WO2006137157A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2006137157A1
WO2006137157A1 PCT/JP2005/011658 JP2005011658W WO2006137157A1 WO 2006137157 A1 WO2006137157 A1 WO 2006137157A1 JP 2005011658 W JP2005011658 W JP 2005011658W WO 2006137157 A1 WO2006137157 A1 WO 2006137157A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
unit
experimental example
alumina
cross
Prior art date
Application number
PCT/JP2005/011658
Other languages
English (en)
French (fr)
Inventor
Kazushige Ohno
Masafumi Kunieda
Kazutake Ogyu
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to CN2005800004815A priority Critical patent/CN101023044B/zh
Priority to JP2007522176A priority patent/JPWO2006137157A1/ja
Priority to PCT/JP2005/011658 priority patent/WO2006137157A1/ja
Priority to EP05028675A priority patent/EP1738813A1/en
Priority to US11/321,880 priority patent/US7879428B2/en
Publication of WO2006137157A1 publication Critical patent/WO2006137157A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2422Mounting of the body within a housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2466Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the adhesive layers, i.e. joints between segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • B01J35/30
    • B01J35/56
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a her cam structure.
  • a Harcam catalyst generally used for purification of automobile exhaust gas has a monolithic and low thermal expansion cordierite-like no-cam structure surface on which a high specific surface area material such as activated alumina and a catalytic metal such as platinum are applied. Manufactured by carrying.
  • alkaline earth metals such as Ba are supported as NOx storage agents for NOx treatment under oxygen-excessive atmospheres such as lean burn engines and diesel engines.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-263416
  • Patent Document 2 DE4341159
  • the above-described conventional technology has the following problems.
  • High specific surface area materials such as alumina are sintered by thermal aging, and the specific surface area decreases.
  • the catalyst metal such as platinum that is supported is agglomerated and has a large particle size and a small specific surface area.
  • after heat aging used as a catalyst support
  • the cordierite no-cam structure as disclosed in Japanese Patent Application Laid-Open No. 10-263 416 is important.
  • the catalyst carrier should be made high by devising the cell shape, cell density, wall thickness, etc. to increase the contact probability with exhaust gas.
  • the specific surface area was increased, it was still not large enough, so the catalyst metal was not sufficiently dispersed and the exhaust gas purification performance after heat aging was insufficient. Therefore, in order to make up for this shortage, attempts have been made to solve the problem by supporting a large amount of catalyst metal or increasing the size of the catalyst carrier itself.
  • noble metals such as platinum are very expensive and are a limited and valuable resource.
  • when installing in an automobile of its installation space is both suitable means because it was very limited, was Enaka'.
  • the Hercam structure disclosed in Japanese Patent Application Laid-Open No. 5-213681 that extrudes a material with a high specific surface area together with inorganic fibers and an inorganic binder has a high specific surface area material force.
  • the installation space is very limited. Therefore, in order to increase the specific surface area of the carrier per unit volume, means such as thinning the partition walls are used. However, by doing so, the strength of the base material is always so weak.
  • alumina and the like have a large coefficient of thermal expansion, and cracks are easily generated by thermal stress during firing (calcination) and use. Considering these, when used for automobiles, external forces such as thermal stress and large vibrations due to sudden temperature changes are applied during use, so it is easily damaged and the shape of the honeycomb structure cannot be retained. There was a problem that it could not function as a catalyst carrier.
  • the automobile catalyst carrier disclosed in DE4341159 is intended to increase the size of the her cam structure, so that the cross cam capacity of the her cam unit is 200 cm 2 or more. However, when it is used in a situation where thermal stress due to sudden temperature changes and large vibrations are applied, it is easily damaged as described above, and the shape cannot be retained, and the function as a catalyst carrier is not achieved. There was a problem that could not be fulfilled.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a honeycomb structure having high strength against thermal shock and vibration as well as highly dispersed catalyst components. Means for solving the problem
  • the honeycomb structure of the present invention has a hard cam structure in which a plurality of hard cam units in which a large number of through holes are arranged in parallel in the longitudinal direction with a wall surface of the through hole being bundled via a sealing material layer.
  • the her cam unit includes at least ceramic particles, inorganic fibers, and Z or whiskers, and has a cross-sectional area in a cross section perpendicular to the longitudinal direction of the her cam unit.
  • the hard - wherein the flatness of the outer wall of the cam unit is 0. 1 ⁇ 1 5 mm..
  • the ratio of the total cross-sectional area in the cross section perpendicular to the longitudinal direction of the her-cam unit to the cross-sectional area in the cross section perpendicular to the longitudinal direction of the honeycomb structure Is preferably 85% or more.
  • the above-mentioned her cam structure desirably has a coating material layer on the outer peripheral surface in which no through hole is opened. Thereby, an outer peripheral surface can be protected and intensity
  • the ceramic particles are at least one selected from the group consisting of alumina, silica, zirconia, titanium, ceria, mullite, and zeolite. As a result, the specific surface area of the her cam unit can be improved.
  • the above-mentioned Hercom structure is selected from the group consisting of the inorganic fiber and Z or the Wis power consisting of alumina, silicon force, silicon carbide, silica alumina, glass, potassium titanate, and aluminum borate. One or more types are desirable. As a result, the strength of the two-cam unit can be improved.
  • the her cam unit is manufactured using a mixture containing the inorganic particles and inorganic fibers and Z or Wis power and an inorganic binder, and the inorganic binder is used.
  • Is preferably at least one selected from the group consisting of alumina sol, silica sol, titasol, water glass, sepiolite and attapulgite.
  • the catalyst component preferably contains one or more components selected from the group consisting of noble metals, alkali metals, alkaline earth metals, and oxides. Thereby, purification performance can be improved.
  • the above-mentioned hard cam structure is desirably used for exhaust gas purification of a vehicle.
  • a honeycomb structure having high strength against thermal shock and vibration can be provided.
  • FIG. 1A is a conceptual diagram of a her cam unit 11 according to the present invention.
  • FIG. 1B is a conceptual diagram of the honeycomb structure 10 of the present invention.
  • FIG. 2A is an explanatory diagram of the flatness of the outer wall of the hard cam unit 11.
  • FIG. 2B is a diagram showing another form of the outer wall of the honeycomb unit 11.
  • FIG. 2C is a view showing another form of the outer wall of the honeycomb unit 11.
  • FIG. 3 is an SEM photograph of the wall surface of the honeycomb unit 11 of the present invention.
  • FIG. 4A is an explanatory diagram of an experimental example in which a plurality of heavy cam units 11 are joined.
  • FIG. 4B is an explanatory diagram of an experimental example in which a plurality of her cam units 11 are joined.
  • FIG. 4C is an explanatory diagram of an experimental example in which a plurality of her cam units 11 are joined.
  • FIG. 4D is an explanatory diagram of an experimental example in which a plurality of 4D] hard cam units 11 are joined.
  • FIG. 5A is an explanatory diagram of an experimental example in which a plurality of heavy cam units 11 are joined.
  • FIG. 5B is an explanatory diagram of an experimental example in which a plurality of heavy cam units 11 are joined.
  • FIG. 5C is an explanatory diagram of an experimental example in which a plurality of heavy cam units 11 are joined.
  • FIG. 6A is a front view of the vibration device 20.
  • FIG. 6B is a side view of the vibration device 20.
  • FIG. 7 An explanatory diagram of the pressure loss measuring device 40.
  • FIG. 8 A diagram showing the relationship between the cross-sectional area of the her cam unit, the weight reduction rate, and the pressure loss.
  • FIG. 9 This is a diagram showing the relationship between the unit area ratio, the weight reduction rate, and the pressure loss.
  • FIG. 10 is a diagram showing the relationship between the aspect ratio and weight loss rate of silica-alumina fiber.
  • the hard cam structure 10 of the present invention has a large number of through-holes.
  • a plurality of no-cam units arranged in parallel in the longitudinal direction with a gap between them to form a her-cam structure in which a plurality of the no-cam units are bound via a sealing material layer.
  • Fiber and Z or whisker, the cross-sectional area in the cross section perpendicular to the longitudinal direction of the her cam unit is 5 cm 2 or more and 50 cm 2 or less, and the flatness of the outer wall of the honeycomb unit is 0.1-1 It is characterized by being 5mm.
  • This her cam structure has a structure in which a plurality of her cam units are joined via a sealing material layer, so that the strength against thermal shock and vibration can be increased. As this reason
  • the size of the two-cam unit is a sealing material layer that joins multiple her cam units if the cross-sectional area perpendicular to the through-hole (simply referred to as the cross-sectional area; the same applies hereinafter) is less than 5 cm 2 .
  • the cross-sectional area of the catalyst increases, the specific surface area carrying the catalyst becomes relatively small and the pressure loss becomes relatively large. If the cross-sectional area exceeds 50 cm 2 , the unit size is too large. Therefore, it is impossible to sufficiently suppress the thermal stress generated in each her cam unit.
  • the cross-sectional area of the unit is in the range of 5 to 50 cm 2 , keeping the specific surface area large, keeping the pressure loss small, having sufficient strength against thermal stress, high durability and practical use Level.
  • the cross-sectional area means that when the two-cam structure includes a plurality of hard-cam units having different cross-sectional areas, it is the basic unit of the her-cam unit that constitutes the hard-cam structure.
  • This is the cross-sectional area, usually the one with the largest cross-sectional area of the her cam unit.
  • the ratio of the total cross-sectional area in the cross section perpendicular to the longitudinal direction of the her-cam unit to the cross-sectional area in the cross section perpendicular to the longitudinal direction of the honeycomb structure is 85% or more More than 90% More preferably.
  • this ratio is less than 85%, the cross-sectional area of the sealing material layer is increased, and the total cross-sectional area of the her cam unit is reduced. Therefore, the specific surface area supporting the catalyst is relatively small and the pressure loss is relatively small. Because it grows big. Moreover, when this ratio is 90% or more, the pressure loss can be further reduced.
  • the flatness of the outer wall of the her cam unit is 0.1 to 1.5 mm, and the joining force between the her cam units can be increased.
  • the “flatness of the outer wall of the Her-cam unit” is an index representing the degree of “warping” in the longitudinal direction of the Her-cam unit, and was obtained by a method similar to the method described in JISB0621-1984. That is, as shown in FIG.
  • the outer surface 13 (measurement surface 50 Assuming a plane parallel to the reference plane P (virtual plane) that encompasses all points on the top, the distance from the reference plane P to the virtual plane P1 with the minimum distance from the reference plane P is the maximum.
  • the difference d from the virtual plane P2 was defined as “the flatness of the outer wall of the No. 2 cam unit”.
  • the outer edge of the hard cue opening side may be the R or C plane, and may be chamfered, and the virtual plane passing through the end point is unclear. It is easy to become.
  • the virtual plane was assumed for the range from the opening unit force of the honeycomb unit in the longitudinal direction to the position Q force 3 mm inward and to the isolator Q on the opposite opening side.
  • the position should be set so that it is not affected by the R, C, or chamfer.
  • the two outer surfaces 13 of the honeycomb unit facing each other are “warped and bent” uniformly in one direction.
  • the shape is not limited to this.
  • the Hercam unit has a shape in which the two outer surfaces 13 facing each other are along opposite sides, that is, a shape in which both are convexly warped outward as shown in FIG. 2B, or as shown in FIG. 2C.
  • both sides of the honeycomb unit may be bent in any shape (irregular shape).
  • “the flatness of the outer wall of the her cam unit” is the flatness of each measurement surface 50 of the her cam unit (in the case of a rectangular parallelepiped honeycomb unit, the four surfaces are Means the largest one.
  • the flatness of the outer wall of the her cam unit (hereinafter simply referred to as flatness) is less than 0.1 mm, sufficient bonding strength cannot be obtained, and the her cam unit is likely to move. .
  • the flatness exceeds 1.5 mm, the thickness of the sealing material layer for joining the her cam units increases, and the aperture ratio of the her cam structure decreases, making it impractical. Accordingly, the flatness of the outer wall of the her cam unit is preferably 0.1 mm to 1.5 mm.
  • the her cam structure of the present invention includes a coating material layer that covers the outer peripheral surface of the two or more her cam units joined by the sealing material layer, with the through hole being open. It's okay. If it carries out like this, an outer peripheral surface can be protected and intensity
  • the shape of the nose-cam structure to which the her-cam unit is joined is not particularly limited, but may be of any shape and size, for example, a cylindrical shape, a prismatic shape, It may be in the shape of an elliptic cylinder.
  • the strength of the her cam unit can be improved.
  • the aspect ratio of the inorganic fiber and the Z or Wis force is 2 to: LOOO is preferably 5 to 800, and more preferably 10 to 500. If the aspect ratio of inorganic fiber and Z or Wies force is less than 2, it may contribute to improving the strength of the hard cam structure. S exceeding 1000 may cause clogging of the mold during molding. It may become easier and the moldability may be deteriorated, and the inorganic fiber and Z or whisker force may be bent during molding such as extrusion molding, resulting in a variation in the length of the knives-cam structure. May be.
  • the average value may be used.
  • the ceramic particles contained in the her cam unit are not particularly limited.
  • one or more selected from zeolite and alumina is preferred.
  • the inorganic fiber and Z or whisker included in the her cam unit are not particularly limited, but alumina, silica, silicon carbide, One or more of which silica alumina, aluminum borate, glass and potassium titanate are also selected.
  • the amount of ceramic particles contained in the Hercam structure is preferably 30 to 97% by weight.
  • the ceramic particle content is less than 30% by weight, the amount of the ceramic particles that contribute to the improvement of the specific surface area is relatively small, so the specific surface area as the Hercam structure is small and the catalyst is loaded when the catalyst component is supported. The components cannot be highly dispersed, and if it exceeds 90% by weight, the amount of inorganic fibers that contribute to the strength improvement is relatively reduced, and the strength of the hard cam structure is lowered.
  • the amount of inorganic fiber and Z or whisking force contained in the her cam unit of the her cam structure is preferably 3 to 70% by weight, more preferably 3 to 50% by weight, and 5 to 40%. 8 to 30% by weight is most preferred. If the content of inorganic fiber and / or whistle force is less than 3% by weight, the strength of the Hercam structure is lowered, and if it exceeds 50% by weight, the amount of ceramic particles contributing to the improvement of the specific surface area becomes relatively small. As a result, the specific area of the Hercam structure is small, and the catalyst component cannot be highly dispersed when the catalyst component is supported.
  • the her cam unit may be manufactured by further including an inorganic binder.
  • an inorganic binder contained in the hard cam structure is not particularly limited, and examples thereof include an inorganic sol clay binder.
  • the inorganic sol for example, one or more kinds selected from force such as alumina sol, silica sol, titer sol and water glass can be mentioned.
  • the clay-based binder include one or more selected from power such as clay, kaolin, montmorillonite, and double chain structure type clay (sepiolite, attapulgite).
  • the amount of inorganic nonder contained in the raw material of the Hercum structure is preferably 50 to 50% by weight as the solid content in the Hercum structure. 5 to 50% by weight Power is favorably 10 to 40% 15 to 35% by weight is most preferred. If the content of the organic binder exceeds 50% by weight, the moldability deteriorates.
  • the shape of the two-cam unit is not particularly limited, but the cross-section of the surface orthogonal to the through-hole (simply that it is preferable that the her-cam unit be easily joined together) Cross section. same as below. ) May be square, rectangular, hexagonal or fan-shaped.
  • FIG. 1A shows a conceptual diagram of a rectangular parallelepiped her cam unit 11 having a square cross section.
  • the her cam unit 11 has a large number of through holes 12 from the front side toward the back side, and has an outer surface 13 that does not have the through holes 12.
  • the wall thickness between the through holes 12 is not particularly limited, but a range of 0.05 to 0.35 mm is preferable, and a range of 0.1 to 30 mm is more preferable 0.15. Most preferred is 0.25 mm. If the wall thickness is less than 0.05 mm, the strength of the hammer unit is reduced. If the wall thickness exceeds 0.35 mm, the contact area with the exhaust gas becomes small and the gas does not penetrate deeply enough. This is because it becomes difficult for the supported catalyst and gas to come into contact with each other, resulting in a decrease in catalyst performance.
  • the number of through-holes per unit cross-sectional area is 15.5 to 186 Zcm 2 (100 to 1200 cpsi) force, 46.5 to 170.5 Zcm 2 (300 to: L lOOcpsi) force 62.0 to 155 Zcm 2 (400 to 1000 cps i) is most preferable. If the number of through-holes is less than 15.5 Zcm 2 , the area force of the wall in contact with the exhaust gas inside the hard cam unit will be reduced, and if it exceeds 186 Zcm 2 , the pressure loss will increase, This is because it is difficult to manufacture a two-cam unit.
  • the shape of the through hole formed in the her cam unit is not particularly limited, but the cross section may be a substantially triangular shape or a substantially hexagonal shape.
  • extrusion molding or the like is performed using a raw material paste mainly composed of the above-described ceramic particles, inorganic fibers and Z or whisker force, and an inorganic binder, thereby producing a honeycomb unit molded body.
  • the raw material paste is molded with an organic binder, dispersion medium and molding aid. You may customize it according to the nature.
  • the organic binder is not particularly limited, and examples thereof include one or more selected from methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin and epoxy resin.
  • the blending amount of the organic binder is preferably 1 to: L0 parts by weight with respect to 100 parts by weight of the total of ceramic particles, inorganic fibers and Z or whistle force, and inorganic binder.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents (such as benzene) and alcohols (such as methanol).
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty arsenic acid, and polyalcohol.
  • the raw material paste is not particularly limited. For example, it is preferable to mix and knead.
  • the raw material paste may be sufficiently kneaded using an mixer or an adder that may be mixed using an attritor. Good.
  • the method of molding the raw material paste is not particularly limited, but for example, it is preferable to mold the raw material paste into a shape having a through hole by extrusion molding or the like.
  • a jig for example, a flat plate shape
  • ceramic, metal, or resin having a predetermined surface flatness this is pressed against the outer wall of the no cam unit.
  • the flatness of the her cam unit can be set to a predetermined flatness.
  • a no-cam unit having a predetermined flatness may be selected to form a her cam structure.
  • the obtained molded body is preferably dried.
  • the dryer used for drying is not particularly limited, and examples thereof include a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, and a freeze dryer.
  • the degreasing conditions are not particularly limited and are appropriately selected depending on the type and amount of organic matter contained in the molded body, but are preferably approximately 400 ° C. and 2 hours.
  • the obtained molded body is preferably fired.
  • the condition for firing ⁇ force 600 to 1200 o C force S preferably such are not particularly limited, preferably from 600 to 1000 o C force S ⁇ .
  • the firing temperature is less than 600 ° C, the sintering of the ceramic particles does not proceed and the strength of the no-cam structure is lowered, and if it exceeds 1200 ° C, the sintering of the ceramic particles proceeds. Too much specific surface area per unit volume will be reduced, and the catalyst components to be supported must be sufficiently dispersed. It is because it becomes impossible. Through these steps, a hard cut having a plurality of through holes can be obtained.
  • a sealing material paste to be a sealing material layer is applied to the obtained honeycomb unit to sequentially join the honeycomb unit, and then dried and fixed to join the honeycomb unit of a predetermined size.
  • the sealing material is not particularly limited 1S
  • a mixture of inorganic binder and ceramic particles, a mixture of inorganic binder and inorganic fibers, or a mixture of inorganic binder, ceramic particles and inorganic fibers Etc. can be used.
  • the organic binder is not particularly limited, and examples thereof include one or more selected from polyvinyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like.
  • the thickness of the sealing material layer to which the her cam unit is joined is preferably 0.5 to 2 mm. This is because if the thickness of the sealant layer is less than 0.5 mm, sufficient bonding strength may not be obtained. In addition, since the sealing material layer is a part that does not function as a catalyst carrier, if the thickness exceeds 2 mm, the specific surface area per unit volume of the her-cam structure decreases, so that it is sufficiently high when the catalyst component is carried. It cannot be dispersed. If the thickness of the sealing material layer exceeds 2 mm, the pressure loss may increase. It should be noted that the number of her-cam units to be joined may be appropriately determined according to the size of the her-cam structure used as the her-cam catalyst. In addition, the joined body in which the her cam unit is joined by the sealing material may be appropriately cut and polished according to the shape and size of the her cam structure.
  • the coating material layer may be formed by applying a coating material to the outer peripheral surface (side surface), drying, and fixing. In this way, the outer peripheral surface can be protected and the strength can be increased.
  • the coating material is not particularly limited, and it may be made of the same material as the seal material or may have a different material strength. Further, the coating material may have the same mixing ratio as the sealing material or a different mixing ratio.
  • the thickness of the coating material layer is not particularly limited, but is preferably 0.1-2 mm. If the thickness is less than 1 mm, the outer peripheral surface may not be fully protected and the strength may not be increased. If the thickness exceeds 2 mm, the specific surface per unit volume as a her cam structure When the catalyst component is loaded, the product will not be sufficiently dispersed.
  • FIG. 1B shows a conceptual diagram of the her cam structure 10 in which a plurality of square cams 11 having a square cross section are joined and the outer shape is cylindrical.
  • the her cam unit 11 is joined by the seal material layer 14 and cut into a cylindrical shape, and then the through hole 12 of the her cam structure 10 is not opened by the coating material layer 16.
  • the outer peripheral surface is covered.
  • the honeycomb unit 11 is formed into a fan-shaped cross section or a square cross section, and these are joined to form a predetermined honeycomb structure (columnar in FIG. IB) and cut. 'The polishing step may be omitted.
  • the use of the obtained two-cam structure is not particularly limited, but it is preferably used as a catalyst carrier for exhaust gas purification of vehicles. Also, when used as a catalyst carrier for exhaust gas purification of diesel engines, it has a ceramic hard structure such as silicon carbide, and has the function of filtering particulate matter (PM) in exhaust gas and purifying combustion. ⁇ Force that may be used in combination with particulate filter (DPF) At this time, the position of the heart cam structure of the present invention and the DPF may be the front side or the rear side of the heart cam structure of the present invention.
  • a catalyst component may be supported on the obtained her cam structure to form a her cam catalyst!
  • the catalyst component is not particularly limited, and may be a noble metal, an alkali metal, an alkaline earth metal, an oxide or the like.
  • the noble metal for example, one or more kinds selected from platinum, noradium, and oral dynamism can be mentioned
  • the alkali metal for example, one or more kinds selected from forces such as potassium and sodium can be mentioned
  • alkaline earth metal examples include oxides made of norium and the like, and oxides such as perovskite (La K Mn
  • the obtained no- and two-cam catalysts are particularly limited.
  • the loading of the catalyst component is not particularly limited, but it may be carried after the Hercam structure is produced, or may be carried at the stage of the raw material ceramic particles.
  • the catalyst component loading method is not particularly limited. For example, the impregnation method may be used.
  • honeycomb structures are specifically manufactured under various conditions
  • present invention is not limited to these experimental examples.
  • ⁇ Alumina particles (average particle size 2 ⁇ m) 40% by weight, silica-alumina fiber (average fiber diameter 10 ⁇ m, average fiber length 100 ⁇ m, aspect ratio 10) 10% by weight, silica sol (solid concentration 30 50% by weight) and 100 parts by weight of the resulting mixture, 6 parts by weight of methylcellulose as an organic binder, a small amount of plasticizer and lubricant are mixed and further mixed and kneaded to obtain a mixed composition. Obtained. Next, this mixed composition was subjected to extrusion molding with an extruder to obtain a raw molded body.
  • the green molded body was sufficiently dried using a microwave dryer and a hot air dryer, and degreased by holding at 400 ° C for 2 hours. After that, firing was performed at 800 ° C for 2 hr, prismatic (34.3 mm x 34.3 mm x 150 mm), cell density of 93 cells Zcm 2 (600 cpsi), wall thickness of 0.2 mm, cell shape of square (Square) Hercam Unit 11 was obtained.
  • Fig. 3 shows an electron microscope (SEM) photograph of the wall surface of this hermute 11. This Hercom unit 11 The fact that the silica-alumina fibers are oriented along the extrusion direction of the raw material paste
  • FIG. 4A shows a joined body in which a plurality of two-cam units 11 are joined as viewed from a surface having a through-hole (referred to as a front surface, the same applies hereinafter).
  • This joined body is obtained by applying the sealing material paste to the outer surface 13 of the above-mentioned nozzle-cam unit 11 so that the thickness of the sealing material layer 14 becomes 1 mm, and fixing and fixing a plurality of the hard cam units 11. is there.
  • a joined body is prepared, and the joined body is cut into a cylindrical shape using a diamond cutter so that the front surface of the joined body is substantially point-symmetric, and the sealing material described above is formed on a circular outer surface having no through hole.
  • the paste was applied to a thickness of 0.5 mm to coat the outer surface.
  • the ceramic particle component, unit shape, unit cross-sectional area, and unit area ratio of the her-cam structure 10 (the ratio of the total cross-sectional area of the her-cam unit to the cross-sectional area of the her-cam structure.
  • the ratio of the area of the seal material layer (the ratio of the total cross-sectional area of the sealing material layer and coating material layer to the cross-sectional area of the two-cam structure; the same shall apply hereinafter) Is shown in Table 1.
  • Experimental example 1 Alumina 3.43 cm square 1 1.8 93.5 6.5
  • Experimental example 2 Alumina 2.00 cm square 4.0 89.7 10.3
  • Experimental example 3 Alumina 2.24 cm square 5.0 90.2 9.8
  • Experimental example 4 Alumina 7.09 cm fan 39.5 96.9 3.1
  • Experimental example 5 Alumina 7.10 cm square 50.0 95.5
  • Experimental example 6 Alumina 7.41 cm square 55.0 95.6 4.4
  • Experimental example 7 Alumina monolith 162.0 100.0 0
  • Experimental example 8 Titania 3.43 cm square 1 1.8 93.5 6.5
  • Experimental example 9 Titania 2.00 cm square 4.0 89.7 10.3
  • Experimental example 10 Titania 2.24 cm square 5.0 90.2 9.8
  • Experimental example 1 1 Titania 7.09 cm fan 39.5 96.9 3.1
  • Experimental example 12 Titania 7.10 cm square 50.0 95.5
  • Experimental example 13 Titania 7.41 cm square 55.0 95.6
  • Experimental example 14 Titania monolith 162.0 100.0 0
  • Inorganic fiber silica-alumina fiber (diameter 10 im, length 100 / im, aspect ratio 10)) Including coating material layer area
  • Table 1 also summarizes the contents related to Experimental Examples 2 to 29 described later.
  • the inorganic fiber is silica-alumina fiber (average fiber diameter 10 m, average fiber length 100 / ⁇ ⁇ , aspect ratio 10), and the inorganic binder is silica sol (solid concentration 30). Weight%).
  • Table 2 summarizes the numerical values such as inorganic fibers (type, diameter, length, aspect ratio), unit shape, and unit cross-sectional area of Experimental Examples 30 to 34 described later.
  • the ceramic particles are ⁇ -alumina particles
  • the inorganic binder is silica sol (solid concentration 30% by weight)
  • the unit area ratio is 93.5%
  • the sealant layer area ratio is 6 It is 5%.
  • the inorganic binder type, unit cross-sectional area, seal material layer thickness, unit area ratio, seal material layer area ratio, and no-cam unit 11 of the Hercam structure 10 in Experimental Examples 44 to 51 described later 11 Table 3 summarizes the numerical values of the firing temperature of the steel.
  • Inorganic fiber silica-alumina fiber (diameter 10 / m, length 100mm, aspect ratio 10)
  • the ceramic particles are ⁇ - alumina particles (average particle size 2 ⁇ m)
  • the inorganic fibers are silica-alumina fibers (average fiber diameter 10 / ⁇ ⁇ , average fiber length 100 m, aspect ratio Ratio 10).
  • a honeycomb structure 10 was manufactured in the same manner as in Experimental Example 1 except that the honeycomb unit was manufactured to have the shape shown in Table 1.
  • the shapes of the joined bodies of Experimental Examples 2, 3, and 4 are shown in FIGS. 4B, C, and D, respectively, and the shapes of the joined bodies of Experimental Examples 5, 6, and 7 are shown in FIGS. 5A, B, and C, respectively.
  • the joining step and the cutting step were not performed.
  • a ceramic unit 11 was produced in the same manner as in Experimental Example 1 except that the ceramic particles were made into titanium particles (average particle size 2 ⁇ m) and the shape shown in Table 1 was used.
  • a Hercam structure 10 was fabricated in the same manner as in Experimental Example 1, except that the ceramic particles in the coating material layer were made to be titanium particles (average particle size 2 ⁇ m).
  • the shapes of the joined bodies in Experimental Examples 8 to 11 are 4A to D, and the shapes of the joined bodies of Experimental Examples 12 to 14 are the same as those of FIGS. 5A to 5C, respectively.
  • Experimental example 14 is a case in which the her cam structure 10 is integrally molded.
  • the honeycomb unit 11 was prepared in the same manner as in Experimental Example 1 except that the ceramic particles were silica particles (average particle size 2 ⁇ m), and the honeycomb unit was prepared to have the shape shown in Table 1.
  • a Hercam structure 10 was prepared in the same manner as in Experimental Example 1 except that the ceramic particles of the V and the sealing material layer and the coating material layer were silica particles (average particle size 2 m).
  • the shapes of the joined bodies in Experimental Examples 15 to 18 are the same as those in FIGS. 4A to D, respectively, and the shapes of the joined bodies in Experimental Examples 19 to 21 are the same as those in FIGS.
  • the two-cam structure 10 is integrally molded.
  • a Hercam unit 11 was fabricated in the same manner as in Experimental Example 1, except that the ceramic particles were made of zirco-yu particles (average particle size 2 ⁇ m) and the Her cam unit was fabricated to have the shape shown in Table 1.
  • a Hercam structure 10 was produced in the same manner as in Experimental Example 1 except that the ceramic particles of the sealing material layer and the coating material layer were changed to zirconia particles (average particle size 2 m).
  • the shapes of the joined bodies in Experimental Examples 22 to 25 are the same as those in FIGS. 4A to D, respectively, and the joined bodies in Experimental Examples 26 to 28 are the same as those in FIGS.
  • the honeycomb structure 10 is integrally molded.
  • Experimental Example 29 was a commercially available columnar (diameter 143.8 mm x length 150 mm) cordierite hard cam structure 10 in which alumina as a catalyst support layer was formed inside the through hole.
  • the cell shape was hexagonal, the cell density was 62 Zcm 2 (400 cpsi), and the wall thickness was 0.18 mm.
  • the shape of the Hercam structure viewed from the front is the same as that of FIG. 5C.
  • a Hermute 11 was prepared in the same manner as in Experimental Example 1 except that silica-alumina fiber having the shape shown in Table 2 was used as the inorganic fiber, followed by the sealing material layer and the coating material layer.
  • a Hercam structure 10 was prepared in the same manner as in Experimental Example 1 except that the liquor alumina fiber was the same silica alumina fiber as the No-Cam unit.
  • the shapes of the joined bodies in Experimental Examples 30 to 34 are the same as those in FIG. 4A.
  • the hard cam structure 10 was produced in the same manner as in Experimental Example 1, except that the cross-sectional area of the her cam unit and the thickness of the seal material layer to which the cam cam unit was joined were changed. did.
  • the shapes of the joined bodies in Experimental Examples 44 to 45 are the same as those in FIG. 4A, and the joined bodies in Experimental Examples 46 to 47 are the same as those in FIG. 4C.
  • a hard cam structure 10 was fabricated in the same manner as in Experimental Example 1, except that the inorganic binder was alumina sol (solid concentration 30 wt%).
  • a hard cam unit 10 was manufactured in the same manner as in Experimental Example 1 except that sepiolite and attapulgite were used as the inorganic binder. Specifically, ⁇ -alumina particles (average particle size 2 ⁇ m) 40% by weight, silica-alumina fiber (average fiber diameter 10 ⁇ m, average fiber length 100 ⁇ m, aspect ratio 10) 10% by weight, inorganic binder 15% by weight and 35% by weight of water were mixed, and in the same manner as in Experimental Example 1, an organic binder, a plasticizer and a lubricant were added, followed by molding and firing to obtain a Hercam unit 11.
  • ⁇ -alumina particles average particle size 2 ⁇ m
  • silica-alumina fiber average fiber diameter 10 ⁇ m, average fiber length 100 ⁇ m, aspect ratio 10 10% by weight
  • inorganic binder 15% by weight and 35% by weight of water were mixed, and in the same manner as in Experimental Example 1, an organic binder, a plasticizer and a lubricant were added, followed by molding and firing
  • a her-cam unit was manufactured in the same manner as in Experimental Example 1 except that an inorganic binder was not mixed, and a no-cam structure 10 was manufactured. Specifically, ⁇ -alumina particles (average particle size 2 m, 50% by weight), silica-alumina fiber (average fiber diameter 10 m, average fiber length 100 m, aspect ratio 10) 15% by weight and water 35% by weight Then, an organic binder, a plasticizer and a lubricant were added in the same manner as in Experimental Example 1, and the molded body was fired at 1000 ° C. to obtain a Hercam unit 11.
  • a probe contact type three-dimensional measuring machine (FALCI0916 manufactured by Mitutoyo) was used for measuring the flatness of the outer wall of the her cam unit.
  • the HerCam unit is installed on the measuring table so that the opening force of the HerCam unit is substantially perpendicular to the X axis (see Fig. 2A).
  • a reference plane as a reference is determined.
  • the reference plane is determined as a plane including at least three points out of the four corners of the outer surface 13 (hereinafter referred to as measurement surface 50) of the two-cam unit exposed at the top in this installed state.
  • measurement surface 50 the Z direction
  • the specific surface area of each of the experimental units 1 to 51 and the experimental examples 1 A to 1 D of the hard cam unit 11 was measured. First Nono - actually measuring the volume of the cam unit 11 and the sealing material, ha - was calculated Percentage material unit to the volume of the cam structure A (volume 0/0). Next, the BET specific surface area B (m 2 / g) per unit weight of the Hermute 11 was measured. The BET specific surface area was measured by a one-point method using a BET measuring device (Micromeritics Flow Soap II 2300 manufactured by Shimadzu Corporation) according to JIS-R-1626 (1996) defined by Japanese Industrial Standards.
  • a BET measuring device Micromeritics Flow Soap II 2300 manufactured by Shimadzu Corporation
  • the specific surface area of the her-cam structure means the specific surface area per apparent volume of the her-cam structure.
  • Experimental example 1 to 51 and Experimental example 1 Thermal shock and vibration repetition of the hard cam structures of A to 1 D
  • the test was conducted.
  • an alumina mat (Maftec made by Mitsubishi Chemical Co., Ltd., 46.5cm x 15cm, thickness 6mm) is wound around the outer surface of the hard cam structure and placed in a metal casing 21. Then, it was put into a firing furnace set at 600 ° C and heated for 10 minutes, and the firing furnace was taken out and rapidly cooled to room temperature.
  • a vibration test was performed with the her cam structure placed in the metal casing.
  • FIG. 6A shows a front view of the vibration device 20 used in the vibration test
  • FIG. 6B shows a side view of the vibration device 20.
  • the metal casing 21 containing the honeycomb structure was placed on the pedestal 22, and the metal casing 21 was fixed by tightening the substantially U-shaped fixture 23 with the screw 24. Then, the metal casing 21 can vibrate while being integrated with the base 22 and the fixture 23.
  • the vibration test was performed under the conditions of a frequency of 160 Hz, an acceleration of 30 G, an amplitude of 0.5 8 mm, a holding time of 10 hours, a room temperature, and a vibration direction Z-axis direction (up and down). This thermal shock test and vibration test were alternately repeated 10 times, and the weight TO of the honeycomb structure before the test and the weight Ti after the test were measured, and the weight reduction rate G was calculated using the following equation (2). Asked.
  • the pressure loss of Experimental Example 1 to 51 and Experimental Example 1 A to 1 D Hercam structure was measured.
  • a pressure loss measuring device 40 is shown in FIG.
  • the measurement method consisted of placing a no-cam structure with alumina mat wound around the exhaust pipe of a 2L common rail diesel engine in a metal casing and attaching pressure gauges to the front and back of the honeycomb structure.
  • the measurement conditions were set at an engine speed of 1500 rpm and a torque of 50 Nm, and the differential pressure was measured 5 minutes after the start of operation.
  • Experiments 1 to 3, 5, 6 and Experiments 1 A to 1 D of Hercam structures were subjected to a punching test.
  • the push-out test was performed according to the following procedure. First, the honeycomb structure was fixed to a hollow cylindrical jig. Next, a single her cam unit near the center of the honeycomb structure was selected, and the her cam unit was pushed out with an aluminum cylindrical jig, and the load when the her cam unit was pushed out was measured.
  • the pressurization speed was ImmZmin, and an Instron universal testing machine (type 5582) was used for the test.
  • Example 1 to 29 and Example 44 to 47 ceramic particle components, unit cross-sectional area, unit area ratio, specific surface area of the Hercam unit, specific surface area S of the Hercam structure, thermal shock Table 5 summarizes the weight loss rate G, pressure loss, and punching strength values.
  • the horizontal axis is the cross-sectional area of the her cam unit, and the weight reduction rate G and pressure in the thermal shock vibration test A plot of loss on the vertical axis is shown in Fig. 8, and a plot of the unit area ratio on the horizontal axis and weight loss rate G and pressure loss in the thermal shock / vibration repetition test on the vertical axis is shown in Fig. 9.
  • Inorganic fiber silica-alumina fiber (diameter 10 m, length 100 m, aspect ratio 10 )
  • the cross-sectional area of the hard cam unit 11 is in a range of 50 cm 2 or less, and the unit area ratio is 85% or more, -The specific surface area per unit volume of the cam structure can be increased, sufficient strength against thermal shock and vibration can be obtained, and the pressure loss is reduced. In particular, the drop in pressure loss was significant when the unit area ratio was 90% or more.
  • Table 4 shows the results of the weight loss rate G, pressure loss, and punching strength in the thermal shock 'vibration repetition test of A to ID D. From this result, the punching strength is high when the unit cross-sectional area is 50 cm 2 or less, the unit area ratio is 85% or more, and the flatness of the outer wall of the her cam unit is 0.1 mm to 1.5 mm. (2.5 MPa or more).
  • the present invention can be used for a catalyst carrier for exhaust gas purification of a vehicle, an adsorbent for adsorbing a gas component or a liquid component, and the like.

Abstract

 本発明のハニカム構造体10は、多数の貫通孔が貫通孔壁面を隔てて長手方向に並設されたハニカムユニットがシール材層を介して、複数個結束されたハニカム構造体であって、前記ハニカムユニットは、少なくともセラミック粒子と、無機繊維及び/又はウィスカを含有し、前記ハニカムユニットの長手方向に垂直な断面における断面積が、5cm2以上50cm2以下であり、前記ハニカムユニットの外壁の平面度が0.1~1.5mmであることを特徴とする。

Description

明 細 書
ノヽニカム構造体
技術分野
[0001] 本発明は、ハ-カム構造体に関する。
背景技術
[0002] 従来、一般に自動車排ガス浄化に用いられるハ-カム触媒は一体構造で低熱膨 張性のコージエライト質ノヽ-カム構造体の表面に活性アルミナ等の高比表面積材料 と白金等の触媒金属を担持することにより製造されている。また、リーンバーンェンジ ンおよびディーゼルエンジンのような酸素過剰雰囲気下における NOx処理のために NOx吸蔵剤として Ba等のアルカリ土類金属を担持している。ところで、浄ィ匕性能をよ り向上させるためには、排ガスと触媒貴金属および NOx吸蔵剤との接触確率を高く する必要がある。そのためには、担体をより高比表面積にして、貴金属の粒子サイズ を小さぐかつ高分散させる必要がある。しかし、単純に活性アルミナ等の高比表面 積材料の担持量を増やすことのみではアルミナ層の厚みの増加を招くのみであり、 接触確率を高くすることにつながらな力つたり、圧力損失が高くなりすぎてしまうといつ た不具合も生じてしまうため、セル形状、セル密度、および壁厚等を工夫している(例 えば、特開平 10— 263416号公報参照)。一方、高比表面積材料力もなるハ-カム 構造体として、無機繊維及び無機バインダとともに押出成形したノヽ-カム構造体が知 られている(例えば、特開平 5— 213681号公報参照)。さら〖こ、このようなハ-カム構 造体を大型化するのを目的として、接着層を介して、ハ-カムユニットを接合したもの が知られて ヽる(例えば、 DE4341159号公報参照)。
特許文献 1 :特開平 10— 263416号公報
特許文献 2: DE4341159号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、前述した従来技術には次のような問題があった。アルミナ等の高比表 面積材料は、熱エージングによって、焼結が進行し、比表面積が低下する。さらに、 担持されている白金等の触媒金属はそれに伴い、凝集し粒径が大きぐ比表面積が 小さくなる。つまり、熱エージング (触媒担体として使用)後に、より高比表面積である ためには、初期の段階においてその比表面積を高くする必要がある。また、上述した ように、浄ィ匕性能をより向上させるためには、排ガスと触媒貴金属および NOx吸蔵剤 との接触確率を高くすることが必要である。つまり、担体をより高比表面積にして、触 媒金属の粒子を小さぐかつより高分散させることが重要であるが、特開平 10— 263 416号公報のようなコージエライト質ノヽ-カム構造体の表面に活性アルミナ等の高比 表面積材料と白金等の触媒金属を担持したものでは、排ガスとの接触確率を高くす ベぐセル形状、セル密度、および壁厚等を工夫し、触媒担体を高比表面積化した が、それでも十分大きくはなぐそのため、触媒金属が十分高分散されず、熱エージ ング後の排ガスの浄ィ匕性能が不足した。そこで、この不足を補うために、触媒金属を 多量に担持することや、触媒担体自身を大型化することで解決しょうとしてきた。しか し、白金等の貴金属は非常に高価であり、限られた貴重な資源である。また、自動車 に設置する場合、その設置スペースは非常に限られたものであるためどちらも適当な 手段であるとは 、えなかった。
さらに、高比表面積材料を無機繊維及び無機バインダとともに押し出し成形する特 開平 5— 213681号公報のハ-カム構造体は、基材自体が高比表面積材料力もなる ため、担体としても高比表面積であり、十分に触媒金属を高分散させることが可能で あるが、基材のアルミナ等は比表面積を保っためには、十分に焼結させることができ ず、基材の強度は非常に弱いものであった。さらに、上述したように自動車用に用い る場合、設置するためのスペースは非常に限られたものである。そのため、単位体積 当たりの担体の比表面積を上げるために隔壁を薄くする等の手段を用いるが、そうす ることにより、基材の強度はいつそう弱いものとなった。また、アルミナ等は、熱膨張率 が大きいこともあり、焼成 (仮焼)時、および使用時に熱応力によって容易にクラックが 生じてしまう。これらを考えると、自動車用として利用した場合、使用時に急激な温度 変化による熱応力や大きな振動等の外力が加わるため、容易に破損し、ハニカム構 造体としての形状を留めることができず、触媒担体としての機能を果たすことができな いといった問題があった。 [0005] さらに、 DE4341159号公報にある自動車用触媒担体では、ハ-カム構造体を大 型化することを目的としているため、ハ-カムユニットの断面積力 200cm2以上のも のが示されているが、急激な温度変化による熱応力さらに大きな振動等が加わるよう な状況で使用した場合には、上述したように容易に破損し、形状を留めることができ ず、触媒担体としての機能を果たすことができな 、と 、つた問題があった。
[0006] さらに、ハ-カムユニット同士の接合強度が弱い場合には、ハ-カム構造体が振動 や排圧を受けたときに、一部のハ-カムユニットがずれたり、抜けたりする可能性があ つた o
[0007] 本発明は、このような課題に鑑みなされたものであり、触媒成分を高分散させると共 に熱衝撃や振動に対する強度の高いハニカム構造体を提供することを目的とする。 課題を解決するための手段
[0008] 本発明のハニカム構造体は、多数の貫通孔が貫通孔壁面を隔てて長手方向に並 設されたハ-カムユニットがシール材層を介して、複数個結束されたハ-カム構造体 であって、前記ハ-カムユニットは、少なくともセラミック粒子と、無機繊維及び Z又は ウイスカを含有し、前記ハ-カムユニットの長手方向に垂直な断面における断面積が
、 5cm2以上 50cm2以下であり、前記ハ-カムユニットの外壁の平面度が 0. 1〜1. 5 mmであることを特徴とする。これにより熱衝撃や振動に対する強度が高ぐ触媒成分 を高分散させることが可能なハ-カム構造体を提供することができる。
[0009] また上記ハニカム構造体は、前記ハニカム構造体の長手方向に垂直な断面におけ る断面積に対して、前記ハ-カムユニットの長手方向に垂直な断面における断面積 の総和が占める割合は、 85%以上であることが望ましい。これにより触媒を担持する ことが可能な表面積を相対的に大きくすると共に、圧力損失を相対的に小さくするこ とがでさる。
[0010] また上記ハ-カム構造体は、貫通孔が開口していない外周面にコーティング材層 を有することが望ましい。これにより、外周面を保護して強度を高めることができる。
[0011] また、上記ハ-カム構造体は、前記セラミック粒子が、アルミナ、シリカ、ジルコユア 、チタ-ァ、セリア、ムライト及びゼォライトからなる群より選択される 1種以上であるこ とが望ましい。これにより、ハ-カムユニットの比表面積を向上させることができる。 [0012] また、上記ハ-カム構造体は、前記無機繊維及び Z又はゥイス力が、アルミナ、シリ 力、炭化ケィ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムから なる群より選択される 1種以上であることが望ましい。これにより、ノ、二カムユニットの 強度を向上させることができる。
[0013] また、上記ハ-カム構造体は、前記ハ-カムユニットが、前記無機粒子と無機繊維 及び Z又はウイス力と無機バインダとを含む混合物を用いて製造されており、前記無 機バインダは、アルミナゾル、シリカゾル、チタ-ァゾル、水ガラス、セピオライト及びァ タパルジャイトからなる群より選択される 1種以上であることが望ましい。これにより、ハ 二カムユニットを焼成する温度を低くしても十分な強度を得ることができる。
[0014] また上記ハ-カム構造体は、触媒成分が担持されて!、ることが望ま U、。これにより 、触媒成分が高分散されて 、るハ-カム触媒を得ることができる。
[0015] また、前記触媒成分は、貴金属、アルカリ金属、アルカリ土類金属及び酸ィ匕物から なる群より選択される 1種以上の成分を含有することが望ましい。これにより、浄化性 能を向上させることができる。
[0016] また上記ハ-カム構造体は、車両の排ガス浄ィ匕に用いられることが望ましい。
発明の効果
[0017] 本発明によれば、熱衝撃や振動に対する強度の高いハニカム構造体を提供するこ とがでさる。
図面の簡単な説明
[0018] [図 1A]本発明のハ-カムユニット 11の概念図である。
[図 1B]本発明のハニカム構造体 10の概念図である。
[図 2A]ハ-カムユニット 11の外壁の平面度の説明図である。
[図 2B]ハニカムユニット 11の外壁の別の形態を示す図である。
[図 2C]ハニカムユニット 11の外壁の別の形態を示す図である。
[図 3]本発明のハニカムユニット 11の壁面の SEM写真である。
[図 4A]ハ-カムユニット 11を複数接合させた実験例の説明図である。
[図 4B]ハ-カムユニット 11を複数接合させた実験例の説明図である。
[図 4C]ハ-カムユニット 11を複数接合させた実験例の説明図である。 圆 4D]ハ-カムユニット 11を複数接合させた実験例の説明図である。 圆 5A]ハ-カムユニット 11を複数接合させた実験例の説明図である。
圆 5B]ハ-カムユニット 11を複数接合させた実験例の説明図である。
圆 5C]ハ-カムユニット 11を複数接合させた実験例の説明図である。
[図 6A]振動装置 20の正面図である。
[図 6B]振動装置 20の側面図である。
圆 7]圧力損失測定装置 40の説明図である。
[図 8]ハ-カムユニットの断面積と重量減少率及び圧力損失との関係を表す図である 圆 9]ユ ット面積割合と重量減少率及び圧力損失との関係を表す図である。
[図 10]シリカ アルミナ繊維のアスペクト比と重量減少率との関係を表す図である 符号の説明
[0019] 10 ハニカム構造体
11 ノヽニカムユニット
12 貫通孔
13 外面
14 シール材層
16 コーティング材層
20 振動装置
21 金属ケーシング
22 台座 22
23 固定具
24 ネジ
40 圧力損失測定装置
50 測定面
発明を実施するための最良の形態
[0020] 次に、本発明を実施するための最良の形態を図面と共に説明する。
[0021] 本発明のハ-カム構造体 10は、図 1Bに示すように、多数の貫通孔が貫通孔壁面 を隔てて長手方向に並設されたノヽ-カムユニットがシール材層を介して、複数個結 束されたハ-カム構造体であって、前記ハ-カムユニットは、少なくともセラミック粒子 と、無機繊維及び Z又はウイスカを含有し、前記ハ-カムユニットの長手方向に垂直 な断面における断面積が、 5cm2以上 50cm2以下であり、前記ハニカムユニットの外 壁の平面度が 0. 1〜1. 5mmであることを特徴とする。
このハ-カム構造体では、複数のハ-カムユニットがシール材層を介して接合した 構造をとるため、熱衝撃や振動に対する強度を高めることができる。この理由としては
、急激な温度変化等によってハ-カム構造体に温度分布がついた場合にもそれぞ れのハ-カムユニットあたりにつく温度差を小さく抑えることができるためであると推察 される。あるいは、熱衝撃や振動をシール材層によって緩和可能となるためであると 推察される。また、このシール材層は、熱応力等によってハ-カムユニットにクラック が生じた場合においても、クラックがハ-カム構造体全体に伸展することを防ぎ、さら にハ-カム構造体のフレームとしての役割をも担 、、ハ-カム構造体としての形状を 保ち、触媒担体としての機能を失わないことになると考えられる。ノ、二カムユニットの 大きさは、貫通孔に対し直交する断面の面積 (単に断面積とする。以下同じ。)が、 5c m2未満では、複数のハ-カムユニットを接合するシール材層の断面積が大きくなるた め触媒を担持する比表面積が相対的に小さくなるとともに、圧力損失が相対的に大 きくなつてしまい、断面積が 50cm2を超えると、ユニットの大きさが大きすぎ、それぞれ のハ-カムユニットに発生する熱応力を十分に抑えることができない。つまり、ユニット の断面積は 5〜50cm2の範囲としたことで、比表面積を大きく保ちつつ、圧力損失を 小さく抑え、熱応力に対して十分な強度を持ち、高い耐久性が得られ実用可能なレ ベルとなる。したがって、このハ-カム構造体によれば、触媒成分を高分散させると共 に熱衝撃や振動に対する強度を高めることができる。ここで、断面積とは、ノ、二カム構 造体が断面積の異なる複数のハ-カムユニットを含むときには、ハ-カム構造体を構 成する基本ユニットとなっているハ-カムユニットの断面積をいい、通常、ハ-カムュ ニットの断面積が最大のものをいう。また、前記ハニカム構造体の長手方向に垂直な 断面における断面積に対して、前記ハ-カムユニットの長手方向に垂直な断面にお ける断面積の総和が占める割合は、 85%以上であることが好ましぐ 90%以上であ ることがより好ましい。この割合が 85%未満ではシール材層の断面積が大きくなり、 ハ-カムユニットの総断面積が減るので、触媒を担持する比表面積が相対的に小さ くなるとともに、圧力損失が相対的に大きくなつてしまうからである。また、この割合が 90%以上では、より圧力損失を小さくすることができる。
[0023] また本発明のハ-カム構造体では、ハ-カムユニットの外壁の平面度を 0. 1〜1. 5 mmとしており、ハ-カムユニット同士の接合力を高めることができる。すなわち、外壁 に適当な「そり」があると、接合面がずれにくぐ個々のハ-カムユニットが相対的に移 動しにくくなるので、ハ-カム構造体の振動ゃ排圧に対する耐久性が向上する。ここ で「ハ-カムユニットの外壁の平面度」とは、ハ-カムユニットの長手方向の「そり」の 程度を表す指標であり、 JISB0621— 1984に記載の方法と同様の方法により求めた 。すなわち図 2Aのように、ノ、二カムユニットを、開口軸が実質的に水平となる向きで、 ある基準平面 Pに設置したとき、上部に露出するハニカムユニットの外面 13 (測定面 5 0と 、う)上の全ての点を包含するような、基準平面 Pと平行な平面 (仮想平面)を想定 し、基準平面 Pからの距離が最小の仮想平面 P1と基準平面 Pからの距離が最大の仮 想平面 P2との差 dを「ノヽ二カムユニットの外壁の平面度」とした。ただし、ハ-カムュ- ットの開口面側の外周端部は、 R面、 C面である場合があり、また面取り加工等される 場合があり、端部の点を通る仮想平面が不明確となりやすい。そこで本願では、ハニ カムユニットの開口面力 長手方向に 3mm内側の位置 Q力 反対開口面側の同位 置 Qまでの範囲を対象として、仮想平面を想定した。なお仮想平面を決める際は R面 、 C面、面取り等の影響を受けないように位置を設定すればよい。
[0024] なお図 2Aでは、説明の明確化のため、ハニカムユニットの対向する 2の外面 13が 一方向に一様に「反って 、る」図を示して 、るが、ハ-カムユニットの形状はこれに限 るものではない。例えばハ-カムユニットは、対向する 2の外面 13が相互に反対側に 沿っている形状、すなわち図 2Bのように、両者が外側に凸状に「反っている」形状、 あるいは図 2Cのように、両者が内側に凹状に「反っている」形状であっても良ぐハニ カムユニットの各側面がどのような形状に反っていても良い (凹凸形状でも良い)。また これらのいずれの开状の場合も、「ハ-カムユニットの外壁の平面度」は、ハ-カムュ ニットの各測定面 50の平面度のうち(直方体形状のハニカムユニットの場合、 4面あ る)、最大のものを意味する。
[0025] ここでハ-カムユニットの外壁の平面度(以下単に平面度とも 、う)が 0. 1mm未満 の場合は、十分な接合強度が得られず、ハ-カムユニットが移動し易くなる。また平 面度が 1. 5mmを超えると、ハ-カムユニット同士を接合するシール材層の厚さが厚 くなり、ハ-カム構造体の開口率が低下し、実用的ではなくなる。従って、ハ-カムュ ニットの外壁の平面度は、 0. lmm〜l. 5mmとすることが好ましい。
[0026] 本発明のハ-カム構造体において、シール材層で接合された二以上のハ-カムュ ニットのうち貫通孔が開口して ヽな 、外周面を覆うコ一ティング材層を備えて 、てもよ い。こうすれば、外周面を保護して強度を高めることができる。
[0027] ハ-カムユニットを接合したノヽ-カム構造体の形状は、特に限定されるものではな いが、任意の形状、大きさのものであってよぐ例えば、円柱状、角柱状又は楕円柱 状のものであってもよい。
[0028] 本発明のハ-カム構造体において、ハ-カムユニットには無機繊維及び Z又はウイ ス力が含有されているため、ハ-カムユニットの強度を向上させることができる。ここで 、無機繊維及び Z又はウイス力のアスペクト比は、 2〜: LOOOであることが好ましぐ 5 〜800であることがより好ましぐ 10〜500であることが最も好ましい。無機繊維及び Z又はウイス力のアスペクト比が 2未満ではハ-カム構造体の強度の向上への寄与 力 S小さくなることがあり、 1000を超えると成型時に成型用金型に目詰まりなどを起こし やすくなり成型性が悪くなることがあり、また、押出成形などの成型時に無機繊維及 び Z又はウイス力が折れ長さにばらつきが生じノヽ-カム構造体の強度の向上への寄 与が小さくなることがある。ここで、無機繊維及び Z又はウイス力のアスペクト比に分 布があるときには、その平均値としてもよい。
[0029] 本発明のハ-カム構造体において、ハ-カムユニットに含まれるセラミック粒子とし ては、特に限定されるものではないが、例えば、アルミナ、シリカ、ジルコユア、チタ- ァ、セリア、ムライト及びゼォライトから選ばれる 1種以上が挙げられ、このうちアルミナ が好ましい。
[0030] 本発明のハ-カム構造体において、ハ-カムユニットに含まれる無機繊維及び Z 又はウイスカとしては、特に限定されるものではないが、アルミナ、シリカ、炭化珪素、 シリカアルミナ、ホウ酸アルミニウム、ガラス及びチタン酸カリウム力も選ばれる 1種以 上が挙げられる。
[0031] ハ-カム構造体に含まれるセラミック粒子の量は、 30〜97重量%が好ましぐ 30〜
90重量%がより好ましぐ 40〜80重量%が更に好ましぐ 50〜75重量%が最も好ま しい。セラミック粒子の含有量が 30重量%未満では比表面積向上に寄与するセラミ ック粒子の量が相対的に少なくなるため、ハ-カム構造体としての比表面積が小さく 触媒成分を担持する際に触媒成分を高分散させることができなくなり、 90重量%を 超えると強度向上に寄与する無機繊維の量が相対的に少なくなるため、ハ-カム構 造体の強度が低下する。
[0032] ハ-カム構造体のハ-カムユニットに含まれる無機繊維及び Z又はウイス力の量は 、 3〜70重量%が好ましぐ 3〜50重量%がより好ましぐ 5〜40重量%が更に好まし ぐ 8〜30重量%が最も好ましい。無機繊維及び/又はゥイス力の含有量が 3重量% 未満ではハ-カム構造体の強度が低下し、 50重量%を超えると比表面積向上に寄 与するセラミック粒子の量が相対的に少なくなるため、ハ-カム構造体としての比表 面積が小さく触媒成分を担持する際に触媒成分を高分散させることができなくなる。
[0033] 本発明のハ-カム構造体において、ハ-カムユニットは、更に無機バインダを含ん で製造されてもよい。こうすれば、ハ-カムユニットを焼成する温度を低くしても十分 な強度を得ることができる。ハ-カム構造体に含まれる無機バインダとしては、特に限 定されるものではないが、例えば無機ゾルゃ粘土系バインダなどが挙げられる。この うち、無機ゾルとしては、例えばアルミナゾル、シリカゾル、チタ-ァゾル及び水ガラス など力 選ばれる 1種以上が挙げられる。粘土系バインダとしては、例えば白土、カオ リン、モンモリロナイト、複鎖構造型粘土 (セピオライト、ァタパルジャイト)など力 選ば れる 1種以上が挙げられる。ハ-カム構造体の原料に含まれる無機ノインダの量は、 ハ-カム構造体に含まれる固形分として、 50重量%以下が好ましぐ 5〜50重量% 力 り好ましぐ 10〜40重量%が更に好ましぐ 15〜35重量%が最も好ましい。無 機バインダの含有量が 50重量%を超えると成型性が悪くなる。
[0034] ノ、二カムユニットの形状は、特に限定されるものではないが、ハ-カムユニット同士 を接合しやすい形状であることが好ましぐ貫通孔に対して直交する面の断面(単に 断面とする。以下同じ。)が正方形や長方形や六角形や扇状のものであってもよい。 ハ-カムユニットの一例として断面正方形の直方体のハ-カムユニット 11の概念図を 図 1Aに示す。ハ-カムユニット 11は、手前側から奥側に向かって貫通孔 12を多数 有し、貫通孔 12を有さない外面 13を有する。貫通孔 12同士の間の壁厚は、特に限 定されるものではないが、 0. 05〜0. 35mmの範囲が好ましぐ 0. 10〜0. 30mm がより好ましぐ 0. 15-0. 25mmが最も好ましい。壁厚が 0. 05mm未満ではハ-カ ムユニットの強度が低下し、 0. 35mmを超えると、排ガスとの接触面積が小さくなるこ とと、ガスが十分深くまで侵透しないため、壁内部に担持された触媒とガスが接触し にくくなるため、触媒性能が低下してしまうからである。また、単位断面積あたりの貫 通孔の数は、 15. 5〜186個 Zcm2 (100〜1200cpsi)力 子ましく、 46. 5〜170. 5 個 Zcm2 (300〜: L lOOcpsi)力 り好ましく、 62. 0〜155個 Zcm2 (400〜1000cps i)が最も好ましい。貫通孔の数が 15. 5個 Zcm2未満では、ハ-カムユニット内部の 排ガスと接触する壁の面積力 、さくなり、 186個 Zcm2を超えると、圧力損失も高くな るし、ノ、二カムユニットの作製が困難になるためである。
[0035] ハ-カムユニットに形成される貫通孔の形状は、特に限定されるものではないが、 断面を略三角形や略六角形としてもよい。
[0036] ハ-カム構造体を構成させるハ-カムユニットの大きさとしては、断面積が 5〜50c m2となるものが好ましいが、 6〜40cm2となるものがより好ましぐ 8〜30cm2が最も好 ましい。断面積が 5〜50cm2の範囲であると、ハ-カム構造体に対するシール材層の 占める割合を調整させることが可能になる。このことによって、ハ-カム構造体の単位 体積あたりの比表面積を大きく保つことができ、触媒成分を高分散させることが可能 となるとともに、熱衝撃や振動などの外力が加わってもハ-カム構造体としての形状 を保持することができる。また、単位体積あたりの比表面積は、後述の式(1)によって 求めることができる。
[0037] 次に、上述した本発明のハ-カム構造体の製造方法の一例について説明する。ま ず、上述したセラミック粒子と、無機繊維及び Z又はゥイス力と、無機バインダとを主 成分とする原料ペーストを用いて押出成形等を行い、ハニカムユニット成形体を作製 する。原料ペーストには、これらのほかに有機バインダ、分散媒及び成形助剤を成形 性にあわせて適宜カ卩えてもよい。有機バインダとしては、特に限定されるものではな いが、例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシェチルセ ルロース、ポリエチレングリコール、フエノール榭脂及びエポキシ榭脂から選ばれる 1 種以上が挙げられる。有機バインダの配合量は、セラミック粒子、無機繊維及び Z又 はゥイス力、無機バインダの合計 100重量部に対して、 1〜: L0重量部が好ましい。分 散媒としては、特に限定されるものではないが、例えば、水、有機溶媒 (ベンゼンなど )及びアルコール (メタノールなど)などを挙げることができる。成形助剤としては、特に 限定されるものではないが、例えば、エチレングリコール、デキストリン、脂肪酸、脂肪 酸石酸及びポリアルコールを挙げることができる。
[0038] 原料ペーストは、特に限定されるものではないが、混合 ·混練することが好ましぐ例 えば、ミキサーやアトライタなどを用いて混合してもよぐエーダーなどで十分に混練 してもよい。原料ペーストを成型する方法は、特に限定されるものではないが、例え ば、押出成形などによって貫通孔を有する形状に成形することが好ましい。
[0039] ハ-カムユニットの押出成形後に、所定の表面平面度のセラミック、金属、榭脂等 の冶具 (例えば、平板形状)を用いて、これをノヽ-カムユニットの外壁に押し付けるこ とにより、ハ-カムユニットの平面度を所定の平面度とすることができる。また、押出成 形、乾燥、脱脂、焼成を行った後に、所定の平面度を持ったノヽ-カムユニットを選別 して、ハ-カム構造体としても良い。
[0040] 次に、得られた成形体は、乾燥することが好ま 、。乾燥に用いる乾燥機は、特に 限定されるものではないが、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥 機、真空乾燥機及び凍結乾燥機などが挙げられる。また、得られた成形体は、脱脂 することが好ましい。脱脂する条件は、特に限定されず、成形体に含まれる有機物の 種類や量によって適宜選択するが、おおよそ 400°C、 2hrが好ましい。更に、得られ た成形体は、焼成することが好ましい。焼成条件としては、特に限定されるものでは な ヽ力 600〜1200oC力 S好ましく、 600〜1000oC力 Sより好まし ヽ。この理由 ίま、焼成 温度が 600°C未満ではセラミック粒子などの焼結が進行せずノヽ-カム構造体として の強度が低くなり、 1200°Cを超えるとセラミック粒子などの焼結が進行しすぎて単位 体積あたりの比表面積が小さくなり、担持させる触媒成分を十分に高分散させること ができなくなるためである。これらの工程を経て複数の貫通孔を有するハ-カムュ- ットを得ることができる。
[0041] 次に、得られたハニカムユニットにシール材層となるシール材ペーストを塗布してハ 二カムユニットを順次接合させ、その後乾燥し、固定化させて、所定の大きさのハニカ ムユニット接合体を作製してもよい。シール材としては、特に限定されるものではない 1S 例えば、無機バインダとセラミック粒子を混ぜたものや、無機ノ インダと無機繊維 を混ぜたものや、無機バインダとセラミック粒子と無機繊維を混ぜたものなどを用いる ことができる。また、これらのシール材に有機バインダを加えたものとしてもよい。有機 バインダとしては、特に限定されるものではないが、例えば、ポリビニルアルコール、メ チルセルロース、ェチルセルロース及びカルボキシメチルセルロースなどから選ばれ る 1種以上が挙げられる。
[0042] ハ-カムユニットを接合させるシール材層の厚さは、 0. 5〜2mmが好ましい。シー ル材層の厚さが 0. 5mm未満では十分な接合強度が得られな 、おそれがあるため である。また、シール材層は触媒担体として機能しない部分であるため、 2mmを超え ると、ハ-カム構造体の単位体積あたりの比表面積が低下するため、触媒成分を担 持した際に十分に高分散させることができなくなる。また、シール材層の厚さが 2mm を超えると、圧力損失が大きくなることがある。なお、接合させるハ-カムユニットの数 は、ハ-カム触媒として使用するハ-カム構造体の大きさに合わせて適宜決めれば よい。また、ハ-カムユニットをシール材によって接合した接合体はハ-カム構造体 の形状、大きさにあわせて、適宜切断'研磨などしてもよい。
[0043] ハ-カム構造体の貫通孔が開口して 、な 、外周面 (側面)にコーティング材を塗布 して乾燥し、固定ィ匕させて、コーティング材層を形成させてもよい。こうすれば、外周 面を保護して強度を高めることができる。コーティング材は、特に限定されないが、シ 一ル材と同じ材料からなるものであっても異なる材料力もなるものであってもよ 、。ま た、コーティング材は、シール材と同じ配合比としてもよぐ異なる配合比としてもよい 。コーティング材層の厚みは、特に限定されるものではないが、 0. l〜2mmであるこ とが好ましい。 0. 1mm未満では、外周面を保護しきれず強度を高めることができな いおそれがあり、 2mmを超えると、ハ-カム構造体としての単位体積あたりの比表面 積が低下してしまい触媒成分を担持した際に十分に高分散させることができなくなる
[0044] 複数のハ-カムユニットをシール材によって接合させた後(但し、コーティング材層 を設けた場合は、コーティング材層を形成させた後)に、仮焼することが好ましい。こう すれば、シール材、コーティング材に有機バインダが含まれている場合などには、脱 脂除去させることができるからである。仮焼する条件は、含まれる有機物の種類や量 によって適宜決めてもよいが、おおよそ 700°Cで 2hrが好ましい。ここで、ノ、二カム構 造体の一例として断面正方形の直方体のハ-カムユニット 11を複数接合させ外形を 円柱状としたハ-カム構造体 10の概念図を図 1Bに示す。このハ-カム構造体 10は 、シール材層 14によりハ-カムユニット 11を接合させ円柱状に切断したのちにコーテ イング材層 16によってハ-カム構造体 10の貫通孔 12が開口していない外周面を覆 つたものである。なお、例えば、断面が扇形の形状や断面が正方形の形状にハニカ ムユニット 11を成形しこれらを接合させて所定のハ-カム構造体の形状(図 IBでは 円柱状)になるようにして、切断'研磨工程を省略してもよい。
[0045] 得られたノ、二カム構造体の用途は特に限定されないが、車両の排ガス浄化用の触 媒担体として用いることが好ましい。また、ディーゼルエンジンの排ガス浄ィ匕用の触媒 担体として用いる場合、炭化珪素等のセラミックハ-カム構造を持ち、排ガス中の粒 状物質 (PM)をろ過し燃焼浄ィ匕する機能を持つディーゼル ·パティキュレート ·フィル タ(DPF)と併用することがある力 このとき本発明のハ-カム構造体と DPFとの位置 関係は、本発明のハ-カム構造体が前側でも後側でもよい。前側に設置された場合 は、本発明のハ-カム構造体が、発熱を伴う反応を示した場合において、後側の DP Fに伝わり、 DPFの再生時の昇温を促進させることができる。また、後側に設置された 場合は、排ガス中の PMが DPFによりろ過され、本発明のハ-カム構造体の貫通孔 を通過するため、 目詰まりを起こしにくぐ更に、 DPFにて PMを燃焼する際に不完全 燃焼により発生したガス成分についても本発明のハ-カム構造体を用いて処理する ことができるためである。なお、このハ-カム構造体は、上述の技術背景に記載した 用途などについて利用することができるのは勿論、触媒成分を担持することなく使用 する用途 (例えば、気体成分や液体成分を吸着させる吸着材など)にも特に限定され ずに利用することができる。
[0046] また、得られたハ-カム構造体に触媒成分を担持しハ-カム触媒としてもよ!ヽ。触 媒成分としては、特に限定されるものではないが、貴金属、アルカリ金属、アルカリ土 類金属、酸ィ匕物などであってもよい。貴金属としては、例えば、白金、ノラジウム、口 ジゥム力 選ばれる 1種以上が挙げられ、アルカリ金属としては、例えば、カリウム、ナ トリウムなど力も選ばれる 1種以上が挙げられ、アルカリ土類金属としては、例えば、 ノリウムなどからなるものが挙げられ、酸化物としては、ぺロブスカイト(La K Mn
0.75 0.25
Oなど)及び CeOなどが挙げられる。得られたノ、二カム触媒は、特に限定されるもの
3 2
ではないが、例えば自動車の排ガス浄ィ匕用のいわゆる三元触媒や NO吸蔵触媒と して用いることができる。なお、触媒成分の担持は、特に限定されるものではないが、 ハ-カム構造体を作製した後に担持させてもよ 、し、原料のセラミック粒子の段階で 担持させてもよい。触媒成分の担持方法は、特に限定されるものではないが、例えば 含浸法などによって行ってもょ 、。
実施例
[0047] 以下には、種々の条件でハニカム構造体を具体的に製造した例を、実験例として 説明するが、本発明はこれら実験例に何ら限定されることはない。
[0048] [実験例 1]
まず、 Ίアルミナ粒子(平均粒径 2 μ m, ) 40重量%、シリカ—アルミナ繊維(平均 繊維径 10 μ m、平均繊維長 100 μ m、アスペクト比 10) 10重量%、シリカゾル(固体 濃度 30重量%) 50重量%を混合し、得られた混合物 100重量部に対して有機バイ ンダとしてメチルセルロース 6重量部、可塑剤及び潤滑剤を少量カ卩えて更に混合'混 練して混合組成物を得た。次に、この混合組成物を押出成形機により押出成形を行 い、生の成形体を得た。
[0049] そして、マイクロ波乾燥機及び熱風乾燥機を用いて生の成形体を十分乾燥させ、 4 00°Cで 2hr保持して脱脂した。その後、 800°Cで 2hr保持して焼成を行い、角柱状( 34. 3mm X 34. 3mm X 150mm)、セル密度が 93個 Zcm2 (600cpsi)、壁厚が 0. 2mm、セル形状が四角形(正方形)のハ-カムユニット 11を得た。このハ-カムュ- ット 11の壁面の電子顕微鏡 (SEM)写真を図 3に示す。このハ-カムユニット 11は、 原料ペーストの押出方向に沿ってシリカ一アルミナ繊維が配向していることがわ力る
[0050] 次に、 γアルミナ粒子(平均粒径 2 μ m) 29重量%、シリカ—アルミナ繊維(平均繊 維径 10 μ m、平均繊維長 100 μ m) 7重量%、シリカゾル(固体濃度 30重量%) 34 重量%、カルボキシメチルセルロース 5重量%及び水 25重量%を混合し耐熱性のシ ール材ペーストとした。このシール材ペーストを用いてハ-カムユニット 11を接合させ た。貫通孔を有する面 (正面とする。以下同じ。)から見たノ、二カムユニット 11を複数 接合させた接合体を図 4Aに示す。この接合体は、上述したノヽ-カムユニット 11の外 面 13にシール材層 14の厚さが 1mmとなるようにシール材ペーストを塗布しハ-カム ユニット 11を複数接合固定化させたものである。このように接合体を作製し、接合体 の正面が略点対称になるように円柱状にダイヤモンドカッターを用いてこの接合体を 切断し、貫通孔を有しない円形の外表面に上述のシール材ペーストを 0. 5mm厚と なるように塗布し外表面をコーティングした。その後、 120°Cで乾燥を行い、 700°Cで 2hr保持してシール材層及びコーティング材層の脱脂を行い、円柱状 (直径 143. 8 πιπι X長さ 150mm)のハ-カム構造体 10を得た。このハ-カム構造体 10のセラミ ック粒子成分、ユニット形状、ユニット断面積、ユニット面積割合 (ハ-カム構造体の 断面積に対するハ-カムユニットの総断面積の占める割合をいう。以下同じ。)、シー ル材層面積割合 (ノ、二カム構造体の断面積に対するシール材層及びコーティング材 層の総断面積の占める割合をいう。以下同じ。)などの各数値等をまとめたものを表 1 に示す。
[0051] [表 1]
ト ユーット シール材層 2) サンプル セラミック粒子 ユニット ユー、 V
形状 断面積 面積割合 面積割合 cm cm2 % %
実験例 1 アルミナ 3.43cm角 1 1.8 93.5 6.5 実験例 2 アルミナ 2.00cm角 4.0 89.7 10.3 実験例 3 アルミナ 2.24cm角 5.0 90.2 9.8 実験例 4 アルミナ 7.09cm扇 39.5 96.9 3.1 実験例 5 アルミナ 7.10cm角 50.0 95.5 4.5 実験例 6 アルミナ 7.41 cm角 55.0 95.6 4.4 実験例 7 アルミナ 一体物 162.0 100.0 0
実験例 8 チタニア 3.43cm角 1 1.8 93.5 6.5 実験例 9 チタニア 2.00cm角 4.0 89.7 10.3 実験例 10 チタニア 2.24cm角 5.0 90.2 9.8 実験例 1 1 チタニア 7.09cm扇 39.5 96.9 3.1 実験例 12 チタニア 7.10cm角 50.0 95.5 4.5 実験例 13 チタニア 7.41 cm角 55.0 95.6 4.4 実験例 14 チタニア 一体物 162.0 100.0 0
実験例 15 シリカ 3.43cm角 1 1.8 93.5 6.5 実験例 16 シリカ 2.00cm角 4.0 89.7 10.3 実験例 17 シリカ 2.24cm角 5.0 90.2 9.8 実験例 18 シリカ 7.09cm扇 39.5 96.9 3.1 実験例 19 シリカ 7.10cm角 50.0 95.5 4.5 実験例 20 シリカ 7.41 cm角 55.0 95.6 4.4 実験例 21 シリカ 一体物 162.0 100.0 0
実験例 22 ジルコニァ 3.43cm角 1 1.8 93.5 6.5 実験例 23 ジルコニァ 2.00cm角 4.0 89.7 10.3 実験例 24 ジルコニァ 2.24cm角 5.0 90.2 9.8 実験例 25 ジルコニァ 7.09cm扇 39.5 96.9 3.1 実験例 26 ジルコニァ 7.10cm角 50.0 95.5 4.5 実験例 27 ジルコニァ 7.41 cm角 55.0 95.6 4.4 実験例 28 ジルコニァ 一体物 162.0 100.0 0
コージエライト
実験例 29 +ァルミナ 一体物 162.0 100.0 0
)無機繊維 =シリカ一アルミナ繊維(径 10 i m,長 100 /i m,アスペクト比 10))コーティング材層の面積を含む この表 1には後述する実験例 2〜29に関する内容もまとめて示す。表 1に示したす ベてのサンプルは、無機繊維がシリカ—アルミナ繊維(平均繊維径 10 m、平均繊 維長 100 /ζ πι、アスペクト比 10)であり、無機バインダがシリカゾル(固体濃度 30重量 %)のものである。また、後述する実験例 30〜34の無機繊維 (種類、径、長さ、ァス ぺクト比)、ユニット形状及びユニット断面積などの各数値等をまとめたものを表 2に示 す。
[0052] [表 2]
ユニット 2) サンプル 1) 纖 ユニット
形状 断面積 種類 径 長さ ァスへ '外比
β m 11 m cm cm2 実験例 1 シリカアルミナ繊維 10 100 10 3.43cm角 1 1.8 実験例 30 シリカアルミナ繊維 5 50 10 3.43cm角 1 1.8 実験例 31 シリカアルミナ繊維 10 20 2 3.43cm角 1 1.8 実験例 32 シリカアルミナ繊維 10 5000 500 3.43cm角 1 1.8 実験例 33 シリカアルミナ繊維 10 10000 1000 3.43cm角 1 1.8 実験例 34 シリカアルミナ繊維 10 20000 2000 3.43cm角 1 1.8
1)セラミック粒子 = rアルミナ粒子
2)ユニット面積割合 = 93.5%
シール材層 +コーティング材層の面積割合 = 6.5%
表 2に示したすべてのサンプルは、セラミック粒子が γアルミナ粒子であり、無機バイ ンダがシリカゾル(固体濃度 30重量%)であり、ユニット面積割合が 93. 5%、シール 材層面積割合が 6. 5%のものである。また、後述する実験例 44〜51のハ-カム構 造体 10の無機バインダの種類、ユニット断面積、シール材層の厚さ、ユニット面積割 合、シール材層面積割合及びノヽ-カムユニット 11の焼成温度の各数値等をまとめた ものを表 3に示す。
[0053] [表 3] 無機ハ *インタ' ユニット シ—ル材層 ユニット シール材層 2) 焼成 サンプル"
種類 断面積 厚さ 面積割合 面積割合
cm2 mm % % °c 実験例 44 シリカゾル 1 1.8 2.0 89.3 10.7 800 実験例 45 シリカゾル 1 1.8 3.0 84.8 15.2 800 実験例 46 シリカゾル 5.0 2.0 83.5 16.5 800 実験例 47 シリカゾル 5.0 1.5 86.8 13.2 800 実験例 48 アルミナゾル 1 1.8 1.0 93.5 6.5 800 実験例 49 セピオライト 1 1.8 1.0 93.5 6.5 800 実験例 50 ァタハ"ルシ'ャイト 1 1.8 1.0 93.5 6.5 800 実験例 51 一 1 1.8 1.0 93.5 6.5 1000
1 )セラミック粒子- アルミナ粒子
無機繊維 =シリカ一アルミナ繊維(径 10 / m,長 100〃 m,アスペクト比 10)
2)コ一ティング材層の面積を含む
表 3に示したすべてのサンプルは、セラミック粒子が γアルミナ粒子(平均粒径 2 μ m )であり、無機繊維がシリカ—アルミナ繊維(平均繊維径 10 /χ πι、平均繊維長 100 m、アスペクト比 10)である。
[0054] [実験例 2〜7]
表 1に示す形状となるようにハニカムユニットを作製したほかは実験例 1と同様にし てハニカム構造体 10を作製した。実験例 2, 3, 4の接合体の形状をそれぞれ図 4B、 C、 Dに示し、実験例 5, 6, 7の接合体の形状をそれぞれ図 5A、 B、 Cに示す。実験例 7は、ハ-カム構造体 10を一体成形したものであるため、接合工程及び切断工程は 行わなかった。
[0055] [実験例 8〜; 14]
セラミック粒子をチタ-ァ粒子(平均粒径 2 μ m)とし、表 1に示す形状にしたほかは 実験例 1と同様にしてハ-カムュニット 11を作製し、続 ヽてシール材層とコ一ティング 材層のセラミック粒子をチタ-ァ粒子(平均粒径 2 μ m)としたほかは実験例 1と同様 にしてハ-カム構造体 10を作製した。なお、実験例 8〜11の接合体の形状はそれぞ れ図 4A〜Dのものと同様であり、実験例 12〜 14の接合体の形状は、それぞれ図 5A 〜Cのものと同様である。また、実験例 14は、ハ-カム構造体 10を一体成形したもの である。
[0056] [実験例 15〜21]
セラミック粒子をシリカ粒子(平均粒径 2 μ m)とし、表 1に示す形状となるようにハニ カムユニットを作製したほかは実験例 1と同様にしてハ-カムユニット 11を作製し、続
V、てシール材層とコーティング材層のセラミック粒子をシリカ粒子(平均粒径 2 m)と したほかは実験例 1と同様にしてハ-カム構造体 10を作製した。なお、実験例 15〜 18の接合体の形状はそれぞれ図 4A〜Dのものと同様であり、実験例 19〜21の接 合体の形状は、それぞれ図 5A〜Cのものと同様である。また、実験例 21は、ノ、二カム 構造体 10を一体成形したものである。
[0057] [実験例 22〜28]
セラミック粒子をジルコユア粒子(平均粒径 2 μ m)とし、表 1に示す形状となるように ハ-カムユニットを作製したほかは実験例 1と同様にしてハ-カムユニット 11を作製し
、続、てシール材層とコーティング材層のセラミック粒子をジルコユア粒子(平均粒径 2 m)としたほかは実験例 1と同様にしてハ-カム構造体 10を作製した。なお、実験 例 22〜25の接合体の形状はそれぞれ図 4A〜Dのものと同様であり、実験例 26〜2 8の接合体の形状は、それぞれ図 5A〜Cのものと同様である。また、実験例 28は、ハ 二カム構造体 10を一体成形したものである。
[0058] [実験例 29]
貫通孔内部に触媒担持層であるアルミナを形成させている、市販の円柱状 (直径 1 43. 8mm X長さ 150mm)のコージエライトハ-カム構造体 10を実験例 29とした。 なお、セル形状は六角形であり、セル密度は、 62個 Zcm2 (400cpsi)、壁厚は 0. 18 mmであった。なお、正面から見たハ-カム構造体の形状は、図 5Cのものと同様であ る。
[0059] [実験例 30〜34]
無機繊維として表 2に示す形状のシリカ アルミナ繊維を用いたほかは実験例 1と 同様にしてハ-カムュ-ット 11を作製し、続 、てシール材層とコ一ティング材層のシ リカーアルミナ繊維をノヽ-カムユニットと同じシリカ アルミナ繊維としたほかは実験 例 1と同様にしてハ-カム構造体 10を作製した。なお、実験例 30〜34の接合体の 形状は、図 4Aのものと同様である。
[0060] [実験例 44〜47]
表 3に示すように、ハ-カムユニットの断面積及びノヽ-カムユニットを接合させるシ ール材層の厚さを変更したほかは実験例 1と同様にしてハ-カム構造体 10を作製し た。なお、実験例 44〜45の接合体の形状は、図 4Aのものと同様であり、実験例 46 〜47の接合体の形状は、図 4Cのものと同様である。
[0061] [実験例 48]
表 3に示すように、無機バインダをアルミナゾル(固体濃度 30重量%)としたほかは 実験例 1と同様にしてハ-カム構造体 10を作製した。
[0062] [実験例 49〜50]
表 3に示すように、無機バインダをセピオライト及びァタパルジャイトとしたほかは実 験例 1と同様にハ-カムユニットを作製してハ-カム構造体 10を作製した。具体的に は、 γアルミナ粒子(平均粒径 2 μ m, ) 40重量%、シリカ—アルミナ繊維(平均繊維 径 10 μ m、平均繊維長 100 μ m、アスペクト比 10) 10重量%、無機バインダ 15重量 %及び水 35重量%を混合し、実験例 1と同様に有機バインダ、可塑剤及び潤滑剤を 加えて成形'焼成を行い、ハ-カムユニット 11を得た。次に、実験例 1と同様のシー ル材ペーストによりこのハ-カムュ-ット 11を複数接合し、実験例 1と同様にこの接合 体を切断し、コーティング材層 16を形成させ、円柱状(直径 143. 8mm X長さ 150 mm)のハ-カム構造体 10を得た。
[0063] [実験例 51]
表 3に示すように、無機バインダを混合しな 、ようにしたほかは実験例 1と同様にし てハ-カムユニットを作製しノヽ-カム構造体 10を作製した。具体的には、 γアルミナ 粒子(平均粒径 2 m, ) 50重量%、シリカ—アルミナ繊維(平均繊維径 10 m、平 均繊維長 100 m、アスペクト比 10) 15重量%及び水 35重量%を混合し、実験例 1 と同様に有機バインダ、可塑剤及び潤滑剤を加えて成形し、この成形体を 1000°Cで 焼成し、ハ-カムユニット 11を得た。次に、実験例 1と同様のシール材ペーストにより このハ-カムユニット 11を複数接合し、実験例 1と同様にこの接合体を切断し、コー ティング材層 16を形成させ、円柱状(直径 143. 8mm X長さ 150mm)のハ-カム 構造体 10を得た。
[0064] [実験例 1 A〜l D]
実験例 1 A〜l— Dでは、ハ-カムユニットの外壁の平面度を 0. 05〜2. Ommま で変化させ、それ以外の事項については実験例 1と同様の方法で、ノ、二カムユニット を作製し、ハ-カム構造体を製作した。押出成形後に、表面の平坦度が異なる冶具 ( ステンレス板)をハ-カムユニットの外壁に押し付けることにより、ハ-カムユニットの 外壁の平面度を変化させた。各実験例のハ-カムユニットの外壁の平面度をユニット 断面積等、他の項目と合わせて表 4に示した。
[0065] [表 4]
ユニット ユニット ユニット 構造坏の 熱衝撃- 押し抜き 平面度 振動試験の
断面積 面積割合 比表面積 比表面積 S 強度 mm 減少率 G
cm2 % m2/L m2/L kPa MPa wt% 実験例 1 11.8 93.5 42000 39270 0.5 0 2.4 3.1 実験例 1一 A 11.8 93.5 42000 39270 0.05 0 2.4 1.9 実験例 1一 A 11.8 93.5 42000 39270 0.1 0 2.4 2.5 実験例 1 _C 11.8 93.5 42000 39270 1.5 0 2.4 2.8 実験例 1一 D 11.8 93.5 42000 39270 2.0 0 2.5 1.9
損圧
失力 表には、比較のため、実験例 1の結果も示している。
[0066] なおハ-カムユニットの外壁の平面度の測定には、プローブ接触式 3次元測定機( ミツトヨ製 FALCI0916)を使用した。まず、ハ-カムユニットの開口面力 実質的に X軸(図 2A参照)と垂直になるように、ハ-カムユニットを測定台に設置する。次にこ の状態で、基準となる基準平面を定める。基準平面は、例えば、この設置状態で上 部に露出したノ、二カムユニットの外面 13 (以下測定面 50という)の 4隅のうち少なくと も 3点を含む平面として定められる。次に、測定面 50を被測定面として、ノ、二カムュ ニットの X方向(長手方向;図 2A参照)および Y方向(幅方向)の所定位置において、 前記基準平面からの Z方向(図 2A参照)の変位を測定し、変位量の最大値と最小値 の差をその測定面 50の平面度とした。次に、この測定をハ-カムユニット 11の開口 端面を除く各外面 13について実施し、得られた各外面の平面度のうちの最大値をハ 二カムユニットの外壁の平面度とした。なお平面度の測定は、レーザー変位測定機 等のような比接触式の測定機を用いて実施しても良い。
[0067] [比表面積測定]
実験例 1〜51および実験例 1 A〜 1 Dのハ-カムユニット 11の比表面積測定 を行った。まずノヽ-カムユニット 11及びシール材の体積を実測し、ハ-カム構造体の 体積に対しユニットの材料が占める割合 A (体積0 /0)を計算した。次にハ-カムュ-ッ ト 11の単位重量あたりの BET比表面積 B (m2/g)を測定した。 BET比表面積は、 B ET測定装置(島津製作所製 Micromeriticsフローソープ II 2300)を用いて、 日本ェ 業規格で定められる JIS—R— 1626 (1996)に準じて 1点法により測定した。測定に は、円柱形状の小片(直径 15mm φ X高さ 15mm)に切り出したサンプルを用いた。 そして、ハ-カムユニット 11の見力 4ナ密度 C (g/L)をハ-カムユニット 11の重量と外 形の体積から計算し、ハ-カム構造体の比表面積 S (m2ZL)を、次式(1)から求めた 。なお、ここでのハ-カム構造体の比表面積は、ハ-カム構造体の見かけ体積あたり の比表面積のことをいう。
[0068] S (m2ZL) = (AZlOO) X B X C ;式(1)
[熱衝撃'振動繰返し試験]
実験例 1〜51および実験例 1 A〜 1 Dのハ-カム構造体の熱衝撃 ·振動繰返 し試験を行った。熱衝撃試験は、アルミナ繊維カゝらなる断熱材のアルミナマット(三菱 化学製マフテック、 46. 5cm X 15cm,厚さ 6mm)をハ-カム構造体の外周面に巻き 金属ケーシング 21に入れた状態で 600°Cに設定された焼成炉に投入し、 10分間加 熱し、焼成炉カも取り出し室温まで急冷した。次に、ハ-カム構造体をこの金属ケー シングに入れたまま振動試験を行った。図 6Aに振動試験に用いた振動装置 20の正 面図を、図 6Bに振動装置 20の側面図を示す。ハニカム構造体を入れた金属ケーシ ング 21を台座 22の上に置き、略 U字状の固定具 23をネジ 24によって締めて金属ケ 一シング 21を固定した。すると、金属ケーシング 21は、台座 22と固定具 23と一体と なった状態で振動可能となる。振動試験は、周波数 160Hz、加速度 30G、振幅 0. 5 8mm,保持時間 10hr、室温、振動方向 Z軸方向(上下)の条件で行った。この熱衝 撃試験と振動試験とを交互にそれぞれ 10回繰り返し、試験前のハニカム構造体の重 量 TOと試験後の重量 Tiを測定し、次式(2)を用いて重量減少率 Gを求めた。
[0069] G (重量0 /0) = 100 X (TO— Ti) ZT0 ;式(2)
[圧力損失測定]
実験例 1〜51および実験例 1 A〜 1 Dのハ-カム構造体の圧力損失測定を行 つた。圧力損失測定装置 40を図 7に示す。測定方法は、 2Lのコモンレール式ディー ゼルエンジンの排気管にアルミナマットを巻いたノヽ-カム構造体を金属ケーシングに いれて配置し、ハニカム構造体の前後に圧力計を取り付けた。なお、測定条件は、ェ ンジン回転数を 1500rpm、トルク 50Nmに設定し、運転開始から 5分後の差圧を測 し 7こ。
[0070] [押し抜き試験]
実験例 1〜3、 5、 6および実験例 1 A〜l Dのハ-カム構造体(直径 143. 8m m X長さ 150mm)を用いて、押し抜き試験を行った。押し抜き試験は以下の手順で 行った。まず、中空状の円筒冶具にハニカム構造体を固定した。次にハニカム構造 体の中央近傍のハ-カムユニット 1本を選択し、そのハ-カムユニットをアルミ製の円 筒冶具で押し抜き、ハ-カムユニットが押し抜かれるときの荷重を測定した。加圧速 度は ImmZminとし、試験にはインストロン万能試験機(5582型)を使用した。
[0071] [実験結果] 実験例 1〜29及び実験例 44〜47のセラミック粒子成分、ユニット断面積、ユニット 面積割合、ハ-カムユニットの比表面積、ハ-カム構造体の比表面積 S、熱衝撃'振 動繰返し試験の重量減少率 G、圧力損失および押し抜き強度の各数値等をまとめた ものを表 5に示し、ハ-カムユニットの断面積を横軸とし熱衝撃'振動繰返し試験の重 量減少率 G及び圧力損失を縦軸としてプロットしたものを図 8に示し、ユニット面積割 合を横軸とし熱衝撃 ·振動繰返し試験の重量減少率 G及び圧力損失を縦軸としてプ ロットしたものを図 9に示す。
[表 5]
サン ュ.
プル※ ユニット トユ^ト 窶 平面 験 圧力
隨積 i§ 表の面 ¾ 比表 s面貝 度 の滅 G少率 損失
% mVL m2/L mm 重量 ¾ kPa Ρί 実験例 1 アルミナ 1 1.8 93.5 42000 39270 0.5 0 2.4 3.1 実験例 2 アルミナ 4.0 89.7 42000 37674 0.5 0 2.8 3.3 実験例 3 アルミナ 5.0 90.2 42000 37884 0.5 0 2.5 3.3 実験例 4 アルミナ 39.5 96.9 42000 40698 - 5 2.2 - 実験例 5 アルミナ 50.0 95.5 42000 401 10 0.5 3 2.3 2.8 実験例 6 アルミナ 55.0 95.6 42000 40152 0.5 52 2.3 2.6 実験例 7 アルミナ 162.0 100.0 42000 42000 - 70 2.1 一 実験例 8 チタニア 11.8 93.5 38000 35530 - 0 2.4 一 実験例 9 チタニア 4.0 89.7 38000 34086 0 2.8 - 実験例 10 チタニア 5.0 90.2 38000 34276 - 0 2.5 一 実験例 1 1 チタニア 39.5 96.9 38000 36822 - 7 2.2 - 実験例 12 チタニア 50.0 95.5 38000 36290 - 5 2.3 - 実験例 13 チタニア 55.0 95.6 38000 35328 63 2.3 - 実験例 14 チタニア 162.0 100.0 38000 38000 - 90 2.1 - 実験例 15 シリカ 11.8 93.5 41000 38335 - 0 2.4 - 実験例 16 シリカ 4.0 89.7 41000 36777 - 0 2.8 - 実験例 17 シリカ 5.0 90.2 41000 36982 - 0 2.5 - 実験例 18 シリカ 39.5 96.9 41000 39729 - 4 2.2 - 実験例 19 シリカ 50.0 95.5 41000 39155 - 3 2.3 一 実験例 20 シリカ 55.0 95.6 41000 39196 - 42 2.3 - 実験例 21 シリカ 162.0 100.0 41000 41000 - 65 2.1 - 実験例 22 ジルコニァ 11.8 93.5 41500 38803 - 0 2.4 一 強抜押 実験例 23 ジルコニァ 4.0 89.7 41500 37226 - 0 2.8 -度きし 実験例 24 ジルコニァ 5.0 90.2 41500 37433 - 0 2.5 - 実験例 25 ジルコニァ 39.5 96.9 41500 40214 - 5 2.2 - 実験例 26 ジルコニァ 50.0 95.5 41500 39633 - 3 2.3 - 実験例 27 ジルコニァ 55.0 95.6 41500 39674 - 57 2.3 - 実験俐 28 ジルコニァ 162.0 100.0 41500 41500 - 83 2.1 - コージェライ卜
実験例 29 +アルミナ 162.0 100.0 25000 25000 - 0 2.9 - 実験例 44 アルミナ 11.8 89.3 42000 37506 - 0 3.1 - 実験例 45 アルミナ 11.8 84.8 42000 35616 - 0 4.3 - 実験例 46 アルミナ 5.0 83.5 42000 35070 - 0 4.4 - 実験例 47 アルミナ 5.0 86.8 42000 36456 - 0 3.3 -
«無機繊維 =シリカ一アルミナ繊維(径 10 m,長 100 m,アスペクト比 10)
表 5及び図 8に示した実験例 1〜29及び実験例 44〜47の測定結果から明らかなよう に、セラミック粒子、無機繊維及び無機ノ インダを主成分とし、ハ-カムユニット 11の 断面積を 5〜50cm2の範囲とすれば、ハ-カム構造体の単位体積あたりの比表面積 が大きくなり、熱衝撃 *振動に対する十分な強度が得られることがわ力つた。また、図 9に示すように、セラミック粒子、無機繊維及び無機バインダを主成分とし、ハ-カム ユニット 11の断面積を 50cm2以下の範囲とし、ユニット面積割合を 85%以上とすれ ば、ハ-カム構造体の単位体積あたりの比表面積を大きくすることができ、熱衝撃 · 振動に対する十分な強度が得られ、圧力損失が下がることがわ力つた。特にユニット 面積割合が 90%以上で圧力損失の低下が顕著であった。
[0073] 実験例 1 A〜l Dの熱衝撃'振動繰返し試験の重量減少率 G、圧力損失および 押し抜き強度の結果を表 4に示す。この結果から、ユニット断面積を 50cm2以下、ュ ニット面積割合を 85%以上とし、さらにハ-カムユニットの外壁の平面度を 0. lmm 〜1. 5mmとしたときに、押し抜き強度が高くなる(2. 5MPa以上となる)ことがわかつ た。
[0074] 次に、無機繊維のアスペクト比を変化させた実験例 1, 30〜34にっき、シリカ—ァ ルミナ繊維の径、長さ、アスペクト比、ハ-カムユニット 11の比表面積、ハ-カム構造 体の比表面積 S、熱衝撃'振動繰返し試験の重量減少率 G及び圧力損失の各数値 等をまとめたものを表 6に示し、シリカ一アルミナ繊維のアスペクト比を横軸とし熱衝 撃 ·振動繰返し試験の重量減少率 Gを縦軸としてプロットしたものを図 10に示す。
[0075] [表 6]
ユニットの 構造体の
サンプル《 シリカ-アルミナ繊維 熱衝撃- 圧力 比表面積 比表面積 S 板動試験 損失 径 長さ ァスへ。クト比 の減少率 G
U m μ m mVL mVL 重 % kPa 実験例 1 10 100 10 42000 39270 0 2.4 実験例 30 5 50 10 42000 39270 2 2.4 実験例 31 10 20 2 42000 39270 8 2.4 実験例 32 10 5000 500 42000 39270 4 2.4 実験例 33 10 10000 1000 42000 39270 6 2.4 実験例 34 10 20000 2000 42000 39270 25 2.4
※セラミック粒子 = rアルミナ粒子
この結果より無機繊維のアスペクト比が 2〜: LOOOの範囲のときに熱衝撃'振動に対 する十分な強度が得られることがわ力 た。
[0076] 次に、無機バインダの種類を変えてハ-カムユニット 11を作製した実験例 48〜50 及び無機バインダを混合せずに作製した実験例 51にっき、無機ノ インダの種類、ハ 二カムユニット 11の焼成温度、ユニット面積割合、ハニカムユニットの比表面積、ハニ カム構造体の比表面積 S、熱衝撃'振動繰返し試験の重量減少率 G及び圧力損失 の各数値等をまとめたものを表 7に示す。
[0077] [表 7]
サンプル ユニット 構造体の 熱衝撃■
無機 焼成ユニットの 圧力
B積 比表面積 振動試験 バインダ 温度 比表面積 矢 割合 S の減少率 G 種類 % °C mVL mVL 重量% kPa 実験例 48 アルミナゾル 93.5 800 42000 39270 0 2.4 実験例 49 セピ才ラ仆 93.5 800 42000 39270 0 2.4 実験例 50 ァタハ 'ルシ 'ャイト 93.5 800 42000 39270 0 2.4 実験例 51 一 93.5 1000 42000 37400 20 2.4 ϊ¾)セラミック粒子 = : アルミナ粒子
無機繊維 =シリカ一アルミナ繊維(径 10 m,長 100 m,アスペクト比 10) ユニット形状 = 3.43cm角
この結果より、無機バインダを混合しないときには、比較的高温で焼成すれば十分な 強度が得られることがわ力つた。また、無機バインダを混合するときには、比較的低温 で焼成しても十分な強度が得られることがわ力 た。また、無機バインダをアルミナゾ ルゃ粘土系バインダとしても、ハ-カム構造体 10の単位体積あたりの比表面積を大 きくすることができ、熱衝撃 *振動に対する十分な強度が得られることがわ力つた。
[0078] [ハニカム触媒]
実験例 1〜43のハ-カム構造体 10を硝酸白金溶液に含浸させ、ハ-カム構造体 1 0の単位体積あたりの白金重量が 2gZLとなるように調節して触媒成分を担持し、 60 0°Cで lhr保持し、ハ-カム触媒を得た。
産業上の利用可能性
[0079] 本発明は、車両の排ガス浄化用の触媒担体や、気体成分や液体成分を吸着させ る吸着材などに利用可能である。

Claims

請求の範囲
[1] 多数の貫通孔が貫通孔壁面を隔てて長手方向に並設されたノヽニカムユニットがシ 一ル材層を介して、複数個結束されたハ-カム構造体であって、
前記ハ-カムユニットは、少なくともセラミック粒子と、無機繊維及び Z又はウイスカ を含有し、前記ハ-カムユニットの長手方向に垂直な断面における断面積力 5cm2 以上 50cm2以下であり、
前記ハ-カムユニットの外壁の平面度が 0. 1〜1. 5mmであることを特徴とするハ 二カム構造体。
[2] 前記ハニカム構造体の長手方向に垂直な断面における断面積に対して、前記ハニ カムユニットの長手方向に垂直な断面における断面積の総和が占める割合は、 85% 以上である、請求項 1に記載のハニカム構造体。
[3] 外周面にコ一ティング材層を有することを特徴とする請求項 1又は 2に記載のハ- カム構造体。
[4] 前記セラミック粒子は、アルミナ、シリカ、ジルコユア、チタ-ァ、セリア、ムライト及び ゼォライトからなる群より選択される 1種以上であることを特徴とする請求項 1乃至 3の
V、ずれかに記載のハ-カム構造体。
[5] 前記無機繊維及び Z又はウイスカは、アルミナ、シリカ、炭化ケィ素、シリカアルミナ
、ガラス、チタン酸カリウム及びホウ酸アルミニウム力 なる群より選択される 1種以上 であることを特徴とする請求項 1乃至 4のいずれかに記載のハ-カム構造体。
[6] 前記ハ-カムユニットは、前記無機粒子と、前記無機繊維及び Z又はゥイス力と、 無機バインダとを含む混合物を用いて製造されており、
前記無機バインダは、ァノレミナゾノレ、シリカゾル、チタ-ァゾル、水ガラス、セピオラ イト及びァタノルジャイトからなる群より選択される 1種以上であることを特徴とする請 求項 1乃至 5のいずれかに記載のハ-カム構造体。
[7] 触媒成分が担持されて ヽることを特徴とする請求項 1乃至 6の ヽずれかに記載のハ 二カム構造体。
[8] 前記触媒成分は、貴金属、アルカリ金属、アルカリ土類金属及び酸化物からなる群 より選択される 1種以上の成分を含有することを特徴とする請求項 7に記載のハニカ ム構造体。
車両の排ガス浄ィ匕に用いることを特徴とする請求項 1乃至 8のいずれかに記載のハ 二カム構造体。
PCT/JP2005/011658 2005-06-24 2005-06-24 ハニカム構造体 WO2006137157A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2005800004815A CN101023044B (zh) 2005-06-24 2005-06-24 蜂窝结构体
JP2007522176A JPWO2006137157A1 (ja) 2005-06-24 2005-06-24 ハニカム構造体
PCT/JP2005/011658 WO2006137157A1 (ja) 2005-06-24 2005-06-24 ハニカム構造体
EP05028675A EP1738813A1 (en) 2005-06-24 2005-12-29 Honeycomb structure
US11/321,880 US7879428B2 (en) 2005-06-24 2005-12-30 Honeycomb structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011658 WO2006137157A1 (ja) 2005-06-24 2005-06-24 ハニカム構造体

Publications (1)

Publication Number Publication Date
WO2006137157A1 true WO2006137157A1 (ja) 2006-12-28

Family

ID=36072158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011658 WO2006137157A1 (ja) 2005-06-24 2005-06-24 ハニカム構造体

Country Status (5)

Country Link
US (1) US7879428B2 (ja)
EP (1) EP1738813A1 (ja)
JP (1) JPWO2006137157A1 (ja)
CN (1) CN101023044B (ja)
WO (1) WO2006137157A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141888A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
WO2009141887A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
US7846526B2 (en) 2004-12-27 2010-12-07 Ibiden Co., Ltd Honeycomb structural body and sealing material layer
JP2014529526A (ja) * 2011-08-26 2014-11-13 ダウ グローバル テクノロジーズ エルエルシー セラミック体を作製する改良された方法
JP2015508376A (ja) * 2011-12-15 2015-03-19 ダウ グローバル テクノロジーズ エルエルシー 水膨潤性粘土ベースのセメント及び被膜材料、並びにセグメント化又は被膜されたセラミックハニカム構造体の製造方法
JP2016172212A (ja) * 2015-03-16 2016-09-29 日本碍子株式会社 ハニカム構造体
JP2016172653A (ja) * 2015-03-16 2016-09-29 日本碍子株式会社 ハニカム構造体

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815108B2 (ja) * 2003-12-26 2011-11-16 イビデン株式会社 ハニカム構造体
JP4527412B2 (ja) * 2004-02-04 2010-08-18 イビデン株式会社 ハニカム構造体集合体及びハニカム触媒
EP1785603B1 (en) * 2004-08-31 2009-06-24 Ibiden Co., Ltd. Exhaust gas purification system
CN100480215C (zh) * 2004-10-08 2009-04-22 揖斐电株式会社 蜂窝结构体及其制造方法
KR20080042902A (ko) * 2004-12-27 2008-05-15 이비덴 가부시키가이샤 세라믹 허니컴 구조체
KR100692942B1 (ko) * 2005-02-01 2007-03-12 이비덴 가부시키가이샤 허니컴 구조체
CN100453511C (zh) * 2005-03-28 2009-01-21 揖斐电株式会社 蜂窝结构体及密封材料
WO2006137164A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137151A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
CN100534617C (zh) * 2005-06-24 2009-09-02 揖斐电株式会社 蜂窝结构体
WO2006137163A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137149A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137150A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP5031562B2 (ja) * 2005-06-24 2012-09-19 イビデン株式会社 ハニカム構造体
CN100471570C (zh) * 2005-06-24 2009-03-25 揖斐电株式会社 蜂窝结构体、蜂窝结构体集合体及蜂窝催化剂
JPWO2006137158A1 (ja) * 2005-06-24 2009-01-08 イビデン株式会社 ハニカム構造体
WO2006137156A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN101001698B (zh) * 2005-06-24 2011-02-09 揖斐电株式会社 蜂窝结构体
WO2006137155A1 (ja) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP4890903B2 (ja) * 2006-03-28 2012-03-07 日本碍子株式会社 ハニカム構造体
EP1923373B1 (en) * 2006-11-16 2010-01-20 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
US20080118701A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method for manufacturing honeycomb structure, and honeycomb structure
WO2008059576A1 (fr) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Corps structural en nid d'abeilles et procédé de fabrication de celui-ci
WO2008059607A1 (fr) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Procédé permettant de produire une structure en nid d'abeilles et structure en nid d'abeilles ainsi formée
WO2008096413A1 (ja) * 2007-02-06 2008-08-14 Ibiden Co., Ltd. ハニカム構造体
WO2008129670A1 (ja) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
US9089992B2 (en) 2007-04-30 2015-07-28 Corning Incorporated Methods and apparatus for making honeycomb structures with chamfered after-applied akin and honeycomb structures produced thereby
WO2009050775A1 (ja) * 2007-10-15 2009-04-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009118815A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体
CA2745034C (en) 2008-12-15 2014-01-21 Unifrax I Llc Ceramic honeycomb structure skin coating
US20110126973A1 (en) * 2009-11-30 2011-06-02 Andrewlavage Jr Edward Francis Apparatus And Method For Manufacturing A Honeycomb Article
CN104364224B (zh) 2012-06-28 2018-07-20 陶氏环球技术有限责任公司 用于粘接陶瓷过滤器的阵列的方法
CN105413314B (zh) * 2015-11-06 2017-04-05 中国第一汽车股份有限公司 颗粒过滤器的高活性材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213681A (ja) * 1992-01-31 1993-08-24 Kawata Mfg Co Ltd ハニカム状繊維強化セラミック体およびその製造方法
JP2000102709A (ja) * 1998-07-28 2000-04-11 Ibiden Co Ltd セラミック構造体及びその製造方法
JP2001138416A (ja) * 1999-11-15 2001-05-22 Ngk Insulators Ltd ハニカム構造体

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4869944A (en) 1987-02-12 1989-09-26 Ngk Insulators, Ltd. Cordierite honeycomb-structural body and a method for producing the same
JPH0442184A (ja) * 1990-06-07 1992-02-12 Ricoh Co Ltd 熱ローラ定着装置
DE4341159B4 (de) 1993-12-02 2009-02-05 Argillon Gmbh Wabenförmiger Katalysator und Verfahren zu seiner Herstellung
US5518678A (en) 1994-01-26 1996-05-21 Kawata Manufacturing Co., Ltd. Adsorptive honeycomb-shaped ceramic structure and method for its production
JPH0812460A (ja) 1994-06-22 1996-01-16 Osamu Yamamoto ハニカム状セラミック構造体
DK1306358T4 (da) 1996-01-12 2012-10-22 Ibiden Co Ltd Tætningselement
JP3956437B2 (ja) 1996-09-26 2007-08-08 マツダ株式会社 排気ガス浄化用触媒
JP3389851B2 (ja) 1997-01-21 2003-03-24 トヨタ自動車株式会社 排ガス浄化用触媒
JP3544471B2 (ja) 1998-05-12 2004-07-21 日本碍子株式会社 六角セルハニカム構造体とその把持方法
JP3967034B2 (ja) 1999-03-30 2007-08-29 イビデン株式会社 セラミックフィルタユニットの製造方法
EP1516659B1 (en) 1999-09-29 2006-12-13 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP3965007B2 (ja) 1999-09-29 2007-08-22 イビデン株式会社 多孔質炭化珪素焼結体、ハニカムフィルタ、セラミックフィルタ集合体
JP2001162119A (ja) 1999-09-29 2001-06-19 Ibiden Co Ltd セラミックフィルタ集合体
JP4051163B2 (ja) 1999-09-29 2008-02-20 イビデン株式会社 セラミックフィルタ集合体
JP2001096116A (ja) 1999-09-29 2001-04-10 Ibiden Co Ltd セラミックフィルタ集合体、ハニカムフィルタ
JP3889194B2 (ja) 2000-01-13 2007-03-07 日本碍子株式会社 ハニカム構造体
JP2001190917A (ja) * 2000-01-13 2001-07-17 Ngk Insulators Ltd 三角セルハニカム構造体
JP3979559B2 (ja) 2000-05-23 2007-09-19 日立金属株式会社 セラミックハニカム構造体
JP2002079729A (ja) 2000-09-08 2002-03-19 Ricoh Co Ltd 画像形成装置
JP4368050B2 (ja) * 2000-09-27 2009-11-18 イビデン株式会社 セラミック構造体の製造方法
JP4459476B2 (ja) 2001-05-01 2010-04-28 日本碍子株式会社 多孔質ハニカム構造体及びその製造方法
US6764743B2 (en) 2001-05-01 2004-07-20 Ngk Insulators, Ltd. Porous honeycomb structure and process for production thereof
PL220346B1 (pl) 2001-10-02 2015-10-30 Ngk Insulators Ltd Sposób wytwarzania struktury plastra pszczelego
JP3893049B2 (ja) 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
PL205740B1 (pl) 2001-12-06 2010-05-31 Ngk Insulators Ltd Proces wytwarzania struktury podobnej do plastra pszczelego
JP4157304B2 (ja) * 2002-02-05 2008-10-01 日本碍子株式会社 ハニカム構造体
ES2312794T5 (es) 2002-02-05 2012-12-18 Ibiden Co., Ltd. Filtro de tipo panal para purificar gases de escape
US8029737B2 (en) 2002-02-05 2011-10-04 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
JP4317345B2 (ja) * 2002-02-26 2009-08-19 株式会社日本触媒 低濃度co含有排ガス処理方法
JP3999001B2 (ja) 2002-03-08 2007-10-31 日本碍子株式会社 ハニカム構造体及びそれを収納してなるキャニング構造体
JP4293753B2 (ja) 2002-03-19 2009-07-08 日本碍子株式会社 ハニカムフィルター
JP4246475B2 (ja) 2002-04-26 2009-04-02 日本碍子株式会社 ハニカム構造体の製造方法
DE10224123B4 (de) 2002-05-29 2005-03-31 Mettler-Toledo Gmbh Vorrichtung zur Betriebszustandsüberwachung für eine Waage
JP4657566B2 (ja) 2002-07-16 2011-03-23 日本碍子株式会社 ハニカム構造体及びその製造方法
WO2004024295A1 (ja) 2002-09-13 2004-03-25 Ibiden Co., Ltd. ハニカム構造体
EP1502640B1 (en) * 2002-09-13 2013-03-20 Ibiden Co., Ltd. Honeycomb structure
JP4267947B2 (ja) 2003-03-19 2009-05-27 日本碍子株式会社 ハニカム構造体
KR20060021912A (ko) 2003-06-23 2006-03-08 이비덴 가부시키가이샤 허니컴 구조체
WO2005009614A1 (ja) 2003-07-28 2005-02-03 Ngk Insulators, Ltd. ハニカム構造体及びその製造方法
JP4815108B2 (ja) 2003-12-26 2011-11-16 イビデン株式会社 ハニカム構造体
JP4527412B2 (ja) 2004-02-04 2010-08-18 イビデン株式会社 ハニカム構造体集合体及びハニカム触媒
JP2005270755A (ja) * 2004-03-24 2005-10-06 Ngk Insulators Ltd ハニカム構造体及びその製造方法
DE602004014271D1 (de) * 2004-05-06 2008-07-17 Ibiden Co Ltd Wabenstruktur und herstellungsverfahren dafür
EP1785603B1 (en) 2004-08-31 2009-06-24 Ibiden Co., Ltd. Exhaust gas purification system
CN100480215C (zh) 2004-10-08 2009-04-22 揖斐电株式会社 蜂窝结构体及其制造方法
KR100628572B1 (ko) * 2004-12-10 2006-09-26 삼성전자주식회사 프린트 문서 편집 방법 및 그 장치
KR100753377B1 (ko) 2004-12-27 2007-08-30 이비덴 가부시키가이샤 허니컴 구조체 및 시일재층
KR20080042902A (ko) 2004-12-27 2008-05-15 이비덴 가부시키가이샤 세라믹 허니컴 구조체
KR100692942B1 (ko) 2005-02-01 2007-03-12 이비덴 가부시키가이샤 허니컴 구조체
WO2006137163A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137149A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137155A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JPWO2006137158A1 (ja) 2005-06-24 2009-01-08 イビデン株式会社 ハニカム構造体
WO2006137164A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
WO2006137151A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体、及び、排気ガス浄化装置
CN100534617C (zh) 2005-06-24 2009-09-02 揖斐电株式会社 蜂窝结构体
WO2006137150A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
CN101001698B (zh) 2005-06-24 2011-02-09 揖斐电株式会社 蜂窝结构体
WO2006137156A1 (ja) 2005-06-24 2006-12-28 Ibiden Co., Ltd. ハニカム構造体
JP5031562B2 (ja) 2005-06-24 2012-09-19 イビデン株式会社 ハニカム構造体
CN100471570C (zh) 2005-06-24 2009-03-25 揖斐电株式会社 蜂窝结构体、蜂窝结构体集合体及蜂窝催化剂
WO2007000826A1 (ja) 2005-06-27 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
WO2007000825A1 (ja) 2005-06-27 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
WO2007000847A1 (ja) 2005-06-29 2007-01-04 Ibiden Co., Ltd. ハニカム構造体
JP2007098274A (ja) 2005-10-04 2007-04-19 Ibiden Co Ltd 多孔質ハニカム構造体及びそれを利用した排ガス浄化装置
WO2008059607A1 (fr) 2006-11-16 2008-05-22 Ibiden Co., Ltd. Procédé permettant de produire une structure en nid d'abeilles et structure en nid d'abeilles ainsi formée
US20080118701A1 (en) 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method for manufacturing honeycomb structure, and honeycomb structure
EP1923373B1 (en) 2006-11-16 2010-01-20 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
WO2008096413A1 (ja) 2007-02-06 2008-08-14 Ibiden Co., Ltd. ハニカム構造体
WO2008126305A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 触媒担持体および排気ガス処理装置
WO2008126307A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 触媒担持体および触媒担持体の製造方法
WO2008126306A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 触媒担持体
WO2008129670A1 (ja) 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213681A (ja) * 1992-01-31 1993-08-24 Kawata Mfg Co Ltd ハニカム状繊維強化セラミック体およびその製造方法
JP2000102709A (ja) * 1998-07-28 2000-04-11 Ibiden Co Ltd セラミック構造体及びその製造方法
JP2001138416A (ja) * 1999-11-15 2001-05-22 Ngk Insulators Ltd ハニカム構造体

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846526B2 (en) 2004-12-27 2010-12-07 Ibiden Co., Ltd Honeycomb structural body and sealing material layer
WO2009141888A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
WO2009141887A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
KR101037567B1 (ko) 2008-05-20 2011-05-27 이비덴 가부시키가이샤 허니컴 구조체
CN101678351B (zh) * 2008-05-20 2012-07-04 揖斐电株式会社 蜂窝结构体
JP5379678B2 (ja) * 2008-05-20 2013-12-25 イビデン株式会社 ハニカム構造体
JP2014529526A (ja) * 2011-08-26 2014-11-13 ダウ グローバル テクノロジーズ エルエルシー セラミック体を作製する改良された方法
KR101926698B1 (ko) 2011-08-26 2018-12-07 다우 글로벌 테크놀로지스 엘엘씨 세라믹 보디 제조 방법
JP2015508376A (ja) * 2011-12-15 2015-03-19 ダウ グローバル テクノロジーズ エルエルシー 水膨潤性粘土ベースのセメント及び被膜材料、並びにセグメント化又は被膜されたセラミックハニカム構造体の製造方法
JP2016172212A (ja) * 2015-03-16 2016-09-29 日本碍子株式会社 ハニカム構造体
JP2016172653A (ja) * 2015-03-16 2016-09-29 日本碍子株式会社 ハニカム構造体

Also Published As

Publication number Publication date
US20060292334A1 (en) 2006-12-28
CN101023044B (zh) 2010-04-21
EP1738813A1 (en) 2007-01-03
JPWO2006137157A1 (ja) 2009-01-08
CN101023044A (zh) 2007-08-22
US7879428B2 (en) 2011-02-01

Similar Documents

Publication Publication Date Title
WO2006137157A1 (ja) ハニカム構造体
JP5031562B2 (ja) ハニカム構造体
JP4975619B2 (ja) ハニカム構造体
KR100736307B1 (ko) 벌집형 구조체
JP4863995B2 (ja) ハニカム構造体
JP4815108B2 (ja) ハニカム構造体
JP5091672B2 (ja) ハニカム構造体及びその製造方法
JP5042632B2 (ja) ハニカム構造体
JP5091673B2 (ja) ハニカム構造体及びその製造方法
WO2006137158A1 (ja) ハニカム構造体
KR20060135488A (ko) 벌집형 구조체
KR20060135489A (ko) 벌집형 구조체
JPWO2008059576A1 (ja) ハニカム構造体及びその製造方法
JP4753781B2 (ja) ハニカム構造体
JP4753783B2 (ja) ハニカム構造体
KR100725433B1 (ko) 허니컴 구조체
KR20070019928A (ko) 허니컴 구조체

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007522176

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020057025049

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20058004815

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05752961

Country of ref document: EP

Kind code of ref document: A1