうち何れか一項に記載の 製造方法、
〔12〕 酸化剤を、連続的又は不連続的に添加する工程をさらに含むことを特徴とす る〔4〕な 、し〔11〕のうち何れか一項に記載の製造方法、
を提供する。
さらに、本発明の第 3の態様では、
〔13〕 少なくとも 1つの攪拌槽型反応器と、前記攪拌槽型反応器に接続した蒸留塔 と、前記攪拌槽型反応器及び Z又は前記蒸留塔と接続し、不純物を除去する分離 器と、前記分離器と、前記攪拌槽型反応器及び Z又は前記蒸留塔とを連通させるボ トム液配管と、を備える、第 3級ブタノールの連続製造装置、
〔14〕 前記攪拌槽型反応器が、触媒分離器を備えることを特徴とする〔13〕に記載 の第 3級ブタノールの連続製造装置、
[15] 前記分離器が、前記触媒分離器と連通していることを特徴とする〔14〕に記載 の第 3級ブタノールの連続製造装置、
〔16〕 前記分離器が、吸着剤カラム及び/又はイオン交換榭脂カラムを備えることを 特徴とする〔 13〕ないし〔 15〕に記載の第 3級ブタノールの連続製造装置、
〔17〕 前記攪拌槽型反応器が、触媒水溶液と原料炭化水素混合物が向流となるよ うに供給しながら反応させる向流型反応器であることを特徴とする〔 13〕ないし〔 16〕 のうちいずれか一項に記載の第 3級ブタノールの連続製造装置、
〔18〕 前記連続製造装置において、触媒が接触する部位の材質が、少なくとも Crを
17〜21%、 Niを 8〜14%含み、 Cが 0. 10%以下であるステンレス鋼力も構成され ることを特徴とする〔 13〕な 、し〔 17〕のうち何れか一項に記載の第 3級ブタノールの 連続製造装置、
〔19〕 前記触媒が、ヘテロポリ酸であることを特徴とする〔18〕に記載の第 3級ブタノ ールの連続製造装置、
を提供する。
発明の効果
[0017] 本発明によれば、イソブテンの製造方法について、長期間に亘り、安定的に、高収 率、高選択率で第 3級ブタノールからイソブテンを製造することができる。また、第 3級 ブタノールの製造方法について、長期間安定に、高い反応活性を維持することで長 期の連続運転が可能になり、生産量が向上した第 3級ブタノールの製造方法が提供 される。さらに、触媒ロス、運転停止に伴う生産ロスを大幅に削減することができ、廃 棄物の削減、省エネルギーを実現できる。
発明を実施するための最良の形態
[0018] 以下では、本発明の実施例及び比較例を挙げて本発明をさらに詳細に説明するが 、これらは例示的なものであり、本発明は以下の具体例に制限されるものではない。 当業者は、以下に示す実施例に様々な変更を加えて本発明を実施することができ、 力かる変更は本願特許請求の範囲に包含される。
[0019] 本発明の一の態様は、第 3級ブタノール (以下、「TBA」という。 )を原料として、気 相下、脱水反応によりイソブテンを製造する方法に関する。
[0020] 本発明のイソブテンの製造に用いる触媒は、 γ型の結晶構造を主成分とするアルミ ナである。アルミナ触媒中の Na含有量は、 Na Oに換算して 0. 1〜0. 6重量%、好
2
ましくは 0. 1〜0. 5重量0 /0、より好ましくは 0. 1〜0. 4重量%の範囲であり、 Si含有 量は SiOに換算して 0. 4重量%以下、好ましくは 0. 3重量%以下、より好ましくは 0
2
. 2重量0 /0以下であり、且つ、比表面積力 S200〜600m2Zg、好ましくは 250〜600 m2Zg、より好ましくは 300〜600m2Zgである。
[0021] イソブテンの製造に用いるアルミナ触媒が該脱水反応において特に有効である理 由は、脱水反応活性に最適な酸性質を有しているためと推定している力 アルミナ触 媒中に含まれる Naの量が増加していくと、触媒表面の酸点が中和され、脱水反応収 率が著しく低下する。これに対し、アルミナ触媒中に不純物として SiOが存在する場
2
合、 Si含有量の増加に伴い、 Si— O— A1に由来する強酸点が発現し、脱水反応収 率を低下させ、炭素析出を加速させる。そのため、アルミナ触媒中の Na含有量と Si 含有量は少ないほど有利となる力 わずかでも SiO
2がアルミナ触媒中に含まれる場 合は、 S油来の強酸点を中和するためにある程度の Naが必要となる。通常、脱水反 応に用いられるアルミナ触媒から Siを完全に除去することは現実的でないため、 Na の含有量については、触媒表面の酸性質を最適な状態に維持するに必要な、最低 限の量が存在することが重要となる。一方、ある程度の SiOを含むアルミナ触媒の場
2
合、存在する強酸点を Naにより中和すれば最適な酸性質が得られると考えることも できる。しかし、この場合、触媒表面の Naと Siが増加するとその分布は不均一となり、 脱水反応に活性な酸点を中和してしまい、強酸点は依然として存在するため、脱水 反応収率は著しく低下する。
[0022] イソブテンの製造に用いるアルミナ触媒の比表面積の大きさは脱水反応活性に寄 与するだけでなぐ炭素析出による経時的な触媒活性の低下を遅滞させる効果を有 するため、比表面積は 200〜600m2Zg、好ましくは 250〜600m2Zg、より好ましく は 300〜600m2Zgである。比表面積は 600m2Zg以下が好ましい理由として、比表 面積が 600m2Zg以下のアルミナ触媒は、全細孔容積に占める細孔半径の小さ ヽ 細孔の割合が少ないため炭素析出による細孔の閉塞が起きにくぐ経時的な触媒活 '性の低下が遅くなるためである。
[0023] イソブテンの製造に用いるアルミナ触媒は、上記の性質を持つアルミナ触媒であつ て、さらに、次のような性質も併せ持つものが好ましい。すなわち、該アルミナ触媒中 の全細孔容積が 0. 1〜0. 5ccZgの範囲にあり、且つ、細孔半径 70A以上の細孔 が有する細孔容積が全細孔容積の 60%以上を占める範囲にあるアルミナ触媒であ る。アルミナ触媒の全細孔容積、及び細孔半径 70 A以上の細孔が占める細孔容積 が上記の範囲内であるものは、脱水反応収率が高ぐ触媒活性の経時的な低下が小 さい。
[0024] イソブテンの製造に用いるアルミナ触媒の有する性状が上記の範囲内であれば、 その製造方法は、公知の方法で製造されたアルミナを用いることができる。例えば、 熱分解法、沈殿法、沈着法、混練法又はこれら方法の併用の、いずれかの方法によ つて容易に製造される。この際、アルミナの原料としては加熱又は加水分解によりァ ルミナ、あるいはアルミナ水和物を生成する硝酸塩、酢酸塩、アルコキシド、硫酸塩、 塩化物、アルミン酸アルカリ、及びミヨゥバン等が用いることができる。加水分解のた めのアルカリとしては力性アルカリ、炭酸アルカリ、アンモニア水、炭酸アンモ-ゥム等 カ^、ずれも使用できる力 ナトリウム分を含有しな 、ものが好ま 、。
[0025] イソブテンの製造に用いるアルミナ触媒の形状については特に制限はなぐ粉末状 、粒状、球状、円柱状、リング状など何れでもよいが、実際には反応器の圧力損失を 考慮して決定される。一般的には、直径 0. 5〜20mmの球状や、直径及び高さが 2 〜20mmの円柱状、外径 4〜20mm、内径 2〜16mm、高さ 2〜20mmのリング状の ものが使用される。
[0026] イソブテンの製造に用いるアルミナ触媒の成型法については特に制限はなぐ触媒 成型法については、通常、球状形態を成型する場合は、転動式造粒法、マルメライ ザ一成型法、流動層造粒法などがあり、円柱状又はリング状形態を成型する場合は 、押し出し成型法や打錠成型法などが採用されるが、何れの方法を用いてもよい。触 媒の前処理は特に必要な 、が、焼成処理等の前処理を行ってもょ 、。
[0027] 本発明のイソブテンの製造方法において、出発物質である TBAの脱水分解反応 の条件は次の通りである。具体的には、反応温度が 200〜450°C、好ましくは 250〜 420°C、より好ましくは 300〜400°Cである。脱水反応収率、炭素析出の抑制の点か ら、この範囲の脱水分解温度が好ましい。
[0028] 反応器への原料の供給量は、原料 TBAの供給速度 (LHSV)として 0. 1〜: LOhr_1 、好ましくは 0. 5〜5hr_1である。経済性、脱水反応収率、炭素析出の抑制の点から 、この範囲の供給速度が好ましい。反応圧力は、特に限定されず、減圧、常圧、加圧 の何れでもよいが、加圧条件下では、工業用常用の冷却剤で凝縮できる点、及び反 応器の小型化、触媒の少量ィ匕が可能な点力も有利である。
[0029] 原料の TBA蒸気は、水蒸気及び Z又は窒素のような不活性ガスとともに供給する のが一般的であるが、本発明の方法においては TBA蒸気のみを通じても運転'操業 は可能である。これは、本発明のイソブテンの製造方法においては副反応の生成が 少ないため、炭素析出も少なくなるという特徴を有するためである。
[0030] 本発明のイソブテンの製造方法における反応方式は、連続反応が好ましぐ反応器 の形式としては固定床方式が好ましい。
[0031] 本発明のイソブテンの製造方法において使用する TBA原料は、必ずしも純粋でな くてもよぐ反応条件下でィ匕学反応を起こさない有機物が少量混入したものも用いる ことができる。ただし、炭素析出を起こすような有機物はできるだけ含まないことが好 ましい。より好ましくは、イソブテン及び n—ブテンを含む炭化水素混合物から、水及 びへテロポリ酸触媒を含む触媒水溶液を用いて、選択的にイソブテンを水和して製 造された TBAである。本発明者等が、数種の製法の異なる TBAを用いて検討した 結果、ヘテロポリ酸の水和により製造した TBAが最もジイソブテン、含酸素化合物等 の不純物が少なぐ炭素析出が少ない結果となった。これは、ヘテロポリ酸の水和反 応の選択性が高いことが原因の 1つと考えられる。一方、その他の製法による TBAに ついては、例えば、プロピレンオキサイドを製造する際に副生する TBAの場合は各 種ケトン類等の含酸素化合物が多く含まれ、また、イオン交換榭脂にて水和された T BAにつ ヽては、接触効率を上げるために添加される有機酸とブテン類とのエステル 類が含まれ、有機酸を用いずに製造された TBAでもジイソブテンが多いために、炭 素析出が加速された可能性が考えられる。また、水分を含む TBAを用いることも可能 であり、炭素析出の抑制という点から、ある程度の水分を含んだ TBA原料を用いるこ とが好ましい。また、水分を含む TBAを原料として使用できると、 TBAの共沸水を精 製して除去する工程を必要とせず経済的に有利であり、さらには、低温下において 凍結しに《取り扱いが容易である。水分濃度に関して、ヘテロポリ酸を触媒に用い て製造された TBAは、安定した一定の水分濃度を持っためにより好ま 、原料とな る。
[0032] 次に、本発明の別の態様である TBAの製造方法について説明する。本発明の TB Sの製造方法は、イソブテン及び n—ブテンを含む炭化水素混合物カゝら水と触媒を含 む触媒水溶液を用いて、選択的にイソブテンを水和し、 TBAを製造する連続的方法 において、蓄積性不純物が、触媒活性低下の原因や、触媒分離の悪化、蒸留塔分 離性能低下の原因であることを突き止めた。そこで、本発明の TBAの製造方法では 、イソブテン及び n—ブテンを含む炭化水素混合物、触媒水溶液又は TBAのうち少 なくとも 1種を循環するリサイクル系を用いて、蓄積性不純物を一定の濃度以下にな るように管理する工程という、新しい技術思想を付与することで、安定した TBAの連 続的製造方法を提供するものである。
[0033] また、本発明のさらに別の態様では、効率的な TBAの生産を確保するための反応 システムとして、本発明の TBAの製造に関する第 3級ブタノールの連続製造装置を 提供する。本発明の第 3級ブタノールの連続製造装置は、少なくとも 1つの攪拌槽型 反応器と、前記攪拌槽型反応器に接続した蒸留塔と、前記攪拌槽型反応器及び Z 又は前記蒸留塔に接続し、不純物を除去する分離器と、前記分離器と、前記攪拌槽 型反応器及び Z又は前記蒸留塔とを連通させるボトム液配管と、を備える。本発明 の連続製造装置の好ましい態様では、前記攪拌槽型反応器が、触媒分離器を備え 、当該触媒分離器も前記分離器と接続している。また、本発明の連続製造装置の別 の好ましい態様では、前記分離器が、吸着剤カラム及び/又はイオン交換榭脂カラム を備える。 TBAの製造に関して、本発明に係る連続製造装置の好ましい態様では、 前記攪拌槽型反応器が、触媒水溶液と原料炭化水素混合物が向流となるように供 給しながら反応させる向流型反応器である。このように、触媒水溶液と原料である炭 化水素混合物が向流となるように供給しながら反応させることで高 、生産性を実現で きる。カロえて、酸化剤の添カ卩によって低下した活性を復活させることも可能となる。こ のようにして、本発明の TBA連続製造装置では、分離器を介して、後述するように、 原料、生成物又は触媒のリサイクル系を確立することができる。
[0034] イソブテン及び n—ブテンを含む炭化水素混合物カゝら水と触媒を含む触媒水溶液 を用いて、選択的にイソブテンを水和し、 TBAを製造する反応条件によって蓄積性 不純物は単独の場合もあるが、多くの場合、複数の物質から形成されることが推定さ れている。例えば、本発明者らは、その一つに、反応器材質が腐食等のよって溶解し 金属イオンとして反応系に蓄積することも触媒活性低下の因子の一つであることを解 明した。触媒である酸性物質が原因であると推定して、腐食を大きく低減できる金属 材料を広く調査し、さらに実験によって、従来のステンレス鋼の耐腐食性概念からは 予想できない現象を見出した。すなわち、本発明では、 TBAの製造において、反応 系での不純物の発生を極力抑制し、発生した微量の蓄積性不純物をリサイクル系で 濃縮し効果的に除去するものである。不純物の除去は、本来、不純物が発生又は存 在する部位で行うのが好ましいといえる力 実際に実施してみると、微量の不純物を 効果的に除去するのは極めて困難であった。ところが、微量なために除去が困難な 場合にも、本発明のリサイクル系で蓄積性不純物を濃縮することによって、分離効率 が格段に容易になり簡単な設備で効果的な除去が可能になる。
[0035] 本発明の TBAの製造方法における除去工程は、蓄積性不純物を、後述する少なく とも一つのリサイクル系にお 、て実施し、反応方法などの違いによって適した場所に て蓄積性不純物の除去工程を行うことができる。蓄積性不純物が触媒水溶液に多く 含まれる場合には、触媒のリサイクル系にて除去工程を行うことができる。また、未反 応の原料系中に蓄積性不純物が多く含まれる場合にはそのリサイクル系にて除去ェ 程を行うことができる。さらに、生成物の一部を循環する系に蓄積性不純物が多く含 まれる場合には、そのリサイクル系にて除去工程を行うことができ、プロセスに応じて 効果的な場所のリサイクル系において除去工程を行うことが好ましい。さらに、本発明 の TBAの製造方法において、触媒、原料及び製品の全てのリサイクル系において、 蓄積性不純物を除去することもできる。
[0036] 次に、本発明の TBAの製造方法において使用する強酸性触媒として、ヘテロポリ 酸水溶液を触媒に用いた系を例示して、本発明の TBAの製造方法における蓄積性 不純物の除去工程について説明する。
(触媒のリサイクル系にお 、て)
まず、触媒であるへテロポリ酸は、その陰イオンの直径が約 lnmであり、一般的な 鉱酸である、硝酸、塩酸、硫酸に比べ大きな陰イオンである。このことは、他の鉱酸に 比べプロトンとしての酸強度を高める結果となる。イソブテンの水和反応において同じ プロトン濃度において硝酸などの一般的な鉱酸に比べ、高い反応活性を示す。また 、大きな陰イオンとイソブテンとの相互作用が n—ブテンより強いと推定され、高い選 択水和反応特性を引き出すと考えられている。さらに、例えば、 100°C程度の反応温 度領域では安定であり、熱劣化のあるイオン交換樹脂に比して、寿命の観点からも有 利である。したがって、触媒としてはイオン交換榭脂に比べ優れている。しかしながら 、近年、年間オーダーの長時間に渡り連続的に反応を継続していると、緩やかでは あるが反応活性が低下していくという問題が発生した。本発明者らはその原因や劣 化を詳細に検討した結果、本発明の TBAの製造方法では、以下のような解決策を 見出した。
[0037] すなわち、長時間反応に使用して触媒活性が低下したリサイクル系のへテロポリ酸 水溶液を解析した結果、不純物が蓄積していることがわ力つた。そこで、例えば溶解 した TBAを蒸留分離した蒸留塔のボトムの触媒水溶液の一部を循環リサイクルする 場所から、例えば、蓄積性不純物を吸着分離して除去することができる。さらに、酸 ィ匕剤を添加することで、触媒分離特性や蒸留塔の運転性、活性を回復させることが できることを見出した。活性低下や回復の機構の全ては明らかにはできていないが、 長時間に及ぶ反応運転で生成した微量の不純物がリサイクル系に留まり蓄積して濃 度が高くなり、触媒分離工程の分離性を悪化させる蒸留塔の運転では発泡現象など を起こし分離特性を悪化させると推定される。また、触媒であるへテロポリ酸に吸着若 しくは配位することでイソブテンの反応阻害をすると想定される。その考察の一つとし て、触媒水溶液の分析力も反応初期には認められな力つた鉄イオン等が反応時間の 増加に伴って確かに増加していた。すなわち、蓄積性の不純物の一つとしては、反 応器、配管材料から溶出する鉄などの金属イオン等が推定される。鉄イオン等の発 生は、反応器等の装置材料力 の腐食によって引き起こされると考えられる。これら の金属イオン等の除去方法を検討した結果、ほぼ金属イオン等は、イオン交換榭脂 で選択的に吸着除去できることを見出した。
[0038] 金属イオンの吸着除去には、活性炭類も利用可能であるが金属イオンを選択的に 除去する場合には、イオン交換榭脂類力も選定して利用するのが金属イオン除去か らは好ましい。具体的には、スルホン基や、カルボキシル基を有するスチレン系ゲル 型、スチレン系 MR型、メタクリル酸 MR型、アクリル酸 MR型、アクリル酸ゲル型など の陽イオン交換榭脂等が挙げられ、 Na型より H (酸)型ゃキレート榭脂から好適なも のを選定して使用することが好まし 、。
[0039] (原料のリサイクル系において)
また、原料であるイソブテン及び n—ブテンを含む炭化水素混合物におけるブテン 類は、ビニル基という反応性の官能基を有することから何らかの重合反応等によって 高沸点の蓄積性有機化合物の生成が推定される。
[0040] つぎに、高沸点の蓄積性有機化合物が原因であると推定した、触媒相 (水相)と炭 化水素相 (オイル相)との分離性の悪化現象を解決した方法について詳細に説明す る。触媒水溶液相と炭化水素相、すなわち水相、オイル相が悪ィ匕する現象は、水と 油を乳化するような成分、すなわち、界面活性剤の機能を有する蓄積性不純物が系 内で微量生成し、その成分が時間と共に蓄積してくることから起こると仮定した。徹底 的な解析の結果、ある特定の吸着剤を用いると不純物を吸着分離することに成功し た。この不純物を解析すると界面活性機能を有することが確認できた。さらに、不純 物を抽出して、フレッシュな触媒水溶液と炭化水素混合物に添加すると、明らかに分 離界面を悪化させる現象を再現した。
[0041] すなわち、触媒分離界面の悪化や蒸留塔分離 (発泡)原因物質は、リサイクル系に 蓄積する不純物が原因物質であり、 NMR、 MS、 IR等を用いた解析力もも、有機分子 成分と陰イオンを有すると推定される界面活性剤と類似した機能を有する不純物で あることを突き止めた。 [0042] (生成物のリサイクル系について)
蒸留塔での分離性能悪化現象では、蓄積性不純物の濃度が高くなると悪くなるな どの関係も実験的にも検証できた。イソブテンの水和反応生成物である TBAは、触 媒水溶液中にある範囲濃度で含まれると、特開 2000— 44502号に示されて 、るように 、蒸留塔において起こる発泡現象を消泡する機能を有することが見出されている。ァ ルコール類は発泡現象を抑制する消泡剤として用いられるため、本反応での目的生 成物である TBAも消泡剤として機能すると考えられる。
[0043] しかし、本発明の TBAの製造方法では、 TBAが無 、条件であっても蓄積性不純 物を除去することによって、触媒分離悪化や蒸留塔の運転性悪化を抑制できることを 見出した。すなわち、界面活性能を有する蓄積性不純物を触媒水溶液中の濃度で 1 0. 0〜0. 1重量0 /0、好ましくは 5. 0〜0. 1重量0 /0、より好ましくは 3. 0〜0. 1重量% 下である。さらに低いレベルに制御することが好ましいが、除去に用いる吸着剤量が 多量に必要になるなどの負荷が増大する。したがって、分離状況と、運転条件による TBAの存在濃度など力も最適な濃度レベルを設定することができる。効果的に発泡 原因物質と推定される蓄積性不純物を除去する機能材料^!兑意検討した結果、吸 着剤の表面積と吸着効果が単純には依存せず、吸着効果の一つには、細孔径が重 要な因子であることを見出した。具体的には、多孔質吸着剤が好ましい。吸着剤とし ては、シリカ、アルミナ、活性炭、ゼォライト類、細孔径の大きな MCM— 41等のメソ ポアゼォライト類などの無機多孔質材料、イオン交換基を持たないスチレン—ジビ- ルベンゼン、メタクリル酸エステルとエチレングリコールジメタタリレートを原料とする架 橋合成有機高分子、キトサン榭脂などが挙げられる。細孔半径は 0. 5〜500nmの 範囲にあるサイズの多孔性の吸着剤であり、好ましくは細孔半径が l〜250nmの範 囲、より好ましくは 2〜50nmの細孔を有する多孔性材料である。材質的により好まし いのは親水性より新油性材料であり、シランカップリング剤などで有機修飾したシリカ ゲル、有機修飾したアルミナ、有機修飾した MCM— 41等のメソポア、さらに好ましく は合成樹脂系材料が好ま U、素材である。
[0044] このように、本発明の TBAの製造方法では、触媒、原料又は生成物のリサイクル系 を採用することにより、当該リサイクル系において、吸着剤及び Z又はイオン交換榭 脂などの分離器を設けることで、各リサイクル系にて蓄積性不純物を濃縮及び除去 する。力かる濃縮及び除去を行うことで、長期間安定に、且つ、触媒の反応活性を維 持することが可能となり、 TBAの連続的製造が実現される。
[0045] 本発明の TBSの製造方法において用いる触媒は、酸性を示す物質を用いことがで きる力 反応速度の観点から、 Hammettの酸度関数 Hoが、—5. 6≥Ho表現される 強酸性物質力も選択して用いることができる。強酸性物質の具体例としては、 S102- A1203、 Si02— Zr02、 Si02— BeO、 Si02— Y203、 Si02— La203、 A1203— Zr02、 Ti 02— Zr02、 H— Yゼォライト、 H— ZSM— 5、 80%以上の H2S04、 Nafion— H、強酸性 陽イオン交換榭脂、パラトルエンスルホン酸、ヘテロポリ酸等が挙げられ、これらから 選定して酸触媒として使用することができる。
[0046] 本発明の TBAの製造方法に用いられるヘテロポリ酸の具体例としては、 H3PMol2 040、 Η6Ρ2Μο18062、 Η9Α1Μο024、 H3AsMol2O40、 H8CeMol2042、 H9GaMo024 、 H5IMol2O40、 H4SiMol2O40、 H4GeMoO12O40、 H4PVMollO40、 H5PV2MolOO 40、 H5BW12O40, H4PW11A1040、 H3PW12O40, H5A1W12O40, H6SiV2W10O40、 H5SiVWllO40、 H4SiW12O40、 H5GaW12O40、 H9NdW18036、 H9CeW18036、 H6 P2W18062,の酸および H3NaSiW12O40、 H3KSiW12O40などの塩類から選択して用 いることができ、リンモリブデン酸(H3PMol2O40)、 H4PVMollO40、リンタングステン 酸(H3PW12O40)、リンタングステン酸(H4PVWllO40)、ケィタングステン酸(H4SiW 12O40)が反応性力 好まし!/、。
[0047] 本発明の TBAの製造方法に用いる装置材質にぉ 、て、酸性を示す触媒水溶液と 接触する部位として、例えば、反応容器、攪拌羽、仕切り板、ノ ッキン、デカンター、 セトラー、蒸留塔、蒸留塔トレイ、配管、フランジ、測定装置部材、ジョイント類などの 接続部材などを挙げることができる。これらの部材としては、炭素鋼などの鉄、銅、黄 銅、アルミニウムなどの材料は腐食性が激しく好ましくない。触媒であるへテロポリ酸 が接触する部位にはステンレス鋼が好まし 、材料であり、広くステンレス鋼が適用で きる。より好ましくは、鉄、クロム、ニッケルを含む合金系のステンレス鋼が腐食性に優 れた材料である。さらに好ましくは、 Crを 17〜21%、 Niを 8〜14%含み、 Cが 0. 10 %以下のオーステナイト系ステンレス鋼力 ヘテロポリ酸が接触する部位に耐腐食性 に好適な材料として使用することができる。 JISの規格で例示すると、 SUS304、 304 レ 305、 305レ 308、 316、 316J、 316レ 317、 317L等力挙げられ、より好ましく は SUS304である。これらの材料が耐腐食性を特異的に発現する機構として、本発 明者は、ヘテロポリ酸とこれらの材料の構成元素とが材料表面に特異的に反応して 不動態層を形成し安定ィ匕するため、さらなる腐食の進行を抑制できるのではないかと 推定する。
また、本発明の TBAの製造方法では、酸化剤を添加することで触媒活性の回復効 果が発現すると共に、やや着色した触媒水溶液の着色の程度も薄くなることを見出し た。酸化によって還元されていた触媒が酸化されることや反応阻害を起こしていた不 純物が酸ィ匕分解して除去されたためと推定される。酸化剤としては、空気や酸素で 酸化する方法は、活性の改善効果は見られるが、すこし長時間を要する。オゾンや 電気化学的な酸化方法も酸化剤として利用できる。好ましくは、過酸化水素などの酸 化力が高い酸化剤である。酸ィ匕力の指標としては、過酸化水素と同等の酸化力が好 ましぐ過酸ィ匕水素のように反応後に水となるような、水和反応へ大きな影響を与えな い酸化剤がより好ましい。添加する酸化剤の量および頻度については、酸化剤の種 類や、触媒の使用時間による活性低下の程度、蓄積性不純物の共存量などによって 異なるため、一義的には決定できない。しかし、例えば、酸化剤として過酸化水素を 使用した場合には、過剰に添加しても、過酸ィ匕水素の場合は、時間とともに分解して しまうため、多少過剰に添加しても問題はなぐその点からも過酸ィ匕水素は好ましい 酸化剤の一つとして選択される。しかし、過剰の過酸化水素の添加は、経済的な観 点からは無駄になるため好ましくない。したがって、運転の実績から随時判断して決 定されるが、大ま力な添加の目安として過酸ィ匕水素を利用した場合を例に示すと、触 媒水溶液に対して 0.01〜5000ppm/h、好ましくは 0.1〜3000ppm/h、さらに好ましくは 1 〜1000ppm/hを、不連続的に又は連続的に添加する。添加する場合の温度は、室温 から約 100°C程度の温度範囲力も選ぶことができる。温度が高いほど酸ィ匕反応速度 は一般に速くなるが、その一方で、過酸ィ匕水素自身の分解も起こり易くなるので、好 ましくは 30〜80°C、さらに好ましくは 40〜80°Cが好ましい。酸化剤を添加する部位 としては、殆どが触媒と水から形成される水相を形成する場所が好ましぐォレフィン 等の炭化水素が極力存在しな 、部位、場所がより好まし 、。
[0049] [実施例]
以下、実施例および比較例によって本発明を具体的に説明するが、これらは本発 明の範囲を何等限定するものではない。なお、本発明のイソブテン製造方法の実施 例において採用した測定方法は以下の通りである。
(1)アルミナ触媒中の Na含有量、 Si含有量の測定
標準試料を用いた蛍光 X線分析法にて、リガク製 RIX1000を用いて分析を実施し た。
(2)アルミナ触媒の比表面積の測定
窒素吸着法にて、島津製 Gemini2360を用いて比表面積を測定した。
(3)アルミナ触媒の細孔容積、細孔分布の測定
水銀圧入法にて、 QUANTACHROME製 Pore Master GT33を用いて細孔 容積、細孔分布を測定した。
[0050] [実施例 1]
Na含有量が Na Oに換算して 0. 25重量%、 Si含有量が SiOに換算して 0. 06重
2 2
量%、比表面積が 402m2Zg、全細孔容積が 0. 21ccZg、細孔半径 7θΑ以上の細 孔が有する細孔容積が全細孔容積の 78%であり、直径 2〜5mmの球状に成型され たアルミナ触媒 (触媒 A)を、外部に電気炉を有する内径 10mm、長さ 30cmの SUS 316製の縦型管状反応管に 10ml充填し、電気炉の温度を 360°Cに設定した。イソ ブテン及び n—ブテンを含む炭化水素混合物から、水及びへテロポリ酸触媒を含む 触媒水溶液を用いて、選択的にイソブテンを水和して製造された TBAの 85重量% 水溶液を 100°Cに予熱して 20mlZHr (LHSV= 2. Ohr_1)で反応器塔頂部からフ イードし、反応管内の圧力が 4Kg/cm2Gになるようにして反応を行った。反応管下 部より排出される気液混合物を液相部と気相部に分離した。実験開始後、一定時間 経過したところの気相部の反応生成物をガスクロマトグラフィーで分析し、反応成績を 求めた。 5時間経過したところ TBA転ィ匕率 95%、イソブテン選択率 99%、収率 94% であった。 800時間経過したところ TBA転ィ匕率 94%、イソブテン選択率 99%、収率 93%であった。 [0051] [実施例 2、比較例 1〜5]
物性値が異なる各種アルミナ触媒 (触媒 B、 C、 D、 E、 F、 G)を触媒として、実施例 1と全く同一の反応条件下で性能評価を行った。その結果を表 1に示す。主な副生 物はジイソブテンと sec -ブタノールであった。
表 1からイソブテンの収率、特に 800時間後の収率の高い触媒は、触媒 A、 Bである ことが分力ゝる。
[0052] [実施例 3]
実施例 1で用いた反応管に触媒 Aを 10ml充填し、電気炉の温度を 250°Cに設定し た。実施例 1で用いた TBAの 85重量%水溶液を 100°Cに予熱して 5mlZHr (LHS V=0. 5hr_1)で反応器塔頂部力もフィードし、反応管内の圧力が 4Kg/cm2Gにな るようにして反応を行った。結果を表 2に示した。
[0053] [実施例 4]
実施例 1で用いた反応管に触媒 Aを 10ml充填し、電気炉の温度を 400°Cに設定し た。実施例 1で用いた TBAの 85重量%水溶液を 100°Cに予熱して lOmlZHr (LH SV= 1. Ohr_1)で反応器塔頂部からフィードし、反応管内の圧力が 4Kg/cm2Gに なるようにして反応を行った。結果を表 2に示した。
[0054] [比較例 6及び 7]
実施例 2、 3の電気炉の温度を 150°Cおよび 500°Cに設定し、その他の条件は全て 同様にして反応を行った。結果を表 2に示した。
[0055] [実施例 5]
外部にオイル加熱槽を有する内径 25. 4mm、長さ 280cmの SUS316製の縦型管 状反応管に触媒 Aを 600ml充填し、電気炉の温度を 350°Cに設定した。実施例 1で 用いた TBAの 85重量%水溶液を 100°Cに予熱して 600mlZHr (LHSV= 1. 5hr" でフィードし、反応管内の圧力を 4Kg/cm2Gに設定して反応を行った。上記条件 における触媒寿命テストを実施し、通算反応時間が 1800時間と 9000時間における 反応結果を表 3に示す。
[0056] [比較例 8〜: LO]
原料である TBA水溶液を変更した以外は実施例 1と全く同一の触媒および反応条 件下で性能評価を行った。比較例 8ではプロピレンオキサイドを製造する際に副生す る TBAを用い、比較例 9ではイソブテン及び n—ブテンを含む炭化水素混合物からィ オン交換榭脂にて酢酸存在下にて水和された TBAを用い、比較例 10ではイソブテ ン及び n—ブテンを含む炭化水素混合物からイオン交換榭脂にて水和された TBAを 用いた。比較のため、実施例 1で用いた TBAの組成と反応の結果を併せて、通算反 応時間が 800時間における結果を表 4に示した。
[0057] [表 1]
Figure imgf000022_0001
[0058] [表 2]
Figure imgf000022_0002
[0059] [表 3]
Figure imgf000023_0001
[表 4]
Figure imgf000023_0002
次に、本発明の TBA製造の実施例において採用した参考実験は以下の通りであ る。
〔参考実験 1〕蓄積性不純物 (界面活性能の原因物質)の解析:
約 50重量%のリンモリブデン酸を含み約 1年間連続反応に用いた触媒水溶液 100 Ogとビーズ状吸着剤(三菱化学製、セパビーズ SP207 :修飾スチレン系、比表面積: 6 30m2/g、最高頻度細孔直径: 21nm) 250gを約 60°Cで 3時間カゝき混ぜながら接触さ せた。その後、吸着剤を口別し、洗浄液が無色透明になるまで、蒸留水で水洗した。 吸着剤を風乾したのち、 1000mlのアセトン溶液に浸漬し約 1時間放置するとァセト ン溶液は茶褐色に着色した。茶褐色に着色したアセトン溶液を、ロータリーエバポレ 一ターを用いて減圧下、 60°Cでアセトンを除去すると茶褐色の固体状物質が得られ た。茶褐色の固体状物質の元素分析を行った結果、リン、モリブデン、炭素、窒素お よび水素力も構成される物質であった。また、その物質の赤外吸収スペクトルを測定 し、スペクトル図を得た。図 1は、本発明で得られた蓄積性不純物の赤外吸収スぺタト ルを示す。この赤外吸収スメクトルには、ケギン型へテロポリ酸に特徴的な 1062cm- 1、 960cm- 1、 880cm- 1、 808cm- 1の吸収、 2970cm- 1の C— H伸縮振動等、有機 物化合物由来の吸収が見られ、アルキル基とァ-オンを持つも化合物が蓄積性不純 物の一つとして確認できた。
[0062] 〔参考実験 2〕分離性の評価:
新しい試薬力も調製したリンモリブデン酸 50重量%の水溶液 50mlとイソブテンを 4 3重量%含有するラフネ―ト 50mlを耐圧のガラス容器に採取し、激しく 3分間振り混 ぜた後に静止して界面が形成される時間を測定した。 5回繰り返した結果、 2相に分 離し界面形成までの時間は平均 6秒であった。
[0063] 〔参考実験 3〕分離性の評価:
新しい試薬力も調製したリンモリブデン酸 50重量%の水溶液 50mlに参考実験 1で 得た蓄積性不純物を 0. 5g加え、イソブテンを 43重量%含有するラフネ―ト 50mlを 耐圧のガラス容器に採取し、激しく 3分間振リ混ぜた後に静止して界面が形成される 時間を測定した。 5回繰り返した結果、 2相に分離し界面形成までの時間は平均 120 秒であり、界面が不明確であった。
[0064] [実施例 6]
図 2は、本発明による TBAの製造方法を実施するための一つの態様としての連続 製造装置を例示する。本発明における連続製造装置は、攪拌槽型反応器及び配管 等部位全てが SUS304 (Crl8. 0%、 Ni8. 0%C : 0. 08%以下)で構成され、反応 容積が 10Lの攪拌式反応槽と、 2Lの容積の触媒分離部とから構成される攪拌槽型 反応器を 3つ備える。なお、図 2では、 3つの攪拌槽型反応器を例示するが、本発明 の連続製造装置は攪拌型反応器を 3つ備えるものに限定されず、少なくとも一つの 攪拌槽型反応器を備える。各反応器に設置した触媒分離器で分離した各炭化水素 相 (オイル相)と触媒水溶液 (水相)を分離し、原料である炭化水素と触媒水溶液が 向流となるフローで反応させ、最終反応槽の触媒分離器で分離した生成 TBAを含 む触媒水溶液を理論段数 20段の充填塔式蒸留塔に供給し、蒸留塔の上部から TB Aを分離し、ボトム温度が 70°Cになるように減圧に管理し、ボトム力も触媒水溶液を 回収する操作を行った。また、ボトム液配管ラインには、三菱化学社製、酸型陽ィォ ン交換樹脂 (SK1B)を 500ミリリットル充填したカラム及び吸着剤として三菱ィ匕学社 製合成樹脂系(セパビーズ: P207、最高頻度細孔直径: 21nm、充填量 500ミリリット ル)を設置し、ボトム液量の約 1Z10の液量を循環させ、不純物金属イオン、蓄積性 不純物を連続的に吸着除去しながら触媒水溶液を攪拌槽型反応器へ供給した (図 2 参照)。触媒として 50重量%の新し!/、リンモリブデン酸(H3PMol2O40)溶液(Hamm ett酸度関数 Ho— 5. 6≥Ho)を調製し、図 2に例示する全ての反応器へ 50L/hで供 給し、炭化水素原料として、 43重量%のイソブテンを含むラフネート 1を 20L/hで向 流となるように供給した。反応温度は、各反応器の攪拌式反応槽が 70°Cになるように 管理した。さらに反応開始から、 48時間経過ごとに、蒸留塔ボトム配管に 10wt%の 過酸ィ匕水素水 100mlを 1時間かけて供給する間欠操作を行ない、約 2000時間の連 続運転を行った。反応初期のイソブテンの転ィ匕率 95%、水を除いた TBAの選択率 は 99%を示し、 2000時間経過時点でもほぼ同等の反応成績を維持することができ た。また、触媒分離器における触媒分離状態の悪化による未反応炭化水素への触 媒流出、及び蒸留塔の差圧上昇を伴う運転性の悪化も全く発生しなかった。このとき の触媒水溶液 50mlと新しい吸着材セパビーズ 30mlと接触させ蓄積不純物量を吸 着させた。その後参考例 1と同様な操作で吸着材を水洗して分離後、アセトンで吸着 剤から蓄積性不純物を溶解させ、アセトンを蒸発させ残渣として不純物の量を求めた ところ、触媒水溶液中の蓄積性不純物量は 2. lwt%であった。
[比較例 11]
実施例 6のボトム液配管ラインの酸型陽イオン交換榭脂カラム及び吸着剤カラムを 設置しな!ヽ以外は実施例 6と同様の操作で連続反応を行った。反応開始から 100時 間は転ィ匕率 95%を維持したが、約 150時間経過ごろ力も蒸留塔の差圧の上昇がみ られ、さらに未反応炭化水素に若干の濁りが発生した。未反応炭化水素を蒸発させ 残渣を蛍光 X線で分析したところモリブデンが検出された。触媒分離部の分離性能 低下及び蒸留塔の分離悪化により反応継続が困難になったためを停止した。反応停 止後、触媒水溶液を抜き出し、参考実験 2の触媒分離性能をテストした。 5回繰り返し た結果、 2相に分離した界面形成までの時間は平均 160秒であり、界面も不明確で あった。このときの触媒水溶液 50mlと新 、吸着材セパビーズ 30mlと接触させ蓄積 不純物量を吸着させた。その後参考例と同様な操作で蓄積性不純物の量を求めたと ころ、触媒水溶液中の蓄積性不純物量は 11. 5wt%であった。
[0066] [実施例 7]
過酸化水素による酸化処理を行わなかった以外は、実施例 6と同様の操作で反応 を行った。反応初期約 10時間目のイソブテンの転ィ匕率は 95%であった。反応運転 は安定に維持され長時間運転が可能であった。しかし、約 500時間以降緩やかに活 性の低下が認められ、約 1000時間目のイソブテン転ィ匕率は 94. 2%、 2000時間経 過時点では 93. 6%であり、長期反応では活性低下が認められた。
[0067] [実施例 8]
攪拌器の材質を SUS304よりも一般的には、さらに耐酸腐食性に優れるとされるハ ステロイ B (Ni67%、 Mo 28%, Fe5%)に変更し、イオン交換榭脂を設置しない以外 は実施例 6と同様操作で行った。反応初期約 10時間目のイソブテンの転ィ匕率は 95 %であった。反応運転は安定に維持され長時間運転が可能であった。しかし、約 30 0時間以降緩やかに活性の低下が認められ、約 1000時間目のイソブテン転ィ匕率は 94. 5%、 2000時間経過時点では 94. 1%であり、長期反応では活性低下が認めら れた。反応停止後触媒水溶液を分析した結果、鉄イオンが 800ppmと約 700ppmの 増加し、一般的な耐腐食性力 予想した結果となることを確認した。
[0068] [実施例 9]
実施例 6の反応器 3基を図 3に示したような構造の混合反応部 8室、各混合反応部 の容積 15Lの向流型反応器 1基に変更した以外は同様で反応を行った。イソブテン の転ィ匕率は 97. 5%と高い値が得られることから、向流に触媒と原料を供給する方法 及び向流型反応器の高!ヽ反応性が確認できた。 [0069] [実施例 10]
触媒をリンタングステン酸 (H3PW12O40)に変更し、プロトン濃度を同じに設定した 以外は、実施例 6と同様の操作で 500時間の反応を行った。反応 10時間後のイソブ テンの転化率は 95. 2%であり 500時間経過も転ィ匕率は 95. 2%、運転状の問題も 全くなかった。
[0070] [実施例 11]
触媒をリンバナドモリブデン酸 (H4PVMollO40)に変更し、プロトン濃度を同じに設 定した以外は、実施例 6と同様の操作で 500時間の反応を行った。反応 10時間後の イソブテンの転ィ匕率は 94. 7%であり 500時間経過も転ィ匕率は 94. 8%、運転状の問 題も全くな力 た。
[0071] [実施例 12]
触媒をケィタングステン酸 (H4SiW12O40)に変更し、プロトン濃度を同じに設定した 以外は、実施例 6と同様の操作で 500時間の反応を行った。反応 10時間後のイソブ テンの転化率は 95. 3%であり 500時間経過も転ィ匕率は 95. 2%、運転状の問題も 全くなかった。
[0072] [実施例 13]
攪拌器の材質を SUS304からモリブデンをさらに少量含む SUS316 (Cr: 18. 0% 、 Ni: 10. 0%、 C : 0.08%以下、 Mo : 2. 0%)に変更し、イオン交換榭脂を設置しな い以外は実施例 6と同様操作で行った。反応初期約 10時間目のイソブテンの転ィ匕 率は 95.2%であった。反応運転は安定に維持され長時間運転が可能で、約 300時 間以降も変化は見られず約 1000時間目のイソブテン転ィ匕率は 95. 1%、 2000時間 経過時点では 95. 2%であり、長期反応でも活性低下は認められな力つた。反応停 止後触媒水溶液を分析した結果、鉄イオンは 98ppmと初期力も大きな変化は認めら れなかった。
産業上の利用可能性
[0073] 本発明のイソブテンの製造方法によれば、長期間に亘り、安定的に、高収率、高選 択率で TBAからイソブテンを製造する方法が提供される。また、本発明の TBAの製 造方法によれば、長期間安定に、高い反応活性を維持することで長期の連続運転が 可能になり、生産量が向上した TBAの製造方法が提供される。さらに、本発明によ れば、触媒ロス、運転停止に伴う生産ロスを大幅に削減することができ、廃棄物の削 減、省エネルギーを実現される。
図面の簡単な説明
[図 1]図 1は、 TBAの製造方法で得られた蓄積性不純物の赤外吸収スペクトルを示 す。
[図 2]図 2は、本発明の TBAの製造方法を実施するための一つの態様としての連続 製造装置を示す。
[図 3]図 3は、本発明の TBAの製造方法に利用される反応器の一例の概略図を示す

Claims

請求の範囲
[1] 第 3級ブタノールを原料として、イソブテンを製造する方法であって、
Na含有量が Na Oに換算して 0. 1〜0. 6重量%の範囲であり、 Si含有量が SiO
2 2 に換算して 0. 4重量%以下であり、且つ、比表面積が 200〜600m2Zgであるアルミ ナ触媒を用いて、 200〜450°Cの反応温度にて、気相下、脱水反応を行う工程、 を含むことを特徴とするイソブテンの製造方法。
[2] 前記アルミナ触媒が、触媒中の全細孔容積が 0. 1〜0. 5ccZgの範囲にあり、且 つ、細孔半径 70 A以上の細孔が有する細孔容積が全細孔容積の 60%以上を占め る範囲にあることを特徴とする請求項 1に記載のイソブテンの製造方法。
[3] 前記第 3級ブタノールが、イソブテン及び n—ブテンを含む炭化水素混合物から、 水及びへテロポリ酸触媒を含む触媒水溶液を用いて、選択的にイソブテンを水和し て、第 3級ブタノールを製造する方法によって製造されることを特徴とする請求項 1又 は 2に記載のイソブテンの製造方法。
[4] イソブテン及び n—ブテンを含む炭化水素混合物から、水及び触媒を含む触媒水 溶液を用いて、選択的にイソブテンを水和して、第 3級ブタノールを連続的に製造す る方法であって、
前記炭化水素混合物、前記触媒及び第 3級ブタノールのうち少なくとも 1種を循環 するリサイクル系を用いて、前記少なくとも 1種をリサイクルさせる工程と、
該リサイクル系から蓄積性不純物の一部を除去する工程と、
を含むことを特徴とする第 3級ブタノールの連続的製造方法。
[5] 前記蓄積性不純物を除去する工程にぉ 、て、多孔質吸着剤及び/又はイオン交換 榭脂を用いることを特徴とする請求項 4記載の製造方法。
[6] 前記多孔質吸着剤の細孔半径が、 0. 5〜500nmの範囲であることを特徴とする請 求項 4又は 5に記載の製造方法。
[7] 前記触媒が、 Hammettの酸度関数 Hoで、 5. 6≥Hoで表される強酸又は強酸 塩であることを特徴とする請求項 4ないし 6のうち何れか一項に記載の製造方法。
[8] 前記触媒が、ヘテロポリ酸であることを特徴とする請求項 4ないし 7のうち何れか一 項に記載の製造方法。
[9] 前記へテロポリ酸が、リンモリブデン酸、リンモリブドバナジン酸、リンタングステン酸 、リンタンダストバナジン酸、ケィタングステン酸及びそれらの塩力 なる群力 選ばれ 、それぞれ単独で、又は 2種類以上のへテロポリ酸を混合して用いることを特徴とする 請求項 8に記載の製造方法。
[10] 前記イオン交換樹脂が、陽イオン交換榭脂であることを特徴とする請求項 5に記載 の製造方法。
[11] 前記触媒水溶液及び前記炭化水素混合物が、向流となるように供給しながら反応 させる工程を含むことを特徴とする請求項 4ないし 10のうち何れか一項に記載の製 造方法。
[12] 酸化剤を、連続的又は不連続的に添加する工程をさらに含むことを特徴とする請 求項 4な 、し 11のうち何れか一項に記載の製造方法。
[13] 少なくとも 1つの攪拌槽型反応器と、
前記攪拌槽型反応器に接続した蒸留塔と、
前記攪拌槽型反応器及び Z又は前記蒸留塔と接続し、不純物を除去する分離器 と、
前記分離器と、前記攪拌槽型反応器及び Z又は前記蒸留塔とを連通させるボトム 液配管と、
を備える、第 3級ブタノールの連続製造装置。
[14] 前記攪拌槽型反応器が、触媒分離器を備えることを特徴とする請求項 13に記載の 第 3級ブタノールの連続製造装置。
[15] 前記分離器が、前記触媒分離器と連通していることを特徴とする請求項 14に記載 の第 3級ブタノールの連続製造装置。
[16] 前記分離器が、吸着剤カラム及び/又はイオン交換榭脂カラムを備えることを特徴と する請求項 13な 、し 15に記載の第 3級ブタノールの連続製造装置。
[17] 前記攪拌槽型反応器が、触媒水溶液と原料炭化水素混合物が向流となるように供 給しながら反応させる向流型反応器であることを特徴とする請求項 13ないし 16のうち いずれか一項に記載の第 3級ブタノールの連続製造装置。
[18] 前記連続製造装置において、触媒が接触する部位の材質が、少なくとも Crを 17〜 21%、 Niを 8〜14%含み、 Cが 0. 10%以下であるステンレス鋼力も構成されること を特徴とする請求項 13ないし 17のうち何れか一項に記載の第 3級ブタノールの連続 製造装置。
前記触媒が、ヘテロポリ酸であることを特徴とする請求項 18に記載の第 3級ブタノ ールの連続製造装置。
PCT/JP2006/321215 2005-11-01 2006-10-25 イソブテン及び第3級ブタノールの製造方法 WO2007052505A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2006800408194A CN101300211B (zh) 2005-11-01 2006-10-25 异丁烯和叔丁醇的制造方法
EP06822192.8A EP1944282B1 (en) 2005-11-01 2006-10-25 Processes for production of isobutene and tertiary butanol
JP2007542611A JP5240988B2 (ja) 2005-11-01 2006-10-25 イソブテン及び第3級ブタノールの製造方法
US12/091,016 US8637716B2 (en) 2005-11-01 2006-10-25 Processes for production of isobutene and tertiary butanol
US14/136,404 US9145342B2 (en) 2005-11-01 2013-12-20 Processes for production of isobutene and tertiary butanol
US14/836,669 US9919283B2 (en) 2005-11-01 2015-08-26 Processes for production of isobutene and tertiary butanol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005317904 2005-11-01
JP2005-317904 2005-11-01
JP2005373789 2005-12-27
JP2005-373789 2005-12-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/091,016 A-371-Of-International US8637716B2 (en) 2005-11-01 2006-10-25 Processes for production of isobutene and tertiary butanol
US14/136,404 Division US9145342B2 (en) 2005-11-01 2013-12-20 Processes for production of isobutene and tertiary butanol

Publications (1)

Publication Number Publication Date
WO2007052505A1 true WO2007052505A1 (ja) 2007-05-10

Family

ID=38005657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321215 WO2007052505A1 (ja) 2005-11-01 2006-10-25 イソブテン及び第3級ブタノールの製造方法

Country Status (8)

Country Link
US (3) US8637716B2 (ja)
EP (2) EP1944282B1 (ja)
JP (2) JP5240988B2 (ja)
KR (1) KR100969616B1 (ja)
CN (2) CN101300211B (ja)
SG (1) SG158189A1 (ja)
TW (3) TW200728249A (ja)
WO (1) WO2007052505A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255023A (ja) * 2007-05-16 2009-11-05 Mitsubishi Rayon Co Ltd α−アシロキシアクリル酸および/またはそのエステルを製造するための触媒およびα−アシロキシアクリル酸および/またはそのエステルの製造方法
JP2010059470A (ja) * 2008-09-03 2010-03-18 Tosoh Corp 硫酸鉄の生成抑制方法
WO2010090100A1 (ja) * 2009-02-03 2010-08-12 株式会社日本触媒 フィルターの再生方法
JP2012528096A (ja) * 2009-05-29 2012-11-12 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 3−メチルブタン−1−オールの脱水による3−メチルブタ−1−エンの製造
JP2013510109A (ja) * 2009-11-03 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア メタンスルホン酸水性溶液を取り扱う方法
JP2019172587A (ja) * 2018-03-27 2019-10-10 株式会社クラレ イソブテンの製造方法
JP2020055739A (ja) * 2018-07-25 2020-04-09 アクセンス 最適である酸度と孔隙を有する構造とを有するアルミナ

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9932279B2 (en) 2009-07-29 2018-04-03 The United States Of America As Represented By The Secretary Of The Navy Process and apparatus for the selective dimerization of terpenes and poly-alpha-olefins with a single-stage reactor and a single-stage fractionation system
US9242226B2 (en) * 2009-07-29 2016-01-26 The Government Of The United States Of America As Represented By The Secretary Of The Navy Process for the dehydration of aqueous bio-derived terminal alcohols to terminal alkenes
US8969636B2 (en) 2009-07-29 2015-03-03 The United States Of America As Represented By The Secretary Of The Navy Homogeneous metallocene ziegler-natta catalysts for the oligomerization of olefins in aliphatic-hydrocarbon solvents
US9649626B2 (en) 2009-07-29 2017-05-16 The United States Of America As Represented By The Secretary Of The Navy Process for the dehydration of aqueous bio-derived terminal alcohols to terminal alkenes
US8785702B2 (en) 2009-07-29 2014-07-22 The United States Of America As Represented By The Secretary Of The Navy Turbine and diesel fuels and methods for making the same
US8912373B2 (en) 2009-07-29 2014-12-16 The United States Of America As Represented By The Secretary Of The Navy Process for the dehydration of aqueous bio-derived terminal alcohols to terminal alkenes
EP2578559A1 (en) 2011-10-07 2013-04-10 Metabolic Explorer Process for producing isobutene from isobutylamine
WO2014092849A1 (en) * 2012-12-14 2014-06-19 Washington State University Process and catalyst for conversion of acetic acid to isobutene
WO2014204509A1 (en) * 2013-06-18 2014-12-24 Washington State University Process and catalyst for conversion of acetic acid to isobutene and propylene
US10464860B2 (en) 2014-05-07 2019-11-05 Mitsubishi Chemical Corporation Method for producing isobutylene from isobutanol
CA2969359C (en) 2014-12-03 2021-01-05 China Petroleum & Chemical Corporation Catalyst and preparation method thereof, and method for preparing isobutylene by applying the same
KR20170035621A (ko) * 2015-09-23 2017-03-31 롯데케미칼 주식회사 터트-부탄올로부터 이소부틸렌의 제조 방법
CN105732326A (zh) * 2016-03-18 2016-07-06 安徽三联泵业股份有限公司 一种利用树脂处理正丁醇生产废液的方法
KR102080381B1 (ko) * 2018-01-09 2020-02-21 한화토탈 주식회사 알루미늄과 코발트를 중심원소로 하는 헤테로폴리산 촉매, 그 제조방법 및 상기 촉매를 이용하여 n-부텐의 수화반응으로부터 2-부탄올을 제조하는 방법
CN109096026B (zh) * 2018-08-28 2021-07-06 宁波昊德化学工业股份有限公司 一种异丁烯的生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562031A (en) * 1978-10-31 1980-05-10 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene
JPS6341431A (ja) * 1986-08-06 1988-02-22 Mitsubishi Rayon Co Ltd イソブチレンの製造法
JPH04300840A (ja) * 1991-03-29 1992-10-23 Mitsui Petrochem Ind Ltd 低級オレフィン類の製造方法
JPH08143493A (ja) * 1994-11-15 1996-06-04 Mitsui Toatsu Chem Inc オレフィンの接触水和方法
JP2000044497A (ja) * 1998-07-30 2000-02-15 Asahi Chem Ind Co Ltd イソブチレンを分離したオレフィン混合物の処理方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665048A (en) * 1970-01-14 1972-05-23 Atlantic Richfield Co Process to produce high purity isobutylene
JPS5527045B1 (ja) * 1971-03-31 1980-07-17
JPS5124894Y2 (ja) 1971-06-16 1976-06-25
JPS4841918A (ja) * 1971-10-04 1973-06-19
JPS54135710A (en) 1978-04-10 1979-10-22 Nippon Oil Co Ltd Preparation of isobutene by decomposition of tertiary butanol
DE2922545C2 (de) * 1978-06-08 1982-06-03 Asahi Kasei Kogyo K.K., Osaka Verfahren zur Herstellung von tert.-Butanol
JPS5839134B2 (ja) 1978-06-08 1983-08-27 旭化成株式会社 混合ブチレンよりタ−シヤリ−ブタノ−ルの製造方法
JPS557213A (en) 1978-06-30 1980-01-19 Asahi Chem Ind Co Ltd Separation of isobutylene from mixed butylene
JPS5551028A (en) 1978-10-11 1980-04-14 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene
JPS6051451B2 (ja) 1978-11-06 1985-11-14 三菱レイヨン株式会社 第3級ブチルアルコ−ルの製造法
JPS562855A (en) 1979-06-19 1981-01-13 Satake Eng Co Ltd Device for humidifying cereal grain
JPS5610124A (en) 1979-07-05 1981-02-02 Sumitomo Chem Co Ltd Preparation of tert-butyl alcohol
JPS56166134A (en) * 1980-05-27 1981-12-21 Mitsui Toatsu Chem Inc Preparation of alcohol
FR2492809A1 (fr) * 1980-10-29 1982-04-30 Inst Francais Du Petrole Procede d'obtention d'une olefine par decomposition de l'ether correspondant
JPS5839806A (ja) 1981-09-04 1983-03-08 Hitachi Ltd 油圧サ−ボ弁
DE3151446A1 (de) 1981-12-24 1983-07-14 Chemische Werke Hüls AG, 4370 Marl Verfahren zur herstellung von hochreinem isobuten durch dehydratisierung von tertiaer-butanol
DE3628008C1 (ja) * 1986-08-19 1987-11-05 Deutsche Texaco Ag, 2000 Hamburg, De
JP2585594B2 (ja) * 1987-05-11 1997-02-26 ペガサスミシン製造 株式会社 ミシンの糸調子装置
SG59937A1 (en) * 1991-02-04 1999-02-22 Mitsui Chemicals Inc Process for producing lower olefins
US5191143A (en) 1992-01-10 1993-03-02 Texaco Chemical Company Preparation of isobutylene
DE69317818T2 (de) * 1992-07-13 1998-08-06 Tosoh Corp Verfahren zur Herstellung von tertiären Alkoholen
US5716895A (en) * 1993-04-01 1998-02-10 Nippon Kayaku Kabushiki Kaisha Process for regeneration of catalysts
US5756604A (en) * 1995-08-31 1998-05-26 Hodogaya Chemical Co., Ltd. Process for producing polyether, and process for recycling and reusing herteropolyacid
CN1067972C (zh) 1996-06-27 2001-07-04 中国石化齐鲁石油化工公司 一种由混合碳四或抽余碳四中异丁烯制叔丁醇的方法
JPH11193255A (ja) 1997-12-26 1999-07-21 Mitsubishi Rayon Co Ltd 第3級ブチルアルコールの製造方法
JP2000034242A (ja) 1998-07-16 2000-02-02 Asahi Chem Ind Co Ltd 第3級ブタノールの製造方法
JP4174103B2 (ja) 1998-07-30 2008-10-29 キヤノン株式会社 インクジェット記録装置およびインクジェット記録方法
JP4197771B2 (ja) 1998-07-30 2008-12-17 旭化成ケミカルズ株式会社 オレフィン混合物より第3級ブチルアルコールの回収方法
CN1221506C (zh) 2002-12-31 2005-10-05 中国石化集团齐鲁石油化工公司 一种制备叔丁醇的方法
DE10338581A1 (de) 2003-08-22 2005-03-17 Oxeno Olefinchemie Gmbh Verfahren zur Erzeugung von tert.-Butanol
DE102004030943B4 (de) * 2004-06-26 2013-10-02 Evonik Oxeno Gmbh Verfahren zur Herstellung von tert.-Butanol aus Isobuten-haltigen Kohlenwasserstoffgemischen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562031A (en) * 1978-10-31 1980-05-10 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene
JPS6341431A (ja) * 1986-08-06 1988-02-22 Mitsubishi Rayon Co Ltd イソブチレンの製造法
JPH04300840A (ja) * 1991-03-29 1992-10-23 Mitsui Petrochem Ind Ltd 低級オレフィン類の製造方法
JPH08143493A (ja) * 1994-11-15 1996-06-04 Mitsui Toatsu Chem Inc オレフィンの接触水和方法
JP2000044497A (ja) * 1998-07-30 2000-02-15 Asahi Chem Ind Co Ltd イソブチレンを分離したオレフィン混合物の処理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1944282A4 *
SWECKER J.L. AND DATYE K. ET AL.: "Alcohol Dehydration over Model Nonporous Alumina Powder", JOURNAL OF CATALYSIS, vol. 121, 1990, pages 196 - 201, XP003012543 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009255023A (ja) * 2007-05-16 2009-11-05 Mitsubishi Rayon Co Ltd α−アシロキシアクリル酸および/またはそのエステルを製造するための触媒およびα−アシロキシアクリル酸および/またはそのエステルの製造方法
JP2010059470A (ja) * 2008-09-03 2010-03-18 Tosoh Corp 硫酸鉄の生成抑制方法
WO2010090100A1 (ja) * 2009-02-03 2010-08-12 株式会社日本触媒 フィルターの再生方法
JP5461442B2 (ja) * 2009-02-03 2014-04-02 株式会社日本触媒 フィルターの再生方法
US8734655B2 (en) 2009-02-03 2014-05-27 Nippon Shokubai Co., Ltd. Method for regenerating filter
JP2012528096A (ja) * 2009-05-29 2012-11-12 エボニック オクセノ ゲゼルシャフト ミット ベシュレンクテル ハフツング 3−メチルブタン−1−オールの脱水による3−メチルブタ−1−エンの製造
JP2013510109A (ja) * 2009-11-03 2013-03-21 ビーエーエスエフ ソシエタス・ヨーロピア メタンスルホン酸水性溶液を取り扱う方法
JP2019172587A (ja) * 2018-03-27 2019-10-10 株式会社クラレ イソブテンの製造方法
JP7020623B2 (ja) 2018-03-27 2022-02-16 株式会社クラレ イソブテンの製造方法
JP2020055739A (ja) * 2018-07-25 2020-04-09 アクセンス 最適である酸度と孔隙を有する構造とを有するアルミナ
JP7360835B2 (ja) 2018-07-25 2023-10-13 アクセンス 最適である酸度と孔隙を有する構造とを有するアルミナ

Also Published As

Publication number Publication date
US9919283B2 (en) 2018-03-20
KR20080046735A (ko) 2008-05-27
CN102516030A (zh) 2012-06-27
KR100969616B1 (ko) 2010-07-14
TWI483922B (zh) 2015-05-11
TW200940486A (en) 2009-10-01
EP1944282B1 (en) 2016-06-29
TWI537240B (zh) 2016-06-11
JP5240988B2 (ja) 2013-07-17
JP2013006864A (ja) 2013-01-10
EP1944282A4 (en) 2009-05-06
JPWO2007052505A1 (ja) 2009-04-30
EP1944282A1 (en) 2008-07-16
TW200728249A (en) 2007-08-01
EP2266939B1 (en) 2016-09-28
US20150360198A1 (en) 2015-12-17
US8637716B2 (en) 2014-01-28
US20140107387A1 (en) 2014-04-17
CN101300211A (zh) 2008-11-05
JP5582621B2 (ja) 2014-09-03
EP2266939A1 (en) 2010-12-29
SG158189A1 (en) 2010-01-29
CN102516030B (zh) 2016-05-04
TWI322797B (ja) 2010-04-01
CN101300211B (zh) 2012-10-17
US9145342B2 (en) 2015-09-29
US20090124835A1 (en) 2009-05-14
TW201514139A (zh) 2015-04-16

Similar Documents

Publication Publication Date Title
JP5582621B2 (ja) イソブテン及び第3級ブタノールの製造方法
Zhang et al. Enhanced catalytic performance in dehydration of sorbitol to isosorbide over a superhydrophobic mesoporous acid catalyst
CN102614916A (zh) 用于异丁烷与丁烯烷基化的强酸性氟化树脂催化剂的制备方法
JP5890849B2 (ja) グリコールエーテルを利用した高純度のイソブテンの製造方法
JPH07206748A (ja) 粗エーテル流の中和方法
JP6330806B2 (ja) 不飽和酸エステル又は不飽和酸の製造方法
JPH08208547A (ja) t−ブタノール及びイソブチレンとメタノールとの連続反応
RU2786385C1 (ru) Способ очистки гликолей от примесей
US7825282B2 (en) Process for the conversion of tertiary butyl alcohol to ethyl tertiary butyl ether
JPH069472A (ja) ハロゲン化酸で改質された粘土触媒を使用するアルキル第三級アルキルエーテルの合成方法
JPH07258133A (ja) 粗アセトンからのイソプロピル−tert−ブチルエーテルの製造方法
JPH0656726A (ja) リン酸で改質された粘土触媒を使用するアルキル第三級アルキルエーテルの合成
JP4609642B2 (ja) シクロアルキルアルキルエーテルの製造方法
JPH07316084A (ja) アルキルスルホン酸で改質された酸化物触媒を用いるアルキル第三級アルキルエーテルの合成方法
CN106673948A (zh) Mtbe和tba混合料制备异丁烯的方法
CN106673947A (zh) 一种异丁烯的制备方法
GB2623213A (en) Method for producing alcohol
Phalak Reaction engineering studies in ion exchange resin catalyzed esterification reactions
RU2400467C1 (ru) Способ получения диизопропилового эфира

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040819.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006822192

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087009030

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12091016

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2007542611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE