WO2006126736A1 - 車両逸脱防止装置 - Google Patents

車両逸脱防止装置 Download PDF

Info

Publication number
WO2006126736A1
WO2006126736A1 PCT/JP2006/311033 JP2006311033W WO2006126736A1 WO 2006126736 A1 WO2006126736 A1 WO 2006126736A1 JP 2006311033 W JP2006311033 W JP 2006311033W WO 2006126736 A1 WO2006126736 A1 WO 2006126736A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
torque
warning
driver
alarm
Prior art date
Application number
PCT/JP2006/311033
Other languages
English (en)
French (fr)
Inventor
Hiroaki Kataoka
Seiji Kawakami
Katsuhiko Iwazaki
Chumsamutr Rattapon
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to EP06766418A priority Critical patent/EP1884449B1/en
Priority to US11/887,778 priority patent/US7688186B2/en
Priority to CN2006800089254A priority patent/CN101146705B/zh
Priority to DE602006018726T priority patent/DE602006018726D1/de
Publication of WO2006126736A1 publication Critical patent/WO2006126736A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/029Steering assistants using warnings or proposing actions to the driver without influencing the steering system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping

Definitions

  • the present invention detects a travel segment (travel lane) in which the vehicle is traveling, estimates the course of the vehicle, determines whether or not to depart from the travel segment,
  • the present invention relates to a vehicle departure prevention device that issues a warning to a driver to prompt departure avoidance.
  • a road image in front of the vehicle is acquired by a camera mounted on the vehicle, and the lane in which the vehicle is traveling is detected by image processing.
  • the vehicle lane is detected from the detected lane information and the estimated course of the vehicle.
  • There is known a technique for determining the possibility of deviating from the vehicle and issuing a warning to the driver to avoid the deviation by steering operation etc. 9 Refer to publication No. 8).
  • This technology determines a point that deviates from the driving lane from the driving lane offset, angle, curve radius, etc., and the vehicle's baud rate, rudder angle, vehicle speed, etc.
  • the departure state is predicted based on the angle formed by the estimated course at this point and the lane marking of the traveling section. If it is determined that there is a possibility of departure, an alarm is given to the driver or corrective steering is performed.
  • an object of the present invention is to provide a vehicle departure prevention device that can apply an alarm torque having an appropriate strength according to the running conditions and surrounding conditions of the vehicle.
  • the vehicle departure prevention apparatus includes: (1) detecting a travel segment in which the host vehicle travels, and the host vehicle deviates from the travel segment based on the positional relationship between the travel segment and the host vehicle
  • a vehicle deviation prevention device comprising: a deviation determination unit that determines whether or not to perform; and a warning unit that applies torque to the steering to issue a warning to the driver when it is determined to deviate.
  • warning means has a vehicle speed detecting means, and this warning means is characterized in that when the detected vehicle speed is high, the torque for issuing a warning to the driver is reduced compared to when the detected vehicle speed is low.
  • the warning means may be characterized in that, when the detected vehicle and speed are greater than a predetermined vehicle speed, the torque for issuing an alarm after driving is smaller than the torque applied at the predetermined vehicle speed.
  • the damping characteristic of the vehicle's Kyo motion decreases, and the amount of overshoot of the vehicle lateral acceleration increases. This means that even if the applied alarm torque is the same, the vehicle behavior increases and it is easy for the driver to feel that the alarm torque is too strong. Since the alarm torque applied when the vehicle speed is high is reduced, the increase in vehicle behavior is suppressed.
  • the warning means may reduce the torque applied as the vehicle speed increases when the vehicle speed is equal to or higher than the predetermined vehicle speed.
  • the vehicle behavior that occurs when the alarm torque is applied is generated according to the vehicle's Kyo motion characteristics. Therefore, the torque applied by the alarm means is set based on the vehicle's Kyo motion characteristics.
  • the torque applied by the warning means should be set smaller as the torque change rate with time increases.
  • the vehicle departure prevention apparatus has a traveling environment grasping means for grasping a road traveling environment in the vehicle departure prevention apparatus of (1), and the warning means grasps It is also possible to set torque to alert the driver based on the road driving environment.
  • Narrow roads are closer to oncoming vehicles and parallel cars than wide roads, so even if the same warning torque is applied, the driver can feel that the warning torque is strong. Therefore, the road traveling environment grasped by this traveling environment grasping means is preferably information on the lane width, and when the lane width is narrow, it is desirable to reduce the torque to be applied as compared with the case where the lane width is wide.
  • the road traveling environment grasped by the traveling environment grasping means may be information on the inclination of the road surface in the direction intersecting the traveling direction, and the warning means is used when the departure direction corresponds to the upward direction of the inclination of the road surface. Therefore, it is better to make the torque to be applied smaller than when it falls in the down direction.
  • the vehicle departure prevention apparatus is the vehicle departure prevention apparatus according to (1), which has obstacle grasping means for grasping obstacle information around the vehicle, and the alarm means is the grasped obstacle.
  • a torque for issuing a warning to the driver based on the information may be set.
  • the warning torque is applied in the direction opposite to the departure direction. Therefore, the warning torque given when trying to deviate from the lane in a direction away from the obstacle is given when the vehicle approaches the obstacle and deviates from the lane in the direction approaching the obstacle. Alarm torque keeps the vehicle away from obstacles. In the former case, the driver may feel more dangerous by applying alarm torque than in the latter case. Therefore, when the departure direction is the direction away from the obstructed obstacle, the warning means should reduce the applied torque compared to the approaching direction.
  • the vehicle departure prevention apparatus is the vehicle departure prevention apparatus according to (1), wherein the warning means sets a tonolek for issuing a warning to the driver according to the braking force or driving force generated on the steered wheels. It ’s a thing.
  • the self-aligning torque is reduced compared to the state where it is not applied, which reduces the feeling of steering response and the generated vehicle lateral acceleration. End up. Therefore, the torque is set in consideration of this decrease.
  • the alarm means may set the torque to be applied based on the control information of the drive source. This is because the driving force applied to the steered wheels when the steered wheels are drive wheels can be determined from the control information (accelerator opening etc.) of the drive source.
  • the alarm means may set the torque to be applied based on the control information of the braking system. This is because the braking force applied to the steered wheels can be determined from the control information of the braking system (brake pedal force, wheel cylinder hydraulic pressure, etc.).
  • the vehicle When the steered wheels are drive wheels, the vehicle further includes a means for detecting a road gradient, and the warning means may set a torque to be applied according to the detected road gradient.
  • a normal driving force is applied on the uphill road, and a normal braking force (including engine brake) is applied on the downhill road. Therefore, by applying torque according to the road gradient, torque according to braking / driving force is applied.
  • the torque setting performed by these warning means may be at least one of setting a peak value of applied torque or setting a time change rate at the time of rising.
  • the minimum value should be set for the peak value of this torque and the time change rate.
  • FIG. 1 is a block diagram of a vehicle departure prevention control apparatus according to the present invention.
  • FIG. 2 is a perspective view showing a vehicle equipped with the control device of FIG.
  • FIG. 3 is a flowchart showing a first embodiment of alarm torque setting processing in the control device of FIG.
  • Fig. 4 is a graph showing an example of alarm torque setting according to the control mode shown in Fig. 3 and the actual lateral acceleration obtained as a result.
  • Fig. 5 is a graph showing the alarm torque set by conventional control and the actual lateral acceleration obtained thereby.
  • Figure 6 shows the vehicle speed vs. damping characteristics and lateral acceleration when the same steering torque is applied.
  • FIG. 7 is a graph showing changes in vehicle lateral acceleration over time when the vehicle speed is different.
  • FIG. 8 is a flowchart showing a second embodiment of the alarm torque setting process in the control device of FIG.
  • Fig. 9 is a graph showing an example of alarm torque setting according to lane width.
  • FIG. 10 is a flowchart showing a third embodiment of the alarm torque setting process in the control device of FIG.
  • FIG. 11 is a flowchart showing a fourth embodiment of the alarm torque setting process in the control device of FIG.
  • Fig. 12 is a diagram showing an example where obstacles exist in the lane departure direction.
  • Figure 13 shows an example in which obstacles exist in the direction opposite to the lane departure direction (direction to avoid departure).
  • FIG. 14 is a flowchart showing a fifth embodiment of the alarm torque setting process in the control device of FIG.
  • Fig. 15 is a diagram for explaining the peak value of the alarm torque and the gradient at the time of rising.
  • FIG. 1 is a block diagram of a vehicle departure prevention control apparatus according to the present invention
  • FIG. 2 is a perspective view showing a vehicle equipped with the same.
  • This vehicle departure prevention control device (hereinafter simply referred to as a control device) 10 0 is composed mainly of departure prevention support E C U 2.
  • This departure prevention support ECU 2 is configured by combining a CPU, ROM, RAM, and other storage devices, and includes an image processing unit 21, a departure determination unit 2 2, and a support control unit 23. .
  • Each part 2 1 to 2 3 may be separated by hardware, but may share some or all of the hardware and may be divided by software. It may be configured by a plurality of shared software, or may be a part of one software.
  • the image processing unit 2 1 uses road image lines (drawn on the road) that divide both ends of the traveling section (traveling lane) in which the vehicle is traveling from the image information acquired by the power mela 1 1 that acquires the image ahead of the vehicle. White lines, yellow lines, blocks placed on the road, or embedded blocks, etc., but these are simply referred to as white lines below.) Outputs segment information (curve R, offset, square, etc.).
  • the departure determination unit 22 is a vehicle speed sensor 12 C, for example, a wheel speed sensor disposed on each wheel.
  • Vehicle speed information and steering torque sensor 1 3 located on the steering shaft to detect the steering torque by the driver.
  • the predicted arrival position of the vehicle after a predetermined time from the steering torque information obtained in And the possibility of deviation from the travel class of the vehicle is determined from the travel class information recognized by the image processing unit 2 1.
  • the support control unit 23 3 provides departure prevention support based on the determination result of the departure determination unit 22, and in this embodiment, the driver is warned as departure prevention support.
  • An electric power steering system (PS) 3 1, a buzzer 3 2, and a meter 3 3 are connected to the support control unit 23 as alarm means.
  • the support control unit 2 3 Brake switch 14 and turn signal switch 15 output signals are also input. It also has a function to communicate with the engine ECU 41, the brake ECU 42, and the obstacle detection ECU 43 through the in-vehicle LAN.
  • Obstacle detection ECU 43 includes obstacle sensors (not shown) (including sensors that directly detect obstacles such as radar, and systems that detect obstacles by combining cameras and image processing devices). Information on the position and type of obstacles detected using this method has been sent.
  • Deviation prevention support ECU 2 receives the output signal of the main switch 16 so that the driver can switch execution permission Z prohibition of deviation prevention support.
  • Camera 1 1 is located at the top of the front window of the vehicle 200 (for example, behind the rearview mirror) as shown in Fig. 2, and is an image in front of the vehicle 200, that is, an image of the driving section 300 in front of the vehicle. (Including white line 30 1). It should be noted that the camera 11 can be provided at any position of the vehicle body (for example, in front of the vehicle body) as long as the front image of the vehicle can be captured.
  • a moving image ahead of the vehicle is acquired at a TV frame rate, for example, and output to the image processing unit 21.
  • the image processing unit 21 recognizes the positions of the white lines 301 at both ends of the traveling section 300 by image recognition processing using a known image processing method such as edge detection, and outputs predetermined white line recognition information.
  • the departure determination unit 22 obtains an expected arrival position after a predetermined departure time (TLC: Time to lane crossing) based on the vehicle information acquired by the vehicle speed sensor 1 2 and the steering torque sensor 1 3.
  • TLC Time to lane crossing
  • Processor 2 From the white line recognition information acquired from 1, the vehicle is TL Judgment is made at C or not (departure or not) within the travel category 3 0 0, and if it is judged that the vehicle departs from the travel category 3 0 0, this is supported as the possibility of departure Output to controller 2 3.
  • the support control unit 2 3 When the support control unit 2 3 receives information from the departure determination unit 2 2 that there is a possibility of departure, the buzzer 3 2 is sounded and a message to that effect is displayed at the corresponding part of the meter 3 3 and the electric PS 3 Drive the electric motor of 1 to give a predetermined warning torque to the steering wheel to inform the driver of the risk of deviation.
  • the driver When the driver is operating a brake (when the brake switch 14 is on), or when operating the direction indicator when changing lanes or preparing for turning left or right (the winker switch 15 is on) ), It is determined that it is not necessary to inform the driver of the risk of departure, and various warnings are not given.
  • the setting method of the alarm torque to be applied will be described with a specific example.
  • step S 3 is a flowchart showing the first embodiment of the alarm torque setting process.
  • the vehicle speed V is read from the output of the vehicle speed sensor 12 (step S 1).
  • step S2 it is determined whether or not the vehicle speed V is equal to or higher than the first threshold value Vth (step S2). If the vehicle speed V is equal to or higher than the first threshold value Vthl, the process proceeds to step S3, where the warning torque is set so as to decrease as the vehicle speed V increases, and the process ends.
  • step S4 the second threshold value Vth2 is set to be lower than the first threshold value Vthl.
  • step S5 the process proceeds to step S5, where the alarm torque is set so as to be approximately proportional to the vehicle speed V, and the process is terminated.
  • the alarm torque is set to a predetermined constant value (step S6).
  • Fig. 4 is a graph showing an alarm torque setting example (Fig. 4 (a)) and the actual lateral acceleration obtained by this (Fig. 4 (b)).
  • Fig. 5 shows the conventional control.
  • Alarm torque (Fig. 5 (a)) and actual lateral acceleration (Fig. 5) (b) is a graph showing).
  • the alarm torque in the low speed region (less than V th2) is set so that the rate is almost constant, and the alarm torque in the high speed region (above V th2) is set.
  • the torque is set so that the actual lateral acceleration is almost constant (see Fig. 4 (b)). For this reason, extreme fluctuations in vehicle behavior in the high-speed range can be suppressed, and the driver's sense of discomfort with the alarm torque felt by the driver can be reduced, improving driver spirit.
  • the peak value of the alarm torque at high speed is made smaller as the time change rate at the time of start-up is larger. Even if the peak value is the same, the greater the time change rate at the time of start-up, the greater the overshoot amount of the actual lateral acceleration and the greater the effect on the vehicle behavior. On the other hand, the greater the time change rate at the time of start-up, the easier it is for the driver to recognize the application of alarm torque (this is hereinafter referred to as alarm torque response). Therefore, the larger the rate of time change at the time of start-up, the more effective it is to suppress the overshoot while ensuring the response of the alarm torque by reducing the peak value.
  • the warning torque is set so that the actual lateral acceleration in the high vehicle speed range is substantially constant.
  • the warning torque is set so that the actual lateral acceleration decreases as the vehicle speed increases. Good.
  • the driver's tension increases as the vehicle speed increases. The For this reason, even if the response of the vehicle behavior and the alarm torque is the same, it is easy to feel that the alarm torque is strong.
  • the alarm torque so that the actual lateral acceleration decreases as the vehicle speed increases, the sensory intensity of the alarm torque does not become excessive in the high speed range, and an alarm torque with an appropriate intensity is applied. .
  • Figure 8 shows the alarm torque setting process.
  • the lane width information of the travel classification in which the vehicle is traveling is acquired (step S 1 1).
  • the lane width information may be calculated from white line recognition information acquired by the image processing unit 21, for example.
  • a mask is used such as using an average value for a predetermined time (for example, 1 second) or determining a lane width change when the lane width within a certain range continues. It is preferable to perform the treatment.
  • Fig. 9 is a graph showing an example of alarm torque setting according to lane width.
  • the distance to parallel cars and oncoming vehicles and obstacles that travel in other driving sections is closer than on wide roads. For this reason, the marginal distance from these obstacles is likely to be shortened, and the driver is likely to feel that the alarm torque is sensuously strong. Therefore, by applying a relatively small alarm torque on narrow roads and applying a relatively large alarm torque on wide roads, it is possible to suppress the alarm torque from becoming excessively sensuously.
  • lane width information of the travel section in which the host vehicle is traveling is acquired by image processing from the image acquired by the camera 11, but the lane width information may be acquired from the navigation system.
  • lane width information may be acquired by road-to-vehicle communication.
  • the lane width information here includes not only the lane width itself but also the road type. Wide roads are used on motorway roads such as expressways, but lane widths are narrower on major trunk roads that are not motorway roads, and narrower on prefectural and municipal roads. Many (see Fig. 9). Therefore, the road type Even if the lane width is determined based on this, substantially the same effect can be obtained.
  • the warning torque should be set to a relatively high value on the road dedicated to automobiles, and the warning torque should be set to a low value on other roads.
  • This switching may not be performed in two steps, but may be performed in several steps depending on the road type.
  • FIG. 10 is a flowchart showing a third embodiment of the alarm torque setting process.
  • the road surface cant (the slope of the road surface in the direction perpendicular to the road extension direction) of the travel section in which the vehicle is traveling is acquired (step S 2 1).
  • This small road surface can be calculated from, for example, white line recognition information acquired by the image processing unit 21. Alternatively, it can be obtained from a lateral acceleration sensor arranged in the vehicle 200.
  • the mask processing is preferably performed in the same manner as in the second embodiment.
  • step S 2 2 the relationship between the lane departure direction and the road surface cant direction and the road surface cant size are determined (step S 2 2). If the lane departure direction matches the ascending direction of the road surface cant and the road 3 ⁇ 4 cant size is greater than or equal to the predetermined value, the process proceeds to step S 23 and the alarm torque is set according to the road surface cant size. Weaken. In this case, the component force in the road surface direction of the heavy acceleration acting on the vehicle acts in a direction to avoid lane departure. For this reason, even if the alarm torque is the same, the actual lateral acceleration that occurs is felt to increase, so by reducing the alarm torque in consideration of the effect of this gravitational acceleration, the driver feels uncomfortable.
  • the lane departure direction matches the down direction of the road surface cant and the size of the road surface cant is greater than or equal to a predetermined value (may be different from the predetermined value in the upward direction).
  • the gravitational acceleration component force acting on the vehicle acts in the direction of promoting lane departure.
  • the actual lateral acceleration generated seems to be small.
  • FIG. 11 is a flowchart showing the fourth embodiment of the alarm torque setting process.
  • the position information of the obstacles around the vehicle is obtained from the obstacle detection E C U 4 3 (step S 3 1).
  • step S 3 2 it is determined whether or not an obstacle exists in the lane departure direction (step S 3 2).
  • step S 3 3 it is determined whether or not an obstacle exists in the lane departure direction (step S 3 2).
  • step S 3 3 it is determined whether or not an obstacle exists in the direction of departure, for example, when it is determined that there is a possibility of departure from the curve on the curved road 3 0 4 where the guard lenore 3 0 5 exists outside the road as shown in Fig. 1 2 Move to step S 3 3 to increase the alarm torque from the reference alarm torque.
  • step S 3 4 it is further determined whether there is an obstacle in the direction opposite to the departure direction, that is, in the departure avoidance direction (step S 3 4). If there is an obstacle in the direction opposite to the departure direction, for example, if the oncoming vehicle 2 1 0 is traveling on the oncoming lane 3 1 0 as shown in Fig. 1 3, the process proceeds to step S 3 5. Therefore, weaken the alarm torque from the standard alarm torque. As shown in Fig. 1-3, when there is an obstacle in the direction of avoidance, the alarm torque works in the direction of approaching the obstacle. Because of the fear of approaching obstacles, the alarm torque can be felt more strongly than when there are no obstacles. Therefore, by reducing the alarm torque compared to when there is no obstacle, the driver can feel the alarm torque uncomfortable.
  • step S 3 4 If it is determined in step S 3 4 that there are no obstacles in the direction opposite to the departure direction, the process ends. In this case, the reference alarm torque is applied.
  • FIG. 14 is a flowchart showing a fifth embodiment of the alarm torque setting process.
  • the reference alarm torque has already been set by the method of the first embodiment or the second embodiment.
  • the vehicle 200 is a vehicle (a front-wheel drive vehicle or a four-wheel drive vehicle) in which a driving force is applied to the steered wheels.
  • braking / driving force control information is acquired from the engine E C U 4 1 and the brake E C U 4 2 (step S 4 1).
  • it is determined whether braking or driving (step S 4 2). If it is not braking or driving, the process ends. In this case, the reference alarm torque is applied as it is.
  • the alarm torque is increased according to the braking force driving force (step S 4 3).
  • the self-aligning of the steered wheels will reduce the torque, which will reduce the effectiveness of the alarm torque and reduce the steering responsiveness.
  • the actual lateral acceleration is also reduced. Therefore, the alarm torque is increased so as to compensate for the decrease in effectiveness of the alarm torque.
  • (2) and (3) adjusts the alarm torque according to the braking force have been described, but the alarm torque may be adjusted according to either the braking force or the driving force. In the case of a rear-wheel drive vehicle in which the steered wheels are rolling wheels, control according to the driving force is unnecessary.
  • the alarm torque may be adjusted based on the gradient (road gradient) with respect to the vehicle traveling direction.
  • a driving force is usually applied on an uphill road with a large road gradient
  • a braking force (including engine braking) is usually applied on a downhill road with a large road gradient. Therefore, by adjusting the warning torque according to the road surface gradient, it is possible to obtain the same effect as when the application of the braking stern drive force is estimated from the road surface gradient.
  • This road surface gradient may be obtained from the longitudinal acceleration of the vehicle, or the gradient information may be acquired by a navigation system, road-to-vehicle communication, or the like.
  • the alarm torque may be adjusted not only by changing the peak value of the alarm torque, but also by changing the rate of time change at the time of alarm torque rise (see Fig. 15). Even when the alarm torque is weakened, it is advisable to set a lower limit (greater than 0) for the peak value and the time change rate. This lower limit is set to a level at which the driver can recognize the application of alarm torque.
  • the alarm torque is set according to the vehicle speed, road environment, obstacles around the vehicle, braking force or driving force generated on the steered wheels, an appropriate strength corresponding to the driving condition and the surrounding condition is set.
  • This alarm torque can be applied.
  • the driver is not discomforted with the alarm torque applied, the drivability is improved, and an appropriate departure alarm can be issued.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

車速Vを読み込み(ステップS1)、Vと第1のしきい値Vth1とを比較し(ステップS2)、VがVth1以上の場合には、Vが高速であるほど警報トルクが小さくなるよう設定する(ステップS3)。VがVth1未満の場合には、さらに、Vを第2のしきい値Vth2と比較し(ステップS4)、VがVth2未満の場合には、警報トルクを車速に略比例するように設定し(ステップS5)、VがVth2以上Vth1未満の場合には、警報トルクを所定の一定値に設定する(ステップS6)。

Description

明糸田書
車両逸脱防止装置
技術分野
本発明は、 自車が走行している走行区分 (走行レーン) を検出し、 自車の進路 を推定してその走行区分から逸脱するか否かを判定し、 逸脱すると判定した場合 には、 運転者に警報を発して逸脱回避を促す車両逸脱防止装置に関する。
冃 J¾技 丁
車両に搭載されたカメラで車両前方の道路画像を取得して、 画像処理により自 車が走行中の走行レーンを検出し、 検出した走行レーン情報と、 自車の推定進路 から自車が走行レーンを逸脱する可能性を判定し、 逸脱する可能性が大きな場合 に、 運転者に警報を発してステアリング操作等による逸脱回避を促す技術が知ら れている (例えば、 特開平 7— 1 0 5 4 9 8号公報参照) 。
この技術は、 例えば、 走行レーンのオフセッ ト、 ョ一角、 カーブ半径等と、 自 車のョーレート、 舵角、 車速等から走行レーンを逸脱する地点を判定し、 この地 点と自車両の距離およびこの地点における推定進路と走行区分の区画線のなす角 度を基にして逸脱状態を予測するものである。 そして、 逸脱可能性ありと判定し た場合には、 運転者に警報を発し、 あるいは、 修正操舵を行う。
発明の開示
ところで、 このような車線逸脱を予測した際に、 運転者に対してその旨を報知 する手段として、 操舵系にトルクを付与することで報知する手段が知られている。 しかしながら、 この警報時に操舵系に付与するトルク (以下、 警報トルクと称す る。 ) を車両の走行条件や周辺条件によらずに一定とすると、 警報トルクが弱す ぎて運転者に対する警報効果が充分に発揮されない場合や、 逆に警報トルクが強 すぎて運転者が違和感を感じる場合がある。
そこで本発明は、 車両の走行条件や周辺条件に応じた適切な強さの警報トルク を付与することを可能とした車両逸脱防止装置を提供することを課題とする。 上記課題を解決するため、 本発明に係る車両逸脱防止装置は、 (1 ) 自車両が 走行する走行区分を検出し、 走行区分と自車両の位置関係に基づいて自車両が走 行区分を逸脱するか否かを判断する逸脱判断手段と、 逸脱すると判定した場合に、 運転者に警報を発するためのトルクをステアリングに付与する警報手段と、 を備 える車両逸脱防止装置において、 車速を検出する車速検出手段を有し、 この警報 手段は、 検出した車速が高い場合には、 検出した車速が低い場合と比較して、 運 転者に警報を発するためのトルクを小さくすることを特徴とする。 この警報手段 は、 検出した車、速が所定車速より大きい場合に、.所定車速の場合に付与するトル クよりも、 運転 ¾ こ警報を発するためのトルクを小さくすることを特徴としても よい。
高車速領域では、 後述するように車両のョー運動のダンピング特性が低下し、 車両横加速度のオーバーシュート量が増大する。 これは、 付与する警報トルクが 同一でも車両挙動が大きくなり、 運転者が 「警報トルクが強すぎる」 と感じやす い。 車速が高い場合に付与する警報トルクを小さくするので、 車両挙動の増大が 抑制される。
ダンピング特性は車速が大きくなるほど低下するから、 この警報手段は、 車速 が所定車速以上の場合には、 車速が高くなるに連れて付与するトルクを小さくす るとよい。
警報トルクを付与した際に生ずる車両挙動は、 車両のョー運動特性に応じて生 ずるから、 警報手段で付与するトルクは、 車両のョー運動特性に基づいて設定さ れるとよレ、。
また、 車体に生ずる実横加速度のオーバーシュート量は、 警報トルクの時間変 化率が大きい場合ほど増大する。 そこで、 警報手段で付与する トルクは、 トルク の時間変化率が大きい場合ほど小さく設定されるとよい。
あるいは、 本発明に係る車両逸脱防止装置は、 (1 ) の車両逸脱防止装置にお いて、 道路走行環境を把握する走行環境把握手段を有し、 警報手段は、 把握した 道路走行環境に基づいて運転者に警報を発するためのトルクを設定するものであ つてもよレヽ。
車両状況が同一であっても走行している道路走行環境によって運転者が感じる 警報トルクの影響は変化する。 そこで、 把握した走行環境に応じて警報トルクを 変えることで警報トルク付与時に運転者が感ずる違和感を軽減する。
狭い道路では広い道路に比べて対向車や並走車との距離が近いため、 同じ警報 トルクを付与した場合でも運転者は警報トルクが強いと感じやすい。 そこで、 こ の走行環境把握手段が把握する道路走行環境とは、 車線幅に関する情報とすると よく、 車線幅が狭い場合には、 広い場合に比較して付与するトルクを小さくする とよい。
また、 路面自体に勾配があると、 同じ警報トルクを付与した場合でも車両挙動 への影響は上り方向と下り方向とで異なることになる。 そこで、 この走行環境把 握手段が把握する道路走行環境とは、 走行方向に交差する方向の路面の傾き情報 であるとよく、 警報手段は、 逸脱方向が路面の傾きの上り方向に該当するときは、 下り方向に該当するときに比較して付与するトルクを小さくするとよい。
あるいは、 本発明に係る車両逸脱防止装置は、 (1 ) の車両逸脱防止装置にお いて、 車両周辺の障害物情報を把握する障害物把握手段を有し、 警報手段は、 把 握した障害物情報に基づいて運転者に警報を発するためのトルクを設定するもの でもよい。
車両周辺に駐車中の車両や電柱等の障害物 (対向車や並走車のほか二輪車、 自 転車、 歩行者を含む。 ) が存在する場合、 障害物がない場合に比較して同一の警 報トルクを付与した場合でも、 運転者は警報トルクが強いと感じやすい。 そこで、 障害物を考慮しャ警報トルクを設定することで違和感を軽減する。
警報トルクは逸脱方向とは逆方向に付与される。 したがって、 障害物から離れ る方向へ車線を逸脱しようとする場合に付与される警報トルクは車両を障害物へ と接近させ、 障害物へと近づく方向へ車線を逸脱しようとする場合に付与される 警報トルクは車両を障害物から離隔させる。 前者の場合には、 後者に比べて警報 トルク付与により運転者は危険感を感じる可能性がある。 そこで、 この警報手段 は、 逸脱方向が把握した障害物から離れる方向であるときは、 近づく方向である 場合に比べて付与するトルクを小さくするとよい。
本発明に係る車両逸脱防止装置は、 (1 ) の車両逸脱防止装置において、 警報 手段は、 転舵輪に発生する制動力または駆動力に応じて運転者に警報を発するた めのトノレクを設定するものでもよレ、。
転舵輪に制動力や駆動力が付与されている状態では、 付与していない状態と比 較してセルフ ·ァライニング · トルクが低下するため、 ステアリングの手応え感 と発生する車両横加速度が低下してしまう。 そこで、 この低下を考慮してトルク を設定する。
転舵輪が駆動輪である場合、 警報手段は、 駆動源の制御情報に基づいて付与す る トルクを設定するとよい。 転舵輪が駆動輪である場合に転舵輪に付与される駆 動力は、 駆動源の制御情報 (アクセル開度等) から判定可能であるからである。 警報手段は、 制動系の制御情報に基づいて付与するトルクを設定してもよい。 転舵輪に付与される制動力は、 制動系の制御情報 (ブレーキ踏力、 ホイルシリン ダ油圧等) から判定可能であるからである。
転舵輪が駆動輪の場合に、 道路勾配を検出する手段をさらに備えており、 警報 手段は、 検出した道路勾配に応じて付与するトルクを設定するようにしてもよレ、。 登坂路では通常駆動力が付与されており、 降坂路では通常制動力 (エンジンブレ ーキを含む。 ) が付与されている。 そこで、 道路勾配に応じてトルクを付与する ことで、 制駆動力に応じたトルクを付与す 。
これらの警報手段で行う トルク設定は、 付与するトルクのピーク値の設定また は立ち上がり時の時間変化率の設定の少なくとも一方であるとよい。 このトルク のピーク値、 時間変化率には最小値が設定されているとよい。
図面の簡単な説明 図 1は、 本発明に係る車両逸脱防止制御装置のプロック構成図である。
図 2は、 図 1の制御装置を搭載した車両を示す斜視図である。
図 3は、 図 1の制御装置における警報トルクの設定処理の第 1の実施形態を示 すフローチヤ一トである。
図 4は、 図 3の制御形態による警報トルクの設定例と、 それにより得られる実 横加速度を示すグラフである.。
図 5は、 従来の制御で設定される警報トルクとそれにより得られる実横加速度 を示すグラフである。
図 6は、 同一の操舵トルクを付与した場合の車速一ダンピング特性、 横加速度 を示したものである。
図 7は、 車速が異なる場合の車両横加速度の時問変化を示すグラフである。 図 8は、 図 1の制御装置における警報トルクの設定処理の第 2の実施形態を示 すフローチヤ一トである。
図 9は、 車線幅に応じた警報トルクの設定例を示すグラフである。
図 1 0は、 図 1の制御装置における警報トルクの設定処理の第 3の実施形態を 示すフローチヤ一トである。
図 1 1は、 図 1の制御装置における警報トルクの設定処理の第 4の実施形態を 示すフローチヤ一トである。
図 1 2は、 車線逸脱方向に障害物が存在する例を示す図である。
図 1 3は、 車線逸脱方向と逆方向 (逸脱回避方向) に障害物が存在する例を示 す図である。
図 1 4は、 図 1の制御装置における警報トルクの設定処理の第 5の実施形態を 示すフローチヤ一トである。
図 1 5は、 警報トルクのピーク値と立ち上がり時の勾配を説明する図である。 発明を実施するための最良の形態
以下、 添付図面を参照して本発明の好適な実施の形態について詳細に説明する。 説明の理解を容易にするため、 各図面において同一の構成要素に対しては可能な 限り同一の参照番号を附し、 重複する説明は省略する。
図 1は、 本発明に係る車両逸脱防止制御装置のブロック構成図であり、 図 2は、 それを搭載した車両を示す斜視図である。 この車両逸脱防止制御装置 (以下、 単 に制御装置と称する。 ) 1 0 0は、 逸脱防止支援 E C U 2を中心に構成される。 この逸脱防止支援 E C U 2は、 C P U、 R OM, R AM, その他の記憶装置等を 組み合わせて構成されており、 画像処理部 2 1、 逸脱判定部 2 2、 支援制御部 2 3を備えている。 各部 2 1 〜 2 3は、 ハードウェア的に区分されていてもょレ、が、 一部または全てのハードウエアを共有し、 ソフトウエア的に区分されていてもよ いし、 それぞれが一部を共有する複数のソフトウェアによって構成されていても よいし、 一つのソフトウェアの一部であってもよい。
画像処理部 2 1は、 車両前方の画像を取得する力メラ 1 1で取得した画像情報 から自車の走行している走行区分 (走行レーン) の両端を区画する道路区画線 (道路に描かれた白線、 黄色線や道路上に配置、 または埋め込まれたブロック等 の場合があるが、 以下、 単に白線と称する。 ) を画像処理により認識することで、 走行区分を認識して、 認識した走行区分情報 (カーブ R、 オフセッ ト、 ョ一角 等) を出力する。
逸脱判定部 2 2は、 車速センサ 1 2 C例えば、 各車輪に配置される車輪速セン サである。 ) で取得した車速情報および操舵トルクセンサ 1 3 (ステアリングシ ャフ トに配置され、 運転者による操舵トルクを検出する。 ) で取得した操舵トル ク情報から所定時間後の自車両の到達予想位置を推定し、 これと画像処理部 2 1 で認識した走行区分情報から車両の走行区分からの逸脱可能性を判定する。
支援制御部 2 3は、 逸脱判定部 2 2の判定結果を基にして、 逸脱防止支援を行 うものであり、 本実施形態では、 逸脱防止支援として、 運転者に警報を発する。 支援制御部 2 3には、 警報手段として電動パワーステアリングシステム (P S ) 3 1、 ブザー 3 2、 メータ 3 3が接続されている。 また、 支援制御部 2 3には、 ブレーキスィツチ 14、 ウインカースィツチ 1 5の出力信号も入力されている。 また、 エンジン ECU 4 1、 ブレーキ ECU 42、 障害物検知 ECU 43と車内 LANを通じて交信する機能を有している。
エンジン ECU4 1からは、 駆動力設定に関する情報 (例えば、 アクセル開 度) が送られてきており、 ブレーキ ECU 42からは制動力設定に関する情報 (例えば、 ブレーキ踏力あるいは転舵輪のホイルシリンダ油圧) が送られてくる。 障害物検知 ECU 43は図示していない障害物センサ (ソナ一、 レーダのように 障害物を直接検知するセンサのほか、 カメラと画像処理装置を組み合わせて障害 物を検出するシステムを含む。 ) を用いて検出した障害物の位置、 種別情報が送 られてきている。
逸脱防止支援 ECU 2には、 メインスィツチ 16の出力信号が入力されており、 運転者が逸脱防止支援の実行許可 Z禁止を切り換えられるようになつている。 カメラ 1 1は、 図 2に示されるように車両 200のフロントウィンドウ上部 (例えば、 バックミラーの裏側) に配置されており、 車両 200前方の画像、 つ まり、 '車両前方の走行区分 300の画像 (白線 30 1を含む。 ) を取得するもの である。 なお、 カメラ 1 1は、 車両の前方画像が取り込める場所であれば、 車体 のどの位置 (例えば、 車体前方) に設けても問題ない。
最初に、 メインスィッチ 1 6がオンに設定されている場合の本発明の制御装置 100の基本動作を説明する。
まずカメラ 1 1.では、 車両前方の動画像を例えば TVフレームレートで取得し、 画像処理部 21へと出力する。 画像処理部 2 1は、 既知のエッジ検出等の画像処 理手法を用いた画像認識処理により、 走行区分 300の両端の白線 30 1位置を 認識し、 所定の白線認識情報を出力する。
逸脱判定部 22は、 車速センサ 1 2、 操舵トルクセンサ 1 3で取得した車両情 報を基に所定の逸脱予想時間 (TLC : Time to lane crossing) 後の予想到達 位置を求め、 これと、 画像処理部 2 1から取得した白線認識情報から車両が TL C時に走行区分 3 0 0内に位置するか否か (逸脱するか否か) を判定し、 車両が 走行区分 3 0 0から逸脱すると判定した場合には、 逸脱可能性ありとしてその旨 を支援制御部 2 3に出力する。
支援制御部 2 3は、 逸脱判定部 2 2から逸脱可能性ありとの情報を受け取った 場合には、 ブザー 3 2を鳴動させ、 メータ 3 3の該当個所にその旨を表示すると ともに、 電動 P S 3 1の電気モータを駆動してステアリングホイールに所定の警 報トルクを付与して、 運転者に逸脱の危険性を報知する。 なお、 運転者が制動操 作中である場合 (ブレーキスィッチ 1 4がオンの場合) や、 車線変更や右左折準 備等で方向指示器を操作している場合 (ウィンカースィッチ 1 5がオンの場合) には、 運転者に逸脱危険性を 知する必要はないと判断し、 各種警報は行わない。 以下、 付与する警報トルクの設定手法について具体例を挙げて説明する。 図 3 は、 警報トルクの設定処理の第 1の実施形態を示すフローチャートである。 最初 に車速センサ 1 2の出力から車速 Vを読み込む (ステップ S 1 ) 。 次に、 車速 V が第 1のしきい値 Vth 以上であるか否かを判定する (ステップ S 2) 。 車速 V が第 1のしきい値 Vthl 以上の場合には、 ステップ S 3へと移行して、 警報トル クを車速 Vが高くなるほど小さくなるように設定し、 処理を終了する。 一方、 車 速 Vが第 1のしきい値 Vthl 未満の場合には、 さらに、 車速 Vが第 2のしきい値 Vth2 未満か否かを判定する (ステップ S 4). 。 この第 2のしきい値 Vth2 は第 1のしきい値 Vthl より低くなるよう設定されている。 車速 Vが第 2のしきい値 Vth2未満の場合には、 ステップ S 5へと移行して車速 Vに略比例するよう警報 トルクを設定して処理を終了する。 一方、 車速 Vが第 2のしきい値 Vth2 以上の 場合 (より詳細には、 Vが Vth2 以上で Vthl 未満の場合) には、 警報トルクを 所定の一定値に設定する (ステップ S 6) 。
図 4は、 この制御形態による警報トルクの設定例 (図 4 ( a ) ) と、 それによ り得られる実横加速度 (図 4 (b) ) を示すグラフであり、 図 5は、 従来の制御 で設定される警報トルク (図 5 (a ) ) とそれにより得られる実横加速度 (図 5 ( b ) ) を示すグラフである。
従来の制御では、 図 5 ( b ) に示されるように、 高速領域において実際には大 きな横加速度が発生してしまう。 これは、 図 6に示されるように、 同一の操舵ト ルクを付与したとしても車両のョー運動のダンピング特性 (操舵トルクに対する 車両横加速度) が低下してしまうからである。 さらに、 高車速になると、 図 7に 示されるように横加速度のオーバーシユート量が増大してしまうため、 車両挙動 が大きくなる。 このような状態では、 運転者は警報トルクが強すぎると感じやす い。
本制御形態によれば図 4 ( a ) に示されるように、 低速領域 (V th2 未満) の 警報トルクは、 ョーレートが略一定となるように設定し、 高速領域 (V th2 以 上) の警報トルクは、 実横加速度が略一定となるように (図 4 ( b ) 参照。 ) 設 定している。 このため、 高速領域での車両挙動の極端な変動を抑制することがで き、 運転者が感ずる警報トルクへの違和感を軽減し、 ドライバピリティーを向上 させる。
さらに、 警報トルクを付与する際のトルクの時間変化率が可変である場合には、 立ち上がり時の時間変化率が大きな場合ほど高速時の警報トルクのピーク値は、 小さくすることが好ましい。 ピーク値が同一の場合でも、 立ち上がり時の時間変 化率が大きいほど、 実横加速度のオーバーシュート量は増大し、 車両挙動への影 響が大きくなる。 一方で、 立ち上がり時の時間変化率が大きいほど運転者は警報 トルクの付与を認識しやすい (これを、 以下、 警報トルクの手応えと称する) 。 そこで、 立ち上がり時の時間変化率が大きいほど、 ピーク値を小さくすることで 警報トルクの手応えを確保しつつ、 オーバーシュート量を抑制する効果が得られ る。
図 4においては、 高車速域の実横加速度が略一定となるよう警報トルクを設定 したが、 高車速域においては、 車速が速くなるほど実横加速度が小さくなるよう 警^トルクを設定してもよい。 車速が速くなるほど一般に運転者の緊張感は高ま る。 このため、 車両挙動と警報トルクの手応えが同一であっても警報トルクが強 いと感じやすい。 車速が速くなるほど実横加速度が小さくなるよう警報トルクを 付与することで、 警報トルクの感覚的な強度が高速域で過大になることがなく、 適切な強度の警報トルクが付与されることになる。
次に、 第 2の制御形態について説明する。 図 8は、 警報トルクの設定処理の第
2の実施形態を示すフローチャートである。 最初に自車が走行している走行区分 の車線幅情報を取得する (ステップ S 1 1 ) 。 この車線幅情報は、 例えば、 画像 処理部 2 1で取得した白線認識情報から算出すればよい。 このとき、 認識処理の ノイズ等の影響を抑制するため、 所定時間 (例えば 1秒間) の平均値を用いたり、 ある範囲内の車線幅が継続した場合に車線幅の変更を判定する等のマスク処理を 行うことが好ましい。
次に、 車線幅を基にして警報トルクを設定し (ステップ S 1 2 ) 、 処理を終了 する。 図 9は、 車線幅に応じた警報トルクの設定例を示すグラフである。 狭い道 路においては、 広い道路に比べて他の走行区分を走行する並走車 ·対向車や障害 物 (歩行者、 自転車、 路上駐車車両、 電柱等) との距離が接近する。 このため、 これらの障害物との余裕距離が短くなりやすく、 運転者は警報トルクを感覚的に は強いと感じやすくなる。 そこで、 狭い道路では比較的小さな警報トルクを付与 し、 広い道路では比較的大きな警報トルクを付与することで、 感覚的に警報トル クが過大になるのを抑制する。
ここでは、 自車が走行している走行区分の車線幅情報をカメラ 1 1で取得した 画像から画像処理により取得する例を説明したが、 ナビゲーシヨンシステムから 車線幅情報を取得してもよい。 また、 路車間通信等によって車線幅情報を取得し てもよい。 ここでいう車線幅情報には、 車線幅自体のほか、 道路種別を含むもの とする。 高速道路のような自動車専用道路では広い車線幅が採られているが、 自 動車専用道路でない主要幹線道路ではこれより車線幅が狭く、 都道府県道や市町 村道ではさらに車線幅が狭いことが多い ('図 9参照) 。 したがって、 道路種別を 基にして車線幅を判定しても略同様の効果が得られる。 この場合は、 例えば、 自 動車専用道路では、 警報トルクを比較的大きく設定し、 その他の道路では警報ト ルクを小さく設定するとよい。 この切り換えは、 2段階でなくとも道路種別に応 じて数段階に段階的に切り換えてもよい。
次に、 第 3の制御形態について説明する。 図 1 0は、 警報トルクの.設定処理の 第 3の実施形態を示すフローチャートである。 ここでは、 基準となる警報トルク はすでに第 1の実施形態や第 2の実施形態の手法で設定されているものとする。 最初に自車が走行している走行区分の路面カント (道路の延長方向に直交する 方向における路面の傾き) を取得する (ステップ S 2 1 ) 。 この路面カン小は、 例えば、 画像処理部 2 1で取得した白線認識情報から算出すればよい。 あるいは、 車両 2 0 0に配置した横加速度センサから取得することもできる。 このとき、 マ スク処理を行うことが好ましい点は第 2の実施形態と同様である。
次に、 車線逸脱方向と路面カントの方向の関係および路面カントの大きさを判 定する (ステップ S 2 2 ) 。 車線逸脱方向が路面カントの上り方向に合致し、 か つ、 路 ¾カントの大きさが所定値以上の場合には、 ステップ S 2 3へと移行し、 路面カントの大きさに応じて警報トルクを弱める。 この場合、 車両に作用する重 力加速度の路面方向の分力は、 車線逸脱を回避する方向に作用している。 このた め、 警報トルクが同一でも、 発生する実横加速度が大きくなるように感じるから この重力加速度の影響を考慮して警報トルクを弱めておくことにより、 運転者が 感ずる違和感を抑制する。
逆に、 車線逸脱方向が路面カントの下り方向に合致し、 かつ、 路面カントの大 きさが所定値 (上り方向における所定値とは異ならせてもよい。 ) 以上の場合に. は、 ステップ S 2 4へと移行し、 路面カントの大きさに応じて警報トルクを強め る。 この場合、 車両に作用する重力加速度の路面方向の分力は、 車線逸脱を促進 する方向に作用している。 このため、 警報トルクが同一でも、 発生する実横加速 度は小さくなるように感じるからこの重力加速度の影響を考慮して警報トルクを 強めておくことにより、 運転者が感ずる違和感を抑制するとともに、 逸脱余裕時 間を確保し、 運転者に注意を促す。
そして、 路面カントの傾きが小さい場合 (ステップ S 2 3、 S 2 4への移行条 件を満たしていない場合) には、 そのまま処理を終了する。 この場合には、 警報 トルクは基準値のままに維持される。
次に、 第 4の制御形態について説明する。 図 1 1は、 警報トルクの設定処理の 第 4の実施形態を示すフローチャートであ、る。 ここでも、 基準となる警報トルク はすでに第 1の実施形態や第 2の実施形態の手法で設定されているものとする。 最初に障害物検知 E C U 4 3から車両周辺の障害物の位置情報を取得する (ス テツプ S 3 1 ) 。 まず、 障害物が車線逸脱方向に存在するか否かを判定する (ス テツプ S 3 2 ) 。 逸脱方向に障害物が存在する場合、 例えば、 図 1 2に示される ように道路外側にガードレーノレ 3 0 5が存在するカーブ路 3 0 4でカーブから外 側への逸脱可能性ありと判定した場合、 ステップ S 3 3へと移行して、 基準とな る警報トルクより警報トルクを強める。 図 1 2に示されるように、 逸脱方向に障 害物が存在する場合、 一般に運転者は、 障害物接近への恐怖感から障害物がない 場合に比べて警報トルクを小さく感じやすい。 また、 警報トルクが付与されても、 自ら回避動作を行わなくとも障害物を回避できるのではないかという期待感から 警報としての認識が遅れるおそれもある。 そこで、 障害物がない場合に比べて警 報トルクを強めることで、 運転者に逸脱可能性を早期に認識させ、 回避動作を促 す。
逸脱方向に障害物がないと判定した場合には、 さらに逸脱方向と逆方向、 つま り逸脱回避方向に障害物が存在するか否かを判定する (ステップ S 3 4 ) 。 逸脱 方向と逆方向に障害物が存在する場合、 例えば、 図 1 3に示されるように対向車 線 3 1 0を対向車 2 1 0が走行している場合、 ステップ S 3 5へと移行して、 基 準となる警報トルクより警報トルクを弱める。 図 1 3に示されるように、 逸脱回 避方向に障害物が存在する場合、 警報トルクは障害物へ接近する方向に働くため、 障害物接近への恐怖感から障害物がない場合に比べて警報トルクを強く感じやす レ、。 そこで、 障害物がない場合に比べて警報トルクを弱めることで、 運転者が感 じる警報トルクの違和感を軽減する。
ステップ S 3 4で逸脱方向と逆方向にも障害物は存在しないと判定した場合に は、 そのまま処理を終了する。 この場合には、 基準となる警報トルクが付与され ることになる。
次に、 第 5の制御形態について説明する。 図 1 4は、 警報トルクの設定処理の 第 5の実施形態を示すフローチャートである。 ここでも、 基準となる警報トルク はすでに第 1の実施形態や第 2の実施形態の手法で設定されているものとする。 ここでは、 車両 2 0 0は転舵輪に駆動力が付与される車両 (前輪駆動車または四 輪駆動車) であるものとする。
最初に、 エンジン E C U 4 1、 ブレーキ E C U 4 2から制駆動力の制御情報を 取得する (ステップ S 4 1 ) 。 次に、 制動中または駆動中かを判定する (ステツ プ S 4 2 ) 。 制動中でも駆動中でもない場合には、 そのまま処理を終了する。 こ の場合には、 基準となる警報トルクがそのまま付与されることになる。 制動中ま たは駆動中である場合には、 制動カ 駆動力に応じて警報トルクを強める (ステ ップ S 4 3 ) 。
転舵輪に制動力または駆動力が付与されていると、 転舵輪のセルフ ·ァライ二 ング ' トルクが低下するため、 警報トルクの効きが低下し、 ステアリングの手応 ぇ感が低下するとともに、 発生する実横加速度も小さくなる。 そこで、 この警報 トルクの効きの低下分を補償するように警報トルクを増大させる。
具体的には、 (1 ) アクセル開度に応じて警報トルクを増大させる、 (2 ) ブ レーキ踏力に応じて警報トルクを増大させる、 (3 ) ホイールシリンダ油圧に応 じて警報トルクを増大させる、 等の手法を用いるとよい。 このうち、 (1 ) は駆 動力に応じて警報トルクを調整するものであり、 (2 ) と (3 ) は制動力に応じ て警報トルクを調整するものである。 ここでは、 制動カ 駆動力の両方に応じて調整する形態を説明したが、 制動力 または駆動力の一方に応じて警報トルクを調整してもよい。 転舵輪が転動輪であ る後輪駆動車の場合には、 駆動力に応じた制御は不要である。
また、 必ずしも制駆動力の制御情報に基づいて制御を行う必要はない。 例えば、 車両の進行方向に対する勾配 (路面勾配) を基にして警報トルクを調整してもよ い。 路面勾配が大きな登坂路では、 駆動力が付与されており、 路面勾配が大きな 降坂路では、 制動力 (エンジンブレーキを含む。 ) が付与されているのが通常で ある。 そこで、 路面勾配により警報トルクを調整することで、 路面勾配から制動 カノ駆動力の付与を推定したのと同様の効果が得られる。 この路面勾配は車両の 前後方向の加速度から求めてもよいし、 ナビゲーシヨンシステム、 路車間通信等 により勾配情報を取得してもよい。
以上の説明において、 警報トルクの調整は、 警報トルクのピーク値を変更する だけでなく、 警報トルクの立ち上がり時の時間変化率を変更することによって行 つてもよい (図 1 5参照) 。 なお、 警報トルクを弱める場合でも、 ピーク値、 時 間変化率には下限値 (0より大きい) を設定しておくとよい。 この下限値は、 運 転者が警報トルクの付与を認識可能なレベルに設定される。
産業上の利用可能性
本発明によれば、 車速、 道路環境、 車両周辺の障害物、 転舵輪に発生する制動 力または駆動力に応じて警報トルクを設定しているので、 走行条件や周辺条件に 応じた適切な強さの警報トルクを付与することが可能となる。 このため、 運転者 が付与される警報トルクに違和感を感じることがなく、 ドライバビリティーが向 上するとともに、 適切な逸脱警報を発することができる。

Claims

言青求の範囲
1 . 自車両が走行する走行区分を検出し、 走行区分と自車両の位置関係に 基づいて自車両が走行区分を逸脱するか否かを判断する逸脱判断手段と、 逸脱すると判定した場合に、 運転者に警報を発するためのトルクをステアリン グに付与する警報手段と、
を備える車両逸脱防止装置において、
車速を検出する車速検出手段を有し、
前記警報手段は、 検出した車速が高い場合には、 検出した車速が低い場合と比 較して、 運転者に警報を発するためのトルクを小さくすることを特徴とする車両 逸脱防止装置。
2 . 前記警報手段は、 検出した車速が所定車速より大きい場合に、 所定車 速の場合に付与するトルクよりも、 運転者に警報を発するためのトルクを小さく することを特徴とする請求項 1記載の車両逸脱防止装置。
3 . 前記警報手段は、 車速が所定車速以上の場合には、 車速が高くなるに 連れて; 運転者に警報を発するためのトルクを小さくす.ることを特徴とする請求 項 2記載の車両逸脱防止装置。
4 . 前記警報手段で付与する トルクは、 車両のョー運動特性に基づいて設 定されることを特徴とする請求項 1〜 3のいずれかに記載の車両逸脱防止装置。
5 . 前記警報手段で付与する トルクは、 トルクの時間変化率が大きい場合 ほど小さく設定されることを特徴とする請求項 1〜 4のいずれかに記載の車両逸 脱防止装置。
6 . 自車両が走行する走行区分を検出し、 走行区分と自車両の位置関係に 基づいて自車両が走行区分を逸脱するか否かを判断する逸脱判断手段と、 逸脱すると判定した場合に、 運転者に警報を発するためのトルクをステアリン グに付与する警報手段と、
を備える車両逸脱防止装置において、 道路走行環境を把握する走行環境把握手段を有し、
前記警報手段は、 把握した道路走行環境に基づいて、 運転者に警報を発するた めのトルクを設定することを特徴とする車両逸脱防止装置。
7 . 前記走行環境把握手段が把握する道路走行環境とは、 車線幅に関する 情報であることを特徴とする請求項 6記載の車両逸脱防止装置。
8 . 前記警報手段は、 車線幅が狭い場合には、 広い場合に比較して運転者 に警報を発するためのトルクを小さくすることを特徴とする請求項 7記載の車両 逸脱防止装置。
9 . 前記走行環境把握手段が把握する道路走行環境とは、 走行方向に交差 する方向の路面の傾き情報であることを特徴とする請求項 6記載の車両逸脱防止 装置。
1 0 . 前記警報手段は、 逸脱方向が路面の傾きの上り方向に該当するとき は、 下り方向に該当するときに比較して運転者に警報を発するためのトルクを小 さくすることを特徴とする請求項 9記載の車両逸脱防止装置。
1 1: 自車両が走行する走行区分を検出し、 走行区分と自車両の位置関係 に基づいて自車両が走行区分を逸脱するか否かを判断する逸脱判断手段と、 逸脱すると判定した場合に、 運転者に警報を発するためのトルクをステアリン グに付与する警報手段と、
を備える車両逸脱防止装置において、
車両周辺の障害物情報を把握する障害物把握手段を有し、
前記警報手段は、 把握した障害物情報に基づいて運転者に警報を発するための トルクを設定することを特徴とする車両逸脱防止装置。
1 2 . 前記警報手段は、 逸脱方向が把握した障害物から離れる方向である ときは、 近づく方向である場合に比べて運転者に警報を発するためのトルクを小 さくすることを特徴とする請求項 1 1記載の車両逸脱防止装置。
1 3 . 自車両が走行する走行区分を検出し、 走行区分と自車両の位置関係 に基づいて自車両が走行区分を逸脱するか否かを判断する逸脱判断手段と、 逸脱 すると判定した場合に、 運転者に警報を発するためのトルクをステアリングに付 与する警報手段と、 を備える車両逸脱防止装置において、
前記警報手段は、 転舵輪に発生する制動力または駆動力に応じて運転者に警報 を発するためのトルクを設定することを特徴とする車両逸脱防止装置。
1 4 . 転舵輪は駆動輪であって、 前記警報手段は、 駆動源の制御情報に基 づいて運転者に警報を発するためのトルクを設定することを特徴とする請求項 1 3記載の車両逸脱防止装置。
1 5 .. 前記警報手段は、 制動系の制御情報に基づいて運転者に警報を発す るためのトルクを設定することを特徴とする請求項 1 3記載の車両逸脱防止装置。
1 6 . 転舵輪は駆動輪であって、 道路勾配を検出する手段をさらに備えて おり、 前記警報手段は、 検出した道路勾配に応じて運転者に警報を発するための トルクを設定することを特徴とする請求項 1 3記載の車両逸脱防止装置。
1 7 . 前記警報手段で行う トルク設定は、 運転者に警報を発するためのト ルクのピーク値の設定または立ち上がり時の時間変化率の設定の少なくとも一方 であることを特徴とする請求項 1〜 1 6のいずれかに記載の車両逸脱防止装置。
1 8 . 前記警報手段が設定する運転者に警報を発するためのトルクのピー ク値、 時間変化率には最小値が設定されていることを特徴とする請求項 1 7記載 の車両逸脱防止装置。
PCT/JP2006/311033 2005-05-27 2006-05-26 車両逸脱防止装置 WO2006126736A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06766418A EP1884449B1 (en) 2005-05-27 2006-05-26 Vehicle deviation preventing apparatus
US11/887,778 US7688186B2 (en) 2005-05-27 2006-05-26 Vehicle derailing prevention device
CN2006800089254A CN101146705B (zh) 2005-05-27 2006-05-26 车辆脱离防止装置
DE602006018726T DE602006018726D1 (de) 2005-05-27 2006-05-26 Abdriftschutzvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005156155A JP4124213B2 (ja) 2005-05-27 2005-05-27 車両逸脱防止装置
JP2005-156155 2005-05-27

Publications (1)

Publication Number Publication Date
WO2006126736A1 true WO2006126736A1 (ja) 2006-11-30

Family

ID=37452143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311033 WO2006126736A1 (ja) 2005-05-27 2006-05-26 車両逸脱防止装置

Country Status (6)

Country Link
US (1) US7688186B2 (ja)
EP (2) EP1884449B1 (ja)
JP (1) JP4124213B2 (ja)
CN (5) CN101870291B (ja)
DE (1) DE602006018726D1 (ja)
WO (1) WO2006126736A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168905A (ja) * 2008-03-28 2008-07-24 Toyota Motor Corp 車両逸脱防止装置
JP2008265362A (ja) * 2007-04-16 2008-11-06 Hitachi Ltd 操舵支援システム及びそれを搭載した車両
WO2008145430A1 (de) * 2007-05-25 2008-12-04 Robert Bosch Gmbh Kollisionswarngerät mit leitplankenerkennung
US7688186B2 (en) 2005-05-27 2010-03-30 Toyota Jidosha Kabushiki Kaisha Vehicle derailing prevention device
CN110537214A (zh) * 2017-04-20 2019-12-03 马自达汽车株式会社 车辆驾驶支援装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907407B2 (ja) * 2007-03-30 2012-03-28 本田技研工業株式会社 車両の走行安全装置
KR101063711B1 (ko) * 2007-07-16 2011-09-07 기아자동차주식회사 차량 경보 시스템
EP2070774B1 (en) * 2007-12-14 2012-11-07 SMR Patents S.à.r.l. Security system and a method to derive a security signal
US7898400B2 (en) * 2008-04-15 2011-03-01 Autoliv Asp, Inc. Enhanced vision road detection system
JP5315769B2 (ja) * 2008-04-21 2013-10-16 株式会社ジェイテクト 操舵装置
US8111147B2 (en) * 2008-05-13 2012-02-07 GM Global Technology Operations LLC Lane departure warning and change assist system utilizing active materials
CA2726146A1 (en) * 2008-06-25 2009-12-30 Tomtom International B.V. Navigation apparatus and method of detection that a parking facility is sought
JP5359516B2 (ja) * 2008-07-29 2013-12-04 日産自動車株式会社 車両運転支援装置及び車両運転支援方法
JP5493305B2 (ja) * 2008-07-30 2014-05-14 アイシン・エィ・ダブリュ株式会社 運転支援装置、運転支援方法および運転支援プログラム
JP5195178B2 (ja) * 2008-09-01 2013-05-08 トヨタ自動車株式会社 車線逸脱警報装置
JP5255988B2 (ja) * 2008-10-22 2013-08-07 富士重工業株式会社 操舵支援装置
US8305444B2 (en) * 2008-11-14 2012-11-06 Toyota Motor Engineering & Manufacturing North America, Inc. Integrated visual display system
US8738231B2 (en) 2009-06-29 2014-05-27 Volvo Lastvagnar Ab Method and a system for assisting a driver of a vehicle during operation
JP5552339B2 (ja) * 2010-03-12 2014-07-16 トヨタ自動車株式会社 車両制御装置
JP5080602B2 (ja) * 2010-03-19 2012-11-21 日立オートモティブシステムズ株式会社 車両制御装置
JP5605016B2 (ja) * 2010-06-28 2014-10-15 日産自動車株式会社 車両の走行支援装置及び走行支援方法
US20130274959A1 (en) * 2010-12-15 2013-10-17 Toyota Jidosha Kabushiki Kaisha Driving support apparatus, driving support method, and vehicle
CN102529959B (zh) * 2010-12-31 2015-03-25 财团法人车辆研究测试中心 车辆翻覆预防安全系统及其方法
JP5700111B2 (ja) * 2011-02-21 2015-04-15 トヨタ自動車株式会社 走行支援装置及び方法
WO2013026616A1 (de) * 2011-08-22 2013-02-28 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzsystem eines nicht spurgebundenen fahrzeugs
EP2591942B1 (en) * 2011-11-11 2015-02-25 Volvo Car Corporation Arrangement and method for safeguarding driver attentiveness
CN102951159B (zh) * 2012-11-07 2016-06-15 浙江吉利汽车研究院有限公司杭州分公司 车道偏离预警系统
CN105050884B (zh) * 2013-03-28 2017-04-12 丰田自动车株式会社 碰撞避免辅助装置和碰撞避免辅助方法
DE102013009400A1 (de) * 2013-06-04 2014-12-04 Volkswagen Aktiengesellschaft Notfallassistenz zur Fahrzeugführung
JP6108974B2 (ja) * 2013-06-14 2017-04-05 日立オートモティブシステムズ株式会社 車両制御システム
JP5917472B2 (ja) 2013-11-08 2016-05-18 本田技研工業株式会社 運転支援装置
JP5988308B2 (ja) * 2013-12-27 2016-09-07 富士重工業株式会社 車両のレーンキープ制御装置
JP6338417B2 (ja) * 2014-03-27 2018-06-06 株式会社Subaru 車両の車線逸脱防止制御装置
JP5798658B1 (ja) * 2014-03-28 2015-10-21 富士重工業株式会社 車両の車線逸脱防止制御装置
JP6443063B2 (ja) * 2015-01-15 2018-12-26 株式会社デンソー 道路形状情報生成装置、道路形状情報集配システム及び道路形状情報生成プログラム
JP2017001627A (ja) * 2015-06-15 2017-01-05 株式会社ジェイテクト 車両用警報装置
JP6372430B2 (ja) * 2015-06-26 2018-08-15 株式会社デンソー 車線逸脱抑制装置
JP6547969B2 (ja) * 2016-11-30 2019-07-24 トヨタ自動車株式会社 車両運転支援装置
CN106652476B (zh) * 2017-02-24 2023-08-15 成都皆为科技有限公司 一种驱动轮识别装置
US10676129B2 (en) * 2018-06-25 2020-06-09 Steering Solutions Ip Holding Corporation Driver notification using handwheel actuators in steer-by-wire systems
JP7077819B2 (ja) * 2018-06-29 2022-05-31 マツダ株式会社 車両制御装置
JP7147344B2 (ja) * 2018-08-06 2022-10-05 マツダ株式会社 車両制御装置および車両制御方法
JP7028115B2 (ja) * 2018-09-11 2022-03-02 トヨタ自動車株式会社 車両用操舵支援装置
JP7323301B2 (ja) * 2019-02-27 2023-08-08 株式会社ジェイテクト 操舵制御装置
CN110304066B (zh) * 2019-07-22 2021-07-20 爱驰汽车有限公司 自动驾驶模式下的路线选择方法、系统、设备及存储介质
CN110861706B (zh) * 2019-12-06 2020-10-13 吉林大学 电动轮前轴独立驱动汽车差动协同主动转向系统及其控制方法
US11527154B2 (en) 2020-02-20 2022-12-13 Toyota Motor North America, Inc. Wrong way driving prevention
US11603094B2 (en) 2020-02-20 2023-03-14 Toyota Motor North America, Inc. Poor driving countermeasures
FR3113638B1 (fr) * 2020-08-26 2023-03-03 Renault Sas Méthode de contrôle pour contrôler le mouvement latéral d’un véhicule automobile
CN112141080B (zh) * 2020-09-08 2022-02-15 北京踏歌智行科技有限公司 一种用于矿区运输车辆防侧翻控制方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105498A (ja) 1993-10-06 1995-04-21 Mazda Motor Corp 自動車の走行状態判定装置およびそれを用いた安全装置
JPH1129061A (ja) * 1997-07-09 1999-02-02 Toyota Motor Corp 車両の操舵制御装置
JPH11139335A (ja) * 1997-11-12 1999-05-25 Toyota Motor Corp 車両の走行支援装置
JPH11189166A (ja) * 1997-12-25 1999-07-13 Mitsubishi Motors Corp 車線逸脱防止装置
JP2000062635A (ja) * 1998-08-18 2000-02-29 Mitsubishi Motors Corp 衝突警報装置
JP2001206237A (ja) * 2000-01-27 2001-07-31 Nissan Motor Co Ltd 車線逸脱防止装置
JP2002154451A (ja) * 2000-11-22 2002-05-28 Mazda Motor Corp 車線逸脱防止装置
JP2002316601A (ja) * 2001-04-19 2002-10-29 Mitsubishi Motors Corp 運転支援装置
JP2002362395A (ja) * 2001-06-12 2002-12-18 Mazda Motor Corp 車両用制御装置
JP2003058993A (ja) * 2001-08-10 2003-02-28 Nissan Motor Co Ltd 車線逸脱警告装置
JP2003081115A (ja) * 2001-09-10 2003-03-19 Nissan Motor Co Ltd 車線逸脱対応装置
JP2004243904A (ja) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd 車線逸脱防止装置
JP2004331026A (ja) * 2003-05-12 2004-11-25 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
JP2005125932A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9317983D0 (en) * 1993-08-28 1993-10-13 Lucas Ind Plc A driver assistance system for a vehicle
US6185492B1 (en) 1997-07-09 2001-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle steering control apparatus for assisting a steering effort to move a vehicle along a line desired by a driver
JP3185726B2 (ja) * 1997-10-02 2001-07-11 トヨタ自動車株式会社 車両用操舵制御装置
DE19943410B4 (de) * 1998-09-11 2011-08-18 Honda Giken Kogyo K.K. Lenksteuersystem für ein Fahrzeug
US6422335B1 (en) * 2000-04-11 2002-07-23 Trw Inc. Method and apparatus for controlling steering feel with diagnostics
DE10137292A1 (de) 2001-08-01 2003-03-06 Continental Teves Ag & Co Ohg Fahrer-Assistenzsystem und Verfahren zu dessen Betrieb
JP2003081123A (ja) 2001-09-11 2003-03-19 Nissan Motor Co Ltd 車両の操舵制御システム
JP3642310B2 (ja) * 2001-11-20 2005-04-27 日産自動車株式会社 車線逸脱防止装置
JP4062172B2 (ja) * 2003-05-28 2008-03-19 日産自動車株式会社 車両用警報装置、及びこれを備えた車線逸脱防止装置
US7510038B2 (en) * 2003-06-11 2009-03-31 Delphi Technologies, Inc. Steering system with lane keeping integration
US7212901B2 (en) * 2003-10-29 2007-05-01 Nissan Motor Co., Ltd. Lane departure prevention apparatus
DE10352967A1 (de) 2003-11-13 2005-06-23 Audi Ag Fahrerassistenzsystem zur Unterstützung der Spurhaltung eines Kraftfahrzeugs
JP3982483B2 (ja) * 2003-11-13 2007-09-26 日産自動車株式会社 車線逸脱防止装置
US7444224B2 (en) * 2003-11-14 2008-10-28 Nissan Motor Co., Ltd. Lane departure prevention apparatus
JP4124213B2 (ja) 2005-05-27 2008-07-23 トヨタ自動車株式会社 車両逸脱防止装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07105498A (ja) 1993-10-06 1995-04-21 Mazda Motor Corp 自動車の走行状態判定装置およびそれを用いた安全装置
JPH1129061A (ja) * 1997-07-09 1999-02-02 Toyota Motor Corp 車両の操舵制御装置
JPH11139335A (ja) * 1997-11-12 1999-05-25 Toyota Motor Corp 車両の走行支援装置
JPH11189166A (ja) * 1997-12-25 1999-07-13 Mitsubishi Motors Corp 車線逸脱防止装置
JP2000062635A (ja) * 1998-08-18 2000-02-29 Mitsubishi Motors Corp 衝突警報装置
JP2001206237A (ja) * 2000-01-27 2001-07-31 Nissan Motor Co Ltd 車線逸脱防止装置
JP2002154451A (ja) * 2000-11-22 2002-05-28 Mazda Motor Corp 車線逸脱防止装置
JP2002316601A (ja) * 2001-04-19 2002-10-29 Mitsubishi Motors Corp 運転支援装置
JP2002362395A (ja) * 2001-06-12 2002-12-18 Mazda Motor Corp 車両用制御装置
JP2003058993A (ja) * 2001-08-10 2003-02-28 Nissan Motor Co Ltd 車線逸脱警告装置
JP2003081115A (ja) * 2001-09-10 2003-03-19 Nissan Motor Co Ltd 車線逸脱対応装置
JP2004243904A (ja) * 2003-02-14 2004-09-02 Nissan Motor Co Ltd 車線逸脱防止装置
JP2004331026A (ja) * 2003-05-12 2004-11-25 Nissan Motor Co Ltd 車両用運転操作補助装置およびその装置を備えた車両
JP2005125932A (ja) * 2003-10-23 2005-05-19 Nissan Motor Co Ltd 車両用運転操作補助装置および車両用運転操作補助装置を備えた車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1884449A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688186B2 (en) 2005-05-27 2010-03-30 Toyota Jidosha Kabushiki Kaisha Vehicle derailing prevention device
JP2008265362A (ja) * 2007-04-16 2008-11-06 Hitachi Ltd 操舵支援システム及びそれを搭載した車両
WO2008145430A1 (de) * 2007-05-25 2008-12-04 Robert Bosch Gmbh Kollisionswarngerät mit leitplankenerkennung
US8412416B2 (en) 2007-05-25 2013-04-02 Robert Bosch Gmbh Collision warning device having guardrail detection
JP2008168905A (ja) * 2008-03-28 2008-07-24 Toyota Motor Corp 車両逸脱防止装置
CN110537214A (zh) * 2017-04-20 2019-12-03 马自达汽车株式会社 车辆驾驶支援装置

Also Published As

Publication number Publication date
CN101870291B (zh) 2013-03-20
CN101508246B (zh) 2013-05-29
CN101146705B (zh) 2010-04-21
EP1884449B1 (en) 2010-12-08
EP1884449A4 (en) 2008-12-24
CN102708703B (zh) 2015-05-20
US20090009305A1 (en) 2009-01-08
JP2006327497A (ja) 2006-12-07
CN102708703A (zh) 2012-10-03
CN101870291A (zh) 2010-10-27
EP2106989B1 (en) 2012-06-20
EP1884449A1 (en) 2008-02-06
CN101508246A (zh) 2009-08-19
DE602006018726D1 (de) 2011-01-20
JP4124213B2 (ja) 2008-07-23
EP2106989A3 (en) 2009-10-21
CN103010098B (zh) 2015-04-01
EP2106989A2 (en) 2009-10-07
CN103010098A (zh) 2013-04-03
CN101146705A (zh) 2008-03-19
US7688186B2 (en) 2010-03-30

Similar Documents

Publication Publication Date Title
JP4124213B2 (ja) 車両逸脱防止装置
US8583341B2 (en) Method for the open-loop and closed-loop control of traffic flow
EP1602562B1 (en) Driving control apparatus and method
JP5070171B2 (ja) 車両制御装置
JP5510255B2 (ja) 車両の操作状態判定システム
EP1602561B1 (en) Driving control apparatus
JP5700111B2 (ja) 走行支援装置及び方法
US20150336587A1 (en) Driving assist device
US20040215393A1 (en) Automotive lane deviation prevention apparatus
JP2012079118A (ja) 走行支援装置及び方法
JP2011511729A (ja) 走行支援システムの制御方法および走行支援システム
KR101478068B1 (ko) 차량 충돌 방지 장치 및 그 방법
JP2008519725A (ja) 衝突回避システムを備えた車両の制御方法及びこの方法を実行する装置
WO2013027573A1 (ja) 車両の旋回効率化装置
US20140379244A1 (en) Avoidance maneuver assistant for motor vehicles
CN111741881A (zh) 车辆控制装置
JP2020138653A (ja) 車両の車線逸脱防止支援装置
CN112849133A (zh) 驾驶支援装置
JP4770859B2 (ja) 車両逸脱防止装置
JP5761088B2 (ja) 車両の運転支援システム
JP2008207805A (ja) 車両逸脱防止装置
JP2005122274A (ja) 車輌の走行態様判定制御装置
JP2012232639A (ja) 走行支援装置及び方法
JP2005182406A (ja) 車線逸脱防止装置
JPH0516552U (ja) 四輪操舵装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008925.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006766418

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11887778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006766418

Country of ref document: EP