WO2013080533A1 - 燃料電池セパレータ用ステンレス鋼 - Google Patents

燃料電池セパレータ用ステンレス鋼 Download PDF

Info

Publication number
WO2013080533A1
WO2013080533A1 PCT/JP2012/007626 JP2012007626W WO2013080533A1 WO 2013080533 A1 WO2013080533 A1 WO 2013080533A1 JP 2012007626 W JP2012007626 W JP 2012007626W WO 2013080533 A1 WO2013080533 A1 WO 2013080533A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
contact resistance
less
convex
fuel cell
Prior art date
Application number
PCT/JP2012/007626
Other languages
English (en)
French (fr)
Inventor
名越 正泰
井手 信介
石川 伸
槇石 規子
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280058529.8A priority Critical patent/CN103959524B/zh
Priority to EP12853172.0A priority patent/EP2770567B1/en
Priority to ES12853172.0T priority patent/ES2606207T3/es
Priority to KR1020147014480A priority patent/KR101515417B1/ko
Priority to US14/355,661 priority patent/US9531014B2/en
Priority to JP2013525020A priority patent/JP5454744B2/ja
Publication of WO2013080533A1 publication Critical patent/WO2013080533A1/ja
Priority to US15/352,266 priority patent/US9871258B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/20Measuring earth resistance; Measuring contact resistance, e.g. of earth connections, e.g. plates
    • G01R27/205Measuring contact resistance of connections, e.g. of earth connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a stainless steel for a fuel cell separator (stainless steel for fuel cell separator) having excellent contact electrical resistance (hereinafter also referred to as contact resistance) characteristics.
  • This fuel cell generates electricity by reacting hydrogen and oxygen (reaction (of hydrogen with oxygen).
  • Its basic structure has a sandwich-like structure (an-electrolyte-membrane), an ion-exchange membrane, two electrodes (a-fuel electrode) ) And an air electrode), a diffusion layer of hydrogen and oxygen (air), and two separators.
  • phosphoric acid form phosphoric acid fuel cell
  • molten carbonate form molten carbonate carbonate fuel cell
  • solid oxide form solid oxide fuel cell
  • alkaline form alkaline fuel cell
  • solid high Molecular forms solid polymer fuel cell
  • the polymer electrolyte fuel cell is (1) the operating temperature is about 80 ° C. is much lower than the molten carbonate type and phosphoric acid type fuel cells, etc. It has features such as light weight and downsizing, (3) fast start-up (a short transient time), fuel efficiency (fuel efficiency), and high output ⁇ density.
  • polymer electrolyte fuel cells are used in electric vehicles (electric vehicles), compact homes and portable power sources (compact distributed power sources for home use) (small stationary generators) ( It is one of the fuel cells attracting the most attention today for use as a stationary (type) compact (electric) generator.
  • Solid polymer fuel cells are based on the principle of extracting electricity from hydrogen and oxygen through a polymer membrane.
  • the membrane is composed of a polymer membrane and a membrane-electrode assembly (MEA :) that integrates an electrode material such as carbon black carrying a platinum catalyst on the front and back surfaces of the membrane (carryingarrya platinum catalyst).
  • MEA membrane-electrode assembly
  • Membrane-Electrode Assembly (thickness of several tens to several hundreds ⁇ m) 1 is sandwiched between gas diffusion layers 2 and 3 such as carbon cloth and separators 4 and 5. This is used as a single cell (single cell) ⁇ , and an electromotive force is generated between the separators 4 and 5.
  • the gas diffusion layer is often integrated with the MEA. Dozens to hundreds of single cells are connected in series to form a fuel cell stack (form a fuel cell stack).
  • the separator has (1) conductors that carry generated electrons (conductors carrying electrons generated), (2) oxygen (air) and hydrogen channels ( channels for oxy (air) and hydrogen) (air channel 6 and hydrogen channel 7 in Fig. 1 respectively) and (3) generated water and exhaust gas discharge channels (channels for water and exhaust gas) (Fig. 1 respectively) Functions as the air flow path 6 and the hydrogen flow path 7) are required.
  • Patent Document 1 discloses a technique in which a metal that easily forms a passive film is used as a separator.
  • a metal that easily forms a passive film causes an increase in contact resistance, leading to a decrease in power generation efficiency.
  • these metal materials have problems to be improved such as a contact resistance larger than that of the carbon material and inferior in corrosion resistance.
  • Patent Document 2 discloses a technique for reducing contact resistance and ensuring high output by applying gold plating to the surface of a metal separator such as SUS304 (a metallic separator coated with gold). It is disclosed. However, it is difficult to prevent the occurrence of pinholes with thin gold plating, and conversely, thick gold plating costs high.
  • Patent Document 3 discloses a method for obtaining a separator having improved electrical conductivity by dispersing carbon powders in a ferritic stainless steel substrate.
  • carbon powder even when carbon powder is used, there is a problem of cost since the surface treatment of the separator requires a corresponding cost. Further, it has been pointed out that the separator subjected to the surface treatment has a problem that the corrosion resistance (corrosion resistance) is remarkably lowered when scratches or the like are generated during assembly.
  • Patent Document 4 is a stainless steel plate characterized in that the average interval between the local peaks of the surface roughness curve is 0.3 ⁇ m or less, whereby the contact resistance can be reduced to 20 m ⁇ ⁇ cm 2 or less.
  • This technology has made it possible to provide a fuel cell separator material made of stainless steel.
  • contact resistance tends to increase due to surface deterioration in a positive electrode (air electrode) exposed to a high potential. Therefore, it is necessary that the contact resistance of 10 m ⁇ ⁇ cm 2 or less can be maintained for a long time in the usage environment.
  • the higher the area ratio of the portion having a predetermined surface roughness formed on the stainless steel surface the more advantageous for the above characteristics.
  • the area ratio of the portion having the predetermined surface roughness is not 100%, and it is industrially preferable that the performance is achieved with a certain level or more.
  • Patent Document 5 discloses a stainless steel for a fuel cell separator having a low surface contact resistance in which a region having a fine concavo-convex structure (micropits) is present in an area ratio of 50% or more on the surface of a specific steel containing Mo. ing.
  • a region having a fine concavo-convex structure micropits
  • sufficient durability of contact resistance cannot be obtained with such a surface structure mainly composed of depressions.
  • the fuel cell separator is usually processed into a part by processing a plate-like material by press forming. It is desirable that there is no significant increase in contact resistance even when subjected to sliding with a die during pressing. Also, in Patent Documents 2 and 3 that form a film on the surface, there is a part where the film peels off during processing, so it is necessary to batch process that part after pressing, which increases the number of processes and decreases production efficiency and increases costs. Since it invites, it is not preferable.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a stainless steel for a fuel cell separator having a low surface contact resistance.
  • the present inventors improve surface contact resistance characteristics (hereinafter also referred to as contact resistance characteristics) even if the area ratio is not necessarily 100% by controlling the surface properties of the stainless steel for fuel cell separators. And a method for making it possible to maintain the surface contact resistance over a long period of time. As a result, the following knowledge was obtained.
  • the steel surface has a fine concavo-convex structure with an average interval between concave portions or convex portions (average interval between fine concavo-convex portions) of 20 mm to 150 mm. And the area needs to be a certain level or more.
  • the fine concavo-convex structure represents a structure having a height difference of 15 nm or more between the bottom of the concave portion and the apex of the convex portion adjacent to the concave portion.
  • the present inventors have a triangular pyramid structure at least near the tip of the fine concavo-convex structure, so that the surface contact resistance is further reduced, the surface contact resistance is unlikely to increase in the use environment, and a low contact resistance is achieved. It has been found that the durability which can be maintained for a long time is further improved. Furthermore, it has been found that by adding a trapezoidal protrusion structure having a micron order size to the surface in addition to the fine concavo-convex structure, an increase in contact resistance can be significantly suppressed even when subjected to sliding by processing.
  • the present invention is based on the above findings, and features are as follows.
  • Surface contact characterized in that it is a stainless steel containing 16 to 40% by mass of Cr, and a region having a fine concavo-convex structure exists on the surface of the stainless steel in an area ratio of 50% or more.
  • the region having a fine concavo-convex structure is a region having an concavo-convex structure in which an average interval between concave portions or convex portions is 20 nm or more and 150 nm or less when the surface is observed with a scanning electron microscope. It is.
  • the convex portion of the fine concavo-convex structure has a triangular pyramid shape in which an average angle of apexes of the tip portion is 80 degrees or more and 100 degrees or less.
  • Trapezoidal protrusion structures having an average height of 0.15 ⁇ m to 2 ⁇ m and an average diameter of 3 ⁇ m to 50 ⁇ m are dispersed in an area ratio of 5% to 30%.
  • the stainless steel for a fuel cell separator having a low surface contact resistance according to the above [3] to [4].
  • a stainless steel for a fuel cell separator having a low surface contact resistance can be obtained. That is, the stainless steel for fuel cell separators of the present invention is excellent in surface contact resistance characteristics. Furthermore, since the surface contact resistance can be maintained for a long time, the stainless steel for a fuel cell separator is excellent in practicality. Furthermore, contact resistance deterioration can be minimized even after processing such as pressing. Further, by using the stainless steel of the present invention as a separator instead of the conventional expensive carbon or gold plating, an inexpensive fuel cell can be provided and the spread of the fuel cell can be promoted.
  • FIG. 1 It is a schematic diagram which shows the basic structure of a fuel cell. It is a figure which shows the result of having observed the surface in which the area
  • the present invention will be specifically described below. First, the stainless steel targeted in the present invention will be described.
  • the stainless steel used as a material there is no particular restriction on the steel type or the like as long as it has the corrosion resistance required in the operating environment of the fuel cell.
  • it is necessary to contain 16% by mass or more of Cr.
  • the Cr content is less than 16% by mass, the separator cannot be used for a long time.
  • it is 18 mass% or more.
  • the Cr content exceeds 40% by mass, the cost increases excessively. Therefore, the Cr content is 40% by mass or less.
  • C 0.03% or less C reacts with Cr in stainless steel and precipitates as Cr carbide in the grain boundary (precipitate chromium carbide in the grain boundary), which may lead to a decrease in corrosion resistance. Therefore, the smaller the C content, the better. If C is 0.03% or less, the corrosion resistance is not significantly reduced. Therefore, 0.03% or less is preferable. More preferably, it is 0.015% or less.
  • Si 1.0% or less Si is an effective element for deoxidation, and is added at the melting stage of stainless steel. However, if excessively contained, stainless steel is hardened (causes hardening of the stainless steel sheet) and ductility may be reduced (decrease ductility), so 1.0% or less is preferable.
  • Mn 1.0% or less Mn combines with inevitably mixed S, has the effect of reducing S dissolved in stainless steel, suppresses segregation of sulfur at the grain boundary, and performs hot rolling. It is an effective element for preventing cracking of the steel sheet during hot rolling. However, even if added over 1.0%, there is almost no increase in the effect of addition. On the other hand, an excessive addition causes an increase in cost. Therefore, when it contains Mn, 1.0% or less is preferable.
  • S 0.01% or less S is an element that lowers the corrosion resistance by binding to Mn to form MnS, and is preferably lower. If it is 0.01% or less, the corrosion resistance will not be significantly reduced. Therefore, when it contains S, 0.01% or less is preferable.
  • P 0.05% or less P is preferable to be low because it causes a decrease in ductility, but if it is 0.05% or less, the ductility is not significantly decreased. Therefore, when it contains P, 0.05% or less is preferable.
  • Al 0.20% or less
  • Al is an element used as a deoxidizing element.
  • ductility will fall. Therefore, when it contains Al, 0.20% or less is preferable.
  • N 0.03% or less N is an element effective for suppressing local corrosion such as crevice corrosion of stainless steel. However, if it is added over 0.03%, it takes a long time to add N in the melting stage of the stainless steel, so that the productivity is lowered and the formability of the steel may be lowered. Therefore, N is preferably 0.03% or less.
  • Ni 20% or less
  • Cu 0.6% or less
  • Mo 2.5% or less
  • Ni 20% or less
  • Ni is an element that stabilizes the austenitic phase, and is added when producing austenitic stainless steel. At this time, if the Ni content exceeds 20%, excessive consumption of Ni causes an increase in cost. Therefore, the Ni content is preferably 20% or less.
  • Cu 0.6% or less
  • Cu is an element effective for improving the corrosion resistance of stainless steel. However, if it is added in excess of 0.6%, hot workability is deteriorated, and productivity may be reduced. In addition, excessive addition of Cu causes an increase in cost. Therefore, when adding Cu, 0.6% or less is preferable.
  • Mo 2.5% or less Mo is an element effective in suppressing local corrosion such as crevice corrosion of stainless steel. Therefore, it is effective to add Mo when used in harsh environments. However, if added over 2.5%, stainless steel may be embrittled to reduce productivity, and excessive consumption of Mo leads to an increase in cost. Therefore, when adding Mo, 2.5% or less is preferable.
  • one or more of Nb, Ti, and Zr can be added to improve intergranular corrosion resistance in addition to the elements described above. However, if it exceeds 1.0% in total, ductility may be reduced. Moreover, in order to avoid the cost increase by element addition, when adding, 1 or more types of Ti, Nb, and Zr are preferably 1.0% or less in total. The balance is Fe and inevitable impurities.
  • the average interval between concave portions or convex portions is 20 to 150 nm.
  • a region having a fine concavo-convex structure (hereinafter, simply referred to as “region having a fine concavo-convex structure”) needs to be formed on the surface.
  • a region having a fine concavo-convex structure exists in an area ratio of 50% or more. Preferably it is 80% or more.
  • the concavo-convex structure refers to a structure in which the height difference between the bottom of the concave portion and the apex of the convex portion adjacent to the concave portion is 15 nm or more.
  • the contact resistance is not sufficiently lowered. This is probably because the number of contact points decreases.
  • an endurance test simulating the use environment as a fuel cell for evaluating durability, it was found that foreign matter was formed on the surface of the stainless steel and contact resistance increased with the passage of time. This is because if the uneven structure is too small, it is likely to be affected by this foreign matter.
  • the tip part of the convex part of the fine concavo-convex structure into a triangular pyramid shape with an average vertex angle of 80 degrees or more and 100 degrees or less.
  • the average angle of the vertices is the average of the angles around the vertices in the three planes constituting the apex of the triangular pyramid.
  • the three planes are composed of cubic 110 planes.
  • the apex of the triangular pyramid need not be sharp at the atomic level.
  • An example of the triangular pyramid protrusion viewed from the cross section is shown in FIG.
  • the present invention is not limited to the following mechanism.
  • An oxide layer with a thickness of several nm is formed on the surface of stainless steel. Although this oxide layer is thin, it causes the contact resistance to increase. Therefore, it is desirable that the oxide layer be destroyed when the surface of the stainless steel and the carbon paper of the other party come into contact with each other in the fuel cell. In particular, after the durability test, the thickness and composition of the oxide layer may change and the resistance may increase. If the tip of the protrusion has a triangular pyramid structure, the radius of curvature of the tip is small, so that the pressure at the time of contact increases and the oxide film is easily destroyed. Therefore, it is considered that the contact resistance after the durability test is further reduced.
  • Evaluation of the fine concavo-convex structure as described above can be performed by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the SEM that evaluates the fine concavo-convex structure is not limited to the model, but the secondary electron acceleration voltage is 5 kV or less, preferably 1 kV or less. It is an apparatus that can be obtained, and is an apparatus that can evaluate the average interval of fine irregularities from the obtained secondary electron image.
  • Such SEM can be evaluated, for example, by measuring the number of fine protrusions or depressions that cross a line of a certain distance and dividing the measurement distance by the number.
  • the apex of the triangular pyramid shape can be evaluated by measuring the number of corresponding vertices within a certain area.
  • the average distance between the protrusions is 1000 / (N 0.5 ) nm. Or you may obtain the distance between convex parts and the distance between vertices by Fourier-transforming an image.
  • the average of the angles of the vertices on the three surfaces forming the apex of the triangular pyramid is 80 ° or more and 100 ° or less.
  • the angle of the vertex in a surface here says the angle of the surface when it sees from a perpendicular direction with respect to each surface.
  • FIG. 2 shows the result of observation of the surface on which a region having a fine concavo-convex structure was formed with a scanning electron microscope for SUS 304L of the present invention in Examples described later.
  • FIG. 3 shows the result of observing the surface on which a region having a fine concavo-convex structure was formed with a scanning electron microscope for SUS 443CT of the present invention, which will be described later. These fine unevenness average intervals were 25 nm and 150 nm, respectively.
  • FIG. 4 shows the result of observing the surface of SUS 304L on which a region having a fine concavo-convex structure is not formed with a scanning electron microscope.
  • FIG. 7 it can be seen that, unlike FIGS. 2 and 3, there are a large number of triangular pyramid-shaped uneven structures having sharp edges on the surface.
  • the number of convex portions was 150 per 1 ⁇ m 2 . This is 82 nm in the average protrusion interval.
  • the average interval between the concave portions or the convex portions needs to be 20 nm or more and 150 nm or less, more preferably 120 nm or less, and further preferably 100 nm or less.
  • the area ratio can be obtained by observing with an SEM, and was investigated with an area of 100 ⁇ m square. A region having a fine concavo-convex structure has a bright contrast because the amount of secondary electron emission increases.
  • region which has a fine concavo-convex structure was evaluated by binarizing a secondary electron image using commercially available software, and calculating
  • the surface contact resistance and the surface contact resistance after the durability test were measured when carbon paper CP120 manufactured by Toray Industries, Inc. was used, the carbon paper CP120 was brought into contact with steel, and a load of 20 kgf / cm 2 was applied. Value.
  • FIG. 5 shows the relationship between the fine uneven average interval, the area ratio of the region having the fine uneven structure, and the surface contact resistance (before the durability test). From FIG. 5, it can be seen that a low surface contact resistance of 10 m ⁇ ⁇ cm 2 or less is obtained when the area ratio of the region having a fine concavo-convex structure is 50% or more and the fine concavo-convex average interval is in the range of 15 to 230 nm. Recognize.
  • FIG. 5 shows the relationship between the fine uneven average interval, the area ratio of the region having the fine uneven structure, and the surface contact resistance (before the durability test). From FIG. 5, it can be seen that a low surface contact resistance of 10 m ⁇ ⁇ cm 2 or less is obtained when the area ratio of the region having a fine concavo-convex structure is 50% or more and the fine concavo-convex average interval is in the range of 15 to 230 nm. Recognize.
  • FIG. 5 shows the relationship between the fine uneven average interval, the area ratio of the
  • FIG. 6 shows the relationship between the fine uneven average interval, the area ratio of the region having the fine uneven structure, and the surface contact resistance after the durability test.
  • the surface contact resistance is 10 m ⁇ ⁇ cm 2 or less even after the durability test.
  • the area having a fine concavo-convex structure with a fine concavo-convex average interval in the range of 20 nm to 150 nm on the surface of stainless steel is an area. It is necessary to be present at a rate of 50% or more. If it is less than 50%, the effect of increasing the contact point with the electrode due to fine unevenness is insufficient, and a sufficiently low surface contact resistance (10 m ⁇ ⁇ cm 2 or less) cannot be obtained.
  • the fine concavo-convex structure has a fine granular shape or a gentle shape ([FIG. 2] [FIG. 3]), but the fine concavo-convex structure ([[2] and [3]) having a convex portion having a triangular pyramid shape ([ As shown in FIG. 7], the durability was further improved.
  • the increase in contact resistance after the 24 hour endurance test is that the sample having an average interval between the convex portions of 150 nm or less has no triangular pyramid-shaped convex portion (2.0 m ⁇ ⁇ cm 2 or more). In the initial contact resistance, no clear difference was observed in the shape of the convex portion.
  • the inventors have observed the surface shape and contact resistance when observed in a larger micron order on the surface having the fine uneven structure as described above, and the contact resistance after the durability test, and sliding The relationship with the contact resistance after the test was investigated.
  • a surface shape can be easily measured with a confocal laser microscope (confocal laser microscope) or an optical interference surface shape measuring device (optical interference type profilometer).
  • the surface shape results of a ferritic stainless steel SUS 443CT ferrritic stainless steel belonging to JIS standard SUS443J1, such as “JFE443CT” manufactured by JFE Steel Co., Ltd.
  • the size of the field of view is 0.35 mm x x 0.26 mm.
  • the measurement resolution is 0.55 ⁇ m.
  • FIG. 9 and FIG. 11 which are examples of the present invention, it can be seen that a trapezoidal protrusion structure not formed in the comparative examples of FIG. 10 and FIG. 12 is formed.
  • FIG. 9 shows a polished stainless steel material treated, and the presence of a trapezoidal protrusion structure can be clearly seen.
  • [FIG. 11] is processed with respect to stainless steel foil, and it turns out that the trapezoidal protrusion structure is superimposed on the unevenness
  • the trapezoidal protrusion structure of [FIG. 9] and [FIG. 11] corresponds to the crystal grains on the stainless steel surface. I found out. From the obtained data, the average height of the trapezoidal protrusion structure, the average diameter viewed from the direction perpendicular to the surface, and the area ratio of the trapezoidal protrusion structure were evaluated.
  • the contact resistance and the contact resistance after the durability test are the resistance value when a load of 20 kgf / cm 2 is applied by using carbon paper CP120 manufactured by Toray Industries, Inc. did. Moreover, after performing a sliding test, the contact resistance was measured by the above method.
  • a fine structure in a predetermined range is formed on the surface, a low contact resistance of 10 m ⁇ ⁇ cm 2 or less can be obtained as described above.
  • a trapezoidal protrusion structure with an average height of 0.15 ⁇ m to 2 ⁇ m and an average diameter viewed from the surface of 3 ⁇ m to 50 ⁇ m is formed with an area ratio of 5% to 30%, A low contact resistance of 10 m ⁇ ⁇ cm 2 or less is obtained even after dynamic testing.
  • the fine concavo-convex structure on the steel sheet surface is damaged by rubbing the indenter (die) and the steel sheet surface.
  • the trapezoidal protrusion structure exists on the surface, the protrusion mainly comes into contact with the indenter (mold) after the sliding test, so that the damaged area is limited to the trapezoidal protrusion structure. Therefore, most of the fine concavo-convex structure remains after the sliding test, and it is considered that low contact resistance can be maintained.
  • a height of 0.15 ⁇ m or more is necessary. To make the height of the trapezoidal protrusion structure too large takes extra time and cost during manufacturing, so it is preferable to keep the height below 2 ⁇ m.
  • the area ratio of the trapezoidal protrusion structure shall be 5% to 30%. Outside this range, the contact resistance after processing is increased, which is not preferable. If the area ratio is less than 5%, the trapezoidal protrusion structure is easily scraped by sliding, and the area where the fine concavo-convex structure disappears increases. On the other hand, when the area ratio exceeds 30%, the fine concavo-convex structure on the surface of the trapezoidal protrusion structure tends to disappear due to contact, so that the contact resistance increases. It should be noted that trapezoidal protrusion structures are not effective if they are concentrated. It is desirable to disperse as uniformly as possible on the surface.
  • the trapezoidal protrusion structure is a region having a certain area with a height higher than the surroundings, and can be quantitatively confirmed by the shape measuring method as described above. Qualitatively, the presence can be easily confirmed by inclining and observing the sample with an SEM. An example of this is shown in FIG.
  • the surface shape is evaluated with an optical interference surface shape measuring device in the range of observation field of 0.35 mm x x 0.26 mm.
  • Set any five straight lines parallel to the longitudinal direction of 0.35 mm in this observation field, and if there is a flat part with a length of 2 ⁇ m or more on either line and a height of 0.05 ⁇ m or more from the left and right Is a trapezoidal protrusion structure.
  • the upper part of the trapezoidal protrusion structure may not be parallel to the sample surface, and may be a gentle curved surface instead of a flat surface.
  • a fine concavo-convex structure may exist above the trapezoidal protrusion structure.
  • each trapezoidal protrusion structure is a flat portion of the trapezoidal protrusion structure, and the average height of any 10 positions on the evaluated straight line and the trapezoidal protrusion structure on the left and right of the trapezoidal protrusion structure.
  • the difference between the average height of each of the five points on the left and right of an arbitrary place on the evaluated straight line of the portion having no protrusion structure was defined as the height of the trapezoidal protrusion structure.
  • the average height was a value obtained by averaging the heights of all the trapezoidal protrusion structures on the evaluated straight line.
  • the diameter of each trapezoidal protrusion structure is the average of the diameters of all the trapezoidal protrusion structures on the evaluated straight line as the length of the straight line projected on the sample surface of the flat part of the trapezoidal protrusion structure in the straight line.
  • the average diameter of the trapezoidal protrusion structure was the average diameter of the trapezoidal protrusion structure.
  • Find the ratio of the sum of the diameters of the trapezoidal projection structure (sum of the length of the upper part of the flat part of the trapezoidal projection structure) to the length of the investigated line (0.35 mm x 5). was defined as the area ratio.
  • each diameter (the length of the upper part of the flat part) is 20 ⁇ m, 30 ⁇ m, 10 ⁇ m.
  • the average diameter is 20 ⁇ m ( ⁇ (20 + 30 + 10) / 3), and the area ratio is 3.4% (0.034 ⁇ (20 + 30 + 10) / (350 ⁇ 5)).
  • a method for producing stainless steel for a fuel cell separator having a low surface contact resistance according to the present invention will be described. Although there is no restriction
  • ⁇ Steel strip (slab) adjusted to a suitable component composition is heated to a temperature of 1100 ° C or higher and then hot-rolled. Next, after annealing at a temperature of 800 to 1100 ° C., cold rolling and annealing are repeated to obtain stainless steel.
  • the thickness of the obtained stainless steel plate is preferably about 0.02 to 0.8 mm.
  • a sulfuric acid aqueous solution can be used for the electrolytic treatment.
  • As the acid treatment for example, hydrofluoric acid solution immersion can be used. Formation of a region having a fine concavo-convex structure and adjustment of the area ratio can be performed by changing the above-described treatment, particularly acid treatment conditions (concentration and type of liquid, temperature, immersion time).
  • the use of the crystal orientation dependency of etching with an acidic solution can handle a large area without requiring a complicated process (for example, ion irradiation). Desirable because it can.
  • the present inventors have found that a triangular pyramid shape can be formed in a wide surface area by controlling the crystal orientation and etching conditions.
  • Ferritic stainless steel can form high-density triangular pyramid-shaped convex parts composed of microfacets with (001) faces made of crystal grains whose orientation perpendicular to the surface is close to ND ⁇ 111>. .
  • Triangular pyramid-shaped protrusions can be formed on crystal planes with different orientations, but the number is smaller than that of crystal grains close to ND ⁇ 111>. Therefore, a texture with many crystal grains whose orientation perpendicular to the surface is close to ND ⁇ 111> is obtained by rolling. Such confirmation of texture can be easily evaluated by observing the structure and obtaining an electron beam backscattering distribution (EBSD) image.
  • EBSD electron beam backscattering distribution
  • the formation of the trapezoidal protrusion structure due to the difference in crystal orientation of the crystal grains eliminates the need for extra steps such as masking and etching. desirable.
  • the fine concavo-convex structure on the surface described above is formed even in a relatively short time, and the processing time is lengthened, so that the difference in height between crystal orientations becomes large due to the difference in the etching rate depending on the crystal orientation. Since the above-described ND ⁇ 001> plane is difficult to be etched, grains having this crystal orientation have a trapezoidal protrusion structure.
  • the electrolytic treatment was performed by applying an alternating current with a current density of 5 A / dm 2 for 4.5 seconds using an electrolyte solution obtained by dissolving 1 g / L of ferrous sulfate equivalent to 1 g / L in a 3% by mass sulfuric acid aqueous solution.
  • an electrolyte solution obtained by dissolving 1 g / L of ferrous sulfate equivalent to 1 g / L in a 3% by mass sulfuric acid aqueous solution.
  • a sample not subjected to the electrolytic treatment and the acid treatment immersed in the pickling solution and a sample subjected to only the electrolytic treatment were also prepared.
  • the surface contact resistance was measured, and the surface was evaluated by SEM (SUPRA55VP manufactured by Carl Zeiss).
  • the acceleration voltage was set at 0.5 kV, and the surface shape was evaluated from the secondary electron image of 20,000 to 50,000 times obtained by the chamber detector. For details, draw 5 straight lines with a length of 1 ⁇ m in any direction at 5 locations in the field of view, measure the total number of fine protrusions crossed by these lines, and measure 5 ⁇ m on the protrusions. By dividing by the total number, the fine unevenness average interval was obtained.
  • the area ratio of the region having a fine concavo-convex structure was evaluated using an image acquired by an in-lens detector with an acceleration voltage set to 0.5 kV.
  • the secondary electron image was binarized with commercially available software (Photoshop), and the area of a bright region where fine irregularities were formed was calculated.
  • the surface contact resistance was measured by using a carbon paper CP120 manufactured by Toray Industries, Inc., contacting the carbon paper CP120 and steel, and applying a load of 20 kgf / cm 2 . Moreover, as a result of measuring the said surface contact resistance, about the sample with low surface contact resistance, the durability test was further done and the surface contact resistance after a test was measured. The durability test was carried out by holding the sample for 24 hours in a sulfuric acid solution of pH 3 with sodium fluoride added so that the fluoride ion would be 0.1 ppm under conditions of 0.6 V vs Ag / AgCl and 80 ° C. . The surface contact resistance measurement method is the same as described above.
  • Table 1 shows the average interval between the fine irregularities and the area ratio of the region having the fine irregular structure, the surface contact resistance before and after the durability test, and the increase in the surface contact resistance due to the durability test.
  • the surface contact resistance is 10 m ⁇ ⁇ cm 2 or less. It has become. Furthermore, the surface contact resistance after the endurance test is 10 m ⁇ ⁇ cm 2 or less, and the low surface contact resistance is maintained even in a long-time use environment.
  • the electrolytic treatment was performed in a 3% by mass sulfuric acid aqueous solution, the acid immersion treatment was performed in 5% by mass hydrofluoric acid, and depending on conditions, ferrous sulfate equivalent to 3 g / L was added as iron ions. Moreover, depending on conditions, it carried out in 10 mass% hydrochloric acid.
  • the contact resistance was measured, and the surface microstructure was evaluated by SEM (SUPRA55VP manufactured by Carl Zeiss).
  • the acceleration voltage was set to 0.5 kV, and the shape of the protrusion structure and the average protrusion distance were evaluated from the secondary electron image obtained by a chamber detector with a surface shape of 20,000 to 100,000 times. Whether or not the convex portion has a triangular pyramid shape was determined based on whether or not three straight lines corresponding to the sides extend from the center of the convex portion (see FIG. 7). In the evaluation of the average interval, the number of convex portions having a triangular pyramid shape in the observation visual field in the range of 1 ⁇ m ⁇ 1 ⁇ m was counted.
  • the contact resistance was measured by using a carbon paper CP120 manufactured by Toray Industries, Inc., contacting the carbon paper CP120 with steel, and applying a load of 20 kgf / cm 2 . Further, as a result of measuring the contact resistance, a sample having a low contact resistance was further subjected to a durability test to measure the contact resistance after the test. The durability test was performed by holding the sample for 500 hours under conditions of 0.6 V vs Ag / AgCl and 80 ° C. in a sulfuric acid solution of pH 3 to which sodium fluoride was added so that the fluoride ion was 0.1 ppm. . The contact resistance measurement method is the same as described above. The above evaluation results are shown in Table 2 together with the sample preparation conditions.
  • the example of the present invention having a triangular pyramid-shaped protrusion on the surface at an average interval of 150 nm or less has an initial contact resistance of 10 m ⁇ ⁇ cm 2 or less after 500 hours of durability test, It can be seen that low contact resistance is maintained even in long-term use environments.
  • the invention example in which the average interval between the convex portions is 100 nm or less has a further excellent durability with a contact resistance of 8 m ⁇ ⁇ cm 2 or less after the durability test.
  • the granular fine concavo-convex structure has a larger increase in contact resistance after the durability test than the example of the present invention having the triangular concavo-convex fine concavo-convex structure. Moreover, it is not a fine concavo-convex structure but has a small pit-like structure outside the scope of the present invention, and its durability is low and cannot be used.
  • the measurement results are also shown for the stainless steel vapor-deposited with Au as a reference. Since the example of the present invention is not greatly different from this result, it can be said that the contact resistance is very small.
  • the triangular pyramid-shaped convex part was composed of three (100) facets of the bcc structure. . Therefore, the average angle of the vertices is approximately 90 °.
  • a ferritic stainless steel SUS 443CT of the same lot (lot A) as in the example cold rolling and annealing pickling were repeated to produce a stainless steel plate having a thickness of 0.2 mm.
  • foils with different textures were manufactured by changing the rolling reduction and annealing temperature (lots B to E).
  • a lot F was prepared by subjecting a “JFE443CT” cold-rolled plate having a thickness of 1 mm to mirror polishing with an alumina buff finish. Subsequently, the treatment was performed under the conditions shown in Table 3.
  • the electrolytic treatment was performed in a 3% by mass sulfuric acid aqueous solution, the acid immersion treatment was performed in 5 to 10% by mass hydrofluoric acid, and depending on the conditions, ferrous sulfate equivalent to 3 g / L was added with iron ions. .
  • the contact resistance was measured, and the surface microstructure was evaluated in the same manner as in Example 2 by SEM (SUPRA55VP manufactured by Carl Zeiss).
  • the surface shape was evaluated with an optical interference surface shape measuring device Zygo (Canon Marketing Japan).
  • the field of view was 0.35 mm x 0.26 mm.
  • the presence or absence of a trapezoidal protrusion structure was determined, and if there was, the average height and average diameter were determined by the method described above.
  • the area ratio of the trapezoidal protrusion structure within each field of view was obtained, and the average of the two fields of view is shown in Table 3.
  • streaky convex portions and oil pits along the rolling direction may exist. In this case, these were regarded as flat and evaluated in addition to the evaluation area.
  • the contact resistance was measured by using a carbon paper CP120 manufactured by Toray Industries, Inc., contacting the carbon paper CP120 with steel, and applying a load of 20 kgf / cm 2 . Subsequently, a sliding test was performed, and contact resistance measurement was performed on the portion rubbed by the sliding test by the same method as described above.
  • the sliding test was performed by a flat plate sliding test. A bead having a contact area of 10 mm in width and 3 mm in the sliding direction (both ends of the sliding direction has a curvature of 4.5 mmR) is pressed against the steel plate with a vertical load of 100 kgf, and the steel plate is applied at a speed of 100 cm / min without oil. It was carried out by pulling out mm.
  • the trapezoidal protrusion structure had a crystal orientation in which the (100) plane was nearly perpendicular to the sample surface.
  • the average diameter viewed from the surface is deviated, good results have been obtained when the average diameter is in the range of at least 4.5 to 15 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼を提供する。 Crを16~40質量%以上含有するステンレス鋼である。そして、ステンレス鋼の表面には、微細な凹凸構造を有する領域が面積率として50%以上存在する。好ましくは80%以上である。なお、前記微細な凹凸構造を有する領域とは、走査電子顕微鏡で表面を観察したとき、凹部間あるいは凸部間の平均間隔が20 nm以上150 nm以下である凹凸な構造を有している領域である。

Description

燃料電池セパレータ用ステンレス鋼
 本発明は、表面の接触電気抵抗(contact resistance)(以下、接触抵抗と称することもある)特性に優れた燃料電池セパレータ用ステンレス鋼(stainless steel for fuel cell separators)に関するものである。
 近年、地球環境保全(environmental conservation)の観点から、発電効率(electric power generation efficiency)に優れ、二酸化炭素を排出しない(not emitting carbon dioxide)燃料電池の開発が進められている。この燃料電池は、水素と酸素を反応させて(reaction of hydrogen with oxygen)電気を発生させるものである。その基本構造は、サンドイッチのような構造(a sandwich structure)を有しており、電解質膜(an electrolyte membrane) (イオン交換膜(ion-exchange membrane))、2つの電極(燃料極(a fuel electrode)と空気極(an air electrode))、水素および酸素(空気)の拡散層、および2つのセパレータ(separators)から構成されている。そして、用いる電解質の種類により、リン酸形(phosphoric acid fuel cell)、溶融炭酸塩形(molten carbonate fuel cell)、固体酸化物形(solid oxide fuel cell)、アルカリ形(alkaline fuel cell)および固体高分子形(solid polymer fuel cell)などが開発されている。
 上記燃料電池の中で、固体高分子形燃料電池は、溶融炭酸塩形およびリン酸形燃料電池等に比べて、(1)運転温度が80℃程度と格段に低い、(2)電池本体の軽量化、小形化が可能である、(3)立上げが早く(a short transient time )、燃料効率(fuel efficiency)、出力密度(output density)が高いなどの特徴を有している。このため、固体高分子形燃料電池は、電気自動車(electric vehicles)の搭載用電源や家庭用、携帯用の小型分散型電源(compact distributed power source for home use) (定置型の小型発電機) (stationary type compact electric generator)として利用すべく、今日もっとも注目されている燃料電池の一つである。
 固体高分子形燃料電池は、高分子膜(polymer membrane)を介して水素と酸素から電気を取り出す原理によるものである。その構造は、図1 に示すように高分子膜とその膜の表裏面に白金系触媒を担持した(carrying a platinum catalyst)カーボンブラック等の電極材料を一体化した膜-電極接合体(MEA: Membrane-Electrode Assembly、厚み数10~数100μm)1をカーボンクロス(carbon cloth)等のガス拡散層(gas diffusion layer)2、3およびセパレータ4、5により挟み込む。これを単一の構成要素(single cell) (単セル) とし、セパレータ4と5の間に起電力(electro motive force)を生じさせるものである。このとき、ガス拡散層はMEAと一体化される場合も多い。この単セルを数十から数百個直列につないで燃料電池スタックを構成し(form a fuel cell stack)、使用されている。
 セパレータには、単セル間を隔てる隔壁(partition)としての役割に加えて、(1) 発生した電子を運ぶ導電体(conductors carrying electrons generated)、(2) 酸素(空気)や水素の流路(channels for oxygen (air) and hydrogen)(それぞれ図1中の空気流路6、水素流路7)および(3)生成した水や排出ガスの排出路(channels for water and exhaust gas)(それぞれ図1中の空気流路6、水素流路7)としての機能が求められる。
 このように、固体高分子形燃料電池を実用に供するためには、耐久性や電気伝導性に優れたセパレータを使用する必要がある。現在までに実用化されている固体高分子形燃料電池は、セパレータとして、グラファイトなどのカーボン素材(carbonaceous materials)を用いたものが提供されている。しかしながら、このカーボン製セパレータは、衝撃により破損しやすく、コンパクト化が困難で、かつ流路を形成するための加工コストが高いという欠点がある。特にコストの問題は、燃料電池普及の最大の障害となっている。そこで、カーボン素材にかわりチタン合金などの金属素材、特にステンレス鋼を適用しようとする試みがある。
 特許文献1には、不働態皮膜(a passivation film)を形成しやすい金属をセパレータとして用いる技術が開示されている。しかし、不働態皮膜の形成は、接触抵抗の上昇を招くことになり、発電効率の低下につながる。このため、これらの金属素材は、カーボン素材と比べて接触抵抗が大きく、しかも耐食性が劣る等の改善すべき問題点が指摘されている。
 上記問題を解決するために、特許文献2には、SUS304等の金属セパレータの表面に金めっきを施す(a metallic separator coated with gold)ことにより、接触抵抗を低減し、高出力を確保する技術が開示されている。しかし、薄い金めっきではピンホール(pinhole)の発生防止が困難であり、逆に厚い金めっきではコストがかかる。
 特許文献3には、フェライト系ステンレス鋼基材にカーボン粉末(carbon powders)を分散させて、電気伝導性を改善したセパレータを得る方法が開示されている。しかしながら、カーボン粉末を用いた場合も、セパレータの表面処理には相応のコストがかかることから、コストの問題がある。また、表面処理を施したセパレータは、組立て時にキズ等が生じた場合に、耐食性(corrosion resistance)が著しく低下するという問題点も指摘されている。
 このような状況下において、本出願人はステンレス素材そのものをそのまま使用し、表面の形状を制御することにより接触抵抗と耐食性を両立する技術として特許文献4を出願した。特許文献4は、表面粗さ曲線の局部山頂の平均間隔が0.3μm以下であることを特徴とするステンレス鋼板であって、これにより接触抵抗を20mΩ・cm2以下にすることができる。この技術により、ステンレス素材で燃料電池セパレータ素材を提供できるようになった。しかし、燃料電池設計においてはさらなる接触抵抗特性の改善が望ましく、接触抵抗10mΩ・cm2以下が安定して発現することが望まれる。
さらに、燃料電池では、高電位に晒される正極(空気極)において、表面の劣化により接触抵抗が増加しやすい。そのため、セパレータにおいて接触抵抗10mΩ・cm2以下が使用環境下で長く維持できることが必要である。
 さらに、ステンレス鋼表面に形成される所定の表面粗さを有する部分の面積率が高いほど上記特性に対しては有利である。しかし、所定の表面粗さを有する部分の面積率が高いものを製造しようとすると、製造時の条件制御や品質管理などが厳しくなり、コストの高いものとなってしまう。このため、所定の表面粗さを有する部分の面積率は100%でなく、ある程度以上のもので性能が達成されることが工業的に非常に好ましいものとなる。
 一方、特許文献5では、Moを含む特定の鋼の表面に微細な凹凸構造(マイクロピット)を有する領域が面積率として50%以上存在する表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼が開示されている。しかしながら、本発明者らの検討によれば、このような窪みを主体とする表面構造では接触抵抗の充分な耐久性が得られない。
 さらに、燃料電池セパレータは通常、板状の素材をプレス成形(press forming)により加工して部品とする。プレス加工時に金型(die)との間で摺動を受けても、接触抵抗の大きな上昇がないことが望ましい。また、表面に皮膜を形成させる特許文献2や3では、加工時に皮膜が剥離する部分があるためプレス加工後にその部分をバッチ処理する必要があり、工程が増え生産効率が低下するとともにコスト増加を招くため好ましくない。
特開平8-180883号公報 特開平10-228914 号公報 特開2000-277133 号公報 特開2005-302713号公報 特開2007-26694号公報
 本発明は、かかる事情に鑑みてなされたものであって、表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼を提供することを目的とする。
 本発明者らは、燃料電池セパレータ用ステンレス鋼において表面性状を制御することにより、その面積率が必ずしも100%でなくとも、表面接触抵抗特性(以下、接触抵抗特性と称することもある)を向上させ、かつ、その表面接触抵抗を長時間にわたり維持可能とするための方法について鋭意検討した。その結果、以下の知見を得た。
 鋼の表面接触抵抗特性向上には、表面の微細な凹凸の影響が大きく、表面の微細な凹凸を最適化することが有効な手段となる。表面接触抵抗特性向上、すなわち表面接触抵抗を低下させるには、鋼表面に、凹部間あるいは凸部間の平均間隔(微細凹凸平均間隔)が20 nm以上150 nm以下の微細な凹凸構造を有する領域を付与し、かつ、その面積を一定以上とすることが必要である。ここで、微細な凹凸構造とは、凹部の底とその凹部に隣接する凸部の頂点との高さの差が15 nm以上のものをあらわす。
 さらに、表面接触抵抗特性を長時間にわたり維持するためには、微細な凹凸構造を有する領域の面積をさらに広くする必要がある。
また、本発明者らは、微細な凹凸構造の少なくとも先端付近が三角錐構造であることで、表面接触抵抗がさらに低下し、使用環境下での表面接触抵抗上昇が起こりにくく、低い接触抵抗を長く維持できる耐久性をさらに向上することを見出した。
さらに、上記微細な凹凸構造に加えて、ミクロンオーダーの大きさの台形状の突起構造を表面に付与することにより、加工により摺動を受けても接触抵抗増加を大幅に抑制できることを見出した。
 本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]16~40質量%のCrを含有するステンレス鋼であって、該ステンレス鋼の表面には、微細な凹凸構造を有する領域が面積率として50%以上存在することを特徴とする表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。なお、前記微細な凹凸構造を有する領域とは、走査電子顕微鏡で表面を観察したとき、凹部間あるいは凸部間の平均間隔が20 nm以上150 nm以下である凹凸な構造を有している領域である。
[2]前記面積率が80%以上であることを特徴とする前記[1]に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
[3]前記微細な凹凸構造の凸部が、先端部分の頂点の平均角度が80度以上100度以下である三角錐形状であることを特徴とする前記[1]もしくは[2]に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
[4]前記三角錐形状の凸部の頂点の平均間隔が100 nm以下であることを特徴とする前記[3]に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
[5]平均高さが0.15 μm以上 2 μm 以下であり、かつ平均直径が平均3 μm以上50 μm以下の台形状の突起構造が面積率で5 %以上30 %以下で分散して存在していることを特徴とする前記[3]ないし[4]に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
[6]前記台形状の突起構造がステンレス鋼の結晶粒子に対応していることを特徴とする前記[5]に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
 本発明によれば、表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼が得られる。すなわち、本発明の燃料電池セパレータ用ステンレス鋼は、表面接触抵抗特性に優れる。さらにはその表面接触抵抗を長時間にわたり維持可能であるため、実用性に優れた燃料電池セパレータ用ステンレス鋼となる。また、さらに、プレス加工などの加工をした後でも接触抵抗の劣化を最小限に抑えることができる。また、従来の高価なカーボンや金めっきに代わり、本発明のステンレス鋼をセパレータとして用いることで、安価な燃料電池を提供でき、燃料電池の普及を促進させることが可能となる。
燃料電池の基本構造を示す模式図である。 本発明の実施例番号2のSUS 304Lについて、微細な凹凸構造を有する領域が形成された表面を走査電子顕微鏡で観察した結果を示す図である。 本発明の実施例番号11のSUS 443CTについて、微細な凹凸構造を有する領域が形成された表面を走査電子顕微鏡で観察した結果を示す図である。 SUS 304Lについて、微細な凹凸構造を有する領域が形成されていない未処理表面を走査電子顕微鏡で観察した結果を示す図である。 本発明の微細凹凸の平均間隔と微細な凹凸構造を有する領域の面積率と表面接触抵抗の関係を示す図である。 本発明の微細凹凸の平均間隔と微細な凹凸構造を有する領域の面積率と耐久性試験後の表面接触抵抗の関係を示す図である。 本発明の実施例番号20のSUS443CTについて、凸部が三角錐形状である微細な凹凸構造の表面を走査電子顕微鏡(scanning electron microscope)で観察した結果を示す図である。 本発明の実施例番号20のSUS443CTについて、凸部が三角錐形状である微細な凹凸構造を断面から透過電子顕微鏡で観察した結果を示す図である。 本発明の実施例番号36のSUS 443CTについて、台形状の突起構造を有する表面についての表面形状測定結果を示す図である。 SUS 443CTについて、台形状の突起構造が存在しない研磨鋼板表面についての表面形状測定結果を示す図である。 本発明の実施例番号20のSUS 443CTについて、台形状の突起構造を有する箔表面についての表面形状測定結果を示す図である。 実施例番号26のSUS 443CTについて、台形状の突起構造が存在しない箔表面についての表面形状測定結果を示す図である。 実施例番号19のSUS 443CTについて、台形状の突起構造が存在する表面を斜めから走査電子顕微鏡で観察した結果である。台形状の突起構造を矢印で示す。また、表面には三角錐状の微細突起構造を有することを高倍率の観察結果で示している。
 以下、本発明を具体的に説明する。
まず、本発明で対象とするステンレス鋼について説明する。
本発明において、素材として使用するステンレス鋼については、燃料電池の動作環境下で必要とされる耐食性を有する限り鋼種等に特段の制約は無い。ただし、基本的な耐食性を確保するために、Crは16質量%以上含有する必要がある。Cr含有量が16質量%未満では、セパレータとして長時間の使用に耐えられない。好ましくは18質量%以上である。一方、Cr含有量が40質量%を超えると、過度のコスト上昇となる。したがってCr含有量は、40質量%以下とする。
 その他の成分および濃度は特に規定しない。ステンレス鋼として実用に耐えうる範囲であるいは、さらに耐食性を向上させる目的で下記のような元素を存在させることができる。
 C:0.03%以下
Cは、ステンレス鋼中のCrと反応し、粒界にCr炭化物として析出する(precipitate chromium carbide in the grain boundary)ため、耐食性の低下をもたらす場合がある。したがって、Cの含有量は少ないほど好ましく、Cが0.03%以下であれば、耐食性を著しく低下させることはない。よって、0.03%以下が好ましい。さらに好ましくは 0.015%以下である。
 Si: 1.0%以下
Siは、脱酸のために有効な元素であり、ステンレス鋼の溶製段階で添加される。しかし過剰に含有させるとステンレス鋼が硬質化(causes hardening of the stainless steel sheet)し、延性が低下する(decrease ductility)場合があるので、1.0%以下が好ましい。
 Mn: 1.0%以下
Mnは、不可避的に混入したSと結合し、ステンレス鋼に固溶したSを低減する効果を有し、Sの粒界偏析を抑制(suppresses segregation of sulfur at the grain boundary)し、熱間圧延時の割れを防止する(prevents cracking of the steel sheet during hot rolling)のに有効な元素である。しかし、1.0%を超えて添加しても添加する効果の増加はほとんどない。かえって、過剰に添加することによってコストの上昇を招く。よって、Mnを含有する場合は1.0%以下が好ましい。
 S:0.01%以下
SはMnと結合しMnSを形成することで耐食性を低下させる元素であり低い方が好ましい。0.01%以下であれば耐食性を著しく低下させることはない。よって、Sを含有する場合は0.01%以下が好ましい。
 P:0.05%以下
Pは延性の低下をもたらすため低いほうが望ましいが、0.05%以下であれば延性を著しく低下させることはない。よって、Pを含有する場合は0.05%以下が好ましい。
 Al:0.20%以下、
Alは、脱酸元素として用いられる元素である。一方で、過剰に含有すると延性の低下をもたらす。よって、Alを含有する場合は0.20%以下が好ましい。
 N: 0.03%以下
Nは、ステンレス鋼の隙間腐食等の局部腐食を抑制するのに有効な元素である。しかし、0.03%を超えて添加すると、ステンレス鋼の溶製段階でNを添加するために長時間を要するので生産性の低下を招くとともに、鋼の成形性が低下する場合がある。したがってNは、0.03%以下が好ましい。
 Ni:20%以下、Cu:0.6%以下、Mo:2.5%以下の一種以上
Ni:20%以下
Niは、オーステナイト相を安定化させる元素であり、オーステナイト系ステンレスを製造する場合に添加する。その際、Ni含有量が20%を超えると、Niを過剰に消費することによってコストの上昇を招く。したがってNi含有量は、20%以下が好ましい。
 Cu:0.6%以下
Cuは、ステンレス鋼の耐食性を改善するのに有効な元素である。しかし、0.6%を超えて添加すると、熱間加工性(hot workability)が劣化し、生産性の低下を招く場合がある。加えて、Cuを過剰に添加することによってコストの上昇を招く。したがってCuを添加する場合は、0.6%以下が好ましい。
 Mo:2.5%以下
Moは、ステンレス鋼の隙間腐食(crevice corrosion)等の局部腐食を抑制するのに有効な元素である。従って過酷な環境で使用される場合にはMoを添加することが有効である。しかし、2.5%を超えて添加すると、ステンレス鋼が脆化(embrittlement)して生産性が低下する場合があるとともに、Moを過剰に消費することによってコストの上昇を招く。したがってMoを添加する場合は、2.5%以下が好ましい。
 Nb、Ti、Zrの一種以上を合計で1.0%以下
本発明では、上記した元素の他に、耐粒界腐食性向上のためにNb、Ti、Zrの一種以上を添加することができる。しかし、合計で1.0%を超えると延性の低下を招く場合がある。また、元素添加によるコスト上昇を避けるため、添加する場合は、Ti、Nb、Zrの一種以上を合計で 1.0%以下が好ましい。
残部はFeおよび不可避的不純物である。
 次に、本発明に係るセパレータ用ステンレス鋼が具備すべき特性について説明する。本発明のステンレス鋼は、表面を走査電子顕微鏡(以下、SEMと称することがある)により観察した場合に、凹部間あるいは凸部間の平均間隔(微細凹凸平均間隔)が20 nm以上150 nm以下である微細な凹凸構造を有する領域(以下、単に、「微細な凹凸構造を有する領域」と称することもある)が表面に形成されている必要がある。そして、微細な凹凸構造を有する領域が面積率として50%以上存在する。好ましくは80%以上である。ここで、凹凸構造とは、凹部の底とその凹部に隣接する凸部の頂点との高さの差が15 nm以上のものをあらわす。平均間隔がこの範囲を超える、もしくは面積率がこの範囲未満であると接触抵抗の低下が十分ではない。これは、接触点の数が減少するためだと考えられる。また、平均間隔が20 nmより小さいことは耐久性にとって望ましくない。耐久性を評価するための、燃料電池として使用環境下を模擬した耐久試験では、時間の経過とともにステンレス鋼表面に異物が形成され接触抵抗が上昇することを見出した。凹凸構造が小さすぎると、この異物の影響を受けやすくなるためと考えられる。
 さらに、微細な凹凸構造の凸部の先端部分を頂点の平均角度が80度以上100度以下である三角錐形状とすることでさらに耐久性が向上する。ここで頂点の平均角度は、三角錐の頂点を構成している3つの平面における頂点を中心とした角度の平均のことである。本発明においては、上記3つの面が立方晶110面で構成されているのが通常であり、その場合、各面における角度はほぼ90度であるため、頂点の平均角度は約90度(=(90+90+90)/3)である。なお、三角錐形状の頂点は原子レベルで尖っている必要はない。断面から見た三角錐突起の一例を図8に示す。
 先端付近の三角錐構造が有利な理由として下記を考えている。ただし、本発明は下記のメカニズムに限定されるものではない。
(1) ステンレス鋼の表面には厚さ数nmの酸化層が形成されている。この酸化層は薄いとはいえ接触抵抗を上昇させる要因となる。従って、燃料電池においてステンレス鋼表面と相手方のカーボンペーパーなどが接触する際に酸化層が破壊されることが望ましい。特に耐久試験後では酸化層の厚さや組成が変化し抵抗が上昇することが考えられる。突起の先端が三角錐構造であると先端の曲率半径が小さいため接触時の圧力が大きくなり酸化膜が破壊されやすい。そのために耐久試験後の接触抵抗がより低下するものと考えられる。
 (2) 上述したように、使用環境下で時間の経過とともにステンレス鋼表面に異物が形成され接触抵抗が上昇する。突起の先端が三角錐構造であるとこの異物の影響を受けにくくなり、多少異物が存在しても局所的に接触圧力を保つ三角錐部分が存在するために、接触抵抗の上昇が抑制されると考えられる。このような三角錐形状の頂点の平均間隔が150 nm以下、更により好ましくは、平均間隔が100 nm以下であれば、性能がより向上する。
 以上のような微細な凹凸構造の評価は走査電子顕微鏡(SEM)により行なうことができる。微細な凹凸構造の評価を行なうSEMとは、機種を限定するものではないが、入射電子の加速電圧を5 kV以下、望ましくは1 kV以下で数万倍の倍率で鮮明な二次電子像を得ることができる装置であり、得られた二次電子像から微細凹凸の平均間隔を評価することができる装置である。このようなSEMにより、例えば、一定距離の線上を横切る微細な突起あるいは窪みの数を計測し、測定距離を個数で割ることで評価できる。三角錐形状の頂点に関しては、一定面積内の該当する頂点の数を計測することで評価できる。その際、1μm2あたりの頂点の個数をNとすると、突起の平均間隔は 1000/(N0.5)nm として求めるのが簡便である。あるいは、画像をフーリエ変換して凸部間および頂点間距離を求めても良い。三角錐形状としては三角錐の頂点を形成する3つの面における頂点の角度の平均が80°以上100°以下のものとしている。ここでいう面における頂点の角度は、各面に対して垂直方向から見た時の面の角度をいう。SEMで観察した結果の一例として、後述する実施例の本発明のSUS 304Lについて、微細な凹凸構造を有する領域が形成された表面を走査電子顕微鏡で観察した結果を図2に示す。後述する実施例の本発明のSUS 443CTについて、微細な凹凸構造を有する領域が形成された表面を走査電子顕微鏡で観察した結果を図3に示す。これらの微細凹凸平均間隔は、それぞれ、25 nmおよび150 nmであった。また、比較として、SUS 304Lについて、微細な凹凸構造を有する領域が形成されていない表面を走査電子顕微鏡で観察した結果を図4に示す。
 また、後述する実施例の本発明のSUS 443CTについて、凸部が三角錐形状の凹凸構造を有する領域が形成された表面を走査電子顕微鏡で観察した結果を図7に示す。特に、図7においては、図2や図3とは異なり凸部がシャープなエッジを有する三角錐形状の凹凸構造が表面に多数存在していることがわかる。上段の図において凸部の数は1 μm当たり150個であった。これは、突起平均間隔で82 nmとなる。なお、本発明において、焼鈍により形成されたステップ構造、表面の析出物が存在することによる突起、および図4に示したような熱処理により形成された結晶粒界や結晶粒内の窪みは本発明の微細な凹凸構造を有する領域からは除外することとする。
 凹部間あるいは凸部間の平均間隔は20 nm以上150 nm以下であることが必要であるが、さらに好適には120 nm以下、さらに好適には100 nm以下とする。ここで、微細凹凸平均間隔と微細な凹凸構造を有する領域の面積率と表面接触抵抗、および耐久性試験後の表面接触抵抗との関係について調査した。
面積率は、SEMで観察して求めることができ、100μm四方の面積で調査した。微細な凹凸構造を有する領域は、二次電子放出量が増加するので、明るいコントラストで示される。二次電子像を市販のソフトウエアを用いて二値化して面積率を求めることで、微細な凹凸構造を有する領域の面積率を評価した。
表面接触抵抗、および耐久性試験後の表面接触抵抗は、東レ(株)製のカーボンペーパーCP120を用い、前記カーボンペーパーCP120と鋼を接触させて、20kgf/cm2の荷重を付加したときの抵抗値とした。
 耐久性試験は、pH 3の硫酸溶液中に0.6V vs Ag/AgCl (versus Ag-AgCl reference electrode)、室温の条件で試料を24時間保持した。以上により得られた結果をもとに、微細凹凸平均間隔と微細な凹凸構造を有する領域の面積率と(耐久性試験前の) 表面接触抵抗との関係を図5に示す。図5より、微細な凹凸構造を有する領域の面積率が50%以上で、微細凹凸平均間隔が15~230 nmの範囲で、10mΩ・cm2以下の低い表面接触抵抗が得られていることがわかる。図6は、微細凹凸平均間隔と微細な凹凸構造を有する領域の面積率と耐久性試験後の表面接触抵抗との関係を示したものである。図6より、微細な凹凸構造を有する領域の面積率が50%以上、微細凹凸平均間隔が20~150 nmの範囲であれば、耐久性試験後でも10mΩ・cm2以下の表面接触抵抗を有していることがわかる。なお、微細な凹凸構造を有する領域の面積率の求め方は上記の方法だけでない。例えば特定の結晶方位を有する結晶にのみ微細凹凸構造が形成されている場合は、結晶粒子単位で面積を求めると効率的である。
 以上より、十分低い表面接触抵抗(10mΩ・cm2以下)を得るためには、ステンレス鋼の表面に、微細凹凸平均間隔が20 nm以上150 nm以下の範囲で微細な凹凸構造を有する領域が面積率として50%以上存在することが必要である。50%未満では、微細凹凸による電極との接触点増加効果が不十分であり、十分低い表面接触抵抗(10mΩ・cm2以下)が得られない。
 さらに、燃料電池の使用環境下で表面接触抵抗を長時間にわたり維持可能とするためには、すなわち使用環境下での表面接触抵抗の上昇を抑制するためには、後述するように微細な凹凸構造を有する領域が面積率として50%以上存在する必要がある。この理由は明確になっていないが、以下のように推定している。使用環境下では、鋼表面の薄い酸化層が、膜厚増加や組成変化することで、その層の導電性が低下すると考えられる。その効果が表面接触抵抗に及ぼす影響は、微細凹凸の形成された表面より、形成されない平滑な表面のほうが大きいと推定される。そのため、使用環境下での表面接触抵抗を低く保持するためには、できるだけ平滑な表面を少なくする必要があり、したがって微細凹凸が形成された面積率をより大きくする必要があると考えられる。
 上記の例では微細凹凸構造は微細な粒状あるいはなだらかな形状を有しているが([図2][図3])、先端部分が三角錐形状を有する凸部を有する微細な凹凸構造([図7])とすることで耐久性がさらに向上した。前記24時間の耐久試験後の接触抵抗増加は、凸部の平均間隔が150 nm以下の試料において、三角錐形状の凸部を有する場合は三角錐形状の凸部を持たないもの(2.0mΩ・cm2以上)に比べて格段に低かった。なお、初期の接触抵抗においては凸部の形状で明確な差は認められなかった。
 さらに、発明者らは、以上のような微細な凹凸構造が存在する表面に対して、より大きなミクロンオーダーで観察した際の表面形状と接触抵抗、および耐久性試験後の接触抵抗、および摺動試験後の接触抵抗との関係について調査した。このような表面形状は共焦点レーザー顕微鏡(confocal laser microscope)や光干渉表面形状測定装置(optical interferotype profilometer)により容易に測定することができる。フェライト系ステンレスであるSUS 443CT (JIS規格SUS443J1に属するフェライト系ステンレスであり、例えば、JFEスチール株式会社製「JFE443CT」等がある)について、光干渉表面形状測定装置により測定した表面形状結果を[図9]~[図12]に示す。視野のサイズは0.35 mm x 0.26 mmである。また測定の分解能は0.55μmである。
 本発明の例である[図9]と[図11]には、比較例である[図10]や[図12]にはない台形状の突起構造が形成されていることがわかる。[図9]は研磨したステンレス鋼材に対して処理を施したものであり、台形状の突起構造の存在が明瞭に見て取れる。一方、[図11]はステンレス箔に対して処理したものであり、箔作製時に形成される圧延方向に沿った筋上の凹凸に台形状の突起構造が重畳していることがわかる。これらの実施例について形状測定後に同一視野表面をSEMおよびEBSD(Electron Backscatter Diffraction Scattering)法により調査した結果、[図9]と[図11]の台形状の突起構造はステンレス表面の結晶粒に対応していることがわかった。得られたデータより、この台形状の突起構造の平均高さ、表面に対して垂直方向から見た平均直径、および台形状の突起構造の面積率を評価した。
 接触抵抗、および耐久性試験後の接触抵抗は、東レ(株)製のカーボンペーパーCP120を用い、前記カーボンペーパーCP120と鋼を接触させて、20kgf/cm2の荷重を付加したときの抵抗値とした。また、摺動試験を施した後で上記方法にて接触抵抗を測定した。
 以上より求めた結果から下記のことがわかった。
・ まず表面に所定範囲の微細構造が形成されていれば、前述のとおり10mΩ・cm2以下の低い接触抵抗が得られる。
・ さらに平均高さが0.15 μm以上2 μm 以下、表面から見た平均直径が3 μm以上50 μm以下の台形状の突起構造が面積率で5%以上 30%以下で形成されていれば、摺動試験後でも10mΩ・cm2以下の低い接触抵抗が得られる。
 圧子(金型)と鋼板表面が擦れることで鋼板表面の微細な凹凸構造が損傷を受ける。台形状の突起構造が表面に存在すると、摺動試験後の際に、この突起が主に圧子(金型)と接触するため、損傷を受ける領域が台形状の突起構造に限定される。そのために微細な凹凸構造の多くは摺動試験後も残っており、低い接触抵抗を維持できるものと考えられる。この効果を得るためには、0.15 μm以上の高さが必要である。台形状の突起構造の高さを大きくしすぎることは製造時に余計な時間とコストがかかるため、2 μm以下にしておくことが好ましい。台形状の突起構造の面積率は5%以上 30%以下とする。この範囲をはずれると加工後の接触抵抗を上昇させるため好ましくない。面積率が5 %より小さいと摺動により台形状の突起構造が簡単に削れてしまい、微細な凹凸構造を消失する面積が増加するため好ましくない。一方、面積率が30 %を越えると台形状の突起構造表面の微細な凹凸構造が接触により消失しやすくなるので接触抵抗が増加する。なお、台形状の突起構造は集中して存在しては効果がない。できるだけ表面に均一に分散していることが望ましい。
 また、台形状の突起構造の平均直径が3 μmより小さいと金型との接触で台形状の突起構造が潰れやすくなり、50 μmより大きいと接触面積が増加し不利となるため、3 μm以上50 μm以下が望ましい。ここでいう台形状の突起構造とは、周囲よりも高さが高いある範囲の面積を持つ領域で、定量的には上述のような形状測定法で確認できる。また定性的にはSEMにより試料を傾斜させて観察することで容易に存在を確認することができる。その例を[図13]に示した。
 以下に具体的な例を示す。光干渉表面形状測定装置で表面形状を、観察視野0.35 mm x 0.26 mmの範囲で評価する。この観察視野内で長手方向0.35 mmに平行な任意の5本の直線を設定し、どれかの直線上で2μm以上の長さで左右より高さが0.05μm以上高い平坦部があるとき、これを台形状の突起構造とした。ここで台形状の突起構造の上部は、試料表面と平行でなくてもよく、また、平面でなく緩やかな曲面でも構わない。さらに、台形状の突起構造の上部に微細な凹凸構造が存在していてもよい。個々の台形状の突起構造の高さは、台形状の突起構造の平坦部で、評価した直線上に位置する部分の任意10箇所の平均高さと、台形状の突起構造の左右で台形状の突起構造がない部分の評価した直線上における任意の場所左右各5点の平均高さとの差を、その台形状の突起構造の高さとした。平均高さは、上述の評価した直線にかかるすべての台形状の突起構造の高さを平均した値とした。また、個々の台形状の突起構造の直径は前記直線における台形状の突起構造の平坦部の試料表面に投影した直線の長さとして、評価した直線にかかる台形状の突起構造すべての直径の平均を台形状の突起構造の平均直径とした。調査した線の長さ(0.35 mm x 5)に対して、そこに占める台形状の突起構造の直径の和(台形状の突起構造の平坦部上部の長さの和)の割合を求め、これを面積率とした。たとえば、観察視野において、0.35 mm(350μm)長さの直線5本にかかる台形状の突起構造が3個あり、それぞれの直径(平坦部上部の長さ)が、20μm、30μm、10μmの場合、平均直径は、20μm(≒(20+30+10)/3)、面積率は、3.4%(0.034≒(20+30+10)/(350×5)となる。
 本発明の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼の製造方法について説明する。特に制限はないが、好適な製造条件を述べると次のとおりである。
 好適成分組成に調整した鋼片(slab)を、1100℃以上の温度に加熱後、熱間圧延する。ついで800~1100℃の温度で焼鈍(anneal)を施したのち、冷間圧延と焼鈍を繰り返してステンレス鋼とする。得られるステンレス鋼板の板厚は0.02~0.8mm程度とするのが好適である。次いで、仕上焼鈍後、電解処理(electrolytic treatment)、酸処理(acidizing)に施されることが好ましい。電解処理には、硫酸水溶液を用いることができる。酸処理としては例えばフッ酸系溶液浸漬を用いることができる。微細凹凸構造を有する領域の形成および面積率の調整は、上記の処理、特に酸処理の条件(液の濃度や種類、温度、浸漬時間)を変更することで行うことができる。
 また、三角錐形状の凸部を形成させる方法に制限はないが、酸性溶液によるエッチングの結晶方位依存性を利用することが、複雑な工程(例えばイオン照射など)を必要とせず広い面積を処理できるために望ましい。本発明者らは結晶方位とエッチング条件を制御することで、表面の広い領域に三角錐形状を形成できることを見出した。フェライト系ステンレスにおいては表面に垂直な方位がND<111>に近い結晶粒子で(001)面のマイクロファセット(micro facet)で構成される三角錐形状の凸部を高密度で形成させることができる。異なる方位の結晶面でも三角錐形状の凸部を形成できるが、その数はND<111>に近い結晶粒子よりは少ない。従って、圧延により表面に垂直な方位がND<111>に近い結晶粒子が多い集合組織とする。このような集合組織の確認は、組織観察と電子線後方散乱分布(EBSD)像を取得することで容易に評価できる。(001)面のマイクロファセットで構成される三角錐形状の凸部を形成させるには、前処理電解液中のFeを少なくしたり、浸漬に用いるフッ酸中の硝酸やFeを極力少なくした溶液に一定時間(55℃ 5質量%HF水溶液の場合は80sec~600secが望ましい)の範囲で浸漬する方法が望ましい。
 台形状の突起構造の製造方法に特に制限はないが、台形状の突起構造を結晶粒の結晶方位の違いにより形成させることが、例えばマスキングしてエッチングするなど余計な工程を用いなくて良いため望ましい。前述の表面の微細な凹凸構造は、比較的短時間でも形成され処理時間を長くすることで結晶方位によるエッチング速度の差により結晶方位間で高低差が大きくなる。先に述べたND<001>面がエッチングされにくいため、この結晶方位の粒子が台形状の突起構造となる。これらの調整は酸処理の条件(液の濃度や種類、温度、浸漬時間)を変更することで行うことができる。一定の液条件では、微細な凹凸構造の形成に下限の処理時間が存在し、さらにそれより長い時間のなかで台形状の突起構造形成の下限の処理時間が存在する。上限の処理時間も存在するが、それは処理時間を長くすると台形状の突起構造が消失する場合である。上記の55℃、5質量%HF水溶液の場合は、台形状の突起構造の高さの観点からは80sec~450secが望ましい。600secの処理では台形状の突起構造が消失した。このように、表面形状は容易に評価可能であるので、本発明の指標をもとにして、表面形状を計測することで、過度の思考を行なわず処理条件を決定することができる。
 Crを18.1質量%含む市販のオーステナイト系ステンレスSUS 304Lと、Crを21.1質量%含む市販のフェライト系ステンレス443CTを用い、冷間圧延と焼鈍酸洗を繰り返し、板厚0.2mmのステンレス鋼板を製造した。
引き続き、焼鈍を施し、表1に示す条件で電解処理と酸洗溶液に浸漬する酸処理を行った。電解処理は、3質量%の硫酸水溶液に鉄イオンで1g/L相当の硫酸第1鉄を溶解した電解質液を用い、電流密度5A/dmの交流を4.5秒間通電することにより行った。なお、比較のため、電解処理と酸洗溶液に浸漬する酸処理を行わない試料と電解処理のみを実施した試料も作製した。以上により得られたステンレス鋼に対して、表面接触抵抗を測定するとともに、SEM(Carl Zeiss製 SUPRA55VP)で表面を評価した。
 微細な凹凸構造を有する領域については、加速電圧を0.5 kVに設定し、表面形状をチャンバー検出器により得られた2万倍~5万倍の二次電子像から評価した。詳しくは、視野の中の任意の場所5箇所に任意方向の1μm長さの直線を重ならないように5本引き、それらの直線が横切る微細な突起の数の合計を計測し、5μmを突起の合計数で除算することにより、微細凹凸平均間隔を求めた。また、微細な凹凸構造を有する領域の面積率は、加速電圧を0.5 kVに設定しインレンズ型検出器で取得した像を用いて評価した。二次電子像を市販のソフトウエア(Photoshop)で二値化し微細凹凸が形成された明るい領域の面積を計算した。
 表面接触抵抗は、東レ(株)製のカーボンペーパーCP120を用い、前記カーボンペーパーCP120と鋼を接触させて、20kgf/ cm2の荷重を付加したときの抵抗値を測定した。また、上記表面接触抵抗を測定した結果、表面接触抵抗の低い試料については、さらに耐久性試験を行い試験後の表面接触抵抗を測定した。耐久性試験は、フッ化物イオンが0.1ppmになるようにフッ化ナトリウムを添加したpH 3の硫酸溶液中に0.6V vs Ag/AgCl、80℃の条件で試料を24時間保持する方法で行った。表面接触抵抗測定方法は上記と同様である。また、耐久性試験による表面接触抵抗の増加分(耐久性試験後の表面接触抵抗-耐久性試験前の表面接触抵抗)を算出した。微細凹凸平均間隔と微細な凹凸構造を有する領域の面積率と、耐久性試験前後の表面接触抵抗と耐久性試験による表面接触抵抗の増加分とを併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、微細な凹凸構造を有する領域が面積率として50%以上存在し、微細凹凸平均間隔が20 nm以上150 nm以下の範囲の本発明例は、表面接触抵抗が10mΩ・cm2以下となっている。さらに、耐久試験後の表面接触抵抗も10mΩ・cm2以下であり、長時間の使用環境でも低い表面接触抵抗を保持しており、より一層表面接触抵抗維持特性が優れているのがわかる。
 Crを18.1質量%含む市販のオーステナイト系ステンレスSUS 304Lと、Crを21.1質量%含む市販のフェライト系ステンレスSUS 443CTを用い、冷間圧延と焼鈍酸洗を繰り返し、板厚0.2mmのステンレス鋼板を製造した。一部の試料では厚さ2 mmの板を用いた。厚さ2 mmの板は処理前にアルミナバフ仕上げで鏡面研磨を施した。各試料を、表2に示す条件で処理を行なった。電解処理は、3質量%硫酸水溶液中で行い、酸浸漬処理は、5質量%フッ酸中で行い、条件によっては、鉄イオンで3g/L相当の硫酸第1鉄を加えて行った。また、条件によっては、10質量%塩酸中で行った。
 以上により得られたステンレス鋼に対して、接触抵抗を測定するとともに、SEM(Carl Zeiss製 SUPRA55VP)で表面の微細構造を評価した。加速電圧を0.5 kVに設定し、表面形状をチャンバー検出器により得られた2万倍~10万倍の二次電子像から突起構造の形状、および突起平均間隔を評価した。三角錐形状の凸部かどうかは、凸部の中心から辺にあたる三本の直線が伸びているかどうかで判定した([図7]参照)。平均間隔の評価は、観察視野は1μm x 1μmの範囲に存在する三角錐形状の凸部の数を数えた。三つの視野について測定しその平均を計算した。その1μm2あたりの平均突起個数Nより、突起の平均間隔を 1000/N0.5nm として求めた。また粒状の凸部など三角錐形状以外の凸部についても同様に評価した。
 接触抵抗は、東レ(株)製のカーボンペーパーCP120を用い、前記カーボンペーパーCP120と鋼を接触させて、20kgf/cm2の荷重を付加したときの抵抗値を測定した。また、上記接触抵抗を測定した結果、接触抵抗の低い試料については、さらに耐久性試験を行い試験後の接触抵抗を測定した。耐久性試験は、フッ化物イオンが0.1ppmになるようにフッ化ナトリウムを添加したpH 3の硫酸溶液中に0.6V vs Ag/AgCl、80℃の条件で試料を500時間保持する方法で行った。接触抵抗測定方法は上記と同様である。以上の評価結果を試料作製条件と併せて表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2より、表面に頂点が三角錐形状の突起部を150 nm以下の平均間隔で有する本発明例は初期の接触抵抗および500時間の耐久試験後の接触抵抗が10 mΩ・cm2以下と、長時間の使用環境でも低い接触抵抗を保持していることがわかる。特に凸部の平均間隔が100 nm以下の発明例は、耐久試験後の接触抵抗8mΩ・cm2以下とさらに優れた耐久性を有していることがわかる。
 同程度の凸部の平均間隔であっても、粒状の微細な凹凸構造は、三角錐形状の微細な凹凸構造を有する本発明例よりも耐久試験後の接触抵抗の上昇が大きいことがわかる。また、微細な凹凸構造ではなく、本発明範囲外の、小さいピット状の構造を有するものの耐久性は低く使用に耐えない。
 なお、本試験では参照としてAuを蒸着したステンレス鋼についても測定した結果も示している。本発明例はこの結果と大差ないことから非常に小さい接触抵抗であるといえる。本実施例について、EBSD法により表面結晶方位と三角錐形状の関係を調べたところ、三角錐状の凸部はbcc構造の三枚の(100)面ファセットにより構成されていることが確かめられた。従って、頂点の平均角度はおよそ90°である。
 実施例と同じロット(ロットA)のフェライト系ステンレスSUS 443CTを用い、冷間圧延と焼鈍酸洗を繰り返し、板厚0.2mmのステンレス鋼板を製造した。また、圧下率や焼鈍温度を変更して集合組織の異なる箔を製造した(ロット B~E)。また、研磨表面に対して台形状の突起構造を形成させたサンプルを作製するために、厚さ1 mmの「JFE443CT」冷延板にアルミナバフ仕上げで鏡面研磨を施したロットFを準備した。引き続き、表3に示す条件で処理を行なった。電解処理は、3質量%硫酸水溶液中で行い、酸浸漬処理は、5~10質量%フッ酸中で行い、条件によっては、鉄イオンで3g/L相当の硫酸第1鉄を加えて行った。
 以上により得られたステンレス鋼に対して、接触抵抗を測定するとともに、SEM(Carl Zeiss製 SUPRA55VP)で表面の微細構造を実施例2と同様に評価した。光干渉表面形状測定装置Zygo(キヤノンマーケティングジャパン)で表面形状を評価した。観察視野は0.35 mm x 0.26 mmとした。台形状の突起構造の有無を判定し、有りの場合は上述の方法で、その平均高さ、平均直径を求めた。
また、各視野内で台形状の突起構造部の面積率を求め2視野での平均を表3に示した。箔試料では圧延方向にそったスジ状の凸部やオイルピットが存在することがあるが、その場合、これらを平坦とみなし評価面積に加えて評価した。
 接触抵抗は、東レ(株)製のカーボンペーパーCP120を用い、前記カーボンペーパーCP120と鋼を接触させて、20kgf/cm2の荷重を付加したときの抵抗値を測定した。続いて摺動試験を行い、摺動試験により擦られた部分について上記と同様の方法で接触抵抗測定を実施した。摺動試験は、平板摺動試験で行った。幅10 mm、摺動方向に 3 mmの接触面積(摺動方向両端は曲率4.5mmR)を有するビードを、鋼板に垂直荷重100kgfで押し当て、無塗油で100cm/minの速度で鋼板を30 mm引き抜くことにより実施した。摺動試験後の接触抵抗の上昇分が、1mΩ・cm2以下を「◎」、それより大きく3mΩ・cm2以下を「○」、それより大きく10mΩ・cm2以下を「△」、これを越えるものを「×」とした。
以上の評価結果を試料作製条件と併せて表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、表面に三角錐形状の頂点を有する微細な凹凸構造が存在し、台形状の突起構造の平均高さが0.15 μm以上 2 μm 以下の台形状の突起構造が面積率5 % 以上30 %以下で分散して存在している発明例は、摺動試験による接触抵抗の上昇も小さいことがわかる。このことは材料同士あるいは材料と他の部品等との接触やセパレータ部品に加工した後でも低い接触抵抗を維持しており、実用上非常に有利といえる。形状測定後に同一視野表面をSEMにより調査した結果、台形状の突起構造はステンレス表面の結晶粒に対応していることがわかった。またEBSD法により結晶方位を調査した結果、台形状の突起構造は試料表面に対して(100)面が垂直に近い結晶方位を有していた。なお、表面から見た平均直径が外れる比較例はないが、実施例より平均直径が、少なくとも4.5 μmから15 μmの範囲で良好な結果が得られている。
 1 膜-電極接合体
 2 ガス拡散層
 3 ガス拡散層
 4 セパレータ
 5 セパレータ
 6 空気流路
 7 水素流路
 

Claims (6)

 16~40質量%のCrを含有するステンレス鋼であって、
該ステンレス鋼の表面には、微細な凹凸構造を有する領域が面積率として50%以上存在することを特徴とする表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
なお、前記微細な凹凸構造を有する領域とは、走査電子顕微鏡で表面を観察したとき、凹部間あるいは凸部間の平均間隔が20 nm以上150 nm以下である凹凸な構造を有している領域である。
 前記面積率が80%以上であることを特徴とする請求項1に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
前記微細な凹凸構造の凸部が、先端部分の頂点の平均角度が80度以上100度以下である三角錐形状であることを特徴とする請求項1もしくは2に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
前記三角錐形状の凸部の頂点の平均間隔が100 nm以下であることを特徴とする請求項3に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
平均高さが0.15 μm以上 2 μm 以下であり、かつ平均直径が3 μm以上50 μm以下の台形状の突起構造が面積率で5 %以上30 %以下で分散して存在していることを特徴とする請求項3ないし4に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
前記台形状の突起構造がステンレス鋼の結晶粒子に対応していることを特徴とする請求項5に記載の表面接触抵抗の低い燃料電池セパレータ用ステンレス鋼。
PCT/JP2012/007626 2011-11-30 2012-11-28 燃料電池セパレータ用ステンレス鋼 WO2013080533A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201280058529.8A CN103959524B (zh) 2011-11-30 2012-11-28 燃料电池隔板用不锈钢
EP12853172.0A EP2770567B1 (en) 2011-11-30 2012-11-28 Stainless steel for fuel-cell separators
ES12853172.0T ES2606207T3 (es) 2011-11-30 2012-11-28 Acero inoxidable para separadores de pilas de combustibles
KR1020147014480A KR101515417B1 (ko) 2011-11-30 2012-11-28 연료 전지 세퍼레이터용 스테인리스강
US14/355,661 US9531014B2 (en) 2011-11-30 2012-11-28 Stainless steel for fuel cell separators
JP2013525020A JP5454744B2 (ja) 2011-11-30 2012-11-28 燃料電池セパレータ用ステンレス鋼
US15/352,266 US9871258B2 (en) 2011-11-30 2016-11-15 Stainless steel for fuel cell separators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011261797 2011-11-30
JP2011-261797 2011-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/355,661 A-371-Of-International US9531014B2 (en) 2011-11-30 2012-11-28 Stainless steel for fuel cell separators
US15/352,266 Continuation US9871258B2 (en) 2011-11-30 2016-11-15 Stainless steel for fuel cell separators

Publications (1)

Publication Number Publication Date
WO2013080533A1 true WO2013080533A1 (ja) 2013-06-06

Family

ID=48535024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007626 WO2013080533A1 (ja) 2011-11-30 2012-11-28 燃料電池セパレータ用ステンレス鋼

Country Status (8)

Country Link
US (2) US9531014B2 (ja)
EP (1) EP2770567B1 (ja)
JP (1) JP5454744B2 (ja)
KR (1) KR101515417B1 (ja)
CN (1) CN103959524B (ja)
ES (1) ES2606207T3 (ja)
TW (1) TWI493778B (ja)
WO (1) WO2013080533A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850185B2 (ja) * 2013-02-01 2016-02-03 新日鐵住金株式会社 対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン材又はチタン合金材、これを用いた燃料電池セパレータ、及び、燃料電池
WO2017110656A1 (ja) 2015-12-24 2017-06-29 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
WO2018198685A1 (ja) 2017-04-25 2018-11-01 Jfeスチール株式会社 燃料電池のセパレータ用のステンレス鋼板およびその製造方法
JP2019502816A (ja) * 2015-12-23 2019-01-31 ポスコPosco 親水性および接触抵抗が向上した高分子燃料電池の分離板用ステンレス鋼およびその製造方法
JP2019026908A (ja) * 2017-08-01 2019-02-21 Jfeスチール株式会社 ステンレス鋼板
WO2019082591A1 (ja) 2017-10-25 2019-05-02 Jfeスチール株式会社 燃料電池のセパレータ用のステンレス鋼板の製造方法
JP2020506499A (ja) * 2016-12-22 2020-02-27 ポスコPosco 接触抵抗が優秀な高分子燃料電池分離板用ステンレス鋼およびその製造方法
WO2020153117A1 (ja) 2019-01-21 2020-07-30 Jfeスチール株式会社 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法
WO2021006099A1 (ja) * 2019-07-09 2021-01-14 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法
JP2023501550A (ja) * 2019-11-11 2023-01-18 ポスコホールディングス インコーポレーティッド 高分子燃料電池セパレータ用ステンレス鋼の製造方法
KR20230118962A (ko) 2020-12-15 2023-08-14 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용의 스테인리스 강판

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024032A (zh) * 2015-07-07 2015-11-04 中国东方电气集团有限公司 极板与电极的配合结构及具有该配合结构的液流电池
WO2018147087A1 (ja) * 2017-02-09 2018-08-16 Jfeスチール株式会社 燃料電池のセパレータ用鋼板の基材ステンレス鋼板およびその製造方法
JP6958483B2 (ja) * 2018-05-28 2021-11-02 トヨタ自動車株式会社 燃料電池用セパレータの製造方法
KR102497442B1 (ko) * 2020-11-25 2023-02-08 주식회사 포스코 접촉저항이 향상된 고분자 연료전지 분리판용 오스테나이트계 스테인리스강 및 그 제조 방법
CN112684211A (zh) * 2020-12-02 2021-04-20 成都先进金属材料产业技术研究院有限公司 原位观察超级双相不锈钢相变的方法
KR102326257B1 (ko) * 2021-05-31 2021-11-16 주식회사 포스코 친수성 및 도전성이 우수한 강판
KR102326258B1 (ko) * 2021-05-31 2021-11-16 주식회사 포스코 친수성 및 도전성이 우수한 강판
KR20230016362A (ko) * 2021-07-26 2023-02-02 주식회사 포스코 접촉저항이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (ja) 1994-12-26 1996-07-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
JP2000277133A (ja) 1999-03-25 2000-10-06 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JP2005302713A (ja) 2004-03-18 2005-10-27 Jfe Steel Kk 通電部材用金属材料,それを用いた燃料電池用セパレータおよびその燃料電池
JP2007026694A (ja) 2005-07-12 2007-02-01 Nisshin Steel Co Ltd 固体高分子型燃料電池用セパレータ及び固体高分子型燃料電池
JP2010153353A (ja) * 2008-11-25 2010-07-08 Nissan Motor Co Ltd 導電部材、その製造方法、並びにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池
JP2010225560A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 燃料電池用セパレータ、燃料電池、および燃料電池用セパレータの製造方法
JP2011029008A (ja) * 2009-07-27 2011-02-10 Daido Steel Co Ltd 金属セパレータ用基材、その製造方法、および金属セパレータ
JP2011151015A (ja) * 2009-12-25 2011-08-04 Toyota Central R&D Labs Inc 燃料電池用セパレータおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485613B2 (ja) 1999-03-05 2010-06-23 パナソニック株式会社 高分子電解質型燃料電池
WO2005090626A1 (ja) * 2004-03-18 2005-09-29 Jfe Steel Corporation 通電部材用金属材料、それを用いた燃料電池用セパレータおよびその燃料電池
JP2009231149A (ja) 2008-03-24 2009-10-08 Nisshin Steel Co Ltd セパレータ用フェライト系粗面化ステンレス鋼板およびセパレータ
JP4420960B2 (ja) * 2008-05-13 2010-02-24 シャープ株式会社 燃料電池および燃料電池層

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08180883A (ja) 1994-12-26 1996-07-12 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JPH10228914A (ja) 1997-02-13 1998-08-25 Aisin Takaoka Ltd 燃料電池用セパレータ
JP2000277133A (ja) 1999-03-25 2000-10-06 Nisshin Steel Co Ltd 低温型燃料電池用セパレータ
JP2005302713A (ja) 2004-03-18 2005-10-27 Jfe Steel Kk 通電部材用金属材料,それを用いた燃料電池用セパレータおよびその燃料電池
JP2007026694A (ja) 2005-07-12 2007-02-01 Nisshin Steel Co Ltd 固体高分子型燃料電池用セパレータ及び固体高分子型燃料電池
JP2010153353A (ja) * 2008-11-25 2010-07-08 Nissan Motor Co Ltd 導電部材、その製造方法、並びにこれを用いた燃料電池用セパレータおよび固体高分子形燃料電池
JP2010225560A (ja) * 2009-03-25 2010-10-07 Toshiba Corp 燃料電池用セパレータ、燃料電池、および燃料電池用セパレータの製造方法
JP2011029008A (ja) * 2009-07-27 2011-02-10 Daido Steel Co Ltd 金属セパレータ用基材、その製造方法、および金属セパレータ
JP2011151015A (ja) * 2009-12-25 2011-08-04 Toyota Central R&D Labs Inc 燃料電池用セパレータおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770567A4 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119734A1 (ja) * 2013-02-01 2017-01-26 新日鐵住金株式会社 対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン材又はチタン合金材、これを用いた燃料電池セパレータ、及び、燃料電池
JP5850185B2 (ja) * 2013-02-01 2016-02-03 新日鐵住金株式会社 対カーボン接触導電性と耐久性に優れた燃料電池セパレータ用チタン材又はチタン合金材、これを用いた燃料電池セパレータ、及び、燃料電池
JP2019502816A (ja) * 2015-12-23 2019-01-31 ポスコPosco 親水性および接触抵抗が向上した高分子燃料電池の分離板用ステンレス鋼およびその製造方法
US10991954B2 (en) 2015-12-23 2021-04-27 Posco Stainless steel for polymer fuel cell separation plate having improved hydrophilicity and contact resistance and method for manufacturing same
WO2017110656A1 (ja) 2015-12-24 2017-06-29 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
JP6197977B1 (ja) * 2015-12-24 2017-09-20 Jfeスチール株式会社 燃料電池のセパレータ用ステンレス鋼板およびその製造方法
TWI627790B (zh) * 2015-12-24 2018-06-21 Jfe Steel Corp 燃料電池之分隔件用不銹鋼鋼板及其製造方法
KR20180087384A (ko) 2015-12-24 2018-08-01 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용 스테인리스 강판 및 그 제조 방법
US10714764B2 (en) 2015-12-24 2020-07-14 Jfe Steel Corporation Stainless steel sheet for fuel cell separators and method for producing the same
JP2020506499A (ja) * 2016-12-22 2020-02-27 ポスコPosco 接触抵抗が優秀な高分子燃料電池分離板用ステンレス鋼およびその製造方法
WO2018198685A1 (ja) 2017-04-25 2018-11-01 Jfeスチール株式会社 燃料電池のセパレータ用のステンレス鋼板およびその製造方法
KR20190127968A (ko) 2017-04-25 2019-11-13 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용의 스테인리스 강판 및 그 제조 방법
KR20210100762A (ko) 2017-04-25 2021-08-17 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용의 스테인리스 강판 및 그 제조 방법
US11085120B2 (en) 2017-04-25 2021-08-10 Jfe Steel Corporation Stainless steel sheet for fuel cell separators and production method therefor
JP2019026908A (ja) * 2017-08-01 2019-02-21 Jfeスチール株式会社 ステンレス鋼板
US11618967B2 (en) 2017-10-25 2023-04-04 Jfe Steel Corporation Production method for stainless steel sheet for fuel cell separators
KR20200069348A (ko) 2017-10-25 2020-06-16 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용 스테인리스 강판의 제조 방법
WO2019082591A1 (ja) 2017-10-25 2019-05-02 Jfeスチール株式会社 燃料電池のセパレータ用のステンレス鋼板の製造方法
WO2020153117A1 (ja) 2019-01-21 2020-07-30 Jfeスチール株式会社 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法
KR20210114047A (ko) 2019-01-21 2021-09-17 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용의 오스테나이트계 스테인리스 강판 및 그의 제조 방법
JP6763501B1 (ja) * 2019-01-21 2020-09-30 Jfeスチール株式会社 燃料電池のセパレータ用のオーステナイト系ステンレス鋼板およびその製造方法
KR20230119737A (ko) 2019-01-21 2023-08-16 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용의 오스테나이트계 스테인리스강판
JP2021012839A (ja) * 2019-07-09 2021-02-04 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法
WO2021006099A1 (ja) * 2019-07-09 2021-01-14 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法
JP7057766B2 (ja) 2019-07-09 2022-04-20 Jfeスチール株式会社 硫化物系固体電池の集電体用のフェライト系ステンレス鋼板およびその製造方法
JP2023501550A (ja) * 2019-11-11 2023-01-18 ポスコホールディングス インコーポレーティッド 高分子燃料電池セパレータ用ステンレス鋼の製造方法
JP7305890B2 (ja) 2019-11-11 2023-07-10 ポスコホールディングス インコーポレーティッド 高分子燃料電池セパレータ用ステンレス鋼の製造方法
KR20230118962A (ko) 2020-12-15 2023-08-14 제이에프이 스틸 가부시키가이샤 연료 전지의 세퍼레이터용의 스테인리스 강판

Also Published As

Publication number Publication date
EP2770567A4 (en) 2015-07-29
US20170062843A1 (en) 2017-03-02
KR101515417B1 (ko) 2015-04-28
US9531014B2 (en) 2016-12-27
TWI493778B (zh) 2015-07-21
CN103959524B (zh) 2016-12-07
KR20140088886A (ko) 2014-07-11
TW201324924A (zh) 2013-06-16
EP2770567A1 (en) 2014-08-27
JPWO2013080533A1 (ja) 2015-04-27
EP2770567B1 (en) 2016-09-21
US20140272668A1 (en) 2014-09-18
ES2606207T3 (es) 2017-03-23
JP5454744B2 (ja) 2014-03-26
US9871258B2 (en) 2018-01-16
CN103959524A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5454744B2 (ja) 燃料電池セパレータ用ステンレス鋼
US8278009B2 (en) Metallic material for conductive member, separator for fuel cell using the same, and fuel cell using the separator
EP3073558B1 (en) Titanium material or titanium alloy material having surface conductivity, production method therefor, fuel cell separator using same, and fuel cell
JPWO2018198685A1 (ja) 燃料電池のセパレータ用のステンレス鋼板およびその製造方法
JP5972877B2 (ja) 燃料電池セパレータ用ステンレス鋼の製造方法
KR101741935B1 (ko) 대 카본 접촉 도전성과 내구성이 우수한 연료 전지 세퍼레이터용 티타늄재 또는 티타늄 합금재, 이를 사용한 연료 전지 세퍼레이터, 및, 연료 전지
JP2011038166A (ja) 燃料電池用通電部材およびその製造方法
KR101763050B1 (ko) 카본에 대한 접촉 도전성과 내구성이 우수한 연료 전지 세퍼레이터용 티타늄 또는 티타늄 합금, 이것을 사용한 연료 전지 세퍼레이터 및 연료 전지
JP7226648B2 (ja) 燃料電池のセパレータ用のステンレス鋼板
JP2009231150A (ja) セパレータ用フェライト系粗面化ステンレス鋼板およびセパレータ並びに固体高分子型燃料電池
EP3395990B1 (en) Stainless steel for polymer fuel cell separation plate having improved hydrophilicity and contact resistance and method for manufacturing same
JP7201535B2 (ja) 燃料電池用セパレータ材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013525020

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355661

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012853172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012853172

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147014480

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE