WO2017110656A1 - 燃料電池のセパレータ用ステンレス鋼板およびその製造方法 - Google Patents

燃料電池のセパレータ用ステンレス鋼板およびその製造方法 Download PDF

Info

Publication number
WO2017110656A1
WO2017110656A1 PCT/JP2016/087451 JP2016087451W WO2017110656A1 WO 2017110656 A1 WO2017110656 A1 WO 2017110656A1 JP 2016087451 W JP2016087451 W JP 2016087451W WO 2017110656 A1 WO2017110656 A1 WO 2017110656A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
electrical resistivity
metal particles
low electrical
steel plate
Prior art date
Application number
PCT/JP2016/087451
Other languages
English (en)
French (fr)
Inventor
孝宜 矢野
石川 伸
力 上
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017519349A priority Critical patent/JP6197977B1/ja
Priority to MX2018007688A priority patent/MX2018007688A/es
Priority to CN201680075343.1A priority patent/CN108432009B/zh
Priority to EP16878546.7A priority patent/EP3396758B1/en
Priority to CA3008593A priority patent/CA3008593A1/en
Priority to US16/064,633 priority patent/US10714764B2/en
Priority to KR1020187018403A priority patent/KR102080472B1/ko
Priority to ES16878546T priority patent/ES2738748T3/es
Publication of WO2017110656A1 publication Critical patent/WO2017110656A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/06Etching of iron or steel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a stainless steel plate for a fuel cell separator excellent in contact electrical resistance (hereinafter also referred to as contact resistance) and a method for producing the same.
  • the polymer electrolyte fuel cell is compared with other fuel cells.
  • the power generation temperature is about 80 ° C, and power generation is possible at a significantly lower temperature.
  • the fuel cell body can be reduced in weight and size.
  • It can be started up in a short time, and has advantages such as high fuel efficiency and high power density. For this reason, the polymer electrolyte fuel cell is expected to be used as a power source for mounting an electric vehicle, a stationary generator for home use or business use, and a small portable generator.
  • a polymer electrolyte fuel cell is one that extracts electricity from hydrogen and oxygen through a polymer membrane.
  • the membrane-electrode assembly 1 is connected to gas diffusion layers 2 and 3 (for example, carbon paper). Etc.) and separators 4 and 5 to form a single component (so-called single cell). Then, an electromotive force is generated between the separator 4 and the separator 5.
  • the membrane-electrode assembly 1 is called an MEA (Membrane-Electrode Assembly), which integrates a polymer membrane and an electrode material such as carbon black carrying a platinum-based catalyst on the front and back surfaces of the membrane. The thickness is several tens of ⁇ m to several hundreds of ⁇ m. Further, the gas diffusion layers 2 and 3 are often integrated with the membrane-electrode assembly 1.
  • a fuel cell stack is generally configured by using several tens to several hundreds of single cells as described above in series.
  • the separators 4 and 5 include (a) In addition to serving as a partition wall that separates single cells, (b) a conductor carrying the generated electrons, (c) an air channel 6 through which oxygen (air) and hydrogen flow, a hydrogen channel 7, (d) Discharge path for discharging generated water and gas (air flow path 6 and hydrogen flow path 7 are combined) Therefore, excellent durability and electrical conductivity are required.
  • the separator is required to have corrosion resistance that can withstand long-time power generation. The reason is that when metal ions are eluted by corrosion, proton conductivity of the polymer membrane (electrolyte membrane) decreases.
  • the contact resistance between the separator and the gas diffusion layer is as low as possible. The reason is that when the contact resistance between the separator and the gas diffusion layer increases, the power generation efficiency of the polymer electrolyte fuel cell decreases. That is, it can be said that the smaller the contact resistance between the separator and the gas diffusion layer, the better the power generation characteristics.
  • Patent Document 1 discloses a technique in which a metal that easily forms a passive film such as stainless steel or titanium alloy is used as a separator.
  • the technique disclosed in Patent Document 1 causes an increase in contact resistance with the formation of a passive film, resulting in a decrease in power generation efficiency.
  • the metal material disclosed in Patent Document 1 has a problem that the contact resistance is larger than that of the graphite material.
  • Patent Document 2 discloses a technique for reducing contact resistance and ensuring high output by performing gold plating on the surface of a metal separator such as austenitic steel plate (SUS304).
  • gold plating has a problem that costs increase.
  • Patent Documents 3 and 4 stainless steel is immersed in a treatment solution containing fluorine ions such as hydrofluoric acid, so that the passive film on the stainless steel surface contains fluorine, and this is accompanied by There is disclosed a technique for reducing contact resistance by providing a predetermined fine concavo-convex structure in a portion.
  • a treatment liquid containing fluorine ions such as hydrofluoric acid is chemically very active, there arises a safety problem during the treatment operation. Further, in the treatment of waste liquid discharged after the treatment work, there is still a safety problem.
  • the present invention has been developed in view of the above situation, and an object of the present invention is to provide a stainless steel plate for a separator for a fuel cell and a method for producing the same that can obtain excellent contact resistance at low cost and safely. .
  • the inventors have intensively studied to improve the contact resistance characteristics in the stainless steel plate for a separator of a fuel cell.
  • the inventors tried to reduce contact resistance by applying various low electrical resistivity metal plating under various conditions on the surface of a stainless steel plate.
  • contact resistance cannot be reduced as much as gold plating, no matter how the processing conditions and the metal used are adjusted.
  • the inventors have further studied in order to further reduce the contact resistance when using such a metal having a low electrical resistivity.
  • a predetermined concavo-convex structure is formed on the surface of the stainless steel plate as the base, and a predetermined amount of low electrical resistivity metal particles are adhered to the surface of the base having the concavo-convex structure (hereinafter also referred to as the concavo-convex surface).
  • the inventors have found that it is possible to significantly reduce the contact resistance by appropriately controlling the ratio of the average particle diameter of the metal particles having a low electrical resistivity to the average interval between the convex portions.
  • a predetermined concavo-convex structure is formed on the surface of the stainless steel plate as the base, and a predetermined amount of metal particles having a low electrical resistivity is attached to the concavo-convex surface of the base, thereby reducing the low electric resistance with respect to the average interval between the convex portions.
  • the inventors consider the reason why the contact resistance can be significantly reduced by appropriately controlling the ratio of the average particle diameter of the metal particles with the ratio as follows. That is, stainless steel has a passive film on its surface, and this passive film increases the contact resistance when used as a fuel cell separator.
  • the separator of the fuel cell comes into contact with a gas diffusion layer made of carbon paper, carbon cloth or the like with a predetermined load applied. Therefore, as shown in FIG. 2, a predetermined concavo-convex structure is formed on the surface of the stainless steel plate serving as the base, and a predetermined amount of metal particles having a low electrical resistivity is adhered to the concavo-convex surface of the base.
  • the low electrical resistivity metal particles press against the irregularities on the substrate surface when the separator contacts the gas diffusion layer. It will bite into the convex part.
  • the surface of the stainless steel plate, in particular, a part of the passive film of the convex portion is destroyed, and a part of the thin oxide film formed on the surface of the metal particle having a low electrical resistivity is also destroyed.
  • Stainless steel and low electrical resistivity metal particles are joined (contacted) without passing through such a passive film or oxide film. As a result, the inventors think that the contact resistance is greatly reduced.
  • the present invention was completed after further studies based on the above findings.
  • the gist configuration of the present invention is as follows. 1. It comprises a base made of a stainless steel plate and metal particles with low electrical resistivity, The surface of the substrate includes a concavo-convex structure having a concave portion and a convex portion, and an average interval between the convex portions is 10 nm or more and 300 nm or less, The average particle diameter of the low electrical resistivity metal particles is 50 nm to 1.0 ⁇ m, and the low electrical resistivity metal particles adhere to the surface of the concavo-convex structure of the substrate at 1.0 or more per 1 ⁇ m 2. And A stainless steel plate for a fuel cell separator, wherein a ratio of an average particle diameter of the low electrical resistivity metal particles to an average interval between the convex portions is 1.0 to 15.0.
  • a method for producing a stainless steel plate for a separator of a fuel cell according to the above 1 A method for producing a stainless steel plate for a fuel cell separator, comprising subjecting a base made of a stainless steel plate to anodic electrolysis and then plating in a solution containing metal ions of low electrical resistivity.
  • a stainless steel plate for a fuel cell separator having excellent contact resistance can be obtained.
  • the stainless steel plate used as a substrate is not particularly limited, but a stainless steel plate excellent in corrosion resistance (ferritic stainless steel plate, austenitic stainless steel plate, duplex stainless steel plate) is particularly advantageous. Fits.
  • SUS447J1 (Cr: 30% by mass, Mo: 2% by mass), SUS445J1 (Cr: 22% by mass, Mo: 1% by mass), SUS443J1 (Cr: 21% by mass), SUS430J1L (Cr: 18% by mass), SUS316L (Cr: 18% by mass, Ni: 12% by mass, Mo: 2% by mass) can be suitably used.
  • SUS447J1 containing about 30% by mass of Cr is particularly suitable as a solid polymer fuel cell separator substrate used in an environment where severe corrosion resistance is required because of its high corrosion resistance.
  • the thickness of the separator stainless steel is preferably in the range of 0.03 to 0.3 mm. If the plate thickness of the stainless steel for the separator is less than 0.03 mm, the production efficiency of the stainless steel is lowered. On the other hand, when it exceeds 0.3 mm, the mounting space and weight at the time of stacking increase. More preferably, it is in the range of 0.03 to 0.1 mm.
  • Average interval between convex portions 10 nm or more and 300 nm or less
  • the resistivity metal particles are pressed against the irregularities on the surface of the substrate and bite into the convex portions.
  • the surface of the stainless steel plate, in particular, a part of the passive film of the convex portion is destroyed, and a part of the thin oxide film formed on the surface of the metal particle having a low electrical resistivity is also destroyed.
  • Stainless steel and low electrical resistivity metal particles are joined (contacted) without passing through such a passive film or oxide film. As a result, it is considered that the contact resistance is greatly reduced.
  • the shape of the concavo-convex structure is important from the relationship with the particle size of the metal particles having low electrical resistivity described later.
  • the average interval between the convex portions is less than 10 nm, the irregularities are too fine, and the metal particles having low electrical resistivity do not sufficiently penetrate into the convex portions on the surface of the substrate, and a desired contact resistance cannot be obtained.
  • the average distance between the convex parts exceeds 300 nm, the average distance between the convex parts becomes too large compared to the particle diameter of the low electrical resistivity metal particles attached to the substrate surface, and the contact resistance as described above Thus, the desired contact resistance cannot be obtained. Therefore, the average interval between the convex portions is 10 nm or more and 300 nm or less. Preferably they are 20 nm or more and 200 nm or less.
  • the average spacing between the convex portions here is determined by applying an acceleration voltage using a scanning electron microscope (FE-SEM, Hitachi S-4100) equipped with a cold cathode field emission electron gun on the surface of a stainless steel plate substrate.
  • a secondary electron image photograph (SEM photograph) obtained when observing 10 fields of view at a magnification of 30000 with a magnification of 30000 is set to 3 kV, and 3 lines per field are spaced at 1 ⁇ m intervals in the rolling direction and in the direction perpendicular to the rolling direction. This is obtained by drawing a straight line, measuring the center-to-center distance between the convex portions in the straight line, and averaging these.
  • the concave portion portion other than the convex portion
  • the convex portion is observed as a bright region. is there.
  • the stainless steel plate in order to form the above-described uneven structure on the surface of the stainless steel plate, it is preferable to subject the stainless steel plate to an anodic electrolysis treatment, and by controlling the current density and electrolysis time during electrolysis, The above uneven structure can be obtained.
  • the anodic electrolytic treatment solution a sulfuric acid solution, a phosphoric acid aqueous solution, a sodium sulfate aqueous solution and the like are suitable.
  • interval can be controlled by controlling electrolysis time. Specifically, the longer the electrolysis time, the wider the unevenness interval.
  • the surface of the stainless steel plate, in particular, a part of the passive film of the convex portion is destroyed, and a part of the thin oxide film formed on the surface of the metal particle having a low electrical resistivity is also destroyed.
  • the stainless steel plate and the low electrical resistivity metal particles are joined (contacted) without using such a passive film or oxide film.
  • metal particles such as Cu, Ag, and Au are suitable as the low electrical resistivity metal particles.
  • Average particle diameter of metal particles with low electrical resistivity 50 nm or more and 1.0 ⁇ m or less
  • the average particle diameter (average value of equivalent circle diameter) of metal particles with low electrical resistivity is from the viewpoint of obtaining the effect of reducing the contact resistance described above.
  • the number of metal particles of a low electrical resistivity per 1 [mu] m 2 of substrate surface The number of 1.0 or more per 1 [mu] m 2 on the surface of the base low electrical resistivity of the metal particles is sufficiently obtain the effect of reducing the contact resistance viewpoint To 1.0 or more. More preferably, it is 5.0 or more.
  • the upper limit is not particularly limited, but is preferably 50.0 from the viewpoint of avoiding an increase in cost.
  • the average particle diameter (average value of equivalent circle diameter) of the low electrical resistivity metal particles and the number of low electrical resistivity metal particles per 1 ⁇ m 2 on the substrate surface can be obtained as follows. it can.
  • a metal particle having a low electrical resistivity (hereinafter also simply referred to as a metal particle) is attached to the surface of the substrate, and the surface is scanned by a scanning electron microscope (FE-SEM) equipped with a cold cathode field emission electron gun. , Accelerating voltage: 3 kV, magnification: 30,000 times, 10 field observations, measuring the equivalent circle diameter of each metal particle observed in the secondary electron image (SEM), and averaging these, Obtain the average value of the equivalent circle diameter of the particles.
  • the lower limit of the particle diameter (equivalent circle diameter) of the metal particles measured here is 10 nm.
  • the number of metal particles whose particle diameter is measured as described above is counted to calculate the number of metal particles per 1 ⁇ m 2 , and these are averaged to obtain the metal per 1 ⁇ m 2 on the substrate surface. Find the number of particles.
  • a method such as a plating method or a physical vapor deposition method (PVD method) may be used.
  • a plating method it is preferable to use a plating method.
  • the base of the stainless steel plate is immersed in a plating bath containing metal ions having a low electrical resistivity and adjusted to a predetermined composition.
  • electroplating or electroless plating the metal particles having low electrical resistivity can be attached to the uneven surface of the substrate.
  • the number of metal particles attached to the substrate surface hereinafter also referred to as the number of attached metal particles
  • the current density may be controlled. The higher the current density, the greater the number of deposited metal particles.
  • Ratio of average particle diameter of metal particles having low electrical resistivity to average distance between convex portions 1.0 or more and 15.0 or less
  • the metal particles are sufficiently bitten into the convex portions on the surface of the substrate to obtain a desired contact resistance.
  • it is necessary to appropriately adjust the ratio of the average particle diameter of the metal particles having low electrical resistivity to the average distance between the convex portions.
  • the ratio of the average particle diameter of the low electrical resistivity metal particles to the average interval between the convex portions is set to 1.0 or more and 15.0 or less. Preferably they are 1.3 or more and 3.0 or less.
  • the ratio of the average particle diameter of the metal particles having a low electrical resistivity to the average interval between the protrusions is less than 1.0, the metal particles do not sufficiently bite into the protrusions on the surface of the substrate. Can't get.
  • the ratio of the average particle diameter of the low electrical resistivity metal particles to the average interval between the convex portions exceeds 15.0, the metal particles become relatively larger than the average interval between the convex portions, As a result, the effect of the unevenness formed becomes small, and a desired contact resistance cannot be obtained.
  • the diameter of a metal particle becomes large, formation time becomes long and cost becomes high.
  • a surface treatment film can be further provided.
  • a surface treatment film is not particularly limited, but it is preferable to use a material excellent in corrosion resistance and conductivity in the environment where the separator for a fuel cell is used, for example, a metal layer, an alloy layer, a metal oxide It is preferable to use a physical layer, a metal carbide layer, a metal nitride layer, a carbon material layer, a conductive polymer layer, an organic resin layer containing a conductive substance, or a mixture layer thereof.
  • skin pass rolling may be performed after metal particles having a low electrical resistivity are attached to the uneven surface of the substrate, or after the surface treatment film is further provided.
  • the elongation rate of the skin pass rolling is preferably 1% or more and 10% or less.
  • a low contact resistance value is required for a separator of a polymer electrolyte fuel cell. Therefore, in view of the required characteristics, the following evaluation was performed on the samples described later.
  • (passed, particularly excellent): less than 10.0 m ⁇ ⁇ cm 2 ⁇ (passed): 10.0 m ⁇ ⁇ cm 2 or more and 15.0 m ⁇ ⁇ cm 2 or less ⁇ (failed): more than 15.0 m ⁇ ⁇ cm 2
  • Example 1 After using SUS447J1 (Cr: 30% by mass) with a thickness of 0.1 mm as the base material and performing appropriate pretreatments such as degreasing, an anodic electrolysis treatment is carried out under the electrolytic bath composition and electrolysis conditions shown below as a concavo-convex structure formation treatment As a result, an uneven structure was formed on the substrate surface. Next, a plating treatment was performed with the following plating bath composition and plating conditions as an adhesion treatment of the low electrical resistivity metal particles, and the low electrical resistivity metal particles were adhered on the substrate surface to obtain a stainless steel plate for a separator. . Sample No. No. 9 was subjected to skin pass rolling with an elongation rate of 1%.
  • the characteristics were evaluated as described above.
  • a stainless steel plate for a separator that was not subjected to the above-described unevenness formation treatment and / or adhesion treatment of metal particles with low electrical resistivity was prepared, and contact resistance was evaluated in the same manner as described above.
  • the number of convex portions of the concavo-convex structure on the substrate surface, the average interval between the convex portions, the average particle diameter of metal particles having a low electrical resistivity, and the number per 1 ⁇ m 2 were measured by the method described above.
  • the bath composition and conditions are other than those described above, a known method may be used as long as a metal having a desired microstructure and low electrical resistivity can be formed.
  • the plating treatment may be performed with an alkaline cyanide bath.
  • the sample No. 4 does not have a desired contact resistance.
  • Comparative Example No. In Sample 13 the number of low electrical resistivity metal particles per 1 ⁇ m 2 is less than 1.0, and thus a desired contact resistance is not obtained.
  • Comparative Example No. In the sample No. 14, the ratio of the average particle diameter of the metal particles having a low electrical resistivity to the average interval between the convex portions is less than 1.0, so that a desired contact resistance is not obtained.
  • Comparative Example No. In the sample No. 15, since the ratio of the average particle diameter of the metal particles with low electrical resistivity to the average interval between the convex portions exceeds 15.0, a desired contact resistance is not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

ステンレス鋼板からなる基体と、低電気抵抗率の金属粒子とを備え、上記基体の表面に、凸部間の平均間隔が10nm以上300nm以下である凹凸構造を形成し、上記低電気抵抗率の金属粒子の平均粒径を50nm~1.0μmとし、上記低電気抵抗率の金属粒子を、上記基体の凹凸構造の表面に1μm当たり1.0個以上付着させ、上記凸部間の平均間隔に対する上記低電気抵抗率の金属粒子の平均粒径の比を1.0~15.0とする。

Description

燃料電池のセパレータ用ステンレス鋼板およびその製造方法
 本発明は、接触電気抵抗(以下、接触抵抗と称することもある)に優れた燃料電池のセパレータ用ステンレス鋼板およびその製造方法に関するものである。
 近年、地球環境保全の観点から、発電効率に優れ、二酸化炭素を排出しない燃料電池の開発が進められている。この燃料電池は水素と酸素から電気化学反応によって電気を発生させるもので、その基本構造はサンドイッチのような構造を有しており、電解質膜(イオン交換膜)、2つの電極(燃料極および空気極)、酸素(空気)と水素の拡散層および2つのセパレータから構成されている。
 そして、使用される電解質膜の種類に応じて、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池および固体高分子形燃料電池(PEFC;proton-exchange membrane fuel cellまたはpolymer electrolyte fuel cell)に分類され、それぞれ開発が進められている。
 これらの燃料電池のうち、固体高分子形燃料電池は、他の燃料電池に比べて、
(a) 発電温度が80℃程度であり、格段に低い温度で発電ができる、
(b) 燃料電池本体の軽量化、小型化が可能である、
(c) 短時間で立上げができ、燃料効率、出力密度が高い
等の利点を有している。
 このため、固体高分子形燃料電池は、電気自動車の搭載用電源、家庭用または業務用の定置型発電機、携帯用の小型発電機としての利用が期待されている。
 固体高分子形燃料電池は、高分子膜を介して水素と酸素から電気を取り出すものであり、図1に示すように、膜-電極接合体1を、ガス拡散層2,3(たとえばカーボンペーパ等)およびセパレータ4,5によって挟み込み、これを単一の構成要素(いわゆる単セル)とする。そして、セパレータ4とセパレータ5との間に起電力を生じさせる。
 なお、上記の膜-電極接合体1は、MEA(Membrane-Electrode Assembly)と呼ばれていて、高分子膜とその膜の表裏面に白金系触媒を担持したカーボンブラック等の電極材料を一体化したものであり、厚さは数10μm~数100μmである。また、ガス拡散層2,3は、膜-電極接合体1と一体化される場合も多い。
 また、固体高分子形燃料電池を実用に供する場合には、上記のような単セルを直列に数十~数百個つないで燃料電池スタックを構成し、使用するのが一般的である。
 ここに、セパレータ4,5には、
(a) 単セル間を隔てる隔壁
としての役割に加え、
(b) 発生した電子を運ぶ導電体、
(c) 酸素(空気)と水素が流れる空気流路6、水素流路7、
(d) 生成した水やガスを排出する排出路(空気流路6、水素流路7が兼備)
としての機能が求められるので、優れた耐久性や電気伝導性が必要となる。
 ここで、耐久性に関しては、電気自動車の搭載用電源として使用される場合は、約5000時間と想定されている。また、家庭用の定置型発電機等として使用される場合は、約40000時間と想定されている。したがって、セパレータには、長時間の発電に耐え得る耐食性が要求される。その理由は、腐食によって金属イオンが溶出すると高分子膜(電解質膜)のプロトン伝導性が低下するからである。
 また、電気伝導性に関しては、セパレータとガス拡散層との接触抵抗が極力低いことが望まれる。その理由は、セパレータとガス拡散層との接触抵抗が増大すると、固体高分子形燃料電池の発電効率が低下するからである。つまり、セパレータとガス拡散層との接触抵抗が小さいほど、発電特性に優れていると言える。
 現在までに、セパレータとしてグラファイトを用いた固体高分子形燃料電池が実用化されている。このグラファイトからなるセパレータは、接触抵抗が比較的低く、しかも腐食しないという利点がある。しかしながら、グラファイト製のセパレータは、衝撃によって破損しやすいので、小型化が困難なだけでなく、空気流路、水素流路を形成するための加工コストが高いという欠点がある。グラファイトからなるセパレータが有するこれらの欠点は、固体高分子形燃料電池の普及を妨げる原因になっている。
 そこで、セパレータの素材として、グラファイトに替えて金属素材を適用する試みがなされている。特に、耐久性向上と接触抵抗低減の観点から、ステンレス鋼やチタン、チタン合金等を素材としたセパレータの実用化に向けて、種々の検討がなされている。
 たとえば、特許文献1には、ステンレス鋼またはチタン合金等の不動態皮膜を形成しやすい金属をセパレータとして用いる技術が開示されている。しかしながら、特許文献1に開示の技術では、不動態皮膜の形成に伴い、接触抵抗の上昇を招くことになり、発電効率の低下を招く。このように、特許文献1に開示される金属素材は、グラファイト素材と比べて接触抵抗が大きい等の問題がある。
 また、特許文献2には、オーステナイト系鋼板(SUS304)等の金属セパレータの表面に金めっきを施すことにより、接触抵抗を低減し、高出力を確保する技術が開示されている。しかしながら、金めっきはコストが増加するという問題がある。
 また、特許文献3および4には、フッ酸などのフッ素イオンを含有する処理液にステンレス鋼を浸漬させることによって、ステンレス鋼表面の不動態皮膜にフッ素を含有させ、これとともにステンレス鋼表面の一部に所定の微細凹凸構造を設けて、接触抵抗を低減する技術が開示されている。しかしながら、フッ酸などのフッ素イオンを含有する処理液は化学的に極めて活性が高いため、処理作業時における安全性の問題が生じる。また、処理作業後に排出される廃液の処理においても、やはり安全性の問題が生じる。
特開平8-180883号公報 特開平10-228914号公報 特開2010-13684号公報 国際公開第2013/080533号
 本発明は、上記の現状に鑑み開発されたもので、低コストでかつ安全に、優れた接触抵抗を得ることができる燃料電池のセパレータ用ステンレス鋼板およびその製造方法を提供することを目的とする。
 さて、発明者らは、上記の課題を解決すべく、燃料電池のセパレータ用ステンレス鋼板における接触抵抗特性を向上させるために鋭意検討を行った。
 まず、発明者らは、ステンレス鋼板の表面に、種々の条件で種々の低電気抵抗率の金属めっきを施すことにより、接触抵抗を低減することを試みた。
 しかしながら、単に低電気抵抗率の金属めっきを施すだけでは、処理条件や使用する金属を如何に調整しても、金めっきほどの接触抵抗の低減を図ることはできなかった。
 そこで発明者らは、かような低電気抵抗率の金属を使用する場合に、一層の接触抵抗の低減を図るべく、さらに検討を重ねた。
 その結果、基体となるステンレス鋼板の表面に所定の凹凸構造を形成し、かつこの基体の凹凸構造からなる表面(以下、凹凸表面ともいう)に所定量の低電気抵抗率の金属粒子を付着させ、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比を適正に制御することによって、接触抵抗の大幅な低減を図ることが可能になる、との知見を得た。
 ここで、基体となるステンレス鋼板の表面に所定の凹凸構造を形成し、かつこの基体の凹凸表面に所定量の低電気抵抗率の金属粒子を付着させ、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比を適正に制御することによって、接触抵抗の大幅な低減を図ることが可能となる理由について、発明者らは次のように考えている。
 すなわち、ステンレス鋼は、その表面に不動態皮膜を有しており、この不動態皮膜によって、燃料電池のセパレータとして使用する際の接触抵抗が増大する。また、AgやCu等の低電気抵抗率の金属粒子についても、大気中で金属粒子表面に酸化皮膜が形成されるためかような金属粒子を単に基体となるステンレス鋼板の表面に付着させても、低電気抵抗率の金属本来の接触抵抗が得られず、やはり接触抵抗が増大する。
 燃料電池のセパレータは、図1に示すように、カーボンペーパやカーボンクロス等からなるガス拡散層に所定の荷重を加えた状態で接触するものとなる。そのため、図2に示すように、基体となるステンレス鋼板の表面に所定の凹凸構造を形成し、かつこの基体の凹凸表面に所定量の低電気抵抗率の金属粒子を付着させ、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比を適正に制御することによって、セパレータがガス拡散層と接触する際に、低電気抵抗率の金属粒子が、基体表面の凹凸に押し付けられて、凸部に食い込むようになる。このとき、ステンレス鋼板表面、特に凸部の不動態皮膜の一部が破壊されるとともに、低電気抵抗率の金属粒子の表面に形成されていた薄い酸化皮膜の一部も破壊され、この破壊された部分同士が接合点となって、かような不動態皮膜や酸化皮膜を介さずに、ステンレス鋼と低電気抵抗率の金属粒子が接合(接触)する。その結果、接触抵抗が大幅に低減する、と発明者らは考えている。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.ステンレス鋼板からなる基体と、低電気抵抗率の金属粒子とを備え、
 上記基体の表面は凹部と凸部とを有する凹凸構造を備え、該凸部間の平均間隔が10nm以上300nm以下であり、
 上記低電気抵抗率の金属粒子の平均粒径が50nm~1.0μmであるとともに、上記低電気抵抗率の金属粒子が、上記基体の凹凸構造の表面に1μm当たり1.0個以上付着してなり、
 上記凸部間の平均間隔に対する上記低電気抵抗率の金属粒子の平均粒径の比が1.0~15.0である、燃料電池のセパレータ用ステンレス鋼板。
2.前記1に記載の燃料電池のセパレータ用ステンレス鋼板の製造方法であって、
 ステンレス鋼板からなる基体に対し、陽極電解処理を施したのち、低電気抵抗率の金属のイオンを含有する溶液中でめっき処理を施す、燃料電池のセパレータ用ステンレス鋼板の製造方法。
 本発明によれば、優れた接触抵抗を有する燃料電池のセパレータ用ステンレス鋼板を得ることができる。また、本発明によれば、製造時にフッ酸などによる処理や当該処理作業後に排出される廃液の処理を行う必要がないので、製造時における安全性の面でも極めて有利である。さらに、基体全面に低電気抵抗率の金属粒子を付着させなくともよいので、コストの面でも非常に有利である。
燃料電池の基本構造を示す模式図である。 本発明の燃料電池のセパレータ用ステンレス鋼板において、接触抵抗が大幅に低減するメカニズムを示す模式図である。
 以下、本発明を具体的に説明する。
(1)基体として用いるステンレス鋼板
 本発明において、基体として用いるステンレス鋼板については特に制限はないが、耐食性に優れるステンレス鋼板(フェライト系ステンレス鋼板、オーステナイト系ステンレス鋼板、二相ステンレス鋼板)がとりわけ有利に適合する。
 例えば、SUS447J1(Cr:30質量%、Mo:2質量%)、SUS445J1(Cr:22質量%、Mo:1質量%)、SUS443J1(Cr:21質量%)、SUS430J1L(Cr:18質量%)、SUS316L(Cr:18質量%、Ni:12質量%、Mo:2質量%)などを好適に使用することができる。特に、Crを30質量%程度含有するSUS447J1は、耐食性が高いため、厳しい耐食性が要求される環境下で使用される固体高分子形燃料電池セパレータ基体として、とりわけ有利に適合する。
 また、燃料電池スタック時の搭載スペースや重量を鑑みると、セパレータ用ステンレス鋼の板厚は、0.03~0.3mmの範囲とすることが好ましい。セパレータ用ステンレス鋼の板厚が0.03mm未満であると、ステンレス鋼の生産効率が低下する。一方、0.3mmを超えるとスタック時の搭載スペースや重量が増加する。より好ましくは0.03~0.1mmの範囲である。
(2)ステンレス鋼板の基体表面の凹凸構造
 本発明の燃料電池のセパレータ用ステンレス鋼板では、上記したステンレス鋼板の基体表面に、凹部と凸部とを有する所定の凹凸構造を形成することが重要である、以下、この凹凸構造について、説明する。
凸部間の平均間隔:10nm以上300nm以下
 上述したように、本発明の燃料電池のセパレータ用ステンレス鋼板を用いたセパレータでは、図2に示すように、ガス拡散層と接触するときに、低電気抵抗率の金属粒子が、基体表面の凹凸に押し付けられて、凸部に食い込むようになる。このとき、ステンレス鋼板表面、特に凸部の不動態皮膜の一部が破壊されるとともに、低電気抵抗率の金属粒子の表面に形成されていた薄い酸化皮膜の一部も破壊され、この破壊された部分同士が接合点となって、かような不動態皮膜や酸化皮膜を介さずに、ステンレス鋼と低電気抵抗率の金属粒子が接合(接触)する。その結果、接触抵抗が大幅に低減するものと考えられる。このため、かような接触抵抗の低減には、後述する低電気抵抗率の金属粒子の粒径などとの関係から凹凸構造の形状、特に凸部間の平均間隔が重要となる。
 ここに、凸部間の平均間隔が10nm未満であると、凹凸が微細過ぎて、低電気抵抗率の金属粒子が基体表面の凸部に十分に食い込まず、所望の接触抵抗が得られない。一方、凸部間の平均間隔が300nmを超えると、基体表面に付着させる低電気抵抗率の金属粒子の粒径に比べて凸部間の平均間隔が大きくなり過ぎて、上記のような接触抵抗の低減効果が得られず、やはり所望の接触抵抗が得られない。
 したがって、凸部間の平均間隔は10nm以上300nm以下とする。好ましくは20nm以上、200nm以下である。
 なお、ここでいう凸部間の平均間隔は、ステンレス鋼板の基体表面を冷陰極電界放出型の電子銃をそなえた走査型電子顕微鏡(FE-SEM、日立製S-4100)により、加速電圧を3kVに設定して倍率:30000倍で10視野観察したときに得られる二次電子像の写真(SEM写真)に、1視野あたり、圧延方向および圧延方向直角方向にそれぞれ1μmの間隔で3本の直線を引き、該直線における凸部間の中心間距離をそれぞれ測定し、これらを平均することにより、求めたものである。
 なお、上記の二次電子像の写真(SEM写真)において、凹部(凸部以外の部分)は暗い領域として、凸部は明るい領域として観察されるため、これにより両者を識別することが可能である。
 また、ステンレス鋼板の基体表面に上記した凹凸構造を形成するには、ステンレス鋼板の基体に対して陽極電解処理を施すことが好適であり、電解時の電流密度と電解時間を制御することにより、上記した凹凸構造を得ることができる。なお、陽極電解処理溶液としては、硫酸溶液やリン酸水溶液、硫酸ナトリウム水溶液などが好適である。また、電解時間を制御することで、凹凸間隔を制御できる。具体的には、電解時間が長いほど凹凸間隔が広くなる。
(3)低電気抵抗率の金属粒子
 また、本発明の燃料電池のセパレータ用ステンレス鋼板では、上記基体の凹凸表面に所定量の低電気抵抗率の金属粒子を付着させ、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比を適正に制御することが重要である。これにより、図2に示すように、ガス拡散層と接触するときに、低電気抵抗率の金属粒子が、基体表面の凹凸に押し付けられて、凸部に食い込むようになる。このとき、ステンレス鋼板表面、特に凸部の不動態皮膜の一部が破壊されるとともに、低電気抵抗率の金属粒子の表面に形成されていた薄い酸化皮膜の一部も破壊され、この破壊された部分同士が接合点となって、かような不動態皮膜や酸化皮膜を介さずに、ステンレス鋼板と低電気抵抗率の金属粒子が接合(接触)する。その結果、接触抵抗が大幅に低減するものと考えられる。
 なお、低電気抵抗率の金属粒子としては、Cu、AgおよびAuなどの金属粒子が好適である。また、これらを組み合わせて使用することも可能である。コストの面からは、CuおよびAg粒子がより好適である。
低電気抵抗率の金属粒子の平均粒径:50nm以上1.0μm以下
 低電気抵抗率の金属粒子の平均粒径(円相当直径の平均値)は、上記の接触抵抗の低減効果を得る観点から、50nm以上1.0μm以下とする。好ましくは100nm以上、500nm以下である。
基体表面における1μm当たりの低電気抵抗率の金属粒子の数:1.0個以上
 基体表面における1μm当たりの低電気抵抗率の金属粒子の数は、接触抵抗の低減効果を十分に得る観点から、1.0個以上とする。より好ましくは5.0個以上である。上限については特に限定されるものではないが、コストアップを避ける観点からは50.0個とすることが好ましい。
 なお、上記した低電気抵抗率の金属粒子の平均粒径(円相当直径の平均値)および基体表面における1μm当たりの低電気抵抗率の金属粒子の数は、以下のようにして求めることができる。
 すなわち、低電気抵抗率の金属粒子(以下、単に金属粒子ともいう)を基体表面に付着させ、その表面を、冷陰極電界放出型の電子銃をそなえた走査型電子顕微鏡(FE-SEM)により、加速電圧:3kV、倍率:30000倍で10視野観察し、その二次電子像の写真(SEM写真)で観察された各金属粒子の円相当直径を測定し、これらを平均することで、金属粒子の円相当直径の平均値を求める。ただし、ここで測定する金属粒子の粒径(円相当直径)の下限は10nmとする。
 また、視野毎に、上記のように粒径を測定した金属粒子の個数をカウントして1μm当たりの金属粒子の数を算出し、これらを平均することで、基体表面における1μm当たりの金属粒子の数を求める。
 また、基体の凹凸表面に低電気抵抗率の金属粒子を付着させるには、めっき法や物理的気相成長法(PVD法)などの方法を用いればよい。特に、めっき法を利用することが好適であり、この場合、低電気抵抗率の金属のイオンを含有するとともに、所定の組成に調整しためっき浴中にステンレス鋼板の基体を浸漬させ、所定の条件で電気めっきまたは無電解めっきを施すことにより、基体の凹凸表面に低電気抵抗率の金属粒子を付着させることができる。基体表面に付着する金属粒子の個数(以下、金属粒子の付着個数ともいう)を制御するには、例えば電気めっきにより金属粒子を形成する場合、電流密度を制御すればよい。電流密度が高いほど形成する金属粒子の付着個数を多くすることができる。
凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比:1.0以上、15.0以下
 金属粒子を基体表面の凸部に十分に食い込ませて、所望の接触抵抗を得るには、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比を適正に調整する必要がある。具体的には、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比を、1.0以上、15.0以下とする。好ましくは1.3以上、3.0以下である。ここで、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比が1.0未満になると、金属粒子が基体表面の凸部に十分に食い込まなくなるため、所望の接触抵抗を得ることができない。一方、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比が15.0を超えると、凸部間の平均間隔よりも金属粒子が相対的に大きくなり過ぎるため、表面に形成した凹凸の効果が小さくなり、所望の接触抵抗が得られない。また、金属粒子の径が大きくなるため、形成時間が長くなり、コストが高くなる。
(4)その他
 上記のようにして、基体の凹凸表面に低電気抵抗率の金属粒子を付着させたのち、さらに表面処理皮膜を設けることもできる。
 かような表面処理皮膜は、特に限定されるものではないが、燃料電池用のセパレータの使用環境において耐食性や導電性に優れる材料を使用することが好ましく、例えば、金属層、合金層、金属酸化物層、金属炭化物層、金属窒化物層、炭素材料層、導電性高分子層、導電性物質を含有する有機樹脂層、またはこれらの混合物層とすることが好適である。
 また、基体の凹凸表面に低電気抵抗率の金属粒子を付着させたのち、または、さらに上記の表面処理皮膜を設けたのち、スキンパス圧延を施してもよい。この場合、低電気抵抗率の金属粒子を基体表面の凸部により深く食い込ませて、ステンレス鋼板表面の不動態皮膜を破壊することが可能となり、その結果、より有効にかような不動態皮膜を介さずにステンレス鋼と低電気抵抗率の金属粒子を接合(接触)させること可能となる。このため、一層の接触抵抗の低減が可能となる。ここで、スキンパス圧延の伸長率は、1%以上、10%以下とすることが好ましい。
 固体高分子形燃料電池のセパレータには、低い接触抵抗値が要求される。そこで、この要求特性に鑑み、後述する試料について、以下の評価を実施した。
(1)接触抵抗の評価
 接触抵抗は、所定の試料をカーボンペーパ(東レ(株)TGP-H-120)で挟み、さらに、その両側から銅板に金めっきを施した電極を接触させ、単位面積あたり0.98MPa(=10kg/cm)の圧力をかけて電流を流し、試料と一方の電極の電圧差を測定し、電気抵抗を算出した。この電気抵抗の測定値に接触面の面積を乗じた値を、接触抵抗値とし、以下の基準で評価した。
 ◎(合格、特に優れる):10.0mΩ・cm未満
 ○(合格):10.0mΩ・cm以上15.0mΩ・cm以下
 ×(不合格):15.0mΩ・cm
実施例1
 板厚0.1mmのSUS447J1(Cr:30質量%)を基体として用い、脱脂等の適切な前処理を実施した後、凹凸構造の形成処理として以下に示す電解浴組成および電解条件で陽極電解処理を施し、基体表面上に凹凸構造を形成した。ついで、低電気抵抗率の金属粒子の付着処理として以下に示すめっき浴組成およびめっき条件でめっき処理を施し、基体表面上に低電気抵抗率の金属粒子を付着させ、セパレータ用ステンレス鋼板を得た。試料No.9には伸長率1%のスキンパス圧延を行った。
 かくして得られたセパレータ用ステンレス鋼板を用いて、上記の要領で特性の評価を行った。
 また、比較のため、上記の凹凸の形成処理および/または低電気抵抗率の金属粒子の付着処理を行わなかったセパレータ用ステンレス鋼板を作製し、上記と同じ要領で、接触抵抗の評価を行った。
 なお、基体表面における凹凸構造の凸部の数および凸部間の平均間隔、低電気抵抗率の金属粒子の平均粒径および1μmあたりの個数は、前述した手法により測定した。
<凹凸構造の形成処理(陽極電解処理)条件>
 浴組成:3%硫酸
 温度:40℃
 電解時間:5~20秒
 アノード電流密度:2A/dm
<低電気抵抗率の金属粒子の付着処理(めっき処理)条件>
 浴組成:3%硫酸+0.2%Agイオン
 温度:40℃
 電気めっき時間:5~100秒
 カソード電流密度:0.02~1.50A/dm
 なお、上記で示した浴組成や条件以外のものであっても、所望の微細構造および低電気抵抗率の金属を形成できるならば、公知の方法に従っても良い。例えば、アルカリ性シアン化浴などでめっき処理を施してもいい。
 上記のようにして得られた各試料について、上記した手法により接触抵抗を評価した結果を表1に整理して示す。
Figure JPOXMLDOC01-appb-T000001
 同表より、次の事項が明らかである。
(a) 発明例No.1,5~12の試料は、接触抵抗が低く、良好な導電性が得られている。また、発明例No.1,5,6,8および9の試料は、特に優れた接触抵抗が得られている。
(b) 一方、比較例No.2の試料は、基体表面に所定の凹凸構造が形成されておらず、また低電気抵抗率の金属粒子も基体表面に付着していないため、所望の接触抵抗が得られていない。
(c) また、比較例No.3の試料は、低電気抵抗率の金属粒子が基体表面に付着していないため、所望の接触抵抗が得られていない。
(d) また、比較例No.4の試料は、基体表面に所定の凹凸構造が形成されていないため、所望の接触抵抗が得られていない。
(e) 比較例No.13の試料は、低電気抵抗率の金属粒子の1μm当たりの個数が1.0未満のため、所望の接触抵抗が得られていない。
(f) 比較例No.14の試料は、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比が1.0未満のため、所望の接触抵抗が得られていない。
(g) 比較例No.15の試料は、凸部間の平均間隔に対する低電気抵抗率の金属粒子の平均粒径の比が15.0を超えるため、所望の接触抵抗が得られていない。
 1 膜-電極接合体
 2,3 ガス拡散層
 4,5 セパレータ
 6 空気流路
 7 水素流路

Claims (2)

  1.  ステンレス鋼板からなる基体と、低電気抵抗率の金属粒子とを備え、
     上記基体の表面は凹部と凸部とを有する凹凸構造を備え、該凸部間の平均間隔が10nm以上300nm以下であり、
     上記低電気抵抗率の金属粒子の平均粒径が50nm~1.0μmであるとともに、上記低電気抵抗率の金属粒子が、上記基体の凹凸構造の表面に1μm当たり1.0個以上付着してなり、
     上記凸部間の平均間隔に対する上記低電気抵抗率の金属粒子の平均粒径の比が1.0~15.0である、燃料電池のセパレータ用ステンレス鋼板。
  2.  請求項1に記載の燃料電池のセパレータ用ステンレス鋼板の製造方法であって、
     ステンレス鋼板からなる基体に対し、陽極電解処理を施したのち、低電気抵抗率の金属のイオンを含有する溶液中でめっき処理を施す、燃料電池のセパレータ用ステンレス鋼板の製造方法。
     
PCT/JP2016/087451 2015-12-24 2016-12-15 燃料電池のセパレータ用ステンレス鋼板およびその製造方法 WO2017110656A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2017519349A JP6197977B1 (ja) 2015-12-24 2016-12-15 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
MX2018007688A MX2018007688A (es) 2015-12-24 2016-12-15 Lamina de acero inoxidable para separadores de celdas de combustible y metodo para producir las mismas.
CN201680075343.1A CN108432009B (zh) 2015-12-24 2016-12-15 燃料电池的隔离件用不锈钢板及其制造方法
EP16878546.7A EP3396758B1 (en) 2015-12-24 2016-12-15 Stainless steel sheet for fuel cell separators and method for producing same
CA3008593A CA3008593A1 (en) 2015-12-24 2016-12-15 Stainless steel sheet for fuel cell separators and method for producing the same
US16/064,633 US10714764B2 (en) 2015-12-24 2016-12-15 Stainless steel sheet for fuel cell separators and method for producing the same
KR1020187018403A KR102080472B1 (ko) 2015-12-24 2016-12-15 연료 전지의 세퍼레이터용 스테인리스 강판 및 그 제조 방법
ES16878546T ES2738748T3 (es) 2015-12-24 2016-12-15 Chapa de acero inoxidable para separadores de pila de combustible y método para producir la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015252293 2015-12-24
JP2015-252293 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110656A1 true WO2017110656A1 (ja) 2017-06-29

Family

ID=59090203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087451 WO2017110656A1 (ja) 2015-12-24 2016-12-15 燃料電池のセパレータ用ステンレス鋼板およびその製造方法

Country Status (10)

Country Link
US (1) US10714764B2 (ja)
EP (1) EP3396758B1 (ja)
JP (1) JP6197977B1 (ja)
KR (1) KR102080472B1 (ja)
CN (1) CN108432009B (ja)
CA (1) CA3008593A1 (ja)
ES (1) ES2738748T3 (ja)
MX (1) MX2018007688A (ja)
TW (1) TWI627790B (ja)
WO (1) WO2017110656A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153117A1 (ja) * 2019-01-21 2020-07-30 Jfeスチール株式会社 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (ja) 1994-12-26 1996-07-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
WO2000001025A1 (fr) * 1998-06-30 2000-01-06 Matsushita Electric Industrial Co., Ltd. Pile a combustible electrolytique en polymere solide
JP2002134136A (ja) * 2000-10-30 2002-05-10 Nippon Steel Corp 不働態金属の対カーボン低接触抵抗化表面処理法および対カーボン低接触抵抗性固体高分子型燃料電池用金属部材
WO2006137584A1 (ja) * 2005-06-22 2006-12-28 Nippon Steel Corporation ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法
JP2010013684A (ja) 2008-07-02 2010-01-21 Jfe Steel Corp 接触電気抵抗の低い通電部品用ステンレス鋼およびその製造方法
WO2013080533A1 (ja) 2011-11-30 2013-06-06 Jfeスチール株式会社 燃料電池セパレータ用ステンレス鋼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857873B2 (ja) * 2000-11-09 2006-12-13 三洋電機株式会社 燃料電池用セパレータとその製造方法、および燃料電池
JP4040008B2 (ja) * 2003-09-29 2008-01-30 本田技研工業株式会社 燃料電池用金属製セパレータおよびその製造方法
CA2714829C (en) * 2004-03-18 2016-02-09 Jfe Steel Corporation Metallic material for conductive member, separator for fuel cell using the same, and fuel cell using the separator
US20090042084A1 (en) * 2005-06-03 2009-02-12 Koji Kobayashi Separator for fuel cell and method for manufacturing the same
US8785080B2 (en) * 2008-01-03 2014-07-22 GM Global Technology Operations LLC Passivated metallic bipolar plates and a method for producing the same
KR101165542B1 (ko) * 2009-08-21 2012-07-16 현대하이스코 주식회사 표면에 코팅막이 형성된 연료전지용 금속 분리판 및 그 제조방법
JP6181371B2 (ja) * 2012-03-30 2017-08-16 本田技研工業株式会社 燃料電池用金属セパレータ及びその製造方法
EP2913875A4 (en) * 2013-02-01 2016-06-01 Nippon Steel & Sumitomo Metal Corp TITANIUM-BASED MATERIAL OR TITANIUM-ALLOY MATERIAL USED FOR FUEL CELL SEPARATOR HAVING EXCELLENT CARBON CONTACT CONDUCTIVITY AND EXCELLENT DURABILITY, FUEL CELL SEPARATOR USING THE SAME AND FUEL CELL
RU2645669C1 (ru) * 2014-06-16 2018-02-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Титановый материал для сепаратора твердополимерного топливного элемента, сепаратор с его использованием и содержащий его твердополимерный топливный элемент

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (ja) 1994-12-26 1996-07-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
WO2000001025A1 (fr) * 1998-06-30 2000-01-06 Matsushita Electric Industrial Co., Ltd. Pile a combustible electrolytique en polymere solide
JP2002134136A (ja) * 2000-10-30 2002-05-10 Nippon Steel Corp 不働態金属の対カーボン低接触抵抗化表面処理法および対カーボン低接触抵抗性固体高分子型燃料電池用金属部材
WO2006137584A1 (ja) * 2005-06-22 2006-12-28 Nippon Steel Corporation ステンレス鋼、チタンまたはチタン合金製固体高分子型燃料電池用セパレータとその製造方法およびセパレータのそり・ひねり評価方法
JP2010013684A (ja) 2008-07-02 2010-01-21 Jfe Steel Corp 接触電気抵抗の低い通電部品用ステンレス鋼およびその製造方法
WO2013080533A1 (ja) 2011-11-30 2013-06-06 Jfeスチール株式会社 燃料電池セパレータ用ステンレス鋼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153117A1 (ja) * 2019-01-21 2020-07-30 Jfeスチール株式会社 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法
JP6763501B1 (ja) * 2019-01-21 2020-09-30 Jfeスチール株式会社 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法

Also Published As

Publication number Publication date
EP3396758A1 (en) 2018-10-31
TW201727980A (zh) 2017-08-01
JPWO2017110656A1 (ja) 2017-12-21
US10714764B2 (en) 2020-07-14
ES2738748T3 (es) 2020-01-27
TWI627790B (zh) 2018-06-21
CA3008593A1 (en) 2017-06-29
KR102080472B1 (ko) 2020-02-24
CN108432009B (zh) 2021-03-12
JP6197977B1 (ja) 2017-09-20
KR20180087384A (ko) 2018-08-01
MX2018007688A (es) 2018-08-15
US20180375116A1 (en) 2018-12-27
CN108432009A (zh) 2018-08-21
EP3396758A4 (en) 2018-11-21
EP3396758B1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
US7214440B2 (en) Metallic separator for fuel cell and production method for the same
US11085120B2 (en) Stainless steel sheet for fuel cell separators and production method therefor
JP4702365B2 (ja) 燃料電池用セパレータ及びその製造方法
WO2017026104A1 (ja) 固体高分子形燃料電池のセパレータ用金属板およびその製造用金属板
JP6066024B1 (ja) 固体高分子形燃料電池のセパレータ用金属板
JP2010027262A (ja) 燃料電池用セパレータ及び燃料電池
JP6414369B1 (ja) 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
US10431832B2 (en) Stainless-steel foil for separator of polymer electrolyte fuel cell
JP5573039B2 (ja) 固体高分子形燃料電池セパレータ用ステンレス鋼およびその製造方法
JP6197977B1 (ja) 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
JP5806099B2 (ja) 燃料電池用セパレータの表面処理方法
JP5699624B2 (ja) 固体高分子形燃料電池セパレータ用金属板およびその製造方法
JP5700183B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス箔
JP5466269B2 (ja) 燃料電池用セパレータ及び燃料電池
JP6015880B1 (ja) 固体高分子形燃料電池のセパレータ用ステンレス鋼板
JP2005302610A (ja) 燃料電池及び燃料電池用金属製拡散層の製造方法
WO2017212656A1 (ja) 燃料電池のセパレータ用ステンレス鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017519349

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3008593

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007688

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018403

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016878546

Country of ref document: EP