WO2006137584A1 - ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法 - Google Patents
ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法 Download PDFInfo
- Publication number
- WO2006137584A1 WO2006137584A1 PCT/JP2006/312939 JP2006312939W WO2006137584A1 WO 2006137584 A1 WO2006137584 A1 WO 2006137584A1 JP 2006312939 W JP2006312939 W JP 2006312939W WO 2006137584 A1 WO2006137584 A1 WO 2006137584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- titanium
- average particle
- coated
- particle size
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/18—Non-metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
- H01M8/0208—Alloys
- H01M8/021—Alloys based on iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0213—Gas-impermeable carbon-containing materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a polymer electrolyte fuel cell separator used in automobiles, power generation systems, and the like, which directly use electric power as a driving force, and a method for manufacturing the polymer polymer fuel cell separator. Regarding the method. More specifically, the present invention relates to a separator for a polymer electrolyte fuel cell member that has been surface-treated with a low ion-eluting conductive material in order to increase the flatness of the separator and reduce the electrical contact resistance of the surface. It is a thing. Background art
- solid polymer fuel cells use hydrogen ion permselective organic membranes as electrolytes This is a fuel cell characterized by the above.
- Solid polymer fuel cell operating in a temperature range of about 150 ° C or less ⁇
- the temperature is not so high, and corrosion resistance and durability can be sufficiently exhibited in the environment
- carbon-based materials have been used.
- due to the brittleness problem they cannot be thinned, which hinders compaction.
- a carbon-based separator that is hard to break is being developed, but it is becoming costly.
- research and development of stainless steel, titanium or titanium alloy separators which can achieve the targets in both of them, are regarded as the top priority.
- a polymer electrolyte fuel cell is a catalyst electrode part consisting of carbon fine particles and noble metal ultrafine particles on both sides of a solid polymer membrane that serves as an electrolyte. The generated electric power is taken out as current and at the same time a reaction gas is supplied to the catalyst electrode part.
- a current collector consisting of a felt-like carbon fiber assembly (commonly known as Kiichi Bonbon Paper) that has a function of separating the two reactive gases and cooling medium, mainly oxygen and hydrogen. It is configured by lathes and other layers.
- Figure 1 shows the configuration of a typical polymer electrolyte fuel cell.
- a polymer electrolyte fuel cell 1 includes a solid polymer membrane 2 serving as an electrolyte, a catalyst electrode unit 3 composed of carbon fine particles and noble metal ultrafine particles provided on both sides of the solid polymer membrane 2, and the catalyst electrode unit.
- 3 is a current collector consisting of a felt-like carbon fiber assembly that has the function of supplying the oxygen-based gas or hydrogen-based gas (reactive gas) to the catalyst electrode 3 as well as taking out the electric power generated in 3 as current.
- a separator 5 that separates the oxygen-based gas and the hydrogen-based gas while receiving current from the carbon paper 4.
- the basic principle of the polymer electrolyte fuel cell 1 is roughly as follows.
- hydrogen gas ( ⁇ 2 ′) 8 as fuel is supplied from the anode side 6, passes through the carbon paper 4 as the gas diffusion layer, and the catalyst electrode unit 3 to generate hydrogen ions ′ ( ⁇ +) is passed through the solid polymer membrane 2 as an electrolyte, and at the catalyst electrode section 3 on the cathode side 7, hydrogen ions ( ⁇ and oxygen in the air 9 supplied from the force sword side 7 ( ⁇ 2 ) Oxidation reaction (2 ⁇ + + 2 e — + 1 2 ⁇ 2 ⁇ H 2 0) is generated, and water (H 2 0) is produced. Electrons generated at the catalyst electrode 3 of 6 flow from the separator side 5 on the anode side 6 to the separator side 5 on the cathode side 7 via the force paper 4, so that an electric current flows between the two electrodes. A voltage is generated.
- the solid polymer membrane 2 has a strongly acidic electrolyte fixed in the membrane, and functions as an electrolyte that allows hydrogen ions (H +) to pass through by controlling the dew point in the battery.
- H + hydrogen ions
- Separator 5 which is a component of the polymer electrolyte fuel cell 1 separates the two types of reaction gas, air 9 on the force sword side 7 and hydrogen gas 8 on the anode side 6, and separates each reaction gas. It plays the role of a supply channel and the role of discharging water generated by the reaction from the side 7 of the cathode.
- the polymer electrolyte fuel cell 1 uses a solid polymer membrane made of an electrolyte exhibiting strong acidity, and operates at a temperature of about 1550 ° C. or less by the reaction to produce water.
- Separator 5 for polymer fuel cells is required to have corrosion resistance and durability as its material characteristics, and it can efficiently conduct current via carbon paper 4. Good electrical conductivity for energization and low contact resistance with carbon paper are required.
- the present inventors have already disclosed, in Japanese Patent Application Laid-Open No. 2 00 0-2 6 0 4 39, Japanese Patent Application Laid-Open No. 2 0 0 0 2 5 6 8 G 8, stainless steel as a solid material such as a separator. Specific shapes and components for use as molecular fuel cell members are disclosed.
- a fuel cell separator in which a gold plating layer having a thickness of 0.01 to 0.02 m is formed on the end surface on the bulging tip side.
- a stainless steel base material is coated on the surface with compound particles dispersed on the surface of the base material.
- Decomposition and disappearance of film components by thermal decomposition to 100 ° C to form deposits such as S i C, B 4 C and T i 0 2 on the surface, reducing contact resistance Separations for low-temperature fuel cells and their manufacturing methods are disclosed in Japanese Patent Application Laid-Open Nos. 11- 2 6 0 3 8 3 and 1 1 2 1 9 7 1 3. Yes.
- This method is performed in a non-oxidizing atmosphere at 300 to 1100 ° C. It takes time and labor to decompose and dissipate the coating components by heat decomposition, and there is concern about cost increase.
- Japanese Patent Application Laid-Open No. 2 0 0 0-0 2 1 4 1 9 discloses a low temperature fuel cell in which carbon powder is dispersed and pressure bonded to a stainless steel substrate to improve conductivity. Separat is disclosed in Japanese Patent Application Laid-Open No. 1 1 1 1 2 1 0 1 8, and a low temperature type fuel having a Ni_Cr-based coating layer formed by dispersing carbon-based particles on a stainless steel substrate.
- Separators for batteries are disclosed in Japanese Patent Laid-Open No. 1 1 _ 1 2 6 6 2 1, and Ta, Ti or Ti — Ta-based plating layers in which carbon-based particles are dispersed in stainless steel as a base material.
- a separator for a low-temperature fuel cell in which is formed on the surface is disclosed in Japanese Patent Application Laid-Open No. 1 1-1 2 6 6 2 2.
- stainless steel, titanium, and titanium alloys are required to have the ultimate workability because complex machining shapes must be realized to function as a metal separator. Therefore, if the cost reduction by improving the material productivity in the future and improving the productivity in the separate processing process, which has a complicated shape, is expected, the precipitates in the metal structure that impede the material productivity and the elongation during processing will be removed. It is desirable to reduce as much as possible. Therefore, for the purpose of reducing contact resistance, stainless steel, titanium, and titanium alloy materials in which conductive compounds and metal phases are precipitated in the metal structure are disclosed.
- gold plating is currently recognized as the mainstream of conductive surface treatment applied after processing to high-processability stainless steel and titanium for solid polymer fuel cell metal separators. .
- Specific coating methods include vapor deposition or dry coating. Although the method is exemplified, when these materials are dry coated using a vacuum apparatus or the like, there is a limitation on the deposition rate, and the yield of the coating material is inevitably lowered, so high cost is required. There are concerns about
- conductive hard particles of M 23 C 6 type, M 4 C type, or MC type and the metal element (M) contains one or more of chromium, iron, nickel, molybdenum, tungsten, and poron.
- a bipolar one plate (separate plate) made of titanium or titanium alloy in which conductive hard particles are dispersed and exposed on the surface of the substrate by embedding in the surface of the substrate is disclosed in Japanese Patent Laid-Open No. 6 No. 2 discloses that M 23 C 6 type, M 4 C type, M 2 C type, MC type carbide metal inclusions and M 2 B type boride metal inclusions are dispersed and exposed.
- the metal element (M) is one or more of chromium, molybdenum, and tungsten, and the surface roughness of the stainless steel is 0.0 6 to 5 / m in terms of the center line average roughness Ra.
- Stainless steel and stainless steel separators are disclosed in Japanese Patent Laid-Open No. 2 0 0 3-1 9 3 2 0 6 respectively. To have.
- the hard fine powder having conductivity can be formed by being shot.
- polymer electrolyte fuel cells have a low output voltage of about 1 V per unit. Therefore, in order to obtain the desired output, a large number of fuel cells must be stacked and used as a stack type fuel cell. There are many. For this reason, in the method in which the conductive hard fine powder is fixed to the substrate surface with a shot or the like, it is possible to suppress the occurrence of warping and distortion overnight and to make it possible to stack fuel cells. It is necessary to perform conditions and post-processing to obtain a separator with flatness, but the above method has a problem that the separator after molding is deformed and cannot be assembled into a stack. It cannot be put into practical use unless the conditions are found.
- the inventors of the present invention projected a solid plating material in which a metal having a high corrosion resistance and a low contact resistance against carbon was coated on a core particle having a hardness higher than that of the separate evening, in a separate evening forming a fuel cell.
- a method for forcibly adhering the metal coated on the solid plating material to a separator was invented and disclosed in Japanese Patent Application Laid-Open No. 2 0 0 1-2 5 0 5 6 5.
- a very small amount of noble metal can be embedded in stainless steel, titanium and titanium alloys using this method, and sufficient low contact resistance can be obtained without covering the entire surface with noble metal such as gold plating.
- noble metal was used, and therefore it could not be put to practical use without further cost reduction.
- a core particle having an average particle size of 2 mm or less is used as a core, and an arbitrary conductive material fine powder having an average particle size of 0.5 mm or less is lightly sintered and coated on the surface.
- the conductive material embedded in the surface is less resource limited, cheaper, and above all, a corrosive environment
- An important key is that ions are difficult to dissolve on the surface of a metal separator exposed to water.
- a blast (shot) method after processing it is also an important issue to finish it into a flat shape that can be used for the assembly process after the processing. is there.
- the amount of resources is cost.
- JP 2 0 0 1-3 5 7 8 6 2, JP 2 0 0 3-1 The metal carbide or metal boride based material disclosed in the 9 3 2 0 6 publication is superior.
- the conductive material is so small that ion elution can approach precious metals.
- the two issues of finding the quality and realizing a flat shape after processing the processed separator parts must be solved simultaneously.
- the processed metal product is a very thin material. No effort has been made so far to achieve the realization of the system. In other words, it is indispensable to establish a quantitative evaluation index and research and development to accumulate technical know-how to achieve the target index value. Disclosure of the invention
- the present invention provides a separator for a polymer electrolyte fuel cell made of stainless steel or titanium and a titanium alloy having a surface layer portion to which conductive substance particles are fixed. Battery characteristics such as electromotive force drop due to contact resistance deterioration on the separatory surface are small, low contact resistance with carbon paper on the separatory surface is excellent, and flatness for stacking is also excellent.
- An object of the present invention is to provide a separator for a polymer electrolyte fuel cell and a method for producing the same. That is, the present invention solves the two problems of finding a conductive material with minimal ion elution and a flat shape of the separated overnight member after processing, thereby providing a solid polymer fuel.
- the purpose is to realize a method of implanting a conductive material into the surface of a metal separator overnight by using an inexpensive blast process after forming it into a complex shape with high productivity using a material having high resistance.
- the gist of the present invention is as follows. (1) A solid polymer fuel cell separator in which a low ion-eluting conductive material is embedded in a part or all of the surface of stainless steel, titanium, or a titanium alloy, and the surface of the separator Arithmetic mean roughness
- the low ion-eluting conductive material contains one or more of Au, WC, or WB, and the balance is made of inevitable impurities.
- the low-ion-eluting conductive material contains Ta N or a mixture of Ta N and one or more of WC or WB, and the balance consists of inevitable impurities.
- a separator for a solid polymer fuel cell made of stainless steel, titanium or a titanium alloy according to (2) or (3).
- the average particle size of the low-ion-eluting conductive material is 0.01 to 20 m, and the mass ratio of the metal oxide formed on the surface layer to the entire conductive material particles is 3 0% or less (characterized by 5)
- a grid network jig is disposed between the stainless steel, titanium, or titanium alloy and the coated carbide particle ejection port to project the coated carbide particles.
- the low ion-eluting conductive material is characterized in that 0.02% by mass or more of Ta N and one or more of WC or “WB” are mixed, and the balance consists of inevitable impurities.
- (7) or (8) A method for producing a separator for a solid polymer fuel cell made of stainless steel, titanium or a titanium alloy according to (8).
- the low ion elution conductive material, VB characterized in that it consists of one or more of V 8 C 7 and VN (7) or stainless steel according to (8) Titanium or titanium alloy solid Method for manufacturing a separator for a polymer electrolyte fuel cell.
- the low ion-eluting conductive material has an average particle diameter of 0.01 to 20 m, and is formed on the surface layer of the low ion-eluting conductive material particles.
- the mass ratio of the metal oxide to the whole particles is 30% or less.
- the pickling treatment is performed under the conditions of PH of 2 to 5 and temperature of 40 to 80 ° C. (1 1) or (1 2) A method for producing a separator for a solid polymer fuel cell made of stainless steel, titanium or a titanium alloy as described.
- the cemented carbide core particles contain WC as a main component, and the balance contains one or more of Co, Cr, Ni, and Fe in a total of 1% by mass or more.
- One or more types of Cu and Sn are contained in a total of 1% by mass or more.
- (1 3) for a solid polymer fuel cell made of stainless steel, titanium, or a titanium alloy A manufacturing method for Separeto.
- the conductive material particles fixed to the stainless steel separator surface layer portion, the titanium separator surface portion, or the titanium alloy separator surface portion are ionized.
- the contact resistance with carbon paper is as low as 15 m Q cm 2 or less at a contact pressure of 1 MPa, the deterioration of the low contact resistance during use and the resulting decrease in electromotive force, and the fuel cell Therefore, it is possible to provide a separator for a solid polymer fuel cell made of stainless steel titanium and titanium alloy having a flatness that can be sufficiently applied to stacking.
- Fuel cell vehicles, fuel cell mopile personal computers, and cogeneration using fuel cells are expected to develop in the future. Is essential.
- the present invention makes it possible to produce high-performance stainless steel, titanium and titanium alloy flattened separators at low cost.
- FIG. 1 is a diagram illustrating the configuration of a polymer electrolyte fuel cell.
- FIG. 2 is a diagram for explaining that the amount of ion elution is further reduced by mixing Ta N with poorly soluble conductive materials W C and WB.
- Fig. 3 (a) shows the surface state when the conductive material embedded in the base material is a metal element compound that forms metal aqua ions having one or less ⁇ H groups as an example of the present invention. It is a cross-sectional schematic diagram, and shows examples of VB, V 8 C 7 and VN as conductive materials.
- FIG. 5 is a schematic cross-sectional view showing a surface state in the case of a compound of a metal element that forms a metal aqua ion having two or more ⁇ H groups, and shows T i N and 'T i C as conductive materials. .
- FIG. 4 is an explanatory diagram of an index for evaluating the flatness of a separator made of stainless steel, titanium and a titanium alloy for a polymer electrolyte fuel cell subjected to a conductive surface treatment by a blast method.
- Fig. 5 is a diagram showing the deformation state of the product in the conductive surface treatment using the blast method, where (a) shows the case of the conventional method and (b) shows the case of the method of the present invention.
- Separator 5 which is a component of the polymer electrolyte fuel cell 1 shown in FIG. 1 has, as its basic characteristics, electrical conductivity, especially when receiving current from a force cylinder 4. It is required that the contact resistance between the surface of the separator 5 and the force of the paper 4 is small.
- the polymer electrolyte fuel cell 1 has a polymer electrolyte membrane 2 that is a strongly acidic electrolyte, and generates water by a reaction that proceeds at a temperature of about 1550 ° C. or less. As a material for overnight, corrosion resistance and durability that can withstand these temperatures and corrosive environments with acidic aqueous solutions are required.
- Separator 5 is sufficiently applicable to fuel cell switching. Flatness that can be done is required. .
- the present invention is suitable as a material for a separator for a polymer electrolyte fuel cell in a corrosive environment with the above temperature and acidic aqueous solution.
- the shape of the separator is controlled on the assumption that the separator is made of stainless steel, titanium or a titanium alloy having excellent corrosion resistance, and has a conductive substance on the surface layer.
- the present inventor uses a particle obtained by coating a cemented carbide particle with a conductive material having a minimum ion elution, and at a low projection pressure, a stainless steel, titanium or titanium alloy separator (hereinafter collectively referred to as a metal separator). ) It was newly discovered that by making it collide with the surface, a conductive material with minimal ion elution is embedded in the surface and a flat shape can be produced.
- a metal separator is a fuel cell that is made up of a large number of sheets, it must be free of warping or twisting or extremely small. It is also important that the surface properties have low electrical contact resistance.
- blast method a method of projecting onto the surface of a metal separator that is coated with a conductive material that is hard to elute ions on the surface of the metal separator that is exposed to a corrosive environment.
- the average particle size of about 20 O ⁇ m disclosed in the above-mentioned Japanese Patent Laid-Open No. 2 0 0 1-3 5 7 8 6 2 and Japanese Patent Laid-Open No. 2 0 3-1 9 3 2 0 6 Since most of the relatively large particles are reflected simply by blasting the conductive hard particles, it is necessary to embed a sufficient amount of conductive material on the surface of stainless steel, titanium, or titanium alloy. Stable reproducibility could not be obtained in the contact resistance value.
- the average particle size of the particles that collide with the surface of the metal separator overnight (usually the separator after molding) by the blast method should not be less than 200 Aim. However, it has been found that about 100 / Xm is optimal.
- the coated carbide particles are coated carbide particles in which the surface of a cemented carbide core particle having an average particle size of less than 200 / X m is coated with a low ion-eluting conductive material powder having an average particle size of 20 zm or less. It was found that the use of particles was optimal for producing a flat metal separator.
- the average particle diameter of the carbide core particles is preferably less than 200 ⁇ m. More preferably, the average particle size of the cemented carbide core particles is set to l O O ⁇ m or less. .
- the projection pressure is preferably set to 0.4 MPa or less. It was found that it is optimal to control the projection at about 0.1 to 0.3 MPa. In addition, as a projection process that also adjusts the shape of the metal separator evening, It is also possible to implement a combination of projection pressures of about MPa or higher.
- the distance between the injection port for projecting the coated carbide particles and the metal separator evening surface is not particularly specified, but is usually 10 to 100 mm. It can be done within a range. '
- coated carbide particles of the size of the present invention When coated carbide particles of the size of the present invention are used, a suitable amount of the conductive material forming the coating layer collapses and peels off when the particles collide with the metal surface even at a relatively low projection pressure. It was found that the conductive fine powder was reliably embedded in the metal surface due to the effect of being struck by hard particles.
- the conductive material having an average particle size of 20 m or less is dispersed and embedded in the surface of the article to be processed, and stably low.
- the contact resistance state can be realized, and the contact resistance value against carbon paper can be less than 15 m Q cni 2 at the surface pressure IMP a.
- a mesh mesh jig is placed between the metal separator overnight and the coated carbide particle outlet to project the coated carbide particles. This makes it possible to disperse the impact energy (compression stress) of the coated carbide particles generated on the surface of the metal separator and reduce the impact, and to make the metal separator flat more reliably. This method is effective. I also found out.
- the mesh of the lattice jig can be exemplified by about 0.1 mm to 5.0 mm.
- TiN, TiC, CrC, TaC, B, SiC, WC, TiN, ZrN, Cr N which are the conductive substances disclosed in Japanese Patent Laid-Open No. 2 0 03- 1 2 3 7 8 3 , HfC, and various metal carbides and metal borides disclosed in Japanese Patent Laid-Open No. 2 0 0 1-3 5 7 8 6 2 and Japanese Patent Laid-Open No. 2 0 3-1 9 3 2 0 6, and Ten grams of TaN and Au powders were weighed and subjected to the following deterioration tests.
- the conductive powder is dispersed in 300 mL of a sulfuric acid aqueous solution of PH2. Then, the sample was allowed to stand for 14 days at 80 ° C. while publishing oxygen or hydrogen, and the amount of metal ions eluted in the supernatant obtained after standing still was analyzed.
- the contact resistance value against carbon paper at an initial pressure of 1 MPa is 15 ⁇ cm 2 or less from the beginning, the same low contact resistance value is maintained after the deterioration test, and the metal ion elution amount from the conductive material is 2 WC, WB, TaN, and Au were found to be below O ppm.
- the substances whose ion elution amount is below the detection limit of 0.05 ppm are TaN and Au.
- a cemented carbide particle coated with a conductive material with low ion elution characteristics containing at least one of the three conductive materials of Au, WC, and WB is preferable to use it.
- the current situation is that a low pH can occur in the current polymer electrolyte fuel cells. Therefore, as an effort to further reduce the ion elution amount, focusing on the inclusion of Ta N whose ion elution amount was below the detection limit in the screening test, TaN powder, WC powder, and TaN powder WB powder was mixed in various proportions, and the same ion dissolution test was performed again.
- a conductive material having a low ion elution characteristic in which 0.02% by mass or more of TaN and one or more of WC or WB are mixed and coated with cemented carbide particles.
- WB is superior to WB as shown in Fig. 2.
- WB is more expensive than WC.
- TaN itself has both excellent low ion elution characteristics and low contact resistance performance, so it is the most efficient to use without mixing, but it is expensive compared to WC. Therefore, in order to reduce costs, it is better to increase the cheapest WC ratio.
- the content of at least one of the conductive 'substances of WC and WB may be determined as appropriate in comparison with the cost. From the viewpoint of suppressing ion elution, the content of WC and WB is ideally 0% by mass. However, in order to guarantee a low cost, the content of one or more of WC or WB is It is recommended that it be 10% by mass or more.
- any carbonized, nitride, and boride used in the screening test described above is slightly ion-eluting from the surface when placed in an acidic aqueous solution, but in WC and WB, the powder surface It was revealed that non-stoichiometric conductive oxides re-deposited and the ion elution amount was reduced.
- the ionic elution amount is further reduced because Ta ions, which have a lower solubility, are mixed with W ions to form a composite conductive oxide, which further reduces the solubility. thinking.
- the conductive fine powder may contain impurities, the inevitable mixing of impurities is allowed.
- the impurity element contamination level is below the limit of detection by electron beam energy spectroscopy.
- the low ion-eluting conductive material is preferably a metal element conductive material that forms metal aqua ions having at most one OH group in an acidic aqueous solution.
- Supply is possible
- the V compound is preferably composed of one or more of VB, V S C 7 and VN.
- the average particle diameter of the conductive material it is preferable to further define the average particle diameter of the conductive material and the ratio of the metal oxide formed on the surface layer of the conductive material to the entire material particles. These will be described in detail below.
- the present inventors have known that the separator with conductive material particles fixed to the surface layer of stainless steel or titanium, which has been known, It was confirmed that the contact resistance between the evening surface and the carbon paper increased, and this caused the electromotive force of the fuel cell to decrease.
- the cause of the decrease in the electromotive force is that when the fuel cell is used, the conductive material particles adhering to the stainless steel separator surface layer, the titanium separator surface layer, or the titanium alloy separator surface layer are ion-eluting. After that, it was found that the conductivity of the conductive material particles deteriorates by forming an oxide on the surface of the conductive material particles.
- the present inventors use a large number of different kinds of conductive material particles in the use environment of the polymer electrolyte fuel cell, that is, in the environment of a temperature of 150 ° C. or lower and the environment of a strongly acidic aqueous solution.
- an oxide is formed when the metal aqua ions undergo a dehydration condensation reaction after elution of the conductive material, and the metal element that constitutes the conductive material and the metal that exists stably depending on its chemical form.
- the form of aqua ions differs, and in particular, when a conductive material that easily forms metal aqua ions having two or more OH groups is used, the dehydration condensation reaction between the metal aqua ions may become significant. understood.
- V shown in Table 1 is different from other transition metals such as Ti, Nb, Ta, Cr, Mo, and W in an aqueous acid solution under the usage environment of the polymer electrolyte fuel cell. It was found that OH groups are unlikely to exist in the stable metal aqua ions.
- FIG. 3 (a), FIG. 3 (b), (a) conductive material particles to form a metallic aqua ions having no more than one OH group. (VB, V 8 C 7 , VN , etc.), ( b) Conductive material particles (T i C, T i N, etc.) that form metal aqua ions with two or more OH groups are used on each surface.
- FIG. 2 is a schematic diagram when a fixed stainless steel separator or titanium separator is used in an environment where a solid polymer fuel cell is used.
- a conductive substance composed of VB, V 8 C 7 , VN or the like forms a metal (V) aqua ion having no O group in an acidic aqueous solution, or Forms metal (V) aqua ions with at most one ⁇ H group. Therefore, dehydration condensation reaction between metal (V) aquaions does not occur, and metal (V) oxide is not generated.
- conductive materials such as TiC and TiN form metal (Ti) aqua ions having two or more ⁇ H groups in an acidic aqueous solution. Therefore, a metal (T i) oxide is generated by a dehydration condensation reaction between metal (T i) aqua ions.
- the contact resistance of the separator surface due to the conductive material particles is reduced. The effect cannot be obtained sufficiently, and the desired low contact resistance as a separator for a solid polymer fuel cell cannot be obtained.
- the projection particles which will be described later, are coated with the conductive material particles on the surface of the carbide core particles.
- the embedding depth of the conductive material particles in the stainless steel surface layer, titanium surface layer, or titanium alloy surface layer is reduced.
- the density of the conductive material particles in the surface layer portion decreases, and the desired low contact resistance to the stainless steel substrate, titanium substrate or titanium alloy substrate cannot be obtained.
- the conductive material particles are fixed to the stainless steel surface layer, titanium surface layer, or titanium alloy surface layer using a method other than the plastic treatment, contact between the stainless steel surface or the titanium surface and the titanium alloy surface. From the standpoint of resistance, there is no need to specify the upper limit of the average particle size of the conductive material particles.
- the average particle size of the conductive material particles is 0.01 to 20 Xm.
- the metal oxide formed on the surface layer of these conductive substance particles inhibits the effect of reducing the contact resistance of the separator surface by the conductive substance particles.
- the mass ratio with respect to the entire metal oxide particles formed on the surface layer of the conductive material particles exceeds 30%, the action of the conductive material particles is remarkably inhibited, resulting in a solid polymer fuel cell. The desired low contact resistance as a separator for use is not obtained.
- the mass ratio of the metal oxide formed on the surface layer of these conductive substance particles to the entire particles was set to 30% or less.
- the mass ratio of the metal oxide formed on the surface layer of these conductive substance particles to the entire particles can be measured, for example, as follows. First, using a transmission electron microscope, observe the cross-section of the conductive material particles present on the stainless steel surface layer, titanium surface layer, or titanium alloy surface layer, and measure the total area of the conductive material particles and the surface layer. Then, by quantifying the surface layer molecules of the conductive material particles using the photoelectron spectroscopy, the metal oxide molecules present in the surface layer portion, the conductive material The mass ratio of the metal oxide in the surface layer to the entire particle can be determined.
- the mass ratio of the metal oxide formed on the surface layer of the conductive material particles with respect to the entire particles can be adjusted by pickling treatment after blast treatment described later.
- coated carbide particles in which a carbide core particle is coated with a low-ion-eluting substance are projected onto the surface of a stainless steel, titanium or titanium alloy plate to obtain a separator.
- the hard core particles are obtained by sintering powders of ultra-hard materials, but because of their large specific gravity, they can project at low speed (low pressure) and have good durability during impact.
- a material mainly composed of WC it is preferable to use a material mainly composed of WC.
- a sintered binder containing one or more types of Co C r N i F e in total of 1% by mass or more is used.
- One or more types of Fe are included in total 1% by mass or more.
- the upper limit is not particularly specified, but can be exemplified by about 50% by mass.
- W C as the main component means containing 50 mass% or more of W C.
- the surface of the cemented carbide core particles is coated with a fine powder of conductive material, which is lightly sintered and coated with at least 1% by mass of Cu or Sn as the sintering binder.
- the coated layer of the cemented carbide core particles contains one or more kinds of CuSn in total of 1% by mass or more. In this case as well, the upper limit is not particularly specified, but about 20% by mass can be exemplified.
- the amount of the conductive material particles fixed to the surface portion of the separator does not need to be particularly limited.
- the number of conductive substance particles per unit area in the separator layer that is, the density is 1 XI 0 8 particles / cm 2 or more, more preferably 1 XI 0 More preferably, the number of IQ is 2 cm 2 or more.
- a method of fixing a low ion-eluting conductive material to the surface layer portion is as follows: stainless steel surface layer portion, titanium surface layer portion or titanium alloy surface layer portion. This is done by blasting.
- the above-mentioned low-ion-eluting conductive material with an average particle size of 20 / im or less is used, but many of these are in acidic aqueous solutions such as VB, V 8 C 7 and VN.
- conductive material particles consisting of metal elements that have only one ⁇ H group and form metal aqua ions 0.0 1 to 20 m is used, and this conductive material particle is used as a carbide core. Projection particles are coated on the particle surface.
- the lower limit of the average particle size of the conductive material particles is not particularly limited, but when the low ion-eluting conductive material is one of VB, V 8 C 7 and VN, for the reason described above, 0. 0 1 / m.
- the upper limit of the average particle size of the conductive material particles is the surface of the stainless steel layer using titanium particles coated with the conductive material particles on the surface of the carbide core particles, titanium.
- the embedding depth of the conductive material particles in the stainless steel surface layer or titanium surface layer is reduced, resulting in the conductive material in the surface layer. Since the density of the particles decreases and the desired low contact resistance to the stainless steel substrate or titanium substrate cannot be obtained, the value is set to 2 0.
- covered the surface of the cemented carbide core particle with the said electroconductive substance particle
- the average particle size of the cemented carbide core particles does not affect the contact resistance of the obtained separator surface, so there is no need to limit the contact resistance.
- the average particle size of the cemented carbide core is 200 m or more, it will be difficult to obtain a flat separator shape even if the projection pressure is adjusted during blasting.
- the average particle size of the cemented carbide core particles is preferably less than 200 m. More preferably, the average particle size of the cemented carbide core particles should be ⁇ ⁇ ⁇ ⁇ ⁇ or less.
- the hardness and material of the cemented carbide core particle may be the hardness and material used in normal blasting, and examples thereof include tungsten carbide.
- the projecting particles in which the surface of the above-mentioned conductive material particles is coated on the surface of the carbide core particles are, for example, 1% by mass of a binder composed of one or two of Cu and Sn with respect to the conductive material particles. After the above addition and mixing, it can be produced by a method of applying it to the surface of the cemented carbide core particles.
- the projection pressure (collision energy) in the blast treatment does not affect the contact resistance of the obtained separator surface, so it is not necessary to limit it from the point of contact resistance.
- the projection pressure exceeds 0.4 MPa, the amount of strain on the stainless steel surface layer, titanium or titanium alloy surface layer increases, the flatness of the separator evening shape deteriorates, and stable and good flatness Therefore, it is preferable to limit the upper limit of the projection pressure to 0.4 MPa or less. More preferably, the projection pressure is limited to 0.3 MPa or less.
- the lower limit of the projection pressure in the blasting process may be within the projection pressure range of the normal blasting process, and it is not necessary to limit it in particular. Yes. In view of workability such as adjusting the shape of a separate night in the blasting process, it is desirable that the value is 0. OlMPa or higher.
- the above-mentioned blast treatment method is applied as a method for fixing the conductive material particles to the stainless steel surface layer portion, titanium or titanium alloy surface layer portion.
- This blast treatment not only has the effect of reducing the contact resistance on the surface of the separator overnight as described above, but also the C direction generated when forming or rolling stainless steel or titanium. The warpage and twist in the direction perpendicular to the rolling direction can be reduced, and the flatness of the separator evening shape can be improved.
- the conductive material particles to be fixed on the surface layer of the separator are coated on the surface layer.
- pickling treatment is performed after the above blast treatment.
- the conditions for the pickling treatment are that the pH is 2 to 5 and the temperature is 40 to 80 ° C.
- the pH during pickling treatment exceeds 5
- the effect of removing the metal oxide formed on the surface layer of the conductive material particles is not sufficient
- the pH is less than 2
- the temperature during pickling is less than 40 ° C, the effect of removing metal oxide formed on the surface layer of the conductive material particles is not sufficient, while the temperature is 80 ° C. If the condition exceeds 1, the conductive substance particles other than metal oxides will elute and decrease, and the effect of reducing the contact resistance of the surface of the separator overnight by the conductive substance particles will decrease.
- the temperature was 0 to 80 ° C.
- the time for the pickling treatment is not particularly limited. From the viewpoint of work efficiency, it is preferable to set it for 1 hour or more.
- the pickling solution used for the pickling treatment is not particularly limited.
- the separator after the blast treatment may be immersed in a pickling tank using a sulfuric acid solution.
- the solid polymer fuel cell separator manufacturing method of the present invention has a low contact resistance compared to the conventional separator described above, and can suppress deterioration of the low contact resistance in the use environment of the solid polymer fuel cell. It will be possible to obtain a separator for molecular fuel cells.
- the forming process of stainless steel, titanium or titanium alloy performed before the blasting is not particularly limited.
- a groove of a predetermined shape and size at a predetermined position on the surface of a stainless steel plate, titanium surface or titanium alloy, which is the base material for a separator by processing or pressing hydrogen gas as shown in Fig. 2 8 Or it can be a separate evening member having air 9 and water flow paths.
- the thickness of the stainless steel plate, titanium or titanium alloy plate used as the base material for the separation evening is not limited, but the thickness of the practical steel plate for producing the separation evening for the fixed fuel cell Is 0. About 0.2 mm is used.
- the output voltage per unit of the polymer electrolyte fuel cell is generally as low as about 1 V
- a plurality of fuel cells are stacked in order to obtain a desired output in practical use.
- a separator obtained by forming a stainless steel plate or a titanium plate for a polymer electrolyte fuel cell is required to have flatness with little warpage and residual strain.
- the stainless steel plate or titanium plate is warped mainly in the L direction (rolling direction) after forming, and the flatness of the separate overnight shape may be lost.
- the warpage in the L direction that occurred in the separation overnight after the above molding process should be corrected by rolling or squeezing down two sides along the L direction in the four-round flat part of the separation overnight. Can be eliminated.
- this shape will be described.
- the L direction means the rolling direction in the rolling production of stainless steel, titanium or titanium alloy.
- the rolling direction when forming these rolls with a roll as a separate overnight is usually the same as the rolling direction of the blank.
- the C direction is a direction perpendicular to the L direction.
- a continuous forming method using the roll processing technology disclosed in the publication is invented, and the bipolar type metal separator illustrated in Japanese Patent Application Laid-Open No. 2 0 2-2 5 5 8 6 is stably It has been demonstrated that it can be manufactured.
- the present inventor has also found that when conducting a conductive surface treatment by a blast method, it is easy to control warpage and twisting in the width direction (hereinafter sometimes referred to as C direction).
- the shape of the metal separation overnight before the treatment by the brass scissor method (usually after forming) is measured, and the protrusion of the wavy processed part on the concave side of the entire sled is made stronger or longer than the back side. It was found that the balance of the internal stress of the separation overnight (dispersion state) can be controlled and a better flattening can be achieved.
- a particle coated with super hard particles of a conductive material with minimal ion elution a conductive material with minimal ion elution is produced on the surface by colliding with the surface of the separator at a low projection pressure. An embedded metal separator with a flat shape can be obtained.
- the separator of the present invention has a metal surface when the blast treatment for making a flat shape is performed.
- the shape of the surface of a separate evening was defined.
- the arithmetic average roughness (R a) is 0.5 5 5.0 u rn
- the ten-point average roughness (R z) is 3 2 0 im
- the average interval of irregularities (S m) is 3 0 0
- the surface shape satisfies the following.
- Ra value or R z 'value exceeds the upper limit value, it means that the blasting process is excessive, and because it is excessively applied as internal stress, conversely, new warping and twisting occur. • 3 occurs.
- the Sm value force exceeds 300, it indicates that internal stress is concentrated locally, and local deformation is unacceptable as a separate overnight function.
- the arithmetic average roughness (R a), the ten-point average roughness (R z), and the average spacing of the irregularities (S m) can be measured by the methods specified in JISB 0 60 1 .
- the metal separator according to the present invention has a flat shape.
- the warp rate (wa rp) defined by Equation ⁇ 1> to Equation ⁇ 7>. ratio) and twist rat io were created and evaluated.
- a consistent rule is to provide the four points on the diagonal line of a rectangular or square separator so that the length is constant within 20% of the total diagonal line from the four corners.
- a rule for providing a characteristic point according to the shape may be determined.
- the separator according to the present invention has a warp rate defined by the following formulas ⁇ 1> to ⁇ 7>. (Warp ratio) and W L obtained by calculating the twist rate! , W L 2 , W c , W c 2 , W xc T XL and Txc were defined as 0.1 or less.
- Front side L direction warpage rate ⁇ 1>
- Back side L direction warpage rate ⁇ 2>
- T XC ⁇ 7> c-direction length standard twist rate: T XC ⁇ 7>
- the above values are defined as 0.1 or less, even if there is a warp or twist of that degree, the metal separation overnight is used. This is due to the allowable range in which the fuel cell stack can be formed.
- W L have W L2, W C W C2, W as long as even 0.1 or less Re each value of Izu x have T XL and T xe, 1 0 N-Up about relatively small fuel cell stack could be built without problems.
- a conductive material with minimal ion elution is embedded in the surface of the separator, so the contact resistance to carbon paper is less than 15 m ⁇ cm 2 at a surface pressure of 1 MPa.
- the low ion-eluting conductive material contains one or more of Au, WC, or WB, and the balance consists of inevitable impurities, or TaN and one or more of WC or WB are mixed, The balance is preferably made of inevitable impurities.
- one that is used as a binder of cemented carbide core particles and low ion-eluting conductive material is one or more of Co, Cr, Ni, Fe Cu, and Sn as unavoidable impurities.
- it remains contained in the surface of the separator for the polymer electrolyte fuel cell. These inevitable impurities can be removed or reduced from the surface of the separator by performing a pickling treatment as a post process.
- the metal separator after the surface treatment by the blast method is placed on a metal surface plate, and the three-dimensional shape is measured with a laser displacement meter.
- the converted three-dimensional displacement data is converted into the values of Equation 1> to Equation 7> shown above by a computer calculation process, etc., and each value allows an allowable range of warping and twisting in the separate evening. It is recommended that this be determined.
- a metal separator made of stainless steel, titanium, or titanium alloy having a flat portion on the four circumferences provided with a concave and convex process serving as a gas flow path in a 10 O mm square region was processed. Both materials are very thin with a thickness of about 0.1 mm, and can be easily deformed even with relatively weak force.
- Stainless steel separators were formed by roll processing, and titanium and titanium alloy separators were formed by press forming.
- Table 2 to Table 21 (Example (1) to Example (20)) include comparative products, and flat separators that have been subjected to conductive treatment by the blast method in the present invention. Listed examples. By the way, the impurity contamination levels in the products of the present invention were all below the detection limit by electron beam energy spectroscopy.
- the coated carbide particle blast method of No. 4 to 59, No. 6 3 to 66, No. 70 to 89 of the present invention is used.
- the alloy separate evening is less than 0.1 for each warpage rate and each twist rate, indicating that a flattened separation evening has been produced. ⁇
- the arithmetic average roughness (Ra) force of the surface is 0.5 to 5 at any point in multiple points (approximately 9 points as a guide) for each surface of the separate evening. 0 m, 10-point average roughness (Rz) 3 to 20 m, average roughness (Sm) satisfying less than 300 xm is “good”, even one point is within this range Those that fall off are evaluated as “bad”, and in Tables 1 to 20 are shown as ⁇ : good, X: bad. As shown in these tables, all the separation nights of the present invention satisfy the roughness regulations.
- the contact resistance value against carbon (the contact resistance value against carbon balance at a surface pressure of 1 MPa) satisfies 15 m Q cni 2 or less.
- Comparative products No. 3, No. 62, and No. 69 are all gold-plated products, and they use a blasting method like the present invention to conduct low ion-eluting conductivity on the surface of metal separators. It is not an embedded substance.
- No. 3, No. 62 and No. 69 of this comparative product are gold-plated products, so the cost increases, and the cost reduction as in the present invention cannot be realized. None of 1 to 3 (stainless steel), No. 60 to 6 2 (titanium), or No. 6 7 to 6 9 (titanium alloy) satisfy the above roughness specifications.
- Tables 2 to 21 also include qualitative evaluations regarding the ion resistance and cost of conductive materials. ⁇ : Very good, ⁇ ⁇ Good, ' ⁇ Normal, X: Bad, respectively.
- a metal ion elution amount of 0.05 ppm or less is “very good”, and 20 ppm or less is “good”. Costs are qualitatively evaluated with relative consideration of normal prices.
- FIG. A typical example (a) of the deformation state of the product produced when WC, which is a super hard particle of JIS, was projected at 0.5 MPa, and a super hard particle having an average particle diameter of 100 n by the method of the present invention. Contrast the example (b) of deformation of a flattened separator product produced by projecting a WC with a projection of 0.06 to 0.08 MPa on the front and 0.04 MPa on the back. Showed.
- a fuel cell is constructed using a commercially available MEA, and a long-term power generation verification test is conducted.
- coated carbide core particles coated with TaN powder with an average particle size of 20 ⁇ m or less on the surface of cemented carbide WC particles with an average particle size of 100 m separate unevenness with steps of 0.1-0.3 MPa. Fully driven into the machining section.
- the hard core particles were mixed, and the whole surface was driven into the uneven surface of the separator at 0.1 to 0.35 MPa while following the procedure.
- projection was performed through a mesh jig to eliminate warping and twisting.
- the coated carbide core particles are mixed, and at 0.03 to 0.25 MPa, the entire surface is punched into the uneven surface of the separator even while following the procedure. It was crowded. In addition, projection was performed through a mesh jig to eliminate warping and twisting.
- Carbide WC particles with an average particle size of 100 zm are coated with coated carbide core particles coated with TaN powder with an average particle size of 20 ⁇ m or less, and WB powder and WC powder with an average particle size of 20 m or less.
- the coated cemented carbide core particles were mixed, and the whole surface was driven into the uneven surface of the separator at 0.01-0.18 MPa while following the procedure. Furthermore, projection through a mesh jig eliminates the warp and twist.
- the coated coated carbide core particles are mixed, and 0.07-0.3MPa, and the entire surface is driven into the uneven surface of the separator even while following the procedure. It is.
- projection was performed through a mesh jig to eliminate warping and twisting.
- the coated cemented carbide core particles were mixed, and the whole surface was driven into the uneven part of the uneven surface at 0.1—0.35 MPa while following the procedure. Further projecting through a mesh jig, the warping 'twist was eliminated.
- the coated cemented carbide core particles were mixed, and the entire surface was driven into the uneven surface of the separator at 0.1-0.3 MPa while following the procedure.
- projection was performed through a mesh jig to eliminate warping and twisting.
- Carbide WC particles with an average particle size of 100 / im are coated with coated carbide core particles coated with TaN powder with an average particle size of 20 zm or less, and WB powder and WC powder with an average particle size of 20 m or less.
- the coated cemented carbide core particles were mixed, and the entire surface was driven into the uneven part of the uneven surface at 0.02-0.3 MPa while following the procedure.
- projection was performed through a mesh jig to eliminate warping and twisting.
- Carbide WC particles with an average particle size of 100 m were coated with coated carbide core particles coated with TaN powder with an average particle size of 20 xm or less, and WB powder and WC powder with an average particle size of 20 m or less.
- the coated cemented carbide core particles were mixed, and the entire surface was driven into the uneven surface of the separate overnight at 0.1—0.3 MPa while following the procedure.
- projection was performed through a mesh jig to eliminate warping and twisting.
- Carbide WC particles with an average particle size of 100 / im were coated with coated carbide core particles coated with TaN powder with an average particle size of 20 / im or less, and WC powder with an average particle size of 20 ⁇ m or less.
- coated carbide core particles 0.1-0.3MPa
- the average particle size is less than 20 ⁇ m
- Coated carbide core particles coated with TaN powder with an average particle size of 20 / m or less and WC powder with an average particle size of 20 / 2m or less were coated on the surface of a carbide WC particle with an average particle size of 100 m.
- the coated cemented carbide core particles were mixed, and the entire surface was driven into the uneven surface of the separator at 0.1—0.3 MPa while following the procedure.
- projection was performed through a mesh jig to eliminate warping and twisting.
- High corrosion-resistant stainless steel and titanium having a length of 50 mm, a width of 50 mm, and a thickness of 0.2 mm were used as base materials for the test materials.
- the average particle size is 100 II! ⁇ 300 im cemented carbide core particles made of tungsten carbide, coated with 1% by weight of Cu as a binder for the conductive material, and coated with the above test substrate at a projection pressure of 0.3MPa ⁇ 0.5MPa
- the test material was used.
- TiN and TiC were implanted into the test base material by the blast method under the same conditions as conductive material particles containing a metal element having a 0H group in the metal aqua ion as a test material.
- a cleaning treatment was carried out to remove defects such as oxide cracks and dislocations on the surface of the conductive particles by immersion treatment in sulfuric acid with a pH set to 2-6.
- the immersion temperature was set to 40 ° (: to 90 ° (:, the immersion time was set to 2 hours.
- Tables 2 to 5 show the details of the test materials.
- the contact resistance value against carbon paper was measured at a surface pressure of 10 kgf / cm 2 (IMPa). When the measured contact resistance value was 15 mQcni 2 or less, the contact resistance was considered acceptable, and when it exceeded 15 mQcm 2 , the contact resistance was deemed unacceptable.
- the flatness of the separator overnight is defined as follows: the origin is 0 at a predetermined position in the vicinity of the four corners of the stainless steel separator or the titanium separator; Place C in the vicinity of the corner in the vertical direction of rolling of the original plate from the origin 0 and X in the vicinity of the corner in the diagonal direction from the origin 0, and set the length of the line between 0L to LL and the length of the 0C line LC,
- the length between OX is LX
- the straight line 0L and the maximum strain height up to the center plane in the thickness direction of the workpiece are HL1
- the straight line CX is HL2
- the straight line 0C is HC1
- the straight line LX is the same.
- the amount of V ion elution from VB, V 8 C 7 , and VN compound particles embedded in the surface of the separate overnight substrate was measured by the following test method. In the supernatant obtained by allowing the above test material to stand for 300 hours in 80 mL of sulfuric acid aqueous solution adjusted to pH 2 at 80 ° C while publishing oxygen or hydrogen. The amount of V ion elution was quantified by ICP emission spectrometry. If the elution amount of Vion into the sulfuric acid aqueous solution is 50 ppm or less, the eion elution characteristics are considered acceptable, and over 50 ⁇ 1 is rejected.
- the ratio of oxide molecules on the surface of the conductive material to the molecules on the surface of the conductive material is quantified by measuring the intensity of the chemical-shifted peak of oxidation V using photoelectron spectroscopy. This was used for quantitative evaluation. Further, the presence or absence of defects such as oxides on the surface of the conductive material particles and dislocations and cracks was confirmed by a transmission electron microscope.
- Table 22 to Table 25 show the test results along with the test conditions. Twenty two
- 1 9 4, 1 9 7, 1 9 8/20 1 to 20 4 are comparative examples, the type of conductive material particles, the average particle size, and the mass of the entire surface metal oxide particles At least one of the ratio, pH during pickling, and temperature is outside the range specified in the present invention, so the contact resistance of the initial separator overnight surface and when using in fuel cell The evaluation of both metal ion elution, which affects the deterioration of contact resistance, could not be satisfied.
- the average particle size and Since the projection pressure is in the preferred range, the evaluation results of the contact resistance of the initial separator surface and the deterioration of the low contact resistance when using the fuel cell as well as the flatness evaluation are more satisfactory. It was obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
Abstract
本発明は、固体高分子型燃料電池用メタルセパレータをステンレス鋼、チタンまたはチタン合金で製造するにあたり、低コスト化と量産性を確保するために、高い加工性を有する素材を用いて高い生産性で複雑形状に成形加工した後に、安価なブラスト工程でメタルセパレータ部材表面に導電性物質を打ち込み埋め込む方法を実現するものであり、ステンレス鋼、チタンまたはチタン合金の表面に低イオン溶出性導電性物質が埋め込まれ、セパレータ表面の算術平均粗さ(Ra)が0.5~5.0μm、十点平均粗さ(Rz)が3~20μm、凹凸の平均間隔(Sm)が300μm以下であり、セパレータのそり率、ひねり率の各値が0.1以下であり、対カーボンペーパー接触抵抗値が面圧1MPaにおいて15mΩcm2以下であるステンレス鋼、チタン、またはチタン合金製固体高分子型燃料電池用セパレータを提供する。
Description
ステンレス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用 セパレ一夕とその製造方法およびセパレ一夕のそり · ひねり評価方 法 技術分野 '
本発明は、 電力を直接的駆明動源とする自動車、 小規模の発電シス テムなどに用いられる固体高分子型燃料電池セパレー夕およびその 製造方法、 さらに、 セパレ一夕のそり書、 ひねり評価方法に関する。 さらに詳しくは、 セパレ一夕のフラッ ト性を高め、 その表面の電気 的接触抵抗を低くするために低イオン溶出性導電性物質で表面処理 を施した固体高分子型燃料電池部材用セパレー夕に関するものであ る。 背景技術
近年、 電気自動車用燃料電池の開発が、 固体高分子材料の開発の 成功を契機に急速に進展し始めている。 固体高分子型燃料電池とは 、 従来のアルカリ型燃料電池、 燐酸型燃料電池、 溶融炭酸塩型燃料 電池、 固体電解質型燃料電池などとは異なり、 水素イオン選択透過 型の有機物膜を電解質として用いることを特徴とする燃料電池であ る。
固体高分子型燃料電池の燃料には、 純水素のほかアルコール類の 改質によって得た水素ガスなどを用い、 空気中の酸素との反応を電 気化学的に制御することによって、 電力を取り出すシステムである 固体高分子膜は薄くても十分に機能し、 電解質が膜中に固定され
ていることから、 電池内の露点を制御すれば電解質として機能する ために、 水溶液系電解質や溶融塩系電解質など流動性のある媒体を 使う必要がなく、' 電池自体をコンパク 卜に単純化して設計できるこ とも特徴である。 電気自動車用などへの応用に向けた開発が進めら れている。 1 5 0 °C程度以下の領域で稼動する固体高分子型燃料電 池 ω構成材料としては、 温度がさほど高くないこと、 およびその環 境下で耐食性 · 耐久性を十分'発揮させることが可能であることなど の理由で、 炭素系の材料が使用されてきているが、 脆性の問題から 薄くできずコンパク ト化に支障をきたしている。 さらには、 割れに くい炭素系セパレ一夕も開発されつつあるが、 コス ト的に高価なも のとなつている。 このためその両者において目標達成が可能なステ ンレス鋼やチタンあるいはチタン合金製セパレー夕の研究開発が本 命視されている。
固体高分子型燃料電池は、 電解質となる固体高分子膜の両面に炭 素微粒子と貴金属超微粒子からなる触媒電極部、 そこで発生する電 力を電流として取り出すと同時に触媒電極部へ反応ガスを供給する 機能を持った、 フェルト状炭素繊維集合体 (通称力一ボンペーパー ) からなるカレントコレクター、 そこからの電流を受けると共に酸 素主体および水素主体の 2種の反応ガスや冷却媒体を分離するセパ レー夕などが積層されることにより構成される。
代表的な固体高分子型燃料電池の構成を図 1 に示す。
固体高分子型燃料電池 1は、 電解質となる固体高分子膜 2 と、 こ の固体高分子膜 2の両面に設けられた炭素微粒子と貴金属超微粒子 からなる触媒電極部 3 と、 この触媒電極部 3で発生した電力を電流 として取り出すとともに、 触媒電極部 3へ反応ガスである酸素主体 ガスまたは水素主体ガスを供給する機能を持ったフェルト状炭素繊 維集合体からなるカレントコレクター (通称カーボンペーパー 4 )
と、 カーボンペーパー 4から電流を受けるとともに、 酸素主体ガス と水素主体ガスを隔離するセパレー夕 5 とが積層されて構成されて いる。 ■
固体高分子型燃料電池 1の基本原理は、 概略以下の通りである。 つまり、 固体高分子型燃料電池 1 において、 燃料である水素ガス ( Η 2 ') 8はアノード側 6から供給され、 ガス拡散層であるカーボン ペーパー 4、 触媒電極部 3を通過して水素イオン '(Η + ) となって 電解質である固体高分子膜 2を透過し、 カソード側 7 の触媒電極部 3において、 .水素イオン (Η と、 力ソード側 7から供給された 空気 9中の酸素 (〇2 ) との酸化反応 ( 2 Η + + 2 e — + 1 2 〇2→ H 2 0 ) が生じ、 水 (H 2〇) が生成される。 この酸化反応の際にァ ノ一ド側 6 の触媒電極部 3で生成した電子を力一ボンペーパー 4を 介してアノード側 6のセパレ一夕 5からカゾード側 7のセパレ一夕 5に電子 1 0が流れることにより、 両極間に電流、 電圧が発生する というものである。
固体高分子膜 2は、 強酸性を有する電解質が膜中に固定されてお り、 電池内の露点を制御することによって水素イオン (H + ) を透 過させる電解質として機能する。 ·
固体高分子型燃料電池 1 の構成部材であるセパレー夕 5は、 2種 の反応ガスである力ソード側 7の空気 9 とアノード側 6の水素ガス 8 とを隔離するとともに、 それぞれの反応ガスを供給する流路とし ての役割と、 反応により生成した水をカゾード側 7から排出する役 割を担っている。 また、 一般に、 固体高分子型燃料電池 1 は、 強酸 性を示す電解質からなる固体高分子膜が用いられ、 反応により約 1 5 0 °C以下の温度で稼動し、 水が生成するため、 固体高分子型燃料 電池用のセパレー夕 5は、 その材質特性として、 耐食性と耐久性が 要求されるとともに、 カーボンペーパー 4を介して電流を効率的に
通電させるための良好な導電性と、 カーボンペーパーとの接触抵抗 が低いことが要求される。
本発明者らは、'既に特開 2 0 0 0 - 2 6 0 4 3 9号公報ゃ特開 2 0 0 0 - 2 5 6 8 G 8号公報より、 ステンレス鋼をセパレー夕など の固体高分子型燃料電池用部材として使用するための具体的形状や 成分などを開示している。
しかし、 これらにおいては'、 加工工程の安定化による割れや反り の発生回避や、 表面の電気的接触抵抗を低減させる措置において更 なる低コス 卜化が実用化に向けての問題点であった。
ステンレス鋼製あるいはチタンやチタン合金製セパレ一夕におい ては、 カレントコレクタ一となるカーボンペーパーとの接触抵抗が 大きいため、 燃料電池としてのエネルギー効率を大幅に低下させる ことが問題として指摘されている。 かかる状況に鑑み、 使用される 素材間の接触抵抗を検討し、 固体高分子'型燃料電池のエネルギー変 換効率を最大限に発揮させるための固体高分子型燃料電池部材用の 低接触抵抗材料も検討されつつある。
このような発明としてはこれまで、 特開平 1 0 — 2 2 8 9 1 4号 公報に S U S 3 0 4をプレス成形することにより内周部に多数個の 凹凸からなる膨出成形部を形成し、 膨出先端側端面に 0 . 0 1 〜 0 . 0 2 mの厚さの金メッキ層を形成させた燃料電池セパレ一夕が 開示されている。
また、 特開 2 0 0 1 — 6 7 1 3号公報には、 他の部分に接触し接 触抵抗を生ずる部分に貴金属または貴金属の合金が付着させ、 カー ボンペーパーとの接触抵抗を低下させることを特徴とする固体高分 子型燃料電池用低接触抵抗ステンレス鋼、 チタン、 およびセパレー 夕などが開示されている。
しかし、 これらは、 いずれも接触抵抗を低下させるために貴金属
を用いる形式をとつており、 さらなるコス トダウンや希少資源節約 の観点から、 貴金属を使わないで接触抵抗を下げる方法が望まれて いる。 '
そこで、 貴金属の使用を控える方策として、 ステンレス鋼中のク ロムと炭素を焼鈍過程で析出させ、 不動態被膜から表面に露出した ク Dム炭化物析出物を介して通電させることにより接触抵抗を下げ る手法が特開 2 0 0 0 — 3 0 9 8 5 4号公報に開示されている。 し かしながらこの方法は、 ステンレス鋼の焼鈍工程に時間がかかりす ぎ、 生産性を低下させコス トアップの懸念が大きいこと、 逆に低コ ス ト化のために焼鈍時間を短くすると、 析出するクロム炭化物周辺 で金属組織学的にクロム欠乏層が生じ耐食性を低下させる懸念が大 きいこと、 さらにはセパレ一夕加工には強加工工程が必須であるの で、 加工前に金属組織中に多量のクロム炭化物析出が起きていると 加工工程において割れ発生の懸念もある。
同じく貴金属の使用'を控える方法として、 ステンレス鋼を基材と し、 その表面に化合物粒子を分散させた塗膜を基材表面に設けたあ と、 非酸化性雰囲気中で 3 0 0 〜 1 1 0 0 °Cに加熱分解して塗膜成 分を分解 ' 消失させることにより、 表面に S i C、 B4 C、 T i 02等の付着 物を形成させ、 接触抵抗を低減したことを特徴とする低温型燃料電 池用セパレ一夕とその製造法が特開平 1 1 — 2 6 0 3 8 3号公報お よび特開平 1 1 一 2 1 9 7 1 3号公報に開示されている。 この方法 は、 非酸化性雰囲気中で 3 0 0 〜 1 1 0 0 °Cに.加熱分解して塗膜成 分を分解 · 消失させる工程に時間と手間がかかるため、 コス トアツ プが懸念される。
また、 炭素系材料と金属を複合させたセパレー夕として、 セパレ 一夕を構成する金属薄板上で、 電極が位置する主要部にプレス成形 などでガス流路を形成し、 その表面部分に炭素系導電塗層を形成さ
せた固体高分子型燃料電池用セパレー夕が特開 2 0 0 0 - 0 2 1 4 1 9号公報に、 ステンレス鋼基材にカーボン粉末を分散圧着させて 導電性を改善した低温型燃料電池セパレー夕が特開平 1 1 一 1 2 1 0 1 8号公報に開示され、 ステンレス鋼を基材にカーボン系粒子を 分散させた N i _C r系メツキ層が表面に形成されている低温型燃料電 池用セパレー夕が特開平 1 1 _ 1 2 6 6 2 1号公報に、 さらにはス テンレス鋼を基材に、 カーボン系粒子を分散させた Ta、 T iまたは T i — Ta系メツキ層が表面に形成されている低温型燃料電池用セパレー タが特開平 1 1 _ 1 2 6 6 2 2号公報に開示されている。
この様な、 カーボンぺ一パーとステンレスなどの金属部分との界 面に、 金属側にカーボンを配置して接触抵抗を低減させる試みは良 い着眼であるが、 界面に生ずる接触抵抗の発現は金属側の不動態皮 膜によるのみならず、 表面に分散させる力一ボンとメタルとの界面 の電子構造において、 カーボン側に生ずる擬似的なショ ッ トキ一障 壁が起因して大きな接触抵抗が生ずることを発明者らは見出してお り、 再現試験の結果で、 安定的に低接触抵抗状態が実現できないと いう問題がある。
このように、 ステンレス鋼やチタンおよびチタン合金の不動態皮 膜による耐食性発現を利用しつつ、 接触抵抗を大幅に低下させ、 複 雑な加工もでき、 かつ低コス 卜で生産できる金属セパレ一夕製造技 術の開発は困難を極めているのが実情である。
一方、 金属セパレー夕として機能すべく複雑な加工形状を実現し なくてはならないことから、 ステンレス鋼やチタンおよびチタン合 金には究極の加工性が求められる。 したがって、 将来の素材生産性 向上と複雑形状となるセパレー夕加工工程における生産性向上によ る低コス ト化を睨むと、 素材製造性や加工時の伸びを阻害する金属 組織内の析出物を極力減らすことが望ましい。
従って、 接触抵抗低減を目的として、 金属組織内に導電化合物や 金属相を析出させたステンレスやチタンおよびチタン合金材料が特 開 2 0 0 0— 3 0 9 8 5 4号公報、 特開 2 0 0 4— 1 0 7 7 0 4号 公報、 特開 2 0 0 4— 1 5 6 1 3 2号公報、 特開 2 0 0 4— 2 7 3 3 7 0号公報、 特開 2 0 0 4— 3 0 6 1 2 8号公報、 特開 2 0 0 4 一 1 2 4 1 9 7号公報、 特開 2 0 0 4— 2 6 9 9 6 9号公報、 特開 2 0 0 3 - 2 2 3 9 0 4号公報、 特開 2 0 0 4— 2 9 6 0 公報、 特開 2 0 0 4 - 2 3 2 0 7 4号公報に開示されているが、 素材製造 および加工工程における究極の生産性を実現して低コス ト化すると いう観点からは、 合理的に見て問題が残り続けると考えられる。 かかる事情を背景に、 現実的な課題として、 ステンレス鋼やチタ ンおよびチタン合金には、 まず生産性と加工性を重視した材料設計 および生産工程設計がなされるのが基本である。 この路線で生き残 れる材料は、 例えば特開 2 0 0 6 - 0 4 0 6 0 8号公報にあるよう な高加工性 · 高生産性のステンレス鋼のような材料であろう。
しかしながら、 表面の電気的接触抵抗を低減させる措置において 、 更なる低コス 卜化が実用化に向けての問題点である。
以上のことから、 固体高分子型燃料電池メタルセパレー夕用の高 加工性ステンレス鋼やチタンへの加工後に施す導電性表面処理とし ては、 前述のように現状では金メツキが主流と認識される。
この現在主流の方法は、 コス ト面や資源量の問題が指摘され、 貴 金属の使用を控えることができる技術発明が数多くなされている。
例えば特開 2 0 0 3— 1 2 3 7 8 3号公報には、 ステンレス鋼製 セパレー夕燃料極側に、 TiN、 TiC、 CrC、 TaC, B4C、 SiC、 WC、 TiN 、 ZrN、 CrN、 HfCの 1種又は 2種以上の導電性セラミックス層形成 をさせる方法が開示されている。
具体的なこれらの被覆方法として、 蒸着または乾式コーティ ング
法が例示されているが、 真空装置等を用いてこれらの物質を乾式コ 一ティ ングする場合には、 成膜速度の制約があり、 かつ被覆物質の 歩留まり低下が余儀なく されるため、 高コス ト化の懸念がある。
また、 M23 C6型、 M4 C型、 もしくは MC型であって、 金属元素 (M) がクロム、 鉄、 ニッケル、 モリブデン、 タングステン、 ポロ ンの 1種以上を含んでいる導電性硬質粒子の基材表面への埋め込み により、 基材表面に導電性硬'質粒子を分散 · 露出させてなるチタン あるいはチタン合金製バイポーラ一プレート (セパレー夕) が特開 2 0 0 1 — 3 5 7 8 6 2号公報に、 M23C6型、 M4 C型、 M2 C型、 M C型炭化物系金属介在物および M2 B型硼化物系金属介在物のう ち 1種以上が分散 · 露出しており、 金属元素 (M) がクロム、 モリ ブデン、 タングステンの一種以上であって、 ステンレス鋼表面粗さ が中心線平均粗さ R aで 0. 0 6〜 5 /mであることを特徴とステ ンレス鋼およびステンレス鋼製セパレ一夕が特開 2 0 0 3 - 1 9 3 2 0 6号公報にそれぞれ開示されている。
後者においては、 これらの導電性を有する硬質微粉末をショ ッ 卜 して形成させることもできると述べられている。
しかしながら、 一般に固体高分子型燃料電池は、 1個あたりの出 力電圧が 1 V程度と低いため、 所望の出力を得るためには、 燃料電 池を多数積層してスタック型燃料電池として用いることが多い。 こ のため、 導電性を有する硬質微粉末をショ ッ トなどにより基材表面 に固着させる方法においては、 セパレ一夕に反りや歪の発生を抑制 し、 燃料電池のスタック化が可能な良好な平坦性を有するセパレ一 夕を得るための条件および後処理を行う必要があるが、 上記の方法 では成形後のセパレ一夕が変形し、 スタックに組上げられないなど の問題があり、 その最適な条件を見出さないかぎり、 実用化するこ とはできない。
そこで、 本発明者らは、 燃料電池を形成するセパレ一夕に、 この セパレー夕より高硬度の核粒子に高耐食性かつ対カーボン低接触抵 抗性の金属をコーティ ングした固体プレーティ ング材を投射して、 この固体プレーティ ング材にコーティ ングされた金属をセパレー夕 に強制的に付着する方法を発明し、 特開 2 0 0 1 — 2 5 0 5 6 5号 公報に開示した。 また、 この手法を用いてごく微量の貴金属をステ ンレスやチタンおよびチタン合金に埋め込むこと 、 金メッキのよ うな全面の貴金属被覆をしなくても十分な低接触抵抗が得られるこ とを見出し、 特開 2 0 0 1 一 6 7 1 3号公報に示す発明を行なった この方法においては、 貴金属を使うため、 更なる低コス ト化がな くては実用化に至れない。
そこで、 前記の特開 2 0 0 1 — 2 5 0 5 6 5号公報の技術を基本 にさらなる工夫や試行錯誤を積み重ねた結果、 特開 2 0 0 1 — 8 9 8 7 0号公報、 特開 2 0 0 3 —.1 6 0 8 8 4号公報、 特開 2 0 0 4 - 7 6 1 2 4号公報、 国際公開 W〇 2 0 0 5 Z 0 4 7 5 6 7号に開 示されたように、 平均粒径 2 mm以下のコア粒子を核としてその表 面に平均粒径 0. 5 mm以下の任意の導電性物質微粉末を軽く焼結 し被覆することを特徴とした、 任意導電物質をメタル表面に打ち込 むための被覆超硬粒子製造法を発明した。
しかし、 この方法では成形後のセパレ一夕が変形し、 スタックに 組上げられないなどの問題があった。
以上の通り、 厳しい加工工程が入ることを前提にし、 かっきわめ て低コス ト · 量産性が求められる固体高分子型燃料電池用メタルセ パレー夕の製造技術においては、 前記のとおり素材自体に高い製造 生産性と高い加工性を担保させ、 もって複雑な形状への加工工程を 高い生産性で実現し、 成形後に安価で生産性の高い機械的プロセス
によって部材表面のみに導電性物質もしくは導電性金属を打ち込み 埋め込む方法がもっとも有望となる。 その意味で、 特開 2 0 0 3— 1 2 3 7 8 3号公報、 特開 2 0 0 1— 3 5 7 8 6 2号公報、 特開 2 0 0 3— 1 9 3 2 0 6号公報、 特開 2 0 0 1— 2 5 0 5 6 5号公報 、 特開 2 0 0 1一 6 7 1 3号公報に開示された方法および材料や部 材は今後主流となるものと期待される。
しかしながら、 これらに いても低コス 卜で電気的接触抵抗が低 い表面処理を施さなくては、 電池性能の向上が望めない。
かかる技術的方向性を基本として考えると、 表面に埋め込む導電 性物質については、 将来大量に使用されることを想定すると、 資源 量において制約があまりないこと、 安価であること、 そして何より も腐食環境にさらされるメタルセパレー夕表面においてイオンが溶 出しにくいことが重要な鍵となる。 また、 加工後にブラス ト (ショ ッ ト) 法を用いて表面に機械的に打ち込むので、 処理後にはス夕ッ クに組上げる工程に Wえうるフラッ トな形状に仕上がることも重要 な課題である。
打ち込み付着物からのイオンや各種陰イオンの溶出がおきにくい という点においては、 特開 2 0 0 1— 2 5■ 0 5 6 5号公報、 特開 2 0 0 1一 6 7 1 3号公報に開示されたとおり貴金属を打ち込み埋め 込むのがよいわけである力 資源量ゃコス 卜競争力においては特開 2 0 0 1 - 3 5 7 8 6 2号公報、 特開 2 0 0 3— 1 9 3 2 0 6号公 報に開示された金属炭化物もしくは金属硼化物系の物質の方が優位 となる。 ただし、 後者においては、 当該部材が固体高分子型燃料電 池内の腐食環境に曝されると、 少なからず導電性物質にも腐食がお こり、 イオン溶出して ΜΕΑ (固体高分子型電解質膜と電極の複合 体) を汚染し、 燃料電池の発電能力を低下させる懸念がある。
したがって、 イオン溶出が貴金属に迫り うるほど極小な導電性物
質を見出すことと、 加工後のセパレー夕部材に処理を施した後には フラッ トな形状が実現することの 2つの課題を同時に解決しなくて はならない。 なお、 加工後にブラス ト法を用いて導電性物質を加工 品表面に機械的に打ち込む処理方法において、 その母体となるメタ ルセパレー夕加工品が極薄の材料からなることにより、 当該処理品 のフラッ ト化の実現に関わる取り組みは、 これまで発明がなされて いない。 つまり、 定量的な評'価指標の確立と、 目標指標値達成への 技術ノウハウの集積への研究開発が必要不可欠となっている。 発明の開示
上記従来技術の現状に鑑みて、 本発明は、 導電性物質粒子が固着 された表層部を有するステンレス鋼またはチタンおよびチタン合金 からなる固体高分子型燃料電池用セパレー夕において、 燃料電池の 使用時に、 セパレー夕表面の接触抵抗劣化による起電力低下などの 電池特性の劣化が少 く、 セパレー夕表面のカーボンペーパーとの 低接触抵抗性に優れ、 さらには、 スタック化のための平坦性に優れ た、 固体高分子型燃料電池用セパレ一夕およびその製造方法を提供 することを目的とする。 すなわち、 本発明は、 イオン溶出が極小な 導電性物質を見出すこと、 および処理後のセパレ一夕部材形状がフ ラッ トとなることの 2課題を同時に解決することにより、 固体高分 子型燃料電池用メタルセパレ一夕を 1 1質量%以上の C rを合金化し たステンレス鋼、 またはチタンおよびチタン合金で製造するにあた り、 低コス ト化と量産性を確保するために、 高い加工性を有する素 材を用いて高い生産性で複雑形状に成形加工した後に、 安価なブラ ス ト工程でメタルセパレ一夕部材表面に導電性物質を打ち込み埋め 込む方法を実現することを目的とする。
本発明の要旨は、 以下の通りである。
( 1 ) ステンレス鋼、 チタン、 またはチタン合金の表面の一部ま たは全部に低イオン溶出性導電性物質が埋め込まれた固体高分子型 燃料電池用セパレー夕であって、 該セパレー夕表面の算術平均粗さ
( R a ) 力 S 0. 5〜 5. 0 / m、 十点平均粗さ ( R z ) が 3〜 2 0 m、 凹凸の平均間隔 ( S m ) が 3 0 0 m以下であり、 前記セパ レー夕四隅近傍の所定の位置に、 原点を 0、 原点 0から原板の圧延方 向にある角近傍に L、 原点 0から原板の圧延垂直方向にある角の近傍 に C、 原点 0から対角線方向にある角近傍に Xを置き、 0L間の線分の 長さを LL、 0C線分の長さを LC、 OX間の長さを LXとし、 直線 0Lと加工 品の厚さ方向中心面までの最大ひずみ高さを HL1、 直線 CXとのそれ を HL2、 直線 0Cとのそれを HC1、 直線 LXとのそれを HC2、 直線 OXとの それを HXCとし、 点 Xと 3点 0、 L、 Cにて構成される平面との距離を H XTとしたとき、 式 < 1〉〜式 < 5 >で定義されるそり率 WL 1、 WL 2 , WC 1、 WC 2、 Wxcおよび式 < 6 >〜式 < 7 >で定義されるひねり率 TXL 、 Tx cの各値が 0. 1以下であり、 さらに、 対カーボンべ一パー接 触抵抗値が面圧 I M P aにおいて 1 5 mQcm2以下であることを特 徴とするステンレス鋼 チタンまたはチタン合金製固体高分子型 料電池用セパレ一夕。
HL2
奥側 L方向そり率 : U2=J
LL < 2 >
HO
左側 C方向そり率 : W < 3 >
HC2
右側 C方向そり率 W-=W <4>
|HX(
対角線方向そり率 : Wxc==^ < 5 >
( 2 ) 前記低イオン溶出性導電性物質が、 A u、 WCまたは WB の 1種以上を含有し、 残部が不可避的不純物からなることを特徴と する ( 1 ) に記載のステンレス鋼、 チタンまたはチタン合金製固体 高分子型燃料電池用セパレ一夕。
( 3 ) 前記低イオン溶出性導電性物質が、 T a Nまたは、 T a N と WCまたは WBの 1種以上が混合されたものを含有し、 残部が不 可避的不純物からなることを特徴とする ( 1 ) に記載のステンレス 鋼、 チタンおよびチタン合金製固体高分子型燃料電池用セパレー夕
( 4 ) 前記の不可避的不純物として、 C o、 C r、 N i 、 F e、 C u、 S nの 1種以上が、 固体高分子型燃料電池用セパレ一夕表面 に含まれていることを特徴とする ( 2 ) または ( 3 ) に記載のステ ンレス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパ レ一夕。
( 5 ) 前記低イオン溶出性導電性物質が、 V B、 V8 C7および V Nのうちの 1種または 2種以上からなることを特徴とする ( 1 ) に 記載のステンレス鋼、 チタンまたはチタン合金製固体高分子型燃料 電池用セパレー夕。
( 6 ) 前記低イオン溶出性導電性物質の平均粒径が、 0. 0 1〜 2 0 mであり、 かつ表層に形成された金属酸化物の導電性物質粒 子全体に対する質量比率が、 3 0 %以下であることを特徴とする (
5 ) に記載のステンレス鋼、 チタンまたはチタン合金製固体高分子 型燃料電池用セパレ一夕。
( 7 ) .ステンレス鋼、 チタンまたはチタン合金の表面の一部また は全部に、 平均直径 2 0 0 m未満の超硬コァ粒子の周囲に平均直 一 径 2 0 m以下の低イオン溶出性導電性物質が被覆された被覆超硬 粒子を、 0. 4 M P a以下の圧力の気流に載せて投射することによ り、 低イオン溶出性導電性物質を埋め込んで導電処理することを特 徴とするステンレス鋼、 チタンまたはチタン合金製固体高分子型燃 料電池用セパレ一夕の製造方法。
( 8 ) 前記投射を行うに際し、 ステンレス鋼、 チタンまたはチタ ン合金と被覆超硬粒子噴出口の間に格子状網目冶具を配置して被覆 超硬粒子を投射することにより、 被覆超硬粒子の衝突エネルギーを 分散させることを特徴とする ( 7 ) に記載のステンレス鋼、 チタン またはチタン合金製固体高分子型燃料電池用セパレー夕の製造方法
( 9 ) 前記低イオン溶出性導電性物質が、 A u、 WCまたは WB の 1種以上を含有し、 残部が不可避的不純物からなることを特徴と する ( 7 ) または ( 8 ) に記載のステンレス鋼、 チタンまたはチタ ン合金製固体高分子型燃料電池用セパレ一夕の製造方法。
( 1 0 ) 前記低イオン溶出性導電性物質が、 0. 0 2質量%以上 の T a Nと、 W Cまたは" W Bの 1種以上が混合され、 残部が不可避 的不純物からなることを特徴とする ( 7 ) または ( 8 ) に記載のス テンレス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セ パレ一夕の製造方法。
( 1 1 ) 前記低イオン溶出性導電性物質が、 V B、 V8 C7および VNのうちの 1種または 2種以上からなることを特徴とする ( 7 ) または ( 8 ) に記載のステンレス鋼、 チタンまたはチタン合金製固
体高分子型燃料電池用セパレー夕の製造方法。
( 1 2 ) 前記低イオン溶出性導電性物質が、 平均粒径が 0. 0 1 〜 2 0 mであり、 前記低イオン溶出性導電性物質粒子の表層に形 成される低イオン溶出性物質金属酸化物の該粒子全体に対する質量 比率が 3 0 %以下であることを特徴とする ( 1 1 ) に記載のステン レス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパレ 一夕の製造方法。
( 1 3 ) 前記導電処理を施した後、 P Hが 2〜 5、 温度が 4 0〜 8 0 °Cの条件で酸洗処理を行うことを特徴とする ( 1 1 ) または ( 1 2 ) に記載のステンレス鋼、 チタンまたはチタン合金製固体高分 子型燃料電池用セパレー夕の製造方法。
( 1 ) 前記被覆超硬粒子において、 超硬コア粒子が WCを主成 分とし、 残部に C o、 C r、 N i、 F eの 1種以上を合計 1質量% 以上含み、 被覆層に C u、 S nの 1種以上を合計 1質量%以上含む ことを特徴とする ( 7 ) 〜 ( 1 3 ) のいずれかに記載のステンレス 鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパレ一夕 の製造方法。
( 1 5 ) ロール成形法またはプレス成形法の 1種以上によりステ ンレス鋼、 チタンまたはチタン合金を成形後に、 前記の投射を行う ことにより、 セパレ一夕の内部応力バランスを制御することを特徴 とする ( 7 ) 〜 ( 1 4) のいずれかに記載のステンレス鋼、 チタン またはチタン合金製固体高分子型燃料電池用セパレー夕の製造方法
( 1 6 ) ( 1 ) 〜 ( 6 ) いずれかに記載のセパレー夕の、 そり · ひねりを評価する方法において、 前記セパレー夕の 3次元形状をレ 一ザ一変位計により測定し、 デジタル化された三次元変位データを 計算処理によって式 < 1 >〜式 < 7〉の各値に換算することを特徴
とするステンレス鋼、 チタンまたはチタン合金製固体高分子型燃料 電池用セパレ一夕のそり · ひねり評価方法。
本発明によれば、 固体高分子型燃料電池の使用時に、 ステンレス 鋼製セパレ一タ表層部、 チタン製セパレー夕表層部またはチタン合 金製セパレー夕表層部に固着した導電性物質粒子が、 イオン溶出性 の低いものであり、 また好ましくはイオン溶出した後、 導電性物質 粒子の表面に酸化物を形成することを防止することができる。 した がって、 カーボンペーパーとの接触抵抗が面圧 1 M P aにおいて 1 5 m Q c m 2以下と低く、 使用時の低接触抵抗の劣化およびこれに より起電力の低下が少なく、 かつ燃料電池のスタック化に十分適用 できる平坦性を備えたステンレス鋼製チタンおよびチタン合金製の 固体高分子型燃料電池用セパレー夕を提供することが可能となる。 燃料電池自動車や燃料電池モパイルパソコン、 さらには燃料電池 を用いたコジェネレーションなどが、 今後は発展していく と考えら れ、 その汎用化には、 '構成部材に飛躍的な低コス ト化が必須である 。 本願発明により、 高性能なステンレス鋼、 チタンおよびチタン合 金製フラッ ト化セパレ一夕を低コス トで生産できるようになる。 図面の簡単な説明
図 1は、 固体高分子型燃料電池の構成を説明する図である。
図 2は、 難溶解性導電物質 W C及び W Bに T a Nを混合すること をさらにイオン溶出量が低下することを説明する図である。
図 3 ( a ) は、 本発明例として、 基材に埋め込まれる導電性物質 が、 1個以下の〇H基を有する金属アクアイオンを形成する金属元 素の化合物である場合の表面状態を示す断面模式図であり、 導電性 物質として V B、 V 8 C 7、 V Nの例を示す。
図 3 ( b ) は、 比較例として、 基材に埋め込まれる導電性物質が
、 2個以上の〇H基を有する金属アクアイオンを形成する金属元素 の化合物である場合の表面状態を示す断面模式図であり、 導電性物 質として T i N、' T i Cの を示す。
図 4は、 ブラス ト法により導電性表面処理を行った固体高分子型 燃料電池用のステンレス鋼、 チタン及びチタン合金製セパレー夕の 平坦性を評価するための指標の説明図である。
図 5は、 ブラス ト法を用いた導電表面処理における製品の変形状 況を示す図であり、 ( a ) は従来法による場合、 ( b ) は本発明法 による場合を示す。 発明を実施するための最良の形態
本発明について以下詳細に説明する。
前述の通り、 図 1 に示す固体高分子型燃料電池 1の構成部材であ るセパレー夕 5は、 その基本特性として、 導電性、 特に力一ボンべ —パー 4からの電流を'受ける際に、 セパレー夕 5表面と力一ポンぺ ーパ一 4との接触抵抗が小さいことが要求される。
また、 固体高分子型燃料電池 1 は、 強酸性を有する電解質である 固体高分子膜 2を有し、 約 1 5 0 °C以下の温度で進行する反応によ り水を生成するため、 セパレ一夕 5の材質として、 これらの温度、 酸性水溶液での腐食環境で十分耐えられる耐食性と耐久性が要求さ れる。
さらに、 固体高分子型燃料電池 1は、 所望の電力を得るために多 数積層したスタック型燃料電池として用いることが多いため、 セパ レー夕 5は、 燃料電池のス夕ック化に十分適用できる平坦性が要求 される。 .
以上の点を踏まえて、 本発明は、 固体高分子型燃料電池用セパレ 一夕の素材として、 上記温度、 酸性水溶液での腐食環境下で、 良好
な耐食性を有するステンレス鋼、 チタンまたはチタン合金を用い、 この表層部に導電性物質を有するセパレータであることを前提とし 、 導電性物質の種類ゃセパレー夕の形状を制御するものである。 本発明者は、 ィオン溶出が極小な導電性物質を超硬粒子に被覆し た粒子を用いて、 低い投射圧力でステンレス鋼、 チタンまたはチタ ン合金セパレー夕 (以降、 これらを総称してメタルセパレー夕と記 載することがある。 ) 表面に衝突させることで、 その表面にイオン 溶出が極小な導電性物質が埋め込まれ、 かつ形状がフラッ トなセパ レー夕を製造できることを新たに見出した。
以下に詳細に説明する。
メタルセパレー夕は、 多数の枚数が積層されて燃料電池を構成す るものであるから、 そりやひねりがないこと、 あるいは極めて小さ いことが必須条件である。 また、 電気的接触抵抗が低い表面性状と することも重要である。
そこで、 腐食環境 さらされるメタルセパレー夕表面においてィ オンが溶出しにくい 導電性物質を超硬コア粒子表面に被覆したも のを、 メタルセパレー夕表面に投射する方法 (以降、 ブラス ト法と 記載することがある。 ) を用いて表面に埋め込み、 かつ、 そりやひ ねりがほとんどない製品に仕上げるために、 多くの試行錯誤を行つ た。
その結果、 前記の特開 2 0 0 1 - 3 5 7 8 6 2号公報、 特開 2 0 0 3 - 1 9 3 2 0 6号公報にて開示された平均粒径 2 0 O ^ m程度 の導電性硬質粒子をブラス トしただけでは相対的に大径の粒子のほ とんどが反射されてしまうため、 ステンレス鋼やチタンあるいはチ タン合金表面に十分な量の導電物質を埋めこめることができず、 接 触抵抗値においては安定した再現性が得られなかった。
処理後の加工品についてその形状を見ると、 大きな径の粒子を埋
め込むために 0 , 5 M P a程度以上大きな投射圧力を必要とするた め、 そりやひねりが激しく発生してしまう ことも問題となった。 そこで、 製品形状をフラッ トに仕上げるためには、 ブラス ト法に よりメタルセパレ一夕 (通常は、 成形加工後のセパレー夕) 表面に 衝突させる粒子の平均粒子径は 2 0 0 Ai m未満にしないとうまくい かず、 1 0 0 /X m程度であれば最適であることを見出した。
具体的には、 被覆超硬粒子としては、 平均粒径 2 0 0 /X m未満の 超硬コア粒子表面に平均粒子径 2 0 z m以下の低イオン溶出性導電 物質粉末を被覆した被覆超硬粒子をもちいるのがフラッ ト化メタル セパレ一夕を製造する上で最適なことを見出した。
超硬コア粒子の平均粒子が 2 0 0 m以上になると、 ブラス ト処 理において投射圧力を調整しても平坦なセパレ一夕形状を得ること が困難となるため、 固体高分子型燃料電池用セパレ一夕として要求 されるスタック化が可能な平坦性を安定して確保するために、 超硬 コァ粒子の平均粒径は 2 0 0 β m未満とするのが好ましい。 さらに 望ましくは超硬コア粒子の平均粒径を l O O ^ m以下とするのが良 い。.
また、 前記の通り、 投射圧力を 0. 5 MPa程度にすると強すぎて そりやひねりの制御は不可能であった。 つまり、 特開 2 0 0 1 — 3 5 7 8 6 2号公報および特開 2 0 0 3 — 1 9 3 2 0 6号公報にて開 示された方法はフラッ ト化を実現するための発明にはなっておらず 、 本願発明とは異なる思想体系に属している。
そこで種々検討したところ、 投射圧力が 0. 4MPa超となると表 層部の歪量が増加しセパレー夕の形状の平坦性が劣化するので、 投 射圧力として 0 . 4MPa以下とするのが好ましく、 0. 1〜 0. 3 M Pa程度に制御して投射するのが最適であることがわかった。 また、 メタルセパレー夕の形状調整を兼ねた投射処理として、 0. 0 0 5
M P a程度以上の投射圧力を組み合わせて実施することも可能であ る。
また、 前記被覆超硬粒子の投射において、 被覆超硬粒子を投射す る噴射口と、 メタルセパレー夕表面との距離は、 特に規定するもの ではないが、 通常は 1 0〜 1 0 0 0 m m程度の範囲で行う ことがで さる。 '
本発明のサイズの被覆超硬粒子を用いると、 比較的低い投射圧力 でも粒子のメタル表面への衝突に伴って被覆層をなす導電性物質が 適量崩壌 · 剥離し、 さらにその上から被覆超硬粒子によって叩き込 む効果があるため、 導電性微粉末がメタル表面に確実に埋め込まれ ることがわかった。
従って、 投射圧力が低くても、 前記の被覆超硬粒子を用いれば、 平均粒径 2 0; m以下の導電性物質が被処理品の表面に分散して埋 め込まれ、 安定的に低接触抵抗状態を実現でき、 対カーボンぺ一パ 一接触抵抗値が面圧 I M P aにおいて 1 5 m Q cni2以下とできる。
さらに微妙な変形を調整する場合には、 前記ブラス ト法による投 射を行うに際し、 メタルセパレ一夕と被覆超硬粒子噴出口の間に格 子状網目冶具を配置して被覆超硬粒子を投射することにより、 メタ ルセパレー夕表面に生ずる被覆超硬粒子の衝突エネルギー (圧縮応 力) を分散させて衝撃を緩和でき、 メタルセパレ一夕をより確実に フラッ ト化できるため、 この手法が有効であることも見出した。 格 子状冶具の網目は、 0 . l m m〜 5 . 0匪程度が例示できる。
このように比較的小さな投射圧力で効果的に微小な導電性物質を 機械的にメタル表面に打ち込む技術を新たに見出したことにより、 これまで不可能と考えられてきたブラス ト法によるフラッ ト化セパ レー夕の製造が安定的に可能となった。
低イオン溶出特性を持つ導電性物質を探す取り組みとして、 従来
注目されていなかった導電物質そのもののイオン溶出性について検 討した。
具体的には、 特開 2 0 0 3— 1 2 3 7 8 3号公報に開示された導 電性物質である TiN、 TiC、 CrC、 TaC、 B 、 SiC、 WC、 TiN、 ZrN、 Cr N、 HfC、 および特開 2 0 0 1 — 3 5 7 8 6 2号公報、 および特開 2 0 0 3— 1 9 3 2 0 6号公報に開示された各種金属炭化物および金 属硼化物、 および TaNと Auの粉末をそれぞれ 10g秤量し、 以下の劣化 試験に供した。
すなわち、 固体高分子型燃料電池内で固体高分子膜から分解して 汚染するといわれる硫酸酸性腐食環境をシミュレートするため、 P H2の硫酸水溶液 3 0 0 mL中に前記の導電性粉末を分散し、 1 4 日 間、 8 0 °Cで、 酸素または水素をパブリングしながら放置した後、 静置して得た上澄み液中の金属イオン溶出量を分析した。
また、 この試験に併行して、 直径 30mm厚さ 4匪の高耐食ステン レス鋼サンプル上に、 各種導電物質を前記の被覆超硬粒子ブラス ト 法により打ち込み、 粉末のイオン溶出試験と同じ試験水溶液にて同 様の劣化試験を行い、 その前後の対カーボン接触抵抗値の変化を測 定した。
これらのスク リーニング試験によって得られた結果は、 以下のと おりである。
面圧 1 M P aにて対カーボンペーパー接触抵抗値がはじめから 1 5 ηιΩ c m2以下で、 劣化試験後にも同様な低接触抵抗値が保持さ れ、 かつ導電物質からのメタルイオン溶出量が 2 O p p m以下と見 出されたのは、 WC、 WB、 TaNおよび Auである。
そのなかで、 イオン溶出量が検出限界の 0. 0 5 p p m以下とな つた物質は TaNと Auである。
この様に、 従来注目されていなかった導電物質そのもののイオン
溶出性について本願では検討し、 従来からの Auなど貴金属 (特開 2 0 0 1 — 2 5 0 5 6 5号公報、 特開 2 0 0 1 — 6 7 1 3号公報参照 ) に加え、 WC、 W'Bおよび TaNの 3種の導電性物質を見出した。
そこで、 後述する T a Nを除く と、 A u、 WC、 WBの 3種の導 電性物質の 1種以上を含有する低イオン溶出特性を持つ導電性物質 で超硬粒子を被覆したものを用いることが好ましい。 尚、 メタルセ パレ一夕表面における A u、 WC、 WBの導電性物質の 1種以上の 含有率が 1質量%以上となる様に投射処理されることが好ましく、 残部は不可避的不純物を含む。
但し、 Auを用いるのは、 前述のとおり、 価格面および資源量の面 から見ると、 望ましくないため、 WC、 WBを主体的に用いること が推奨される。
次に、 T a Nを含有する低イオン溶出性導電性物質について説明 する。
現時点での固体高分子型燃料電池では低 P H化が起こり うるのが 実情である。 そこで、 さらにイオン溶出量を下げるための取り組み として、 前記のスクリーニング試験でイオン溶出量が検出限界以下 であった T a Nを含有させることに着目し、 TaN粉末と WC粉末、 お よび TaN粉末と WB粉末を種々の割合で混合し、 再度前記同様のィォ ン溶出試験を行った。
すると、 TaN力 0. 0 2質量%以上混入した WCおよび WBにおいて 、 Wイオンの溶出量に大幅な低下が見られ、 TaN比率の高まりにつれ 、 ますますィオン溶出量が低下していく傾向が図 2の通り見出され た。
従って、 0. 0 2質量%以上の T a Nと、 W Cまたは W Bの 1種 以上が混合された低イオン溶出特性を持つ導電性物質で、 超硬粒子 に被覆したものを用いることが好ましい。
また、 劣化試験後の Wイオン溶出量から見ると、 図 2に示すとお り、 WCの方が WBに比べ優位である。 価格面では WCに比べ WBは高価で ある。 TaNはそれ'自体で優れた低イオン溶出特性と低接触抵抗性能 を両立するので混合せずに用いるのが最も高性能となるが、 価格的 に WCに比べ高価である。 よって低コス ト化のためには、 最も安価な WC比率を増やすのが良い。
なお、 W C、 W Bの導電性'物質の 1種以上の含有率は、 コス トと の対比により適宜決定すれば良い。 イオン溶出量を抑制するという 観点からは W C、 W Bの含有率は 0質量%が理想的であるが、 低コ ス ト化を担保するためには W C、 または W Bの 1種以上の含有率は 1 0質量%以上であることが推奨される。
電子顕微鏡観察の結果、 上記スクリーニング試験に供したいずれ の炭素化物、 窒化物、 および硼化物においても酸性水溶液中に入れ るとその表面からわずかにイオン溶出するが、 WCや WBにおいては粉 末表面に非化学量論組成の導電性酸化物が再析出してイオン溶出量 を低下させることが解明された。
また、 TaNを WCまたは WB粉末に添加するとィオン溶出量がさらに 低下するのは、 溶解度がさらに低い Taイオンが Wイオンと混ざり、 複合導電性酸化物が形成され、 その溶解度をさらに低下させたため と考えている。
なお、 前記のとおり、 当該導電性微粉末にも不純物が含まれうる ため、 不可避的不純物の混在は許容されるものとした。
但し、 不純物元素混入レベルは、 電子線エネルギー分光分析法に よる検出限界以下のレベルであることが望ましい。
ここで、 低イオン溶出性導電性物質としては、 酸性水溶液中で多 くても 1個の O H基しか有しない金属アクアイオンを形成する金属 元素の導電性物質であることが好ましく、 特に、 安定供給が可能で
ある Vの化合物として、 V B、 V S C 7、 V Nのうち 1種または 2種 以上からなることが好ましい。
これらの導電性物質については、 さらに導電性物質の平均粒径、 および、 導電性物 の表層に形成された金属酸化物のこの物質粒子 全体に対する比率を規定することが好ましい。 以下、 これらについ て詳細に説明する。
本発明者らは、 従来技術の確認試験などから、 従来から知られる ステンレス鋼またはチタン表層部に導電性物質粒子を固着'したセパ レー夕は、 固体高分子型燃料電池の使用経過とともに、 セパレー夕 表面とカーボンペーパーとの接触抵抗が大きくなり、 これに起因し て燃料電池の起電力が低下することを確認した。 そして、 この起電 力の低下原因は、 燃料電池の使用時に、 ステンレス製セパレ一夕表 層部またはチタン製セパレー夕表層部またはチタン合金製セパレー 夕表層部に固着した導電性物質粒子がイオン溶出した後、 導電性物 質粒子の表面に酸化物を形成することにより、 導電性物質粒子の導 電性が劣化するためであることが判明した。
また、 本発明者らは、 多数の種類の異なる導電性物質粒子を用い て、 固体高分子型燃料電池の使用環境、 つまり、 1 5 0 °C以下の温 度、 強酸性水溶液の環境下において、 導電性物質が溶出し、 酸化物 を形成する機構について、 鋭意検討した。 その結果、 導電性物質が 溶出後、 金属アクアイオン同士が脱水縮合反応する場合に酸化物が 形成されること、 また、 導電性物質を構成する金属元素およびその 化学形態によって安定して存在する金属アクアイオンの形態が異な り、 特に 2個以上の O H基を有する金属アクアイオンを形成しやす い導電性物質を用いた場合に、 前記金属アクアイオン同士の脱水縮 合反応が顕著となることが判った。
さらに、 本発明者らは、 量子化学計算を用いて、 p H 2 、 8 0 °C
における強酸性水溶液において安定して存在し得る金属アクアィォ ンの形態について検討した。 本計算では、 金属イオンのへキサァク ァ錯体から最大 6個までのプロ トンが解離する際の自由エネルギー 変化△ Gを、 Gauss ian03プログラムの mPWlPW91密度汎関数法と SDD 基底関数、 溶媒和を考慮するために COSMO法を用いて算出した。 さ らに、 算出された AGから、 pH2、 80°Cにおける金属アクア錯体のプ 口 トン解離反応の平衡定数 算出し、 プロ トン解離によって生じる 様々な化学種の存在比率を求めた。 その結果の一例を表 1 に示す。
各種水和金属イオンの存在比率 (%) pH2、 80°C
表 1 に示される Vは、 T i 、 N b、 T a、 C r、 M o、 Wなどの 他の遷移金属とは異なり、 固体高分子型燃料電池の使用環境下の酸 性水溶液中において、 安定に存在する金属アクアイオン中に OH基 は存在しにくいことが明らかになった。
図 3 ( a ) 、 図 3 ( b ) は、 ( a ) 1個以下の O H基を有する金 属アクアイオンを形成する導電性物質粒子 .(V B、 V8 C7、 VNな ど) 、 ( b ) 2個以上の O H基を有する金属アクアイオンを形成す る導電性物質粒子 (T i C、 T i Nなど) を用いてそれぞれ表面に
固着したステンレス鋼製セパレ一夕またはチタン製セパレ一夕を固 体高分子型燃料電池の使用環境下で使用した場合の模式図である。
図 3 ( a ) に示すように、 V B、 V8 C7、 VNなどからなる導電 性物質は、 酸性水溶液中において〇H基を有しない金属 (V) ァク アイオンを形成するか、 または、 多くても 1個の〇H基を有する金 属 (V) アクアイオンを形成する。 このため、 金属 (V) アクアィ オン同士の脱水縮合反応は起きず、 金属 (V) 酸化物は生成されな い。
一方、 図 3 ( b ) に示すように、 T i C、 T i Nなどからなる導 電性物質は、 酸性水溶液中において 2個以上の〇H基を有する金属 (T i ) アクアイオンを形成するため、 金属 (T i ) アクアイオン 同士の脱水縮合反応により、 金属 (T i ) 酸化物が生成される。 以上の知見から、 固体高分子型燃料電池用のステンレス鋼製セパ レ一夕、 チタンまたはチタン合金製セパレー夕において、 その表層 部に固着した導電性物'質粒子を構成する金属元素として、 例えば、 Vなどのように、 燃料電池使用時の腐食環境を想定した酸性水溶液 中において、 安定して形成される金属アクアィオン.が多くても 1個 の OH基しか有しないような金属を選択することにより、 燃料電池 使用時の導電性物質粒子表面における金属酸化物の生成を防止し、 起電力の劣化を抑制することが可能となる。
ここで、 上記 V B、 V8 C7、 VNの 1種以上からなる導電性物質 粒子の平均粒径が 0. 0 1 ミクロン未満では、 導電性物質粒子によ るセパレー夕表面の接触抵抗の低下効果が十分に得られず、 固体高 分子型燃料電池用セパレ一夕として目的とする低接触抵抗が得られ ない。
一方、 導電性物質粒子の平均粒径が 2 0 を超えると、 後述す る、 導電性物質粒子を超硬コア粒子表面に被覆した投射粒子を用い
てステンレス鋼表層部、 チタン表層部またはチタン合金表層部のブ ラス ト処理を行う際に、 ステンレス鋼表層部、 チタン表層部または チタン合金表層部への導電性物質粒子の埋め込み深さが小さくなり 、 結果的に、 表層部中の導電性物質粒子の密度が低下し、 ステンレ ス鋼基材、 チタン基材またはチタン合金基材への所望の低接触抵抗 が得られなくなる。 但し、 プラス ト処理以外の方法を用いて導電性 物質粒子をステンレス鋼表層'部またはチタン表層部またはチタン合 金表層部に固着する場合には、 ステンレス鋼表面またはチタン表面 およびチタン合金表面の接触抵抗の点から導電性物質粒子の平均粒 径の上限を規定する必要はない。
上記理由から、 上記導電性物質粒子の平均粒径は、 0 . 0 1 〜 2 0 X mと^—る。
またこれらの導電性物質粒子の表層に形成された金属酸化物は、 導電性物質粒子によるセパレー夕表面の接触抵抗の低下作用を阻害 する。 導電性物質粒子の表層に形成された金属酸化物の粒子全体に 対する質量比率が 3 0 %を超えると、 上記導電性物質粒子の作用が 顕著に阻害され、 結果的に固体高分子型燃料電池用セパレータとし て目的とする低接触抵抗が得られない。
上記理由から、 これらの導電性物質粒子の表層に形成された金属 酸化物の粒子全体に対する質量比率は、 3 0 %以下とした。
なお、 これらの導電性物質粒子の表層に形成された金属酸化物の 粒子全体に対する質量比率は、 例えば、 次のようにして測定できる 。 先ず、 透過型電子顕微鏡を用いてステンレス鋼表層部、 チタン表 層部またはチタン合金表層部に存在する導電性物質粒子の断面を観 察し、 導電性物質粒子の全体および表層部の面積率を測定し、 次に 、 光電子分光分析法を用いて導電性物質粒子の表層部分子、 表層部 中に存在する金属酸化物分子を定量することによって、 導電性物質
粒子全体に対する表層部中の金属酸化物の質量比率を求めることが できる。
また 導電性物質粒子の表層に形成された金属酸化物の粒子全体 に対する質量比率の調整は、 後述するブラス ト処理後の酸洗処理に より可能である。
本発明においては、 ステンレス鋼、 チタンまたはチタン合金の板 の表面に 超硬コア粒子に低'イオン溶出性物質を被覆した被覆超硬 粒子を投射してセパレー夕とする。
次に 硬コア粒子は、 超硬質物質の粉末を焼結により固めたも のであるが 、 比重が大きいため低速 (低圧) 投射が可能であり、 か つ衝突時の耐久性が良好であるという点で、 W Cを主成分とするも のを用いることが好ましい。 また、 通常は、 焼結バインダーとして C o C r N i F eの 1種以上が合計 1質量%以上含まれて いるものを用いているため、 超硬コア粒子に、 C o C r N i
F eの 1種以上が合計' 1質量%以上含まれている。 また、 その上限 は特に規定されるものではないが、 5 0質量%程度が例示できる。
さらに W Cを主成分とするというのは、 W Cを 5 0質量%以上 含有する とを意味している。
また の超硬コア粒子の表面には、 焼結バインダーとして、 Cu または Snの一種以上を合計 1質量%以上のものを用いて、 導電物性 物質微粉末が軽焼結されて被覆されているため、 超硬コア粒子の被 覆層には、 低イオン溶出性導電性物質以外に、 C u S nの 1種以 上が合計 1質量%以上含まれている。 これについても、 上限は特に 規定されるものではないが、 2 0質量%程度が例示できる。
なお、 本発明の固体高分子型燃料電池用セパレー夕において、 セ パレー夕表層部に固着する導電性物質粒子の量は特に限定する必要 はないが、 上述した導電性物質粒子の作用効果を十分に発揮させ、
セパレー夕表面の接触抵抗をより低減させるためには、 セパレー夕 表層部における導電性物質粒子の単位面積当たりの個数、 つまり、 密度を 1 X I 08個/ c m2以上、 さらに望ましくは 1 X I 0 I Q個ノ c m2以上とするのがより好ましい。
次に、 上記の固体高分子型燃料電池用セパレ一夕を製造するため の製造方法を以下に説明する。
本発明では、 ステンレスお、 チタンまたはチタシ合金を成形加工 した後、 その表層部に低イオン溶出性導電性物質を固着する方法と して、 ステンレス鋼表層部、 チタン表層部またはチタン合金表層部 にブラス ト処理を施すことにより行う。
ブラス ト処理における投射粒子は、 平均粒径 2 0 /im以下の前述 の低イオン溶出性導電性物質、 但し、 このうち V B、 V8 C7、 VN の 1種のように酸性水溶液中で多くても 1個の〇 H基しか有しない 金属アクアイオンを形成する金属元素からなる導電性物質粒子の場 合は、 0. 0 1〜 2 0 mを用い、 この導電性物質粒子を超硬コア 粒子表面に被覆した投射粒子とする。
また、 上記導電性物質粒子の平均粒径の下限は、 特に問わないが 、 低イオン溶出性導電物質が V B、 V8 C7、 VNの 1種である場合 は、 先に述べた理由から、 0. 0 1 / mとする。 一方、 導電性物質 粒子の平均粒径の上限は、 平均粒径が 2 0 mを超えると、 導電性 物質粒子を超硬コア粒子表面に被覆した投射粒子を用いてステンレ ス鋼表層部、 チタン表層部またはチタン合金表層部のブラス ト処理 を行う際に、 ステンレス鋼表層部またはチタン表層部への導電性物 質粒子の埋め込み深さが小さくなり、 結果的に、 表層部中の導電性 物質粒子の密度が低下し、 ステンレス鋼基材またはチタン基材への 所望の低接触抵抗が得られなくなるため、 2 0 とする。
また、 上記導電性物質粒子を超硬コア粒子表面に被覆した投射粒
子において、 超硬コア粒子の平均粒子は、 得られたセパレー夕表面 の接触抵抗に影響するものではないから、 接触抵抗の点からは限定 する必要はない。'
しかし、 超硬コア粒子の平均粒子が 2 0 0 2 m以上となると、 ブ ラス ト処理において投射圧力を調整しても平坦なセパレー夕形状を 得ることが困難となるため、 固体高分子型燃料電池用セパレー夕と して要求されるスタック化が可能な平坦性を安定して確保するため に、 超硬コア粒子の平均粒径は 2 0 0 m未満とするのが好ましい 。 さらに望ましくは超硬コア粒子の平均粒径を Ι Ο Ο μ πι以下とす るのが良い。
なお、 超硬コア粒子の硬度および材質は、 通常のブラス ト処理に 用いられている硬度および材質で良く、 例えば、 炭化タングステン などがあげられる。 また、 上記導電性物質粒子を超硬コア粒子表面 に被覆した投射粒子は、 導電性物質粒子に対して、 例えば、 C u 、 S nのいずれか 1種または 2種からなるバインダーを 1質量%以上 添加、 混合した後、 これを超硬コア粒子表面に塗布する方法を用い て製造することができる。
また、 上記ブラス ト処理における投射圧力 (衝突エネルギー) は 、 得られたセパレー夕表面の接触抵抗に影響するものではないから 、 接触抵抗の点からは限定する必要はない。
しかし、 投射圧力が 0 . 4 M P a超となると、 ステンレス鋼表層 部、 チタンまたはチタン合金表層部の歪量が増加し、 セパレー夕形 状の平坦性が劣化し、 安定して良好な平坦性を確保することが難し くなるため、 投射圧力の上限は 0 . 4 M P a以下に制限するのが好 ましい。 より好ましくは、 投射圧力を 0 . 3 M P a以下に制限する のが良い。 一方、 ブラス ト処理における投射圧力の下限は、 通常の ブラス ト処理の投射圧力範囲であれば良く、 特に限定する必要はな
い。 ブラス ト処理におけるセパレ一夕の形状調整などの作業性を鑑 みると、 望ましくは 0 . O l M P a以上が良い。
本発明では、 ステンレス鋼表層部、 チタンまたはチタン合金表層 部に導電性物質粒子を固着する方法として、 上記ブラス ト処理方法 を適用する。 本ブラス ト処理により、 上述したようなセパレ一夕表 面の接触抵抗を低減できる効果が得られる他、 ステンレス鋼または チタンのロール加工またはプレス加工などの成形加工を行う際に生 じた C方向 (圧延方向に垂直な方向) のそり とひねりが低減され、 セパレー夕形状の平坦性を向上することができる。
ここで、 前述した低イオン溶出性導電性物質が、 V N、 V 8 C 7、 V Bの 1種以上の場合は、 上述の理由から、 セパレー夕の表層部に 固着させる導電性物質粒子の表層に形成された金属酸化物の粒子全 体に対する質量比率を 3 0 %以下とするために、 上述したブラス ト 処理後に、 酸洗処理を行なう。 酸洗処理の条件は、 p Hが 2〜 5、 温度が 4 0〜 8 0 °Cとする必要がある。
酸洗処理時の p Hが 5 を超える条件では、 導電性物質粒子の表層 に形成された金属酸化物を除去する作用が十分でなく、 一方、 p H が 2未満の条件では、 金属酸化物以外の導電性物質粒子自体が溶出 して減少し、 導電性物質粒子によるセパレー夕表面の接触抵抗の低 減効果が低下するため、 酸洗処理時の p Hを 2〜 5 とした。
また、 酸洗処理時の温度が 4 0 °C未満の条件では、 導電性物質粒 子の表層に形成された金属酸化物を除去する作用が十分でなく、 一 方、 温度が 8 0 °Cを超える条件では、 金属酸化物以外の導電性物質 粒子自体が溶出して減少し、 導電性物質粒子によるセパレ一夕表面 の接触抵抗の低減効果が低下するため、 酸洗処理時の温度を 4 0〜 8 0 °Cとした。
また、 酸洗処理の時間は、 特に限定するものではないが、 酸洗処
理の作業効率の点から、 1時間以上とするのが好ましい。 また、 酸 洗処理に使用する酸洗溶液も特に限定するものではなく、 例えば、 硫酸溶液を用いて酸洗槽にブラス ト処理後のセパレー夕を浸漬する ことでよい。
セパレー夕表面のブラス ト処理後に、 酸洗処理をすることにより 、 上述した導電性物質粒子表層に形成された金属酸化物が除去され 、 導電性物質粒子の導電性が'向上し、 目的とするセパレ一夕表面の 低接触抵抗を確保することができる。 また、 この効果に加えて、 ブ ラス 卜処理によって導電性粒子表面に導入された欠陥を除去し、 燃 料電池使用時の導電性粒子のイオン溶出を抑制する効果も得られる 以上説明した本発明の固体高分子型燃料電池用セパレー夕の製造 方法により、 上述した従来のセパレー夕に比べて接触抵抗が小さく 、 かつ固体高分子型燃料電池の使用環境における低接触抵抗の劣化 が抑制できる固体高分子型燃料電池用セパレー夕を得ることが可能 となる。
なお、 本発明の固体高分子型燃料電池用セパレー夕の製造方法に おいて、 上記ブラスト処理の前に行うステンレス鋼、 チタンまたは チタン合金の成形加工は特に限定するものではなく、 例えば、 ロー ル加工またはプレス加工などにより、 セパレー夕の基材となるステ ンレス鋼板表面、 チタン表面またはチタン合金における所定位置に 所定形状、 所定サイズの溝を形成することにより、 図 2に示すよう な水素ガス 8または空気 9および水の流路を有するセパレー夕部材 とすることができる。
この際、 セパレー夕の基材として用いるステンレス鋼板、 チタン またはチタン合金板の厚さは限定されるものではないが、 固定燃料 電池用のセパレ一夕を製造する際の実用的な鋼板の厚さは 0 . 1〜
0. 2 mm程度のものが用いられている。
また、 上述したように、 一般に固体高分子型燃料電池の 1個当た りの出力電圧は、' 約 1 V程度と低いため、 実用上、 所望出力を得る ために複数の燃料電池を積層したスタック型燃料電池として用いら れることが多い。 このため、 固体高分子型燃料電池用のステンレス 鋼板またはチタン板を成形して得られたセパレー夕は反りや残留歪 が少ない平坦性を有するものであることが要求される。 上記ロール 加工またはプレス加工などの成形加工では、 成形加工後にステンレ ス鋼板またはチタン板に主として L方向 (圧延方向) の反りが生じ て、 セパレ一夕形状の平坦性が失われることも生じる。 このような 場合には、 上記成形加工後にセパレ一夕に生じた L方向のそりは、 セパレ一夕の四周平坦部の内、 L方向に沿った 2辺を圧延または強 圧下する矯正を施すことによって解消できる。 以下、 この形状につ いて説明する。
なお、 L方向 (圧 ®方向) とは、 ステンレス鋼、 チタン又はチタ ン合金の原板の圧延製造における圧延方向を意味する。 これらの原 板をセパレ一夕としてロールで成形加工する場合の圧延方向は、 通 常、 原板の圧延方向と同一にされる。 C方向とは上記 L方向と直角 な方向である。
固体高分子型メタルセパレー夕の低コス ト · 髙効率な連続成形加 ェ技術として、 例えば特開 2 0 0 2— 3 1 3 3 5 4号公報、 特開 2 0 0 2 — 1 9 0 3 0 5号公報、 特開 2 0 0 2— 7 5 4 0 1号公報、 特開 2 0 0 4— 2 2 0 9 0 8号公報、 特開 2 0 0 4— 2 6 5 8 5 5 号公報に開示されたロール加工技術を応用した連続的成形加工法が 発明され、 特開 2 0 0 2 - 2 5 5 8 6号公報に例示されるバイポー ラ一型メタルセパレ一夕が、 安定的に製造可能であることは実証さ れている。
そこで、 加工段階でセパレ一夕に生じうる圧延方向 (以降、 L方 向と記載することがある。 ) のそりについては、 これまで種々の検 討を行ったところ、 ロールまたはプレス成形時に、 四周平坦部のう ち L方向に沿った 2辺を圧延または強圧下して矯正すると解消する 傾向が認められた。 特開 2 0 0 4 - 2 2 0 9 0 8号公報に記述され た送りロールを用いて圧延すると効果的に L方向のそりが解消でき る。
また、 本発明者は、 ブラス ト法による導電性表面処理を行うと、 幅方向 (以降、 C方向と記載することがある。 ) のそりやひねりを 制御しやすいことを見出した。
そこで、 実際に厚さ 0 . 1〜 0 . 2 m m程度極薄メタルから構成 されるステンレス鋼、 チタンおよびチタン合金を用いてメタルセパ レ一夕の成形加工をした後、 内部応力のバランス (分散状態) を考 慮することなく導電性物質を表面の一部または全部にプラス ト法よ つて機械的に埋め込もうとしたところ、 内部応力バランスが崩れて 大きな反りやひねりが発生してしまうという問題に直面した。
従って、 より良好なフラッ ト化を達成するには、 メタルセパレ一 夕の成形加工をした後のブラス ト法による処理において、 セパレ一 夕の内部応力のバランス (分散状態) を適切に制御する必要がある そこで、 本発明者は、 加工とブラス ト法の組み合わせで、 更なる 良好なフラッ ト化の実現を達成すべく取り組みを行った。
その結果、 ブラス 卜法による処理を行う前 (通常は成形加工後) のメタルセパレ一夕の形状を計測し、 そり全体の凹部側の波状加工 部の突起部を、 その裏面よりも強くあるいは長くブラス ト処理を実 施することで、 セパレ一夕の内部応力のバランス (分散状態) を制 御でき、 より良好なフラッ ト化を達成できることを見出した。
上記の通り、 イオン溶出が極小な導電性物質を超硬粒子に被覆し た粒子を用いて、 低い投射圧力でセパレー夕表面に衝突させること で、 その表面にイオン溶出が極小な導電性物質が埋め込まれ、 かつ 形状がフラッ トなメタルセパレー夕を得ることができる。
そこで、 メタルセパレ一夕のブラス ト処理された部分の表面は、 凹凸が生じているが、 本発明のセパレ一夕は、 フラッ トな形状とす るためのブラス ト処理を行った際の、 メタルセパレー夕の表面の形 状を規定した。
具体的には、 算術平均粗さ ( R a ) が 0 . 5 5 . 0 u rn , 十点 平均粗さ ( R z ) カ 3 2 0 i m、 凹凸の平均間隔 ( S m ) が 3 0 0 以下を満足する表面形状である。
これは、 R a値や R z値が下限値未満の場合、 ブラス ト処理が充 分ではない とを意味しており、 セパレ ―夕の内部応力の分布を制 御できておらず、 形状矯正を良好に実施できない。
また、 R a値や R z '値が上限値を超える場合、 ブラス ト処理が過 剰であることを意味しており、 内部応力として過剰に加わっている ため、 逆に 新たな反りやひねりが発生す •3 。
さらに、 S m値力 3 0 0 を超えるォ曰合、 局所に内部応力が集 中してしま ていることを示し、 局所の変形がセパレ一夕機能とし て許容できない。
なあ、 れら算術平均粗さ (R a ) 十点平均粗さ ( R z ) およ び凹凸の平均間隔 ( S m ) は、 J I S B 0 6 0 1 に規定された 方法で測定することができる。
また、 本発明のメタルセパレー夕はフラッ トな形状のものが得ら れている。 しかし、 メタルセパレー夕のそりおよびひねりの評価指 標はまだ一般化された規格がない。 そこで図 4に独自に定義した各 パラメータを用い、 式 < 1 >〜式 < 7〉にて定義したそり率 (wa rp
ratio) およびひねり率(twist rat io)を創出して評価するものと した。
すなわち、 下に凸なそり、 上に凸なそり、 S字状のそりなど、 種 々の形態も存在するため、 いずれにおいてもそり高さの最大値の絶 対値をとることで正の実数値でそりの程度を指標化するものとした また、 メタルセパレ一夕の四隅の各点 0、 C, L、 Xの設定方法は、 端部からの距離設定に一貫したルールがあればよいものとするが、 ここでは目安として四辺から 1 0 m m内側に引いた直線の交点とす ることを標準とした。
一貫したルールの例としては、 例えば長方形または正方形のセパ レー夕の対角線上に前記 4点を、 四隅から対角線全長の 2 0 %以内 で一定の長さとなるように設ける、 などがある。 円形や楕円の場合 には、 その形状に応じた特徴的な点を設けるルールを定めれば良い 本発明のセパレー夕は、 下記に示す式 < 1 >〜式 < 7 >にて定義 したそり率 (warp ratio) およびひねり率を算出して得られた WL! 、 WL 2、 Wcい Wc 2、 Wx c TXLおよび Txcの各値を 0. 1以下と規定し た。
手前側 L方向そり率 : < 1 > 奥側 L方向そり率 : < 2 >
HC1
左側 C方向そり率 : LC < 3 > 右側 C方向そり率 < 4 >
L方向長さ基準ひねり率 : し
< 6 > c方向長さ基準ひねり率 : TXC < 7 > ここで、 上記の各値を 0. 1以下と規定したのは、 その程度のそ りやひねりがあっても、 メタルセパレ一夕を用いた燃料電池ス夕ッ クが形成可能な許容範囲であることによる。
これらの各値がゼロに近づくほど、 フラッ ト化が良好な、 ス夕ッ クを組み上げやすいメタルセパレ一夕であると評価できる。 また、 すべてゼロであれば、 理想的な形状となる。
実際に、 WLい WL2、 WC WC2, Wxい TXLおよび Txeの各値がいず れも 0. 1以下程度であれば、 1 0段組み程度の比較的小さな燃料 電池スタックを問題なく構築することができた。
さらに、 セパレー夕表面にィオン溶出が極小な導電性物質が埋め 込まれていることから、 対カーボンペーパー接触抵抗値が面圧 1 M P aにおいて 1 5 m Ω cm2以下となっている。
低イオン溶出性導電性物質としては、 Au、 WC、 または WBの 1種以上を含有し、 残部が不可避的不純物からなるものや、 または T aNと、 WCまたは WBの 1種以上が混合され、 残部が不可避的 不純物からなるものが好ましい。
また、 超硬コア粒子と低イオン溶出性導電性物質のバインダ一と して用いたものが、 不可避的不純物として、 C o、 C r、 N i、 F e C u、 S nの 1種以上が、 固体高分子型燃料電池用セパレー夕 表面に含まれて残存している。
これらの不可避的不純物は、 後工程として酸洗処理を行えば、 セ パレー夕表面から除去したり、 あるいは低減したりすることができ る。 '
メタルセパレー夕の、 そり · ひねりを評価する方法としては、 ブ ラス ト法による表面処理後のメタルセパレー夕を金属製定盤上に静 置して、 3次元形状をレーザー変位計により測定し、 デジタル化さ れた三次元変位データをコンピュータ等による計算処理によって、 上記に示した式ぐ 1〉〜式ぐ 7〉の各値に換算し、 この各値により セパレー夕のそり · ひねりを許容できる範囲かどうかを判断するこ とが推奨される。
実施例
以下、 実施例により、 本発明を詳細に説明する。
(実施例 ( 1 ) 〜実施例 (2 0) )
前記の発明手段により、 1 0 O mm角の領域にガス流路となる凹 凸加工を施した四周に平坦部を有するステンレス、 チタンまたはチ タン合金製メタルセパレー夕に処理を施した。 いずれの素材も板厚 は 0. 1 mm程度できわめて薄く、 比較的弱い力でも容易に変形を 加わる。 ステンレスセパレー夕はロール加工法で成形し、 チタンお よびチタン合金製セパレ一夕はプレス成形法により成形した。
表 2〜表 2 1 (実施例 ( 1 ) 〜実施例 ( 2 0 ) ) には比較品も含 め、 本願発明でなしたブラス ト法による導電処理を施したフラッ ト 化セパレー夕発明品の例をリス トした。 ちなみに、 本発明品での不 純物充素混入レベルは、 すべて電子線エネルギー分光分析法による 検出限界以下のレベルであった。
これらの表 2〜表 2 1に示すとおり、 本発明の N o . 4〜 5 9、 N o . 6 3〜 6 6、 N o . 7 0〜 8 9の被覆超硬粒子ブラス ト法を 用いた固体高分子型燃料電池用ステンレス鋼、 チタンおよびチタン
合金製セパレー夕は、 各そり率、 各ひねり率ともに 0 . 1以下とな つていることから、 フラッ ト化セパレ一夕が製作できていることが わかる。 ·
また、 表面の粗さ規定として、 セパレー夕の各面ごとに複数 ( 9 点程度を目安) の任意の点において、 すべての点が表面の算術平均 粗さ ( R a ) 力 0 . 5 〜 5 . 0 m、 十点平均粗さ ( R z ) カ 3 〜 2 0 m、 凹凸の平均間隔 ( S m ) が 3 0 0 x m以下を満足してい るものを 「良い」 、 1点でもこの範囲をはずれているものを 「悪い 」 と評価し、 表 1〜表 2 0には〇 : 良い、 X : 悪い、 として示して いる。 これらの表に示すとおり、 本発明のセパレ一夕はすべて、 粗 さ規定を満足できている。
さらに対炭素接触抵抗値 (面圧 1 M P aにおける対カーボンべ一 パ一接触抵抗値) も 1 5 m Q cni2以下を満足できていることがわか る。
これに対し、 比較品の No. 1 〜 2 (ステンレス) 、 No. 6 0 〜 6 1 (チタン) 、 No. 6 7 〜 6 8 (チタン合金) は、 各そり率、 各ひね り率ともに 0 . 1 を大きく超えていることから、 フラッ ト化セパレ —夕が製作できていないことがわかる。
また、 比較品の No. 3 、 No. 6 2 、 No. 6 9は、 いずれも金メッキ 処理品であり、 本発明の様なブラス ト法を用いてメタルセパレ一夕 の表面に低イオン溶出性導電性物質が埋め込まれたものではない。 この比較品の No. 3 、 No. 6 2 、 No. 6 9は、 金メッキ処理品である ためコス トが大きくなり、 本発明の様な低コス ト化は実現できない さらに、 比較品の No. 1 〜 3 (ステンレス) 、 No. 6 0 〜 6 2 (チ タン) 、 No. 6 7 〜 6 9 (チタン合金) のいずれも、 上記の粗さ規 定を満足できていない。
なお、 参考までに、 表 2〜表 2 1 には導電性物質の耐イオン溶出 性とコス トについて、 定性的な評価も併せて記載した。 ◎ : 非常に 良い、 〇 ·· 良い、 '△普通、 X : 悪い、 をそれぞれ示す。
耐イオン溶出性のおおまかな目安として、 前記のスクリーニング 試験の結果、 メタルイオン溶出量が 0. 0 5 p p m以下のものを 「 非常に良い」 、 2 0 p p m以下のものを 「良い」 としている。 また 、 コス トについては、 通常の価格を相対的に考慮して、 定性的な評 価を行ったものである。
これら一覧から、 本発明のフラッ ト化セパレー夕の構成として低 コス ト化と耐久性を両立しそうな組み合わせが示唆的に理解できる また図 5の写真には、 従来の平均粒径 2 0 0 imの超硬粒子であ る WCを 0. 5 MPaにて投射した場合に生じた製品の変形状況の典型 例 ( a ) と、 本願発明の方法により平均粒径 1 0 0 nの超硬粒子で ある WCを、 表面部は' 0. 0 6〜 0. 0 8 MPa、 裏面部は、 0. 0 4 MPaで投射して試作したフラッ ト化セパレー夕製品の変形状況の 例 ( b ) を対比して示した。
ここでは 1 0 0 mm角の領域にガス流路となる凹凸加工を施した 四周に平坦部を有するステンレスの例を示したが、 これ以外の形状 にも適用が可能であり、 材料もステンレス鋼、 チタン.、 チタン合金 であればいずれにも適用が可能である。
また、 市販の MEAを用いて燃料電池を構成し、 長期の発電実証試 験を行い、 素材には高耐食性ステンレス鋼およびチタンの 2種類を 用い、 導電処理後には 3 0質量%硝酸で不動態化してメタル表面を 高雨食化し、 発電試験に供した。
発電電圧は 0. 6 Vとし、 1 0 0 0時間経過した時点において、 いずれの発明品においても電流値の顕著な低下は発生しなかった。
実施例
表 3. 実施例 ( 2 )
表 4 · 実施例 ( 3 )
表 5· 実施例 ( 4 )
表 7 · 実施例 ( 6 )
表 9 実施例 ( 8 )
実施例
表 11 実施例 (10)
表 12 実施例 (11)
(ZD ^ π拏
表 14· 実施例 (13)
表 15 実施例 (14)
表 16 実施例 (15)
表 19 実施例 (18)
表 20 実施例 (19)
表 21 実施例 (20)
(備 考)
* 1 平均粒径 200 ^ mの超硬 WC粒子を 0.5MPaでセパレー夕凹凸加 ェ部に全面打ち込んだ。
* 2 平均粒径 200 mの超硬 WB粒子を 0.5MPaでセパレー夕凹凸加 ェ部に全面打ち込んだ。
* 3 金メッキ処理品
* 4 平均粒径 100 mの超 WC粒子表面に、 平均粒径 以下 の Au粉末を被覆した被覆超硬コア粒子を用い、 0.05— 0.3MPaで、 手 順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。
* 5 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 xm以下 の WC粉末を被覆した被覆超硬コ 7粒子を用い、 0.1— 0.4MPaで、 手 順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。
* 6 平均粒径 の超硬 WC粒子表面に、 平均粒径 20/zm以下 の WB粉末を被覆した被覆超硬コア粒子を用い、 0.005 - 0.3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。
* 7 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20^m以下 の TaN粉末を被覆した被覆超硬コア粒子を用い、 0.1— 0.3MPaで、 手 順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。
* 8 平均粒径 lOO^ mの超硬 WC粒子表面に、 平均粒径 以下 の Au粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以下 の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.005 - 0.2MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して応力緩和投射を部分的に行い、 そり · ひねり を解消した。
* 9 平均粒径 lOO^ mの超硬 WC粒子表面に、 平均粒径 20/im以下 の Au粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以下 の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.007 - 0.4MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して応力緩和投射を部分的に行い、 そり · ひねり を解消した。
* 10 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 i m以下 の Au粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 / m以下 の WC粉末を被覆した被覆超硬コァ粒子を混合し、 0. 1— 0.3MPaで、 手順を踏みながらセパレー夕'凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり · ひねりを 解消した。
* 11 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20/i m以下 の Au粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 i m以下 の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01— 0.3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり , ひねりを 解消した。 '
* 12 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の WC粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以下 の WB粉末を被覆した被覆超硬コア粒子を混合し、 0.03-0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり · ひねり を 解消した。
* 13 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の WC粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 ^ m以下 の WB粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり ' ひねりを 解消した。
* 14 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の WC粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以下 の WB粉末を被覆した被覆超硬コァ粒子を混合し、 0. 1— 0. 3MP aで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり · ひねりを 解消した。
* 15 平均粒径 100 1 mの超^ 粒子表面に、 平均粒径 以下 の WC粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 2 m以下 の WB粉末を被覆した被覆超硬コア粒子を混合し、 0. 0 1— 0. 2MP aで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり , ひねりを 解消した。
* 16 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の WB粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以下 の Au粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0. 3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり · ひねりを 解消した。
* 17 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の WB粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以下 の Au粉末を被覆した被覆超硬コア粒子を混合し、 0. 08— 0. 2MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり , ひねりを 解消した。
* 18 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の WB粉末を被覆した被覆超硬コァ粒子、 および平均粒径 20 ^ m以下 の Au粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0. 3MP aで、
手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり ' ひねりを 解消した。 ■
* 19 平均粒径 ΙΟΟμ mの超硬 WC粒子表面に、 平均粒径 20^m以下 の WB粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以下 の Au粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで、 手順を踏みながらセパレー夕'凹凸加工部に全面打ち込んだ。 さらに 網目状治具を介して応力緩和投射を部分的に行い、 そり ' ひねりを 解消した。
* 20 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 z m以下 の TaN粉末を被覆した被覆超硬コア粒子、. および平均粒径 20^ m以 下の 粉末を被覆した被覆超硬コア粒子を混合し、 0.001-0.3MPa で、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さ らに網目状治具を介して投射し、 そり · ひねりを解消した。
* 21 平均粒径 10G mの超硬 WC粒子表面に、 平均粒径 20/xm以下 の TaN粉末を被覆した被覆超硬コァ粒子、 および平均粒径 20^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0.3MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 22 平均粒径 の超硬 WC粒子表面に、 平均粒径 20^m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 /X m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.35MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 23 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0. で
、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 24 平均粒径 100 2 mの超硬 WC粒子表面に、 平均粒径 20^ m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WC粉末を被覆した被覆超硬コァ粒子を混合し、 0.1— 0.3MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 25 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 ΠΙ以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20/2 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.07-0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 26 平均粒径 100/ mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01 _ 0.3MPaで 、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 27 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 ΠΙ以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで
、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 28 平均粒径 100;timの超硬 WC粒子表面に、 平均粒径 20;^m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以 下の WB粉末を被覆した被覆超硬コア粒子を混合し、 0.02-0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 29 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 / m以下 の TaN粉末を被覆した被覆超硬コァ粒子、 および平均粒径 20 m以 下の WB粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 3Ό 平均粒径 lOO x mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超 ^コア粒子、 および平均粒径 20 m以 下の WCN粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 31 平均粒径 lOO mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 i m以 下の WB粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり , ひねりを解消した。
* 32 平均粒径 100/2 mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末を被覆した被覆超硬コア粒子を混合し、 0.001-0.3MPa で、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さ らに網目状治具を介して投射し、 そり , ひねりを解消した。
* 33 平均粒径 lOOi mの超硬 WC粒子表面に、 平均粒径 20^ πι以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 i m以 下の WB粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねり.を解消した。
* 34 平均粒径 10ひ mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以
下の WCN粉末を被覆した被覆超硬コア粒子を混合し、 0. 0 1— 0. 25MP a で、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さ らに網目状治具を介して投射し、 そり · ひねりを解消した。
* 35 平均粒径 100 X mの超硬 WC粒子表面に、 平均粒径 20 ; m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0. 3MP aで 、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 36 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 05 - 0. 2MP aで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 37 平均粒径 l OO ^ mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 0 1— 0. 2 M P aで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 38 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 /2 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0 . 3 M P aで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。 * 39 平均粒径 100 i mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 i m以 下の WB粉末と WC粉末を被覆した被覆超硬コァ粒子を混合し、 0. 038 一 0. 25MP aで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち
込んだ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消し た。
* 40 平均粒径 lOO x mの超硬 WC粒子表面に、 平均粒径 20 z m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20/1 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0 .3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介じて投射し、 そり ' ひねりを解消した。 * 41 平均粒径 100 zmの超硬 WC粒子表面に、 平均粒径 20/x m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20/2 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1—0 .2MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した。
* 42 平均粒径 100 zmの超硬 WC粒子表面に、 平均粒径 20^m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01— 0.18MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込 んだ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した
* 43 平均粒径 lOO^mの超硬 WC粒子表面に、 平均粒径 20/x m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と 粉末を被覆した被覆超硬コア粒子を混合し、 0.15— 0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した。
* 44 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20^ m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 ^ m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.07- 0.3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん
だ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した。
* 45 平均粒径 100/2 mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1—0 .3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。— さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 46 平均粒径 lOO mの超 l WC粒子表面に、 平均粒径 20^m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 2 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1—0 .4MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。 * 47 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20^m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1—0 .3 M P aで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した。 * 48 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20/im以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 ^ m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1—0 .35MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。. さらに網目状治具を介して投射し、 そり ' ひねりを解消した。 * 49 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20/xm以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0 .3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した。
* 50 平均粒径 lOO mの超硬 WC粒子表面に、 平均粒径 20^ m以下
の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.05— 0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 51 平均粒径 lOO x mの超硬 WC粒子表面に、 平均粒径 20 / m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆じた被覆超硬コア粒子を混合し、 0. 1— 0 .3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 52 平均粒径 lOO^ mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1—0 .3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり , ひねりを解消した。
* 53 平均粒径 100/i mの超硬 WC粒子表面に、 平均粒径 20 z m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.02- 0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 54 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 x m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0 .3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 55 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01—
0.3MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。 * 56 平均粒径 100 zmの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.006 -0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込 んだ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した
* 57 平均粒径 100/2 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と 粉末を被覆した被覆超硬コア粒子を混合し、 0.02- 0.4MPaで、 手順を踏みながらセパレ一タ凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり ' ひねりを解消した。
* 58 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01— 0.3 M P aで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。 * 59 平均粒径 100 zmの超硬 WC粒子表面に、 平均粒径 20 ΠΙ以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WB粉末と WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0 .3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込ん だ。 さらに網目状治具を介して投射し、 そり · ひねりを解消した。
* 60 平均粒径 200 mの超硬 WC粒子を 0.5MPaでセパレー夕凹凸加 ェ部に全面打ち込んだ。
* 61 平均粒径 200 /i mの超硬 WB粒子を 0.5MPaでセパレー夕凹凸加 ェ部に全面打ち込んだ。
* 62 金メッキ処理品
* 63 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の Au粉末を被覆した被覆超硬コア粒子を用い、 0.01— 0.35MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。
* 64 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の C粉末を被覆した被覆超硬コア粒子を用い、 0. 1— 0.3MPaで、 手 順を踏みながらセパレ一夕凹'凸加工部に全面打ち込んだ。
* 65 平均粒径 の超硬 WC粒子表面に、 平均粒径 20^m以下 の WB粉末を被覆した被覆超硬コア粒子を用い、 0.02 - 0.32MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。
* 66 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20/ m以下 の TaN粉末を被覆した被覆超硬コア粒子を用い、 0.07 - 0.38MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。
* 67 平均粒径 200 mの超硬 WC粒子を 0.5MPaでセパレー夕凹凸加 ェ部に全面打ち込んだ'。
* 68 平均粒径 200 x mの超硬 WB粒子を 0.5MPaでセパレ一夕凹凸加 ェ部に全面打ち込んだ。
* 69 金メッキ処理品
* 70 平均粒径 100/xmの超硬 WC粒子表面に、 平均粒径 20^ m以下 の Au粉末を被覆した被覆超硬コア粒子を用い、 0.06 - 0.25MPaで、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。
* 71 平均粒径 100/i mの超硬 WC粒子表面に、 平均粒径 20^ m以下 の WC粉末を被覆した被覆超硬コア粒子を用い、 0. 1— 0.3MPaで、 手 順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。
* 72 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の WB粉末を被覆した被覆超硬コア粒子を用い、 0.008 - 0. IMPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。
* 73 平均粒径 mの超硬 WC粒子表面に、 平均粒径 20 111以下 の TaN粉末を被覆した被覆超硬コア粒子を用い、 0.01— 0.3MPaで、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。
* 74 平均粒径 lOO mの超硬 WC粒子表面に、 平均粒径 20// m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01— 0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 75 平均粒径 lOO mの超硬 WC粒子表面に、 平均粒径 20 zm以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20/2 m以 下の WC粉末を被覆した被覆超硬ユア粒子を混合し、 0.05-0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり , ひねりを解消した。
* 76 平均粒径 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20/2 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0.3MPaで 、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひね.りを解消した。
* 77 平均粒径 100/ mの超硬 WC粒子表面に、 平均粒径 20 z m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.08-0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 78 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 ΠΙ以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.03-0.3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら
に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 79 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 z m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 80 平均粒径 100^ mの超 WC粒子表面に、 平均粒径 ZO^ m以下 の TaN粉末を被覆した被覆超硬コァ粒子、 および平均粒径 20 / m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.01— 0.39MPa で、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さ らに網目状治具を介して投射し、 そり · ひねりを解消した。
* 81 平均粒径 100/i mの超硬 WC粒子表面に、 平均粒径 20/i m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで
、 手順を踏みながらセ'パレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 82 平均粒径 の超硬 WC粒子表面に、 平均粒径 20^ m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 /X m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0.3MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 83 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0.1— 0.3MPaで
、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 84 平均粒径 lOO^mの超硬 WC粒子表面に、 平均粒径 20^ m以下
の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 ^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 018— 0. 3MPa で、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さ らに網目状治具を介して投射し、 そり · ひねりを解消した。
* 85 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 2 m以 下の WC粉末を被覆した被覆超'硬コア粒子を混合し、 0. 05— 0. IMPaで 、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
* 86 平均粒径 の超硬 WC粒子表面に、 平均粒径 20 m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 00 1 - 0. 25MPa で、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さ らに網目状治具を介して投射し、 そり · ひねりを解消した。
* 87 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 / m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 /2 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0. 3MPaで 、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり , ひねりを解消した。
* 88 平均粒径 100 /x niの超硬 WC粒子表面に、 平均粒径 以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 1 m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 1— 0. 3MPaで
、 手順を踏みながらセパレ一夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり ' ひねりを解消した。
* 89 平均粒径 100 mの超硬 WC粒子表面に、 平均粒径 20 ^ m以下 の TaN粉末を被覆した被覆超硬コア粒子、 および平均粒径 20 ^ m以 下の WC粉末を被覆した被覆超硬コア粒子を混合し、 0. 0 1— 0. IMPaで
、 手順を踏みながらセパレー夕凹凸加工部に全面打ち込んだ。 さら に網目状治具を介して投射し、 そり · ひねりを解消した。
(実施例 2 1 )
長さ 5 0 mm、 幅 5 0 mm、 厚さ 0.2mmの高耐食ステンレス鋼お よびチタンを試験材の基材として用いた。 金属アクアイオンで結合 している 0H基が多く とも 1個以下であるような金属元素を成分とす る導電性物質粒子として、 均粒径が 5 z mから 50 mの VB、 V8C7、 V N、 およびそれらの混合物を、 平均粒径が 100 II!〜 300 imである炭 化タングステン製の超硬コア粒子に、 バインダーとして C uを導電 性物質に対して 1重量%混合して被覆し、 上記の試験基材に 0.3MPa 〜0.5MPaの投射圧力で打ち込み、 試験材とした。 また比較のため金 属アクアイオンに 0H基を持つ金属元素を成分とする導電性物質粒子 として TiN、 TiCを同様の条件のブラス ト法によって上記試験基材に 打ち込み、 試験材とした。
上記のブラス ト処理後、 pHを 2〜 6に設定した硫酸中に浸漬処 理により導電性粒子表面の酸化物ゃクラックおよび転位などの欠陥 を除去する清浄化処理を行った。 浸漬温度は 40° (:〜 90° (:、 浸漬時間 は 2時間に設定した。 上記試験材の詳細を表 2〜表 5に示す。
対カーボンペーパー接触抵抗値を、 面圧 10kgf/cm2 (IMPa) にお いて測定した。 測定された接触抵抗の値が 1 5 mQcni2以下である 場合を接触抵抗が合格であるとし、 1 5 mQcm2を超えた場合を接 触抵抗が不合格とした。
また、 セパレ一夕の平坦性は、 図 3に示すように、 ステンレス鋼 製セパレー夕またはチタン製セパレー夕の四隅近傍の所定の位置に 、 原点を 0、 原点 0から原板の圧延方向にある角近傍にし 原点 0から 原板の圧延垂直方向にある角の近傍に C、 原点 0から対角線方向にあ る角近傍に Xを置き、 0L間の線分の長さを LL、 0C線分の長さを LC、
OX間の長さを LXとし、 直線 0Lと加工品の厚さ方向中心面までの最大 ひずみ高さを HL1、 直線 CXとのそれを HL2、 直線 0Cとのそれを HC1、 直線 LXとのそれを HC2、 直線 OXとのそれを HXCとし、 点 Xと 3点 0、 L 、 Cにて構成される平面との距離を HXTとし、 前記の式 < 1 >〜< 7 >で定義されるセパレー夕の平坦性を指標である WLい WL 2, We i、 W C 2、' WXい TXLおよび TXGの値を求めて評価した。 これらの WL I、 WL 2 、 Wcい WC 2、 Wxい TXLおよび' Txcの値のうちいずれの値も 0.1を超え ない場合を平坦性が合格であるとし、 どれか 1つの値でも 0. 1を超 えた場合を平坦性不合格とした。
セパレ一夕基材表面に埋め込んだ VB、 V8C7、 VN化合物粒子からの Vイオン溶出量を以下の試験方法により実施した。 上記試験材を、 pHを 2に調整した硫酸水溶液 3 0 O mL中に 8 0 °Cで、 酸素または 水素をパブリ ングしながら 300時間放置した後、 静置して得た上澄 み液中の Vイオン溶出量を ICP発光分光分析法によって定量した。 V ィオンの硫酸水溶液中への溶出量が 50ppm以下をィオン溶出特性が 合格であるとし、 50ΡΡΠ1超を不合格とした。
上記導電性物質表面における酸化物分子が、 導電性物質粒子表面 の分子に占める割合は、 光電子分光分析法により、 酸化 Vのケミカ ルシフ トしたピークの強度をピーク分離して測定し、 定量化するこ とによって定量評価した。 また、 導電性物質粒子表面酸化物および 転位やクラックなどの欠陥の有無は、 該埋め込み粒子表面部の断面 を透過型電子顕微鏡で確認した。
表 22〜表 25に試験条件とともに、 上記の試験結果を示す。
22
〇 : 合格、 X : 不合格
表 23 (表 22の続き 1 )
〇 : 合格、 X : 不合格
表 24 (表 22の続き 2 ).
〇 : 合格、 X : 不合格
表 22〜表 25において、 試験材 N o . 1 0 3、 1 0 4、 1 0 7、 1
1 0、 1 1 1、 1 1 4 、 1 1 7 , 1 1 8、 1 2 1、 1 2 2、 1 2 4
、 1 2 5 、 1 2 8、 1 3 1、 1 3 2 、 1 3 5、 1 3 8、 1 3 9 、 1
4 2、 1 4 5·, 1 4 6 、 .1 4 9〜 1 5 2、 1 5 5、 1 5 6、 1 5 9
、 1 6 2 、 1 6 3、 1 6 6、 1 6 9 、 1 7 0、 1 7 3、 1 7 4 、 1
7 6、 1 7 7、 1 8 0 、 1 8 3、 1 8 4、 1 8 7、 1 9 0、 1 9 1
、 1 9 4 、 1 9 7、 1 9 8 / 2 0 1 〜 2 0 4は、 比較例であり 、 導 電性物質粒子の種類、 平均粒径、 表層金属酸化物の粒子全体に対す る質量比率、 酸洗時の P Hおよび温度の条件のうち、 少なく とも何 れかが、 本発明で規定する範囲から外れているため、 初期のセパレ 一夕表面の接触抵抗、 および、 燃料電池時使用時の接触抵抗の劣化 に影響する金属イオン溶出の両方の評価を満足することはできなか つた。
一方、 試験材 N o. 1 0 1、 1 0 2、 1 0 5、 1 0 6、 1 0 8、
1 0 9 、 1 1 2 、 1 1 3 、 1 1 5 、 1 1 6 、 1 1 9 、 1 2 0 、 1 2
3 、 1 2 6 、 1 2 7 、 1 2 9 、 1 3 0 、 1 3 3 、 1 3 4 、 1 3 6、
1 3 7 、 1 4 0 、 1 4 1 、 1 4 3 、 1 4 4 、 1 4 7 、 1 4 8 、 1 5
3 、 1 5 4 、 1 5 7 、 1 5 8 、 1 6 0 、 1 •6 1 、 1 6 4 、 1 6 5、
1 6 7 、 1 6 8 、 1 7 1 、 1 7 2 、 1 7 5 、 1 7 8 、 1 7 9 、 1 8
1 、 1 8 2 、 1 8 5 、 1 8 6 、 1 8 8 、 1 8 9 、 1 9 2 、 1 9 3は
、 本発明例であり、 導電性物質粒子の種類、 平均粒径、 および、 表 層金属酸化物の粒子全体に対する質量比率、 酸洗時の p Hおよび温 度の条件の何れも本発明で規定する範囲内であるため、 初期のセパ レー夕表面の接触抵抗、 および、 燃料電池時使用時の低接触抵抗の 劣化に影響する金属イオン溶出の両方の評価を満足することができ た。
また、 これらの発明例のうち、 試験材 N o . 1 0 1、 1 0 2、 1
0 5、 1 0 8、 1 0 9、 1 1 2、 1 1 5、 1 1 6、 1 1 9、 1 2 3 、 1 2 6、 1 2 9、 1 3 0、 1 3 3、 1 3 7、 1 4 0、 1 4 3、 1
4 4、 1 4 7、 1 5 3、 1 5 4、 1 5 7、 1 6 0、 1 6 1、 1 6 4 、 1 6 7、 1 6 8、 1 7 1、 1 7 5、 1 7 8、 1 8 1、 1 8 2、 1 一
8 5、 1 8 9、 1 9 2、 1 9 5、 1 9 6、 1 9 9は、 上記本発明で 規定条件に加えて、 ブラス 卜処理条件である、 超硬コア粒子の平均 粒径および投射圧力が好まし'い範囲内であるため、 初期のセパレー 夕表面の接触抵抗、 および、 燃料電池時使用時の低接触抵抗の劣化 の評価とともに、 平坦性の評価も満足したより好ましい結果が得ら れた。
Claims
1 . ステンレス鋼、 チタンまたはチタン合金の表面の一部または 全部に低ィオン溶出性導電性物質が埋め込まれた固体高分子型燃料 電池用セパレー夕であって、
該セパレー夕表面の算術平均粗さ ( R a ) が 0. 5〜 5. 0 u rn 、 十点平均粗さ ( R z )青が 3'〜 2 0 m、 凹凸の平均間隔 ( S m ) が 3 0 0 m以下であり、
前記セパレー夕四隅近傍の所定の位置に、 原点を 0、 原点 0から原 板の圧延方向にある角近傍に L、 原点 0から原板の圧延垂直方向にあ る角の近傍に C、 原点 0から対角線方向にある角近傍に Xを置き、 0L 囲
間の線分の長さを LL、 0C線分の長さを LC、 OX間の長さを LXとし、 直 線 0Lと加工品の厚さ方向中心面までの最大ひずみ高さを HL1、 直線 C Xとのそれを HL2、 直線 0Cとのそれを HC1、 直線 LXとのそれを HC2、 直 線 0Xとのそれを HXCとし、 点 Xと 3点 0、 し Cにて構成される平面と の距離を HXTとしたとき、 式く 1 >〜式 < 5 >で定義されるそり率 W L 1、 WL 2、 Wcい WC 2、 Wx cおよび式 < 6 >〜式ぐ 7〉で定義されるひ ねり率 Txい Tx cの各値が 0. 1以下であり、 さらに、 対カーボン ペーパー接触抵抗値が面圧 1 M P aにおいて 1 5 mQcni2以下であ ることを特徴とする、 .ステンレス鋼、 チタンまたはチタン合金製固 体高分子型燃料電池用セパレ一夕。 手前側 L方向そり率 : WL1 =^ < 1 > 奥側 L方向そり率 : Wl2 = ^ < 2 > 左側 C方向そり率 : Wci=^ < 3 >
右側 c方向そり率 : < 4 > 対角線方向そり率 : < 5 >
|HXl]
C方向長さ基準ひねり率 LC < 7 >
2. 前記低イオン溶出性導電性物質が、 A u、 WC、 または WB の 1種以上を含有し、 残部が不可避的不純物からなることを特徴と する、 請求項 1 に記載のステンレス鋼、 チタンまたはチタン合金製 固体高分子型燃料電池用セパレ一夕。
3. 前記低イオン溶出性導電性物質が、 T a Nまたは、 T a Nと WCまたは WBの 1種以上が混合されたものを含有し、 残部が不可 避的不純物からなることを特徴とする、 請求項 1 に記載のステンレ ス鋼、 チタンおよびチタン合金製固体高分子型燃料電池用セパレー 夕。
4. 前記の不可避的不純物として、 C o.、 C r、 N i 、 F e、 C u、 S nの 1種以上が、 固体高分子型燃料電池用セパレ一夕表面に 含まれていることを特徴とする請求項 2または 3 に記載のステンレ ス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパレー 夕。
5. 前記低イオン溶出性導電性物質が、 V B、 V8 C7および VN のうちの 1種または 2種以上からなることを特徴とする請求項 1 に 記載のステンレス鋼、 チタンまたはチタン合金製固体高分子型燃料 電池用セパレー夕。
6. 前記低イオン溶出性導電性物質の平均粒径が、 0. 0 1〜 2
0 mであり、 かつ表層に形成された金属酸化物の導電性物質粒子 全体に対する質量比率が、 3 0 %以下であることを特徴とする請求 項 5に記載のステンレス鋼、 チタンまたはチタン合金製固体高分子 型燃料電池用セパレー夕。
7. ステンレス鋼、 チタンまたはチタン合金の表面の一部または 全部に、 平均直径 2 0 0 m未満の超硬コア粒子の周囲に平均直径 2 0 //m以下の低ィオン溶出'性導電性物質が被覆された被覆超硬粒 子を、 0. 4 M P a以下の圧力の気流に載せて投射することにより 、 低イオン溶出性導電性物質を埋め込んで導電処理することを特徴 とする、 ステンレス鋼、 チタンまたはチタン合金製固体高分子型燃 料電池用セパレ一夕の製造方法。
8. 前記投射を行うに際し、 ステンレス鋼、 チタンまたはチタン 合金と被覆超硬粒子噴出口の間に格子状網目冶具を配置して被覆超 硬粒子を投射することにより、 被覆超硬粒子の衝突エネルギーを分 散させることを特徴どする請求項 7 に記載のステンレス鋼、 チタン またはチタン合金製固体高分子型燃料電池用セパレー夕の製造方法
9. 前記低イオン溶出性導電性物質が、 A u、 W Cまたは W Bの 1種以上を含有し、 残部が不可避的不純物からなることを特徴とす る、 請求項 7 または 8に記載のステンレス鋼、 チタンまたはチタン 合金製固体高分子型燃料電池用セパレー夕の製造方法。
1 0. 前記低イオン溶出性導電性物質が、 0. 0 2質量%以上の T a Nと、 WCまたは WBの 1種以上が混合され、 残部が不可避的 不純物からなることを特徴とする、 請求項 7 または 8 に記載のステ ンレス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパ レー夕の製造方法。.
1 1. 前記低イオン溶出性導電性物質が、 V B、 V8 C7および V
Nのうちの 1種または 2種以上からなることを特徴とする請求項 7 または 8 に記載のステンレス鋼、 チタンまたはチタン合金製固体高 分子型燃料電池用セパレー夕の製造方法。
1 2 . 前記低イオン溶出性導電性物質が、 平均粒径が 0 . 0 1 〜 2 0 mであり、 前記低イオン溶出性導電性物質粒子の表層に形成 される低ィオン溶出性物質金属酸化物の該粒子全体に対する質量比 率が 3 0 %以下であること ¾特徴とする請求項 1 1 に記載のステン レス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパレ 一夕の製造方法。
1 3 . 前記導電処理を施した後、 P Hが 2 〜 5、 温度が 4 0 〜 8 0 °Cの条件で酸洗処理を行うことを特徴とする請求項 1 1 または 1 2に記載のステンレス鋼、 チタンまたはチタン合金製固体高分子型 燃料電池用セパレー夕の製造方法。
1 4 . 前記被覆超硬粒子において、 超硬コア粒子が W Cを主成分 とし、 残部に C o、 C r 、 N i 、 F eの 1種以上を合計 1質量%以 上含み、 被覆層に C u、 S nの 1種以上を合計 1質量%以上含むこ とを特徴とする請求項 7 〜 1 3のいずれかに記載のステンレス鋼、 チタンまたはチタン合金製固体高分子型燃料電池用セパレー夕の製 造方法。
1 5 . ロール成形法またはプレス成形法の 1種以上によりステン レス鋼、 チタンまたはチタン合金を成形後に、 前記の投射を行う こ とにより、 セパレ一夕の内部応力バランスを制御することを特徴と する請求項 7 〜 1 4のいずれかに記載のステンレス鋼、 チタンまた はチタン合金製固体高分子型燃料電池用セパレ一夕の製造方法。
1 6 . 請求項 1 〜 6いずれかに記載のセパレー夕の、 そり · ひね りを評価する方法において、 前記セパレ一夕の 3次元形状をレーザ 一変位計により測定し、 デジタル化された三次元変位データを計算
処理によって式 < 1 >〜式ぐ 7〉の各値に換算することを特徴とす る、 ステンレス鋼、 チタンまたはチタン合金製固体高分子型燃料電 池用セパレ一夕のそり · ひねり評価方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/922,302 US7807281B2 (en) | 2005-06-22 | 2006-06-22 | Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator |
EP06767556A EP1906477A1 (en) | 2005-06-22 | 2006-06-22 | Separator for solid polymer electrolyte fuel cell of stainless steel, titanium or titanium alloy, process for producing the same, and method for evaluating warping and twisting of separator |
US12/806,764 US8304141B2 (en) | 2005-06-22 | 2010-08-20 | Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-182259 | 2005-06-22 | ||
JP2005182259A JP4864356B2 (ja) | 2005-06-22 | 2005-06-22 | ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法 |
JP2005183183A JP4854992B2 (ja) | 2005-06-23 | 2005-06-23 | 固体高分子型燃料電池用セパレータおよびその製造方法 |
JP2005-183183 | 2005-06-23 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/922,302 A-371-Of-International US7807281B2 (en) | 2005-06-22 | 2006-06-22 | Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator |
US12/806,764 Division US8304141B2 (en) | 2005-06-22 | 2010-08-20 | Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006137584A1 true WO2006137584A1 (ja) | 2006-12-28 |
Family
ID=37570589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/312939 WO2006137584A1 (ja) | 2005-06-22 | 2006-06-22 | ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US7807281B2 (ja) |
EP (1) | EP1906477A1 (ja) |
WO (1) | WO2006137584A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100131A1 (ja) * | 2006-02-27 | 2007-09-07 | Nippon Steel Corporation | 固体高分子型燃料電池用セパレータおよびその製造方法 |
EP2031687A1 (en) * | 2006-06-15 | 2009-03-04 | Nippon Steel Corporation | Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same |
US20090130300A1 (en) * | 2007-11-15 | 2009-05-21 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) | Titanium substrate for forming separator for fuel cell and method of manufacturing the separator |
US20100248072A1 (en) * | 2009-03-25 | 2010-09-30 | Naomi Shida | Fuel cell |
US20110165501A1 (en) * | 2008-07-16 | 2011-07-07 | Kuroudo Maeda | Fuel cell separator and fuel cell |
JP2014127382A (ja) * | 2012-12-27 | 2014-07-07 | Nissan Motor Co Ltd | 燃料電池用セパレータの歪み検出方法と歪み検出装置 |
WO2017110656A1 (ja) * | 2015-12-24 | 2017-06-29 | Jfeスチール株式会社 | 燃料電池のセパレータ用ステンレス鋼板およびその製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102138238B (zh) * | 2008-06-26 | 2014-04-16 | 新日铁住金株式会社 | 固体高分子型燃料电池的隔板用不锈钢材料以及使用其的固体高分子型燃料电池 |
US20100109651A1 (en) * | 2008-07-11 | 2010-05-06 | Tolmachev Yuriy V | Device for conductivity measurement in a controlled environment and method thereof |
CA2769855C (en) * | 2009-08-03 | 2015-01-06 | Nippon Steel Corporation | Titanium material for solid polymer fuel cell separator use and method of production of same |
US20120064232A1 (en) * | 2010-09-10 | 2012-03-15 | Keisuke Yamazaki | Method of treatment for imparting conductivity to surface of separator-use base member of solid polymer type fuel cell |
EP2913875A4 (en) | 2013-02-01 | 2016-06-01 | Nippon Steel & Sumitomo Metal Corp | TITANIUM-BASED MATERIAL OR TITANIUM-ALLOY MATERIAL USED FOR FUEL CELL SEPARATOR HAVING EXCELLENT CARBON CONTACT CONDUCTIVITY AND EXCELLENT DURABILITY, FUEL CELL SEPARATOR USING THE SAME AND FUEL CELL |
CN106165169A (zh) * | 2014-04-03 | 2016-11-23 | 新日铁住金株式会社 | 燃料电池分隔件用复合金属箔、燃料电池分隔件、燃料电池、及、燃料电池分隔件用复合金属箔的制造方法 |
FR3036539A1 (fr) | 2015-05-22 | 2016-11-25 | Michelin & Cie | Procede de traitement d'une plaque bipolaire pour pile a combustible |
JP6390648B2 (ja) * | 2016-03-18 | 2018-09-19 | トヨタ自動車株式会社 | 燃料電池用のメタルセパレータ |
KR102404291B1 (ko) * | 2017-04-25 | 2022-05-31 | 제이에프이 스틸 가부시키가이샤 | 연료 전지의 세퍼레이터용의 스테인리스 강판 및 그 제조 방법 |
CN111263996B (zh) | 2017-10-25 | 2023-03-31 | 杰富意钢铁株式会社 | 燃料电池的隔板用不锈钢板的制造方法 |
CN111477899B (zh) * | 2020-02-27 | 2022-12-09 | 太原理工大学 | 一种用于燃料电池的导电耐蚀金属双极板及其制备方法 |
CN111342073A (zh) * | 2020-02-27 | 2020-06-26 | 太原理工大学 | 一种用于燃料电池的导电耐蚀钛制金属双极板及制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001032056A (ja) * | 1999-07-22 | 2001-02-06 | Sumitomo Metal Ind Ltd | 通電部品用ステンレス鋼および固体高分子型燃料電池 |
WO2001028018A1 (fr) * | 1999-10-14 | 2001-04-19 | Matsushita Electric Industrial Co., Ltd. | Pile a combustible electrolytique polymere |
JP2001357862A (ja) * | 2000-06-15 | 2001-12-26 | Sumitomo Metal Ind Ltd | バイポーラプレートおよび固体高分子型燃料電池 |
JP2003123783A (ja) * | 2001-10-17 | 2003-04-25 | Nisshin Steel Co Ltd | 低温型燃料電池用ステンレス鋼製セパレータ |
JP2003193206A (ja) * | 2002-12-02 | 2003-07-09 | Sumitomo Metal Ind Ltd | 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池 |
JP2006140095A (ja) * | 2004-11-15 | 2006-06-01 | Nippon Steel Corp | 燃料電池用金属製セパレータ及びその加工方法 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3854682B2 (ja) | 1997-02-13 | 2006-12-06 | アイシン高丘株式会社 | 燃料電池用セパレータ |
JP3908358B2 (ja) | 1997-10-21 | 2007-04-25 | 日新製鋼株式会社 | 低温型燃料電池用セパレータ |
JP3908359B2 (ja) | 1997-10-21 | 2007-04-25 | 日新製鋼株式会社 | 低温型燃料電池用セパレータ |
JP3904690B2 (ja) | 1997-10-14 | 2007-04-11 | 日新製鋼株式会社 | 低温型燃料電池用セパレータ |
JP3980150B2 (ja) | 1998-01-30 | 2007-09-26 | 日新製鋼株式会社 | 低温型燃料電池用セパレータ |
JP3980154B2 (ja) | 1998-03-09 | 2007-09-26 | 日新製鋼株式会社 | 低温型燃料電池用セパレータ及びその製造方法 |
JP2000021419A (ja) | 1998-06-30 | 2000-01-21 | Matsushita Electric Ind Co Ltd | 固体高分子電解質型燃料電池 |
JP4276325B2 (ja) | 1999-03-10 | 2009-06-10 | 新日本製鐵株式会社 | 固体高分子型燃料電池用ステンレス鋼 |
JP5047408B2 (ja) | 1999-06-16 | 2012-10-10 | 新日本製鐵株式会社 | 固体高分子型燃料電池用ステンレス鋼製またはチタン製セパレータ |
JP2000260439A (ja) | 1999-03-09 | 2000-09-22 | Nippon Steel Corp | 固体高分子型燃料電池用ステンレス鋼製セパレータ、スペーサ、高分子膜並びに固体高分子型燃料電池 |
JP3397169B2 (ja) | 1999-04-22 | 2003-04-14 | 住友金属工業株式会社 | 固体高分子型燃料電池セパレータ用オーステナイト系ステンレス鋼および固体高分子型燃料電池 |
JP2001089870A (ja) | 1999-09-20 | 2001-04-03 | Sinto Brator Co Ltd | 固体プレーティング材 |
JP3468739B2 (ja) | 1999-12-27 | 2003-11-17 | 新東ブレーター株式会社 | 高耐食性かつ対カーボン低接触抵抗性金属の燃料電池用セパレーターへの付着方法 |
JP3448557B2 (ja) | 2000-09-04 | 2003-09-22 | 新日本製鐵株式会社 | 固体高分子型燃料電池用セパレータ,その製造方法及び固体高分子型燃料電池 |
JP3400976B2 (ja) | 2000-07-07 | 2003-04-28 | 新日本製鐵株式会社 | 固体高分子型燃料電池用セパレータ及び燃料電池 |
JP3958929B2 (ja) | 2000-12-21 | 2007-08-15 | 新日本製鐵株式会社 | 固体高分子型燃料電池用セパレータ製造装置 |
JP2003223904A (ja) | 2001-02-22 | 2003-08-08 | Jfe Steel Kk | 燃料電池用セパレータとその製造方法および固体高分子型燃料電池 |
JP2002313354A (ja) | 2001-04-11 | 2002-10-25 | Nippon Steel Corp | 固体高分子型燃料電池用セパレータ製造方法及びその製造装置 |
JP2003160884A (ja) | 2001-11-22 | 2003-06-06 | Sinto Brator Co Ltd | 固体プレーティング材の製造方法及びその方法により製造された固体プレーティング材 |
CA2468510C (en) * | 2001-12-18 | 2011-11-29 | Honda Giken Kogyo Kabushiki Kaisha | Method of producing fuel cell-use separator and device for producing it |
JP2004002960A (ja) | 2002-03-13 | 2004-01-08 | Nisshin Steel Co Ltd | 燃料電池セパレータ用オーステナイト系ステンレス鋼及びその製造方法 |
JP4340448B2 (ja) | 2002-03-28 | 2009-10-07 | 日新製鋼株式会社 | 燃料電池セパレータ用フェライト系ステンレス鋼及びその製造方法 |
JP2003297380A (ja) * | 2002-04-03 | 2003-10-17 | Nisshin Steel Co Ltd | 燃料電池用ステンレス鋼製セパレータ |
JP2004076124A (ja) | 2002-08-21 | 2004-03-11 | Sinto Brator Co Ltd | 固体プレーティング材の製造方法及びその方法により製造された固体プレーティング材 |
JP4155074B2 (ja) | 2002-09-11 | 2008-09-24 | 住友金属工業株式会社 | Bを含有するステンレス鋼材およびその製造方法 |
JP2004107704A (ja) | 2002-09-17 | 2004-04-08 | Sumitomo Metal Ind Ltd | 含硼素フェライト系ステンレス鋼帯の製造方法 |
JP3922154B2 (ja) | 2002-10-04 | 2007-05-30 | Jfeスチール株式会社 | 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法および固体高分子型燃料電池 |
JP4180929B2 (ja) | 2003-01-15 | 2008-11-12 | 新日本製鐵株式会社 | 固体高分子型燃料電池用セパレータ製造装置 |
JP4231398B2 (ja) | 2003-02-12 | 2009-02-25 | 新日本製鐵株式会社 | 固体高分子型燃料電池用セパレータ製造方法及び製造装置 |
JP2004269969A (ja) | 2003-03-10 | 2004-09-30 | Jfe Steel Kk | 固体高分子型燃料電池用セパレータおよびその製造方法 |
JP4062132B2 (ja) | 2003-03-11 | 2008-03-19 | 住友金属工業株式会社 | 燃料電池セパレータ用チタン系材料とその製造方法 |
JP4305031B2 (ja) | 2003-04-10 | 2009-07-29 | 住友金属工業株式会社 | Bを含有するステンレス鋼材の製造方法 |
JP2005047567A (ja) | 2003-07-29 | 2005-02-24 | Kao Corp | キャップ |
WO2005047567A1 (ja) | 2003-11-12 | 2005-05-26 | Sintobrator, Ltd. | 固体プレーティング材の製造方法及びその固体プレーティング材 |
JP4608256B2 (ja) | 2004-07-23 | 2011-01-12 | 新日本製鐵株式会社 | 固体高分子型燃料電池セパレータ用ステンレス鋼板およびその製造方法ならびにこれを用いた固体高分子型燃料電池セパレータ |
-
2006
- 2006-06-22 WO PCT/JP2006/312939 patent/WO2006137584A1/ja active Application Filing
- 2006-06-22 US US11/922,302 patent/US7807281B2/en active Active
- 2006-06-22 EP EP06767556A patent/EP1906477A1/en not_active Withdrawn
-
2010
- 2010-08-20 US US12/806,764 patent/US8304141B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001032056A (ja) * | 1999-07-22 | 2001-02-06 | Sumitomo Metal Ind Ltd | 通電部品用ステンレス鋼および固体高分子型燃料電池 |
WO2001028018A1 (fr) * | 1999-10-14 | 2001-04-19 | Matsushita Electric Industrial Co., Ltd. | Pile a combustible electrolytique polymere |
JP2001357862A (ja) * | 2000-06-15 | 2001-12-26 | Sumitomo Metal Ind Ltd | バイポーラプレートおよび固体高分子型燃料電池 |
JP2003123783A (ja) * | 2001-10-17 | 2003-04-25 | Nisshin Steel Co Ltd | 低温型燃料電池用ステンレス鋼製セパレータ |
JP2003193206A (ja) * | 2002-12-02 | 2003-07-09 | Sumitomo Metal Ind Ltd | 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池 |
JP2006140095A (ja) * | 2004-11-15 | 2006-06-01 | Nippon Steel Corp | 燃料電池用金属製セパレータ及びその加工方法 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100131A1 (ja) * | 2006-02-27 | 2007-09-07 | Nippon Steel Corporation | 固体高分子型燃料電池用セパレータおよびその製造方法 |
US8182961B2 (en) | 2006-02-27 | 2012-05-22 | Nippon Steel Corporation | Solid polymer type fuel cell separator and method of production of same |
US8361676B2 (en) | 2006-02-27 | 2013-01-29 | Nippon Steel Corporation | Solid polymer type fuel cell separator and method of production of same |
US8785031B2 (en) | 2006-06-15 | 2014-07-22 | Nippon Steel Sumitomo Metal Corporation | Polymer electrolyte fuel cell separator made of pure titanium or titanium alloy and method of production of same |
EP2031687A1 (en) * | 2006-06-15 | 2009-03-04 | Nippon Steel Corporation | Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same |
EP2031687A4 (en) * | 2006-06-15 | 2010-07-21 | Nippon Steel Corp | REINTITANE OR TITANIUM ALLOY SEPARATOR FOR FESTPOLYMER FUEL CELL AND METHOD FOR THE PRODUCTION THEREOF |
US20090130300A1 (en) * | 2007-11-15 | 2009-05-21 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) | Titanium substrate for forming separator for fuel cell and method of manufacturing the separator |
US20110165501A1 (en) * | 2008-07-16 | 2011-07-07 | Kuroudo Maeda | Fuel cell separator and fuel cell |
US9793554B2 (en) * | 2008-07-16 | 2017-10-17 | Toyota Jidosha Kabushiki Kaisha | Fuel cell separator and fuel cell |
US20100248072A1 (en) * | 2009-03-25 | 2010-09-30 | Naomi Shida | Fuel cell |
JP2014127382A (ja) * | 2012-12-27 | 2014-07-07 | Nissan Motor Co Ltd | 燃料電池用セパレータの歪み検出方法と歪み検出装置 |
WO2017110656A1 (ja) * | 2015-12-24 | 2017-06-29 | Jfeスチール株式会社 | 燃料電池のセパレータ用ステンレス鋼板およびその製造方法 |
JP6197977B1 (ja) * | 2015-12-24 | 2017-09-20 | Jfeスチール株式会社 | 燃料電池のセパレータ用ステンレス鋼板およびその製造方法 |
TWI627790B (zh) * | 2015-12-24 | 2018-06-21 | Jfe Steel Corp | 燃料電池之分隔件用不銹鋼鋼板及其製造方法 |
KR20180087384A (ko) * | 2015-12-24 | 2018-08-01 | 제이에프이 스틸 가부시키가이샤 | 연료 전지의 세퍼레이터용 스테인리스 강판 및 그 제조 방법 |
KR102080472B1 (ko) | 2015-12-24 | 2020-02-24 | 제이에프이 스틸 가부시키가이샤 | 연료 전지의 세퍼레이터용 스테인리스 강판 및 그 제조 방법 |
US10714764B2 (en) | 2015-12-24 | 2020-07-14 | Jfe Steel Corporation | Stainless steel sheet for fuel cell separators and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
US20090226785A1 (en) | 2009-09-10 |
US8304141B2 (en) | 2012-11-06 |
US20110032537A1 (en) | 2011-02-10 |
US7807281B2 (en) | 2010-10-05 |
EP1906477A1 (en) | 2008-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006137584A1 (ja) | ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法 | |
US8182961B2 (en) | Solid polymer type fuel cell separator and method of production of same | |
JP4078966B2 (ja) | 固体高分子型燃料電池のセパレータ用ステンレス鋼および固体高分子型燃料電池 | |
WO2011016465A1 (ja) | 固体高分子型燃料電池セパレータ用チタン材およびその製造方法 | |
JP6122589B2 (ja) | 燃料電池セパレータ | |
US20130302719A1 (en) | Fuel cell separator | |
JP5234711B2 (ja) | 燃料電池用セパレータおよびその製造方法 | |
JP4864356B2 (ja) | ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法 | |
JP2001214286A (ja) | 通電部品用ステンレス鋼材の製造方法 | |
JP2001032056A (ja) | 通電部品用ステンレス鋼および固体高分子型燃料電池 | |
US20170301929A1 (en) | Ferritic stainless steel material, and, separator for solid polymer fuel cell and solid polymer fuel cell which uses the same | |
JP4901864B2 (ja) | 純チタンまたはチタン合金製固体高分子型燃料電池用セパレータおよびその製造方法 | |
JP6881669B2 (ja) | 金属材の製造方法、燃料電池用セパレータの製造方法、およびステンレス鋼材 | |
TW201832407A (zh) | 燃料電池之分隔件用鋼板之基材不鏽鋼鋼板及其製造方法 | |
JP4854992B2 (ja) | 固体高分子型燃料電池用セパレータおよびその製造方法 | |
WO2018084184A1 (ja) | チタン材、セル用構成部材、セル、および固体高分子形燃料電池 | |
JP2017088931A (ja) | 固体高分子型燃料電池用チタン合金、それを用いたチタン材、およびそれを用いた固体高分子型燃料電池 | |
JP2017088955A (ja) | 固体高分子形燃料電池のセパレータ用チタン材、およびそれを用いたセパレータ | |
JP7136140B2 (ja) | 燃料電池用セパレータ | |
JP2010049980A (ja) | 燃料電池セパレータ及び燃料電池セパレータの製造方法 | |
JP6308330B2 (ja) | チタン合金、チタン材、セパレータ、セル、および固体高分子型燃料電池 | |
JP2011243473A (ja) | 燃料電池用セパレータ材料、それを用いた燃料電池用セパレータ及び燃料電池スタック、並びに燃料電池用セパレータ材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 11922302 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006767556 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |