WO2006093298A1 - 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置 - Google Patents

蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置 Download PDF

Info

Publication number
WO2006093298A1
WO2006093298A1 PCT/JP2006/304175 JP2006304175W WO2006093298A1 WO 2006093298 A1 WO2006093298 A1 WO 2006093298A1 JP 2006304175 W JP2006304175 W JP 2006304175W WO 2006093298 A1 WO2006093298 A1 WO 2006093298A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
wavelength
emission
intensity
Prior art date
Application number
PCT/JP2006/304175
Other languages
English (en)
French (fr)
Inventor
Akira Nagatomi
Kenji Sakane
Original Assignee
Dowa Electronics Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co., Ltd. filed Critical Dowa Electronics Materials Co., Ltd.
Priority to CN2006800071640A priority Critical patent/CN101133137B/zh
Priority to EP06715234.8A priority patent/EP1867697B1/en
Priority to US11/885,439 priority patent/US7887718B2/en
Priority to JP2007506042A priority patent/JP5145934B2/ja
Publication of WO2006093298A1 publication Critical patent/WO2006093298A1/ja
Priority to US12/912,179 priority patent/US8372309B2/en
Priority to US13/616,477 priority patent/US20130026908A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/77218Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a phosphor, a manufacturing method thereof, and a light emitting device using the phosphor.
  • the present invention relates to a display such as a cathode ray tube (CRT), a field emission display (FED), a plasma display (PDP), a lighting device such as a fluorescent lamp or a fluorescent display tube, and a light emitting device such as a liquid crystal backlight.
  • the present invention relates to a phosphor containing nitrogen and a method for producing the phosphor, a phosphor mixture, a phosphor sheet, and a light emitting device such as a white LED illumination in which a semiconductor light emitting element (LED) and the phosphor are combined. .
  • One type of LED lighting has been proposed, one is a multi-chip type that produces white using three primary colors: a high-intensity red LED, green LED, and blue LED, and another.
  • One is a one-chip system that produces white by combining a high-intensity LED that emits light from near-ultraviolet / ultraviolet to blue and a phosphor excited by near-ultraviolet / ultraviolet-to-blue light generated by the LED power.
  • the one-chip method uses phosphors that have broad peaks in the emission spectrum, especially compared to the multi-chip method. It is possible to approach the spectrum and obtain white light with excellent color rendering.
  • the drive circuit is simplified and It can be downsized, no light guide for mixing colors is required, there is no need to consider the driving voltage or light output of each LED, temperature characteristics, etc. Low cost! /, And many other advantages Therefore, as a next-generation lighting system, attention is focused on the one-chip type that combines LED and phosphor.
  • One-chip type white LED lighting includes a combination of a high-intensity blue LED and a phosphor that emits yellow light when excited by the blue light generated by the LED power.
  • Blue LED and yellow phosphor (Y, Gd) (Al, Ga) O: Ce (YAG: Ce), Tb
  • White LED lighting uses the fact that light blue and yellow are in a complementary color relationship, so it uses fewer phosphors.
  • the yellow phosphor YAG: Ce used has an excitation peak near the blue wavelength of 460 nm, so that it can emit light with high efficiency, and the emission wavelength is the highest in luminance (luminosity) 560 nm. Because it is in the vicinity, it is possible to obtain high-intensity white LED lighting.
  • this white LED lighting has a short wavelength light emission in the visible light region, that is, the red component is insufficient, resulting in a bluish white light emission, and a slightly reddish white light like a light bulb. There is a problem that light emission cannot be obtained and color rendering is poor.
  • the emission peak wavelength is in the yellow power red range, and the emission spectrum has a broad peak. Furthermore, a good excitation band in the near ultraviolet 'ultraviolet to blue' range. Nitrogen-containing phosphors have been developed one after another, and color rendering has been improved by covering these phosphors.
  • an LED that emits near-ultraviolet light a phosphor that emits red (R) light by being excited by near-ultraviolet / ultraviolet light generated from the LED, and green (G) light emission Phosphors that emit blue light and phosphors that emit blue light (B).
  • R red
  • G green
  • B blue light
  • This method of obtaining white light emission by other light of R'G'B is that it is possible to obtain any light emission color other than white light, depending on the combination or mixing ratio of R'G'B, Since the white color is obtained by the color mixing relationship using R'G'B, which is not the complementary color relationship, it has excellent color rendering properties and has the following characteristics.
  • the phosphor used in the application is a red phosphor, for example, Y
  • OS Eu ⁇ La OS: Eu ⁇ 3.5MgO -0.5MgF -GeO: Mn, (La, Mn, Sm) OS -Ga If there is O: Eu etc. and it is a green phosphor, for example, ZnS: Cu, Al, CaGa S: Eu, SrG
  • BAM Eu
  • Sr (PO) Cl Eu
  • ZnS Ag
  • the body has an emission spectrum with a broad peak compared to other colors of phosphors, but has a sharp emission spectrum, resulting in poor color rendering and poor emission characteristics at high temperatures. there were.
  • phosphors that emit nitrogen to red light that are excellent in temperature characteristics and excitation band characteristics containing nitrogen are being developed and improved.
  • These phosphors have an emission spectrum peak wavelength in the range from yellow to red, and have a broad peak, and further contain nitrogen having a good excitation band in the near ultraviolet 'ultraviolet to blue' range.
  • the development of phosphors has largely solved the problem for phosphors that emit yellow to red light.
  • Examples of the nitrogen-containing phosphor include Ca Si N: Eu, Sr Si N:
  • Typical examples are SiN: Eu, CaAlSiN: Eu, and the like.
  • the first brightness element represents the brightness (luminance) and luminous efficiency as a light source.
  • the second color rendering property is a value representing the color reproducibility by a light source.
  • JISZ8726 (1990) As the color rendering property evaluation method. Therefore, color rendering properties will be explained below using the evaluation method of JISZ8726.
  • the color rendering properties of a light source are numerically expressed by an average color rendering index (Ra).
  • Ra average color rendering index
  • Color development is improved by the development of the above-mentioned novel phosphor that emits light from yellow to red, and the next problem is a phosphor whose emission peak wavelength is in the range from green to yellow. .
  • FIG. 25 is a graph with the emission intensity (relative intensity) on the vertical axis and the wavelength of the excitation light on the horizontal axis.
  • YAG: Ce is excited with excitation light of 300 to 570 nm, the emission wavelength is 559.2 nm.
  • FIG. 5 is a diagram showing an excitation spectrum obtained by measuring light intensity.
  • White LED lighting combining a high-intensity blue LED and a YAG: Ce phosphor that emits yellow light when excited by the blue light generated from the LED! / YAG: Ce phosphor Power Blue LED Power Generates high-intensity white LED lighting because it has a high-efficiency excitation band for light with a wavelength of 460 nm and the emission peak wavelength is around 560 nm, which has the highest luminance (luminosity). It is possible.
  • the YAG: Ce phosphor has a light emission characteristic that emits light near 560 nm with high efficiency when excited with light having a wavelength of 460 nm, but has a narrow excitation band.
  • the emission wavelength of the blue LED changes due to variations in the manufacturing process of the blue LED, and the optimum excitation band range of the YAG: Ce phosphor deviates. If this happens, the balance between the emission intensity of blue and yellow may be lost. When this happens, there arises a problem that the color tone of the white light obtained by combining the blue light and the yellow light changes.
  • the YAG: Ce phosphor has an excellent emission spectrum in the wavelength range (approximately 500 to 550 nm) of the green component of visible light, and thus emits red (R) light with a near-ultraviolet 'ultraviolet LED. It can be used as a green phosphor for white LED lighting that combines a phosphor, a green (G) phosphor, and a blue (B) phosphor.
  • the YAG: Ce phosphor has a low-efficiency excitation band at the emission wavelength of near-ultraviolet / ultraviolet LEDs (around 380 to 410 nm in FIG. 25), so that sufficient light emission cannot be obtained and high-intensity white LED There is a problem that illumination cannot be obtained.
  • LED that emits near-ultraviolet light and ultraviolet light emitted from the LED and emits red (R) light, green (G) light-emitting phosphor, and blue (B) light-emitting phosphor
  • R red
  • G green
  • B blue
  • white LED lighting that uses the color mixture of light obtained from the following, as a green phosphor, ZnS: Cu, Al, SrAl O: Eu, BAM: Eu, Mn, (Ba, Sr, Ca, Mg) SiO: Eu etc.
  • sulfide phosphors have a problem in that the emission intensity is remarkably lowered when heat is applied and there is no water resistance.
  • oxide phosphor water efficiency and heat resistance, as well as good efficiency over a wide range near the ultraviolet and ultraviolet! If the emission wavelength varies due to manufacturing variations of near-ultraviolet 'ultraviolet LEDs, the emission wavelength of the near-ultraviolet / ultraviolet LED deviates from the optimum excitation range of the green phosphor. There is a problem in that the balance of light emission intensity is lost and the color of white light changes.
  • phosphors that are excited by near-ultraviolet 'ultraviolet to blue light and emit green to yellow light also have a flat and highly efficient excitation band in the near-ultraviolet' ultraviolet to blue 'range.
  • YAG: Ce phosphors and ZnS: Cu, Al phosphors which have a strong emission spectrum and have excellent durability against heat and water.
  • phosphors that emit green to yellow light are currently being actively studied.
  • silicon nitride phosphors for example, Patent Document 1
  • Phosphors based on sialon see, for example, Patent Documents 2, 3, and 4
  • oxynitride phosphors see, for example, Patent Documents 5 and 6) have been proposed as phosphors that emit green to yellow light. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-322474
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-203504
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-206481
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-363554
  • Patent Document 5 International Publication No. 2004Z029177A1 Pamphlet
  • Patent Document 6 International Publication No. 2004Z055910A1 Pamphlet
  • these nitrogen-containing phosphors have excellent durability against heat and water, have a flat excitation band in the near ultraviolet / ultraviolet to blue range, and have a light emission spectrum. Although it is a fluorescent substance having a pixel, sufficient emission intensity and luminance to obtain satisfactory levels of emission efficiency when excited by near-ultraviolet'ultraviolet to blue excitation light are not obtained. Therefore, although it is possible to produce white LED lighting with excellent durability, the luminous intensity and brightness are insufficient, so the combination of near-ultraviolet / ultraviolet LED, blue LED, etc. and the above-mentioned phosphor containing nitrogen is combined. When white LED lighting is produced, the brightness, which is the most important lighting, is insufficient. In addition, it is considered that there is a need for a light emitting device that emits various kinds of light, including white light with excellent luminance and color rendering properties, as well as future demands for the plant.
  • the object of the present invention has been made in consideration of the above-mentioned problems, and has a light emission spectrum in the green to yellow range, and is wide and flat in the near ultraviolet 'ultraviolet to blue range.
  • Phosphors with excellent excitation efficiency and brightness, and their manufacturing methods, phosphor mixtures using such phosphors, phosphor sheets, and white LED lighting It is to provide a light emitting device having high luminance and color rendering.
  • the present inventors have found that the light emission efficiency is good and that the light emission spectrum is first in the range of 520 nm to 580 nm. (Hereinafter, the maximum peak of the emission spectrum may be simply referred to as the maximum peak), and the excitation band for a wide range of wavelengths from ultraviolet to visible light (for example, blue light). It has been conceived that the above-mentioned problems can be solved by combining a yellow or green phosphor having a broad emission wavelength with another color phosphor.
  • the green phosphor has an excitation band for light having a wide wavelength range from ultraviolet to visible light (for example, blue light), and has a light emission spectrum within a wavelength range of 590 nm to 680 nm.
  • ultraviolet light source for example, ultraviolet light source to blue light source
  • the phosphor mixture Combining various light sources (for example, ultraviolet light source to blue light source), such as white light emission with high luminous efficiency and high color rendering, with good luminous efficiency.
  • various light sources for example, ultraviolet light source to blue light source
  • white light emission with high luminous efficiency and high color rendering with good luminous efficiency.
  • the inventors have conceived that a light-emitting device capable of various light emission can be manufactured.
  • the present inventors have conducted research on phosphor compositions containing various types of nitrogen, and as a result, have found a matrix structure having sites that can easily replace Ce and Eu atoms.
  • a phosphor having a light emission spectrum with a broad and flat excitation band in the near ultraviolet 'ultraviolet to blue' range and a broad emission spectrum with a broad emission intensity and luminance in the green to yellow range It has been found that a phosphor can be obtained. Furthermore, it has been found that when Eu or the like is used as an activator, a phosphor having excellent emission intensity and luminance can be obtained in the yellow to red range.
  • the green phosphor and one or more blue phosphors having a maximum peak of emission spectrum within a wavelength range of 420 nm to 500 nm and Z or a wavelength range of 590 nm to 680 nm.
  • a phosphor mixture in which one or more red phosphors having the maximum peak of the emission spectrum are mixed, and further, the phosphor mixture and a light emitting portion that emits light in the wavelength range of 300 nm to 500 nm By inventing the device, the above-mentioned problems could be solved.
  • a first configuration for solving the above-described problem is a phosphor represented by a general formula MmAaBbOoNn: Z (M element is one or more kinds of elements having a valence of II, and A The element is one or more elements that have a valence of III, the B element is one or more elements that have a valence of IV, O is oxygen, N is nitrogen, and the Z element is One or more activators),
  • the phosphor is characterized in that the peak wavelength in the emission vector is in the range of 500 nm to 650 nm when excited with light in the wavelength range of 300 nm to 500 nm.
  • a second configuration is the phosphor according to the first configuration, 0. 5 ⁇ a / m ⁇ 2.0, 3. 0 ⁇ b / m ⁇ 7.0, 0 ⁇ o / m ⁇ 4.0.
  • a third configuration is the phosphor according to the first or second configuration
  • a fourth configuration is the phosphor according to the first to third configurations, wherein
  • a phosphor characterized in that Ka / m ⁇ l. 5, 3.5 ⁇ b / m ⁇ 4.5, 0 ⁇ o / m ⁇ l.
  • a fifth configuration is the phosphor according to any one of the first to fourth configurations
  • M element is Mg, Ca, Sr, Ba, Zn, a rare earth element having a valence of II, and one or more elements selected by force,
  • a element is Al, Ga, In, Tl, ⁇ , Sc, ⁇ , As, Sb, Bi, force One or more selected elements,
  • B element is one or more elements selected from Si, Ge, Sn, Ti, Hf, Mo, W, Cr, Pb, Zr,
  • Z element is a phosphor characterized in that it is one or more elements selected from rare earth elements and transition metal element forces.
  • a sixth configuration is the phosphor according to any one of the first to fifth configurations,
  • M element is one or more elements selected from Mg, Ca, Sr, Ba, Zn
  • a element is one or more elements selected from Al, Ga, In force
  • B element is Si and Z or Ge
  • the Z element is a phosphor characterized by being one or more elements selected from Eu, Ce, Pr, Tb, and Mn.
  • a seventh configuration is the phosphor according to any one of the first to sixth configurations,
  • the phosphor is characterized in that the element M is Sr, the element A is A1, the element B is Si, and the element Z is Eu and Z or Ce.
  • An eighth configuration is the phosphor according to any one of the first to seventh configurations,
  • the molar ratio of M element to Z element is zZ ( m + z)
  • a ninth configuration is the phosphor according to any one of the first to eighth configurations, wherein:
  • the peak wavelength definitive the emission spectrum 500 A light body having a chromaticity (x, y) of 0.3000 to 0.4500 and a y-force in the range of ⁇ 0.5000 to 0.6000 in a range of ⁇ 600 nm. It is.
  • a tenth configuration is the phosphor according to any one of the first to eighth configurations,
  • luminescent light emitting scan Bae-vector It has a peak wavelength in the range of 550 to 650 nm, an X-force of emission spectrum chromaticity (x, y) in the range of 0.4500 to 0.6000, and a power of 0.3500 to 0.5000.
  • An eleventh configuration is the phosphor according to the tenth configuration
  • H be the peak intensity of the maximum peak in the spectrum that absorbs and emits the excitation light
  • P represents the peak intensity of the maximum peak when the excitation light that minimizes the intensity is irradiated.
  • a twelfth configuration is the phosphor according to any one of the first to eleventh configurations
  • a thirteenth configuration is the phosphor according to any one of the first to twelfth configurations,
  • the average particle diameter (D50) of the phosphor particles containing primary particles having a particle size of 50 m or less and aggregates in which the primary particles aggregate is 1. O / zm or more. 50.
  • a fourteenth configuration is the phosphor according to any one of the first to thirteenth configurations
  • the average particle diameter (D50) of the phosphor particles containing primary particles having a particle size of 20 m or less and aggregates in which the primary particles are aggregated and containing the primary particles and aggregates is 1. O / zm or more , 20.
  • a fifteenth configuration is a method for manufacturing a phosphor according to any one of the first to fourteenth configurations, wherein a nitride-powered crucible is used as a firing crucible, and a nitrogen gas is used.
  • a phosphor manufacturing method characterized by firing at a temperature of 1400 ° C or higher and 2000 ° C or lower in an atmosphere containing one or more gases selected from a gas, a rare gas, and an ammonia gas is there.
  • a sixteenth configuration is a method of manufacturing a phosphor according to the fifteenth configuration
  • Furnace A method for producing a phosphor characterized in that the atmospheric gas in the firing furnace is in a pressurized state of 0.001 MPa or more and 0.5 MPa or less.
  • a seventeenth configuration is a method for manufacturing a phosphor according to the fifteenth or sixteenth configuration, wherein the crucible force is a nitride force and the crucible force is 3 ⁇ 4N. .
  • An eighteenth configuration is the method for producing a phosphor according to any one of the fifteenth to seventeenth configurations
  • Nitrogen gas, rare gas, and ammonia gas power A method for producing a phosphor characterized in that a gas containing one or more types selected is fired in a state of flowing at least 0.1 mlZmin in a furnace.
  • a nineteenth configuration is a method of manufacturing a phosphor according to the eighteenth configuration
  • a gas containing 80% or more of nitrogen gas is used as the atmosphere gas in the furnace. This is a method for producing a phosphor.
  • a twentieth configuration is the phosphor manufacturing method according to any one of the fifteenth to nineteenth configurations,
  • a method for producing a phosphor comprising using raw material particles of 10 m or less and firing the raw material in powder form.
  • the wavelength of 420 nm force is 500 ⁇ m
  • a twenty-third configuration is the fluorescent mixture according to the twenty-first or twenty-second configuration, wherein each phosphor constituting the mixture is excited by predetermined excitation light in a wavelength range of 300 nm to 500 nm.
  • the emission intensity at a temperature of 25 ° C is P, and the predetermined excitation light is irradiated.
  • the correlated color temperature is in the range of 7000 K to 2500 K, and the wavelength is in the range of 420 nm to 750 nm.
  • the phosphor mixture according to the twenty-first or twenty-third configuration having a continuous spectrum having two or more emission peaks and having a wavelength of 420 nm and a force not interrupted in the range of 780 nm.
  • the phosphor mixture according to any one of the twenty-first to twenty-fourth features.
  • the blue phosphor having the maximum peak of the emission spectrum within the wavelength range of 420 nm to 500 nm is BAM: Eu (BaMgAl 2 O 3: Eu), (Sr, Ca, Ba, Mg). ) (PO
  • CI One or more phosphors selected from Eu: 21st to 26th features
  • the phosphor mixture has a mean particle size (D50): a phosphor force having an average particle size (Lm) of 50 ⁇ m or less: The phosphor mixture according to any one of the above.
  • the phosphor according to any one of the first to fourteenth configurations or the phosphor mixture according to any one of the twenty-first to twenty-eight configurations is contained in a resin or glass. It is a phosphor sheet characterized by being dispersed!
  • a thirtieth configuration includes the phosphor according to any one of the first to fourteenth configurations and a light emitting unit that emits light of a first wavelength, and a part of the light of the first wavelength
  • the light emitting device is characterized in that the whole is excited light, and light having a wavelength different from the first wavelength is emitted from the phosphor.
  • a thirty-first configuration includes the phosphor mixture according to any of the twenty-first to twenty-eighth configurations and a light emitting unit that emits light of a first wavelength, and one of the lights of the first wavelength
  • the thirty-second configuration has the phosphor sheet of the twenty-ninth configuration and a light emitting unit that emits light of the first wavelength, and a part or all of the light of the first wavelength is used as excitation light, From the phosphor, the first The light-emitting device emits light having a wavelength different from the wavelength of the light-emitting device.
  • a thirty-third configuration is the light emitting device according to any of the thirtieth to thirty-second configurations, wherein the first wavelength is 350 ⁇ ! A light emitting device having a wavelength of ⁇ 500 nm.
  • a thirty-fourth configuration is the light-emitting device according to any one of the thirty-third to thirty-third configurations, wherein a correlated color temperature of the light-emitting device is in a range of 10000K to 2000K.
  • a thirty-fifth configuration is the light-emitting device according to any one of thirtieth to thirty-fourth configurations, wherein a correlated color temperature of the light-emitting device is in a range of 7000K to 2500K.
  • a thirty-sixth configuration is the light-emitting device according to any one of the thirtieth to thirty-fifth configurations, wherein the average color rendering index Ra of the light-emitting device is 80 or more.
  • a thirty-seventh configuration is the light-emitting device according to any one of thirtieth to thirty-sixth features, characterized in that a special color rendering index R15 of the light-emitting device is 80 or more.
  • a thirty-eighth configuration is the light-emitting device according to any of the thirty-third to thirty-seventh features, wherein the special color rendering index R9 of the light-emitting device is 60 or more.
  • a thirty-ninth configuration is the light-emitting device according to any one of the thirty-eighth configurations, wherein the light-emitting section is a light-emitting diode (LED).
  • LED light-emitting diode
  • a fortieth configuration is a phosphor represented by the general formula MmAaBbOoNn: Z.
  • M element is one or more elements that have a valence of II, A element is one or more elements that have a valence of III, and B element has one valence of IV.
  • O is oxygen
  • N is nitrogen
  • Z element is one or more activators.
  • a forty-first configuration is the phosphor according to the fortieth configuration
  • a forty-second configuration is the phosphor according to the fortieth or forty-first configuration
  • a forty-third configuration is the phosphor according to any one of the forty-second to forty-second configurations, M element is Mg, Ca, Sr, Ba, Zn, a rare earth element having a valence of II, and one or more elements selected by force,
  • the element A is one or more elements selected from Al, Ga, In, Tl, ⁇ , Sc, ⁇ , As, Sb, Bi,
  • B element is one or more elements selected from Si, Ge, Sn, Ti, Hf, Mo, W, Cr, Pb, Zr,
  • Z element is a phosphor characterized in that it is one or more elements selected from rare earth elements and transition metal element forces.
  • a forty-fourth structure is the phosphor according to any one of the forty-fourth to forty-third structures,
  • M element is one or more elements selected from Mg, Ca, Sr, Ba, Zn
  • a element is one or more elements selected from Al, Ga, In force
  • B element is Si and Z or Ge
  • the Z element is a phosphor characterized by being one or more elements selected from Eu, Ce, Pr, Tb, and Mn forces.
  • a forty-fifth configuration is the phosphor according to any one of the forty-fourth to forty-fourth configurations
  • the phosphor is characterized in that the element M is Sr, the element A is A1, the element B is Si, and the element Z is Eu and Z or Ce.
  • a forty-sixth configuration is the phosphor according to any one of the forty-fourth to forty-fifth configurations
  • the phosphor When expressed as a general formula MmAaBbOoNn: Zz, the phosphor has a value power of zZ (m + z), which is a molar ratio of M element to Z element, of 0.0001 or more and 0.5 or less.
  • a forty-seventh structure is the phosphor according to any one of the forty-fourth to forty-sixth structures
  • SrAlSiON Ce
  • SrAISi ON Ce
  • SrAlSiON Ce
  • SrAlSiON Ce
  • a forty-eighth configuration is the phosphor according to any one of the forty-fourth to forty-seventh configurations
  • the peak wavelength in the emission spectrum is in the range of 500 to 600 nm, and the chromaticity (x, y) of the emission spectrum is in the range of X force 0.3500 to 0.4500 and y force 0.5000 to 0.6000. And a phosphor.
  • a forty-ninth configuration is the phosphor according to any one of the forty-fourth to forty-seventh configurations
  • At least one type of monochromatic light or continuous light in the wavelength range of 350 nm to 550 nm is irradiated as excitation light, including 26.0 wt% or more and 32.0 wt% or less of N and more than 0 and 3.5 wt% or less of Eu.
  • the peak wavelength in the emission spectrum is in the range of 550 to 650 nm
  • the chromaticity (x, y) of the emission spectrum is in the range of X force 0.4500 to 0.6000
  • y force 0.3500 to 0.5000 It is the fluorescent substance characterized by these.
  • a 50th configuration is the phosphor according to the 49th configuration
  • H be the peak intensity of the maximum peak in the spectrum that absorbs and emits the excitation light
  • P represents the peak intensity of the maximum peak when the excitation light that minimizes the intensity is irradiated.
  • a fifty-first configuration is the phosphor according to any one of the fortieth to fifty configurations
  • black angle (2 ⁇ ) is 28.5 ° ⁇ 29.5. 35.5. ⁇ 36.5 °, 41.0. ⁇ 42.0.
  • a 52nd configuration is the phosphor according to any one of the 40th to 51st configurations,
  • the value of the relative intensity of the maximum peak in the emission spectrum when irradiated with a predetermined monochromatic light in the wavelength range of 350 nm to 550 nm as excitation light at 25 ° C is P
  • a 53rd configuration is the phosphor according to any of the 40th to 52nd configurations.
  • This phosphor is a phosphor characterized by being in powder form.
  • a fifty-fourth configuration is the phosphor according to the fifty-third configuration
  • the primary particle having a particle size of 20 m or less and an aggregate obtained by aggregating the primary particle, and the average particle diameter (D50) of the phosphor powder containing the primary particle and the aggregate is 1.0 m or more, 20.0 ⁇ m It is a phosphor characterized by being m or less.
  • Composition formula MmAaBbOoNn Z (However, element M is one or more elements that have a valence of II, element A is one or more elements that have a valence of III, and element B is an IV valence.
  • element M is one or more elements that have a valence
  • element A is one or more elements that have a valence of III
  • element B is an IV valence.
  • One or more elements having a valence O is oxygen
  • N is nitrogen
  • Z element is an element that acts as an activator in the phosphor
  • 4.0 ⁇ (a + b ) Zm ⁇ 7.0, 0.5 ⁇ a / m ⁇ 2.0, 3.0 ⁇ b / m ⁇ 7.0, 0 oZm ⁇ 5.0, n 2Z3m + a + 4Z3b— 2,3 ⁇ ;)
  • one or more blue phosphors When excited by the excitation light having a wavelength of 300 nm and a wavelength of 420 nm, one or more blue phosphors having a maximum emission spectrum peak within a wavelength range of 420 nm to 500 nm, and a wavelength range of 590 nm to 680 nm. Has the largest peak in the emission spectrum A phosphor mixture characterized by containing one or more red phosphors.
  • the green phosphor having the maximum peak of the emission spectrum within the wavelength range of 520 nm to 580 nm includes a phosphor satisfying 0.5 ⁇ a / m ⁇ 2.0, 4.0 ⁇ b / m ⁇ 6.0, 0 ⁇ oZm ⁇ 3.0.
  • the M element is one or more elements selected from Ca, Mg, Sr, Ba, and Zn
  • the A element is one or more elements selected from Al, Ga, and In
  • the B element is one or more elements selected from Si, Ge, Sn,
  • Each of the phosphors was irradiated with the predetermined excitation light with the emission intensity at a temperature of 25 ° C. when excited by the predetermined excitation light having a wavelength of 300 nm and a force of 420 nm as P.
  • the phosphor mixture according to any one of the 55th to 58th configurations, wherein the phosphor mixture is 200 25 200 25 or less.
  • the light emission spectrum when excited by the excitation light in the range of 300 nm wavelength and 420 nm is in the range of 7000 K force and 2000 K, and the wavelength is 420 nm force and 6 80 nm.
  • the phosphor mixture according to any one of 60th configurations.
  • the phosphor mixture according to any one of the 55th to 61st configurations.
  • the blue phosphor having the maximum emission spectrum peak within the wavelength range of 420 nm to 500 nm is selected from BAM: Eu (BaMgAl 2 O 3: Eu), (Sr, Ca, Ba, Mg) (PO 2) CI: Eu.
  • the phosphor mixture according to any one of the 55th to 63rd configurations, wherein the phosphor mixture is a particle having an average particle diameter (D50) of each phosphor: Lm or more and 20 m or less It is a thing.
  • D50 average particle diameter
  • a phosphor represented by the general formula MmAaBbOoNn: Z (M element is one or more elements having a valence of II, and A element is one or more elements having a valence of valence. Yes, element B is one or more elements that have a valence of IV, O is oxygen, N is nitrogen, and element Z is one or more activators.), 4.0 a + b) Zm 7.0, n> o, 1.2 ⁇ a / m ⁇ 2.0, 3.0 ⁇ bZm ⁇ 4.5, 0 ⁇ o / m ⁇ 1.5, n 2Z3m + a + 4Z3b— 2Z3o,
  • the phosphor When excited with light in the wavelength range of 300 nm to 500 nm, the peak in the emission spectrum is obtained.
  • the phosphor has a wavelength in the range of 500 nm to 600 nm.
  • M element is one or more elements selected from Mg, Ca, Sr, Ba, Zn
  • a element is one or more elements selected from Al, Ga, In force
  • B element is Si and Z or Ge
  • the Z element is a phosphor characterized in that it is one or more elements selected from Eu, Ce, Pr, Tb, Yb, and Mn.
  • the phosphor is characterized in that M element is Sr, A element is Al, B element is Si, and Z element is Ce.
  • An average particle size (D50) of a phosphor powder containing primary particles having a particle size of 50.0 m or less and aggregates in which the primary particles are aggregated and containing the primary particles and aggregates is 1.0 m.
  • the phosphor is characterized by being 50.0 ⁇ m or less.
  • the phosphor according to any one of the first to tenth configurations has a peak of emission spectrum in the range from green to yellow, or from yellow to red, and from near ultraviolet to ultraviolet to blue. This phosphor has a wide and flat excitation band in the above range, high emission intensity and brightness, and excellent durability against heat and water.
  • the phosphor described in the eleventh configuration has a flat excitation band in the wavelength range of 350 nm to 500 nm, it is used as an excitation light for one-chip type white LED illumination. Even if there is some variation in the emission wavelength of the LED, it is possible to produce a white LED lighting of the same color that is stable without breaking the intensity of the emission intensity of each color, both in terms of quality and manufacturing cost. There is merit in.
  • the phosphor described in the twelfth configuration has high emission intensity and high luminance even at a high temperature of 200 ° C, even when applied on an LED chip considered to be high temperature during emission, the emission intensity and Since the brightness does not decrease, it is possible to obtain a high-brightness one-chip type white LED illumination. In addition, since there is little change in the light emission characteristics due to heat, it is easy to design the emission color of white LED lighting.
  • the obtained phosphor since the obtained phosphor is in a powder form, it can be applied to various places as a paste.
  • the phosphor has a particle size of 1.0 / ⁇ ⁇ to 50. O / zm, more preferably a particle size force of Si. 0 / ⁇ ⁇ to 20. O / zm, so that the coating density is increased.
  • the phosphor according to any one of the fifteenth to twentieth configurations is easily manufactured at a low manufacturing cost. can do.
  • the phosphor mixture according to the twenty-first to twenty-eighth configurations emits light efficiently when irradiated with predetermined excitation light, and emits light such as white having excellent luminance and color rendering. Can do.
  • the phosphor sheet described in the twenty-ninth configuration a variety of light emitting devices can be easily manufactured by combining the phosphor sheet and various light emitting units.
  • the desired light emission color is obtained.
  • a highly efficient light-emitting device with high emission intensity and luminance can be obtained.
  • the phosphor described in any one of the 40th to 49th configurations has a peak in the emission spectrum in the range from green to yellow, or yellow power red, and ranges from near ultraviolet to ultraviolet to blue. It has a wide and flat excitation band, high emission intensity and brightness, and excellent durability against heat and water.
  • the phosphor described in the 50th configuration has a flat excitation band in the wavelength range of 350 nm to 550 nm, it is used as an excitation light for one-chip type white LED illumination. Even if there is some variation in the light emission wavelength of the LED, it is possible to produce white LED lighting with the same color tone without disturbing the tolerance of the light emission intensity of each color, both in terms of quality and manufacturing cost. There are benefits.
  • the phosphor described in the 52nd configuration has high emission intensity and high brightness even at a high temperature of 200 ° C, even when applied on an LED chip that is considered to be high temperature during emission, the emission intensity and Since the brightness does not decrease, it is possible to obtain a high-brightness one-chip type white LED illumination. In addition, since there is little change in the light emission characteristics due to heat, it is easy to design the emission color of white LED lighting.
  • the obtained phosphor since the obtained phosphor is in a powder form, it can be applied to various places as a paste. Further, since the phosphor has a particle diameter of 1.0 m to 20.0 m, the coating density can be increased, and a coating film having high emission intensity and high luminance can be obtained.
  • the phosphor mixture according to the 55th to 64th structures emits light efficiently when irradiated with predetermined excitation light, and emits light such as white having excellent luminance and color rendering.
  • the phosphor according to any one of the 65th to 70th configurations has a flat excitation band in the near-ultraviolet / ultraviolet power range of blue, and emits light in the wavelength range from 500 nm to 600 nm where brightness can be obtained. It has excellent initial emission characteristics such as having a broad emission spectrum while having a peak of, and has excellent heat resistance, and its emission characteristics are almost deteriorated even under high temperature environment compared to room temperature (25 ° C). It is a green phosphor.
  • the phosphor of the present embodiment is a phosphor having a host structure represented by the general formula MmAaBbOoNn: Z.
  • the M element is one or more elements selected from elements having a valence of II in the phosphor.
  • the element A is one or more elements having a valence of III in the phosphor.
  • the B element is one or more elements having an IV valence in the phosphor.
  • O is oxygen.
  • N is nitrogen.
  • the Z element is an element that acts as an activator in the phosphor, and is one or more elements selected from rare earth elements and transition metal elements.
  • (a + b) Zm is in a range of 4.0 ⁇ (a + b) / m ⁇ 7.0
  • aZm is in a range of aZm ⁇ 0.5
  • bZa force is in the range of Za> 2.5
  • the relationship between oxygen and nitrogen is n> o
  • the peak wavelength in the emission spectrum is in the range of 500 nm to 650 nm.
  • the phosphor of the present embodiment having the above-described features has a light emission spectrum in a range from green to yellow, or from yellow to red, and near ultraviolet, ultraviolet to blue, visible (wavelength: 300 ⁇ m to 500nm). Because it has a flat excitation band over a wide area and high-efficiency light emission can be obtained, the phosphor is mixed with phosphors of other colors as appropriate, and light emitting parts such as near ultraviolet / ultraviolet LED and blue LED By combining with the above, it is possible to obtain a highly efficient light emitting device having a desired light emitting color with excellent color rendering properties, high light emission intensity and luminance.
  • the phosphor according to the present invention includes a silicon nitride-based phosphor that has been proposed so far (for example, see Patent Document 1), and a phosphor having sialon as a base (for example, Patent Documents 2, 3, 4) and oxynitride phosphors (see, for example, Patent Documents 5 and 6), the emission intensity is higher and the luminance is higher, and the emission spectrum peak is broader. It can be produced.
  • the phosphor according to the present invention has the same force as the constituent element of the phosphor comprising sialon as a base.
  • element M that penetrates into the sialon matrix structure, elements such as Ca and Y that have a small ion radius do not enter, and Sr that has a larger ion radius than Ca or Y is the matrix. It is said that it does not enter the structure, and has a composition different from that of the phosphor of the present invention, which essentially requires Sr as the M element.
  • the excitation band of the phosphor of this embodiment has a wide range, unlike the YAG: Ce phosphor, it is possible to suppress a change in color tone due to variations in the light emitting element (blue LED). It has a high-efficiency excitation band even in the vicinity of 300 to 420 nm, which is the emission wavelength of ultraviolet and ultraviolet LEDs. Therefore, the phosphor of this embodiment can be used as a green phosphor for white LED illumination by combining red and blue LEDs that emit only blue light and mixing with other phosphors and combining with near-ultraviolet and ultraviolet LEDs. It can also be used.
  • a phosphor activated with Eu as an activator has a peak intensity of a maximum peak in a spectrum that absorbs and emits monochromatic excitation light in a wavelength range of 350 nm to 500 nm.
  • the peak intensity of the maximum peak when irradiated with the largest excitation light is P
  • H be the peak intensity of the maximum peak in the spectrum that absorbs and emits the excitation light
  • P represents the peak intensity of the maximum peak when the excitation light that minimizes the intensity is irradiated.
  • the emission wavelength varies depending on the activator.
  • Ce when Ce is activated, it is in the range from green to yellow, with a broad wavelength range of 470 nm, power of 750 nm, and half-width! A phosphor having a broad peak of lOOnm or more can be obtained.
  • Eu When Eu is activated, a phosphor having an emission spectrum peak in the yellow power red range is obtained.
  • Ce-activated phosphors can be used as replacements for YAG: Ce phosphors or phosphors that have overcome the problems of Zn S: Cu, Al phosphors. Is possible.
  • red phosphors recently developed to improve the color rendering of white LED lighting: Ca Si N: Eu, Sr Si N: Eu, Ba Si
  • Eu, CaAlSiN Can be used for white LED lighting as a material different from Eu
  • the phosphor of the present embodiment is a phosphor that is strong against heat and water and has excellent durability.
  • Conventional ZnS: Cu, Al phosphors with emission spectrum peaks in green and yellow are emitting light.
  • durability particularly weakness against water
  • white LED lighting is produced by mixing ZnS: Cu, Al phosphors with phosphors of multiple colors and combining with near-UV'UV LEDs, this white LED lighting is used for a long time.
  • the emission intensity and luminance of the ZnS: Cu, Al phosphor are lowered, and the color tone is changed.
  • the emission intensity and brightness of the ZnS: Cu, A 1 phosphor decrease due to the heat and ultraviolet rays generated from the light emitting element, and the brightness of the white LED lighting also decreases accordingly. End up.
  • the ZnS: Cu, Al phosphor needs to be mixed with a phosphor mixed powder in consideration of changes in emission intensity and luminance, and it is difficult to produce white LED lighting with stable quality.
  • the phosphor of this embodiment is a phosphor containing nitrogen and having durability against temperature change and moisture, like silicon nitride phosphors and sialon phosphors, so it has high luminance and excellent durability. White LED lighting can be produced.
  • the color appearance is the same as when using the reference light.
  • the reference light is a white light source with uniform light over the entire visible light range.
  • Existing white LED lighting has high light intensity at certain wavelengths in the visible light region, and low intensity at certain wavelengths. In the area, the color reproducibility is poor and the color rendering is degraded.
  • the phosphor used in white LED lighting must have a broad emission spectrum peak and a phosphor with sufficient emission intensity. It is.
  • the phosphor of the present embodiment having the above-mentioned host structure has a half-value width in which the emission intensity and luminance are increased in the range of green to yellow or yellow to red by changing the type of constituent element and the type of activator. It is possible to obtain a phosphor having a broad emission spectrum peak of 80 nm or more.
  • the phosphor of the present embodiment has a broad emission spectrum having peaks in the range of green to yellow and yellow to red, and has a wide and flat excitation band in the range of near ultraviolet 'ultraviolet to blue, Although the detailed reason why high-efficiency light emission can be performed is unknown, it is generally considered as follows.
  • the excitation energy used for light emission is efficiently transmitted, the light emission efficiency may be improved.
  • the phosphor adopts the above-described configuration, so that an impurity phase that does not contribute to light emission is less likely to occur in the phosphor, and a decrease in emission intensity is suppressed. It is thought that it is. In other words, when a large amount of impurity phase occurs, the amount of phosphor per unit area decreases, and the generated impurity phase absorbs excitation light or light generated from the phosphor, thereby causing This is probably because the luminous efficiency decreases and the luminous intensity cannot be obtained.
  • the inference is that when the values of m, a, b, o, and n are within the above ranges in the X-ray diffraction measurement of the phosphor after firing, the impurity phase of unreacted raw materials such as A1N and SiN Peak and departure
  • the peak of an impurity phase different from the phase contributing to light is not confirmed, or even when confirmed, the diffraction intensity is very low, while the values of m, a, b, o, and n are outside the above range. If so, there are significant peaks in A1N, SiN, and a phase that is different from the phase that contributes to light emission.
  • the characteristic that the peak of the impurity phase is not observed in the X-ray diffraction pattern for the phosphor after firing is characterized by high phosphor strength, emission intensity, and near ultraviolet / ultraviolet to blue to be measured. This is considered to indicate that it has a broad and flat excitation band in the range.
  • aZm is preferably 0.5 or more.
  • the decrease in the light emission characteristics under the environment with a high temperature is hardly decreased as compared with the case of the above range.
  • the emission intensity before the temperature rise to 25 ° C (25 ° C) is compared with the emission intensity after cooling to room temperature (25 ° C) after holding at 300 ° C for 5.0 min.
  • the range of bZm is larger than aZm 3.0 ⁇ b / m ⁇ 6.0, More preferably, it is in the range of 3.5 ⁇ b / m ⁇ 4.5.
  • the phosphor according to the present invention preferably includes oxygen even though n> o.
  • the appropriate oxygen content is a force that varies depending on the molar ratio of A1 and Si in the phosphor.
  • the initial emission characteristics (25 ° C) of the phosphor can be improved. Even at high temperatures, the light emission characteristics are hardly degraded compared to room temperature (25 ° C) even under the environment! A phosphor can be obtained. This means that even if the temperature characteristics are improved, if the Si site is simply replaced by A1, the ionic radius of A1 is different from that of Si, and the structural strength of the crystal structure suitable for light emission will also shift.
  • the valence in the crystal becomes unstable.
  • the preferable range of the oxygen amount is 0 ⁇ oZm ⁇ 4.0.
  • the content is more than 8% by weight and less than 8.1% by weight, the emission characteristics are good, vitrification is suppressed, and the phosphor is sufficiently practical. Furthermore, when the oxygen content is in the range of 0 ⁇ oZm ⁇ 3.0, more preferably in the range of 0 ⁇ oZm ⁇ 1.5, and more than 0.5% by weight and less than 5.0% by weight, the emission intensity is further increased, which is preferable.
  • the M element is a + valent element
  • the A element is a + valent element
  • the B element is a + IV valent element
  • nitrogen is a III value.
  • M, a, b, o, n force n 2 / 3m + a + 4 / 3b— 2 / 3o, and the sum of the valences of each element is zero. Therefore, the phosphor is preferable because it becomes a more stable compound.
  • the aZm is in the range of l.
  • the M element is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Zn, and rare earth elements having a valence of II. It is more preferable that the element is one or more elements selected from Mg, Ca, Sr, Ba, and Zn, and most preferable is Sr. In addition, 90% or more of Sr may be included as the M element, and a part of the other elements may be substituted.
  • the A element is one or more elements selected from among Al, Ga, In, Tl, ⁇ , Sc, ⁇ , As, Sb, and Bi. Furthermore, Al, It is more preferable that the element is one or more elements selected from Ga and In, and A1 is most preferable. In addition, 90% or more of A1 may be included as the A element, and some of the other elements may be substituted.
  • A1 is generally nitride A1N It is used as a heat transfer material and a structural material, and it is easy to obtain and inexpensive.
  • the element B is preferably one or more elements selected from among Si, Ge, Sn, Ti, Hf, Mo, W, Cr, Pb, and Zr, and more preferably Si and Z or Ge is preferred, and Si is most preferred. Further, Si may be included as a B element in an amount of 90% or more, and a part of the other elements may be substituted. Si is a nitride, Si N is a common heat transfer material and structural material
  • the Z element is one or more elements selected from rare earth elements or transition metal elements, which are blended in a form in which a part of the M element in the host structure of the phosphor is replaced. From the viewpoint of exhibiting sufficient color rendering properties for various light sources such as white LED lighting using the phosphor of the present embodiment, it is preferable that the half width of the peak in the emission spectrum of the phosphor is wide.
  • the viewpoint power Z element is preferably one or more elements selected from Eu, Mn, Ce, Tb, Pr, or Yb. In particular, when Ce is used as the Z element, the phosphor is preferred as an activator for various light sources, such as white LED lighting, because the phosphor exhibits a broad emission spectrum with high green intensity and yellow intensity. .
  • the silicon nitride and sialon oxynitride based on Patent Literatures 1 to 6 that have been proposed so far green power is also emitted in yellow by activating Ce.
  • the emission intensity is greatly reduced, and what can be put into practical use is ineffective.
  • the phosphor of the present embodiment is a phosphor whose composition is optimized so that when the Ce is used as an activator, the emission intensity is high and the peak of the emission spectrum is obtained with the prod.
  • the emission intensity is 1.5 times or more, which is considered to be sufficiently practical.
  • the phosphor of this embodiment has a peak in the emission spectrum when compared with ZnS: Cu, Al, which is used as a green phosphor, when producing white LED illumination with near-ultraviolet'ultraviolet LEDs. Because it is very broad, white LED lighting with high efficiency and excellent color rendering can be produced. Furthermore, it should be noted that the emission intensity increases from yellow to red, and the emission spectrum peaks, even when Eu is activated, without decreasing the emission intensity.
  • the peak wave of emission in the phosphor of the present embodiment The length can be varied, and by activating different types of z elements, the emission wavelength and luminance can be improved by varying the peak wavelength and further by sensitizing action.
  • the amount of Z element added is the same as that of the phosphor of the present embodiment in the general formula MmAaBbOoNn: Zz (provided that 4.
  • the value of zZ (m + z) is within the range of 0.001 or more and 0.30 or less.
  • the optimum value in the range of zZ (m + z) varies slightly depending on the type of activator (Z element) and the type of M element.
  • the emission peak wavelength of the phosphor can be shifted and set, which is useful for adjusting the luminance of the obtained light source.
  • the peak wavelength of the emission spectrum was in the range of 500 to 600 nm.
  • the phosphor exhibits a sufficient emission intensity, and if the chromaticity (x, y) of the emission spectrum is in the range of X force ⁇ ). 3000 to 0.4500, y force 0.5000 to 0.6000! Better Showed good luminescent properties.
  • Sr, A 1 is expected to have an analysis error of ⁇ 1.0 wt%, and the remaining weight is Si and other elements.
  • the concentration of each element of Fe, Ni, Co in the phosphor is preferably 100 PPM or less.
  • the peak wavelength of the emission spectrum was in the range of 550 to 650 nm.
  • the phosphor exhibits a sufficient emission intensity, and that the X power of the chromaticity (x, y) of the emission spectrum is in the range of 0.4500 to 0.6000, and y is in the range of 0.3500 to 0.5000! / The characteristics are shown.
  • the product phase contained in the phosphor of the present embodiment has a Bragg angle (2 ⁇ ) of 12.5 to 13.5 °, 17.0 to 18.0 °, 21.0 to 22.0 °, 22.5 to 23.5 °, 26.5 to 27.5 °, 28.5 to 29.5 °. 34.0-35.0 °, 35.5-36.5 °, 36.5-37.5 °, 41.0-42.0 °, 42.0-43.0 °, 56.5-57.5 °, and 66.0-67.0 °. From the diffraction pattern, the crystal system of the main product phase of the phosphor is considered to be a phosphor having an orthorhombic or monoclinic crystal phase. Since the crystal system based on sialon is generally a hexagonal system, the phosphor according to the present invention is considered to be a crystal system different from the known phosphor based on sialon.
  • Phosphors may be used in high temperature environments as well as white LED lighting. Accordingly, those in which the light emission intensity decreases with increasing temperature and those in which the light emission characteristics deteriorate due to thermal deterioration are not preferable.
  • the phosphor according to the present invention exhibits excellent temperature characteristics and heat resistance, and is used as an excitation light in the near ultraviolet 'purple' Emits the value of the relative intensity of the maximum peak in the emission spectrum at 25 ° C when irradiated with monochromatic light in the green range (wavelength range 300 to 500 nm) or mixed light of these monochromatic lights.
  • the phosphor at 200 ° C was irradiated with the excitation light at an intensity P.
  • the phosphor according to the present invention is a nitride that generates A1N, Si N force and has excellent durability at high temperatures.
  • the structure is extremely stable against heat. It is considered that it exhibits excellent temperature characteristics. Furthermore, when the phosphor according to the conventional technology is used once in a high temperature environment, the emission intensity becomes weaker than the emission intensity before being used in a high temperature environment even when the temperature is returned to room temperature. Although there was a problem, the phosphor according to the present invention was able to solve the problem.
  • the phosphor according to the present invention has excellent temperature characteristics, a phosphor that produces almost no color shift even when the temperature of the light-emitting device rises due to long-time lighting use is produced. It becomes possible.
  • the emission spectrum has a peak in the range where the green power is also yellow, and the peak shape is broad, making it suitable as a phosphor for white LED lighting from the viewpoint of color rendering.
  • the excitation band is in the wide range of near ultraviolet, ultraviolet to blue-green (wavelength range 300 to 500 nm).
  • white light is emitted by using the complementary color relationship between the blue light emission of a high-intensity blue LED (wavelength 420 to 480 nm) proposed as white LED illumination and the yellow light emission of the phosphor.
  • a white LED lighting system or a near-ultraviolet 'ultraviolet light emitting LED (wavelength of 300 to 420 nm) and a phosphor that emits red (R) light when excited by near-ultraviolet' ultraviolet light generated from the LED.
  • a phosphor that emits green (G) and a phosphor that emits blue (B) and a white color is obtained by using a color mixture of light obtained from the other phosphors of R'G'B.
  • the deviation is close to the maximum light emission intensity and can be used while exhibiting the state.
  • a white light source and white LED illumination with high output and good color rendering properties, and an illumination unit using these light sources can be obtained.
  • the phosphor of the present embodiment is powdered, it can be easily applied to various light emitting devices such as white LED lighting.
  • the phosphor when used in the form of powder, the phosphor includes primary particles of 50.0 m or less and aggregates of the primary particles, and includes the primary particles and aggregates.
  • the average particle diameter (D50) of the phosphor powder is preferably 1. O / zm or more and 50. O / zm or less. More preferably, it is 1. O / zm or more and 20.0 m or less. This is because if the average particle size is 50. O / zm or less, the subsequent pulverization can be easily performed, and in the phosphor powder, it is considered that light emission occurs mainly on the particle surface. 50.
  • the average particle size of the powder in the phosphor according to the present invention is preferably 1. O / zm or more and 50. O / zm or less, more preferably 20 m or less.
  • the average particle diameter (D50) here is a value measured by LS230 (laser diffraction scattering method) manufactured by Beckman Coulter. Also, order to change the value of specific surface area with particle size (BET), as the value of the specific surface area, 0.05 m 2 / g or more, preferably by the fact force the top Symbol viewpoint is 5.00 m 2 / g or less. [0138] Next, the phosphor production method of the present embodiment! The composition formula Sr A1
  • the method for producing the phosphor of this embodiment can also be obtained by a solid-phase reaction.
  • the raw materials for M element, A element, and B element may be commercially available raw materials such as nitrides, oxides, carbonates, hydroxides, basic carbonates, etc., but the higher purity is preferable. Is prepared with 2N or more, more preferably 3N or more.
  • the particle size of each raw material particle is preferably a fine particle that promotes the reaction, but the particle size and shape of the phosphor to be obtained vary depending on the particle size and shape of the raw material.
  • a raw material such as nitride having an approximate particle size may be prepared in accordance with the particle size and shape required for the finally obtained phosphor, but the particle size is preferably 50 m or less, more preferably Is better to use raw materials with a particle size of 0.1 m to 10.0 ⁇ m.
  • Z element is also preferably made of commercially available nitrides, oxides, carbonates, hydroxides, basic carbonates, or simple metals. Of course, it is preferable that the purity of each raw material is 2N or higher, more preferably 3N or higher.
  • the flux consisting of elements that are not included in the constituent elements of the phosphor of this embodiment can be added without adding a flux (reaction accelerator) as a flux.
  • the configuration is preferred because an effect can be obtained.
  • Carbonate was used as the Sr raw material because the oxide raw material has a high melting point and a flux effect cannot be expected, but when a low melting point raw material such as carbonate is used, This is because the raw material itself acts as a force flux, the reaction is promoted, and the light emission characteristics are improved.
  • a low melting point raw material such as carbonate
  • another substance may be added as a flux in order to obtain a flux effect, but in that case, the flux becomes an impurity, and the phosphor is changed. Care must be taken in selecting the flux because it may adversely affect the characteristics.
  • fluoride, chloride, oxide and nitride are preferred SrF, BaF, A1F, SrCl
  • the weighing and mixing may be performed in the air, but since the nitride of each raw material element is easily affected by water, the moisture is sufficiently removed and the glove box in an inert atmosphere is used. Operation within the task is convenient.
  • the mixing method may be either wet or dry, but if pure water is used as the solvent for the wet mixing, the raw material will decompose, so an appropriate organic solvent must be selected. Ordinary equipment using a ball mill, mortar, etc.
  • the raw material after mixing is put into a crucible, and atmospheric gas is circulated in the firing furnace, 1400 ° C or higher, preferably 1500 ° C or higher, or 1600 ° C or higher, more preferably 1700 ° C or higher 2000 Bake for 30 minutes or longer in an atmosphere at or below ° C.
  • the firing temperature is 1400 ° C or higher, it is difficult to produce an impurity phase that is excited by ultraviolet rays and emits blue light, and further, a solid phase reaction proceeds well to obtain a phosphor with excellent emission characteristics. It becomes possible. Further, firing at 2 000 ° C. or less, preferably 1850 ° C. or less can prevent excessive sintering and melting.
  • the holding time can be shortened.
  • the desired light emission characteristics can be obtained by maintaining the temperature for a long time.
  • the firing time may be set according to the target particle size.
  • the atmospheric gas to be circulated in the firing furnace is not limited to nitrogen, but may be any of an inert gas such as a rare gas, ammonia, a mixed gas of ammonia and nitrogen, or a mixed gas of nitrogen and hydrogen. It is good to use. However, if oxygen is contained in the atmospheric gas, an acid-oxidation reaction of the phosphor particles occurs. Therefore, it is preferable that oxygen contained as an impurity is as small as possible, for example, 100 PPM or less. In addition, the atmosphere gas contains moisture! As in the case of oxygen, since phosphoric acid particles undergo an acid-oxidation reaction during firing, the amount of moisture contained as impurities is preferably as low as possible, for example, 100 PPM or less.
  • nitrogen gas when a single gas is used as the atmosphere gas, nitrogen gas is preferred. Power that can be baked by using ammonia gas alone. Compared with nitrogen gas, ammonia gas is expensive and corrosive gas, so special treatment is required for the equipment and exhaust method at low temperature. Therefore, when ammonia is used, it is preferable to use ammonia at a low concentration such as a mixed gas with nitrogen. For example, when a mixed gas of nitrogen gas and ammonia is used, it is preferable that nitrogen is 80% or more and ammonia is 20% or less. Also, when using a mixed gas of nitrogen and another gas, if the gas concentration other than nitrogen increases, the partial pressure of nitrogen in the atmospheric gas decreases, so from the viewpoint of promoting the nitriding reaction of the phosphor. Use an inert or reducing gas containing more than 80% nitrogen!
  • the atmospheric gas described above is flowed at a flow rate of, for example, 0.1 mlZmin or more during the firing.
  • the above-mentioned inert gas such as nitrogen and rare gas, ammonia, a mixed gas of ammonia and nitrogen, or a mixed gas of nitrogen and hydrogen.
  • the pressure in the firing furnace is preferably a pressurized state so that atmospheric oxygen does not enter the furnace.
  • the pressurization exceeds l.OMPa (in the present invention, the pressure in the furnace means the increase in atmospheric pressure)
  • a special pressure-resistant design is required for the design of the furnace equipment.
  • the pressure is preferably l.OMPa or less.
  • the furnace pressure during firing is preferably less than l.OMPa.
  • it is 0.5 MPa or less, more preferably 0.5 OOlMpa or more and O.lMPa or less.
  • the crucible Al O crucible, Si N crucible, A1N crucible, Sialon crucible, C (
  • the one that can be used in the above-mentioned gas atmosphere such as a carbon) crucible or a BN (boron nitride) crucible, may be used.
  • a carbon crucible or a BN (boron nitride) crucible may be used.
  • a BN crucible is particularly preferable because it can avoid mixing impurities in the crucible force. ,.
  • the raw material in powder form.
  • the progress of the reaction due to the diffusion of atoms at the contact between the raw materials is taken into account, and in order to promote a uniform reaction and reaction throughout the raw materials, the raw materials are often fired in the form of pellets.
  • the phosphor raw material it is easy to handle as a powder because it is easy to disintegrate after firing by firing it as powder and the primary particles have an ideal spherical shape. Can be preferable.
  • carbonates, hydroxides, or basic carbonates are used as raw materials, CO gas is generated due to decomposition of the raw materials during firing.
  • the fired product is taken out from the crucible, and ground using a mortar, ball mill, or other pulverizing means so as to obtain a predetermined average particle size.
  • a phosphor represented by O N: Ce (Ce / (Sr + Ce) 0.030) can be produced.
  • the obtained phosphor is subjected to washing, classification, surface treatment, and heat treatment as necessary.
  • cleaning power in an acidic solution using hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid and the like is preferable because metal atoms such as Fe adhering to the particle surface and raw material particles remaining unreacted are dissolved.
  • the amount of Fe, Ni, and Co contained in the obtained phosphor is preferably 100 PPM or less.
  • a phosphor When other elements are used as M element, A element, B element, and Z element, and even when the activation amount of Ce as an activator is changed, the blending amount at the time of mixing each raw material By adjusting to a predetermined composition ratio, a phosphor can be manufactured by the same manufacturing method as described above.
  • the phosphor mixture according to the present invention falls within a wavelength range of 420 nm to 500 nm when excited with the green phosphor and one or more types of monochromatic light or continuous light having a wavelength range of 300 nm to 500 nm.
  • the phosphor mixture having the above structure has a spectrum with a uniform light density over the entire visible light region by mixing light of various wavelengths, and has excellent color rendering properties, especially light emission efficiency. It is a phosphor mixture capable of obtaining a light emitting device with high brightness.
  • red phosphor As the red phosphor, a known red phosphor having excitation characteristics and emission characteristics described below can be used.
  • the excitation light when the excitation light is irradiated with light in the wavelength range of 250 nm to 500 nm, more preferably in the wavelength range of 300 nm to 500 nm, it is highly efficient and has high brightness with the maximum peak of the emission spectrum in the range of 590 nm power to 680 nm. It is a red phosphor that emits red light. Furthermore, it is preferable that the half width of the emission spectrum is 50 nm or more.
  • phosphors that are labeled.
  • Si N Eu described in Japanese Patent Application No. 2004-145718.
  • red phosphors can be used, and more preferably, from the viewpoint described above, a red phosphor represented by the composition formula Ca AlSiN: Eu is preferable.
  • blue phosphor As the blue phosphor, a known blue phosphor having excitation characteristics and emission characteristics described below can be used.
  • the excitation light is irradiated with light having a wavelength range of 250 nm to 420 nm, more preferably a wavelength range of 300 nm to 420 nm.
  • a blue phosphor that emits high-luminance blue light having a maximum peak in the emission spectrum can be used.
  • the half-value width of the emission spectrum is preferably 30 nm or more, more preferably 50 nm or more! /.
  • blue phosphors having the above excitation and emission characteristics include: BAM: Eu (BaMgAlO: Eu) ⁇ (Sr, Ca, Ba, Mg) (PO) CI: Eu, or SrAl Si ON: Eu ( 0
  • the green phosphor produced by the above method is mixed with the red phosphor and the Z or blue phosphor to produce the phosphor mixture according to the present invention.
  • the phosphor mixture has a wavelength of 300 ⁇ !
  • the correlated color temperature of the obtained emission spectrum can be set to a desired value between 10000K and 2000K.
  • the correlated color temperature is preferably set to a desired value between 7000K and 2500K.
  • each emission spectrum of each color phosphor with respect to the target excitation light is measured, and the obtained emission spectrum is synthesized by simulation to obtain a mixing ratio for obtaining a desired correlated color temperature. Just do it.
  • the method for evaluating the luminous efficiency of the obtained phosphor mixture it may be actually coated with a resin on the light emitting device and compared with the device emitting light, but the efficiency of the light emitting device itself varies, Or, it is not a uniform evaluation because it is a comprehensive evaluation of variations due to application conditions. Therefore, when the obtained phosphor mixture was irradiated with any excitation light in the wavelength range of 300 nm to 500 nm and the emission characteristics were measured, it was based on the calculation method in the XYZ color system specified in JI SZ8701. The evaluation method was used to determine the value of luminance (Y). Similarly, the color rendering properties can be evaluated using the evaluation method of JISZ8726. Since there is little influence on the color rendering properties due to variations in the light emitting elements, a light emitting device incorporating the phosphor mixture according to the present invention is used. You can evaluate color rendering.
  • each color phosphor described above has a preferable half-value width of 50 nm or more, in the emission of the phosphor mixture, the emission spectra of the phosphors overlap each other, and the continuous emission is not interrupted in the range of a wavelength of 420 nm force and 75 Onm. So-called broad spectrum can be obtained. In addition, since each color phosphor has an excitation band in the same range, adjustment of the mixing ratio is easy.
  • the emission from the phosphor mixture according to the present invention is within the emission spectrum having a correlated color temperature of 7 OOOK to 2500K, and more than two in the wavelength range of 420 nm to 680 nm. It has a continuous spectrum with no emission interruption. As a result, it is possible to obtain brightness that makes human vision feel brighter as illumination, and at the same time, it has a broad emission spectrum in the wavelength range of 420 nm to 750 nm, so that it has excellent color rendering properties. .
  • the phosphor mixture according to the present invention is preferably such that the emission intensity does not decrease with increasing temperature, and it is preferable to mix phosphors whose emission characteristics are not easily thermally deteriorated.
  • the value of the emission intensity at the maximum peak of the emission spectrum at a temperature of 25 ° C of the phosphor irradiated with the predetermined excitation light in the wavelength range of 300 nm to 500 nm is P
  • BAM Eur (Sr, Ca, Ba, Mg) (PO) C1: Eu ⁇ BAM: Eu, Mn ⁇ ZnS: Cu, Al, CaA
  • Table 1-1 shows the temperature characteristics of these phosphors.
  • each phosphor powder to be mixed has an average particle diameter (D50) of 50 ⁇ m or less, more preferably 20 ⁇ m. Is preferred. This is because light emission in the phosphor powder is considered to occur mainly on the surface of the powder particles, so if the average particle diameter (D50) is 50 m or less, the surface area per unit weight of the powder is confirmed. This is the power that can maintain the brightness and avoid the decrease in brightness.
  • D50 average particle diameter
  • the phosphor mixture powder paste can be formed into a paste, for example, when applied to a light emitting device or the like, the density of the powder can be increased, Unevenness can be avoided.
  • the phosphor sheet As a material to be a medium used in manufacturing the phosphor sheet, various types of resin including epoxy resin, silicon resin, glass, and the like are conceivable. As an example of the use of the phosphor sheet, it is possible to combine the phosphor sheet with a light source that emits light appropriately to perform predetermined light emission.
  • the excitation light for exciting the phosphor sheet may be any light having a wavelength of 250 nm to 500 nm, such as a light emitting element such as an LED, an ultraviolet light source by Hg discharge, a light source by a laser, or the like.
  • an LED light emitting element that emits ultraviolet light in a range from blue to blue, or a discharge lamp that generates ultraviolet light
  • a discharge lamp that generates ultraviolet light
  • various lighting units, backlights for display devices, and the like can be manufactured, and the phosphor mixture according to the present invention can be manufactured.
  • various fluorescent lamps, lighting units, knock lamps for display devices, and the like can be manufactured.
  • the method of combining the phosphor mixture and the light emitting part according to the present invention may be performed by a known method.
  • a light emitting device using an LED as the light emitting part light emission is performed as follows. A device can be fabricated.
  • a light emitting device using an LED as a light emitting unit will be described with reference to the drawings.
  • FIGS. 26A to 26C are schematic cross-sectional views of a bullet-type LED light-emitting device
  • FIGS. 27A to 27E are schematic cross-sectional views of a reflective LED light-emitting device.
  • FIGS. 26A to 26C are schematic cross-sectional views of a bullet-type LED light-emitting device
  • FIGS. 27A to 27E are schematic cross-sectional views of a reflective LED light-emitting device.
  • FIGS. 26A to 26C are schematic cross-sectional views of a bullet-type LED light-emitting device
  • FIGS. 27A to 27E are schematic cross-sectional views of a reflective LED light-emitting device.
  • the same reference numerals are assigned to the parts to be described, and the description may be omitted.
  • the LED light-emitting element 2 is installed in a cup-shaped container 5 provided at the tip of the lead frame 3, and these are molded by the translucent resin 4. ing.
  • the phosphor mixture or a mixture in which the phosphor mixture is dispersed in a light-transmitting resin such as silicon or epoxy (hereinafter referred to as mixture 1) is a cup-shaped container 5. It is embedded in everything inside. Further, the mixture 1 may be used for the entire lens part or may cover the upper part of the lens part.
  • the mixture 1 is applied onto the cup-shaped container 5 and the upper surface of the LED light-emitting element 2.
  • the phosphor mixture 1 is installed on the LED light emitting element 2.
  • the bullet-type LED light-emitting device described with reference to FIGS. 26 (A) to (C) has the same method even if the light emission direction from the LED light-emitting element 2 is upward. It is possible to create a light emitting device.
  • a reflective LED light emitting device is provided with a reflecting surface and a reflecting plate in the light emitting direction of the LED light emitting element 2, and the light emitted from the light emitting element 2 is reflected on the reflecting surface and emitted to the outside. is there. Accordingly, an example of a light emitting device in which the reflective LED light emitting device and the phosphor mixture of the present embodiment are combined will be described with reference to FIGS. 27 (A) to (E).
  • the reflective LED light-emitting device an LED light-emitting element 2 is installed at the tip of one lead frame 3, and light emitted from the LED light-emitting element 2 is reflected downward by the reflecting surface 8 and emitted from above.
  • the mixture 1 is applied on the reflecting surface 8.
  • the concave portion formed by the reflecting surface 8 may be filled with a transparent mold material 9 to protect the LED light emitting element 2.
  • the mixture 1 is installed under the LED light emitting element 2.
  • the mixture 1 is filled in the recess formed by the reflecting surface 8.
  • the mixture 1 is applied to the upper part of the transparent mold material 9 for protecting the LED light emitting element 2.
  • the mixture 1 is applied to the surface of the LED light emitting element 2.
  • the bullet-type LED light-emitting device and the reflection-type LED light-emitting device may be properly used according to the application.
  • the reflective LED light-emitting device can be made thin, the light emission area can be increased, and the light utilization can be increased. There are merits such as improvement of usage efficiency.
  • the evaluation method of JISZ8726 is used.
  • the color rendering properties of a light emitting device incorporating a phosphor mixture containing the phosphor according to the present invention were evaluated.
  • the special color rendering index R15 which is an index indicating a skin color component of a Japanese woman, is 80 or more, and more preferably, the special color rendering index R9, an index indicating a red component, is 60 or more.
  • the above index may not be satisfied depending on the purpose for which color rendering is not required or for different purposes.
  • a light emitting device in which light from a light emitting section that emits light having a wavelength in the range of 300 nm to 500 nm is irradiated to the phosphor mixture containing the phosphor according to the present invention, and the phosphor mixture emits light.
  • the light emitting part a blue LED emitting light with a wavelength of 460 nm and an ultraviolet LED emitting light with a wavelength of 405 nm were used. The color rendering properties of the emission spectrum of the light emitting device were evaluated.
  • the color rendering property of the light-emitting device incorporating the phosphor mixture containing the phosphor according to the present invention is in the range of the correlated color temperature 1 OOOOK to 2000 ⁇ , preferably ⁇ , 7000 ⁇ , et al. 2500 ⁇ ! Rai 80 or more, R15 force ⁇ 80 or more, and ⁇ or R 9 showed a high color rendering property of 60 or more, and the light-emitting device was found to be a light source with high luminance and excellent color rendering properties.
  • Table 12 shows the analysis results of the obtained phosphor powder, and Fig. 1 shows the SEM photograph (250 times) of the phosphor powder.
  • the composition analysis result of the obtained phosphor was close to the theoretical value obtained from the atomic weight and molar ratio of the constituent elements. Some deviation is considered to be due to measurement errors and impurities mixed during phosphor fabrication.
  • the specific surface area was 0.285 m 2 / g.
  • the obtained phosphor powder is an aggregate in which primary particles of 20 m or less are aggregated, and the average particle diameter (D50) is measured by a laser Doppler measurement method. As a result, D50 is 17.5 m, and the primary particle diameter observed with SEM is about 13.0 ⁇ m, which is preferable as a phosphor.
  • the vertical axis represents the emission intensity of the phosphor of Example 1 as the relative intensity and the horizontal axis represents the wavelength of light.
  • the emission spectrum is a spectrum of light emitted from the phosphor when the phosphor is irradiated with light or energy having a certain wavelength.
  • Fig. 2 shows the emission from the phosphor when the phosphor of Example 1 was irradiated with monochromatic light with a wavelength of 460 nm as excitation light
  • Fig. 3 showed the same emission with monochromatic light with a wavelength of 405 nm as excitation light.
  • Light The tuttle is shown using a solid line.
  • the emission spectrum and excitation spectrum were measured using a spectrofluorimeter FP-6500 manufactured by JASCO Corporation.
  • the phosphor of Example 1 has a very wide peak at a wide wavelength range, so when used as a one-chip type white LED lighting phosphor, a phosphor having a sharp peak is used. This makes it possible to produce white LED lighting with better color rendering.
  • a phosphor having a sharp peak it is necessary to mix several types of phosphors in order to realize a spectrum close to sunlight. Since it has a peak, the number of types of phosphors to be mixed can be reduced, and white LED lighting can be produced at low cost.
  • the solid line in Table 2 and Fig. 3 shows the measurement results of the emission spectrum when irradiating monochromatic light with a wavelength of 405 nm as the excitation light. Even at the excitation wavelength of 405 nm, It had a broad peak in the wide wavelength range of nm, and its peak wavelength was 552.3 nm.
  • the emission intensity and luminance are set to a relative intensity of 100% when the phosphor of Example 1 is irradiated with monochromatic light having a wavelength of 460 ⁇ m as excitation light.
  • the yellow luminescent color could be confirmed visually.
  • the excitation spectrum of the phosphor of Example 1 will be described with reference to FIG. Figure 4 is a graph with the vertical axis representing the emission intensity of the phosphor and the horizontal axis representing the wavelength of the excitation light.
  • the excitation spectrum is the excitation wavelength of the emission intensity measured by exciting the phosphor to be measured using monochromatic light of various wavelengths as excitation light, measuring the emission intensity of a certain wavelength emitted by the phosphor. Dependence is measured.
  • the phosphor of Example 1 is irradiated with monochromatic light having a wavelength of 300 nm to 570 nm, and the wavelength at which the phosphor emits light. Measured excitation dependence of .3nm light.
  • the solid line in FIG. 4 is the excitation spectrum of the phosphor of Example 1.
  • the excitation spectrum of the phosphor was found to exhibit high-intensity yellow light emission with a wide range of excitation light from a wavelength near 300 nm to 500 nm.
  • blue LEDs currently used as excitation light for one-chip type white LED lighting, and near 460 nm and 405 nm emission wavelengths of near-ultraviolet / ultraviolet LEDs have a particularly excellent excitation band. It is a light body.
  • Example 2 Regarding the luminescence intensity and luminance of Example 2, Example 3, Comparative Example 1, Comparative Example 2, and Comparative Example 3 described below, the phosphor of Example 1 was irradiated with monochromatic light having a wavelength of 460 nm as excitation light. The peak value of the emission spectrum at that time is 100% relative intensity.
  • a detailed production method will be described.
  • Table 12 shows the analysis results of the obtained phosphor powder.
  • composition analysis result of the obtained phosphor was close to the theoretical value obtained by calculating the atomic weight and molar specific force of the constituent elements as in Example 1. Some deviation is considered to be due to measurement errors and impurities mixed in during phosphor fabrication.
  • the specific surface area is 0.302m 2 Zg
  • the primary particle diameter observed by SEM diameter is about 12.3 ⁇ m
  • the average particle diameter (D 50) by laser Dobler measurement method is 16.85 / zm, Preferred as ⁇ 1. More than, 20.0 / zm or less, it table Area 0.05 m 2 Zg least 5.0m ranged from 2 Zg below.
  • the alternate long and short dash line in Fig. 2 shows the measurement results of the emission spectrum when monochromatic light with a wavelength of 460 nm is irradiated as excitation light.
  • the phosphor has a broad peak in a wide wavelength range from 470 nm to 750 nm.
  • the peak wavelength was 559.2 nm.
  • the powder had a yellow fluorescent color, and a yellow emission color could be confirmed visually.
  • Table 2 and Fig. 3 show the measurement results of the emission spectrum when irradiating monochromatic light with a wavelength of 405 nm as the excitation light, using the alternate long and short dash line.
  • the dashed-dotted line in Fig. 4 is the excitation spectrum of the phosphor of Example 2.
  • the phosphor of Example 2 was irradiated with monochromatic light having a wavelength of 300 nm to 570 nm, and the excitation dependence of the emission intensity of light having a wavelength of 559.2 nm emitted from the phosphor was measured.
  • the excitation spectrum of the phosphor also shows high intensity yellow light with a wide range of excitation light from near 300 nm to 500 nm, as in Example 1. all right.
  • Example 2 had a composition with a larger molar ratio of Si and N than Example 1, and showed excellent light emission characteristics similar to Example 1.
  • Example 3 the composition formula of the phosphor of Example 1 Sr Al Si ON: Ce (where Ce / (Sr +
  • Table 12 shows the analysis results of the obtained phosphor powder.
  • composition analysis result of the obtained phosphor was close to the theoretical value obtained from the molecular weight and molar ratio of the constituent elements.
  • the specific surface area is 0.291 m 2 / g, and the primary particle diameter observed by SEM is about 13 .: m.
  • the average particle diameter (D50) by laser Doppler measurement is 17.27 m. Even when the activator was Eu, the results of composition analysis, specific surface area, and SEM diameter were almost the same as those obtained when Ce was activated.
  • the two-dot chain line in Table 2 and Fig. 2 show the measurement results of the emission spectrum when monochromatic light with a wavelength of 460 nm is irradiated as excitation light.
  • the phosphor at the excitation wavelength Ex46 Onm had a broad peak in a wide wavelength range from 470 nm to 750 nm, and the peak wavelength was 613.8 nm.
  • the powder had an orange color, and an orange luminescent color could be confirmed visually.
  • the two-dot chain line in Table 2 and FIG. 3 shows the measurement results of the emission spectrum when monochromatic light having a wavelength of 405 nm is irradiated as excitation light.
  • the phosphor at an excitation wavelength of E ⁇ 405 nm had a broad peak in a wide wavelength range from 470 nm to 750 nm, and the peak wavelength was 607.9 nm.
  • the half width was determined to be 114.2 nm
  • the luminescent color of orange was confirmed visually.
  • the phosphor of Example 3 is the same as the host of Example 1, but by changing the activator from Ce to Eu, the emission spectrum peak is maintained while maintaining the emission intensity substantially. It was possible to shift the peak to the longer wavelength side (shift the peak wavelength from about 560 nm of Ce to about 610 nm of Eu).
  • the silicon nitride phosphors and sialon phosphors that have been proposed so far have had the problem that although the peak wavelength is shifted when the activator is changed, the emission intensity is greatly reduced.
  • the base material of Example 3 is characterized by exhibiting excellent emission intensity with both activators of Ce and Eu.
  • the phosphor of Example 3 has a peak wavelength of about 610 nm and exhibits orange light emission, and is therefore promising as a fluorescent light bulb-colored white LED. Furthermore, the phosphors emitting orange in which Eu has been activated in oxynitrides and nitrides that have been proposed so far did not have a half width of the emission spectrum exceeding lOOnm. The body has a full width at half maximum of about 120 nm, and has a very broad emission spectrum.
  • FIG. 5 is an excitation spectrum of the phosphor of Example 3.
  • FIG. 5 is a graph similar to FIG. In this measurement, the phosphor of Example 3 was irradiated with monochromatic light having a wavelength in the range of 300 nm to 570 nm, and the emission intensity of the light with a wavelength of 613.8 nm emitted from the phosphor was changed to the excitation light wavelength. Dependence is measured. From the excitation spectrum of the phosphor, the phosphor was excited by a wide range of excitation light from a wavelength of about 300 nm to 550 nm, and showed a strong orange emission.
  • the variation in emission intensity when using monochromatic light in the range of 50 nm to 550 nm is 10.0% or less, indicating that the excitation band is flat.
  • yellow phosphors used as phosphors for white LED lighting have the most efficient excitation band around 460nm, but have an efficient excitation band over a wide range. Therefore, because of the variation in the emission wavelength due to the variation in the light emitting element during the manufacture of the blue LED, the emission wavelength of the blue LED becomes YAG: When the Ce-based yellow phosphor is out of the optimum excitation range, there is a problem that the balance between the emission intensity of blue and yellow is lost and the color tone of white light is changed.
  • the phosphor of Example 3 has a flat excitation band, the emission intensity is almost constant even when the emission wavelength of the light emitting element varies, and the balance of the emission intensity of each color is not lost. Therefore, it is possible to produce white LED lighting of the same color, which is advantageous in terms of both quality and manufacturing cost.
  • a body was produced as Comparative Example 1.
  • the phosphor of Comparative Example 1 was produced as follows.
  • a phosphor sample was produced in the same manner as in Example 1 except that the temperature was 1600 ° C.
  • Example 1 the emission spectrum of the phosphor of Comparative Example 1 was measured.
  • the measurement results are shown in Table 2, Fig. 2 and Fig. 3 (long broken line).
  • the phosphor of Comparative Example 1 showed a broad emission spectrum.
  • an emission spectrum having a peak at a wavelength of 557.2 nm is shown, and when the relative intensity of Example 1 is 100%.
  • the relative intensity of the luminescence intensity was 28.5%, and the relative intensity of the luminance was 32.6%.
  • the phosphor of Comparative Example 1 shows an emission spectrum having a peak at a wavelength of 562.0 ⁇ m when excited with light having an excitation wavelength of 405 nm.
  • the relative intensity of the luminescence intensity was 56.4% and the relative intensity of the brightness was 62.1% when the relative intensity was 100%.
  • a phosphor was produced as Comparative Example 2.
  • the phosphor of Comparative Example 2 was produced as follows.
  • the emission spectrum of the phosphor of Comparative Example 2 was measured.
  • the measurement results are shown by short dashed lines in Table 2, Fig. 2 and Fig. 3.
  • the phosphor of Comparative Example 2 showed a broad emission spectrum.
  • the short dashed line in FIG. 2 when excited with light having a wavelength of 460 nm, an emission spectrum having a peak at a wavelength of 560.8 nm is shown, and light is emitted when the relative intensity of Example 1 is 100%.
  • the relative intensity was 16.0%, and the relative intensity was 16.7%.
  • the phosphor of Comparative Example 2 shows an emission spectrum having a peak at a wavelength of 527.5 nm when excited with light of a single color of 405 nm.
  • the intensity was 100%
  • the relative intensity of the luminescence intensity was 20.9%
  • the relative intensity of the brightness was 22.2%.
  • a phosphor was produced as Comparative Example 3.
  • the phosphor of Comparative Example 3 was produced as follows.
  • Each raw material is 0.970 mol of SrCO, 2.0 mol of A1N, 1.0 mol of SiO, and 0.030 of CeO.
  • the phosphors having the new compositions of Example 1, Example 2 and Example 3 contain A1 as a constituent element unlike Comparative Example 1, and the sialon of Comparative Example 2 It has a composition formula different from that of phosphors (sialon composition formula M (Al, Si) ( ⁇ , ⁇ ), 0 ⁇ 1.5),
  • the phosphor has a value in which the molar ratio of nitrogen is larger than that of oxygen.
  • the phosphors of Example 2 and Example 3 were excited by light having a wavelength of 460 nm as compared with the phosphors of Comparative Examples 1 to 3.
  • the emission intensity is 3.0 times or more and the luminance is 2.5 times or more.
  • the emission intensity and the luminance are 1.5 times or more, which is higher than that of the conventional phosphor. It was also found to be a highly efficient phosphor showing brightness.
  • Example 4 to Example 13 Examination of Ce activation amount In Example 4 to Example 13, the firefly represented by the mixed composition formula SrAlSiON: Ce
  • a phosphor sample was prepared in the same manner as in Example 1 except that the Ce activation concentration was adjusted and the emission intensity and luminance of the prepared phosphor were measured.
  • Ce activation concentration CeZ (Sr + Ce) is 0.001 (Example 4), 0.005 (Example 5), 0.010 (Example 6), 0.020 (Example 7), 0.025 (Example 8), 0.030. (Example 9), 0.035 (Example 10), 0.040 (Example 1 1), 0.050 (Example 12), and 0.100 (Example 13).
  • FIG. 6 is a graph in which the vertical axis represents the relative intensity of the emission intensity of each phosphor sample, and the horizontal axis represents the value of the blending ratio CeZ (Sr + Ce) of Sr and Ce.
  • Example 14 to Example 23 it is represented by the mixed composition formula Sr Al Si O N: Eu
  • the phosphor was measured for changes in emission intensity and brightness when the concentration of the activator Z element (Eu) was varied.
  • SrCO (3N), A1N (3N), Si N (3N), Eu O (3N) described in Example 3 were used.
  • a phosphor sample was prepared in the same manner as in Example 3 except that the mixing ratio of each raw material of 3 3 4 2 3 was adjusted and the Eu activation concentration was changed, and the emission intensity and luminance of the prepared phosphor were adjusted. It was measured.
  • Eu activation concentration EuZ (Sr + Eu) is 0.001 (Example 14), 0.005 (Example 15), 0.010 (Example 16), 0.020 (Example 17), 0.025 (Example 18), 0.030 (Example 19), 0.035 (Example 20), 0.040 (Example 21), 0.050 (Example 22), 0.100 (Example 23).
  • FIG. 7 is a graph in which the vertical axis indicates the relative intensity of the emission intensity of each phosphor sample, and the horizontal axis indicates the value of the mixing ratio EuZ (Sr + Eu) of Sr and Eu.
  • Example 24 to Example 32 the mixed composition formula Sr Al Si O Nn: Ce (Ce / (Sr
  • a phosphor sample was prepared in the same manner as in Example 1 except that was adjusted, and the emission intensity and luminance of the prepared phosphor were measured.
  • AlZSr 1.0
  • unreacted raw materials will remain in the phosphor after firing, a phase different from the light emitting phase will be generated, and AlZSr will be 1.5 or more.
  • AlZSr 1.0
  • SiZSr 1.0
  • Example 33 SiZSr 1.5
  • Example 34 SiZSr 2.0
  • Example 35 SiZSr 3.0
  • Example 36 SiZSr 4.0
  • Example 37 SiZSr 4.5
  • Example 38 SiZSr 5.0
  • Example 39 SiZSr 5.5
  • Example 40 SiZSr 6.0
  • Example 41 SiZSr 7.0 (Example 42))
  • FIG. 9 is a graph in which the vertical axis represents the relative intensity of the emission intensity of the phosphor sample, and the horizontal axis represents the value of the mixing ratio SiZSr of Sr and Si.
  • the result of adjusting the value of SiZSr from 1.0 to 7.0 is shown.
  • light with a wavelength of 460 nm was used as excitation light.
  • Example 43 to Example 50 the raw material mixture composition formula Sr Al Si ON: Ce (Ce / (m 2 9 2 n
  • Example 2 To achieve 2.0, the same as Example 1 except that the mixing ratio was adjusted by adding Al 2 O (3N) raw material.
  • a phosphor sample was prepared in the same manner, and the emission intensity and luminance of the prepared phosphor were measured.
  • FIG. 10 is a graph with the vertical axis representing the relative intensity of the emission intensity of the phosphor sample and the horizontal axis representing the Sr molar ratio.
  • the result of adjusting the value of Sr molar ratio to 0.50 force 6.00 is shown. Note that light having a wavelength of 460 nm was used as excitation light.
  • the phase that emits yellow light is not generated because it does not work well as a 3x, and other phases are generated, and it is considered that blue light is emitted by short-wave excitation light.
  • the Sr molar ratio is gradually increased from 1.00, the emission intensity and luminance increase with the increase of the Sr molar ratio. Strength decreases.
  • Example 51 to Example 60 the composition formula SrAlSiON: Ce (Ce / (Sr + Ce)
  • N (3N), SiO (3N), and CeO (3N) raw materials are charged at a predetermined molar ratio to increase the oxygen concentration.
  • a phosphor sample was prepared in the same manner as in Example 1, and the emission intensity and luminance were measured.
  • the vertical axis represents the relative intensity of the emission intensity of the phosphor sample
  • the horizontal axis represents the value of oxygen concentration (% by weight) in the phosphor.
  • the emission intensity and luminance of each phosphor decreased both when the oxygen concentration increased and decreased from 2.5 to 3.5% by weight.
  • the oxygen concentration is 4.0% by weight or more, it is significantly reduced.
  • the oxygen concentration is 10.0 wt% or more, the phosphors melt and become glassy.
  • the emission intensity as a whole of the phosphor is lowered because there are places where light is emitted efficiently in some places but no light is emitted in other places.
  • the oxygen concentration in the phosphor should be 10% by weight or less, but considering the light emission characteristics and the powder characteristics after firing, 0.5% by weight or more and 8.1% by weight or less (specified in terms of molar ratio) 0.0 ⁇ o / m ⁇ 4.0) is more preferable, and more preferably 0.5% to 5.0% by weight of oxygen concentration (0.0 ⁇ o / m ⁇ 3.0 when defined in terms of molar ratio) If it is within the range, it is considered that sufficient emission intensity and luminance can be obtained.
  • Example 61 first, the target composition after firing is SrAl Si O N: Ce (where C
  • Examples 61 to 82 show target compositions that are not mixed composition formulas.
  • Table 9 shows the analysis results, average particle diameter (D50), and specific surface area (BET) of the obtained phosphor powder.
  • the Si was measured by gravimetric method (absorptiometry), other elements were measured by ICP, average particle size (D 50) was measured by laser diffraction scattering method, and specific surface area was measured by BET method.
  • the obtained phosphor powder has an average particle size (D50) of 24.40 m and a specific surface area of 0.225 m 2 Zg, which is a preferred particle size for the phosphor powder. 1. O / zm or more, 50.0 m or less I understood that.
  • the emission spectrum of the phosphor according to Example 61 was measured.
  • the measurement results are shown in Table 10 and further shown in FIG. FIG. 12 is a graph in which the vertical axis represents the emission intensity of the phosphor as relative intensity and the horizontal axis represents the wavelength of light.
  • the emission spectrum is a spectrum of light emitted from the phosphor when the phosphor is irradiated with light or energy having a certain wavelength.
  • the solid line in FIG. 12 shows the spectrum of light that also emitted phosphor power when the phosphor of Example 61 was irradiated with monochromatic light having a wavelength of 460 nm as excitation light.
  • the phosphor of Example 61 has a very wide peak at half maximum width of lOOnm or more in a wide wavelength range, when used as a phosphor for white LED lighting, a phosphor having a sharp peak is used. It is possible to produce white LED lighting that is superior in brightness and color rendering compared to the one used. In addition, in the case of a phosphor having a sharp peak, it is necessary to mix several kinds of phosphors in order to improve color rendering properties. However, since the phosphor has a broad peak, the phosphor to be mixed This makes it possible to reduce the number and amount of types used, and to produce white LED lighting at a low cost.
  • Example 61 when the phosphor of Example 61 is irradiated with monochromatic light having a wavelength of 405 nm as excitation light, the spectrum of the light that also emitted the phosphor force is shown in Table 10, and further, it is shown by a broken line in FIG.
  • Table 10 When excited at Ex4 05nm, the emission intensity is improved by about 20% compared to Ex460nm.
  • the peak wavelength was 531.5 nm, the half-width was 118. lnm, and the half-width of the emission spectrum was 80 nm or more.
  • Fig. 13 is a graph with the vertical axis representing the emission intensity of the phosphor and the horizontal axis representing the wavelength of the excitation light.
  • the excitation spectrum refers to the measurement of the emission intensity of a certain wavelength emitted by the phosphor when the phosphor to be measured is excited using monochromatic light of various wavelengths as the excitation light. The excitation wavelength dependency was measured.
  • the phosphor of Example 61 was irradiated with monochromatic light having a wavelength of 250 nm to 550 nm, and the excitation dependence of the emission intensity at a wavelength of 556.0 nm (green light) emitted from the phosphor was measured. is there.
  • the phosphor showed high-intensity green light emission with a wide range of excitation light from a wavelength of about 300 nm to about 500 nm. In particular, it exhibits the highest luminous efficiency with excitation light with a wavelength of 400 nm and power of 480 nm, and is currently used as excitation light for one-chip white LED lighting. By combining with LEDs, it is possible to manufacture light-emitting devices with high brightness.
  • the temperature was maintained for 5 minutes in order to make the temperature of the entire sample uniform, and then the emission intensity was measured.
  • the emission intensity at room temperature (25 ° C) before raising the temperature was taken as 100%, and the emission intensity at each measurement temperature was measured as the relative intensity.
  • the emission intensity was measured at the time of temperature rise, then cooled, and the emission intensity was measured again at 25 ° C. Further, the same measurement was performed when monochromatic light having a wavelength of 405 nm was irradiated as excitation light.
  • Figs. 14-1 and 2 the vertical axis shows the relative emission intensity when the emission intensity before temperature increase (25 ° C) is 100%, and the horizontal axis shows the emission of the phosphor.
  • Fig. 14-1 shows the case where the monochromatic light with a wavelength of 460nm is irradiated as excitation light
  • Fig. 14-2 shows the monochromatic light with a wavelength of 405nm as excitation light. This is the case of irradiation.
  • FIGS. 14-1 and 14 the measurement result of the phosphor according to Example 61 is shown by a thick solid line.
  • Example 62 the target composition after firing was SrAl Si O N: Ce (provided that CeZ
  • a phosphor according to Example 62 was obtained.
  • Table 9 shows the analysis results, average particle diameter (D50), and specific surface area (BET) of the obtained phosphor powder.
  • the specific surface area of the obtained phosphor was 0.264 m 2 Zg.
  • the average particle size (D50) was found to be a particle size of 1. to 50.0 ⁇ m, which is preferable as a phosphor powder.
  • Example 62 the emission spectrum of the phosphor according to Example 62 was measured.
  • the measurement results are shown in Table 10.
  • the emission spectrum of the phosphor had a wide wavelength of 470 nm to 750 nm as in the phosphor according to Example 61.
  • the peak has a broad peak, and its peak wavelength was 533.5 nm.
  • the powder had a yellow fluorescent color, and a green emission color could be confirmed visually.
  • the relative intensity of the phosphor according to Example 61 100%
  • the relative intensity of the emission intensity of the phosphor according to Example 62 was 110.9%.
  • the excitation spectrum of the body showed a wide range of excitation light from a wavelength of about 300 nm to 500 nm, and showed strong green emission.
  • Example 62 the temperature characteristics of the emission intensity of the phosphor obtained in Example 62 were measured in the same manner as in Example 61.
  • the measurement results are shown in Table 10, and are shown in the same manner as in Example 61 using the thick one-dot chain line in FIGS.
  • Example 63 The phosphor of Example 62 had a composition slightly different from that of Example 61 in the molar ratio of Al, Si, N, and O, but showed excellent emission characteristics as in Example 61. [0231] (Example 63)
  • Example 63 the target composition after firing was SrAl Si O N: Ce (provided that CeZ
  • Table 9 shows the analysis results, average particle diameter (D50), and specific surface area (BET) of the obtained phosphor powder.
  • the specific surface area of the obtained phosphor was 0.231 m 2 Zg.
  • the average particle size (D50) was found to be a particle size of 1.0 ⁇ m or more and 50.0 ⁇ m or less which is preferable as the phosphor powder.
  • Example 63 the emission spectrum of the phosphor according to Example 63 was measured.
  • the measurement results are shown in Table 10.
  • Table 10 the measurement results of the emission spectrum when irradiating monochromatic light with wavelengths of 460 nm and 405 nm as excitation light are shown.
  • the phosphor Similar to the phosphor according to Example 61, it has a broad wavelength range of 470 nm and a wavelength of 470 nm, and has a sharp peak, and its peak wavelength is 555.6 nm.
  • the powder had a yellow fluorescent color, and a green emission color could be confirmed visually.
  • the relative intensity of the phosphor according to Example 61 was 100%, the relative intensity of the emission intensity of the phosphor according to Example 63 was 93.5%.
  • the relative intensity of the phosphor according to Example 61 was 100%, the relative intensity of the emission intensity of the phosphor according to Example 62 was 111.4%.
  • the phosphor according to Example 63 was irradiated with monochromatic light having a wavelength of 250 nm to 550 nm, and the excitation dependence of the emission intensity at a wavelength of 555.6 nm emitted from the phosphor was measured, Similarly to Example 61, the excitation spectrum of the body showed a high intensity green emission with a wide range of excitation light from a wavelength of about 300 nm to 500 nm.
  • Example 63 the temperature characteristics of the emission intensity of the phosphor obtained in Example 63 were measured in the same manner as in Example 61.
  • the measurement results are shown in Table 10, and are shown in the same manner as in Example 61 using the thick two-dot chain line in FIGS.
  • the phosphor according to Example 63 is also superior to the phosphor according to Examples 61 and 62 as the phosphor according to Example 61 in which the molar ratio of Al, Si, N, and O is slightly different. Emission characteristics were shown.
  • Example 64 the target composition after firing is the composition formula SrAl Si ON: Ce (provided that
  • Example 64 0.030
  • a phosphor according to Example 64 was manufactured.
  • Table 9 shows the analysis results, average particle diameter (D50), and specific surface area (BET).
  • the specific surface area of the obtained phosphor of Example 64 was 0.254 m 2 Zg.
  • the average particle size (D50) was 24.08 m.
  • Example 64 is a mixed composition in which the amount of oxygen is increased by 0.06 mol from the amount of the raw material mixture of Example 1 which has almost the same composition as Example 1 described above.
  • the emission spectrum of the phosphor according to Example 64 was measured.
  • the measurement results are shown in Table 10.
  • Table 10 when monochromatic light having a wavelength of 460 nm is irradiated as excitation light, the emission spectrum of the phosphor has a broad peak in a wide wavelength range of wavelengths from 470 nm to 750 nm, similar to the phosphor according to Example 61.
  • the peak wavelength was 559.2 nm.
  • the phosphor powder had a yellow fluorescent color, and a green emission color could be confirmed visually.
  • the relative intensity of the emission intensity in the phosphor according to Example 61 was 100%, the relative intensity of the phosphor according to Example 64 was 94.6%.
  • the phosphor when monochromatic light with a wavelength of 405 nm was irradiated as excitation light, the phosphor was in a wide wavelength range from 470 nm to 750 nm, similar to the phosphor according to Example 61.
  • the peak wavelength was 551.0 nm.
  • the phosphor powder had a yellow fluorescent color, and a green emission color could be confirmed visually.
  • the relative intensity of the emission intensity in the phosphor according to Example 61 100%
  • the relative intensity of the phosphor according to Example 64 was 105.3%.
  • the excitation spectrum of the body showed a wide range of excitation light from a wavelength of about 300 nm to 500 nm, and showed strong green emission.
  • Example 64 the temperature characteristics of the emission intensity of the phosphor obtained in Example 64 were measured in the same manner as in Example 61.
  • the measurement results are shown in Table 10, and are shown in the same manner as in Example 1 using broken lines in FIGS.
  • the phosphor of Example 64 has a monochromatic wavelength of 460 nm as excitation light. When irradiated with light, the phosphor emits 90.5% and 200 ° at a measurement temperature of 100 ° C, assuming that the emission intensity at room temperature (25 ° C) before raising the measurement temperature is 100%. It was 75.0% for C and 54.3% at 300 ° C. When the temperature was raised and then cooled and measured again at 25 ° C, it was 81.0%, which was about 20% lower than the initial emission intensity.
  • Example 65 the target composition after firing is the composition formula SrAl Si O N: Ce (however,
  • Example 65 0.030
  • Table 9 shows the analysis results, average particle diameter (D50), and specific surface area (BET) of the produced phosphor powder.
  • the specific surface area of the obtained phosphor was 0.212 m 2 Zg.
  • the average particle size (D50) was 25.44 ⁇ m.
  • Example 61 the emission spectrum of the phosphor according to Example 65 was measured.
  • the phosphor powder had a yellow fluorescent color, and a green emission color could be confirmed visually.
  • the relative intensity of the phosphor according to Example 61 is 100%, the relative intensity of the emission intensity of the phosphor according to Example 65 is 93.4%.
  • Example 65 when the phosphor according to Example 65 was irradiated with monochromatic light having a wavelength of 250 nm to 550 nm, and the excitation dependence of the emission intensity at a wavelength of 558. lnm emitted from the phosphor was measured, Similarly to Example 61, the excitation spectrum of the phosphor showed a strong green emission for a wide range of excitation light from a wavelength of about 300 nm to 500 nm.
  • Example 65 the temperature characteristics of the emission intensity of the phosphor according to Example 65 were measured in the same manner as in Example 61.
  • the measurement results are shown in Table 10, and further shown in FIGS. 14-1 and 2 in the same manner as in Example 1 using a thin one-dot chain line.
  • Example 66 the target composition after firing is the composition formula SrAl Si O N: Ce (however,
  • the raw materials are 0.970 mol of SrCO, (1.06—0.976) / 3 mol of Al 2 O, and 1.00 — ((1.0
  • Example 66 has a mixed composition in which the amount of oxygen is 0.06 mol greater than the amount of raw material mixed in Example 2 shown above.
  • the emission spectrum of the phosphor according to Example 66 was measured.
  • the measurement results are shown in Table 10.
  • the excitation spectrum of the body also has a wavelength of around 300 nm. In particular, it has been shown that it emits high-intensity green light with a wide range of excitation light up to 500 nm.
  • Example 66 the temperature characteristics of the emission intensity of the phosphor obtained in Example 66 were measured in the same manner as in Example 61.
  • the measurement results are shown in Table 10 and further shown in FIGS. 14-1 and 2 in the same manner as in Example 61 using a thin two-dot chain line.
  • the samples of Examples 61 to 63 with AlZSr of 1.1 and AlZSr ⁇ 2.0 are the samples of Examples 64 to 66 with AlZSr of 1.0. Compared with, superior light emission characteristics can be obtained.
  • the initial emission intensity was about 5.0% better than the samples of Examples 64 to 66, and the temperature characteristics were particularly improved.
  • the measurement temperature was 100 than that of the samples of Examples 64 to 66.
  • the decrease in emission intensity can be suppressed by approximately 4.0% at ° C and 10.0% or more at 300 ° C.
  • the phosphor was cooled and measured again at 25 ° C.
  • the phosphors according to Examples 61 to 63 have a reduced impurity phase due to the optimization of the A1 concentration relative to the oxygen concentration of the produced phase compared to the phosphors according to Examples 64 to 66. It is considered that the emission characteristics and temperature characteristics improved.
  • the diffraction patterns obtained by the powder X-ray method for Examples 61 to 66 are shown in FIG. From the results shown in FIG. 15, the production phase of the phosphor according to the present invention has a Bragg angle (2 ⁇ ) of 12.5 to 13.5. 17.0 ⁇ : 18.0. 21.0-22.0. 22.5-23.5. 26.5-27.5. 28.5-29.5 °, 34.0-35.0 °, 35.5-36.5 °, 36.5-37.5 °, 41.0-42.0 °, 42.0-43.0 °, 56.5-57.5 °, 66.0-67.0 ° Yes. From the diffraction pattern, the crystal system of the main generation phase of the phosphor is considered to be a phosphor having an orthorhombic or monoclinic crystal phase.
  • the phosphor to be measured is pulverized after firing to a predetermined average particle size (preferably 1.0 m to 50.0 m) using a mortar, ball mill, or other pulverizing means.
  • the holder was packed flat and measured with an XRD device “RINT2000” manufactured by Rigaku Denki Co., Ltd. The measurement conditions are shown below.
  • the deviation of the Bragg angle (2 0) is considered to be caused by the fact that the sample surface irradiated with X-rays is not flat, the X-ray measurement conditions, especially the difference in scan speed, and the like. For this reason, it is considered that a slight deviation in the range where the characteristic diffraction peak is seen is allowed.
  • the scan speed is set to 0.3 ° / min, Si is mixed into the phosphor sample, and the Si peak deviation is corrected after X-ray measurement.
  • the Bragg angle (2 0) was obtained.
  • the true density measurement was performed on the samples of Examples 61 to 63, it was found that 3.43 gZcc, 3.45 gZcc, and 3.46 g / cc all showed numerical values in the vicinity of 3.45 g / cc! /.
  • UltrapycnometerlOOO manufactured by QUANTACHROME was used for measurement of true density. Since the true density increases or decreases from the above value when there are many impurity phases in the product phase, the true density of the phosphor according to the present invention is 3.45 gZcc ⁇ in order to obtain good emission characteristics and temperature characteristics. It may be in the range of 3%.
  • Example 61 Each sample was produced in the same manner as in Example 61 except that the mixing ratio was adjusted, and the emission intensity and temperature characteristics of each produced sample were measured.
  • Table 11 and Fig. 16 show the results of the light emission characteristics and the temperature characteristics of the samples manufactured in Examples 67 to 72.
  • the emission intensity value when the phosphor of Example 70 was irradiated with monochromatic light having a wavelength of 460 nm (25 ° C) as excitation light was set to 100%.
  • the emission intensity values of the samples (25 ° C.) of Examples 67 to 72 are shown as relative emission intensity.
  • the emission intensity value at room temperature (25 ° C) before raising the measurement temperature is specified as 100% for each sample.
  • the measurement results of the change in emission intensity when the measurement temperature is raised from 25 ° C to 300 ° C are shown.
  • Table 11 also shows the luminescence intensity when the sample was heated to 300 ° C and then cooled again to 25 ° C. Note that light having a wavelength of 460 nm was used as excitation light.
  • FIG. 16 shows the measurement results of temperature characteristics.
  • the vertical axis represents the relative emission intensity
  • the horizontal axis represents the measurement temperature value at which the emission intensity was measured
  • Example 67 is a solid line
  • Example 68 is A thick one-dot chain line
  • Example 69 is shown using a thick two-dot chain line
  • Example 70 is shown using a thin one-dot chain line
  • Example 71 is a short dashed line
  • Example 72 is a long dashed line.
  • the value of AlZSr is in the range of 1.1 and a / m ⁇ 2.0.
  • Nitride that has a structure different from conventional nitride and oxynitride phosphors, in which Sr with a large ionic radius has entered the gap between the structure where the part is replaced with o and the network is formed. This is considered to be due to being an oxynitride phosphor.
  • the Sr ion radius of the phosphor according to the present invention is larger than that of Ca, it has a different [SiN] network structure from the case where Ca enters. Also different
  • the crystal structure is formed by the reaction of A1N or SiN, and has a high temperature durability.
  • the measurement of the emission intensity shown in Table 12 was performed when the phosphor of Example 75 was irradiated with monochromatic light having a wavelength of 460 nm as excitation light (25 ° C) and the emission intensity value was 100%.
  • Examples 73 to 75 (25 ° C) emission intensity values are shown as relative emission intensity.
  • the emission intensity value at room temperature (25 ° C) before raising the measurement temperature is specified as 100% for each sample, and the measurement temperature is increased from 25 ° C to 300 ° C.
  • the measurement result of the change in emission intensity is shown.
  • Table 12 also shows the emission intensity values when the sample was heated to 300 ° C and then cooled again to 25 ° C. Note that light having a wavelength of 460 nm was used as excitation light.
  • Fig. 17 shows the measurement results of temperature characteristics
  • the vertical axis is the relative emission intensity
  • the horizontal axis is the measured temperature value at which the emission intensity was measured
  • Example 73 is a solid line
  • Example 74 is 1 The dashed line
  • Example 75 is shown using a two-dot chain line.
  • the target composition after firing is the composition formula SrAl Si O N: Ce (C
  • a phosphor sample was manufactured in the same manner as in Example 61 except that the mixing ratio was adjusted, and the emission intensity and temperature characteristics of each of the manufactured samples were measured.
  • Table 13 and Fig. 18-1 show the results of the light emission characteristics and temperature characteristics of the samples manufactured in Examples 76 to 79.
  • Fig. 18-1 shows the measurement results of temperature characteristics, the vertical axis is the relative emission intensity, and the horizontal axis is the measured temperature value at which the emission intensity was measured.
  • Example 76 is a solid line
  • Example 77 is indicated by a one-dot chain line
  • Example 78 is indicated by a two-dot chain line
  • Example 79 is indicated by a broken line.
  • Fig. 18-2 is a graph showing the relationship between the oxygen concentration and the relative luminescence intensity in each sample. The ordinate indicates the relative luminescence intensity, and the abscissa indicates the oxygen concentration in each sample.
  • Example 76 was slightly different from those of other samples. The force is inferior to that in the range of this example. Good results were obtained regardless of the value of OZSr for the temperature characteristics of each sample.
  • A1 has a larger ionic radius than Si, so the crystal structure shifts in structural strength suitable for light emission. It is thought that this is because the valence of the entire host structure has become unstable because Si has IV valence whereas Si has IV valence.
  • the amount of A1 that replaces the Si site if a part of the N site is replaced with O, which has a smaller ion radius than N, it is possible to obtain an optimal crystal structure for light emission, and further, Since the valence is stable to zero, it is considered to exhibit excellent light emission characteristics.
  • Example 76 558.2 0.408 0.545 82.8 100.0 95.5 91.4 86.2 80.4 74.2 67.4 98.3 2.46 29.0
  • Example 77 556.0 0.404 0.548 100.0 100.0 96.8 94.4 91.0 85.8 80.1 73.4 98.8 2.63 27.8
  • Example 78 555.6 0.399 0.549 87.8 100.0 96.7 94.0 90.2 85.3 79.4 72.6 97.6 3.61 26.8
  • Example 79 554.7 0.395 0.549 79.4 100.0 97.1 ⁇ 3.9 90.0 85.4 79.0 71.9 96.1 4.39 27.9
  • the target composition after firing is the composition formula SrAl Si O N: Ce (C
  • Example 80 to Example 82 with different oZm ratios (where oZm and OZSr have the same meaning) were manufactured, and the peak wavelength, chromaticity ( x, y), relative emission intensity at 25 ° C, and temperature characteristics were measured.
  • a phosphor sample was produced in the same manner as in Example 62 except that the mixing ratio of N) was adjusted, and the emission intensity and temperature characteristics of each of the produced samples were measured.
  • Fig. 19 1 shows the measurement results of temperature characteristics, the vertical axis is the relative emission intensity, and the horizontal axis is the measured temperature value at which the emission intensity was measured.
  • Example 80 is a solid line, Example 81 Is a dashed line, Example 82 is shown using a two-dot chain line.
  • Fig. 192 is a graph showing the relationship between the oxygen concentration and the relative light emission intensity in each sample.
  • the vertical axis represents the relative light emission intensity, and the horizontal axis represents the oxygen concentration in each sample.
  • the phosphor according to this example exhibits the best emission characteristics when the OZSr value is 0.65.
  • the O / Sr value is approximately 5.0% better than when the value is 0.52, and even when the temperature is raised, the emission intensity decreases slightly in all temperature ranges. It has excellent temperature characteristics.
  • (P-P) / P X 100 ⁇ 10.0
  • the decrease in light intensity can be suppressed, and at the measurement temperature of 300 ° C, the decrease in emission intensity can be suppressed by about 3.4% compared to the OZSr value of 0.52.
  • Example 83 to 92 the phosphor mixture and the light emitting device using the phosphors according to Example 1 and Example 61 were evaluated. In Comparative Examples 4 to 8, V was evaluated for a phosphor mixture and a light emitting device using a conventional green phosphor.
  • LED light emitting element
  • the emission wavelength of the light-emitting element is not limited to the preferred wavelength of 460 nm as long as the phosphor has good efficiency and is in the excitation band (300 nm to 500 nm).
  • a blue LED element (emission wavelength: 467 nm) using a nitride semiconductor was prepared as a light emitting part. Further, the phosphor prepared in Example 1 was mixed with epoxy resin and dispersant to obtain a mixture.
  • the resin is not limited to an epoxy resin and may be a silicon resin as long as it satisfies the above-mentioned conditions that a higher visible light transmittance and refractive index are preferable.
  • the dispersant includes SiO
  • the fine particles of 2 may be mixed slightly. And stir the mixture thoroughly.
  • white LED illumination (light emitting device) was produced by coating on the LED element by a known method. Since the emission color and the emission efficiency change depending on the phosphor, the ratio of the resin and the coating thickness of the mixture, the above conditions may be adjusted according to the target color temperature.
  • FIG. 20 shows the emission spectrum when 20mA is applied to the white LED illumination.
  • FIG. 20 is a graph in which the vertical axis indicates the relative emission intensity and the horizontal axis indicates the emission wavelength (nm).
  • the emission spectrum of the white LED illumination according to Example 83 is indicated by a solid line.
  • the phosphor is excited * by blue light emitted from the light emitting part, and emits white light having an emission spectrum having a continuous peak in the wavelength range of 400 nm to 750 nm, thereby obtaining white LED illumination.
  • the color temperature was 6078K
  • x 0.317
  • y 0.374
  • the average color rendering index (Ra) of the white LED lamp was 73. Furthermore, it was also possible to obtain luminescent colors with different color temperatures by appropriately changing the blending amount of the phosphor and rosin.
  • Example 84 the phosphor of SrAl Si ON: Ce according to Example 61 of the present invention was excited using a light emitting element (LED) that emits light at a wavelength of 460 nm, as in Example 83.
  • LED light emitting element
  • FIG. 21 shows the emission spectrum when 20 mA was applied to the white LED illumination produced by the same manufacturing method as in Example 83.
  • FIG. 21 is a graph with the relative emission intensity on the vertical axis and the emission wavelength (nm) on the horizontal axis.
  • the light emission spectrum of the white LED illumination according to Example 84 is indicated by a solid line.
  • the phosphor is excited * by blue light emitted from the light emitting part, and emits white light having an emission spectrum having a continuous peak in the wavelength range of 400 nm to 750 nm, thereby obtaining white LED illumination.
  • the color temperature 634 ° C.
  • x 0.3115
  • y 0.3649
  • the average color rendering index (Ra) was 72.
  • Example 85 or Example 86 when a red phosphor is further added to the phosphor according to Example 61 and excited by a light emitting device (LED) that emits light at a wavelength of 460 nm, the correlated color temperature is 5000 K (Example A phosphor mixture emitting light of 85) or 3000K (Example 86) was produced, and the emission characteristics and color rendering properties of the phosphor mixture were evaluated.
  • CaSiAIN: Eu was used as the red phosphor
  • SrAlSiON Eu
  • (Ca, Sr) SiN Eu
  • red phosphors having nitrogen such as 3 4 11 2 17 5 8 or sulfur red phosphors such as SrS: Eu and CaS: Eu.
  • red phosphor CaSiAIN: Eu is converted into the following method.
  • the mixed raw material is heated to 1500 ° C in a nitrogen atmosphere at a rate of 15 ° C Zmin, held at 1500 ° C for 12 hours and fired. And then cooled from 1500 ° C to 200 ° C in 1 hour to obtain a phosphor with the composition formula CaSiAIN: Eu.
  • the obtained sample was pulverized and classified to prepare a red phosphor sample.
  • the emission spectrum when excited with excitation light having a wavelength of 460 nm is measured, and from the emission spectrum, the correlated color temperature of both phosphor mixtures is 5000K (Example 85) or 3 OOOK (Example 86).
  • the relative mixing ratio is determined by simulation. The simulation result shows that when the correlated color temperature is 5000K (Example 85), SrAl Si O N:
  • each phosphor was weighed and mixed to obtain a phosphor mixture.
  • a preferable mixing ratio may deviate from the simulation result depending on the emission wavelength of the light emitting part (excitation wavelength of the phosphor mixture) and the emission efficiency of the phosphor with respect to the excitation light.
  • the actual emission spectrum shape may be adjusted by appropriately adjusting the blending ratio of the phosphors.
  • an ultraviolet LED emission wavelength: 460 nm
  • a mixture of the phosphor mixture and the resin was placed on the LED.
  • the appropriate mixture ratio of the phosphors was adjusted so that a neutral white color equivalent to 5 OOOK or a light bulb color equivalent to 3000K was obtained based on the simulation results. It was.
  • a white LED illumination light-emitting device was fabricated by combining with the LED light-emitting portion by a known method.
  • the phosphor mixture can produce white LED illumination that emits white light having an emission spectrum having a broad peak in the wavelength range of 420 nm to 750 nm by being excited by the blue light emitted from the light emitting portion.
  • Fig. 21 shows the emission spectrum when 20 mA is applied to the light emitting element of the white LED illumination.
  • the daylight white emission spectrum of white LED lighting set to a color temperature equivalent to 5000K is shown by a one-dot chain line
  • the light emission color spectrum of a white LED lighting set to a color temperature equivalent to 3 OOOK is shown by a two-dot chain line.
  • Table 15 shows a list of measurement data such as luminance, chromaticity, color rendering index, and color temperature of the white LED illumination according to Example 85 or Example 86.
  • the evaluation number (Ra) was 90
  • the special color rendering index R9 was 84
  • R13 was 91
  • R15 was 91
  • special The color rendering index R9 was 89, R13 was 99, and R15 was 97.
  • it was also possible to obtain luminescent colors with different color temperatures by appropriately changing the blending amount of the phosphor to be mixed and the blending amount of the resin.
  • Example 87 to 89 a phosphor mixture that emits light having a correlated color temperature of 6500 K when excited by a light emitting element (LED) that emits light at a wavelength of 405 nm is manufactured, and the emission characteristics and color rendering of the phosphor mixture are produced. Sex was evaluated. Further, Example 89 is an example in which two types of red phosphors are added to obtain excellent color rendering properties and to improve luminance.
  • BAM Eu
  • Sr, Ca, Ba, Mg PO 2
  • the green phosphor Sr AI Si ON: Ce was prepared and prepared by the following method.
  • the mixed raw materials are in powdered state in a nitrogen atmosphere (Floor state, 20.0LZmin), the furnace pressure is increased to 1800 ° C at 0.05MPa at 15 ° CZmin, and held at 180 ° C for 3 hours. Then, it was cooled from 1800 ° C to 50 ° C in 1 hour and 30 minutes. After that, the fired sample was pulverized with a mortar until it had an appropriate particle size in the air, and a phosphor represented by a mixed composition formula Sr Al Si ON: Ce was prepared.
  • a red phosphor CaAlSiN: Eu was prepared by the method described in Example 85.
  • a blue phosphor BAM: Eu (BaMgAl 2 O 3: Eu) was prepared as a commercial product.
  • the half-value width of the emission spectrum of BAM: Eu is 53.5 nm
  • the half-value width of the emission spectrum of Sr Al Si ON: Ce is 118.0 nm.
  • CaAlSiN The full width at half maximum of the emission spectrum of Eu is 86.7 nm.
  • the actual emission spectrum shape may be adjusted by appropriately adjusting the blending ratio of the phosphors.
  • the brightness of the phosphor mixture according to Example 87 was about 18% higher than the brightness of the phosphor mixture according to Comparative Example 4 described later.
  • FIG. 22 is a graph with the relative emission intensity on the vertical axis and the emission wavelength (nm) on the horizontal axis.
  • the emission spectrum was not interrupted in the wavelength range of 42 Onm to 750 nm! /, Had a continuous spectrum, and the wavelength at 420 nm also had three emission peaks in the range of 680 nm! /.
  • the color rendering properties in light emission of the phosphor mixture were evaluated.
  • the average color rendering index Ra was 97
  • the special color rendering index R9 was 93
  • R15 was 95, showing excellent color rendering.
  • Table 16 shows a list of measurement data such as luminance, chromaticity, color rendering index, and color temperature of Example 87 and Examples 88 and 89 described later and Comparative Examples 4 to 6.
  • Each phosphor was weighed and mixed to obtain a phosphor mixture.
  • the half width in the emission spectrum of 10 4 6 2 was 51.1 nm.
  • the luminance of the phosphor mixture according to Example 88 is related to Comparative Example 5 described later. Compared to the brightness of the phosphor mixture, it increased by about 16%.
  • the obtained emission spectrum is shown by a thick dashed line in FIG.
  • the emission spectrum is not interrupted in the wavelength range of 420 nm to 750 nm! /, Has a continuous spectrum, and has three emission peaks in the wavelength range of 420 nm and 680 nm. It was.
  • the color rendering properties in light emission of the phosphor mixture were evaluated.
  • the average color rendering index Ra was 94
  • the special color rendering index R9 was 60
  • R15 was 89, showing excellent color rendering.
  • Example 89 when excited by a light emitting device (LED) that emits light at a wavelength of 405 nm, a phosphor mixture that emits light with a correlated color temperature of 6500 K is used as a red phosphor with higher luminance and color rendering.
  • the phosphors were manufactured by the method used, and the light emission characteristics and color rendering properties of the phosphor mixture were evaluated.
  • a second red phosphor CaAl Si N: Eu was produced by the following method.
  • each phosphor was weighed and mixed to obtain a phosphor mixture.
  • the obtained emission spectrum is shown by a thick two-dot chain line in FIG.
  • the emission spectrum is not interrupted in the wavelength range of 420 nm to 750 nm! /, Has a continuous spectrum, and has three emission peaks in the wavelength range of 420 nm and 680 nm. It was.
  • Comparative Examples 4 to 6 a phosphor mixture that emits light having a correlated color temperature of 6500 K when excited by a light emitting element (LED) that emits light at a wavelength of 405 nm is manufactured, and the emission characteristics and color rendering of the phosphor mixture are manufactured. Sex was evaluated. Comparative Example 6 is a comparative example for Example 89 in which two types of red phosphors are used to improve color rendering and luminance. [0326] (Comparative Example 4)
  • CaAlSiN: Eu was prepared as a red phosphor by the method described in Example 85.
  • the phosphors were weighed and mixed to obtain a phosphor mixture.
  • the emission spectrum is not interrupted in the wavelength range of 420 nm to 750 nm! /, Has a continuous spectrum, and has three emission peaks in the wavelength range of 420 nm and 680 nm. It was.
  • the color rendering properties in light emission of the phosphor mixture were evaluated.
  • the average color rendering index Ra was 87
  • the special color rendering index R9 was 6, and R15 was 78.
  • CaAlSiN: Eu was prepared as a red phosphor by the method described in Example 85.
  • each phosphor was weighed and mixed to obtain a phosphor mixture.
  • the color rendering properties in light emission of the phosphor mixture were evaluated.
  • the average color rendering index Ra was 75
  • the special color rendering index R9 was 59
  • R15 was 57.
  • Example 6 when excited by a light emitting device (LED) that emits light at a wavelength of 405 nm, a phosphor mixture with higher luminance and color rendering than light emission at a correlated color temperature of 6500K. was manufactured using a known green phosphor, two types of red phosphors, and a known blue phosphor, and the emission characteristics and color rendering properties of the phosphor mixture were evaluated.
  • LED light emitting device
  • the color rendering properties in light emission of the phosphor mixture were evaluated.
  • the average color rendering index Ra was 96
  • the special color rendering index R9 was 84
  • R15 was 92.
  • Example 90 et al. 91 a phosphor mixture that emits light having a correlated color temperature of 4200K when excited by a light emitting element (LED) that emits light at a wavelength of 405 nm is manufactured.
  • the light emission characteristics and color rendering properties of the mixture were evaluated.
  • Example 91 is an example in which two types of red phosphors are used to improve color rendering properties and luminance.
  • aAlSiN: Eu was prepared as BAM: Eu as a blue phosphor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

 緑色~黄色の範囲に発光スペクトルのブロ-ドなピ-クを持ち、近紫外・紫外光から青色光の広範囲な光を励起光として用いることのできる広く平坦な励起帯を持ち、発光効率および輝度に優れた蛍光体を提供する。  一般式MmAaBbOoNn:Zで表記される蛍光体であって(M元素はII価の価数をとる1種類以上の元素であり、A元素はIII価の価数をとる1種類以上の元素であり、B元素はIV価の価数をとる1種類以上の元素であり、Oは酸素であり、Nは窒素であり、Z元素は1種類以上の付活剤である。)、4.0<(a+b)/m<7.0 、a/m≧0.5、b/a>2.5、n > o、n=2/3m+a+4/3b-2/3oであり、波長300nmから500nmの範囲の光で励起したとき、発光スペクトルにおけるピ-ク波長が500nmから650nmの範囲にある蛍光体を発明し、上記課題を解決した。

Description

明 細 書
蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置 技術分野
[0001] 本発明は、ブラウン管 (CRT)、フィールドェミッションディスプレイ (FED)、プラズマ ディスプレイ (PDP)などのディスプレイや、蛍光灯、蛍光表示管などの照明装置や、 液晶バックライト等の発光器具に使用される、窒素を含有する蛍光体およびその製 造方法、蛍光体混合物、蛍光体シート、並びに、半導体発光素子 (LED)と当該蛍光 体とを組み合わせた白色 LED照明を始めとする発光装置に関する。
背景技術
[0002] 現在、照明装置として用いられている放電式蛍光灯や白熱電球などは、水銀など の有害な物質が含まれている、寿命が短いといった諸問題を抱えている。ところが、 近年になって近紫外.紫外〜青色に発光する高輝度 LEDが次々と開発され、その L EDから発生する近紫外'紫外〜青色の光と、その波長域に励起帯を持つ蛍光体か ら発生する光と、を混ぜ合わせて白色光を作りだし、その白色光を次世代の照明とし て利用できないかといつた研究、開発が盛んに行われている。この白色 LED照明が 実用化されれば、電気エネルギーを光へ変換する効率が高く熱の発生が少ないこと 、 LEDと蛍光体力 構成されているため、従来の白熱電球のように切れることがなく 長寿命であること、水銀などの有害な物質を含んでいないこと、また照明装置を小型 化できるといった利点があり、理想的な照明装置が得られる。
[0003] LED照明の方式としては 2つ提案されており、一つは高輝度の赤色 LED、緑色 LE D、青色 LEDの 3原色 LEDを使用し白色を作り出すマルチチップ型方式と、他の一 つは近紫外 ·紫外〜青色に発光する高輝度 LEDと、その LED力 発生する近紫外 · 紫外〜青色の光で励起される蛍光体とを組み合わせて白色を作り出すワンチップ型 方式である。この 2つの方式を照明用という観点力も比較した場合、特にマルチチッ プ型方式に比べワンチップ型方式は、発光スペクトルがブロードなピークを持つ蛍光 体を使用しているため、発光スペクトルを太陽光のスペクトルに近づけることが可能と なり、演色性に優れた白色光を得ることが可能である。更に、駆動回路の単純化およ び小型化が可能、混色するための導光路が不要、各 LEDの駆動電圧や光出力の違 V、、温度特性などを考慮する必要がなく低コストと!/、つた多くの優位点を持って!/、る ため、次世代照明としては LEDと蛍光体とを組み合わせたワンチップ型方式に注目 が集まっている。
[0004] ワンチップ型方式の白色 LED照明としては、高輝度青色 LEDと、当該 LED力 発 生する青色の光により励起されて黄色発光する蛍光体とを組み合わせたものがあり、 例えば、高輝度青色 LEDと黄色蛍光体(Y,Gd) (Al,Ga) O : Ce(YAG : Ce)、 Tb
3 5 12 3
Al O : Ce、 Ca Sc Si O : Ce、 CaSc O: Ceなどと組み合わせたものがある。この
5 12 3 2 3 12 2 4
白色 LED照明は光の青色と黄色が補色関係にあることを利用しているため、使用す る蛍光体が少なくてすむといった特徴を持っている。特に、使用している黄色蛍光体 YAG: Ceは青色の波長 460nm付近に励起ピークを持って 、るため高効率に発光 させることができ、また、発光波長が輝度 (視感度)の最も高い 560nm付近にあるた め、高輝度の白色 LED照明を得ることが可能である。しかし、この白色 LED照明は 可視光領域の長波長側の発光、つまり赤色成分の発光が不足してしまうため、青み を帯びた白色発光となってしまい、電球のようなやや赤みを帯びた白色発光を得るこ とができず、演色性が悪いといった問題がある。ところが、最近になって発光ピ―ク波 長が黄色力 赤色の範囲にあり、発光スペクトルがブロ ドなピークを持つ蛍光体で 、更に、近紫外 '紫外〜青色の範囲に良好な励起帯を持つ、窒素を含有した蛍光体 が次々と開発され、この蛍光体をカ卩えることで演色性が改善されている。
[0005] また、他のワンチップ型方式として、近紫外'紫外発光する LEDと、当該 LEDから 発生する近紫外 ·紫外の光により励起され赤色 (R)発光する蛍光体、緑色 (G)発光 する蛍光体、青色 (B)発光する蛍光体力 得られる光の混色を利用して白色を得る ものがある。この R'G'B他の光により白色発光を得る方法は、 R'G'Bの組み合わせ や混合比などにより、白色光以外にも任意の発光色を得ることが可能であることや、 光の補色関係ではなぐ R'G'Bを使用した混色関係により白色発光を得ているため に演色性に優れて 、ると 、つた特徴を持って 、る。
[0006] そして、当該用途に使用される蛍光体としては、赤色蛍光体であれば、例えば、 Y
2
O S:Euゝ La O S:Euゝ 3.5MgO -0.5MgF -GeO: Mn、 (La,Mn,Sm) O S -Ga O: Euなどがあり、緑色蛍光体であれば、例えば、 ZnS:Cu,Al、 CaGa S: Eu、 SrG
3 2 4 a S : Eu、 BaGa S : Eu、 SrAl O: Eu、 BAM :Eu,Mn、 (Ba,Sr,Ca,Mg) SiO: Eu
2 4 2 4 2 4 2 4
、などがあり、青色蛍光体であれば、例えば、 BAM :Eu、 Sr (PO ) Cl:Eu、 ZnS:Ag
5 4 3
、 (Sr,Ca,Ba,Mg) (PO ) CI: Euなどがある。し力し、 3色の蛍光体のうち赤色蛍光
10 4 6 2
体は、他色の蛍光体がブロードなピークを持つ発光スペクトルを有するのに対し、シ ヤープな発光スペクトルを持っため演色性が悪くなつてしまうことや、高温での発光 特性が悪いといった問題があった。だが、こちらの問題についても上述のように、窒 素を含有した温度特性、励起帯特性に優れた、黄色から赤色に発光する蛍光体が 次々と開発され改善されつつある。
[0007] これら、発光スペクトルのピーク波長が黄色から赤色の範囲にあり、ブロードなピー クを持つ蛍光体で、更に、近紫外'紫外〜青色の範囲に良好な励起帯を持つ窒素を 含有した蛍光体の開発により、黄色から赤色に発光する蛍光体についてはおおよそ 問題を解決できた。上記窒素を含有した蛍光体としては、 Ca Si N: Eu、 Sr Si N:
2 5 8 2 5 8
Eu、 Ba Si N :Eu、 Ca (Al'Si) (Ο,Ν) : Eu(0<x≤ 1. 5)、 CaAl Si N :Eu、 Ca
2 5 8 x 12 16 2 4 8
SiN: Eu、 CaAlSiN: Euなどが代表的である。
2 3
[0008] ここで、上述した、白色 LEDを始めとした一般照明用の光源として必要な要素とし て、第一に明るさの要素と第二に演色性の要素が上げられる。第一の明るさの要素と は、光源としての明るさ (輝度)や発光効率を表し、 LEDでは使用する半導体素子の 発光効率、使用される蛍光体の発光効率、さらに白色 LED自体の構造にも大きく影 響される。第二の演色性とは光源による色の再現性を表す値であるが、一般的には、 当該演色性評価方法として、 JISZ8726 (1990)がある。そこで、以降、 JISZ8726の 評価方法を用いて演色性について説明をおこなう。
[0009] JISZ8726〖こよれば、光源の演色性は、平均演色評価数 (Ra)によって数値的に表 される。これは試料光源で照明した演色評価用の基準試料と、自然光を近似した基 準の光により照射した基準試料との色の違いを評価した値であり、それらに差が無く 、全く同じで有れば演色評価数 (Ra)は 100となる。光源の色温度が同じであっても、 演色評価数によって色の見え方が異なり、演色評価数が低ければ、色がくすんで暗 く見えてしまう。可視光全域にわたり均一な光の密度を持った光源であるほど、演色 性の良い光源といえる。
[0010] 黄色から赤色に発光する上述の新規蛍光体の開発により演色性については改善さ れ、次に問題となっているのは、発光ピーク波長が緑色から黄色の範囲にある蛍光 体である。
まず、前述した黄色蛍光体 YAG : Ceの問題について図 25を用いて説明する。図 2 5は、縦軸に発光強度 (相対強度)、横軸に励起光の波長を採ったグラフで、当該 Y AG: Ceを 300〜570nmの励起光で励起したとき発光する波長 559.2nmの光の強 度を測定して求めた励起スペクトルを示した図である。
高輝度青色 LEDと、当該 LEDから発生する青色の光により励起されて黄色発光す る YAG: Ce蛍光体とを組み合わせた白色 LED照明につ!/、ては、 YAG: Ce蛍光体 力 青色 LED力 発生する波長 460nmの光に対して高効率な励起帯を有し、更に 、発光ピ―ク波長が輝度 (視感度)の最も高い 560nm付近にあるため、高輝度の白 色 LED照明を得ることが可能である。しかし、図 25から明らかなように、当該 YAG : C e蛍光体は、波長 460nmの光で励起させた場合は 560nm付近の光を高効率で発 光する発光特性を有するが、励起帯域が狭いために、青色 LEDの青色光で励起さ せる場合において、当該青色 LEDの発光波長がこの青色 LEDの製造時のばらつき により変化して、 YAG : Ce蛍光体の最適な励起帯の範囲力 外れてしまうと、青色と 黄色の発光強度のバランスが崩れるという事態に至ることがある。当該事態に至ると、 青色光と黄色光とを合成させて得られる白色光の色調が変化するという問題が発生 する。
[0011] 更に、当該 YAG : Ce蛍光体は、可視光の緑色成分の波長域 (約 500〜550nm) での発光スペクトルも優れているため、近紫外'紫外 LEDと、赤色 (R)発光する蛍光 体、緑色 (G)発光する蛍光体、青色 (B)発光する蛍光体とを組合わせた白色 LED 照明の緑色蛍光体として使用できるとよいが、近紫外 ·紫外光で発光させた場合、当 該 YAG : Ce蛍光体は、近紫外 ·紫外 LEDの発光波長(図 25の 380〜410nm付近) において低効率な励起帯を有するために、十分な発光が得られず、高輝度白色 LE D照明を得ることができないという問題がある。
[0012] 次に、紫外 LEDと組み合わせて用いられる緑色蛍光体についての問題点を説明 する。近紫外'紫外発光する LEDと、当該 LEDから発生する近紫外'紫外の光により 励起され赤色 (R)発光する蛍光体、緑色 (G)発光する蛍光体、青色 (B)発光する蛍 光体とから得られる光の混色を利用した白色 LED照明については、現在、緑色蛍光 体として ZnS:Cu,Al、 SrAl O: Eu、 BAM :Eu,Mn、 (Ba,Sr,Ca,Mg) SiO: Euなど
2 4 2 4 が使用されている。これらの蛍光体の中でも、硫化物蛍光体は、熱が加わってしまう と発光強度が著しく落ちてしまう、さらに耐水性がないという問題がある。また、酸ィ匕 物蛍光体に関しては、耐水性、耐熱性の問題と共に、近紫外'紫外付近の広い範囲 にわたり効率の良!、励起帯を有して!/、るわけではな 、ため、近紫外'紫外 LEDが製 造時のばらつきによって発光波長にばらつきが生ずると、当該近紫外 ·紫外 LEDの 発光波長が、緑色蛍光体の最適励起範囲から外れてしまい、赤色と緑色と青色との 間で発光強度のバランスが崩れて、白色光の色調が変化してしまうといった問題があ る。
[0013] このため、近紫外'紫外〜青色の光により励起されて緑色〜黄色に発光する蛍光 体についても、近紫外 '紫外から青色の範囲に平坦で高効率な励起帯を持ち、プロ ードな発光スペクトルを持つ蛍光体で、更に、熱や水に対して耐久性に優れる YAG : Ce蛍光体や ZnS:Cu,Al蛍光体に代わる新規蛍光体への要求が高まって 、る。こ れらの要求に答えるため、緑色〜黄色に発光する蛍光体にっ 、ての研究が現在盛 んに行われており、最近ではシリコンナイトライド系蛍光体 (例えば、特許文献 1)、サ ィァロンを母体とする蛍光体 (例えば、特許文献 2、 3、 4参照)、酸窒化物蛍光体 (例 えば、特許文献 5、 6参照)が緑色〜黄色に発光する蛍光体として提案されている。
[0014] 特許文献 1:特開 2002— 322474号公報
特許文献 2:特開 2003 - 203504号公報
特許文献 3:特開 2003 - 206481号公報
特許文献 4:特開 2002— 363554号公報
特許文献 5:国際公開第 2004Z029177A1号パンフレット
特許文献 6:国際公開第 2004Z055910A1号パンフレット
発明の開示
発明が解決しょうとする課題 [0015] し力しながら、これら窒素を含有した蛍光体は熱や水に対して耐久性に優れ、近紫 外 ·紫外から青色の範囲に平坦な励起帯を持ち、発光スペクトルがプロ ドなピ ク を持つ蛍光体であるものの、近紫外'紫外〜青色の励起光により、励起された場合 の発光効率が満足すべき水準になぐ十分な発光強度および輝度が得られていない 。そのため、耐久性に優れた白色 LED照明を作製できるものの、発光強度および輝 度が不十分であるため、近紫外 ·紫外 LEDや青色 LED等と、上述の窒素を含有した 蛍光体とを組み合わせて白色 LED照明を作製した場合には、照明として最も重要で ある輝度が不十分なものになってしまう。また、今後の巿場の要請としても、発光効率 が良ぐ優れた輝度、演色性に優れた白色発光を始めとする多様な発光をおこなう 発光装置が求められると考えられる。
[0016] 本発明の目的は、上述の課題を考慮してなされたものであり、緑色〜黄色の範囲 にプロ—ドな発光スペクトルを持ち、また、近紫外'紫外から青色の範囲に広く平坦な 励起帯を持つ、発光効率および輝度に優れた蛍光体およびその製造方法、当該蛍 光体を用いた蛍光体混合物、蛍光体シート、並びに、白色 LED照明を始めとする発 光効率が良く優れた輝度 '演色性を有する発光装置を提供することにある。
課題を解決するための手段
[0017] 本発明者らは、優れた輝度、演色性に優れた発光装置または光源への対応に関し て研究を行った結果、発光効率が良ぐそして、まず 520nmから 580nmの範囲に発 光スペクトルの最大ピーク(以下、発光スペクトルの最大ピークを、単に最大ピークと 記載する場合がある。)をもち、紫外から可視光 (例えば青色光)に渡る広範囲な波 長の光に対して励起帯を有し、発光波長がブロードである黄色または緑色蛍光体と、 他色の蛍光体とを組み合わせれば、上述の課題を解決できることに想到した。
[0018] 即ち、当該緑色蛍光体と、同じく紫外から可視光 (例えば青色光)に渡る広範囲な 波長の光に対して励起帯を有し、波長 590nmから 680nmの範囲内に発光スぺタト ルの最大ピークを有する赤色蛍光体、および Zまたは、 420nm力ら 500nmの範囲 内に最大ピークをもつ青色蛍光体との蛍光体を組み合わせて蛍光体混合物とするこ とにより、当該蛍光体混合物と、多様な光源 (例えば、紫外光から青色光の光源)とを 組み合わせれば、発光効率が良ぐ高輝度で演色性に優れた白色発光を始めとする 多様な発光を行うことのできる発光装置を作製できることに想到した。
[0019] そのため、 520nmから 580nmの範囲に発光スペクトルの最大ピークをもつ既知の 緑色や黄色蛍光体、および特許文献 3に記載された蛍光体につ ヽてまず検討を行 なったが、当該既知の緑色や黄色蛍光体は、励起光として青色 LEDや紫外 LEDを 用いて発光させても発光効率が低ぐ高輝度な発光を得ることができないことが判明 した。
[0020] そこで、本発明者らは、上述の課題を解決するため、多種の窒素を含有した蛍光体 組成に関する研究を進めた結果、 Ceや Eu原子を容易に置換できるサイトを持つ母 体構造を有する蛍光体を調製することで、近紫外'紫外から青色の範囲に広く平坦 な励起帯を持ち、緑色〜黄色の範囲に発光強度および輝度が強ぐ発光スペクトル がブロードなピークを持つ新規な蛍光体を得ることができることが判明した。さらに、 付活剤として Euなどを用いた場合には、黄色〜赤色の範囲で発光強度および輝度 に優れた蛍光体が得られることが判明した。
[0021] さらに、上記当該緑色蛍光体と、波長 420nmから 500nmの範囲内に発光スぺタト ルの最大ピ―クを有する 1種類以上の青色蛍光体および Zまたは、波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有する 1種類以上の赤色蛍光体と を混合した蛍光体混合物、更に、当該蛍光体混合物と、波長 300nmから 500nmの 範囲のいずれかの発光をおこなう発光部とを有する発光装置を発明することで上述 の課題を解決することができた。
[0022] 上述の課題を解決する第 1の構成は、一般式 MmAaBbOoNn:Zで表記される蛍 光体であって (M元素は II価の価数をとる 1種類以上の元素であり、 A元素は III価の 価数をとる 1種類以上の元素であり、 B元素は IV価の価数をとる 1種類以上の元素で あり、 Oは酸素であり、 Nは窒素であり、 Z元素は 1種類以上の付活剤である。 ),
4. 0< (a+b) /m< 7. 0、 a/m≥0. 5、 b/a> 2. 5、 n>o、 n= 2/3m+a+4 Z3b— 2Z3oであり、波長 300nmから 500nmの範囲の光で励起したとき、発光ス ベクトルにおけるピーク波長が 500nmから 650nmの範囲にあることを特徴とする蛍 光体である。
[0023] 第 2の構成は、第 1の構成に記載の蛍光体であって、 0. 5≤a/m≤2. 0、 3. 0<b/m< 7. 0、 0< o/m≤4. 0であることを特徴とする 蛍光体である。
[0024] 第 3の構成は、第 1または第 2の構成に記載の蛍光体であって、
0. 8≤a/m≤l. 5、 3. 0<b/m< 6. 0、 0< o/m≤3. 0であることを特徴とする 蛍光体である。
[0025] 第 4の構成は、第 1から第 3の構成に記載の蛍光体であって、
1. K a/m≤l. 5、 3. 5≤b/m≤4. 5、0< o/m≤l. 5であることを特徴とする 蛍光体。
[0026] 第 5の構成は、第 1から第 4の構成のいずれかに記載の蛍光体であって、
M元素は Mg、 Ca、 Sr、 Ba、 Zn、 II価の原子価をとる希土類元素、力 選択される 1 種類以上の元素であり、
A元素は Al、 Ga、 In、 Tl、 Υ、 Sc、 Ρ、 As、 Sb、 Bi、力 選択される 1種類以上の元 素であり、
B元素は Si、 Ge、 Sn、 Ti、 Hf、 Mo、 W、 Cr、 Pb、 Zr、から選択される 1種類以上の 元素であり、
Z元素は希土類元素、遷移金属元素力 選択される 1種類以上の元素であることを 特徴とする蛍光体である。
[0027] 第 6の構成は、第 1から第 5の構成のいずれかに記載の蛍光体であって、
M元素は Mg、 Ca、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、 A元素は Al、 Ga、 In力 選択される 1種類以上の元素であり、
B元素は Siおよび Zまたは Geであり、
Z元素は Eu、 Ce、 Pr、 Tb、 Mnから選択される 1種類以上の元素であることを特徴 とする蛍光体である。
[0028] 第 7の構成は、第 1から第 6の構成のいずれかに記載の蛍光体であって、
M元素は Srであり、 A元素は A1であり、 B元素は Siであり、 Z元素は Euおよび Zま たは Ceであることを特徴とする蛍光体である。
[0029] 第 8の構成は、第 1から第 7の構成のいずれかに記載の蛍光体であって、
一般式 MmAaBbOoNn:Zzと表記したとき、 M元素と Z元素とのモル比である zZ( m+z)の値力 0.0001以上、 0.5以下であることを特徴とする蛍光体である。
[0030] 第 9の構成は、第 1から第 8の構成のいずれかに記載の蛍光体であって、
19.5重量%以上、 29.5重量%以下の Srと、 5.0重量%以上、 16.8重量%以下の A1と、 0.5重量%以上、 8.1重量%以下の Oと、 22.6重量%以上、 32.0重量%以下 の Nと、 0.0を超え 3.5重量0 /0以下の Ceとを含み、波長 350nmから 500nmの範囲の 1種類以上の単色光または連続光が励起光として照射された際、発光スペクトルに おけるピーク波長が 500〜600nmの範囲にあり、発光スペクトルの色度(x,y)の が 0.3000〜0.4500、 y力 ^0.5000〜 0.6000の範囲にあることを特徴とする 光体。 である。
[0031] 第 10の構成は、第 1から第 8の構成のいずれかに記載の蛍光体であって、
19.5重量%以上、 29.5重量%以下の Srと、 5.0重量%以上、 16.8重量%以下の A1と、 0.5重量%以上、 8.1重量%以下の Oと、 22.6重量%以上、 32.0重量%以下 の Nと、 0.0を超え 3.5重量0 /0以下の Euとを含み、、波長 350nm力ら 500nmの範囲 の 1種類以上の単色光または連続光が励起光として照射された際、発光発光スぺク トルにおけるピーク波長が 550〜650nmの範囲にあり、発光スペクトルの色度(x,y) の X力0.4500〜0.6000、 カ 0.3500〜0.5000の範囲にぁることを特徴とする 光 体である。
[0032] 第 11の構成は、第 10の構成に記載の蛍光体であって、
波長 350nmから 500nmの範囲の単色光を励起光として照射された際、 当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も大きくする励起光を照射したときの当該最大ピークのピーク強度を P
Hとし、 当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も小さくする励起光を照射したときの当該最大ピークのピーク強度を P
しとしたとき、
(P -P )/P X 100≤ 20であることを特徴とする蛍光体である。
H L H
[0033] 第 12の構成は、第 1から第 11の構成のいずれかに記載の蛍光体であって、
25°Cにおいて、波長 300nmから 500nmの範囲にある所定の単色光を励起光とし て照射された際の発光スペクトル中における最大ピークの相対強度の値を P
25とし、
200°Cにおいて、前記所定の単色光が励起光として照射された際の、前記最大ピ ークの相対強度の値を P としたとき、
200
(P — P )/P X 100≤ 35であることを特徴とする蛍光体である。
25 200 25
[0034] 第 13の構成は、第 1から第 12の構成のいずれかに記載の蛍光体であって、
粒径 50 m以下の 1次粒子と、当該 1次粒子が凝集した凝集体を含み、当該 1次 粒子および凝集体を含んだ蛍光体粉末の平均粒子径 (D50)が 1. O /z m以上、 50.
0 μ m以下であることを特徴とする蛍光体である。
[0035] 第 14の構成は、第 1から第 13の構成のいずれかに記載の蛍光体であって、
粒径 20 m以下の 1次粒子と、当該 1次粒子が凝集した凝集体を含み、当該 1次 粒子および凝集体を含んだ蛍光体粉末の平均粒子径 (D50)が 1. O /z m以上、 20.
0 μ m以下であることを特徴とする蛍光体である。
[0036] 第 15の構成は、第 1から第 14の構成のいずれかに記載の蛍光体を製造する蛍光 体の製造方法であって、焼成用るつぼとして窒化物力 なるるつぼを使用し、窒素ガ ス、希ガス、およびアンモニアガスカゝら選択される 1種類以上のガスを含んだ雰囲気 中で 1400°C以上、 2000°C以下の温度で焼成することを特徴とする蛍光体の製造 方法である。
[0037] 第 16の構成は、第 15の構成に記載の蛍光体の製造方法であって、
炉前記焼成炉内の雰囲気ガスを 0. OOlMpa以上、 0. 5MPa以下の加圧状態とす ることを特徴とする蛍光体の製造方法である。
[0038] 第 17の構成は、第 15または第 16の構成に記載の蛍光体の製造方法であって、 窒化物力 なるるつぼ力 ¾Nるつぼであることを特徴とする蛍光体の製造方法であ る。
[0039] 第 18の構成は、第 15から第 17の構成のいずれかに記載の蛍光体の製造方法で あって、
窒素ガス、希ガス、およびアンモニアガス力 選択される 1種類以上を含むガスを、 炉内に 0. lmlZmin以上流した状態で焼成することを特徴とする蛍光体の製造方 法である。
[0040] 第 19の構成は、第 18の構成に記載の蛍光体の製造方法であって、
前記該焼炉内の雰囲気ガスとして、窒素ガスを 80%以上含むガスを用いることを特 徴とする蛍光体の製造方法である。
[0041] 第 20の構成は、第 15から第 19の構成のいずれかに記載の蛍光体の製造方法で あって、
10 m以下の原料粒子を用い、原料を粉末状のまま焼成することを特徴とする蛍光 体の製造方法。
[0042] 第 21の構成は、第 1から第 14の構成のいずれかに記載の蛍光体と、波長 300nm 力も 500nmの範囲にある前記励起光により励起されたとき、波長 420nm力ら 500η mの範囲内に発光スペクトルの最大ピ クを有する 1種類以上の青色蛍光体、およ び Zまたは、波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有 する 1種類以上の赤色蛍光体とを、含むことを特徴とする蛍光体混合物である。
[0043] 第 22の構成は、第 1から第 14の構成の 、ずれかに記載の蛍光体と、波長 300nm 力も 420nmの範囲にある前記励起光により励起されたとき、波長 420nm力ら 500η mの範囲内に発光スペクトルの最大ピ クを有する 1種類以上の青色蛍光体と、波 長 590nmカゝら 680nmの範囲内に発光スペクトルの最大ピ クを有する 1種類以上 の赤色蛍光体とを、含むことを特徴とする蛍光体混合物である。
[0044] 第 23の構成は、第 21または第 22の構成に記載の蛍光混合物であって、混合物を 構成する各蛍光体は波長 300nmから 500nmの範囲にある所定の励起光により励 起されたときの温度 25°Cにおける発光強度を P とし、前記所定の励起光を照射され
25
たときの温度 200°Cにおける発光強度を P としたとき、((P — P ) ZP )力 30
200 25 200 25
%以下であることを特徴とする蛍光体混合物である。
[0045] 第 24の構成は、波長 300nmから 420nmの範囲にある前記励起光により励起され たときの発光スペクトルにおいて、相関色温度は 7000Kから 2500Kの範囲にあり、 波長 420nmから 750nmの範囲に 3つ以上の発光ピークを有し、且つ波長 420nm 力も 780nmの範囲に途切れることな 、連続的スペクトルを有することを特徴とする第 21または第 23の構成に記載の蛍光体混合物である。
[0046] 第 25の構成は、前記波長 590nmから 680nmの範囲内に発光スペクトルの最大ピ ークを有する赤色蛍光体は、組成式 MmAaBbOoNn:Z (但し、前記 M元素は、 Ca 、 Mg、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、前記 A元素は、 Al、 Ga、 Inから選択される 1種類以上の元素であり、前記 B元素は、 Si、 Ge、 Snから選択され る 1種類以上の元素であり、前記 Z元素は、希土類元素、遷移金属元素から選択され る 1種類以上の元素であり、 n= 2/3m+a+4/3b- 2/3o, m= l、 a≥0、 b≥m 、 n>o、 o≥0)と表記されることを特徴とする第 21から第 24の構成のいずれかに記 載の蛍光体混合物である。
[0047] 第 26の構成は、前記波長 590nmから 680nmの範囲内に発光スペクトルの最大ピ ークを有する赤色蛍光体は、 m=a=b = l、 n= 3であり組成式 CaAlSiN: Euを有
3 することを特徴とする第 25の構成に記載の蛍光体混合物である。
[0048] 第 27の構成は、前記波長 420nmから 500nmの範囲内に発光スペクトルの最大ピ ークを有する青色蛍光体は、 BAM :Eu(BaMgAl O : Eu)、(Sr,Ca,Ba,Mg) (PO
10 17 10
) CI: Euから選択される 1種類以上の蛍光体であることを特徴とする第 21から第 26
4 6 2
の構成の 、ずれか〖こ記載の蛍光体混合物である。
[0049] 第 28の構成は、前記蛍光体混合物は平均粒径 (D50)が: L m以上、 50 μ m以下 の蛍光体力も構成されることを特徴とする第 21から第 27の構成のいずれかに記載の 蛍光体混合物である。
[0050] 第 29の構成は、第 1から第 14の構成のいずれかに記載の蛍光体、または第 21か ら 28の構成のいずれかに記載の蛍光体混合物が、榭脂またはガラス中に分散され て!、るものであることを特徴とする蛍光体シ一トである。
[0051] 第 30の構成は、第 1から第 14の構成のいずれかに記載の蛍光体と第 1の波長の光 を発する発光部とを有し、前記第 1の波長の光の一部または全部を励起光とし、前記 蛍光体から前記第 1の波長と異なる波長の光を発光させることを特徴とする発光装置 である。
[0052] 第 31の構成は、第 21から第 28の構成のいずれかに記載の蛍光体混合物と第 1の 波長の光を発する発光部とを有し、前記第 1の波長の光の一部または全部を励起光 とし、前記蛍光体から前記第 1の波長と異なる波長の光を発光させることを特徴とす る発光装置である。
[0053] 第 32の構成は、第 29の構成の蛍光体シートと第 1の波長の光を発する発光部とを 有し、前記第 1の波長の光の一部または全部を励起光とし、前記蛍光体から前記第 1 の波長と異なる波長の光を発光させることを特徴とする発光装置である。
[0054] 第 33の構成は、第 30から第 32の構成のいずれかに記載の発光装置であって、 第 1の波長とは、 350ηπ!〜 500nmの波長であることを特徴とする発光装置である。
[0055] 第 34の構成は、前記発光装置の相関色温度が、 10000Kから 2000Kの範囲にあ ることを特徴とする第 30から第 33の構成のいずれかに記載の発光装置である。
[0056] 第 35の構成は、前記発光装置の相関色温度が、 7000Kから 2500Kの範囲にある ことを特徴とする第 30から第 34の構成のいずれかに記載の発光装置である。
[0057] 第 36の構成は、前記発光装置の平均演色評価数 Raが、 80以上であることを特徴 とする第 30から第 35の構成のいずれかに記載の発光装置である。
[0058] 第 37の構成は、前記発光装置の特殊演色評価数 R15が、 80以上であることを特 徴とする第 30から第 36の構成のいずれかに記載の発光装置である。
[0059] 第 38の構成は、前記発光装置の特殊演色評価数 R9が、 60以上であることを特徴 とする第 30から第 37の構成のいずれかに記載の発光装置である。
[0060] 第 39の構成は、前記発光部が発光ダイォ―ド (LED)であることを特徴とする第 30 力も第 38の構成の 、ずれかに記載の発光装置である。
[0061] 第 40の構成は、一般式 MmAaBbOoNn:Zで表記される蛍光体であって
(M元素は II価の価数をとる 1種類以上の元素であり、 A元素は III価の価数をとる 1種 類以上の元素であり、 B元素は IV価の価数をとる 1種類以上の元素であり、 Oは酸素 であり、 Nは窒素であり、 Z元素は 1種類以上の付活剤である。 ),
4.0< (a+b)Zm< 7.0、 a/m≥0.5、 b/a> 2.5, n>o、 n= 2/3m+a+4/3b
- 2Z3oであることを特徴とする蛍光体である。
[0062] 第 41の構成は、第 40の構成に記載の蛍光体であって、
0.5≤a/m≤1.5、 3.5<b/m< 6.5, 0く o/m< 4.0であることを特徴とする蛍 光体である。
[0063] 第 42の構成は、第 40または第 41の構成に記載の蛍光体であって、
0.8≤a/m≤1.2、 4.0≤b/m≤6.0、 0く o/m≤ 3.0であることを特徴とする蛍 光体である。
[0064] 第 43の構成は、第 40から第 42の構成のいずれかに記載の蛍光体であって、 M元素は Mg、 Ca、 Sr、 Ba、 Zn、 II価の原子価をとる希土類元素、力 選択される 1 種類以上の元素であり、
A元素は Al、 Ga、 In、 Tl、 Υ、 Sc、 Ρ、 As、 Sb、 Bi、から選択される 1種類以上の元 素であり、
B元素は Si、 Ge、 Sn、 Ti、 Hf、 Mo、 W、 Cr、 Pb、 Zr、から選択される 1種類以上の 元素であり、
Z元素は希土類元素、遷移金属元素力 選択される 1種類以上の元素であることを 特徴とする蛍光体である。
[0065] 第 44の構成は、第 40から第 43の構成のいずれかに記載の蛍光体であって、
M元素は Mg、 Ca、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、 A元素は Al、 Ga、 In力 選択される 1種類以上の元素であり、
B元素は Siおよび Zまたは Geであり、
Z元素は Eu、 Ce、 Pr、 Tb、 Mn力 選択される 1種類以上の元素であることを特徴 とする蛍光体である。
[0066] 第 45の構成は、第 40から第 44の構成のいずれかに記載の蛍光体であって、
M元素は Srであり、 A元素は A1であり、 B元素は Siであり、 Z元素は Euおよび Zま たは Ceであることを特徴とする蛍光体である。
[0067] 第 46の構成は、第 40から第 45の構成のいずれかに記載の蛍光体であって、
一般式 MmAaBbOoNn:Zzと表記したとき、 M元素と Z元素とのモル比である zZ( m+z)の値力 0.0001以上、 0.5以下であることを特徴とする蛍光体である。
[0068] 第 47の構成は、第 40から第 46の構成のいずれかに記載の蛍光体であって、
Sr Al Si O N : Ce、 SrAISi ON: Ce、 Sr Al Si O N : Ce、 Sr Al Si O N
6 6 18 3 32 3 5 3 3 9 6 13 6 6 24 3 40
: Ce、 Sr Al Si O N : Ce、 Sr Al Si O N : Ce、 Sr Al Si O N : Ce、 Sr Al S
3 3 12 3 19 3 3 12 6 17 6 6 27 3 44 2 2 i O N : Ce、 Sr Al Si O N : Ce、 Sr Al Si ON : Ce、 Sr Al Si O N : Ce、
9 2 14 6 6 27 12 38 2 2 10 16 3 3 15 3 23
SrAISi O N: Ce、 Sr Al Si O N : Ce、 SrAISi ON: Ce、 Sr Al Si O N : Ce
5 2 7 6 6 36 3 56 6 9 3 3 18 6 25
、 Sr Al Si O N : Eu、 SrAISi ON: Eu、 Sr Al Si O N : Eu、 Sr Al Si O N
6 6 18 3 32 3 5 3 3 9 6 13 6 6 24 3 40
: Eu、 Sr Al Si O N : Eu、 Sr Al Si O N : Eu、 Sr Al Si O N : Eu、 Sr Al S
3 3 12 3 19 3 3 12 6 17 6 6 27 3 44 2 2 i O N : Eu、 Sr Al Si O N : Eu、 Sr Al Si ON : Eu、 Sr Al Si O N : Euゝ
9 2 14 6 6 27 12 38 2 2 10 16 3 3 15 3 23 SrAISi O N : Eu、 Sr Al Si O N : Eu、 SrAISi ON : Eu、 Sr Al Si O N : Eu
5 2 7 6 6 36 3 56 6 9 3 3 18 6 25 で表記されることを特徴とする蛍光体である。
[0069] 第 48の構成は、第 40から第 47の構成のいずれかに記載の蛍光体であって、
20.0重量%以上、 27.0重量%以下の Srと、 5.0重量%以上、 9.0重量%以下の A1 と、 30.0重量%以上、 39.0重量%以下の Siと、 0.5重量%以上、 6.0重量%以下の Oと、 26.0重量%以上、 32.0重量%以下の Nと、 0を超え 3.5重量%以下の Ceとを 含み、波長 350nmから 500nmの範囲の 1種類以上の単色光または連続光が励起 光として照射された際、発光スペクトルにおけるピーク波長が 500〜 600nmの範囲 にあり、発光スぺク卜ノレの色度(x,y)の X力0.3500〜0.4500、 y力0.5000〜0.6000 の範囲にあることを特徴とする蛍光体である。
[0070] 第 49の構成は、第 40から第 47の構成のいずれかに記載の蛍光体であって、
20.0重量%以上、 27.0重量%以下の Srと、 5.0重量%以上、 9.0重量%以下の A1 と、 30.0重量%以上、 39.0重量%以下の Siと、 0.5重量%以上、 6.0重量%以下の Oと、 26.0重量%以上、 32.0重量%以下の Nと、 0を超え 3.5重量%以下の Euとを 含み、波長 350nmから 550nmの範囲の 1種類以上の単色光または連続光が励起 光として照射された際、発光発光スペクトルにおけるピ―ク波長が 550〜650nmの 範囲にあり、発光スぺク卜ノレの色度(x,y)の X力0.4500〜0.6000、 y力0.3500〜0. 5000の範囲にあることを特徴とする蛍光体である。
[0071] 第 50の構成は、第 49の構成に記載の蛍光体であって、
波長 350nmから 550nmの範囲の単色光を励起光として照射された際、 当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も大きくする励起光を照射したときの当該最大ピークのピーク強度を P
Hとし、 当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も小さくする励起光を照射したときの当該最大ピークのピーク強度を P
しとしたとき、
(P — P )/P ≤ 0.20であることを特徴とする蛍光体である。
H L H
[0072] 第 51の構成は、第 40から第 50の構成のいずれかに記載の蛍光体であって、
CoKひ線による粉末 X線回折パタ—ンにおいて、ブラック角度 (2 Θ )が 28.5° 〜29 .5。 、 35.5。 〜36.5° 、 41.0。 〜42.0。 の範囲にある各々の最大のピークをそれ ぞれ a,b,cとし、 bに対する aのピ―ク強度比を I(aZb)、 bに対する cのピ―ク強度比を I (cZb)とした場合、 0.20<I(a/b),I(c/b)< l. 50であることを特徴とする蛍光体で ある。
[0073] 第 52の構成は、第 40から第 51の構成のいずれかに記載の蛍光体であって、
25°Cにおいて、波長 350nmから 550nmの範囲にある所定の単色光を励起光とし て照射された際の発光スペクトル中における最大ピークの相対強度の値を P
25とし、
200°Cにおいて、前記所定の単色光が励起光として照射された際の、前記最大ピ ークの相対強度の値を P としたとき、
200
(P — P )/P X 100≤ 35であることを特徴とする蛍光体である。
25 200 25
[0074] 第 53の構成は、第 40から第 52の構成のいずれかに記載の蛍光体であって、
この蛍光体は粉末状であることを特徴とする蛍光体である。
[0075] 第 54の構成は、第 53の構成に記載の蛍光体であって、
粒径 20 m以下の 1次粒子と、当該 1次粒子が凝集した凝集体を含み、当該 1次 粒子および凝集体を含んだ蛍光体粉末の平均粒子径 (D50)が 1.0 m以上、 20.0 μ m以下であることを特徴とする蛍光体である。
[0076] 第 55の構成は、
組成式 MmAaBbOoNn:Z (但し、 M元素は II価の価数をとる 1種類以上の元素で あり、 A元素は III価の価数をとる 1種類以上の元素であり、 B元素は IV価の価数をと る 1種類以上の元素であり、 Oは酸素であり、 Nは窒素であり、 Z元素は、前記蛍光体 中において付活剤として作用する元素であり、 4.0〈(a+b)Zm〈7.0、 0.5≤a/m≤ 2.0、 3.0≤b/m≤7.0, 0く oZm≤5.0、 n= 2Z3m+a+4Z3b— 2,3οである。;) で表記され、波長 300nmから 420nmの範囲にある 1種類以上の単色光または連続 光である励起光により励起されたとき、
波長 520nmから 580nmの範囲内に発光スペクトルの最大ピークを有する緑色蛍光 体と、
波長 300nm力も 420nmの範囲にある前記励起光により励起されたとき、波長 420 nmから 500nmの範囲内に発光スペクトルの最大ピークを有する 1種類以上の青色 蛍光体と、波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有す る 1種類以上の赤色蛍光体とを、含むことを特徴とする蛍光体混合物である。
[0077] 第 56の構成は、
前記波長 520nmから 580nmの範囲内に発光スペクトルの最大ピークを有する緑 色蛍光体は、 0.5≤a/m≤2.0, 4.0≤b/m≤6.0, 0〈oZm≤3.0である蛍光体を 含むことを、特徴とする第 55の構成に記載の蛍光体混合物である。
[0078] 第 57の構成は、
前記 M元素は、 Ca、 Mg、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、 前記 A元素は、 Al、 Ga、 Inから選択される 1種類以上の元素であり、
前記 B元素は、 Si、 Ge、 Snから選択される 1種類以上の元素であり、
前記 Z元素は、希土類元素、遷移金属元素から選択される 1種類以上の元素であ る、ことを特徴とする第 55の構成または第 56の構成に記載の蛍光体混合物である。
[0079] 第 58の構成は、
前記 Z元素は、 Ceであることを特徴とする第 55から第 57の構成の 、ずれかに記載 の蛍光体混合物である。
[0080] 第 59の構成は、
前記各蛍光体は、波長 300nm力 420nmの範囲にある所定の励起光により励起 されたときの温度 25°Cにおける発光強度を P とし、前記所定の励起光を照射された
25
ときの温度 200°Cにおける発光強度を P としたとき、((P -P ) /P )力、30%
200 25 200 25 以下であることを特徴とする第 55から第 58の構成のいずれかに記載の蛍光体混合 物である。
[0081] 第 60の構成は、
波長 300nm力 420nmの範囲にある前記励起光により励起されたときの発光スぺ ク卜ノレにお 、て、ネ目関色温度 ίま 7000K力ら 2000Kの範囲にあり、波長 420nm力ら 6 80nmの範囲に 3つ以上の発光ピ クを有し、且つ波長 420nmから 780nmの範囲 に途切れることない連続的スペクトルを有することを特徴とする第 55から第 59の構成 の!、ずれかに記載の蛍光体混合物である。
[0082] 第 61の構成は、
前記波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有する赤 色蛍光体は、糸且成式 MmAaBbOoNn:Z (但し、前記 M元素は、 Ca、 Mg、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、前記 A元素は、 Al、 Ga、 Inから選択され る 1種類以上の元素であり、前記 B元素は、 Si、 Ge、 Snから選択される 1種類以上の 元素であり、前記 Z元素は、希土類元素、遷移金属元素から選択される 1種類以上の 元素であり、 n= 2Z3m+a+4Z3b— 2Z3o、 m= l、 a≥0、 b≥m、 n〉0、 o〉0)と 表記されることを特徴とする第 55から第 60の構成のいずれかに記載の蛍光体混合 物である。
[0083] 第 62の構成は、
前記波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有する赤 色蛍光体は、 m=a=b = l、 n= 3であり組成式 CaAlSiN: Euを有することを特徴と
3
する第 55から第 61の構成のいずれかに記載の蛍光体混合物である。
[0084] 第 63の構成は、
前記波長 420nmから 500nmの範囲内に発光スペクトルの最大ピークを有する青 色蛍光体は、 BAM:Eu(BaMgAl O : Eu), (Sr,Ca,Ba,Mg) (PO ) CI: Euから選
10 17 10 4 6 2 択される 1種類以上の蛍光体であることを特徴とする第 55から第 62の構成のいずれ かに記載の蛍光体混合物である。
[0085] 第 64の構成は、
前記蛍光体混合物は、各蛍光体の平均粒径 (D50)が: L m以上、 20 m以下の 粒子であることを特徴とする第 55から第 63の構成のいずれかに記載の蛍光体混合 物である。
[0086] 第 65の構成は、
一般式 MmAaBbOoNn:Zで表記される蛍光体であって(M元素は II価の価数をと る 1種類以上の元素であり、 A元素は ΠΙ価の価数をとる 1種類以上の元素であり、 B 元素は IV価の価数をとる 1種類以上の元素であり、 Oは酸素であり、 Nは窒素であり、 Z元素は 1種類以上の付活剤である。)、 4.0く (a+b)Zmく 7.0、 n>o、 1.2< a/m ≤2.0、 3.0≤bZm≤4.5、 0< o/m≤1.5, n= 2Z3m+a+4Z3b— 2Z3oであ り、
波長 300nmから 500nmの範囲の光で励起したとき、発光スペクトルにおけるピー ク波長が 500nmから 600nmの範囲にあることを特徴とする蛍光体である。
[0087] 第 66の構成は、
第 65の構成に記載の蛍光体であって、
M元素は Mg、 Ca、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、 A元素は Al、 Ga、 In力 選択される 1種類以上の元素であり、
B元素は Siおよび Zまたは Geであり、
Z元素は Eu、 Ce、 Pr、 Tb、 Yb、 Mnから選択される 1種類以上の元素であることを 特徴とする蛍光体である。
[0088] 第 67の構成は、
第 65または第 66の構成に記載の蛍光体であって、
M元素が Sr、 A元素が Al、 B元素が Si、 Z元素が Ceであることを特徴とする蛍光体 である。
[0089] 第 68の構成は、
第 65から第 67の構成のいずれかに記載の蛍光体であって、
一般式を MmAaBbOoNn:Zzと表記したとき、 M元素と Z元素とのモル比である z
Z(m+z)の値力 0.0001以上、 0.5以下であることを特徴とする蛍光体である。
[0090] 第 69の構成は、
第 65から第 68の構成のいずれかに記載の蛍光体であって、
25°Cにおいて、波長 300nmから 500nmの範囲にある所定の単色光を励起光とし て照射された際の発光スペクトル中における最大ピークの相対強度の値を P
25とし、
100°Cにおいて、前記所定の単色光が励起光として照射された際の、前記最大ピ ークの相対強度の値を P としたとき、
100
(P — P )/P X 100≤ 10であることを特徴とする蛍光体である。
25 100 25
[0091] 第 70の構成は、
第 65から第 69の構成のいずれかに記載の蛍光体であって、
粒径 50.0 m以下の 1次粒子と、該 1次粒子が凝集した凝集体とを含み、該 1次粒 子および凝集体を含んだ蛍光体粉体の平均粒子径 (D50)が、 1.0 m以上、 50.0 μ m以下であることを特徴とする蛍光体である。 発明の効果
[0092] 第 1から第 10の 、ずれかの構成に記載の蛍光体は、緑色から黄色、または黄色か ら赤色の範囲に発光スペクトルのプロ ドなピ クを持ち、近紫外 ·紫外から青色の 範囲に広く平坦な励起帯を有し、発光強度および輝度が高い上に、熱や水に対する 耐久性に優れた蛍光体である。
[0093] 第 11の構成に記載の蛍光体は、波長 350nmから 500nmの範囲において平坦な 励起帯を有するため、ワンチップ型白色 LED照明の励起光として使用されている近 紫外'紫外 LED、青色 LEDの発光波長に多少のばらつきがあっても、各色の発光強 度のノ ランスは崩れることがなぐ安定して同じ色調の白色 LED照明を製造すること が可能であり、品質および製造コストの両面でメリットがある。
[0094] 第 12の構成に記載の蛍光体は、 200°Cと高温でも高い発光強度および高輝度を 有するため、発光時には高温であると考えられる LEDチップ上に塗布した場合でも、 発光強度および輝度が低下しないため、高輝度なワンチップ型白色 LED照明を得る ことが可能となる。また、熱による発光特性に変化が少ないため、白色 LED照明の発 光色の設計が容易となる。
[0095] 第 13、 14の構成に記載の蛍光体によれば、得られた蛍光体が粉末状であるため、 ぺ—ストとして様々な場所に塗布することができる。また、当該蛍光体は、粒径が 1. 0 /ζ πι〜 50. O /z mさらに好ましくは、粒径力 Si. 0 /ζ πι〜 20. O /z mであるため塗布密 度を上げることができ、発光強度および輝度が高ぐ色むらの少ない塗布膜を得るこ とが可能となる。
[0096] 第 15から第 20の構成のいずれかに記載の蛍光体の製造方法によれば、第 1から 第 12の構成のいずれかに記載の蛍光体を、安価な製造コストで容易に製造すること ができる。
[0097] 第 21から第 28の構成に係る蛍光体混合物は、所定の励起光を照射されたとき、効 率よく発光し、輝度、演色性に優れた白色を始めとする光を発光することができる。
[0098] 第 29の構成に記載の蛍光体シートによれば、当該蛍光体シートと種々の発光部と を組み合わせることで、多様な発光装置を容易に製造することが出来る。
[0099] 第 30から第 39の構成のいずれかに記載の発光装置によれば、所望の発光色を有 し、発光強度および輝度が高い、高効率な発光装置を得ることができる。
[0100] 第 40から第 49の構成の 、ずれかに記載の蛍光体は、緑色から黄色、または黄色 力 赤色の範囲に発光スペクトルのプロ ドなピークを持ち、近紫外 ·紫外から青色 の範囲に広く平坦な励起帯を有し、発光強度および輝度が高い上に、熱や水に対 する耐久性に優れた蛍光体である。
[0101] 第 50の構成に記載の蛍光体は、波長 350nmから 550nmの範囲において平坦な 励起帯を有するため、ワンチップ型白色 LED照明の励起光として使用されている近 紫外'紫外 LED、青色 LEDの発光波長に多少のばらつきがあっても、各色の発光強 度のノランスは崩れることがなぐ安定して同じ色調の白色 LED照明を製造すること が可能であり、品質および製造コストの両面でメリットがある。
[0102] 第 52の構成に記載の蛍光体は、 200°Cと高温でも高い発光強度および高輝度を 有するため、発光時には高温であると考えられる LEDチップ上に塗布した場合でも、 発光強度および輝度が低下しないため、高輝度なワンチップ型白色 LED照明を得る ことが可能となる。また、熱による発光特性に変化が少ないため、白色 LED照明の発 光色の設計が容易となる。
[0103] 第 53または第 54の構成に記載の蛍光体によれば、得られた蛍光体が粉末状であ るため、ペーストとして様々な場所に塗布することができる。また、当該蛍光体は、粒 径が 1.0 m〜20.0 mであるため塗布密度を上げることができ、発光強度および 輝度の高い塗布膜を得ることが可能となる。
[0104] 第 55から第 64の構成に係る蛍光体混合物は、所定の励起光を照射されたとき、効 率よく発光し、輝度、演色性に優れた白色を始めとする光を発光する。
[0105] 第 65から第 70の構成のいずれかに記載の蛍光体は、近紫外 ·紫外力も青色の範 囲に平坦な励起帯を持ち、輝度を稼ぐことのできる波長 500nmから 600nm付近に 発光のピークを有しながらブロードな発光スペクトルを持つという優れた初期発光特 性を有し、且つ、耐熱性に優れ、高温度環境下でも室温 (25°C)下と比べ発光特性 がほとんど劣化しな 、緑色蛍光体である。
発明を実施するための最良の形態
[0106] 以下、本発明の実施の形態について説明するが、本発明はこれらに限定されるも のではない。
本実施形態の蛍光体は、一般式 MmAaBbOoNn: Zで表記される母体構造を有 する蛍光体である。ここで M元素は、前記蛍光体中において II価の価数をとる元素か ら選択される 1種類以上の元素である。 A元素は、前記蛍光体中において III価の価 数をとる 1種類以上の元素である。 B元素は、前記蛍光体中において IV価の価数を とる 1種類以上の元素である。 Oは酸素である。 Nは窒素である。 Z元素は、前記蛍光 体中において付活剤として作用する元素であって、希土類元素または遷移金属元素 から選択される 1種類以上の元素である。
[0107] さらに、当該蛍光体において、(a+b) Zmが 4. 0< (a+b) /m< 7. 0の範囲にあ り、 aZmが aZm≥0. 5の範囲にあり、 bZa力 Za> 2. 5の範囲にあり、酸素と窒 素の関係が n>oとなり、窒素が n= 2Z3m+a+4Z3b— 2Z3oであり、波長 300η mから 500nmの範囲の光で励起したとき、発光スペクトルにおけるピーク波長が 500 nmから 650nmの範囲にあることを特徴としている。
[0108] 上述の特徴を有する本実施形態の蛍光体は、緑色から黄色、または黄色から赤色 の範囲にプロ ドな発光スペクトルを持ち、近紫外 ·紫外から青色 ·可視 (波長 300η m〜500nm)という広範囲に渡って平坦な励起帯を持ち、高効率な発光が得られる ので、当該蛍光体と適宜な他色の蛍光体とを混合し、近紫外 ·紫外 LEDや青色 LE D等の発光部と組み合わせることで、演色性に優れた所望の発光色を有し、発光強 度および輝度が高く高効率な発光装置を得ることができる。
[0109] この本発明に係る蛍光体は、これまでに提案されているシリコンナイトライド系蛍光 体 (例えば、特許文献 1参照)、サイアロンを母体とする蛍光体 (例えば、特許文献 2、 3、 4参照)、酸窒化物蛍光体 (例えば、特許文献 5、 6参照)に比べ、発光強度が強 いため輝度が高ぐまた発光スペクトルのピークがブロードであるため、より高輝度の 白色 LED照明を作製することが可能となる。
[0110] 本発明に係る蛍光体は、サイアロンを母体とする蛍光体と構成する元素は同様であ る力 サイアロン蛍光体は一般式 MmAaBbOoNn :Zで表記したとき、 (a+b) /m> 12Zl.5 = 8である。また、サイアロン母体構造中に侵入する M元素としては Caや Y などイオン半径の小さな元素し力入らず、 Caや Yよりもイオン半径の大きな Srは母体 構造中には入らないとされており、 M元素として Srを必須とする本発明の蛍光体とは 異なる組成である。
[0111] この本実施形態の蛍光体の励起帯は範囲が広いため、 YAG : Ce蛍光体とは異な り、発光素子 (青色 LED)のばらつきによる色調変化を抑えることが可能となり、また、 近紫外 ·紫外 LEDの発光波長である 300〜420nm付近においても高効率な励起帯 を有する。従って、本実施形態の蛍光体は青色発光する LEDだけでなぐ赤色'青 色、他の蛍光体と混合し、近紫外'紫外発光する LEDと組み合わせることで、白色 L ED照明の緑色蛍光体として使用することもできる。特に、付活剤として Euを付活した 蛍光体は、波長 350nmから 500nmの範囲において単色の励起光が照射された際 、当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も大きくする励起光を照射したときの当該最大ピークのピーク強度を P
Hとし、当該励 起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最も小さくす る励起光を照射したときの当該最大ピークのピーク強度を P
Lとしたとき、(P — P )/P
H L
X 100≤20、更に好ましくは、(P -P )/P X 100≤10となり、非常に平坦な励
H H L H
起帯を有する。
[0112] 発光波長は付活剤によって異なる力 代表的なものとして Ceを付活した場合には、 緑色から黄色の範囲である、波長 470nm力 750nmの広 、波長域にお!、て半値 幅が lOOnm以上のブロ ドなピークを持つ蛍光体が得られ、 Euを付活した場合に は、黄色力 赤色の範囲に発光スペクトルのピークを持つ蛍光体が得られる。そのた め、 Ceを付活したものについては、現在使用されている YAG : Ce蛍光体、または Zn S:Cu,Al蛍光体の問題点を克服した蛍光体として、これらを置き換えて用いることが 可能である。更に、 Euを付活したものについては、白色 LED照明の演色性を改善す るために最近になって開発された赤色蛍光体 Ca Si N: Eu、 Sr Si N: Eu、 Ba Si
2 5 8 2 5 8 2 5
N: Eu、 Ca (Al, Si) (O, N) : Eu (但し、 0<x≤ 1. 5)、 CaAl Si N: Eu、 CaSiN:
8 x 12 16 2 4 8 2
Eu、 CaAlSiN: Euなどとは異なる物質として白色 LED照明に使用することができる
[0113] また、本実施形態の蛍光体は、熱や水に対して強く耐久性に優れた蛍光体である 。従来の、緑色力も黄色に発光スペクトルのピ―クを持つ ZnS:Cu,Al蛍光体は、発 光強度および輝度については問題ないものの、耐久性、特に水に弱いことや、更に 、紫外線の照射により輝度が大幅に低下してしまうといった問題がある。このため、 Z nS:Cu,Al蛍光体を複数色の蛍光体と混合し、近紫外'紫外 LEDと組合わせて白色 LED照明を作製した際、この白色 LED照明は、長時間使用していると、特に ZnS:C u,Al蛍光体の発光強度および輝度が低下して、色調が変化してしまう。また、当該白 色 LED照明を点灯させた際に、発光素子から発生する熱や紫外線により ZnS:Cu,A 1蛍光体の発光強度および輝度が低下し、白色 LED照明の輝度もそれに伴い低下し てしまう。この結果、当該 ZnS:Cu,Al蛍光体は、発光強度および輝度の変化を考慮 して蛍光体混合粉末を調合する必要があり、品質が安定した白色 LED照明を製造 することが困難である。しかし、本実施形態の蛍光体は、シリコンナイトライド蛍光体 やサイアロン蛍光体と同じように、窒素を含有した耐久性および温度変化や水分に 強い蛍光体であるため、高輝度で耐久性に優れた白色 LED照明を作製することが 可能となる。
[0114] 次に、本実施形態の蛍光体を用いることで、演色性の高い発光を得られることにつ いて説明する。
照明用光源としては、色の見え方が基準光を用いた場合と同じであるほど好ましい わけであるが、基準光が、可視光全域にわたり均一な光を持った白色光源であるの に対し、既存の白色 LED照明は、可視光領域のある波長では光の強度が高ぐある 波長では低 ヽと 、つたように光の強度にムラがあるため、光の強度が不足して 、る波 長域では色再現性が悪く演色性が低下してしまう。
結局のところ、演色性の高い発光を得るためには、白色 LED照明に使用される蛍 光体の発光スペクトルのピークがブロードである上に、十分な発光強度を有する蛍光 体であることが必要である。上述の母体構造を有する本実施形態の蛍光体は、構成 元素の種類、付活剤の種類を替えることにより、緑色〜黄色、または黄色〜赤色の範 囲に発光強度および輝度が高ぐ半値幅が 80nm以上のブロードな発光スペクトル のピークを持つ蛍光体を得ることが可能となる。
[0115] 本実施形態の蛍光体が、緑色〜黄色、黄色〜赤色の範囲にピークを持つブロード な発光スペクトルを有し、近紫外 '紫外から青色の範囲に広く平坦な励起帯を持ち、 高効率な発光をおこなうことができる詳細な理由は不明であるが、概ね次のように考 えられる。
まず、本実施开態の蛍光体の一般式 MmAaBbOoNn : Zにおいて、 m、 a、 b、 o、 n の値力 4. 0< (a+b) /m< 7. 0、 a/m≥0. 5、 b/a > 2. 5、 n>o、 n= 2/3m + a+4Z3b— 2Z3oの範囲にあることで、当該蛍光体がとる結晶構造において、付 活剤が規則的に存在でき、また、発光に使用される励起エネルギーの伝達が効率よ く行われるため、発光効率が向上するのではないかと考えられる。
さらに、当該蛍光体が上述の構成を採ることで、化学的に安定な糸且成となるため、 当該蛍光体中に、発光に寄与しない不純物相が生じにくくなり、発光強度の低下が 抑制されるのではないかと考えられる。つまり、不純物相が多く生じた場合には、単 位面積当たりの蛍光体量が減少し、更に、生成した不純物相が、励起光や蛍光体か ら発生した光を吸収することで蛍光体の発光効率が低下し、高 、発光強度が得られ なくなるためではな 、かと考えられる。
[0116] 当該推論は、焼成後の蛍光体に対する X線回折測定において、 m、 a、 b、 o、 nの値 が上述の範囲にあると、 A1N、 Si Nなどの未反応原料の不純物相ピーク、および発
3 4
光に寄与する相とは異なる不純物相のピークが確認されないか、または確認される 場合でもきわめて低い回折強度であるのに対し、 m、 a、 b、 o、 nの値が上述の範囲外 にあると、 A1N、 Si N、および発光に寄与する相とは異なる相の顕著なピークが確
3 4
認されることからも裏付けられる。従って、焼成後の蛍光体に対する X線回折パター ン中に、上記不純物相のピ―クが見られないという特徴は、測定対象である蛍光体 力 高 、発光強度や近紫外 ·紫外から青色の範囲に広く平坦な励起帯を有して 、る ことを示して 、ると考えられる。
[0117] 当該蛍光体は、本実施形態の蛍光体の一般式 MmAaBbOoNn : Zにおいて、 m、 a、 b、 o、 nの値力 4. 0< (a+b) /m< 7. 0、 a/m≥0. 5、 b/a > 2. 5、 n>o、 n = 2Z3m+a+4Z3b— 2Z3oの範囲内であれば良いが、更には、 0. 5≤a/m≤ 2. 0、 3. 0< b/m< 7. 0、 0< o/m≤4. 0であること力 S好ましく、より好ましくは 0. 8 ≤a/m≤l . 5、 3. 0< b/m< 6. 0、 0< o/m≤3. 0である。これは、 a/m=0で あると、原料中に含まれる酸素と Si元素とが焼成中に過剰に反応し、ガラス化してし まい、優れた発光特性が得られず、さらに、粉末状の蛍光体を得ることができない。 一方、 aZm≠ 0であると A1が固溶し、生成したィ匕合物の融点が非常に高温となるた め、焼成をおこなってもガラス化することなぐ焼成後に粉末状の蛍光体を得ることが 可能となる。したがって aZmは 0.5以上であることが好ましい。
[0118] さらに、 l. K aZmである場合には、温度が高い環境下での発光特性の低下が、 上記範囲の場合に比べ、ほとんど低下しない。さらに、 300°Cまで昇温する昇温前( 25°C)の発光強度と、 300°Cで 5.0min保持して再び室温(25°C)まで冷却した冷却 後の発光強度とを比較しても、昇温前に比べ、冷却後の発光強度が低下しないとい う、優れた耐熱性を発揮する。
[0119] aZm≤ 2.0であると、 A元素によって置換される B元素のサイトが過剰になることを 回避できるので、製造条件のブレによって発光効率が低下してしまうことや、該蛍光 体が高温環境下におかれても発光特性の低下を抑えることができる。さらに、該構成 により未反応の A1N生成を抑制でき、該未反応の A1Nに起因する初期発光強度低 下を回避することができる。また、 aより bの値が大きければ、焼結が抑制され、焼成後 に粉末状で得ることが容易となるため、 bZmの範囲は aZmより大きな 3. 0≤b/m ≤6. 0、より好ましくは 3.5 ≤b/m≤ 4.5の範囲であることが好ましい。
[0120] 本発明に係る蛍光体は、 n>oであるものの酸素を含んでいることが好ましい。酸素 の適正含有量は、蛍光体中の A1と Siとのモル比によって変化する力 該酸素含有量 を最適化することにより、蛍光体の初期発光特性 (25°C)が向上するだけでなぐ温 度が高 、環境下でも発光特性が室温(25°C)と比べほとんど劣化しな!、蛍光体を得 ることができる。これは、温度特性の改善を目論んでも、 Siサイトを A1によって置換し ただけでは、 A1は Siに比べイオン半径が異なるため、結晶構造が発光に適した構造 力もズレてしまう。さらに、 A1が III価であるのに対し、 Siは IV価であるため、結晶中に おける価数が不安定になってしまうといった問題がおこる。しかし、 Siサイトを置換す る A1量に応じて、 Nサイトの一部を Oで置換すると、発光に最適な結晶構造とすること ができ、さらに、母体結晶全体の価数も安定なゼロにすることができるため、優れた発 光特性を示すものと考えられる。ここで、好ましい酸素量の範囲は、 0< oZm≤4. 0 であり、焼成後の蛍光体の酸素濃度を分析した場合、蛍光体の質量に対し、 0.5重 量%を超え 8.1重量%未満の含有量であれば発光特性が良好でガラス化も抑制され 、十分に実用が可能な蛍光体となる。さらに、該酸素量の範囲が 0< oZm≤3. 0、 より好ましくは 0< oZm≤ 1.5の範囲であり、 0.5重量%を越え 5.0重量%未満である と、発光強度が、より高まり好ましい。
[0121] 尚、組成分析結果より算出した oの値と、使用される原料の配合比より算出した。の 値とを比較した場合に若干のずれが生じるのは、使用される原料の配合比から oを算 出する場合には、上述のような、当初から原料に含有していた酸素や表面に付着し ていた酸素、原料の秤量時、混合時および焼成時において原料の表面が酸ィ匕した ことで混入する酸素、さらに焼成後に蛍光体表面に吸着される酸素等を考慮してい ないためであると考えられる。また、窒素ガスおよび Zまたはアンモニアガスを含んだ 雰囲気で焼成した場合には、焼成時に原料が窒化され o、 nにズレが生じていること が原因と考えられる。
[0122] さらに、上述の一般式 MmAaBbOoNn:Zの組成を有する蛍光体において、 M元 素が +Π価、 A元素が +ΙΠ価、 B元素が +IV価の元素であり、窒素が III価の元素 であること力ら、 m、 a、 b、 o、 n力 n= 2/3m+a+4/3b— 2/3oの糸且成であり、各 元素の価数を足し合わせるとゼロとなるので、当該蛍光体はさらに安定な化合物とな り好ましい。特に、当該蛍光体において、 aZmが l. l < aZm≤1.5、 bZmが 3.5≤ bZm≤4.5、 oZmカ^く oZm≤1.5の範囲であると、発光特性および耐熱性がさら に高くなることから、より好ましい構成である。尤も、いずれの場合でも、蛍光体の組 成を示す組成式からの若干の組成のずれは許容される。
[0123] 一方、前記 M元素は、 Mg、 Ca、 Sr、 Ba、 Zn、 II価の原子価をとる希土類元素、の 中力 選ばれる 1種類以上の元素であることが好ましぐさらには、 Mg、 Ca、 Sr、 Ba、 Znから選択される 1種類以上の元素であることがより好ましぐ最も好ましくは Srであ る。さらに、 M元素として Srを 90%以上含み、上記他の元素を一部置換しても良い。
[0124] 前記 A元素は、 Al、 Ga、 In、 Tl、 Υ、 Sc、 Ρ、 As、 Sb、 Biの中力 選ばれる 1種類以 上の元素であることが好ましぐさらには、 Al、 Ga、 Inから選択される 1種類以上の元 素であることがより好ましぐ最も好ましくは A1である。さらに、 A元素として A1を 90% 以上含み、上記他の元素を一部置換しても良い。 A1は、窒化物である A1Nが一般的 な熱伝材料や構造材料として用いられており、入手容易且つ安価であり加えて環境 負荷も小さく好ましい。
[0125] 前記 B元素は、 Si、 Ge、 Sn、 Ti、 Hf、 Mo、 W、 Cr、 Pb、 Zrの中力 選ばれる 1種 類以上の元素であることが好ましぐさらには、 Siおよび Zまたは Geであることが好ま しぐ最も好ましくは Siである。さらに、 B元素として Siを 90%以上含み、上記他の元 素を一部置換しても良い。 Siは、窒化物である Si Nが一般的な熱伝材料や構造材
3 4
料として用いられており、入手容易且つ安価であり加えて環境負荷も小さく好ましい。
[0126] 前記 Z元素は、蛍光体の母体構造における M元素の一部を置換した形で配合され る、希土類元素または遷移金属元素から選択される 1種類以上の元素である。本実 施形態の蛍光体を用いた白色 LED照明を始めとする各種の光源に、十分な演色性 を発揮させる観点からは、当該蛍光体の発光スペクトルにおけるピークの半値幅は 広いことが好ましい。そして、当該観点力 Z元素は、 Eu、 Mn、 Ce、 Tb、 Prまたは Y bから選択される 1種類以上の元素であることが好ましい。中でも Z元素として Ceを用 いると、当該蛍光体は、緑色力 黄色にかけてブロードで発光強度が高い発光スぺ タトルを示すため、白色 LED照明を始めとする各種光源の付活剤として好ま Uヽ。
[0127] これまでに提案されている特許文献 1〜6のシリコンナイトライドやサイアロンゃ酸窒 化物を母体としたものも、 Ceを付活することにより緑色力も黄色に発光するが、同じ 母体に Euを付活した場合に比べると、発光強度が大きく低下してしまい実用できるも のは無力つた。しかし、本実施形態の蛍光体は、 Ceを付活剤とした際に、プロ—ドで 発光強度の高 、発光スペクトルのピークが得られるように組成を適正化した蛍光体で あり、これまでに提案された各特許文献の蛍光体に比べ 1.5倍以上の発光強度を得 ることができ、十分実用化できる特性であると考えられる。更に、近紫外'紫外 LEDに より白色 LED照明を作製する際に、緑色蛍光体として使用されている ZnS:Cu,Alと 比較した場合に、本実施形態の蛍光体は、発光スペクトルのピークが非常にブロード であるため、効率が良く演色性に優れた白色 LED照明が作製可能となる。更に、注 目すべき点は、 Euを付活した際にも発光強度が低下することなぐ黄色から赤色に かけてプロ ドで発光強度が高 、発光スペクトルのピークを示す。
[0128] また、 Z元素を選択することにより、本実施形態の蛍光体における発光のピーク波 長を可変することができ、また、種類の異なる z元素を付活することによって、ピ一ク 波長の可変、更には増感作用により、発光強度および輝度を向上させることが可能 である。
[0129] Z元素の添加量は、本実施形態の蛍光体を一般式 MmAaBbOoNn: Zz (但し、 4.
0< (a+b) /m< 7. 0、 a/m≥0. 5、 b/a> 2. 5、 n>o、 n= 2/3m+a+4/3b - 2/3o)と表記した際、 M元素と付活剤 Z元素とのモル比 zZ(m+z)において、 0. 0001以上、 0.50以下の範囲にあることが好ましい。 M元素と Z元素とのモル比 zZ( m+z)が当該範囲にあれば、付活剤 (Z元素)の含有量が過剰であることに起因して 濃度消光が生じ、これにより発光効率が低下することを回避でき、他方、付活剤 (Z元 素)の含有量が過少であることに起因して発光寄与原子が不足し、これにより発光効 率が低下することも回避できる。さらに、当該 zZ (m+z)の値力 0.001以上、 0.30 以下の範囲内であればより好ましい。但し、当該 zZ (m+z)の値の範囲の最適値は 、付活剤 (Z元素)の種類および M元素の種類により若干変動する。さらに、付活剤( Z元素)の添加量制御によっても、当該蛍光体の発光のピーク波長をシフトして設定 することができ、得られた光源において輝度の調整の際に有益である。
[0130] M元素として Sr、 A元素として Al、 B元素として Si、 Z元素として Ceをとり、 4. 0< (a
+b) /m< 7. 0、 0. 5≤a/m≤2. 0、 3. 0<b/m< 7. 0、 0< o/m≤4. 0、 n= 2Z3m+a+4Z3b— 2Z3oであるとき、本発明に係る蛍光体の組成分析結果を行 つた結果、 19.5重量%以上、 29.5重量%以下の Srと、 5.0重量%以上、 16.8重量 %以下の A1と、 0.5重量%以上、 8.1重量%以下の Oと、 22.6重量%以上、 32.0重 量%以下の Nと、 0.0を超え 3.5重量%以下の Ceとを含んでいた。但し、 Sr、 A1には ± 1.0重量%の分析誤差が見込まれ、残りの重量は Siおよび他の元素である。尚、 蛍光体の発光強度低下回避の観点から、蛍光体中における Fe,Ni,Coの各元素の 濃度は、 100PPM以下であることが好ましい。
また、励起光として、波長 350nmから 500nmの範囲にある単色光、または、これら 単色光の混合光が照射された際、発光スペクトルのピーク波長が 500〜600nmの 範囲となった。このとき、当該蛍光体は十分な発光強度を示し、発光スペクトルの色 度(x,y)の X力^).3000〜0.4500、 y力 0.5000〜0.6000の範囲にあると!/ヽぅ、好まし い発光特性を示した。
[0131] また、 M元素として Sr、 A元素として Al、 B元素として Si、 Z元素として Euをとり、 4.
0< (a+b) /m< 7. 0、 0. 5≤a/m≤2. 0、 3. 0<b/m< 7. 0、 0< o/m≤4. 0 、 n= 2Z3m+a+4Z3b— 2Z3oであるとき、本発明に係る蛍光体の組成分析結 果を行った結果、 19.5重量%以上、 29.5重量%以下の Srと、 5.0重量%以上、 16. 8重量%以下の A1と、 0.5重量%以上、 8.1重量%以下の Oと、 22.6重量%以上、 3 2.0重量%以下の Nと、 0.0を超え 3.5重量%以下の Euとを含んでいた。但し、 Sr、 A 1には ± 1.0重量%の分析誤差が見込まれ、残りの重量は Siおよび他の元素である。 尚、蛍光体の発光強度低下回避の観点から、蛍光体中における Fe,Ni,Coの各元素 の濃度は、 100PPM以下であることが好ましい。また、励起光として、波長 350nmか ら 500nmの範囲にある単色光、または、これら単色光の混合光が照射された際、発 光スペクトルのピーク波長が 550〜 650nmの範囲となった。このとき、当該蛍光体は 十分な発光強度を示し、発光スペクトルの色度(x,y)の X力0.4500〜0.6000、 yが 0 .3500〜0.5000の範囲にあるという、好まし!/、発光特性を示した。
[0132] 本発明に係る蛍光体について、 CoK o;線による粉末 X線回折測定を行うと、次のよ うな特徴が見られる。
本実施形態の蛍光体に含まれる生成相は、ブラッグ角度 (2 Θ )が、 12.5〜 13.5° 、 17.0~18.0° 、 21.0〜 22.0° 、 22.5~23.5° 、 26.5〜 27.5° 、 28.5〜29.5 ° 、 34.0〜 35. 0° 、35.5〜36.5° 、 36.5〜37.5° 、 41.0〜42.0° 、 42.0〜 4 3.0° 、 56.5〜 57.5° 、 66.0〜67.0° の範囲に特徴的なピークを有する。当該回 折パターンより、当該蛍光体の主生成相の結晶系は、斜方晶系または単斜晶系の結 晶相を有する蛍光体と考えられる。サイアロンを母体とする結晶系は一般的に六方 晶系のため、本発明に係わる蛍光体は公知のサイアロンを母体とする蛍光体とは異 なる結晶系と考えられる。
[0133] 次に、本発明に係る蛍光体の温度特性について説明する。蛍光体は、白色 LED 照明のみならず高温環境下で使用される場合がある。従って、温度の上昇とともに発 光強度が低下するものや、熱劣化によって発光特性が劣化するものは好ましくない。 本発明に係る蛍光体は優れた温度特性と耐熱性とを示し、励起光として、近紫外 '紫 外から緑色の範囲 (波長域 300〜500nm)にある単色光、または、これら単色光の混 合光が照射された際の、 25°Cにおける発光スペクトル中の最大ピークの相対強度の 値を発光強度 P とし、上記励起光が照射された上記蛍光体の 200°Cにおける前記
25
最大ピークの相対強度の値を P としたときに、(P -P )/P X 100≤35となり
200 25 200 25
、高温環境下でも優れた発光特性を示す。さら〖こ好ましくは、 100°Cにおける前記最 大ピークの相対強度の値を P としたときに、(P - P )/P X 100≤ 10.0である。
100 25 100 25
[0134] また、本発明者らが LEDの発熱温度について調査を行ったところ、小型の小電流 タイプのチップでは 50°C程度であるが、より強い発光を得るために、大型の大電流タ イブを使用した場合には 80°C以上まで発熱することが解った。更に、白色 LEDとし た場合は、榭脂によるチップの封止やリードフレームの構造によって発生した熱が蓄 積され、榭脂または蛍光体混合物部分の温度が 100°C程度、最大で 200°Cになる 場合があることが判明した。即ち、(P — P )/P X 100≤35、さらに好ましくは(
25 200 25
P - P )/P X 100≤ 10.0であれば、発光源である LED等の長時間点灯に伴う
25 100 25
発熱が蓄積された場合であっても、当該発熱による発光の色ずれを白色 LED照明 等として問題のない水準に収めることが出来る。
[0135] 本発明に係る蛍光体は、 A1N、 Si N力 生成する高温で耐久性の優れる窒化物
3 4
、酸窒化物を母体とし、 [SiN ]の四面体がネットワークを組んだ、これまでの窒化物、
4
酸窒化物蛍光体とは異なった構造を有していることと、 Siサイトの A1置換量、 Nサイト の O置換量を最適化したことにより、熱に対して非常に安定な構造となったため、優 れた温度特性を示すものと考えられる。さらに、従来の技術に係る蛍光体では、高温 環境下で一度使用されると、室温に戻した場合でも、高温環境下で使用される前の 発光強度に比べ、発光強度が弱くなつてしまうといった問題もあったが、本発明に係 る蛍光体では、その問題を解決することができた。
[0136] また、本発明に係る蛍光体は温度特性に優れているため、長時間の点灯使用によ り、発光装置の温度が上昇した際にも、色ずれがほとんど起こらないものを作製する ことが可能となる。また、発光スペクトルが緑色力も黄色の範囲にピ一クを持ち、ピ一 ク形状はブロードであるため、演色性の観点から白色 LED照明用蛍光体としてふさ わしい。さらに、励起帯が近紫外,紫外〜青緑色 (波長域 300〜500nm)の広範囲 に平坦な励起帯を有するため、例えば、白色 LED照明として提案されている高輝度 青色 LED (波長 420〜480nm付近)の青色発光と、蛍光体の黄色発光の補色関係 とを利用して白色を得る方式の白色 LED照明の場合にも、或いは近紫外'紫外発光 (波長 300〜420nm付近)する LEDと、該 LEDから発生する近紫外'紫外光により 励起されて赤色 (R)発光する蛍光体、緑色 (G)発光する蛍光体、青色 (B)発光する 蛍光体とを組み合わせ、該 R'G'B他の蛍光体カゝら得られる光の混色を利用して白 色を得る方式の白色 LED照明の場合にも、 、ずれも最高の発光強度に近 、状態を 発揮させながら使用することが可能である。即ち、近紫外'紫外〜青緑色の光を発す る発光部と該蛍光体を組み合わせることにより、高出力、演色性の良い白色光源およ び白色 LED照明、さらにはこれらを使用した照明ユニットを得ることができる。
本実施形態の蛍光体は粉末状とされることで、白色 LED照明を始めとする多様な 発光装置に容易に適用可能となる。ここで該蛍光体は、粉体の形で用いられる場合 には、 50. 0 m以下の 1次粒子および該 1次粒子の凝集体を含み、該 1次粒子およ び凝集体を含んだ蛍光体粉末の平均粒子径 (D50)が、 1. O /z m以上、 50. O /z m以 下であることが好ましい。より好ましくは、 1. O /z m以上、 20.0 m以下である。これ は、平均粒径が 50. O /z m以下であれば、その後の粉砕が容易に行えることと、蛍光 体粉体においては発光が主に粒子表面で起こると考えられるため、平均粒径が 50. O /z m以下、より好ましくは、 20.0 mであれば、粉体単位重量あたりの表面積を確 保でき輝度の低下を回避できるからであり、さらに、該粉体をペースト状とし、発光体 素子等に塗布した場合にも該粉体の密度を高めることができ、色むら、輝度の低下を 回避できるからである。また、本発明者らの検討によると、詳細な理由は不明であるが 、蛍光体粉末の発光効率の観点から、平均粒径が 1. 0 mより大きいことが好ましい ことも判明した。以上のことより、本発明に係る蛍光体における粉体の平均粒径は、 1 . O /z m以上 50. O /z m以下、さらに好ましくは 20 m以下であることが好ましい。ここ でいう平均粒子径(D50)は、ベックマン'コールター社製 LS230 (レーザー回折散 乱法)により測定された値である。また、粒子径とともに比表面積 (BET)の値も変化す るため、比表面積の値としては、 0.05m2/g以上、 5.00m2/g以下であること力 上 記観点からして好ましい。 [0138] 次に、本実施形態の蛍光体の製造方法につ!、て、混合比から求めた組成式 Sr A1
2
Si O N : Ce (但し、 Ce/(Sr + Ce) = 0.030である。)の製造を一例として説明する
2 9 2 14
。ここで、 zZ(m+z)と CeZ(Sr+Ce)とは同じ意味である。
[0139] 一般的に蛍光体は固相反応により製造されるものが多ぐ本実施形態の蛍光体の 製造方法も固相反応によって得ることができる。しかし、製造方法はこれらに限定され るものではない。 M元素、 A元素、 B元素の各原料は窒化物、酸化物、炭酸塩、水酸 化物、塩基性炭酸塩などの市販されている原料でよいが、純度は高い方が好ましい ことから、好ましくは 2N以上、さらに好ましくは 3N以上のものを準備する。各原料粒 子の粒径は、一般的には、反応を促進させる観点力 微粒子の方が好ましいが、原 料の粒径、形状により、得られる蛍光体の粒径、形状も変化する。このため、最終的 に得られる蛍光体に求められる粒径や形状に合わせて、近似の粒径を有する窒化 物等の原料を準備すればよいが、好ましくは 50 m以下の粒子径、さらに好ましくは 0.1 m以上 10.0 μ m以下の粒子径の原料を用いると良 、。 Z元素も原料は市販の 窒化物、酸化物、炭酸塩、水酸化物、塩基性炭酸塩、もしくは単体金属が好ましい。 勿論、各原料の純度は高い方が好ましぐ 2N以上、さらに好ましくは 3N以上のもの を準備する。特に、 M元素の原料として炭酸塩を使用した場合には、本実施形態の 蛍光体の構成元素に含まれない元素からなる化合物を、フラックス (反応促進剤)とし て添加することなくとも、フラックス効果を得ることができるため好ま 、構成である。
[0140] 混合比から求めた組成式 Sr Al Si O N : Ce (但し、 CeZ(Sr+Ce) = 0.030)の製
2 2 9 2 14
造であれば、例えば M元素、 A元素、 B元素の原料として、それぞれ SrCO (3N)、 Al
3
N(3N)、 Si N (3N)を準備し、 Z元素としては、 CeO (3N)を準備するとよい。これらの
3 4 2
原料の混合 (仕込み)組成と、焼成上がりの組成との間にはズレ生じることを考慮して 、何点かの検討を行い、焼成上がりにおいて狙いの組成が得られる混合仕込み組成 を求める。今回の場合は焼成上がりにおいて、各元素のモル比が Sr:Al:Si:Ce = 0. 970:1:4.5:0.030となるように、原料混合段階において、各原料の混合比を、それぞ れ、 SrCOを 0.970mol、 A1Nを 1.0mol、 Si Nを 4.5/3mol、 CeOを 0.030mol
3 3 4 2
を秤量し混合する。 Sr原料として炭酸塩を使用したのは、酸化物原料は融点が高く フラックス効果が期待できないのに対し、炭酸塩など低融点の原料を使用した際には 、原料自体力フラックスとして働き、反応が促進され、発光特性が向上するためである 。また、原料として酸ィ匕物を使用した場合には、フラックス効果を得るために、フラック スとして別の物質を添加してもよいが、その場合には該フラックスが不純物となり、蛍 光体の特性を悪ィ匕させる可能性があるのでフラックスの選択には注意する必要があ る。例えばフッ化物、塩化物、酸化物、窒化物が好ましぐ SrF、 BaF、 A1F、 SrCl
2 2 3 2
、 BaCl、 A1C1、 Al O、 Ga O、 In O、 SiO、 GeO、 SrO、 BaO、 Ca N、 Sr N
2 3 2 3 2 3 2 3 2 2 3 2 3 2
、: Ba N、 GaN、 InN、 BNなどが考えられる。
3 2
[0141] 当該秤量 ·混合については、大気中で行っても良いが、各原料元素の窒化物が水 分の影響を受けやす 、ため、水分を十分取り除 、た不活性雰囲気下のグロ ブボッ タス内での操作が便宜である。混合方式は湿式、乾式どちらでも構わないが、湿式混 合の溶媒として純水を用いると原料が分解するため、適当な有機溶媒を選定する必 要がある。装置としてはボ―ルミルや乳鉢等を用いる通常のものでょ 、。
[0142] 混合が完了した原料をるつぼに入れ、焼成炉内に雰囲気ガスを流通させながら 14 00°C以上、好ましくは 1500°C以上または 1600°C以上、さらに好ましくは 1700°C以 上 2000°C以下の雰囲気中で 30分以上保持して焼成する。焼成温度が 1400°C以 上であれば、紫外線で励起され青色に発光する不純物相が生成しにくぐさらには、 固相反応が良好に進行して発光特性に優れた蛍光体を得ることが可能となる。また 2 000°C以下、好ましくは 1850°C以下で焼成すれば、過剰な焼結や、融解が起こるこ とを防止できる。尚、焼成温度が高いほど固相反応が迅速に進むため、保持時間を 短縮出来る。一方、焼成温度が低い場合でも、当該温度を長時間保持することにより 目的の発光特性を得ることが出来る。しかし、焼成時間が長いほど粒子成長が進み、 粒子形状が大きくなるため、目的とする粒子サイズに応じて焼成時間を設定すれば よい。
[0143] 焼成炉内に流通させる雰囲気ガスとしては、窒素に限らず、希ガス等の不活性ガス 、アンモニア、アンモニアと窒素との混合ガス、または窒素と水素との混合ガスのいず れかを用いると良い。但し、当該雰囲気ガス中に酸素が含有されていると蛍光体粒 子の酸ィ匕反応が起こるため、不純物として含まれる酸素はできるだけ少なぐ例えば 100PPM以下であることが好まし 、。さらに雰囲気ガス中に水分が含有されて!、ると 、酸素と同様、焼成時に蛍光体粒子の酸ィ匕反応が起こるため、不純物として含まれる 水分もできるだけ少なぐ例えば 100PPM以下であることが好ましい。ここで、雰囲気 ガスとして単一ガスを用いる場合は窒素ガスが好まし 、。アンモニアガスの単独使用 による焼成も可能である力 窒素ガスに比べ、アンモニアガスはコスト的に高いことや 、腐食性ガスであることのため、装置および低温時の排気方法に特別な処置が必要 となるので、アンモニアを用いる場合には、窒素との混合ガスとするなど、アンモニア を低濃度にして用いる方が好ましい。例えば、窒素ガスとアンモニアの混合ガスを用 いる場合、窒素は 80%以上、アンモニアは 20%以下とすることが好ましい。また、窒 素と他のガスとの混合ガスを用いる場合も、窒素以外のガス濃度が高まると、雰囲気 ガス中の窒素の分圧が低くなるので、蛍光体の窒化反応を促進する観点からは、 80 %以上の窒素を含む不活性または還元性ガスを用いると良!、。
[0144] さらに、当該焼成中に上述した雰囲気ガスを、例えば、 0. lmlZmin以上流量させ る状態を設けることが好ましい。これは、蛍光体原料の焼成中には当該原料力もガス が発生する力 上述の窒素、希ガス等の不活性ガス、アンモニア、アンモニアと窒素 との混合ガス、または窒素と水素との混合ガスカゝら選択される 1種類以上のガスを含 んだ雰囲気を流動(フロー)させることにより、原料力 発生したガスが炉内に充満し て反応に影響を与えることを防止でき、この結果、蛍光体の発光特性の低下を防止 できるからである。特に、蛍光体原料として炭酸塩、水酸化物、塩基性炭酸塩など、 高温で酸ィ匕物に分解する原料を使用した際には、ガスの発生量が多いため、焼成炉 内にガスを流通させ、発生したガスを排気させる構成を採ることが好ま ヽ。
[0145] 一方、蛍光体製造における蛍光体原料焼成の段階において、焼成炉内の圧力は 、炉内に大気中の酸素が混入しないよう加圧状態であることが好ましい。ただし、該 加圧が l.OMPa (本発明において、炉内圧力とは大気圧力 の加圧分の意味である 。)を超えると炉設備の設計上、特殊な耐圧設計が必要となることから、生産性を考慮 すると該加圧は l.OMPa以下であることが好ましい。また、該加圧が高くなると、蛍光 体粒子間の焼結が進み過ぎ、焼成後の粉砕が困難となることがあるため、当該焼成 中の炉内圧力は l.OMPa以下が好ましぐより好ましくは 0. 5MPa以下、更に好まし くは 0. OOlMpa以上、 O.lMPa以下である。 [0146] 尚、るつぼとしては Al Oるつぼ、 Si Nるつぼ、 A1Nるつぼ、サイアロンるつぼ、 C (
2 3 3 4
カーボン)るつぼ、 BN (窒化ホウ素)るつぼなどの、上述したガス雰囲気中で使用可 能なものを用いれば良いが、特に BNるつぼを用いると、るつぼ力 の不純物混入を 回避することができ好まし 、。
[0147] 本実施の形態では原料を粉末のまま焼成することが好ま 、。一般的な固相反応 では、原料同士の接点における原子の拡散による反応の進行を考慮し、原料全体で 均一な反応および、反応を促進させるために、原料をペレット状にして焼成すること が多い。ところが、当該蛍光体原料の場合は、粉末のまま焼成することで、焼成後の 解砕が容易であり、 1次粒子の形状が理想的な球状となることから、粉末として扱い 易いものとすることができ好ましい。更に、原料として、炭酸塩、水酸化物、塩基性炭 酸塩を使用した場合には、焼成時の原料の分解により COガスなどが発生するが、
2
原料が粉体であれば十分に抜けきつてしまうので発光特性に悪影響を及ぼさないと いう観点からも、好ましい構成である。
[0148] 焼成が完了した後、焼成物をるつぼから取り出し、乳鉢、ボールミル等の粉砕手段 を用いて、所定の平均粒径となるように粉砕し、混合比から求めた組成式 Sr Al Si
2 2 9
O N : Ce (但し、 Ce/(Sr + Ce) =0.030)で示される蛍光体を製造することができ
2 14
る。得られた蛍光体はこの後、必要に応じて、洗浄、分級、表面処理、熱処理を行う。 洗浄方法としてはフッ酸、塩酸、硫酸、硝酸などを用いた酸性溶液中での洗浄力 粒 子表面に付着した Fe等の金属原子や、未反応で残留した原料粒子を溶解するため 好ましい。ここで、得られた蛍光体に含まれる Fe、 Ni、 Coの量は 100PPM以下であ ることが好ましい。
[0149] M元素、 A元素、 B元素、 Z元素として、他の元素を用いた場合、および付活剤であ る Ceの付活量を変更した場合も、各原料の混合時の配合量を所定の組成比に合わ せることで、上述したものと同様の製造方法により蛍光体を製造することができる。
[0150] 次に、本発明に係る蛍光体混合物について説明する。本発明に係る蛍光体混合 物は、前記緑色蛍光体と波長 300nmから 500nmの範囲にある 1種類以上の単色光 または連続光である励起光により励起されたとき、波長 420nmから 500nmの範囲内 に発光スペクトルの最大ピークを有する 1種類以上の青色蛍光体、および Zまたは、 波長 590nmから 680nmの範囲内に発光スペクトルの最大ピ クを有する 1種類以 上の赤色蛍光体とを含むことを特徴とする蛍光体混合物である。当該構成を有する 蛍光体混合物は、種々の波長の光を混合することによって、可視光全域にわたり均 一な光の密度を持ったスペクトルを有し、発光時に演色性に優れ、特に発光効率に 優れ輝度が高 ヽ発光装置を得ることが出来る蛍光体混合物である。
[0151] 本発明に係る蛍光体混合物に含まれる波長 590nmから 680nmの範囲内に発光 スペクトルの最大ピークを有する赤色蛍光体について説明する。
当該赤色蛍光体については、以下に説明する励起特性および発光特性を有する 公知の赤色蛍光体を用いることができる。
まず励起光として波長域 250nm〜500nmさらに好ましくは波長域 300nm〜500 nmの範囲の光が照射されたとき高 、効率をもって、波長 590nm力ら 680nmの範囲 内に発光スペクトルの最大ピークを有する高輝度な赤色発光をおこなう赤色蛍光体 である。さらに、当該発光スペクトルの半値幅が 50nm以上であることが好ましい。
[0152] 当該赤色蛍光体の例として、組成式 MmAaBbOoNn:Z (但し、前記 M元素は、 C a、 Mg、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、前記 A元素は、 Al、 Ga 、 Inから選択される 1種類以上の元素であり、前記 B元素は、 Si、 Ge、 Snから選択さ れる 1種類以上の元素であり、前記 Z元素は、希土類元素、遷移金属元素から選択さ れる 1種類以上の元素であり、 n= 2/3m+a+4/3b- 2/3o, m= l、 a≥0、 b≥ m、 n>o、 o≥0)と表記される蛍光体がある。例えば、特許文献 1に記載された (Ca, Sr,Ba) Si N: Eu、特願 2004— 145718に記載された 2.75SrO,Si N: Euのよう
2 5 8 3 4 な赤色蛍光体が使用可能であるが、さらに好ましくは、上述した観点から、組成式 Ca AlSiN: Euで示される赤色蛍光体が好ましい。
3
[0153] 次に、本発明に係る蛍光体混合物に含まれる波長 420nmから 500nmの範囲内に 発光スペクトルの最大ピークを有する青色蛍光体について説明する。
当該青色蛍光体については、以下に説明する励起特性および発光特性を有する 公知の青色蛍光体を用いることができる。
まず励起光として波長域 250nm〜420nmさらに好ましくは波長域 300nm〜420 nmの範囲の光が照射されたとき高 、効率をもって、波長 420nm力ら 500nmの範囲 内に発光スペクトルの最大ピークを有する高輝度な青色発光をおこなう青色蛍光体 を用いることができる。さらに、当該発光スペクトルの半値幅が 30nm以上、さらに好 ましくは 50nm以上であることが好まし!/、。
以上の励起特性および発光特性を有する青色蛍光体の例として、 BAM: Eu(BaM gAl O : Eu)ゝ(Sr,Ca,Ba,Mg) (PO ) CI :Eu、または SrAl Si O N : Eu (0
10 17 10 4 6 2 x 6-x 1 +x 8-x
≤x≤2)等を挙げることができる。
[0154] 次に、本発明に係る蛍光体混合物を得る方法について説明する。
上記方法で作製した緑色蛍光体と、赤色蛍光体および Zまたは青色蛍光体とを混 合し、本発明に係る蛍光体混合物を作製する。各蛍光体の混合比を設定することで 、当該蛍光体混合物を波長 300ηπ!〜 500nmの範囲のいずれかの励起光を照射し た際、得られる発光スペクトルの相関色温度を 10000Kから 2000Kの間における所 望の値とすることができる。ここで、照明用光源という観点力もすれば、相関色温度は 7000Kから 2500Kの間における所望の値とすることが好ましい。具体的には、各色 蛍光体の目的の励起光に対する各々の発光スペクトルを測定し、得られた発光スぺ タトルをシミュレーションにて合成し、所望の相関色温度を得るための混合比率を求 めればよい。
得られた蛍光体混合物の発光効率の評価方法に関しては、実際に発光素子上に 榭脂と共に塗布し、素子を発光させた状態で比較しても良いが、発光素子自身の効 率のバラツキ、または塗布状態によるバラツキなども総合した評価となるため、均一な 評価とはいえない。したがって、得られた蛍光体混合物に波長 300nm〜500nmの 範囲のいずれかの励起光を当該蛍光体混合物に照射し発光特性を測定した際、 JI SZ8701に規定する XYZ表色系における算出方法に基づき輝度 (Y)の値を求める 評価方法とした。また演色性についても同様に JISZ8726の評価方法を用いて評価 することが可能である力 発光素子のバラツキによる演色性への影響は少ないため、 本発明に係る蛍光体混合物を組み込んだ発光装置にて演色性を評価してもよ ヽ。
[0155] 上述した各色蛍光体は、 50nm以上という好ましい半値幅を持つので、当該蛍光体 混合物の発光においては、互いの発光スペクトルが重なり合い、波長 420nm力ら 75 Onmの範囲に途切れることない連続的な、所謂ブロードなスペクトルを得ることができ る上、各色蛍光体とも同範囲の励起帯を有しているので混合比率の調整は容易であ る。
[0156] さらに好ましいことに、本発明に係る蛍光体混合物からの発光は、相関色温度が 7 OOOKから 2500Kである発光スペクトル内にお!、て、波長 420nmから 680nmの範 囲に 3つ以上の発光ピ クを有し、発光が途切れることなく連続的なスペクトルを有し ている。この結果、照明として人間の視覚に明るさを感じさせる輝度を稼ぐことができ ると同時に、波長 420nmから 750nmの範囲にブロードな発光スペクトルを有してい るので、演色性の優れた発光となる。
[0157] 本発明に係る蛍光体混合物は温度の上昇とともに発光強度が低下しないものが好 ましぐ発光特性が熱劣化し難い蛍光体を混合することが好ましい。特に、前記波長 300nmから 500nmの範囲にある所定の励起光を照射された蛍光体の温度 25°Cに おける発光スペクトルの最大ピークの発光強度の値を P
25とし、前記所定の励起光を 照射されたときの前記蛍光体の温度 200°Cにおける発光スペクトルの前記最大ピー クの発光強度の値を P としたときに、((P — P ) ZP )力、30%以下となる温度
200 25 200 25
特性を示す蛍光体を選択するのが好ましい。例えば、本発明の蛍光体と共に、前記 の BAM :Euゝ (Sr,Ca,Ba,Mg) (PO ) C1 : Euゝ BAM :Eu,Mnゝ ZnS:Cu,Al、 CaA
10 4 6 2
1 Si N : Eu、 CaAlSiN : Euなどが上げられる。これら蛍光体の温度特性を表 1—1
2 4 8 3
に示す。尚、上記条件を満たせばこの限りではない。
[0158] [表 1-1]
Figure imgf000040_0001
[0159] 本発明に係る蛍光体混合物を粉体の形で用いる場合は、混合する各蛍光体粉体 の平均粒径 (D50)がそれぞれ 50 μ m以下、さらに好ましくは 20 μ mであることが好 ましい。これは、蛍光体粉体における発光は主に粉体粒子表面で起こると考えられる ため、平均粒径 (D50)が 50 m以下であれば、粉体単位重量あたりの表面積を確 保でき、輝度の低下を回避できる力 である。さらに、当該蛍光体混合粉体を用いた 照明装置の製造において、当該蛍光体混合物粉体ペースト状とし、例えば、発光体 素子等に塗布する場合に当該粉体の密度を高めることができ、色むら、輝度の低下 を回避することができる。
[0160] 一方、本実施形態に係る蛍光体混合物を榭脂中等に分散させ、蛍光体シートとす る構成も好ましい。
当該蛍光体シートを製造する際に用いられる媒体となる材料としては、エポキシ榭 脂、シリコン榭脂、を始めとする各種の榭脂、または、ガラス等が考えられる。当該蛍 光体シ―トの使用例としては、当該蛍光体シ―トと適宜な発光を行う光源とを組み合 わせ、所定の発光を行うことが可能である。なお、当該蛍光体シートを励起する励起 光は、波長 250nmから 500nmの光であれば良ぐ LED等の発光素子を始めとして 、 Hg放電による紫外線光源、レーザ—による光源等でもよい。
[0161] 粉末状となった本発明に係る蛍光体混合物を、波長域 250nmから 500nm、好ま しくは波長域 300nmから 500nmの!、ずれかの光を発光する発光部と組み合わせる ことで、各種の照明装置や、主にディスプレイ装置用バックライト等を製造することが できる。
発光部として、例えば、紫外から青色発光のいずれかの範囲でする LED発光素子 、紫外光を発生する放電灯を用いることができる。そして、本発明に係る蛍光体混合 物を当該 LED発光素子と組み合わせた場合には、各種の照明ユニットや、ディスプ レイ装置用バックライト等を製造することができ、本発明に係る蛍光体混合物を当該 放電灯と組み合わせた場合には、各種蛍光灯や照明ユニットやディスプレイ装置用 ノ ックライ卜等を製造することができる。
[0162] 本発明に係る蛍光体の混合物と発光部との組み合わせの方法は、公知の方法で 行っても良いが、発光部に LEDを用いた発光装置の場合は、下記のようにして発光 装置を作製することが出来る。以下、図面を参照しながら、発光部に LEDを用いた発 光装置について説明する。
図 26 (A)〜(C)は、砲弾型 LED発光装置の模式的な断面図であり、図 27 (A)〜( E)は、反射型 LED発光装置の模式的な断面図である。尚、各図面において、相当 する部分については同様の符号を付し、説明を省略する場合がある。
まず、図 26 (A)を用いて、発光部に LEDを用い、前記蛍光体混合物と組み合わせ た発光装置の 1例について説明する。砲弾型 LED発光装置においては、リードフレ ーム 3の先端に設けられたカップ状の容器 5内に、 LED発光素子 2が設置され、これ らが透光性の榭脂 4にてモ—ルドされている。該実施の形態では、前記蛍光体混合 物または前記蛍光体混合物をシリコンやエポキシ等の透光性のある樹脂に分散させ た混合物(以下、混合物 1と記載する。)を、カップ状の容器 5内の全てに埋め込むも のである。また、上記混合物 1はレンズ部全体に使用したり、レンズ部上部を覆っても 良い。
次に、図 26 (B)を用いて、異なる発光装置の 1例について説明する。該実施の形 態では、混合物 1をカップ状の容器 5上および LED発光素子 2上面に塗布したもの である。
次に、図 26 (C)を用いて、さらに異なる発光装置の 1例について説明する。該実施 の形態では、蛍光体混合物 1を LED発光素子 2の上部に設置したものである。 以上、図 26 (A)〜(C)を用いて説明した砲弾型 LED発光装置は、 LED発光素子 2からの光の放出方向は上方向である力 光の放出方向が下方向でも同様の方法で 発光装置の作成は可能である。例えば、該 LED発光素子 2の光の放出方向に反射 面、反射板を設け、同発光素子 2から放出される光を反射面に反射させて外部に発 光させるのが反射型 LED発光装置である。そこで、図 27 (A)〜(E)を用い、反射型 LED発光装置と本実施形態の蛍光体混合物とを、組み合わせた発光装置の例につ いて説明する。
まず、図 27 (A)を用いて、発光部に反射型 LED発光装置を用い、本実施形態の 蛍光体混合物と組み合わせた発光装置の 1例について説明する。反射型 LED発光 装置においては、片方のリードフレーム 3の先端に LED発光素子 2が設置され、この LED発光素子 2からの発光は、下方に向かい反射面 8により反射されて上方より放 出される。該実施の形態では、混合物 1を反射面 8上に塗布するものである。尚、反 射面 8が形成する凹部内には、 LED発光素子 2を保護するため透明モールド材 9が 充填される場合もある。 [0163] 次に、図 27 (B)を用いて、異なる発光装置の 1例について説明する。該実施の形 態では、混合物 1を LED発光素子 2の下部に設置したものである。
次に、図 27 (C)を用いて、異なる発光装置の 1例について説明する。該実施の形 態では、混合物 1を、反射面 8が形成する凹部内に充填したものである。
次に、図 27 (D)を用いて、異なる発光装置の 1例について説明する。該実施の形 態では、混合物 1を、 LED発光素子 2を保護するための前記透明モールド材 9の上 部に塗布したものである。
次に、図 27 (E)を用いて、異なる発光装置の 1例について説明する。該実施の形 態では、混合物 1を、 LED発光素子 2の表面に塗布したものである。
[0164] 砲弾型 LED発光装置と反射型 LED発光装置とは、用途に応じて使い分ければよ いが、反射型 LED発光装置には、薄くできる、光の発光面積を大きくできる、光の利 用効率を高められる等のメリットがある。
[0165] 以上説明した発光装置を高演色性照明用光源として使用する場合には、演色性に 優れる発光スペクトルを有して!/、ることが必要であるので、 JISZ8726の評価方法を 用いて、本発明係る蛍光体を含む蛍光体混合物を組み込んだ発光装置の演色性を 評価した。 JISZ8726の評価において、該光源の平均演色評価数 Raが 80以上であ れば、優れた発光装置といえる。そして、好ましくは、日本人女性の肌色の成分を示 す指標である特殊演色評価数 R15が 80以上、さらに好ましくは赤色の成分を示す指 標である特殊演色評価数 R9が 60以上であれば、非常に優れた発光装置と!/、える。 ただし、演色性を求めない用途や異なる目的によっては上記指標を満たさなくても良 い。
[0166] そこで、波長 300nmから 500nmの範囲のいずれかの発光をおこなう発光部からの 光が本発明に係る蛍光体を含む蛍光体混合物へ照射され、該蛍光体混合物が発光 をおこなう発光装置を作製した。尚、発光部としては波長 460nmの発光をおこなう青 色 LEDと、波長 405nmの発光をおこなう紫外 LEDを用いた。そして、該発光装置の 発光スペクトルの演色性を評価した。その結果、本発明係る蛍光体を含む蛍光体混 合物を組み込んだ発光装置の演色性は、相関色温度 1 OOOOK〜 2000Κの範囲、 好ましく ίま, 7000Κ力ら 2500Κにお!/ヽて、 Raiま 80以上、 R15力 ^80以上、さらに ίま R 9が 60以上の高い演色性を示し、該発光装置は、高輝度で非常に演色性に優れた 光源であることが判明した。
実施例
[0167] (実施例 1)
市販の SrCO (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)を準備し、各元素のモル
3 3 4 2
it力 SSr:Al:Si:Ce = 0.970: l:4.5:0.030となるように各原料を、 SrCOを 0.970mol
3
、 A1Nを 1.0mol、 Si Nを 4.5Z3mol、 CeOを 0.030mol秤量し、大気中にて乳鉢
3 4 2
を用いて混合した。混合した原料を BNるつぼに入れ、窒素雰囲気中(フロー状態)、 炉内圧 0. 05MPaで 1800°Cまで 15°CZminで昇温し、 1800°Cで 3時間保持 '焼成 した後、 1800°Cから 200°Cまで 1時間で冷却した。その後、焼成試料を大気中にて 適当な粒径になるまで乳鉢を用いて解砕し、混合組成式 Sr Al Si O N : Ce (但し、
2 2 9 2 14
Ce/(Sr + Ce) = 0.030)で示される実施例 1の蛍光体を得た。得られた蛍光体粉末 の分析結果を表 1 2、蛍光体粉末の SEM写真(250倍)を図 1に示す。
[0168] 得られた蛍光体の組成分析結果は、構成元素の原子量、モル比から求めた理論 値に近!、ものであった。多少のズレは測定誤差や蛍光体作製中に混入した不純物 によるものと考えられる。比表面積は 0.285m2/gであった。また、図 1から明らかなよ うに、得られた蛍光体粉末は 20 m以下の 1次粒子が凝集した凝集体であって、レ —ザ—ドップラ—測定法で平均粒子径 (D50)を測定したところ D50は 17.5 m、 SE Mで観察した 1次粒子径は約 13.0 μ mであり、蛍光体として好ましい 1. 0 μ m以上、 20.0 μ m以下、比表面積 0.05m2Zg以上、 5.0m2Zg以下の範囲であることが解つ た。
[0169] 次に、実施例 1の蛍光体の発光スペクトルを測定した。当該測定結果を表 2に示し 、さら〖こ図 2、図 3に記載した。
図 2、図 3は、縦軸に実施例 1の蛍光体の発光強度を相対強度としてとり、横軸には 光の波長をとつたグラフである。ここで、発光スペクトルとは、ある波長の光またはエネ ルギ—を蛍光体に照射した際、蛍光体より放出される光のスペクトルである。図 2は、 実施例 1の蛍光体に励起光として波長 460 nmの単色光を照射した際、図 3は、同じ く励起光として波長 405nmの単色光を照射した際に、蛍光体から発光した光のスぺ タトルを、実線を用いて示したものである。なお、発光スペクトル、励起スペクトルの測 定には日本分光 (株)社製分光蛍光光度計 FP— 6500を用いて測定した。
[0170] まず、図 2を用いて、当該蛍光体の発光スペクトルについて説明する。
図 2の実線から明らかなように、当該蛍光体の発光スペクトルは、波長 470nmから 750nmの広い波長域においてブロードなピークを持ち、そのピーク波長は 559.3η mであった。(このときの発光強度および輝度の相対強度を 100%とした。)また、半 値幅を求めたところ 117.2nmであった。当該発光スペクトルの色度 (x,y)を求めたとこ ろ x=0.4156、y=0.5434であった。尚、粉末は黄色の蛍光色をしており、目視でも 黄色の発光色が確認できた。実施例 1の蛍光体は、広い波長域において非常に半 値幅の広いピークを持っためワンチップ型白色 LED照明用蛍光体として使用した場 合には、シャープなピークを持つ蛍光体を使用したものに比べ、演色性に優れた白 色 LED照明を作製することが可能となる。また、シャ一プなピ一クを持つ蛍光体の場 合には、太陽光に近 、スペクトルを実現するために数種類の蛍光体を混合する必要 があるが、当該蛍光体はプロ—ドなピ—クを有しているため、混合する蛍光体の種類 の数を少なくすることができ、安価に白色 LED照明を作製することが可能となる。
[0171] 表 2、図 3の実線は、励起光として波長 405nmの単色光を照射した際の発光スぺク トルの測定結果を示しており、 405nmの励起波長においても、波長 470nm力ら 750 nmの広 、波長域にお!ヽてブ口 ドなピークを持ち、そのピ ク波長は 552.3nmで あった。(発光強度および輝度は、当該実施例 1の蛍光体に励起光として波長 460η mの単色光を照射した際の発光スペクトルのピークの値を相対強度 100%としている 。)また、半値幅を求めたところ 119.5nmであり、当該発光スペクトルの色度 (x,y)は x = 0.3730、 y=0.5377であった。尚、目視でも黄色の発光色が確認できた。
[0172] 次に、図 4を用いて、実施例 1の蛍光体の励起スペクトルについて説明する。図 4は 縦軸に蛍光体の発光強度をとり、横軸には励起光の波長をとつたグラフである。ここ で、励起スペクトルとは、種々の波長の単色光を励起光として用いて被測定対象の 蛍光体を励起し、蛍光体が発光する一定波長の発光強度を測定し、その発光強度 の励起波長依存性を測定したものである。本測定においては、波長が 300nmから 5 70nmまでの単色光を実施例 1の蛍光体に照射し、当該蛍光体が発光する波長 559 .3nmの光の励起依存性を測定したものである。
[0173] 図 4の実線は、実施例 1の蛍光体の励起スペクトルである。この図 4の実線から明ら かなように、当該蛍光体の励起スペクトルは、波長 300nm付近から 500nmまでの広 い範囲の励起光で、高強度の黄色の発光を示すことがわかった。特に、現在、ワンチ ップ型白色 LED照明用の励起光として使用されている青色 LED、近紫外 ·紫外 LE Dの発光波長である 460nm、 405nm付近では、特に優れた励起帯を持っている蛍 光体である。
これ以降に説明する実施例 2、実施例 3、比較例 1、比較例 2、比較例 3の発光強度 および輝度についても、実施例 1の蛍光体に励起光として波長 460nmの単色光を 照射した際の発光スペクトルのピ—クの値を相対強度 100%としている。
[0174] (実施例 2)
実施例 2においては、実施例 1の各元素のモル比を Sr:Al:Si:Ce = 0.970:l:5:0. 030となるようにした以外は、実施例 1と同様にして実施例 2の蛍光体を作製している 。以下、詳細な作製方法を記述する。
市販の SrCO (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)を準備し、各元素のモル
3 3 4 2
it力 Sr:Al:Si:Ce = 0.970:l:5:0.030となるように各原料を、 SrCOを 0.970mol、
3
A1Nを 1.0mol、 Si Nを 5.0Z3mol、 CeOを 0.030mol秤量し、大気中にて乳鉢を
3 4 2
用いて混合した。混合した原料を BNるつぼに入れ、窒素雰囲気中(フロー状態)、炉 内圧 0. 05MPaで 1800°Cまで 15°CZminで昇温し、 1800°Cで 3時間保持 '焼成し た後、 1800°Cから 200°Cまで 1時間で冷却した。その後、焼成試料を大気中にて適 当な粒径になるまで乳鉢を用いて解砕し、混合組成式 Sr Al Si O N : Ce (但し、 C
3 3 15 3 23 eZ(Sr+Ce) = 0.030)で示される実施例 2の蛍光体を得た。得られた蛍光体粉末の 分析結果を表 1 2に示す。
[0175] 得られた蛍光体の組成分析結果は、実施例 1と同様に構成元素の原子量、モル比 力 求めた理論値に近 、ものであった。多少のズレは測定誤差や蛍光体作製中に 混入した不純物によるものと考えられる。比表面積は 0.302m2Zg、また、 SEM径で 観察した 1次粒子径は約 12.3 μ m、レ—ザ—ドッブラ—測定法による平均粒子径 (D 50)は 16.85 /z mであり、 光体として好まし ヽ 1. 以上、 20.0 /z m以下、 it表 面積 0.05m2Zg以上 5.0m2Zg以下の範囲であった。
[0176] 次に、実施例 2の蛍光体の発光スペクトルを測定した。当該測定結果を表 2に示し 、さら〖こ図 2、図 3に記載した。
図 2の一点鎖線は、励起光として波長 460nmの単色光を照射した際の発光スぺク トルの測定結果を示しており、当該蛍光体は、波長 470nmから 750nmの広い波長 域においてブロードなピークを持ち、そのピーク波長は 559.2nmであった。また、半 値幅を求めたところ 116.4nmであり、当該発光スペクトルの色度 (x,y)を求めたところ x=0.4171、y=0.5427であった。尚、粉末は黄色の蛍光色をしており、目視でも黄 色の発光色が確認できた。
[0177] 表 2、図 3に一点鎖線を用いて、励起光として波長 405nmの単色光を照射した際 の発光スペクトルの測定結果を示した。実施例 2の蛍光体は、 405nmの励起波長に ぉ 、ても、波長 470nm力ら 750nmの広 、波長域にお!ヽてブ口 ドなピ クを持ち、 そのピーク波長は 552.5nmであった。また、半値幅を求めたところ 118.0nmであり、 当該発光スペクトルの色度 (x,y)は x=0.3783、y=0.5389であった。尚、目視でも 黄色の発光色が確認できた。
[0178] 図 4の一点鎖線は、実施例 2の蛍光体の励起スペクトルである。本測定においては 、波長が 300nmから 570nmまでの単色光を実施例 2の蛍光体に照射し、当該蛍光 体が発光する波長 559.2nmの光の発光強度の励起依存性を測定したものである。 図 4の一点鎖線力も明らかなように、当該蛍光体の励起スペクトルも実施例 1と同様 に、波長 300nm付近から 500nmまでの広い範囲の励起光で、高強度の黄色の発 光を示すことがわかった。
実施例 2は、実施例 1に比べ Si、 Nのモル比が大きな組成である力 実施例 1と同 様に優れた発光特性を示した。
[0179] (実施例 3)
実施例 3では、実施例 1の蛍光体の組成式 Sr Al Si O N : Ce (但し、 Ce/(Sr+
2 2 9 2 14
Ce) = 0.030)で示される蛍光体において、付活剤である Ceを Euに置き換えた以外 は、実施例 1と同様にして実施例 3の蛍光体を作製したものである。各元素のモル比 は Sr:Al:Si:Eu=0.970:l:4.5:0.030であり、各原料を、 SrCOを 0.970mol、 A1N を 1.0 mol、 Si Nを 4.5Z3 mol、 Eu Oを 0.030Z2mol秤量した。実施例 1と同じ
3 4 2 3
ように、得られた蛍光体粉末の分析結果を表 1 2に示す。
[表 1-2]
Figure imgf000048_0001
[0180] 得られた蛍光体の組成分析結果は、構成元素の分子量、モル比から求めた理論 値に近いものであった。比表面積は 0.291m2/g、また、 SEM径で観察した 1次粒 子径は約 13.: mであり、レ—ザ—ドップラ—測定法による平均粒子径 (D50)は 17 . 27 mであり、付活剤を Euにした場合にも組成分析結果、比表面積、 SEM径は、 Ceを付活した場合とほぼ同じ結果を得ることができた。
[0181] 次に、実施例 3の蛍光体の発光スペクトルを測定した。当該測定結果を表 2に示し 、さらに励起波長 Ex460nm、 Ex405nmを照射したときの発光スペクトルをそれぞれ 図 2、図 3に示す。
表 2、および図 2の二点鎖線は、励起光として波長 460 nmの単色光を照射した際 の発光スペクトルの測定結果を示している。表 2、図 2の二点鎖線より励起波長 Ex46 Onmにおける当該蛍光体は、波長 470nmから 750nmの広い波長域においてブロ —ドなピークを持ち、そのピーク波長は 613.8nmであった。また、半値幅を求めたと ころ 115.6nmであり、当該発光スペクトルの色度 (x,y)を求めたところ x=0.5573、 y = 0.4330であった。尚、粉末はオレンジ色をしており、目視でもオレンジ色の発光色 が確認できた。
[0182] また、表 2および、図 3の二点鎖線は、励起光として波長 405 nmの単色光を照射し た際の発光スペクトルの測定結果を示している。表 2、図 3の二点鎖線より励起波長 E x405nmにおける当該蛍光体は、波長 470nmから 750nmの広い波長域において ブロードなピークを持ち、そのピーク波長は 607.9nmであった。また、半値幅を求め たところ 114.2nmであり、当該発光スペクトルの色度 (x,y)を求めたところ x=0.5083 、 y=0.4172であった。尚、目視でもオレンジ色の発光色が確認できた。 [0183] 実施例 3の蛍光体は、実施例 1の蛍光体と母体は同じであるものの、付活剤を Ceか ら Euにすることで、発光強度をほぼ維持したまま、発光スペクトルのピ一クを長波長 側にシフト(ピーク波長を Ceの約 560nmから Euの約 610nmへシフト)させることがで きた。これまでに提案されて 、るシリコンナイトライド蛍光体やサイアロン蛍光体では、 付活剤が変わるとピーク波長はシフトするものの、発光強度が大幅に低下してしまうと いう問題を抱えていたが、本実施例 3の母体は、 Ceと Euのどちらの付活剤において も優れた発光強度を示すという特徴を有する。さらに実施例 3の蛍光体は、ピーク波 長力約 610nmであり、オレンジ色の発光を示すため電球色の白色 LED照明用蛍光 体として有望である。さらに、これまでに提案されている酸窒化物や窒化物に Euを付 活したオレンジ色に発光する蛍光体は、発光スペクトルの半値幅が lOOnmを超える ものはなかった力 本実施例 3の蛍光体は半値幅が約 120nmもあり、非常にブロー ドな発光スペクトルを持った蛍光体である。
[0184] 図 5は、実施例 3の蛍光体の励起スペクトルである。尚、図 5は図 4と同様のグラフで ある。本測定においては、波長が 300nmから 570nmまでの範囲にある単色光を、 実施例 3の蛍光体に照射し、当該蛍光体が発光する波長 613.8nmの光における発 光強度の励起光波長への依存性を測定したものである。当該蛍光体の励起スぺタト ルカら、当該蛍光体は、波長 300nm付近から 550nmまでの広い範囲の励起光によ り励起され、高強度のオレンジ色の発光を示すことがわ力つた。更に、波長 350nm 力も 500nmの範囲において、単色の励起光が照射された際の発光強度を測定した 結果、当該所定波長を有する励起光を吸収して発光するスペクトルの強度が最大と なる励起波長における発光強度を P
H、発光強度が最小となる励起波長における発 光強度を Pとしたとき、(P — P )/P ≤0.10となった。つまり、励起光として、波長 3
L H L H
50nmから 550nmの範囲の単色光を用いた場合における発光強度のばらつきは 10 .0%以下と 、うことであり、励起帯が平坦であることを示して 、る。
[0185] 現在、白色 LED照明用蛍光体として使用されている黄色蛍光体 (YAG : Ce)などは 、 460nm付近で最も高効率の励起帯を持つものの、広い範囲にわたり効率の良い 励起帯を有して 、るわけではな 、ために、青色 LEDの製造時における発光素子の ばらつきによる発光波長のばらつきによって、当該青色 LEDの発光波長が、 YAG : Ce系黄色蛍光体の最適励起範囲から外れてしまうことで、青色と黄色の発光強度の バランスが崩れ、白色光の色調が変化してしまうといった問題がある。これに対し、実 施例 3の蛍光体は励起帯が平坦であるため、発光素子の発光波長がばらついた場 合でも発光強度がほぼ一定となり、各色の発光強度のバランスが崩れることがなぐ 安定して同じ色調の白色 LED照明を製造することが可能であり、品質および製造コ ストの両面でメリットがある。
[0186] (比較例 1)
特許文献 1に記載の Sr Si N: Ce (但し、 CeZ(Sr+Ce) = 0.030)で示される蛍光
2 5 8
体を作製し比較例 1とした。
比較例 1の蛍光体は以下のようにして作製した。
Sr N (2N)、 Si N (3N)、 CeO (3N)の市販されている試薬を原料として準備し、そ
3 2 3 4 2
れぞれ、各元素のモル比が Sr:Si:Ce= 1.94:5.0:0.06であり、各原料を Sr Nを 1.
3 2
94Z3mol、 Si Nを 5.0Z3 mol、 CeOを 0.060mol秤量し、窒素雰囲気下のグロ
3 4 2
ーブボックス中にて乳鉢を用いて混合した。以下の作製方法につ!、ては焼成温度を
1600°Cにした以外は、実施例 1と同様な方法で蛍光体試料を作製した。
[0187] 次に、実施例 1と同様にして、比較例 1の蛍光体の発光スペクトルを測定した。当該 測定結果を表 2、図 2および図 3 (長破線)に示す。図 2及び図 3の長破線から明らか なように、比較例 1の蛍光体はブロードな発光スペクトルを示した。また、図 2の長破 線に示すように、波長 460 nmの光で励起させた場合は、波長 557.2nmにピークを 持つ発光スペクトルを示し、実施例 1の相対強度を 100%とした場合に発光強度の 相対強度は 28.5%であり、輝度の相対強度は 32.6%であった。当該発光スペクトル の色度は (x,y)は、 x=0.3716、 y=0.5080であった。また、図 3の長破線に示すよう に、比較例 1の蛍光体は、励起波長 405nmの光で励起させた場合は、波長 562.0η mにピ―クを持つ発光スペクトルを示し、実施例 1の相対強度を 100%とした場合に 発光強度の相対強度は 56.4%であり、輝度の相対強度は 62.1%であった。当該発 光スぺタトノレの色度 (x,y)iま、 x=0.3901、y=0.4985であった。尚、目視で ίま緑色 の発光を確認できた。
[0188] (比較例 2) 特許文献 2に記載の Sr Al Si N : Ce (但し、 CeZ(Sr+Ce) = 0.030)で示される
1.5 3 9 16
蛍光体を作製し比較例 2とした。
比較例 2の蛍光体は以下のようにして作製した。
Sr N (2N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の市販されている試薬を原料とし
3 2 3 4 2
て準備し、それぞれ、各元素のモル比が Sr:Al:Si:Ce= 1.455:3.0:9.0:0.045であ り、各原料を、 Sr Nを 1.455Z3mol、 A1Nを 3.0mol、 Si Nを 9.0Z3mol、 CeO
3 2 3 4 2 を 0.045mol秤量し、窒素雰囲気下のグロ ブボックス中にて乳鉢を用 、て混合した 。以下の作製方法については焼成温度を 1700°Cにした以外は、実施例 1と同様な 方法で蛍光体試料を作製した。
[0189] 次に、実施例 1と同様にして、比較例 2の蛍光体の発光スペクトルを測定した。当該 測定結果を表 2、図 2および図 3に短破線で示す。図 2および図 3の短破線から明ら かなように、比較例 2の蛍光体はブロードな発光スペクトルを示した。また、図 2の短 破線に示すように、波長 460 nmの光で励起させた場合は、波長 560.8nmにピーク を持つ発光スペクトルを示し、実施例 1の相対強度を 100%とした場合に発光強度の 相対強度は 16.0%であり、輝度の相対強度は 16.7%であった。当該発光スペクトル の色度は (x,y)は、 x=0.3992、 y=0.5116であった。また、図 3の短破線に示すよう に、比較例 2の蛍光体は、単色 405nmの光で励起させた場合は、波長 527.5nmに ピ―クを持つ発光スペクトルを示し、実施例 1の相対強度を 100%とした場合に発光 強度の相対強度は 20.9%であり、輝度の相対強度は 22.2%であった。当該発光ス ぺクトノレの色度 (x,y)iま、 x=0.3316、 y=0.4958であった。尚、目視で ίま、波長 460 nmの光による励起では黄色、波長 405nmの光による励起では緑色の発光を確認 できた。
[0190] (比較例 3)
特許文献 3に記載の SrAl SiO N: Ce (但し、 CeZ(Sr+Ce) = 0.030)で示される
2 3 2
蛍光体を作製し比較例 3とした。
比較例 3の蛍光体は以下のようにして作製した。
SrCO (3N)、 A1N(3N)、 SiO (3N)、 CeO (3N)の市販されている試薬を原料とし
3 2 2
て準備し、それぞれ、各元素のモル比が Sr:Al:Si:Ce = 0.970:2.0: 1.0:0.030であ り、各原料を、 SrCOを 0.970mol、 A1Nを 2.0mol、 SiOを 1.0mol、 CeOを 0.030
3 2 2 mol秤量し、大気中にて乳鉢を用いて混合した。以下の作製方法については焼成温 度を 1400°Cにした以外は、実施例 1と同様な方法で蛍光体試料を作製した。
[0191] 次に、実施例 1と同様にして、比較例 3の蛍光体の発光スペクトルを測定した力 波 長 460nm、 405nmの光で励起した場合は発光せず、測定不能であった。しかし、 簡易評価で波長 254nm、 366nmの励起光を照射した際には、目視で青色の発光 を確認できた。
さらに、焼成温度を 1800°Cで行った際には、原料が融解してしまった。
[0192] <実施例 1、 2、 3および比較例 1、 2、 3についての検討 >
表 2の組成式から明らかなように、実施例 1と実施例 2と実施例 3の新規組成を持つ 蛍光体は、比較例 1とは異なり構成元素に A1が含まれ、比較例 2のサイアロン蛍光体 とは異なった組成式を持ち(サイアロン組成式 M (Al,Si) (Ο,Ν) 、 0<χ≤ 1. 5)、
χ 12 16
比較例 3とは異なり、酸素より窒素のモル比が大きい値をとる蛍光体である。
表 2、図 2および図 3の結果から明らかなように、実施例 実施例 2、実施例 3の蛍 光体は、比較例 1から 3の蛍光体と比較して、波長 460nmの光で励起した場合は 3. 0倍以上の発光強度、 2.5倍以上の輝度を示し、波長 405nmの光で励起した場合は 1.5倍以上の発光強度および輝度を示し、従来の蛍光体に比べ高い発光強度およ び輝度を示す高効率な蛍光体であることが判明した。
[表 2]
Figure imgf000052_0001
[0193] (実施例 4から実施例 13) Ce付活量についての検討 実施例 4から実施例 13においては、混合組成式 Sr Al Si O N : Ceで示される蛍
2 2 9 2 14
光体にお 1、て、付活剤 Z元素 (Ce)の濃度を変化させた場合の発光強度および輝度 の変化を測定した。ここで、測定試料の製造においては、付活剤 Ceと Srの関係が m + z= lとなるように Srと Ceとの原料混合比を調整した。そして、実施例 1において説 明したように SrCO (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の各原料の混合比を
3 3 4 2
調整し、 Ce付活濃度を変更した以外は、実施例 1と同様にして蛍光体試料を作製し 、作製された蛍光体の発光強度および輝度を測定した。但し、 Ce付活濃度 CeZ(Sr + Ce)を、 0.001 (実施例 4)、 0.005 (実施例 5)、 0.010 (実施例 6)、 0.020 (実施 例 7)、 0.025 (実施例 8)、 0.030 (実施例 9)、 0.035 (実施例 10)、 0.040 (実施例 1 1)、 0.050 (実施例 12)、 0.100 (実施例 13)とした。
[0194] 当該測定結果を、表 3および図 6に示す。ここで、図 6は縦軸に当該各蛍光体試料 の発光強度の相対強度をとり、横軸には Srと Ceとの配合比 CeZ(Sr+Ce)の値をと つたグラフである。尚、発光強度および輝度においては、 CeZ(Sr +Ce) = 0.040 ( 実施例 11)のピ―ク波長における発光強度の値を 100%とした。尚、励起光として波 長 460nmの光を用いた。
[0195] 表 3および図 6の結果から明らかなように、 CeZ(Sr+Ce)の値が小さな領域では、 Ce/(Sr + Ce)の値の増加と共に発光強度および輝度が上昇するが、 Ce/(Sr+ Ce) = 0.040付近をピークとして、 Ce/(Sr + Ce)の値の増加と共に発光強度および 輝度は下がっていく。これは、 CeZ(Sr+Ce)= 0.040より少ない部分では付活剤元 素が不足するため、 CeZ(Sr + Ce) = 0.040より多 、部分では付活剤元素による濃 度消光が見られるためであると考えられる。
一方、表 3の結果から明らかなように、 CeZ(Sr+Ce)の値の増加と共に、 CeZ(Sr + Ce) = 0.001 (実施例 4)のデータを除くと、ピーク波長の値が長波長側にシフトし ていくことが確認された。
尚、当該発光強度および輝度の測定と並行して、発光スペクトルの色度 (x,y)も測定 し、その結果を表 3に示す。
[表 3]
Figure imgf000054_0001
[0196] (実施例 14から実施例 23) Eu付活量にっ 、ての検討
実施例 14から実施例 23においては、混合組成式 Sr Al Si O N : Euで示される
2 2 9 2 14
蛍光体にお!ヽて、付活剤 Z元素 (Eu)の濃度を変化させた場合の発光強度および輝 度の変化を測定した。ここで、測定試料の製造においては、実施例 4〜13と同様に、 付活剤 Euと Srの関係が m+z= 1となるように Srと Euとの原料混合比を調整した。そ して、実施例 3において説明した SrCO (3N)、 A1N(3N)、 Si N (3N)、 Eu O (3N)
3 3 4 2 3 の各原料の混合比を調整し、 Eu付活濃度を変更した以外は、実施例 3と同様にして 蛍光体試料を作製し、作製された蛍光体の発光強度および輝度を測定した。但し、 Eu付活濃度 EuZ(Sr+Eu)は、 0.001 (実施例 14)、 0.005 (実施例 15)、 0.010 ( 実施例 16)、 0.020 (実施例 17)、 0.025 (実施例 18)、 0.030 (実施例 19)、 0.035 ( 実施例 20)、 0.040 (実施例 21)、 0.050 (実施例 22)、 0.100 (実施例 23)とした。
[0197] 当該測定結果を、表 4および図 7に示す。ここで、図 7は縦軸に当該各蛍光体試料 の発光強度の相対強度をとり、横軸には Srと Euとの配合比 EuZ(Sr+Eu)の値をと つたグラフである。尚、発光強度および輝度においては、 EuZ(Sr+Eu) = 0.050 ( 実施例 22)のピ―ク波長における発光強度の値を 100%とした。尚、励起光として波 長 460nmの光を用いた。
[0198] 表 4および図 7の結果から明らかなように、 EuZ(Sr+Eu)の値が小さな領域では、 Eu/(Sr + Eu)の値の増加と共に発光強度および輝度が上昇するが、 EuZ(Sr + E u) = 0.050付近をピークとして、 EuZ(Sr+Eu)の値の増加と共に発光強度および輝 度は下がっていく。これは、 EuZ(Sr+Eu) = 0.050より少ない部分では付活剤元素 が不足するため、 EuZ(Sr + Eu) = 0.050より多 、部分では付活剤元素による濃度 消光が見られるためと考えられる。しかし、実施例 4から 13の Ce付活濃度の場合と比 較して、付活濃度の高い領域での濃度消光による発光強度の低下は緩やかである。 これは、 Euと Ceのイオン半径の違い、および価数の違いによるものと考えられる。 一方、表 4の結果から明らかなように、 EuZ(Sr+Eu)の値の増加と共に、 EuZ(Sr +Eu) = 0.001 (実施例 14)、 EuZ(Sr+Eu) = 0.050 (実施例 22)、のデータを除く と、ピーク波長の値が長波長側にシフトしていくことが確認された。
尚、当該発光強度および輝度の測定と並行して、発光スペクトルの色度 (x,y)も測定 した。その結果を表 4に示す。
[表 4]
Figure imgf000055_0001
(実施例 24から実施例 32) AlZSr比の変更
実施例 24から実施例 32においては、混合組成式 Sr Al Si O Nn:Ce (Ce/(Sr
2 a 9 O
+ Ce) = 0.030、 n=2/3m+a+4/3b-2/3o, m=2.0、 b = 9.0、 O≤2.0)で 示される蛍光体において、 Sr、 Siのモル比を、それぞれ 2、 9に固定し、 aZm比(ここ で、 aZmと AlZSrとは同じ意味を持つ。)を変化させた場合の発光強度および輝度 の変化を測定した。ここで、測定試料の製造においては、実施例 1で説明した、 SrC O (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の各原料のうち A1N(3N)のみの混合比
3 3 4 2
を調整した以外は、実施例 1と同様にして蛍光体試料を作製し、作製された蛍光体 の発光強度および輝度を測定した。但し、調整した A1と Srの配合比は、、 AlZSr= 0.50 (実施例 24)、 AlZSr=0.75 (実施例 25)、 AlZSr=0.90 (実施例 26)、 A1Z Sr= 1.00 (実施例 27)、 AlZSr= 1.10 (実施例 28)、 Al/Sr= 1.25 (実施例 29)、 AlZSr= 1.50 (実施例 30)、 AlZSr=2.00 (実施例 31)、 AlZSr=3. 00 (実施例 32)とした。
[0200] 当該測定結果を、表 5および図 8に示す。ここで、図 8は縦軸に当該各蛍光体試料 の発光強度の相対強度をとり、横軸には Srと A1との配合比 AlZSrの値をとつたダラ フである。尚、発光強度および輝度においては、 AlZSr= 1.0 (実施例 27)のピ―ク 波長における発光強度の値を 100%とした。そして、 AlZSrの値を、 0.50から 3. 00 まで調整した結果を示す。尚、励起光として波長 460nmの光を用いた。
[0201] 表 5および図 8の結果から明らかなように、 AlZSrの値が小さな領域では、値の増 カロと共に発光強度および輝度が上昇するが、 AlZSr= 1.0 (実施例 27)付近をピ— クとして発光強度および輝度が低下する。
これは、 AlZSr= 1.0から大きく外れると、焼成後の蛍光体に未反応原料が残って しまうことや、発光している相とは異なる相が生成してしまうこと、また、 AlZSrが 1.5 以上になると X線回折ピーク強度が低下することから、蛍光体の母体構造の結晶性 が低下すること、さらに、発光に適した構造が崩れ、発光に寄与しない不純物相が生 成することが原因と考えられる。これらの原因により AlZSr= 1.0からずれてしまうと 発光強度および輝度は低下してしまうが、 A1の適正量は Siや酸素の組成の変動によ つてわずかに変化するため、少しのズレであれば影響が小さぐ 0.75<A1/Sr< l. 5であれば AlZSr= 1.0の 80%以上の発光強度および輝度の値を有する。
[表 5]
Figure imgf000056_0001
(実施例 33から 42) SiZSr比の変更
実施例 33力ら 42においては、原料混合組成式 Sr Al Si O N: Ce (Ce/(Sr
2 2 b 2 n 0.060
+ Ce) = 0.030、 n=2/3m+a+4/3b-2/3o,但し m=2.0、 a=2.0)で示され る蛍光体において、 Sr、 A1のモル比を、それぞれ 2、 2に固定し、 bZm比(ここで、 b Zmと SiZSrは同じ意味を持つ。)を変化させた場合の発光強度および輝度の変化 を測定した。ここで、測定試料の製造においては、実施例 1で説明した、 SrCO (3N)
3
、 A1N(3N), Si N (3N), CeO (3N)の各原料のうち Si N (3N)のみの混合比を調整
3 4 2 3 4
した以外は、実施例 1と同様にして蛍光体試料を作製し、作製された蛍光体の発光 強度および輝度を測定した。但し、調整した Siと Srの配合比は、 SiZSr= 1.0 (実施 例 33 SiZSr= 1.5 (実施例 34 SiZSr= 2.0 (実施例 35 SiZSr= 3.0 (実施 例 36 SiZSr=4.0 (実施例 37 SiZSr=4.5 (実施例 38 SiZSr= 5.0 (実施 例 39 SiZSr= 5.5 (実施例 40 SiZSr=6.0 (実施例 41 SiZSr= 7.0 (実施 例 42)とした。
当該測定結果について、表 6、図 9を参照しながら説明する。ここで、図 9は縦軸に 当該蛍光体試料の発光強度の相対強度をとり、横軸には Srと Siとの配合比 SiZSr の値をとつたグラフである。尚、発光強度および輝度においては、 SiZSr=4.5 (実 施例 38)のピ―ク波長における発光強度の値を 100%とした。そして、 SiZSrの値を 、 1.0から 7.0まで調整した結果を示す。尚、励起光として波長 460nmの光を用いた
[表 6]
Figure imgf000057_0001
図 9の結果から明らかなように、 SiZSrの値が小さな領域では、 SiZSrの値の増加 と共に発光強度が上昇するが、 SiZSr=4.5 (実施例 38)でピークとなり、 Si/Sr = 4.5を超えると発光強度が低下した。これは、 SiZSr= 4.5付近から大きく外れてし まうと、実施例 24から 32において AlZSrについて説明したときと同様に、焼成後の 蛍光体に未反応原料が残ってしまうことや、不純物相が生成してしまうこと、さらに、 X 線回折ピーク強度が低下することから母体構造の結晶性が低下し、発光に適した構 造が崩れていくことが原因と考えられる。特に、 SiZSrを 4.5より小さくしていくと、低 角度側に見られるピ―クは消滅し、新たなピ―クが現れてくるのが確認でき、 4.5より 大きくしていくと低角度側に見られるピ一クが消滅してしまうことが確認できることから 、 SiZSr= 4.5の関係力 大きくズレてしまうと発光に寄与しない不純物相が生成し てしまうことや、結晶性が低下してしまうことが解った。しかし、小さなズレであれば影 響は小さく、 3.5≤SiZSr≤6.0であれば、 SiZSr=4.5の場合における 80%以上 の発光強度および輝度の値を有する。
[0205] (実施例 43から実施例 50) Srモル比の変更
実施例 43から実施例 50においては、原料混合組成式 Sr Al Si O N: Ce (Ce/( m 2 9 2 n
Sr+Ce) = 0.030、 n= 2/3m+a+4/3b- 2/3o,但し a = 2.0、 b = 9.0、 o= 2. 0)で示される蛍光体において、 Al、 Siのモル比を、それぞれ 2、 9に固定し、 Srのモ ル比を変化させた場合の発光強度および輝度の変化を測定した。(ここで、 aと Srは 同じ意味を持つものとする。 a = Sr)ここで、測定試料の製造においては、実施例 1で 説明した、 SrCO (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)〖こ加えて、 Oを常に o =
3 3 4 2
2.0とするため、 Al O (3N)原料を追加して混合比を調整した以外は、実施例 1と同
2 3
様にして蛍光体試料を作製し、作製された蛍光体の発光強度および輝度を測定した 。但し、調整した Srのモル比は、 Sr=0.50 (実施例 43)、 Sr= 1.00 (実施例 44)、 Sr = 1.50 (実施例 45)、 Sr= 2.00 (実施例 46)、 Sr= 2.50 (実施例 47)、 Sr= 3.00 ( 実施例 48)、 Sr =4.00 (実施例 49)、 Sr= 6.00 (実施例 50)とした。
[0206] 当該測定結果について、表 7、図 10を参照しながら説明する。ここで、図 10は縦軸 に当該蛍光体試料の発光強度の相対強度をとり、横軸には Srモル比の値をとつたグ ラフである。尚、発光強度および輝度においては、 Sr= 2.00 (実施例 46)のピ―ク波 長における発光強度の値を 100%とした。そして、 Srモル比の値を、 0.50力 6.00 まで調整した結果を示す。尚、励起光として波長 460nmの光を用いた。
[表 7]
Figure imgf000059_0001
[0207] 図 10の結果から明らかなように、 Srモル比が小さな 0.50 (実施例 43)、 1.00 (実施 例 44)では、波長 460nm、 405nmの光で励起した場合に発光するものは得られな かった。更に、簡易評価として波長 366nmの紫外線ランプの光を照射しところ、目視 により青色の発光色を確認することができた。これは、 Srモル比の小さな 0.50、 1.00 では、 Srが Sr原料である SrCOの混合粉末中に占める割合が小さぐ SrCOカ^ラ
3 3 ックスとして良好に作用しないために黄色に発光する相が生成せず、他の相が生成 したために、短波長の励起光により青色に発光したものと考えられる。また、 Srモル 比を 1.00より徐々に増加させていくと、 Srモル比の増加と共に発光強度及び輝度が 上昇するが、 Sr= 2.00 (実施例 46)でピ―クとなり、 2.00を超えると発光強度が低下 する。
[0208] (実施例 51から実施例 60)酸素濃度の変更
実施例 51から実施例 60においては、組成式 Sr Al Si O N : Ce (Ce/(Sr+Ce)
2 2 9 O n
= 0.030、 n= 2/3m+a+4/3b- 2/3o, m= 2.0、 a = 2.0、 b = 9.0)で示される 当該蛍光体試料において、 Sr、 Al、 Siのモル比を 2、 2、 9にそれぞれ固定し、 o/m 比 (酸素濃度)を変化させた場合の発光強度および輝度の変化を測定した。ここで、 測定試料の製造においては、 Sr N (2N)、 SrCO (3N)、 A1N(3N)、 Al O (3N)、 Si
3 2 3 2 3 3
N (3N)、 SiO (3N)、 CeO (3N)の各原料を所定のモル比で仕込むことにより酸素濃
4 2 2
度を変更した以外は、実施例 1と同様にして蛍光体試料を作製し、発光強度および 輝度を測定した。
[0209] 原料秤量時に調整した oZm比力 o/m=0.0 (実施例 51)、 oZm=0.2 (実施例 52) , o/m = 0.50 (実施例 53)の実施例については、原料として Sr N 、 Al O 、 A
3 2 2 3
1N、 Si Nを使用し、 oZm= 1.00 (実施例 54)、 oZm= 1.25 (実施例 55)、 oZm = 1.5 (実施例 56)、 oZm= 2.0 (実施例 57)、 oZm= 3.0 (実施例 58)の実施例に ついては、原料として SrCO、 Al O、 A1N、 SiO、 Si Nを使用し、 oZm= 5.0 (実
3 2 3 2 3 4
施例 59)、 oZm= 10.0 (実施例 60)の実施例については、原料として Sr N、 Al O
3 2 2
、 SiO、 Si Nを使用している。
3 2 3 4
[0210] 当該測定結果について、表 8、図 11を参照しながら説明する。ここで、図 11は縦軸 に当該蛍光体試料の発光強度の相対強度をとり、横軸には蛍光体中の酸素濃度( 重量%)の値をとつている。尚、発光強度および輝度においては、 oZm= 1.0 (実施 例 54)のピ―ク波長における発光強度の値を 100%とした。尚、励起光として波長 46 Onmの光を用いた。
表 8、図 11の結果から明らかなように、当該各蛍光体の発光強度および輝度は、酸 素濃度が 2.5から 3.5重量%をピ一クとして増加した場合と低下した場合とでは共に 低下し、酸素濃度 4.0重量%以上では著しく低下してしまう。さらに、酸素濃度が 10. 0重量%以上になった場合には、当該各蛍光体は融解してしまい、ガラス状になって しまう。
[表 8]
Figure imgf000060_0001
[0211] これは、酸素濃度が 4.0重量%以上になると、蛍光体の母体構造のガラス化が徐々 に始まり、 10.0重量%以上で完全にガラスとなり、結晶構造が崩れて結晶性が低下 したためと考えられる。実際、酸素濃度の異なる試料について X線回折測定を行った ところ、酸素濃度が増加するにつれて回折のピ―ク強度が著しく低下し、さらには回 折ピークの半値幅が次第に広がり、酸素濃度の上昇とともに当該各蛍光体がガラス 化していることを確認できた。蛍光体の母体構造がガラス化してしまうと、発光中心と なる Ceイオン周囲の構造が不規則になってしまうため、発光中心同士の間隔にバラ ツキが生じたり、母体が吸収した励起光力 のエネルギーを発光中心まで効率よく伝 達できないといったことが原因で、あるところでは効率良く発光するが、別のところで は全く発光しない場所などが存在してしまうため、蛍光体全体としての発光強度が低 下するのであると考えられる。従って、当該蛍光体中の酸素濃度としては 10重量% 以下であれば良いが、発光特性および焼成後の粉体特性を考慮すると 0.5重量% 以上、 8.1重量%以下 (モル比に換算して規定すると、 0.0< o/m≤4. 0)が好まし ぐ更に好ましくは、酸素濃度 0.5重量%から 5.0重量% (モル比に換算して規定する と、 0.0< o/m≤3. 0)の範囲内であれば、十分な発光強度および輝度を得ることが できると考えられる。
[0212] 次に、実施例 61から 82は原料混合時の組成の A1量と酸素量を増加させて試料を 作製し、発光特性並びに温度特性の比較を行った。
(実施例 61)
実施例 61では、まず焼成上がりの狙い組成が SrAl Si O N : Ce (但し、 C
1.43 3.81 0.59 6.79
e/(Sr + Ce) = 0.030)である蛍光体を製造した。
原料としては市販の SrCO (3N)、 A1N(3N)、 Al O (3N)、 Si N (3N)、 CeO (3N)
3 2 3 3 4 2 を準備し、各元素のモル比が Sr:Al:Si:O:Ce = 0.970:l.3:4.5:1.31:0.030となるよ うに各原料を、 SrCOを 0.970 mol、 Al Oを (1.31 - 0.976)/3mol, A1Nを 1.3
3 2 3
— ((1.31— 0.976)Z3) X 2mol、 Si Nを 4.5Z3mol、 CeOを 0.030mol秤量し、
3 4 2
大気中にて乳鉢を用いて混合した。なお、混合組成式で表記すると、 SrAl Si O
1.3 4.5 1.3
N : Ceである。実施例 61から 82は混合組成式ではなぐ狙い組成で示している。
1 7.1
[0213] 実施例 1と同様に、混合した原料を BNるつぼに入れ、炉内を一度真空引きした後 、窒素雰囲気中(フロー状態、 20.0lZmin)、炉内圧 0. 05MPaで 1800°Cまで 15 °CZminで昇温し、 1800°Cで 3時間保持 *焼成した後、 1800°Cから 50°Cまで 1時間 30分で冷却した。その後、焼成試料を大気中にて適当な粒径になるまで乳鉢を用い て解砕し、組成式 SrAl Si O N : Ce (但し、 CeZ(Sr+Ce) = 0.030)で示
1.43 3.81 0.59 6.79
される実施例 61の蛍光体を得た。
[0214] 得られた蛍光体粉末の分析結果、平均粒子径 (D50)、比表面積 (BET)を表 9に示 す。尚、 Siは重量法(吸光光度法)、その他の元素は ICPによる測定、平均粒子径 (D 50)はレーザー回折散乱法、比表面積は BET法、によって測定した。得られた蛍光 体粉末の平均粒子径 (D50)は 24.40 m、比表面積は 0.225m2Zgであり、蛍光体 粉末として好ましい粒径である 1. O /z m以上、 50. 0 m以下であることが解った。
[0215] 次に、実施例 61に係る蛍光体の発光スペクトルを測定した。該測定結果を表 10〖こ 示し、さらに、図 12に示した。図 12は、縦軸に蛍光体の発光強度を相対強度としてと り、横軸には光の波長をとつたグラフである。ここで、発光スペクトルとは、ある波長の 光またはエネルギーを蛍光体に照射した際、蛍光体より放出される光のスペクトルで ある。図 12の実線は、実施例 61の蛍光体に励起光として波長 460nmの単色光を照 射した際に、蛍光体力も発光した光のスペクトルを示したものである。
[0216] 図 12から明らかなように、該蛍光体の発光スペクトルは、波長 470nm力ら 750nm 付近の広い波長域においてブロードなピークを持ち、そのピーク波長は 556.0nmで あった。(このときの発光強度の相対強度を 100%とした。)また、半値幅を求めたとこ ろ 117.1 nmであった。該発光スペクトルの色度 (x,y)を求めたところ x=0.4045、 y= 0.5481であった。尚、粉末は黄色の蛍光色をしており、目視でも黄緑色の発光色が 確認できた。実施例 61の蛍光体は、広い波長域において半値幅 lOOnm以上という 非常に半値幅の広いピークを持っため、白色 LED照明用蛍光体として使用した場 合には、シャープなピークを持つ蛍光体を使用したものに比べ、輝度、演色性に優 れた白色 LED照明を作製することが可能となる。また、シャープなピークを持つ蛍光 体の場合、演色性の向上のためには数種類の蛍光体を混合する必要があるが、該 蛍光体はブロードなピークを有しているため、混合する蛍光体の種類の数や使用量 を少なくすることができ、安価に白色 LED照明を作製することが可能となる。
[0217] さらに、実施例 61の蛍光体に励起光として波長 405nmの単色光を照射した際に、 蛍光体力も発光した光のスペクトルを表 10に示し、さらに、図 12に破線で示す。 Ex4 05nmで励起した場合には、 Ex460nmの場合に比べ、発光強度が約 20%向上し ている。ピーク波長は 531.5nm、半値幅は 118. lnmであり、発光スペクトルの半値 幅は 80nm以上であった。色度 (x,y)は x=0.3476、 y=0.5305であった。
[0218] 次に、図 13を用いて、実施例 61に係る蛍光体の励起スペクトルについて説明する 。図 13は縦軸に蛍光体の発光強度をとり、横軸には励起光の波長をとつたグラフで ある。ここで、励起スペクトルとは、種々の波長の単色光を励起光として用いて被測定 対象の蛍光体を励起したとき、該蛍光体が発光する一定波長の発光強度を測定し、 その発光強度の励起波長依存性を測定したものである。本測定においては、波長が 250nmから 550nmまでの単色光を実施例 61の蛍光体に照射し、該蛍光体が発光 する波長 556.0nm (緑色光)の発光強度の励起依存性を測定したものである。
[0219] 図 13から明らかなように、該蛍光体は、波長 300nm付近から 500nm付近までの 広い範囲の励起光で、高強度の緑色の発光を示すことがわかった。特に、波長 400 nm力 480 nmの励起光で最も高い発光効率を示し、現在、ワンチップ型白色 LED 照明用の励起光として使用されている発光波長が 460nmの青色 LEDや 405nmの 近紫外.紫外 LEDと組み合わせることで、輝度の高い発光装置を製造することが可 能である。
[0220] 次に、実施例 61で得られた蛍光体の発光強度の温度特性を測定した。該測定結 果を表 10に示し、さらに図 14に示す。
該蛍光体を、 25。C、 50。C、 100。C、 150。C、 200。C、 250。C、 300。Cと昇温し、測 定温度に達してから、試料全体の温度を均一にするため 5分間はその温度を保持し 、その後、発光強度の測定を行なった。また、温度を上昇させる前の室温 (25°C)での 発光強度の値を 100%として、各測定温度における発光強度を相対強度として測定 した。尚、発光強度の測定を昇温時に行った後、冷却を行い、再び 25°Cで発光強度 の測定を行った。さらに同様の測定を、励起光として波長 405nmの単色光を照射し た場合も行った。
[0221] 図 14—1、 2は、縦軸には、昇温前 (25°C)における発光強度を 100%としたときの 相対発光強度をとり、横軸には、該蛍光体の発光強度測定を行った測定温度をとつ たグラフであり、図 14— 1は励起光として波長 460nmの単色光を照射した場合であ り、図 14— 2は励起光として波長 405nmの単色光を照射した場合である。該図 14— 1、 2へ、実施例 61に係る蛍光体の測定結果を太実線で示す。
[0222] 図 14 1の結果から、実施例 61に係る蛍光体へ励起光として波長 460nmの単色 光を照射した際には、測定温度を上昇させる前の室温 (25°C)での発光強度の値を 1 00%としたとき、 ¾J定温度 100°Cでは 94.4%、 200°Cでは 85.8%、 300°Cでは 73.4 %となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 98.8%であり、低 下はほとんど見られず、測定誤差と!/ヽつてよ!/ヽ程度であった。
[0223] 実施例 61に係る蛍光体へ励起光として波長 405nmの単色光を照射した際(25°C )には、実施例 61の蛍光体に励起光として波長 460nmの単色光を照射した際(25 °C)の発光強度の値を 100%としたとき、 119.9%の発光強度を示した。次に、図 14 2の結果から、測定温度を上昇させる前の室温 (25°C)での発光強度の値を 100% としたとさ、柳』定温度 100°Cでは 92.0%、 200°Cでは 80.9%、 300°Cでは 66.5%と なった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 98.9%であり、低下は ほとんど見られず、測定誤差と ヽつてよ!/ヽ程度であった。
[0224] (実施例 62)
実施例 62では、焼成上がりの狙い組成が SrAl Si O N : Ce (但し、 CeZ
1.33 4.09 0.65 7.02
(Sr+ Ce) = 0.030)である蛍光体を製造した。原料混合時に、各元素のモル比が Sr: Al:Si:0:Ce = 0.970: 1.25:4.75: 1.31 :0.030となるように各原料を、 SrCOを 0.9
3
70mol、 Al Oを (1.31— 0.976)Z3mol、 A1Nを 1.25— ((1.31— 0.976)Z3) X 2
2 3
mol、 Si Nを 4.75Z3mol、 CeOを 0.030mol秤量した以外は、実施例 61と同様
3 4 2
にして、組成式 SrAl Si O N : Ce (但し、 CeZ(Sr+ Ce) = 0.030)で示さ
1.33 4.09 0.65 7.02
れる実施例 62に係る蛍光体を得た。得られた蛍光体粉末の分析結果、平均粒子径( D50)、比表面積 (BET)を表 9に示す。得られた蛍光体の比表面積は 0.264m2Zg であった。平均粒子径 (D50)は、蛍光体粉末として好ましい 1. 以上、 50. 0 μ m以下の粒径であることが解った。
[0225] 次に、実施例 61と同様にして、実施例 62に係る蛍光体の発光スペクトルを測定し た。該測定結果を表 10に示す。表 10に示すように、励起光として波長 460nmの単 色光を照射すると、該蛍光体の発光スペクトルは、実施例 61に係る蛍光体と同じく波 長 470nm力ら 750 nmの広い波長域においてブロードなピークを持ち、そのピーク 波長は 555.6nmであった。また、半値幅を求めたところ 115.6nmであり、該発光ス ベクトルの色度 (x,y)を求めたところ x= 0.4040、 y= 0.5481であった。尚、粉末は黄 色の蛍光色をしており、目視でも緑色の発光色が確認できた。実施例 61に係る蛍光 体の相対強度を 100%とした場合、実施例 62に係る蛍光体の発光強度の相対強度 は 94.0%であった。
[0226] 次に、表 10に示すように、励起光として波長 405nmの単色光を照射すると、該蛍 光体の発光スペクトルは、実施例 61に係る蛍光体と同じく波長 470nmから 750nm の広い波長域においてブロードなピークを持ち、そのピーク波長は 533.5nmであつ た。また、半値幅を求めたところ 116.2nmであり、該発光スペクトルの色度 (x,y)を求 めたところ x=0.3508、 y=0.5340であった。尚、粉末は黄色の蛍光色をしており、 目視でも緑色の発光色が確認できた。実施例 61に係る蛍光体の相対強度を 100% とした場合、実施例 62に係る蛍光体の発光強度の相対強度は 110.9%であった。
[0227] 次に、波長が 250nmから 550nmまでの単色光を実施例 62に係る蛍光体へ照射 し、該蛍光体が発光する波長 555.6nmの発光強度の励起依存性を測定したところ、 該蛍光体の励起スペクトルも実施例 61に係る蛍光体と同様に、波長 300nm付近か ら 500nmまでの広 、範囲の励起光で、高強度の緑色の発光を示すことがわ力つた。
[0228] 次に、実施例 62で得られた蛍光体の発光強度の温度特性を、実施例 61と同様に 測定した。該測定結果を表 10に示し、さらに、図 14—1、 2へ太 1点鎖線を用いて実 施例 61と同様に示す。
[0229] 図 14 1の結果から、実施例 62に係る蛍光体へ励起光として波長 460nmの単色 光を照射した際には、該蛍光体は、測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、柳』定温度 100°Cでは 93.0%、 200°Cでは 83.8%、 30 0°Cでは 70.8%となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 98. 4%であり、低下はほとんど見られず、測定誤差といってよい程度であった。
[0230] 図 14 2の結果から、実施例 62に係る蛍光体へ励起光として波長 405 nmの単色 光を照射した際には、該蛍光体は、測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、測定温度 100°Cでは 90.9%、 200°Cでは 78.8%、 30 0°Cでは 64.6%となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 98. 6%であり、低下はほとんど見られず、測定誤差といってよい程度であった。
実施例 62に係る蛍光体は、実施例 61に係る蛍光体とは若干 Al、 Si、 N、 Oのモル 比が異なる組成であるが、実施例 61と同様に優れた発光特性を示した。 [0231] (実施例 63)
実施例 63では、焼成上がりの狙い組成が SrAl Si O N : Ce (但し、 CeZ
1.28 3.40 0.72 5.99
(Sr + Ce) = 0.030)である蛍光体を製造した。
各元素のモノレ比が Sr:Al:Si:O:Ce = 0.970:l.25:4.25:1.56:0.030となるように 各原料を、 SrCOを 0.970mol、 Al Oを (1.56— 0.976)Z3mol、 A1Nを 1.25— ((1
3 2 3
.56— 0.976)/3) X 2mol、 Si N ^4.25/3 mol、 CeOを 0.030 mol秤量した以
3 4 2
外は、実施例 61と同様にして、組成式 SrAl Si O N : Ce (但し、 CeZ(Sr
1.28 3.40 0.72 5.99
+ Ce) = 0.030)で示される実施例 63に係る蛍光体を得た。得られた蛍光体粉末の 分析結果、平均粒子径 (D50)、比表面積 (BET)を表 9に示す。得られた蛍光体の比 表面積は 0.231m2Zgであった。平均粒子径 (D50)は、蛍光体粉末として好ましい 1 . 0 μ m以上、 50. 0 μ m以下の粒径であることが解った。
[0232] 次に、実施例 61と同様にして、実施例 63に係る蛍光体の発光スペクトルを測定し た。該測定結果を表 10に示す。表 10に示すように、励起光として波長 460nm、 405 nmの単色光を照射した際の発光スペクトルの測定結果を示しており、励起光として 波長 460nmの単色光を照射すると、該蛍光体は、実施例 61に係る蛍光体と同様に 波長 470nm力ら 750nmの広 、波長域にお!ヽてブ口 ドなピ クを持ち、そのピ一ク 波長は 555.6nmであった。また、半値幅を求めたところ 116.0nmであり、該発光ス ベクトルの色度 (x,y)を求めたところ x=0.3996、 y=0.5498であった。尚、該粉末は 黄色の蛍光色をしており、目視でも緑色の発光色が確認できた。そして、実施例 61 に係る蛍光体の相対強度を 100%とした場合、実施例 63に係る蛍光体の発光強度 の相対強度は 93.5%であった。
[0233] 次に、表 10に示すように、励起光として波長 405nmの単色光を照射すると、該蛍 光体の発光スペクトルは、実施例 61に係る蛍光体と同じく波長 470nmから 750nm の広 、波長域にぉ ヽてブ口 ドなピ クを持ち、そのピーク波長は 530.4nmであつ た。また、半値幅を求めたところ 115.9nmであり、該発光スペクトルの色度 (x,y)を求 めたところ x=0.3434、 y=0.5302であった。尚、粉末は黄色の蛍光色をしており、 目視でも緑色の発光色が確認できた。実施例 61に係る蛍光体の相対強度を 100% とした場合、実施例 62に係る蛍光体の発光強度の相対強度は 111.4%であった。 [0234] 次に、波長が 250nmから 550nmまでの単色光を実施例 63に係る蛍光体に照射し 、該蛍光体が発光する波長 555.6nmの発光強度の励起依存性を測定したところ、 該蛍光体の励起スペクトルも実施例 61と同様に、波長 300nm付近から 500nmまで の広 、範囲の励起光で、高強度の緑色の発光を示すことがわ力つた。
[0235] 次に、実施例 63で得られた蛍光体の発光強度の温度特性を、実施例 61と同様に 測定した。該測定結果を表 10に示し、さらに、図 14—1、 2へ太 2点鎖線を用いて実 施例 61と同様に示す。
[0236] 図 14 1の結果から、実施例 63に係る蛍光体に励起光として波長 460nmの単色 光を照射した際には、測定温度を上昇させる前の室温 (25°C)での発光強度の値を 1 00%としたとき、柳』定温度 100°Cでは 93.7%、 200°Cでは 84.1%、 300°Cでは 69.6 %となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 97.1%であり、低 下はほとんど見られず、測定誤差と!/ヽつてよ!/ヽ程度であった。
[0237] 図 14— 2の結果から、実施例 63に係る蛍光体に励起光として波長 405nmの単色 光を照射した際には、該蛍光体は、測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、測定温度 100°Cでは 91.0%、 200°Cでは 77.9%、 30 0°Cでは 62.3%となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 97. 5%であり、低下はほとんど見られず、測定誤差といってよい程度であった。
実施例 63に係る蛍光体も、実施例 61、 62に係る蛍光体とは、若干 Al、 Si、 N、 O のモル比が異なる組成である力 実施例 61に係る蛍光体と同様に優れた発光特性 を示した。
[0238] (実施例 64)
実施例 64では、焼成上がりの狙い組成が組成式 SrAl Si O N : Ce (但し
1.13 4.32 0.64 7.13
、 Ce/(Sr + Ce) = 0.030)である蛍光体を製造した。
各元素のモル比が Sr:Al:Si:O:Ce = 0.970:1.0:4.5:1.06:0.030となるように各原 料を、 SrCOを 0.970mol、 Al Oを (1.06— 0.976)/3mol、 A1Nを 1.00— ((1.06
3 2 3
— 0.976)Z3) X 2mol、 Si Nを 4.5Z3mol、 CeOを 0.030mol秤量した以外は、
3 4 2
実施例 61と同様にして、組成式 SrAl Si O N : Ce (但し、 CeZ(Sr+Ce)
1.13 4.32 0.64 7.13
= 0.030)で示される実施例 64に係る蛍光体を製造した。製造された蛍光体粉末の 分析結果、平均粒子径 (D50)、比表面積 (BET)を表 9に示す。得られた実施例 64〖こ 係る蛍光体の比表面積は 0.254m2Zgであった。平均粒子径 (D50)は 24.08 mで あった。尚、実施例 64は先に示した実施例 1とほぼ同様な組成である力 実施例 1の 原料混合量より酸素量を 0.06mol増加した混合組成である。
[0239] 次に、実施例 61と同様にして、実施例 64に係る蛍光体の発光スペクトルを測定し た。該測定結果を表 10に示す。表 10に示すように、励起光として波長 460nmの単 色光を照射したすると、該蛍光体の発光スペクトルは、実施例 61に係る蛍光体と同じ く波長 470nmから 750nmの広い波長域においてブロードなピークを持ち、そのピー ク波長は 559.2nmであった。半値幅を求めたところ 118.8nmであり、該発光スぺタト ルの色度 (x,y)を求めたところ x=0.4125、 y=0.5431であった。尚、該蛍光体粉末 は黄色の蛍光色をしており、目視でも緑色の発光色が確認できた。実施例 61に係る 蛍光体における発光強度の相対強度を 100%とした場合、実施例 64に係る蛍光体 の相対強度は 94.6%であった。
[0240] 次に、表 10に示すように、励起光として波長 405nmの単色光を照射すると、該蛍 光体は、実施例 61に係る蛍光体と同様に波長 470nmから 750nmの広い波長域に おいてブロードなピークを持ち、そのピーク波長は 551.0nmであった。また、半値幅 を求めたところ 121.5nmであり、該発光スペクトルの色度 (x,y)を求めたところ x =0.3 699、 y=0.5343であった。尚、該蛍光体粉末は黄色の蛍光色をしており、目視でも 緑色の発光色が確認できた。実施例 61に係る蛍光体における発光強度の相対強度 を 100%とした場合、実施例 64に係る蛍光体の相対強度は 105.3%であった。
[0241] 次に、波長が 250nmから 550nmまでの単色光を実施例 64に係る蛍光体に照射し 、該蛍光体が発光する波長 559.2nmの発光強度の励起依存性を測定したところ、 該蛍光体の励起スペクトルも実施例 61に係る蛍光体と同様に、波長 300nm付近か ら 500nmまでの広 、範囲の励起光で、高強度の緑色の発光を示すことがわ力つた。
[0242] 次に、実施例 64で得られた蛍光体の発光強度の温度特性を、実施例 61と同様に 測定した。該測定結果を表 10に示し、さらに図 14— 1、 2へ破線を用いて実施例 1と 同様に示す。
[0243] 図 14 1の結果から、実施例 64に係る蛍光体に励起光として波長 460 nmの単色 光を照射した際には、該蛍光体は、測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、測定温度 100°Cでは 90.5%、 200°Cでは 75.0%、 30 0°Cでは 54.3%となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 81. 0%であり、初期発光強度に約 20%低下してしまった。
[0244] 図 14 2の結果から、実施例 64に係る蛍光体に励起光として波長 405nmの単色 光を照射した際には、該蛍光体は、測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、柳』定温度 100°Cでは 89.3%、 200°Cでは 72.3%、 30 0°Cでは 51.9%となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 84. 6%であり、初期発光強度に比べ約 20%低下してしまった。
[0245] (実施例 65)
実施例 65では、焼成上がりの狙い組成が組成式 SrAl Si O N : Ce (但し
1.07 4.46 0.70 7.22
、 Ce/(Sr + Ce) = 0.030)である蛍光体を製造した。
各元素のモル比が Sr:Al:Si:O:Ce = 0.970:1.0:4.75:1.06:0.030となるように各 原料を、 SrCOを 0.970mol、 Al Oを (1.06— 0.976)/3mol、 A1Nを 1.00— ((1.0
3 2 3
6— 0.976)Z3) X 2mol、 Si Nを 4.75Z3mol、 CeOを 0.030mol秤量した以外は
3 4 2
、実施例 61と同様にして、組成式 SrAl Si O N : Ce (但し、 CeZ(Sr+Ce)
1.07 4.46 0.70 7.22
= 0.030)で示される実施例 65に係る蛍光体を製造した。製造された蛍光体粉末の 分析結果、平均粒子径 (D50)、比表面積 (BET)を表 9に示す。得られた蛍光体の比 表面積は 0.212m2Zgであった。平均粒子径 (D50)は 25.44 μ mであった。
[0246] 次に、実施例 61と同様にして、実施例 65に係る蛍光体の発光スペクトルを測定し た。該測定結果を表 10に示す。表 10に示すように、励起光として波長 460nmの単 色光を照射すると、その発光スペクトルは実施例 61と同様に波長 470nmから 750η mの広い波長域においてブロードなピークを持ち、そのピーク波長は 558.1nmであ つた。また、半値幅を求めたところ 117.2 nmであり、該発光スペクトルの色度 (x,y)を 求めたところ x=0.4114、 y=0.5445であった。尚、該蛍光体粉末は黄色の蛍光色 をしており、目視でも緑色の発光色が確認できた。実施例 61に係る蛍光体の相対強 度を 100%とした場合、実施例 65に係る蛍光体の発光強度の相対強度は 93.4%で めつに。 [0247] 次に、表 10に示すように、励起光として波長 405nmの単色光を照射すると、その 発光スペクトルは実施例 61と同様に波長 470nmから 750nmの広い波長域におい てブロードなピークを持ち、そのピーク波長は 551.0nmであった。また、半値幅を求 めたところ 119.4 nmであり、該発光スペクトルの色度 (x,y)を求めたところ x= 0.372 8、 y=0.5384であった。尚、該蛍光体粉末は黄色の蛍光色をしており、目視でも緑 色の発光色が確認できた。実施例 61に係る蛍光体の相対強度を 100%とした場合、 実施例 65に係る蛍光体の発光強度の相対強度は 104.6%であった。
[0248] 次に、波長が 250nmから 550nmまでの単色光を実施例 65に係る蛍光体へ照射 し、該蛍光体が発光する波長 558. lnmの発光強度の励起依存性を測定したところ、 該蛍光体の励起スペクトルも実施例 61と同様に、波長 300nm付近から 500nmまで の広 、範囲の励起光に対し、高強度の緑色の発光を示すことがわ力つた。
[0249] 次に、実施例 65に係る蛍光体の発光強度の温度特性を、実施例 61と同様に測定 した。該測定結果を表 10に示し、更に図 14— 1、 2へ細 1点鎖線を用いて実施例 1と 同様に示す。
[0250] 図 14 1の結果から、実施例 65に係る蛍光体に励起光として波長 460nmの単色 光を照射した際、該蛍光体は、測定温度を上昇させる前の室温 (25°C)における発光 強度の値を 100%としたとき、測定温度 100°Cでは 90.4%、 200°Cでは 73.4%、 30 0°Cでは 51.7%となった。昇温後、冷却を行い、再び 25°Cで測定を行ったところ 81. 9%であり、初期発光強度に比べ約 15%低下してしまった。
[0251] 図 14— 2の結果から、実施例 65に係る蛍光体に励起光として波長 405 nmの単色 光を照射した際には、該蛍光体の測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、測定温度 100°Cでは 88.7%、 200°Cでは 70.4%、 30 0°Cでは 48.9%となった。該昇温後、蛍光体の冷却を行い、再び 25°Cで発光強度の 測定を行ったところ 85.4%であり、初期発光強度に比べ約 15%低下してしまった。
[0252] (実施例 66)
実施例 66では、焼成上がりの狙い組成が組成式 SrAl Si O N : Ce (但し
1.01 4.70 0.65 7.52
、 Ce/(Sr + Ce) = 0.030)である蛍光体を製造した。
各元素のモル比が Sr:Al:Si:0:Ce= 0.970:1.0:5.00: 1.06:0.030となるように各 原料を、 SrCOを 0.970mol、 Al Oを (1.06— 0.976)/3mol、 A1Nを 1.00— ((1.0
3 2 3
6— 0.976)Z3) X 2mol、 Si Nを 5.00Z3mol、 CeOを 0.030mol秤量した以外は
3 4 2
、実施例 61と同様にして、組成式 SrAl Si O N : Ce (但し、 CeZ(Sr+Ce)
1.01 4.70 0.65 7.52
= 0.030)で示される実施例 66に係る蛍光体を製造した。製造された蛍光体粉末の 分析結果、平均粒子径 (D50)、比表面積 (BET)を表 9に示す。得られた蛍光体の比 表面積は 0.256m2Zgであった。平均粒子径 (D50)は 27.14 mであった。尚、実 施例 66は先に示した実施例 2の原料混合量よりも酸素量を 0.06mol多い混合組成 である。
[0253] 次に、実施例 61と同様にして、実施例 66に係る蛍光体の発光スペクトルを測定し た。該測定結果を表 10に示す。表 10に示すように、励起光として波長 460nmの単 色光を照射すると、該蛍光体の発光スペクトルは、実施例 61に係る蛍光体と同じく波 長 470nm力ら 750nmの広 、波長域にお!ヽてブ口 ドなピ クを持ち、そのピ一ク波 長は 559.2nmであった。また、半値幅を求めたところ 116.6nmであり、該発光スぺク トルの色度 (x,y)を求めたところ x=0.4141、 y=0.5444であった。尚、該蛍光体粉 末は黄色の蛍光色をしており、目視でも緑色の発光色が確認できた。実施例 61に係 る蛍光体の相対強度を 100%とした場合、実施例 66に係る蛍光体の発光強度の相 対強度は 95.0%であった。
[0254] 次に、表 10に示すように、励起光として波長 405nmの単色光を照射すると、該蛍 光体の発光スペクトルは、実施例 61に係る蛍光体と同様じぐ波長 470nm力ら 750 nmの広 、波長域にお!ヽてブ口 ドなピークを持ち、そのピ ク波長は 550.9nmで あった。また、半値幅を求めたところ 118.5nmであり、該発光スペクトルの色度 (x,y) を求めたところ x=0.3753、 y=0.5396であった。尚、該蛍光体粉末は黄色の蛍光 色をしており、目視でも緑色の発光色が確認できた。実施例 61に係る蛍光体の相対 強度を 100%とした場合、実施例 66に係る蛍光体の発光強度の相対強度は 105.3 %であった。
[0255] 次に、波長が 250nmから 550nmまでの単色光を実施例 66に係る蛍光体に照射し 、該蛍光体が発光する波長 559.2nmの発光強度の励起依存性を測定したところ、 該蛍光体の励起スペクトルも実施例 61に係る蛍光体と同様に、波長 300nm付近か ら 500nmまでの広 、範囲の励起光で、高強度の緑色の発光を示すことがわ力つた。
[0256] 次に、実施例 66で得られた蛍光体の発光強度の温度特性を、実施例 61と同様に 測定した。該測定結果を表 10に示し、更に図 14—1、 2へ細 2点鎖線を用いて実施 例 61と同様に示す。
[0257] 図 14 1の結果から、実施例 66に係る蛍光体へ励起光として波長 460nmの単色 光を照射した際、該蛍光体の、測定温度を上昇させる前の室温 (25°C)での発光強度 の値を 100%としたとき、柳』定温度 100°Cでは 90.4%、 200°Cでは 76.9%、 300°C では 60.1%となった。昇温後、該蛍光体の冷却を行い、再び 25°Cで測定を行ったと ころ 98.2%であり、低下はほとんど見られず、測定誤差といってよい程度であった。
[0258] 図 14 2の結果から、実施例 66に係る蛍光体へ励起光として波長 405nmの単色 光を照射した際には、該蛍光体の測定温度を上昇させる前の室温 (25°C)での発光 強度の値を 100%としたとき、柳』定温度 100°Cでは 89.0%、 200°Cでは 73.2%、 30 0°Cでは 55.5%となった。昇温後、該蛍光体の冷却を行い、再び 25°Cで測定を行つ たところ 98.6%であり、低下はほとんど見られず、測定誤差といってよい程度であつ た。
[0259] (実施例 61〜66についての検討)
表 10、図 14— 1、 2の結果から明らかなように、 AlZSrが 1.1く AlZSr≤2.0の範 囲にある実施例 61から 63の試料は、 AlZSrが 1.0である実施例 64から 66の試料に 比べ優れた発光特性が得られる。実施例 61では、実施例 64から 66の試料に比べ、 初期発光強度で約 5.0%優れ、特に温度特性は大幅に改善し、励起波長 460nmで は、実施例 64から 66の試料より測定温度 100°Cでは約 4.0%、 300°Cでは 10.0% 以上、発光強度の低下を抑えることができている。更に、昇温後、該蛍光体の冷却を 行い、再び 25°Cで測定を行うと、実施例 64から 65の試料とに係る AlZSrが 1.0の試 料については、昇温前の発光強度に比べ、約 20%低下してしまっているのに対し、 実施例 61から 63の蛍光体は約 3.0%であり、低下はほとんど見られず、熱に対して 優れていることが解った。実施例 66の蛍光体は、冷却後の発光強度が実施例 61か ら 63に係る蛍光体と同じように、ほとんど劣化しない。一方、熱を加えた時の発光強 度の低下は、実施例 64および実施例 65の蛍光体と同じように大きぐ実施例 61から 実施例 63の試料に比べ劣っており、励起波長 405nmにおいても同様である。実施 例 61から 63に係る蛍光体は、実施例 64から 66に係る蛍光体に比べ、生成相の酸 素'窒素濃度に対して A1濃度の適正化が行われたことにより、不純物相の低減が進 み、発光特性や温度特性が向上したと考えられる。
[0260] [表 9]
Figure imgf000073_0001
[表 10]
Figure imgf000073_0002
[0261] (粉末 X線回折パタ—ン)
実施例 61〜66について、粉末 X線法で得られた回折バタ—ンを図 15に示す。 図 15に示した結果から、本発明に係る蛍光体の生成相は、ブラッグ角度 (2 Θ )が、 12.5〜 13.5。 、 17.0〜: 18.0。 、 21.0〜22.0。 、 22.5〜23.5。 、 26.5〜27.5。 、 28.5〜29.5° 、 34.0〜35.0° 、 35.5〜36.5° 、 36.5〜37.5° 、 41.0〜42.0 ° 、 42.0〜43.0° 、 56.5〜57.5° 、 66.0〜67.0° の範囲に特徴的なピ—クを有 する。当該回折パターンより、当該蛍光体の主生成相の結晶系は、斜方晶系または 単斜晶系の結晶相を有する蛍光体と考えられる。 [0262] aZm≤l.l(実施例 64から 66)の場合においては、ブラッグ角度(2 0 ) 35.5° 力も 36.5° の範囲に見られる最も強い回折ピーク力 l.l < aZm≤2.0(実施例 61から 6 3)に比べ強度が弱くなつてしまう。それに対し、次に、ブラック角度(2 0 ) 36.5° 力も 37.5° 、41.0° 力ら 42.0° 、42.0° 力ら 43.0° に見られる回折ピーク力 Sa/m≤ 1. 1の場合に比べ、 l.l < a/m≤2.0の場合には強くなるという特徴をもっている。これ は、 Siサイトの A1置換量が多くなつたことによって、結晶の配向性が変化したことと、 発光に寄与しない不純物相が減少したことにより、高温の環境下でも優れた発光効 率を示していると考えられる。これにより、発光効率が良ぐ高温の環境下でも優れた 発光効率を示す蛍光体を得ることが出来る。
[0263] ここで、該粉末法による X線回折バタ—ンの測定方法について説明する。
測定する蛍光体は、焼成後に乳鉢、ボールミル等の粉砕手段を用いて所定 (好まし くは 1. 0 m〜50. 0 m)の平均粒径となるように粉砕し、材質がチタン製のホルダ -に平らになるように詰め、 XRD装置 理学電気株式会社製「RINT2000」にて測 定を行った。測定条件を下記に示す。
使用測定機 : 理学電気株式会社製「RINT2000」
X線管球 : CoK o;
管電圧 : 40kV
管電流 : 30mA
スキャン方法 2 Θ / Θ
スキャン速度 : 0.3° /min
サンプリング間隔 : 0.01°
スタート角度(2 Θ ) : 10°
ストップ角度(2 Θ ) : 90°
また、ブラッグ角度(2 0 )のズレについては、 X線が照射される試料面が平らでない こと、 X線の測定条件、特にスキャンスピードの違いなどにより生じていると考えられる 。そのため、特徴的な回折ピークが見られる範囲も若干のズレが起きることは許容さ れると考えられる。該ズレをなるベく抑えるために、スキャンスピードを 0.3° /minと した上で、蛍光体試料中に Siを混ぜ、 X線の測定後に Siピークのズレを補正すること により、ブラッグ角度(2 0 )を求めた。
[0264] (真密度の測定)
さらに実施例 61から 63の試料について真密度測定を行ったところ 3.43gZcc、 3. 45gZcc、 3.46g/ccとすべて 3.45g/cc付近の数値を示して!/、ることが判明した。 尚、真密度の測定には QUANTACHROME社製の UltrapycnometerlOOOを使 用した。生成相中の不純物相が多いと真密度は前記値よりも増減するため、本発明 に係る蛍光体の真密度は、良好な発光特性や温度特性を得るためには真密度が 3. 45gZcc± 3%の範囲であれば良い。
[0265] (実施例 67から 72)
実施例 67から 72では、焼成上がりの狙い組成が組成式 SrAl Si O N: Ce (C a 3.81 0.59 n e/(Sr+Ce) = 0.030, n= 2/3m+a+4/3b- 2/3o, m= l. 0、 b = 3.81、 o = 0.59)で示される蛍光体において、 aZm比(ここで、 aZmと AlZSrとは同じ意味 を持つ。)を変化させた試料 (実施例 67から 72)を製造し、各々の試料における発光 特性として、ピ―ク波長、色度 (x,y)、 25°Cにおける相対発光強度、温度特性を測定 した。
[0266] ここで、実施例 67から 72の蛍光体の製造においては、実施例 61で説明した、 SrC O (3N)、 Al O (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の各原料のうち A1N(3N)
3 2 3 3 4 2
のみの混合比を調整した以外は、実施例 61と同様にして各試料を製造し、該製造さ れた各試料の発光強度および温度特性を測定した。但し、調整した A1と Srの配合比 は、 Al/Sr= 1.10 (実施例 67)、 Al/Sr= 1.21 (実施例 68)、 Al/Sr= 1.38 (実 施例 69)、 Al/Sr= 1.43 (実施例 70)、 Al/Sr= 1.66 (実施例 71)、 Al/Sr= 2.2 1 (実施例 72)とした。
[0267] 実施例 67から 72で製造した各試料の発光特性および温度特性の結果を、表 11お よび図 16に示す。
表 11に示す発光強度の測定にお!、ては、実施例 70の蛍光体に励起光として波長 460 nmの単色光を照射した際(25°C)の発光強度の値を 100%としたときの、実施 例 67から 72の試料(25°C)の発光強度の値を相対発光強度で示した。次に、測定 温度を上昇させる前の室温 (25°C)での発光強度の値を、試料毎に 100%と規格ィ匕し 、測定温度を 25°Cから 300°Cまで上昇させたときの、発光強度変化の測定結果を示 している。また、表 11には、試料を 300°Cまで昇温した後、 25°Cまで再び冷却したと きの発光強度の値も示している。尚、励起光としては波長 460nmの光を用いた。
[0268] 図 16は温度特性の測定結果であり、縦軸には相対発光強度、横軸には発光強度 の測定を行った測定温度の値をとり、実施例 67は実線、実施例 68は太 1点鎖線、実 施例 69は太 2点鎖線、実施例 70は細 1点鎖線、実施例 71は短破線、実施例 72は 長破線、を用いて示している。
[0269] 表 11および図 16の結果から明らかなように、 AlZSrが 1.43のとき、該蛍光体は最 もすぐれた発光特性を示した。因みに、昇温前の 25°Cでは、 AlZSrが 1.10の場合 に比べて約 8.0%優れ、昇温した際にも全ての温度領域において発光強度の低下 力 S小さぐ優れた温度特性を示した。測定温度 100°Cにおいては、 Al/Srが 1.10の 場合に比べて約 4.5%発光強度の低下を抑えることができ、測定温度 300°Cにおい ては、 AlZSrが 1.10の場合に比べて約 20.0%発光強度の低下を抑えることができ た。
[0270] AlZSrの値が 1.43より小さな領域においては、この値の増加と共に昇温時の発光 強度の低下を抑えることができる力 AlZSr= 1.43 (実施例 70)付近をピ一クとして 、更に AlZSrの値を大きくすると、再び発光強度の低下が大きくなり、 Al/Sr =2.2 1 (実施例 72)では測定温度 100°Cにおいて、(P - P )/P X 100> 10.0となつ
25 100 25
てしまう。また、 AlZSrの値が小さな領域では、昇温'冷却後の 25°Cの発光強度が、 昇温前に比べ、冷却後は大きく低下してしまい、一方、 AlZSrの値が大きな領域で は、昇温前であっても初期発光強度が低いという問題もある。従って、十分実用化可 能な蛍光体を得るには、 AlZSrの値が 1.1く a/m≤ 2.0の範囲内であることが好ま しい。
[0271] これは、本発明に係る蛍光体が、 [SiN ]の四面体構造の Siの一部が A1に、 Nの一
4
部が oに置換された構造でネットヮ クを組んだ構造の隙間に、イオン半径の大きな Srが入り込んでいるという、従来の窒化物、酸窒化物蛍光体とは異なった構造を有 する窒化物、酸窒化物蛍光体であることによると考えられる。つまり、本発明に係る蛍 光体と同じような [SiN ]の四面体構造のネットワークを組む Ca (Al,Si) (Ο,Ν) : Eu
4 x 12 16 (但し、 0<χ≤1. 5)の Caに比べて、本発明に係る蛍光体の Srのイオン半径が大き いため、 Caが入り込んだ場合とは異なった [SiN ]のネットワーク構造をとり、また、異
4
なった Siの A1置換量、 Nの O置換量をとることで、発光特性に優れた構造へ最適化 されたことが原因と考えられる。そして、該結晶構造が最適化されたことによって、付 活剤が該結晶構造中に規則的に存在でき、また、発光に使用される励起エネルギー の伝達が効率よく行われるため、発光効率が向上するのではないかと考えられる。さ らに、該結晶構造は、 A1N、や Si Nの反応により生成する、高温耐久性を有した窒
3 4
化物、酸窒化物であるため、昇温した際にも構造変化がほとんど無ぐ該蛍光体自体 の温度上昇に伴う発光強度の低下力 抑えられて 、るものと考えられる。
[0272] [表 11]
Figure imgf000077_0001
[0273] (実施例 73から 75)
実施例 73から 75では、焼成上がりの狙い組成が組成式 SrAl Si O N: Ce (C a 4.09 0.65 n eZ(Sr+Ce) = 0.030、 n= 2/3m+a+4/3b- 2/3o, m= l. 0、 b=4.09、 o = 0.65)で示される蛍光体において、 aZm比(ここで、 aZmと AlZSrとは同じ意味 を持つ。)を変化させた実施例 73から実施例 75の試料を製造し、各々の試料におけ る発光特性として、ピーク波長、色度 (x,y)、 25°Cにおける相対発光強度、温度特性 を測定した。
[0274] ここで、実施例 73から 75の蛍光体の製造においては、実施例 62で説明した、 SrC O (3N)、 Al O (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の各原料のうち A1N(3N)
3 2 3 3 4 2
のみの混合比を調整した以外は、実施例 62と同様にして蛍光体試料を製造し、該製 造された各試料の発光強度および温度特性を測定した。但し、調整した A1と Srの配 合比は、 Al/Sr = 1.07 (実施例 73)、 Al/Sr= 1.33 (実施例 74)、 Al/Sr= 1.60 (実施例 75)とした。 [0275] 実施例 73から 75で製造した各試料の発光特性および温度特性の結果を、表 12お よび図 17に示す。
表 12に示す発光強度の測定においては、実施例 75の蛍光体に励起光として波長 460 nmの単色光を照射した際(25°C)の発光強度の値を 100%としたときの、実施 例 73から 75 (25°C)の発光強度の値を相対発光強度で示した。次に、測定温度を上 昇させる前の室温 (25°C)での発光強度の値を、試料毎に 100%と規格ィ匕し、測定温 度を 25°Cから 300°Cまで上昇させたときの、発光強度変化の測定結果を示して 、る 。また、表 12には試料を 300°Cまで昇温した後、 25°Cまで再び冷却したときの発光 強度の値も示している。尚、励起光としては波長 460nmの光を用いた。
[0276] 図 17は温度特性の測定結果であり、縦軸は相対発光強度、横軸には発光強度の 測定を行った測定温度の値であり、実施例 73は実線、実施例 74は 1点鎖線、実施 例 75は 2点鎖線、を用いて示している。
[0277] 表 12および図 17の結果から明らかなように、 AlZSrが 1.33から 1.60付近のとき、 該蛍光体は最もすぐれた発光特性を示した。因みに、昇温前の 25°Cでは、 Al/Sr が 1.07の場合に比べて約 9.0%優れ、昇温した際にも全ての温度領域において発 光強度の低下が小さぐ優れた温度特性を示した。測定温度 100°Cにおいては、 A1 ZSrが 1.07の場合に比べて約 4.0%発光強度の低下を抑えることができ、測定温度 300°Cにおいては、 AlZSrが 1.07の場合に比べ、約 20%発光強度の低下を抑える ことができた。また AlZSrが 1.07では、昇温'冷却後の 25°Cの発光強度が、昇温前 より約 17%低下するのに対し、 AlZSrが 1.33、 1.60ではほとんど低下せず、測定 誤差と!/、つてよ!/、程度である。
[0278] 以上のことから、実施例 73から 75においても実施例 67から 72と同じように、 A1/S rが 1.1 < aZm≤ 2.0の範囲内であれば、十分実用化可能な蛍光体を得ることが可 能であることが判明した。実施例 73から 75は、実施例 67から 72に比べ Siのモル比 が大きい為、 AlZSrの最適範囲もやや異なる。
[0279] [表 12] ピーク 相対発光 各測定温度における発光強度変化率
色度
波長 強度 (25°C) (1 ^温過程) (冷却後)
(nm) y (%) 25。C 50°C 100°C 150°C 200°C 250°C 300°C 25°C 実施例 73 558,2 0.412 0.544 91.0 100.0 95.3 89.3 81.7 72.0 61.5 50.7 82.6 実施例 74 555.6 0.404 0.548 100.0 100.0 96.3 93.0 89.0 83.8 77.7 70.8 98.4 実施例フ5 555.8 0.398 0.549 97.2 100.0 96.0 93.2 89.9 85.5 79.9 73.2 96.5
[0280] (実施例 76から 79)
実施例 76から 79では、焼成上がりの狙い組成が組成式 SrAl Si O N: Ce (C
1.43 3.81 O n eZ(Sr+Ce) = 0.030、 n=2/3m+a+4/3b-2/3o, m= l. 0、 a= 1.43、 b = 3.81)で示される蛍光体において、 oZm (ここで、 oZmと OZSrとは同じ意味を持 つ。)を変化させた実施例 76から 79を製造し、各々の試料における発光特性として、 ピ―ク波長、色度 (x,y)、 25°Cにおける相対発光強度、温度特性を測定した。
[0281] ここで、実施例 76〜79の製造においては、実施例 61で説明した、 SrCO (3N)、 A
3
1 O (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の各原料のうち Al O (3N)、 A1N(3N)
2 3 3 4 2 2 3
の混合比を調整した以外は、実施例 61と同様にして蛍光体試料を製造し、該製造さ れた各試料の発光強度および温度特性を測定した。但し、調整した Oと Srの配合比 は、 OZSr=0.48 (実施例 76)、 OZSr=0.59 (実施例 77)、 OZSr=0.70 (実施 例 78)、 0/Sr= 0.81 (実施例 79)とした。
[0282] 実施例 76から 79で製造した各試料の発光特性および温度特性の結果を、表 13お よび図 18— 1に示す。
表 13に示す発光強度の測定においては、実施例 77の蛍光体に励起光として波長 460nmの単色光を照射した際 (25°C)に発光強度の値を 100%としたときの、実施例 76から 79の発光強度 (25°C)の値を相対発光強度で示した。次に、測定温度を上昇 させる前の室温 (25°C)での発光強度の値を、試料毎に 100%と規格ィ匕し、測定温度 を 25°Cから 300°Cまで上昇させたときの、発光強度変化の測定結果を示している。ま た、表 13には、試料を 300°Cまで昇温した後、 25°Cまで再び冷却したときの発光強 度の値も示している。尚、励起光としては波長 460nmの光を用いた。
[0283] 図 18— 1は温度特性の測定結果であり、縦軸は相対発光強度、横軸には発光強 度の測定を行った測定温度の値であり、実施例 76は実線、実施例 77は 1点鎖線、 実施例 78は 2点鎖線、実施例 79は破線、を用いて示している。 [0284] また、図 18— 2は、各試料における酸素濃度と相対発光強度の関係を示すグラフ であり、縦軸に相対発光強度、横軸に各試料中の酸素濃度をとつている。
[0285] 表 13および図 18— 1、図 18— 2の結果から明らかなように、 OZSrが 0.59のとき、 該蛍光体は最もすぐれた発光特性を示した。因みに、昇温前の 25°Cでは、 OZSrが 0.48の場合に比べ約 17.0%優れ、昇温した際にも全ての温度領域において発光強 度の低下が小さぐ優れた温度特性を示た。測定温度 100°Cにおいては、 O/Srが 0.48の場合に比べて約 3.0%発光強度の低下を抑えることができ、測定温度 300°C にお 、ては、 OZSrが 0.48の場合に比べて約 6.0%発光強度の低下を抑えることが できた。
[0286] 尤も、本実施例において、 AlZSrの値を 1.43 (実施例 67から 72において、最も良 力つた値である。)としたにも関わらず、実施例 76の温度特性は若干他の試料に比 ベ劣っている力 本実施例の範囲であれば、各試料の温度特性は OZSrの値に関 わらず良い結果が得られている。一方、初期発光強度については OZSrの値が大き く影響しており、最適値である OZSr=0.59付近にあると、他の値をとる場合に比べ て 10%以上アップすることが判明した。そして、該 OZSrの値が 0.0く oZm≤ 1.5、 より好ましくは 0.0< oZm≤ 1.0の範囲内であれば、十分実用化可能な蛍光体を得 ることが可能である。
[0287] この原因は、本発明に係る蛍光体においては、 [SiN ]の四面体構造の Siの一部が
4
A1によって置換されているわけだ力 A1置換量のみを変化させた場合には、 A1は Si に比べイオン半径が大きいため、結晶構造が発光に適した構造力 ズレてしまい、さ らに、 A1が III価であるのに対し、 Siは IV価であるため、母体構造全体の価数が不安 定になった為であると考えられる。しかし、 Siサイトを置換する A1量に応じて、 Nサイト の一部を Nに比べイオン半径の小さな Oで置換すると、発光に最適な結晶構造をとる ことが可能となり、さらに、母体構造全体の価数が安定なゼロとなるため、優れた発光 特性を示すものと考えられる。
[0288] [表 13] ピーク 相対発光 各測定温度における発光強度変化率
色度 0 N 波長 強度 (25¾) (昇温過程) (冷却後)
(nm; ( ) 25°C 50°C 100°C 150°C 200°C 250。C 300°C 25。C Cw %) (wt%) 実施例 76 558.2 0.408 0.545 82.8 100.0 95.5 91.4 86.2 80.4 74.2 67.4 98.3 2.46 29.0 実施例 77 556.0 0.404 0.548 100.0 100.0 96.8 94.4 91.0 85.8 80.1 73.4 98.8 2.63 27.8 実施例 78 555.6 0.399 0.549 87.8 100.0 96.7 94.0 90.2 85.3 79.4 72.6 97.6 3.61 26.8 実施例 79 554.7 0.395 0.549 79.4 100.0 97.1 Θ3.9 90.0 85.4 79.0 71.9 96.1 4.39 27.9
[0289] (実施例 80から 82)
実施例 80から 82では、焼成上がりの狙い組成が組成式 SrAl Si O N: Ce (C
1.33 4.09 O n eZ(Sr+Ce) = 0.030、 n=2/3m+a+4/3b-2/3o, m= l. 0、 a= 1.33、 b = 4.09)で示される蛍光体において、 oZm比(ここで、 oZmと OZSrとは同じ意味を 持つ。)を変化させた実施例 80から実施例 82の試料を製造し、各々の試料における 発光特性として、ピ―ク波長、色度 (x,y)、 25°Cにおける相対発光強度、温度特性を 測定した。
[0290] ここで、実施例 80から 82の製造においては、実施例 62で説明した、 SrCO (3N)、
3
Al O (3N)、 A1N(3N)、 Si N (3N)、 CeO (3N)の各原料のうち Al O (3N)、 A1N(3
2 3 3 4 2 2 3
N)の混合比を調整した以外は、実施例 62と同様にして蛍光体試料を製造し、該製 造された各試料の発光強度および温度特性を測定した。但し、調整した Oと Srの配 合比は、 OZSr=0.52 (実施例 80)、 OZSr=0.65 (実施例 81)、 OZSr=0.77 ( 実施例 82)とした。
[0291] 実施例 80から 82で製造した各試料の発光特性および温度特性の結果を、表 14お よび図 19— 1に示す。表 14に示す発光強度の測定においては、実施例 81の蛍光 体に励起光として波長 460 nmの単色光を照射した際(25°C)の発光強度の値を 10 0%としたときの、実施例 80から実施例 82 (25°C)の発光強度の値を相対発光強度 で示した。次に、測定温度を上昇させる前の室温 (25°C)での発光強度の値を、試料 毎に 100%と規格ィ匕し、測定温度を 25°Cから 300°Cまで上昇させたときの発光強度 変化の測定結果を示している。また、表 14には、試料を 300°Cまで昇温した後、 25 °Cまで再び冷却したときの発光強度の値も示している。尚、励起光としては波長 460 nmの光を用いた。
[0292] 図 19 1は温度特性の測定結果であり、縦軸は相対発光強度、横軸には発光強 度の測定を行った測定温度の値であり、実施例 80は実線、実施例 81は 1点鎖線、 実施例 82は 2点鎖線を用いて示している。
[0293] また、図 19 2は、各試料における酸素濃度と相対発光強度の関係を示すグラフ であり、縦軸に相対発光強度、横軸に各試料中の酸素濃度をとつている。
[0294] 表 14および図 19— 1、図 19— 2の結果から明らかなように、本実施例に係る蛍光 体は、 OZSrの値が 0.65のとき最もすぐれた発光特性を示す。例えば、昇温前 (25 °C)においては、 O/Srの値が 0.52の場合に比べて約 5.0%優れ、昇温した際も全 ての温度領域において、わずかに発光強度の低下が小さぐ優れた温度特性を示し ている。測定温度 100°Cにおいては、(P - P )/P X 100≤10.0の範囲内で発
25 100 25
光強度の低下を抑えることができ、測定温度 300°Cにおいては、 OZSrの値が 0.52 の場合に比べ、約 3.4%発光強度の低下を抑えることができる。
[0295] 本実施例に係る蛍光体の温度特性は、 AlZSrの値を 1.33 (実施例 73から 75で最 も良かった値である。)としている為、本実施例の範囲であれば OZSrの値に関わら ず良い結果が得られている。しかし、初期発光強度については、 OZSrの値が影響 しており、最適値である OZSr=0.65のときが最も大きぐ例えば OZSr=0.77の場 合に比較して約 25.0%高い。そして、実施例 80から 82においても、実施例 76から 7 9と同じように、 Al/Srの値力^).0く o/m≤1.5、より好ましくは 0.0く o/m≤ 1.0の 範囲内であれば、十分実用化可能な蛍光体を得ることが可能であることが解った。
[0296] ここで、実施例 80力 82と実施例 76力 79とでは、 A1モル比、 Siモル比が異なつ ている。その為、実施例 80から 82における oZmの最適値の傾向力 実施例 76から 79とはやや異なっている。特に、 OZSr=0.50付近の初期発光強度に差が見られ、 実施例 76から 79では最適値 OZSr=0.59の初期発光強度に比べ約 17.0%低くな るのに対し、実施例 80から 82では最適値 OZSr=0.65に比べ約 5.0%しか低くなら ない。従って、 OZSrの最適値は独立して決まるのではなぐ Siサイトの A1置換量に 応じて変化することが判明した。
[0297] [表 14] ピーク 相対発光 各測定温度における発光強度変化率
色度 0 N
;皮^ 強度 (25°C) (昇温過程) (冷却後)
(nm X y (X) 25°C 50°C 100°C 150°C|200°C 250°C 300°C 25°C (wt%) (wt%) 実施例 80 557.3 0.407 0.546 94.5 100.0 Θ6.3 92.7 87.7 81.7 74.6 67.4 99.0 2.50 28.6 実施例 81 555.6 0.404 0.548 100.0 100.0 Θ6.3 93.0 89.0 83.8 77.7 70.8 98.4 2.79 29.8 実施例 82 557.2 0.401 0.547 76.0 100.0 97.0 93.1 88.6 I 82.7 75.9 68.3 97.8 3.69 29.6 [0298] 以下、実施例 83から 92においては、上記実施例 1および実施例 61に係る蛍光体 を用いた蛍光体混合物および発光装置について評価を行った。比較例 4から 8にお V、ては、従来の緑色蛍光体を用いた蛍光体混合物および発光装置につ!、て評価を 行った。
(実施例 83)
実施例 83では、波長 460nmで発光する発光素子 (LED)を用いて、本発明の実 施例 1に係る蛍光体試料 SrAISi ON: Ce (但し、 CeZ(Sr+Ce) = 0.030)の蛍光
4.5 7
体を励起させた場合における、該蛍光体の発光特性、演色性を評価した。尤も、発 光素子の発光波長は本蛍光体の効率の良!、励起帯域(300nmから 500nm)であ れば良ぐ波長 460nmに限られるものではない。
[0299] まず、窒化物半導体を用いた青色光の LED素子 (発光波長 467nm)を発光部とし て準備した。さらに実際例 1にて作製した蛍光体と、エポキシ榭脂、分散剤とを混ぜ、 混合物とした。尚、該榭脂は可視光の透過率、屈折率が高い方が好ましぐ前記条 件を満たせばエポキシ系に限らずシリコン系の榭脂でもよい。該分散剤へは、 SiO
2 の微粒子などをわずかに混合して使用しても良い。そして該混合物を十分に攪拌し
、公知の方法で該 LED素子上に塗布して白色 LED照明 (発光装置)を作製した。前 記混合物の蛍光体と榭脂比率、塗布厚みにより発光色および発光効率が変化する ため、目的の色温度に合わせて前記条件を調整すればよい。
[0300] 作製された白色 LED照明に 20mAを通電させた際の発光スペクトルを図 20に示 す。図 20は、縦軸に相対発光強度をとり、横軸に発光波長 (nm)をとつたグラフであ る。そして、実施例 83に係る白色 LED照明の発光スペクトルを実線で示す。
該蛍光体は、発光部が発する青色光により励起 *発光し、波長 400nmから 750nm の範囲に連続的にプロ ドなピ クを有する発光スペクトルの白色光を発光し、白色 LED照明を得ることが出来た。該発光の色温度、色度および演色性を測定したとこ ろ、色温度 6078K、 x=0.317、 y=0.374であった。また、当該白色 LEDランプの 平均演色評価数 (Ra)は 73であった。さらに、蛍光体と榭脂との配合量を適宜変更 することにより、異なる色温度の発光色を得ることもできた。
[0301] (実施例 84) 実施例 84では、実施例 83と同様に、波長 460nmで発光する発光素子 (LED)を 用いて、本発明の実施例 61に係る SrAl Si O N : Ceの蛍光体を励起させ
1.43 3.81 0.59 6.79
た場合における、該蛍光体の発光特性、演色性を評価した。
[0302] 実施例 83と同様の製造方法にて作製された白色 LED照明に 20mAを通電させた 際の発光スペクトルを図 21に示す。図 21は、縦軸に相対発光強度をとり、横軸に発 光波長 (nm)をとつたグラフである。そして、実施例 84に係る白色 LED照明の発光ス ぺクトルを実線で示す。
該蛍光体は、発光部が発する青色光により励起 *発光し、波長 400nmから 750nm の範囲に連続的にプロ ドなピ クを有する発光スペクトルの白色光を発光し、白色 LED照明を得ることが出来た。該発光の色温度、色度および演色性を測定したとこ ろ、色温度は 634氣色度は x=0.3115、 y=0.3649であり、平均演色評価数 (Ra )は 72であった。
[0303] (実施例 85、 86)
実施例 85または実施例 86においては、実施例 61に係る蛍光体へ、さらに赤色蛍 光体を加え、波長 460nmに発光する発光素子 (LED)で励起させた場合に相関色 温度 5000K (実施例 85)または 3000K (実施例 86)の発光を行う蛍光体混合物を 製造し、該蛍光体混合物の発光特性、演色性を評価した。尚、本実施例では、該赤 色蛍光体として CaSiAIN: Euを用いたが、 Sr AlSi O N : Eu、 (Ca,Sr)Si N: Eu
3 4 11 2 17 5 8 などの窒素を有する赤色蛍光体、または SrS:Eu、 CaS:Euなどの硫ィ匕物系の赤色 蛍光体を用いることも可能である。
[0304] 1)蛍光体試料の準備
緑色蛍光体 SrAl Si O N : Ce (実施例 61に係る蛍光体)を、実施例 61〖こ
1.43 3.81 0.59 6.79
て説明した方法により製造した。一方、赤色蛍光体 CaSiAIN: Euを、以下の方法に
3
より製造した。
市販の Ca N (2N)、 A1N (3N)、 Si N (3N)、Eu O (3N)を準備し、各元素のモ
3 2 3 4 2 3
ノレ it力 SSr:Al:Si:Ce = 0.970: 1.00:1.00:0.030となるように各原料を样量し、窒素 雰囲気中において乳鉢を用いて混合した。混合した原料を、粉末の状態で窒素雰囲 気中 1500°Cまで 15°CZminの昇温速度で昇温し、 1500°Cで 12時間保持 ·焼成し た後、 1500°Cから 200°Cまで 1時間で冷却し、組成式 CaSiAIN: Euの蛍光体を得
3
た。得られた試料を粉砕し、分級して赤色蛍光体試料として準備した。
[0305] 2)蛍光体混合物の調製
前記 SrAl Si O N : Ceおよび CaSiAIN: Euの 2種類の蛍光体試料につ
1.43 3.81 0.59 6.79 3
いて、各々、波長 460nmの励起光で励起させた場合の発光スペクトルを測定し、該 発光スペクトルから、両蛍光体混合物の相関色温度が、 5000K (実施例 85)または 3 OOOK (実施例 86)となる相対混合比をシミュレーションのより求めた。該シミュレーシ ヨンの結果は、相関色温度が 5000Kの場合(実施例 85)は SrAl Si O N :
1.43 3.81 0.59 6.79
Ce : CaSiAIN :Eu= 98·0:2·0 (モル比)であり、相関色温度 3000Kの場合(実
3
施例 86)は SrAl Si O N : Ce : CaSiAIN :Eu= 95.0:5.0 (モル比)で
1.43 3.81 0.59 6.79 3
あった。該結果に基づき、各蛍光体秤量し混合して蛍光体混合物を得た。
[0306] 但し、発光部の発光波長 (蛍光体混合物の励起波長)や、該励起光に対する蛍光 体の発光効率により、好ましい混合比が、該シミュレーション結果よりずれる場合があ る。このような場合には、適宜、蛍光体の配合比を調整して、実際の発光スペクトル形 状を整えればよい。
[0307] 3)発光素子での評価
実施例 83、 84と同様に、窒化物半導体を有する紫外光の LED (発光波長 460nm )を発光部として準備し、該 LED上に、前記蛍光体混合物と榭脂との混合物を設置 した。該蛍光体混合物と榭脂との混合比は前記シミュレーション結果を基に色温度 5 OOOK相当の昼白色または 3000K相当の電球色が得られるように、前記適宜な蛍光 体の配合比の調整をおこなった。そして、公知の方法により該 LEDの発光部と組み 合わせて白色 LED照明 (発光装置)を作製した。
[0308] 該両蛍光体混合物は、発光部が発する青色光により励起 '発光し、波長 420nmか ら 750nmの範囲にブロードなピークを有する発光スペクトルの白色光を放つ白色 LE D照明を得ることが出来た。ここで、作製された白色 LED照明の発光素子に 20mA を通電させた際の発光スペクトルを図 21に示す。図 21において、色温度 5000K相 当に設定した白色 LED照明の昼白色の発光スペクトルを 1点鎖線で示し、色温度 3 OOOK相当に設定した白色 LED照明の電球色の発光スペクトルを 2点鎖線で示す。 [0309] ここで、実施例 85または実施例 86に係る白色 LED照明の輝度、色度、演色評価 数、色温度等の測定デ タの一覧表を表 15に記載する。
該発光の色温度、色度および演色性を測定したところ、実施例 85に係わる色温度 5000K相当に設定した白色 LED照明については、色温度 4987K、 x=0.3454、 y = 0.3512であり、平均演色評価数 (Ra)は 90、特殊演色評価数の R9は 84、 R13は 91、 R15は 91であった。実施例 86に係わる色温度 3000K相当に設定した白色 LE D照明【こつ!ヽて ίま、色温度 2999Κ:、 x=0.4362、 y=0.4024であり、平均演色評価 数 (Ra)は 95、特殊演色評価数の R9は 89、 R13は 99、 R15は 97であった。さらに 、これら白色 LED照明において、混合する蛍光体の配合量と榭脂配合量とを適宜変 更することにより、異なる色温度の発光色を得ることもできた。
[0310] [表 15]
Figure imgf000086_0001
[0311] 次に、実施例 87から 89について説明する。
実施例 87から 89においては、波長 405nmに発光する発光素子(LED)で励起さ せた場合に、相関色温度 6500Kの発光を行う蛍光体混合物を製造し、当該蛍光体 混合物の発光特性、演色性を評価した。さらに実施例 89においては、赤色蛍光体を 2種類加え、優れた演色性を得ると共に輝度の向上を目指した実施例である。ここで 、青色蛍光体として BAM :Eu(BaMgAl O : Eu)および、(Sr,Ca,Ba,Mg) (PO )
10 17 10 4 6
CI :Euを用いているがこの限りではなぐ Sr (PO ) Cl:Eu、 SrAl Si O N :E
2 5 4 3 x 6-x 1+ x 8-x u (0≤x≤2)、 (Ba,Sr,Ca,Mg) SiO: Eu, (Ba,Sr,Ca) Si O N: Euで示される蛍
2 4 2 2 2
光体を組み合わせても良 、。
[0312] (実施例 87)
1)蛍光体の準備
緑色蛍光体 Sr AI Si ON : Ceは、以下の方法により製造、準備した。
2 2 10 16
市販の SrCO (2N), A1N(3N), Si N (3N), CeO (3N)を準備した。これらの原料を
3 3 4 2
、各元素のモル比力 Sr:Al:Si:Ce = 0.970:l:5:0.030となるように、各原料の混合 比を、それぞれ、 SrCOを 0.970mol、 A1Nを 1.0mol、 Si Nを 5Z3 mol、 CeOを
3 3 4 2
0.030molを秤量し混合した。混合した原料を、粉末の状態で窒素雰囲気中(フ口— 状態、 20.0LZmin)、炉内圧 0. 05MPaで 1800°Cまで 15°CZminで昇温し、 180 0°Cで 3時間保持 '焼成した後、 1800°Cから 50°Cまで 1時間 30分で冷却した。その 後、焼成試料を大気中にて適当な粒径になるまで乳鉢を用いて解砕し、混合組成式 Sr Al Si ON : Ce示される蛍光体を準備した。
2 2 10 16
赤色蛍光体 CaAlSiN: Euを、実施例 85で説明した方法により製造した。
3
青色蛍光体 BAM :Eu(BaMgAl O : Eu)は市販品を準備した。
10 17
[0313] 2)蛍光体混合物の調製
前記 Sr Al Si ON : Ce、 CaAlSiN: Eu、および BAM : Euの 3種類の蛍光体を
2 2 10 16 3
、波長 405nmの励起光で励起させた場合の発光スペクトルを測定し、当該発光スぺ クトルカも蛍光体混合物の相関色温度が 6500Kとなる相対混合比を、シミュレ—ショ ンにより求めた。シミュレーションの結果は、 BAM :Eu : Sr Al Si ON : Ce : C
2 2 10 16 aAlSiN: Eu=47.6:49.5:2.9であったので、当該結果に基づき、各蛍光体を秤量
3
し混合して蛍光体混合物を得た。
ここで、波長 405nmの励起光で励起させた場合、 BAM :Euの発光スペクトルの半 値幅は 53.5nmであり、 Sr Al Si ON : Ceの発光スペクトルの半値幅は 118.0nm
2 2 10 16
、 CaAlSiN: Euの発光スペクトルの半値幅は 86.7nmであり、であり、全て 50nm以
3
上であった。
但し、発光部の発光波長 (蛍光体混合物の励起波長)、当該発光波長による蛍光 体の発光効率により、好ましい混合比力 シミュレーションの結果よりずれる場合があ る。このような場合は、適宜、蛍光体の配合比を調整して、実際の発光スペクトル形 状を整えればよい。
[0314] 3)発光特性の評価
得られた蛍光体混合物へ励起光として波長 405nmの光を照射し、当該蛍光体混 合物の発光の相関色温度を測定したところ 6512Kであり、ねら 、の色温度を有して いることが判明した。さらに、当該発光の色度を測定したところ x=0.312、y=0.331 であった。 得られた発光スペクトルから JISZ8701に規定する XYZ表色系における算出方法 に基づき輝度 (Υ)の値を求め、輝度を 100とした。
実施例 87に係る蛍光体混合物の輝度は、後述する比較例 4に係る蛍光体混合物 の輝度に比較して、 18%程度上昇していた。
発光スペクトルを図 22において太実線で示す。尚、図 22は、縦軸に相対発光強度 をとり、横軸に発光波長 (nm)をとつたグラフである。当該発光スペクトルは、波長 42 Onmから 750nmの範囲で途切れることな!/、連続的なスペクトルを有し、波長 420nm 力も 680nmの範囲に 3つの発光ピ クを有して!/、た。
[0315] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 97、特殊演色評価数 R9は 93、 R15は 95と、非常に優れた 演色性を発揮した。
実施例 87および後述する実施例 88、 89、比較例 4から 6の輝度、色度、演色評価 数、色温度等の測定データの一覧表を表 16に記載する。
[0316] (実施例 88)
1)蛍光体の準備
緑色蛍光体として実施例 87で説明した方法により Sr Al Si ON : Ceを準備した
2 2 10 16 赤色蛍光体として実施例 85で説明した方法により CaAlSiN: Euを準備した。
3
青色蛍光体として市販品の (Sr,Ca,Ba,Mg) (PO ) C1: Euを準備した。
10 4 6 2
[0317] 2)蛍光体混合物の調製
実施例 87と同様のシミュレーションを行って、(Sr,Ca,Ba,Mg) (PO ) CI: Eu :
10 4 6 2
Sr Al Si ON : Ce : CaAlSiN :Eu=64.5:33.1:2.4を求め、当該結果に基づ
2 2 10 16 3
き各蛍光体を秤量し混合して蛍光体混合物を得た。
ここで、波長 405nmの励起光で励起させた場合の (Sr,Ca,Ba,Mg) (PO ) CI: Eu
10 4 6 2 の発光スペクトルにおける半値幅は 51.1 nmであつた。
[0318] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 650 2Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.313、 y=0.327であった。得られた発光スペクトル力 輝度を 求めたところ実施例 87を 100として本実施例の蛍光体混合物の輝度は 101であった 実施例 88に係る蛍光体混合物の輝度は、後述する比較例 5に係る蛍光体混合物 の輝度に比較して、 16%程度上昇していた。
得られた発光スペクトルを図 22において太一点鎖線で示す。
当該発光スペクトルは、実施例 87と同様に、波長 420nmから 750nmの範囲で途 切れることな!/、連続的なスペクトルを有し、波長 420nm力 680nmの範囲〖こ 3つの 発光ピークを有していた。
[0319] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 94、特殊演色評価数 R9は 60、 R15は 89と、非常に優れた 演色性を発揮した。
[0320] (実施例 89)
実施例 89においては、波長 405nmに発光する発光素子 (LED)で励起させた場 合に、相関色温度 6500Kの発光を行う蛍光体混合物を、より輝度、演色性の高い赤 色蛍光体を 2種類用いた方法で製造し、当該蛍光体混合物の発光特性、演色性を 評価した。
[0321] 1)蛍光体の準備
緑色蛍光体として実施例 87で説明した方法により Sr Al Si ON : Ceを準備した
2 2 10 16 赤色蛍光体として実施例 85で説明した方法により CaAlSiN: Euを準備した。
3
青色蛍光体として市販品の BAM: Euを準備した。
また、第 2の赤色蛍光体 CaAl Si N: Euを、以下の方法により製造した。
2 4 8
市販の Ca N (2N)、 A1N (3N)、 Si N (3N)、Eu O (3N)を準備し、各元素のモ
3 2 3 4 2 3
ル比が Ca:Al:Si:Eu=0.970:2:4:0.030となるように各原料を秤量し、窒素雰囲気 下のグローブボックス中において乳鉢を用いて混合した。混合した原料を、窒素雰囲 気中で 1700°Cまで 15°CZminの昇温速度で昇温し、 1700°Cで 3時間保持 ·焼成し た後、 1700°Cから 200°Cまで 1時間で冷却し、組成式 CaAl Si N: Euの蛍光体を
2 4 8
得た。これを粉砕、分級して準備した。
[0322] 2)蛍光体混合物の調製
実施例 87と同様のシミュレーションを行って、 BAM :Eu : Sr AI Si ON : Ce
2 2 10 16
: CaAl Si N: Eu : CaAlSiN: Eu=48.7:48.1:1.0:2.2を求め、当該結果に基
2 4 8 3
づき各蛍光体を秤量し混合して蛍光体混合物を得た。
[0323] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 649 6Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.313、 y=0.329であった。得られた発光スペクトル力 輝度を 求めたところ実施例 87を 100として本実施例の蛍光体混合物の輝度は 107であった 実施例 89に係る蛍光体混合物の輝度は、後述する比較例 6に係る蛍光体混合物 の輝度に比較して、 2%程度上昇していた。
得られた発光スペクトルを図 22において太二点鎖線で示す。
当該発光スペクトルは、実施例 87と同様に、波長 420nmから 750nmの範囲で途 切れることな!/、連続的なスペクトルを有し、波長 420nm力 680nmの範囲〖こ 3つの 発光ピークを有していた。
[0324] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 95、特殊演色評価数 R9は 92、 R15は 97と、非常に優れた 演色性を発揮した。
[0325] 次に、既知の緑色蛍光体を用いて製造した蛍光体混合物を比較例として示す。
比較例 4から 6においては、波長 405nmに発光する発光素子 (LED)で励起させた 場合に、相関色温度 6500Kの発光を行う蛍光体混合物を製造し、当該蛍光体混合 物の発光特性、演色性を評価した。比較例 6については赤色蛍光体を 2種類用い、 演色性と輝度を向上した実施例 89に対する比較例である。 [0326] (比較例 4)
1)蛍光体の準備
緑色蛍光体として市販品の ZnS:Cu,Alを準備した。
赤色蛍光体として実施例 85で説明した方法により CaAlSiN: Euを準備した。
3
青色蛍光体として市販品の BAM: Euを準備した。
[0327] 2)蛍光体混合物の調製
実施例 87と同様のシミュレーションを行って、波長 405nmの励起光における蛍光 体混合物の発光スペクトルの相関色温度が 6500Kとなる相対混合比を、 BAM :Eu : ZnS:Cu,Al : CaAlSiN: Eu=61.1:27.4: 11.5と求め、当該結果に基づき各
3
蛍光体を秤量し混合して蛍光体混合物を得た。
[0328] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 651 8Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.311、 y=0.337であった。得られた発光スペクトルから輝度を 求めたところ実施例 87を 100として本実施例の蛍光体混合物の輝度は 82であった。 得られた発光スペクトルを図 22において細破線で示す。
当該発光スペクトルは、実施例 87と同様に、波長 420nmから 750nmの範囲で途 切れることな!/、連続的なスペクトルを有し、波長 420nm力 680nmの範囲〖こ 3つの 発光ピークを有していた。
[0329] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 87、特殊演色評価数 R9は 6、 R15は 78であった。
[0330] (比較例 5)
1)蛍光体の準備
緑色蛍光体として市販品の ZnS:Cu,Alを準備した。
赤色蛍光体として実施例 85で説明した方法により CaAlSiN: Euを準備した。
3
青色蛍光体として市販品の (Sr,Ca,Ba,Mg) (PO ) C1: Euを準備した。
10 4 6 2
[0331] 2)蛍光体混合物の調製 実施例 87と同様のシミュレーションを行って、波長 405nmの励起光における蛍光 体混合物の発光スペクトルの相関色温度が 6500Kとなる相対混合比を、 (Sr,Ca,Ba ,Mg) (PO ) CI: Eu : ZnS:Cu,Al : CaAlSiN :Eu= 74.3:19.3:6.4と求め、
10 4 6 2 3
当該結果に基づき各蛍光体を秤量し混合して蛍光体混合物を得た。
[0332] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 648 1Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.313、 y=0.329であった。得られた発光スペクトル力 輝度を 求めたところ実施例 87を 100として本実施例の蛍光体混合物の輝度は 85であった。 得られた発光スペクトルを図 22において細一点鎖線で示す。
[0333] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 75、特殊演色評価数 R9は 59、 R15は 57であった。
[0334] (比較例 6)
比較例 6においては、実施例 89で行ったように波長 405nmに発光する発光素子( LED)で励起させた場合に、相関色温度 6500Kの発光を行うより輝度、演色性の高 い蛍光体混合物を、既知の緑色蛍光体と、 2種類の赤色蛍光体と、既知の青色蛍光 体とを用いて製造し、当該蛍光体混合物の発光特性、演色性を評価した。
[0335] 1)蛍光体の準備
緑色蛍光体として市販品の ZnS:Cu,Alを準備した。
赤色蛍光体として実施例 89で説明した方法により、 CaAl Si N: Euと CaAlSiN:
2 4 8 3
Euとを準備した。
青色蛍光体として市販品の BAM: Euを準備した。
[0336] 2)蛍光体混合物の調製
実施例 89と同様〖こして、波長 405nmの励起光における蛍光体混合物の発光スぺ タトルの相関色温度が 6500Kとなる相対混合比を、 BAM :Eu : ZnS:Cu,Al : C aAl Si N: Eu : CaAlSiN: Eu=60.19:30.50:4.65:4.65と求め、当該結果に
2 4 8 3
基づき各蛍光体を秤量し混合して蛍光体混合物を得た。 [0337] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 656 8Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.314、 y=0.322であった。得られた発光スペクトル力 輝度を 求めたところ実施例 87を 100として本実施例の蛍光体混合物の輝度は 105であった 得られた発光スペクトルを図 22において細二点鎖線で示す。
[0338] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 96、特殊演色評価数 R9は 84, R15とは 92であった。
[0339] [表 16]
Figure imgf000093_0001
[0340] 次に、実施例 90力ら 91においては、波長 405nmに発光する発光素子(LED)で 励起させた場合に、相関色温度 4200Kの発光を行う蛍光体混合物を製造し、当該 蛍光体混合物の発光特性、演色性を評価した。実施例 91については赤色蛍光体を 2種類用い、演色性と輝度を向上した実施例である。
[0341] (実施例 90)
1)蛍光体の準備
実施例 87と同様に、緑色蛍光体として Sr Al Si ON : Ceを、赤色蛍光体として C
2 2 10 16
aAlSiN : Euを、青色蛍光体として BAM : Euを準備した。
3
[0342] 2)蛍光体混合物の調製
実施例 87と同様にして、 BAM :Eu、 Sr Al Si ON : Ce、および CaAlSiN : Eu
2 2 10 16 3 の 3種類の蛍光体を、波長 405nmの励起光で励起させた場合の発光スペクトルを測 定し、当該発光スペクトル力も蛍光体混合物の相関色温度が 4200Kとなる相対混合 比を、シミュレ—シヨンにより求めた。シミュレ—シヨンの結果は、 BAM :Eu : Sr Al Si ON : Ce : CaAlSiN: Eu= 33.2:40.8:6.0であったので、当該結果に基づき
10 16 3
各蛍光体を秤量し混合して蛍光体混合物を得た。
[0343] 3)発光特性の評価
実施例 87と同様に、得られた蛍光体混合物へ励起光として波長 405nmの光を照 射し、当該蛍光体混合物の発光の相関色温度を測定したところ 4205Kであり、ねら いの色温度を有していることが判明した。さらに、当該発光の色度を測定したところ X = 0.373、 y=0.376であった。得られた発光スぺク卜ノレ力ら JISZ8701に規定する X YZ表色系における算出方法に基づき輝度 (Y)の値を求め、輝度を 100とした。 実施例 90に係る蛍光体混合物の輝度は、後述する比較例 7に係る蛍光体混合物 の輝度に比較して、 5%程度上昇していた。
当該発光スペクトルは、波長 420nmから 750nmの範囲で途切れることな!/、連続的 なスペクトルを有し、波長 420nmから 680nmの範囲に 3つの発光ピ クを有して!/ヽ た。
得られた発光スペクトルを図 23において太実線で示す。
尚、図 23は、図 22と同様に、縦軸に相対発光強度をとり、横軸に発光波長 (nm)をと つたグラフである。
[0344] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 95、特殊演色評価数 R9は 73、 R15は 92と、非常に優れた 演色性を発揮した。
実施例 90および後述する実施例 91、比較例 7および 8の輝度、色度、演色評価数 、色温度等の測定データの一覧表を表 17に記載する。
[0345] (実施例 91)
実施例 91にお ヽては、波長 405nmに発光する発光素子 (LED)で励起させた場 合に、相関色温度 4200Kの発光を行う蛍光体混合物を、より輝度、演色性の高い赤 色蛍光体を 2種類用いた方法で製造し、当該蛍光体混合物の発光特性、演色性を 評価した。
[0346] 1)蛍光体の準備 緑色蛍光体 Sr Al Si ON : Ceを実施例 87で説明した方法により製造した。
2 2 10 16
赤色蛍光体 CaAlSiN: Euを実施例 85で説明した方法により作成した。また、第2
3
の赤色蛍光体 CaAl Si N: Euを実施例 89で説明した方法により作成した。
2 4 8
青色蛍光体は市販品の BAM: Euを準備した。
[0347] 2)蛍光体混合物の調製
実施例 87と同様のシミュレーションにより、 BAM :Eu : Sr Al Si ON : Ce :
2 2 10 16
CaAl Si N: Eu : CaAlSiN: Eu= 35.6:57.4:2.7:4.3を求め、当該結果に基づ
2 4 8 3
き各蛍光体を秤量し混合して蛍光体混合物を得た。
[0348] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 418 9Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.373、 y=0.372であった。得られた発光スペクトル力 輝度を 求めたところ実施例 90を 100として本実施例の蛍光体混合物の輝度は 107であった 実施例 91に係る蛍光体混合物の輝度は、後述する比較例 8に係る蛍光体混合物 の輝度に比較して、 5%程度上昇していた。
得られた発光スペクトルを図 23において太一点鎖線で示す。
当該発光スペクトルは、実施例 87と同様に、波長 420nmから 750nmの範囲で途 切れることな!/、連続的なスペクトルを有し、波長 420nm力 680nmの範囲〖こ 3つの 発光ピークを有していた。
[0349] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 95、特殊演色評価数 R9は 80、 R15は 94と、非常に優れた 演色性を発揮した。
[0350] 次に、既知の緑色蛍光体を用いた蛍光体混合物を比較例として示す。
比較例 7から 8においては、波長 405nmに発光する発光素子 (LED)で励起させた 場合に、相関色温度 4200Kの発光を行う蛍光体混合物を製造し、当該蛍光体混合 物の発光特性、演色性を評価した。比較例 8は、赤色蛍光体を 2種類加え、演色性と 輝度を向上した実施例 91に対応する比較例である。
[0351] (比較例 7)
比較例 7においては、相関色温度 4200Kの発光を行う蛍光体混合物を製造し、当 該蛍光体混合物の発光特性、演色性を評価した。
[0352] 1)蛍光体の準備
緑色蛍光体として市販品の ZnS:Cu,Alを準備した。
赤色蛍光体として CaAlSiN: Euを準備した。
3
青色蛍光体として市販品の BAM: Euを準備した。
[0353] 2)蛍光体混合物の調製
実施例 87と同様のシミュレーションにより、波長 405nmの励起光における蛍光体 混合物の発光スペクトルの相関色温度が 4200Kとなる相対混合比を、 BAM :Eu : ZnS:Cu,Al : CaAlSiN: Eu= 39.6:43.7:16.7と求め、当該結果に基づき各蛍
3
光体を秤量し混合して蛍光体混合物を得た。
[0354] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 419 3Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.374、 y=0.378であった。得られた発光スペクトルから輝度を 求めたところ実施例 90を 100として本実施例の蛍光体混合物の輝度は 95であった。 得られた発光スペクトルを図 23において細破線で示す。
当該発光スペクトルは、実施例 87と同様に、波長 420nmから 750nmの範囲で途 切れることな!/、連続的なスペクトルを有し、波長 420nm力 680nmの範囲〖こ 3つの 発光ピークを有していた。
[0355] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 70、特殊演色評価数 R9は 53、 R15は 54であった。
[0356] (比較例 8)
比較例 8においては、実施例 91に対応する比較例として、波長 405nmに発光する 発光素子 (LED)で励起させた場合に、相関色温度 4200Kの発光を行うより輝度、 演色性の高い蛍光体混合物を、既知の緑色蛍光体と、赤色蛍光体を 2種類と、青色 蛍光体とを用いた方法で製造し、当該蛍光体混合物の発光特性、演色性を評価した
[0357] 1)蛍光体の準備
緑色蛍光体として市販品の ZnS:Cu,Alを準備した。
赤色蛍光体として赤色蛍光体 CaAlSiN : Euを実施例 85で説明した方法により作
3
成した。また、第 2の赤色蛍光体 CaAl Si N: Euを実施例 89で説明した方法により
2 4 8
作成した。
青色蛍光体として市販品の BAM: Euを準備した。
[0358] 2)蛍光体混合物の調製
実施例 87と同様のシミュレーションにより、波長 405nmの励起光における蛍光体 混合物の発光スペクトルの相関色温度が 4200Kとなる相対混合比を、 BAM :Eu : ZnS:Cu,Al : CaAl Si N: Eu : CaAlSiN :Eu= 52.0:29.5:9.2:9.3と求め、
2 4 8 3
当該結果に基づき各蛍光体を秤量し混合して蛍光体混合物を得た。
[0359] 3)発光特性の評価
実施例 87と同様に、当該蛍光体混合物の発光の相関色温度を測定したところ 416 7Kであり、ねらいの色温度を有していることが判明した。さらに、当該発光の色度を 測定したところ x=0.374 y=0.373であった。得られた発光スペクトルから輝度を 求めたところ実施例 90を 100として本実施例の蛍光体混合物の輝度は 102であった 得られた発光スペクトルを図 23において細二点鎖線で示す。
[0360] 4)演色性の評価
JISZ8726に準拠して、当該蛍光体混合物の発光における演色性の評価を行った 。平均演色評価数 Raは 96、特殊演色評価数 R9は 92, R15とは 97であった。
[0361] [表 17] 輝 虔 平均演色評価数 特辣湞 fe評枷数
(%) Tcp(K) X y Ra R9 R10 R1 1 R12 R13 R14 R15 実施例 90 100 4205 0.373 0.376 95 73 96 96 89 95 98 92 実施例 91 107 4189 0.373 0.372 95 80 96 93 85 97 100 94 比較例 7 95 4193 0.374 0.378 70 -53 81 61 91 73 87 54 比較例 8 102 4167 0.374 0.373 96 92 90 95 82 97 96 97 [0362] (実施例 92)
発光素子での評価
窒化物半導体を有する紫外光の LED (発光ピ―ク波長 403.5nm)を発光部とし、 当該 LED上に、実施例 1で得られた蛍光体試料と榭脂の混合物を設置した。当該蛍 光体と榭脂の混合比は前記結果を基に色温度 6500K相当の昼光色が得られるよう 調整し、公知の方法で当該 LEDの発光部と組み合わせて白色 LEDを作製した。結 果、得られた白色 LEDの発光素子に 20mAを通電させた際の発光スペクトルを図 2 4に示す。
尚、図 24は、図 22と同様に、縦軸に相対発光強度をとり、横軸に発光波長 (nm)を とったグラフである。
[0363] 当該蛍光体は、発光部が発する紫外光により励起'発光し、発光部が発する青色 光と混色し、白色光を放つ白色 LEDを得ることが出来た。当該発光の色温度または 色度を測定したところ、色温度 6469K、 x=0.312、 y=0.331であった。また、白色 LEDの平均演色評価数 (Ra)は 97、特殊演色評価数 R9は 90、 R15は 96であった。 さらに、混合する蛍光体の配合量と榭脂配合量とを適宜変更することにより、異なる 色温度の発光色も得ることもできた。
実施例 92の輝度、色度、演色評価数、色温度等の測定データの一覧表を表 18に 記載する。
[0364] [表 18]
Figure imgf000098_0001
(実施例 93)
実施例 93では、実施例 84で製造した蛍光体混合物を榭脂中に分散させて蛍光体 シ―トを作製し、当該蛍光体シ―トと LED素子を組み合わせて白色 LEDを製造した まず、媒体となる榭脂としてシリコン系榭脂を用い、実施例 58に係る蛍光体混合物 を 10wt%分散させ蛍光体シートを製造した。次に、当該蛍光体シートを、図 26 (C) の符号 1に示す様に、波長 405nmの光を放出する LED素子上に設置した LEDを 製造した。そして、当該 LEDを発光させたところ白色光を発光させることが出来た。 図面の簡単な説明
[図 1]実施例 1の蛍光体粉末の SEM写真である。
[図 2]実施例 1から 3および比較例 1、 2の蛍光体を、波長 460nmの単色光で照射し た際の発光スペクトルを示すグラフである。
[図 3]実施例 1から 3および比較例 1、 2の蛍光体を、波長 405nmの単色光で照射し た際の発光スペクトルを示すグラフである。
[図 4]実施例 1および 2の蛍光体の励起スペクトルを示すグラフである。
[図 5]実施例 3の蛍光体の励起スペクトルを示すグラフである。
[図 6]実施例 4から 13の蛍光体において、付活剤 Z(Ce)の濃度と発光強度との関係を 示すグラフである。
[図 7]実施例 14から 23の蛍光体において、付活剤 Z(Eu)の濃度と発光強度との関係 を示すグラフである。
[図 8]実施例 24から 32の蛍光体において、 AlZSr比と発光強度との関係を示すダラ フである。
[図 9]実施例 33から 42の蛍光体において、 SiZSr比と発光強度との関係を示すダラ フである。
[図 10]実施例 43から 50の蛍光体において、 Srモル比と発光強度との関係を示すグ ラフである。
[図 11]実施例 51から 60の蛍光体において、酸素濃度と発光強度との関係を示すグ ラフである。
[図 12]実施例 61に係る蛍光体の発光スペクトルである。
[図 13]実施例 61に係る蛍光体の励起スペクトルである。
[図 14-1]実施例 61から 66に係る蛍光体を波長 460nmの光で励起したときの発光強 度の温度特性測定結果を示すグラフである。
[図 14-2]実施例 61から 66に係る蛍光体を波長 405nmの光で励起したときの発光強 度の温度特性測定結果を示すグラフである。 [図 15]実施例 61から 66に係る蛍光体の X線回折パタ—ンである。
[図 16]実施例 67から 72に係る蛍光体の発光強度の温度特性測定結果を示すグラフ である。
[図 17]実施例 73から 75に係る蛍光体の発光強度の温度特性測定結果を示すグラフ である。
[図 18-1]実施例 76から 79に係る蛍光体の発光強度の温度特性測定結果を示すグ ラフである。
[図 18-2]実施例 76から 79に係る蛍光体の発光強度と酸素濃度との関係を示すダラ フである。
[図 19-1]実施例 80から 82に係る蛍光体の発光強度の温度特性測定結果を示すグ ラフである。
[図 19-2]実施例 80から 82に係る蛍光体の発光強度と酸素濃度との関係を示すダラ フである。
[図 20]実施例 83に係る白色 LED照明の発光スペクトルである。
[図 21]実施例 84から 86に係る白色 LED照明の発光スペクトルである。
[図 22]実施例 87から 89及び比較例 4から 6に係る蛍光体混合物において、相関色 温度を 6500Kとしたときの発光スペクトルパターンである。
[図 23]実施例 90、 91及び比較例 7、 8に係る蛍光体混合物において、相関色温度を 4200Kとしたときの発光スペクトルパタ ンである。
[図 24]実施例 92に係る蛍光体混合物において、相関色温度を 6500Kとしたときの 発光素子のスペクトルパタ ンである。
[図 25]従来の黄色蛍光体 YAG: Ceの励起スペクトルを示すグラフである。
[図 26]実施例に係る砲弾型 LEDの断面図である。
[図 27]実施例に係る反射型 LEDの断面図である。
符号の説明
1.蛍光体混合物
2. LED発光素子
3.リードフレーム 4.樹脂
5.カップ状の容器
8.反射面
9.透明モールド材

Claims

請求の範囲
[1] 一般式 MmAaBbOoNn:Zで表記される蛍光体であって (M元素は II価の価数をと る 1種類以上の元素であり、 Α元素は ΠΙ価の価数をとる 1種類以上の元素であり、 B 元素は IV価の価数をとる 1種類以上の元素であり、 Oは酸素であり、 Nは窒素であり、 Z元素は 1種類以上の付活剤である。 ),
4. 0< (a+b)/m< 7. 0、 a/m≥0. 5、 b/a> 2. 5、 n>o、 n= 2/3m+a+4 Z3b— 2Z3oであり、波長 300nmから 500nmの範囲の光で励起したとき、発光ス ベクトルにおけるピーク波長が 500nmから 650nmの範囲にあることを特徴とする蛍 光体。
[2] 請求項 1に記載の蛍光体であって、
0. 5≤a/m≤2. 0、 3. 0<b/m< 7. 0、 0< o/m≤4. 0であることを特徴とする 蛍光体。
[3] 請求項 1または請求項 2に記載の蛍光体であって、
0. 8≤a/m≤l. 5、 3. 0<b/m< 6. 0、 0< o/m≤3. 0であることを特徴とする 蛍光体。
[4] 請求項 1から 3の 、ずれかに記載の蛍光体であって、
1. K a/m≤l. 5、 3. 5≤b/m≤4. 5、0< o/m≤l. 5であることを特徴とする 蛍光体。
[5] 請求項 1から 4の 、ずれかに記載の蛍光体であって、
M元素は Mg、 Ca、 Sr、 Ba、 Zn、 II価の原子価をとる希土類元素、力 選択される 1 種類以上の元素であり、
A元素は Al、 Ga、 In、 Tl、 Υ、 Sc、 Ρ、 As、 Sb、 Bi、力 選択される 1種類以上の元 素であり、
B元素は Si、 Ge、 Sn、 Ti、 Hf、 Mo、 W、 Cr、 Pb、 Zr、から選択される 1種類以上の 元素であり、
Z元素は希土類元素、遷移金属元素力 選択される 1種類以上の元素であることを 特徴とする蛍光体。
[6] 請求項 1から 5の 、ずれかに記載の蛍光体であって、 M元素は Mg、 Ca、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、
A元素は Al、 Ga、 In力 選択される 1種類以上の元素であり、
B元素は Siおよび Zまたは Geであり、
Z元素は Eu、 Ce、 Pr、 Tb、 Mn力 選択される 1種類以上の元素であることを特徴 とする蛍光体。
[7] 請求項 1から 6の 、ずれかに記載の蛍光体であって、
M元素は Srであり、 A元素は A1であり、 B元素は Siであり、 Z元素は Euおよび Zま たは Ceであることを特徴とする蛍光体。
[8] 請求項 1から 7の 、ずれかに記載の蛍光体であって、
一般式 MmAaBbOoNn:Zzと表記したとき、 M元素と Z元素とのモル比である zZ( m+z)の値が、 0. 0001以上、 0. 5以下であることを特徴とする蛍光体。
[9] 請求項 1から 8の 、ずれかに記載の蛍光体であって、
19. 5重量%以上、 29. 5重量%以下の Srと、 5. 0重量%以上、 16. 8重量%以下 の A1と、 0. 5重量%以上、 8. 1重量%以下の Oと、 22. 6重量%以上、 32. 0重量% 以下の Nと、 0. 0を超え 3. 5重量%以下の Ceとを含み、波長 350nm力ら 500nmの 範囲の 1種類以上の単色光または連続光が励起光として照射された際、発光スぺク トルにおけるピーク波長が 500〜600nmの範囲にあり、発光スペクトルの色度(x, y) の x力 SO. 3000〜0. 4500、 y力 0. 5000〜0. 6000の範囲にあることを特徴とする 蛍光体。
[10] 請求項 1から 8の!、ずれかに記載の蛍光体であって、
19. 5重量%以上、 29. 5重量%以下の Srと、 5. 0重量%以上、 16. 8重量%以下 の A1と、 0. 5重量%以上、 8. 1重量%以下の Oと、 22. 6重量%以上、 32. 0重量% 以下の Nと、 0. 0を超え 3. 5重量%以下の Euとを含み、波長 350nm力ら 500nmの 範囲の 1種類以上の単色光または連続光が励起光として照射された際、発光発光ス ベクトルにおけるピーク波長が 550〜650nmの範囲にあり、発光スペクトルの色度( X, y)の X力0. 4500〜0. 6000、 y力 0. 3500〜0. 5000の範囲にあることを特徴と する蛍光体。
[11] 請求項 10に記載の蛍光体であって、 波長 350nmから 500nmの範囲の単色光を励起光として照射された際、 当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も大きくする励起光を照射したときの当該最大ピークのピーク強度を P
Hとし、 当該励起光を吸収して発光するスペクトルにおける最大ピークのピーク強度を、最 も小さくする励起光を照射したときの当該最大ピークのピーク強度を P
しとしたとき、
(P -P )/P X 100≤ 20であることを特徴とする蛍光体。
H L H
[12] 請求項 1から 11のいずれかに記載の蛍光体であって、
25°Cにおいて、波長 300nmから 500nmの範囲にある所定の単色光を励起光とし て照射された際の発光スペクトル中における最大ピークの相対強度の値を P
25とし、
200°Cにおいて、前記所定の単色光が励起光として照射された際の、前記最大ピ ークの相対強度の値を P としたとき、
200
(P — P )/P X 100≤ 35であることを特徴とする蛍光体。
25 200 25
[13] 請求項 1から 12のいずれかに記載の蛍光体であって、
粒径 50 m以下の 1次粒子と、当該 1次粒子が凝集した凝集体を含み、当該 1次 粒子および凝集体を含んだ蛍光体粉末の平均粒子径 (D50)が 1. 以上、 50.
0 μ m以下であることを特徴とする蛍光体。
[14] 請求項 1から 13のいずれかに記載の蛍光体であって、
粒径 20 m以下の 1次粒子と、当該 1次粒子が凝集した凝集体を含み、当該 1次 粒子および凝集体を含んだ蛍光体粉末の平均粒子径 (D50)が 1. 以上、 20.
0 μ m以下であることを特徴とする蛍光体。
[15] 請求項 1から 14のいずれかに記載の蛍光体を製造する蛍光体の製造方法であつ て、
焼成用るつぼとして窒化物からなるるつぼを使用し、窒素ガス、希ガス、およびアン モ-ァガス力も選択される 1種類以上のガスを含んだ雰囲気中で 1400°C以上、 200 0°C以下の温度で焼成することを特徴とする蛍光体の製造方法。
[16] 請求項 15に記載の蛍光体の製造方法であって、
前記焼成炉内の雰囲気ガスを 0. OOlMPa以上、 0. 5MPa以下の加圧状態とする ことを特徴とする蛍光体の製造方法。
[17] 請求項 15または 16に記載の蛍光体の製造方法であって、
窒化物力 なるるつぼ力 ¾Nるつぼであることを特徴とする蛍光体の製造方法。
[18] 請求項 15から 17のいずれかに記載の蛍光体の製造方法であって、
窒素ガス、希ガス、およびアンモニアガス力 選択される 1種類以上を含むガスを、 炉内に 0. lmlZmin以上流した状態で焼成することを特徴とする蛍光体の製造方 法。
[19] 請求項 18に記載の蛍光体の製造方法であって、
前記該焼炉内の雰囲気ガスとして、窒素ガスを 80%以上含むガスを用いることを特 徴とする蛍光体の製造方法。
[20] 請求項 15から 19のいずれかに記載の蛍光体の製造方法であって、
10 m以下の原料粒子を用い、原料を粉末状のまま焼成することを特徴とする蛍 光体の製造方法。
[21] 請求項 1から 14のいずれかに記載の蛍光体と、波長 300nm力ら 500nmの範囲に ある前記励起光により励起されたとき、波長 420nmから 500nmの範囲内に発光ス ベクトルの最大ピークを有する 1種類以上の青色蛍光体、および Zまたは、波長 590 nmから 680nmの範囲内に発光スペクトルの最大ピークを有する 1種類以上の赤色 蛍光体とを、含むことを特徴とする蛍光体混合物。
[22] 請求項 1から 14のいずれかに記載の蛍光体と、波長 300nm力ら 420nmの範囲に ある前記励起光により励起されたとき、波長 420nmから 500nmの範囲内に発光ス ベクトルの最大ピークを有する 1種類以上の青色蛍光体と、波長 590nmから 680nm の範囲内に発光スペクトルの最大ピ クを有する 1種類以上の赤色蛍光体とを、含 むことを特徴とする蛍光体混合物。
[23] 請求項 21または 22に記載の蛍光体混合物であって、混合物を構成する各蛍光体 は波長 300nmから 500nmの範囲にある所定の励起光により励起されたときの温度 25°Cにおける発光強度を P とし、前記所定の励起光を照射されたときの温度 200
25
°Cにおける発光強度を P としたとき、((P — P ) ZP )力、30%以下であること
200 25 200 25
を特徴とする蛍光体混合物。
[24] 波長 300nm力も 420nmの範囲にある前記励起光により励起されたときの発光スぺ クトノレにお 、て、ネ目関色温度 ίま 7000K力ら 2500Kの範囲にあり、波長 420nm力ら 7 50nmの範囲に 3つ以上の発光ピ クを有し、且つ波長 420nmから 750nmの範囲 に途切れることない連続的スペクトルを有することを特徴とする請求項 21または 23に 記載の蛍光体混合物。
[25] 前記波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有する赤 色蛍光体は、糸且成式 MmAaBbOoNn:Z (但し、前記 M元素は、 Ca、 Mg、 Sr、 Ba、 Znから選択される 1種類以上の元素であり、前記 A元素は、 Al、 Ga、 Inから選択され る 1種類以上の元素であり、前記 B元素は、 Si、 Ge、 Snから選択される 1種類以上の 元素であり、前記 Z元素は、希土類元素、遷移金属元素から選択される 1種類以上の 元素であり、 n= 2Z3m+a+4Z3b 2Z3o、 m= l、 a≥0、 b≥m、 n>o、 o≥0) と表記されることを特徴とする請求項 21から 24のいずれかに記載の蛍光体混合物。
[26] 前記波長 590nmから 680nmの範囲内に発光スペクトルの最大ピークを有する赤 色蛍光体は、 m=a=b = l、 n= 3であり組成式 CaAlSiN: Euを有することを特徴と
3
する請求項 25に記載の蛍光体混合物。
[27] 前記波長 420nmから 500nmの範囲内に発光スペクトルの最大ピークを有する青 色蛍光体は、 BAM :Eu(BaMgAl O : Eu)、 (Sr,Ca,Ba,Mg) (PO ) CI: Euから
10 17 10 4 6 2 選択される 1種類以上の蛍光体であることを特徴とする請求項 21から 26のいずれか に記載の蛍光体混合物。
[28] 前記蛍光体混合物は平均粒径 (D50)が 1. 0 μ m以上、 50 μ m以下の蛍光体から 構成されることを特徴とする請求項 21から 27のいずれかに記載の蛍光体混合物。
[29] 請求項 1から 14のいずれかに記載の蛍光体、または請求項 21から 28のいずれか に記載の蛍光体混合物が、榭脂またはガラス中に分散されているものであることを特 徴とする蛍光体シート
[30] 請求項 1から 14のいずれかに記載の蛍光体と第 1の波長の光を発する発光部とを 有し、前記第 1の波長の光の一部または全部を励起光とし、前記蛍光体から前記第 1 の波長と異なる波長の光を発光させることを特徴とする発光装置。
[31] 請求項 21から 28のいずれかに記載の蛍光体混合物と第 1の波長の光を発する発 光部とを有し、前記第 1の波長の光の一部または全部を励起光とし、前記蛍光体から 前記第 1の波長と異なる波長の光を発光させることを特徴とする発光装置。
[32] 請求項 29に記載の蛍光体シートと第 1の波長の光を発する発光部とを有し、前記 第 1の波長の光の一部または全部を励起光とし、前記蛍光体から前記第 1の波長と 異なる波長の光を発光させることを特徴とする発光装置。
[33] 請求項 30から 32の!ヽずれかに記載の発光装置であって、
第 1の波長とは、 350ηπ!〜 500nmの波長であることを特徴とする発光装置。
[34] 前記発光装置の相関色温度が、 10000Kから 2000Kの範囲にあることを特徴とす る請求項 30から 33の 、ずれかに記載の発光装置。
[35] 前記発光装置の相関色温度が、 7000Kから 2500Kの範囲にあることを特徴とする 請求項 30から 34の 、ずれかに記載の発光装置。
[36] 前記発光装置の平均演色評価数 Raが、 80以上であることを特徴とする請求項 30 力も 35の 、ずれかに記載の発光装置。
[37] 前記発光装置の特殊演色評価数 R15が、 80以上であることを特徴とする請求項 3
0から 36の!ヽずれかに記載の発光装置。
[38] 前記発光装置の特殊演色評価数 R9が、 60以上であることを特徴とする請求項 30 力も 37の 、ずれかに記載の発光装置。
[39] 前記発光部が発光ダイォ―ド (LED)であることを特徴とする請求項 30から 38のい ずれかに記載の発光装置。
PCT/JP2006/304175 2005-02-25 2006-03-03 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置 WO2006093298A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2006800071640A CN101133137B (zh) 2005-03-04 2006-03-03 荧光体及其制备方法、和使用该荧光体的发光装置
EP06715234.8A EP1867697B1 (en) 2005-03-04 2006-03-03 Fluorescent substance and process for producing the same, and light emitting device using said fluorescent substance
US11/885,439 US7887718B2 (en) 2005-03-04 2006-03-03 Phosphor and manufacturing method therefore, and light emission device using the phosphor
JP2007506042A JP5145934B2 (ja) 2005-03-04 2006-03-03 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
US12/912,179 US8372309B2 (en) 2005-02-25 2010-10-26 Phosphor and manufacturing method therefore, and light emission device using the phosphor
US13/616,477 US20130026908A1 (en) 2005-03-04 2012-09-14 Phosphor and manufacturing method therefore, and light emission device using the phosphor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005061627 2005-03-04
JP2005-061627 2005-03-04
JP2005075854 2005-03-16
JP2005-075854 2005-03-16
JP2005-192691 2005-06-30
JP2005192691 2005-06-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/885,439 A-371-Of-International US7887718B2 (en) 2005-03-04 2006-03-03 Phosphor and manufacturing method therefore, and light emission device using the phosphor
US12/912,179 Division US8372309B2 (en) 2005-02-25 2010-10-26 Phosphor and manufacturing method therefore, and light emission device using the phosphor

Publications (1)

Publication Number Publication Date
WO2006093298A1 true WO2006093298A1 (ja) 2006-09-08

Family

ID=36941328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304175 WO2006093298A1 (ja) 2005-02-25 2006-03-03 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置

Country Status (6)

Country Link
US (3) US7887718B2 (ja)
EP (1) EP1867697B1 (ja)
JP (2) JP5145934B2 (ja)
KR (1) KR20070115951A (ja)
CN (2) CN102827603A (ja)
WO (1) WO2006093298A1 (ja)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299259A (ja) * 2005-04-15 2006-11-02 Patent Treuhand Ges Elektr Gluehlamp Mbh 青色ないし黄橙色の発光を示す蛍光物質及びかかる蛍光体を有する光源
JP2007308605A (ja) * 2006-05-18 2007-11-29 Dowa Holdings Co Ltd 電子線励起用の蛍光体およびカラ−表示装置
WO2008041501A1 (fr) * 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Substance fluorescente, feuilles fluorescentes, procédé de fabrication de la substance fluorescente, dispositifs d'émission de lumière réalisés à l'aide de la substance
JPWO2006106883A1 (ja) * 2005-03-31 2008-09-11 Dowaエレクトロニクス株式会社 蛍光体、蛍光体シートおよびその製造方法、並びに当該蛍光体を用いた発光装置
JP2008218998A (ja) * 2007-02-09 2008-09-18 Toshiba Lighting & Technology Corp 発光装置
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP2008280471A (ja) * 2007-05-14 2008-11-20 Sony Corp 発光組成物及びこれを用いた光源装置並びにこれを用いた表示装置
JP2008285576A (ja) * 2007-05-17 2008-11-27 Nec Lighting Ltd 緑色発光蛍光体、その製造方法及びそれを用いた発光素子
JP2009001760A (ja) * 2007-06-25 2009-01-08 Nec Lighting Ltd 緑色発光酸窒化物蛍光体、その製造方法及びそれを用いた発光素子
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
JP2009064999A (ja) * 2007-09-07 2009-03-26 He Shan Lide Electronic Enterprise Co Ltd 低色温度光を生成する方法及びその方法を用いた光放出装置
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
JP2009073870A (ja) * 2007-09-18 2009-04-09 Toshiba Corp 蛍光体および発光装置
WO2009051138A1 (ja) * 2007-10-17 2009-04-23 Denki Kagaku Kogyo Kabushiki Kaisha 蛍光体とその製造方法
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
JPWO2007105631A1 (ja) * 2006-03-10 2009-07-30 株式会社東芝 蛍光体および発光装置
JP2010031201A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2010129906A (ja) * 2008-11-28 2010-06-10 Showa Denko Kk 表示装置用照明装置及び表示装置
JP2010268004A (ja) * 2010-08-18 2010-11-25 Toshiba Corp 赤色蛍光体およびそれを用いた発光装置
JP2011017007A (ja) * 2010-08-18 2011-01-27 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2011153319A (ja) * 2011-05-02 2011-08-11 Toshiba Corp 蛍光体の製造方法
JP2011168708A (ja) * 2010-02-19 2011-09-01 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2011195688A (ja) * 2010-03-18 2011-10-06 Toshiba Corp 赤色蛍光体およびその製造方法、ならびに発光装置
WO2012105687A1 (ja) 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012105689A1 (ja) 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012105688A1 (ja) 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012124480A1 (ja) * 2011-03-17 2012-09-20 株式会社東芝 蛍光体および発光装置
JP2012188640A (ja) * 2010-09-02 2012-10-04 Toshiba Corp 蛍光体およびそれを用いた発光装置
US8310145B2 (en) 2010-09-08 2012-11-13 Kabushiki Kaisha Toshiba Light emitting device including first and second red phosphors and a green phosphor
US8414795B2 (en) 2010-09-09 2013-04-09 Kabushiki Kaisha Toshiba Red light-emitting fluorescent substance and light-emitting device employing the same
US8471277B2 (en) 2010-09-08 2013-06-25 Kabushiki Kaisha Toshiba Light emitting device
JP2013127054A (ja) * 2011-11-15 2013-06-27 National Institute For Materials Science 蛍光体、その製造方法、発光装置および画像表示装置
US8546824B2 (en) 2010-09-06 2013-10-01 Kabushiki Kaisha Toshiba Light emitting device
US8552437B2 (en) 2010-03-09 2013-10-08 Kabushiki Kaisha Toshiba Fluorescent substance, process for production of fluorescent substance, light-emitting device and light-emitting module
JP2013538253A (ja) * 2010-07-22 2013-10-10 ゼネラル・エレクトリック・カンパニイ 酸窒化物蛍光体、製造方法及び発光装置
US8558251B2 (en) 2010-09-06 2013-10-15 Kabushiki Kaisha Toshiba Light emitting device
US8608980B2 (en) 2007-09-03 2013-12-17 National Institute For Materials Science Phosphor, method for producing the same and light-emitting device using the same
JP2013256675A (ja) * 2013-10-02 2013-12-26 Nec Lighting Ltd 緑色発光酸窒化物蛍光体
KR101357515B1 (ko) 2011-03-09 2014-02-03 가부시끼가이샤 도시바 형광체 및 그 형광체를 이용한 발광 장치
JP2014175378A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 発光装置
US8858835B2 (en) 2010-09-09 2014-10-14 Kabushiki Kaisha Toshiba Red light-emitting flourescent substance and light-emitting device employing the same
US8921878B2 (en) 2010-09-07 2014-12-30 Kabushiki Kaisha Toshiba Light emitting device
JP2015000965A (ja) * 2013-06-18 2015-01-05 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
US8937328B2 (en) 2010-08-23 2015-01-20 Kabushiki Kaisha Toshiba Light emitting device and manufacturing method thereof
US8957447B2 (en) 2013-05-15 2015-02-17 Kabushiki Kaisha Toshiba Phosphor
USRE45502E1 (en) 2004-08-20 2015-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
JP2015124303A (ja) * 2013-12-26 2015-07-06 住友金属鉱山株式会社 シリケート蛍光体粒子の製造方法およびシリケート蛍光体粒子
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
US9133391B2 (en) 2011-11-16 2015-09-15 Kabushiki Kaisha Toshiba Luminescent material
US9190582B2 (en) 2013-04-03 2015-11-17 Kabushiki Kaisha Toshiba Light emitting device
US9399731B2 (en) 2012-12-14 2016-07-26 Denka Company Limited Phosphor, method for producing the same, and luminescent device using the same
JPWO2014119313A1 (ja) * 2013-01-31 2017-01-26 株式会社東芝 発光装置及びled電球
US9708531B2 (en) 2009-02-26 2017-07-18 Nichia Corporation Fluorescent substance, method of manufacturing the fluorescent substance, and light emitting device using the fluorescent substance
CN113889588A (zh) * 2016-04-07 2022-01-04 三星显示有限公司 有机发光二极管
WO2022244523A1 (ja) * 2021-05-21 2022-11-24 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光素子および発光装置

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093298A1 (ja) * 2005-03-04 2006-09-08 Dowa Electronics Materials Co., Ltd. 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
EP1930393A4 (en) * 2005-09-27 2010-11-03 Dowa Electronics Materials Co FLUORESCENT, MANUFACTURING METHOD AND LIGHTING DEVICE THEREOF
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
US20090283721A1 (en) * 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors
KR101172143B1 (ko) * 2009-08-10 2012-08-07 엘지이노텍 주식회사 백색 발광다이오드 소자용 시온계 산화질화물 형광체, 그의 제조방법 및 그를 이용한 백색 led 소자
WO2011024296A1 (ja) * 2009-08-28 2011-03-03 株式会社 東芝 蛍光体の製造方法およびそれにより製造された蛍光体
WO2011028033A2 (ko) 2009-09-02 2011-03-10 엘지이노텍주식회사 형광체, 형광체 제조방법 및 백색 발광 소자
KR101163902B1 (ko) 2010-08-10 2012-07-09 엘지이노텍 주식회사 발광 소자
JP4888853B2 (ja) * 2009-11-12 2012-02-29 学校法人慶應義塾 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置
US9798189B2 (en) 2010-06-22 2017-10-24 Toyobo Co., Ltd. Liquid crystal display device, polarizer and protective film
KR101866600B1 (ko) * 2011-01-26 2018-06-11 덴카 주식회사 α 형 사이알론, 발광 장치 및 그 용도
JP2012186414A (ja) * 2011-03-08 2012-09-27 Toshiba Corp 発光装置
US9076979B2 (en) * 2011-03-24 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Organic electroluminescent element, lighting fixture, and food storage device
US8785222B2 (en) 2011-05-09 2014-07-22 Hong Kong Applied Science and Technology Research Institute Company Limited Phosphor ink composition
WO2012157663A1 (ja) 2011-05-18 2012-11-22 東洋紡株式会社 液晶表示装置、偏光板および偏光子保護フィルム
CN103649791B (zh) 2011-05-18 2016-03-02 东洋纺株式会社 适用于三维图像显示应对液晶显示装置的偏光板和液晶显示装置
JP5634352B2 (ja) * 2011-08-24 2014-12-03 株式会社東芝 蛍光体、発光装置および蛍光体の製造方法
JP6200891B2 (ja) 2011-09-30 2017-09-20 ゼネラル・エレクトリック・カンパニイ 蛍光体材料及び関連デバイス
CN103184049B (zh) * 2011-12-28 2015-01-14 湖南信多利新材料有限公司 一种氮化物荧光粉的制备方法及其设备
EP2837669B1 (en) * 2012-03-16 2016-08-31 Kabushiki Kaisha Toshiba Phosphor, phosphor production method, and light-emitting device
US8679367B2 (en) * 2012-08-09 2014-03-25 Intematix Corporation Green-emitting (oxy)nitride-based phosphors and light-emitting device using the same
US8851950B2 (en) * 2012-09-26 2014-10-07 General Electric Company Recyclability of fluorescent lamp phosphors
TWI568832B (zh) * 2012-10-18 2017-02-01 晶元光電股份有限公司 螢光材料及其製備方法
KR101481011B1 (ko) * 2013-01-14 2015-01-15 루미마이크로 주식회사 형광체, 그의 제조 방법 및 이를 이용한 조명장치
JP6176664B2 (ja) * 2013-10-17 2017-08-09 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
CN105899641B (zh) 2013-12-26 2019-05-14 电化株式会社 荧光体和发光装置
US9676999B2 (en) 2014-02-26 2017-06-13 Denka Company Limited Phosphor, light emitting element, and light emitting device
WO2015129741A1 (ja) 2014-02-26 2015-09-03 電気化学工業株式会社 蛍光体、発光素子及び発光装置
US9528876B2 (en) 2014-09-29 2016-12-27 Innovative Science Tools, Inc. Solid state broad band near-infrared light source
KR102357584B1 (ko) * 2014-12-17 2022-02-04 삼성전자주식회사 질화물 형광체, 백색 발광장치, 디스플레이 장치 및 조명장치
DE102015110258A1 (de) 2015-06-25 2016-12-29 Osram Gmbh Leuchtstoff, Verfahren zum Herstellen eines Leuchtstoffs und Verwendung eines Leuchtstoffs
DE212017000060U1 (de) * 2016-02-03 2018-09-10 Opple Lighting Co., Ltd. Lichtquellenmodul und Beleuchtungsvorrichtung
JP7063888B2 (ja) * 2016-09-26 2022-05-09 ルミレッズ ホールディング ベーフェー 発光素子用の波長変換材料
TWI629339B (zh) * 2017-06-16 2018-07-11 信源陶磁股份有限公司 製備氮化物螢光體的方法
JP2021009171A (ja) * 2017-09-28 2021-01-28 パナソニックIpマネジメント株式会社 波長変換部材、光源、蛍光体粒子及び波長変換部材の製造方法
KR102550462B1 (ko) * 2018-03-09 2023-07-03 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지
JP7491811B2 (ja) * 2020-10-28 2024-05-28 株式会社日立ハイテク 蛍光体、それを用いた光源、生化学分析装置、及び蛍光体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278250A2 (de) 2001-07-16 2003-01-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
WO2004055910A1 (en) 2002-12-13 2004-07-01 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
JP2004235598A (ja) 2002-06-27 2004-08-19 Nichia Chem Ind Ltd 発光装置
JP2005008794A (ja) * 2003-06-20 2005-01-13 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP2005048105A (ja) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10105800B4 (de) 2001-02-07 2017-08-31 Osram Gmbh Hocheffizienter Leuchtstoff und dessen Verwendung
JP3668770B2 (ja) * 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
US6632379B2 (en) * 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
DE10146719A1 (de) * 2001-09-20 2003-04-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
DE10147040A1 (de) * 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
JP4207489B2 (ja) * 2002-08-06 2009-01-14 株式会社豊田中央研究所 α−サイアロン蛍光体
EP1413619A1 (en) 2002-09-24 2004-04-28 Osram Opto Semiconductors GmbH Luminescent material, especially for LED application
JP2005089794A (ja) 2003-09-16 2005-04-07 Nippon Steel Corp 製鉄ダストの資源化有効利用方法
JP3837588B2 (ja) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP2005336450A (ja) * 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP4524470B2 (ja) * 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
WO2006093298A1 (ja) * 2005-03-04 2006-09-08 Dowa Electronics Materials Co., Ltd. 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
US7524437B2 (en) * 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1278250A2 (de) 2001-07-16 2003-01-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
JP2004235598A (ja) 2002-06-27 2004-08-19 Nichia Chem Ind Ltd 発光装置
WO2004055910A1 (en) 2002-12-13 2004-07-01 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
JP2005008794A (ja) * 2003-06-20 2005-01-13 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP2005048105A (ja) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867697A4

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7434981B2 (en) 2004-05-28 2008-10-14 Dowa Electronics Materials Co., Ltd. Manufacturing method of metal paste
US7432647B2 (en) 2004-07-09 2008-10-07 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent trivalent and tetravalent elements
US7884539B2 (en) 2004-07-09 2011-02-08 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US8441180B2 (en) 2004-07-09 2013-05-14 Dowa Electronics Materials Co., Ltd. Light source having phosphor including divalent, trivalent and tetravalent elements
US7476337B2 (en) 2004-07-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US8066910B2 (en) 2004-07-28 2011-11-29 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
USRE44162E1 (en) 2004-08-02 2013-04-23 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
US7527748B2 (en) 2004-08-02 2009-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and phosphor film for electron beam excitation and color display apparatus using the same
USRE45640E1 (en) 2004-08-02 2015-08-04 Dowa Electronics Materials Co., Ltd. Phosphor for electron beam excitation and color display device using the same
USRE45502E1 (en) 2004-08-20 2015-05-05 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method therefore, and light source using the phosphor
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7803286B2 (en) 2004-08-27 2010-09-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
US7514860B2 (en) 2004-10-28 2009-04-07 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7477009B2 (en) 2005-03-01 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor mixture and light emitting device
US7524437B2 (en) 2005-03-04 2009-04-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JPWO2006106883A1 (ja) * 2005-03-31 2008-09-11 Dowaエレクトロニクス株式会社 蛍光体、蛍光体シートおよびその製造方法、並びに当該蛍光体を用いた発光装置
US7445730B2 (en) 2005-03-31 2008-11-04 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
US7443094B2 (en) 2005-03-31 2008-10-28 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method of the same, and light emitting device using the phosphor
JP2006299259A (ja) * 2005-04-15 2006-11-02 Patent Treuhand Ges Elektr Gluehlamp Mbh 青色ないし黄橙色の発光を示す蛍光物質及びかかる蛍光体を有する光源
US7476336B2 (en) 2005-04-28 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light emitting device using the phosphor
JPWO2007105631A1 (ja) * 2006-03-10 2009-07-30 株式会社東芝 蛍光体および発光装置
JP2011082529A (ja) * 2006-03-10 2011-04-21 Toshiba Corp 発光装置
US8491817B2 (en) 2006-03-10 2013-07-23 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8482192B2 (en) 2006-03-10 2013-07-09 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8475680B2 (en) 2006-03-10 2013-07-02 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8450923B2 (en) 2006-03-10 2013-05-28 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
JP2012070014A (ja) * 2006-03-10 2012-04-05 Toshiba Corp 発光装置
JP4762248B2 (ja) * 2006-03-10 2011-08-31 株式会社東芝 蛍光体
JP2011116994A (ja) * 2006-03-10 2011-06-16 Toshiba Corp 蛍光体の製造方法
JP2007308605A (ja) * 2006-05-18 2007-11-29 Dowa Holdings Co Ltd 電子線励起用の蛍光体およびカラ−表示装置
WO2008041501A1 (fr) * 2006-09-29 2008-04-10 Dowa Electronics Materials Co., Ltd. Substance fluorescente, feuilles fluorescentes, procédé de fabrication de la substance fluorescente, dispositifs d'émission de lumière réalisés à l'aide de la substance
US8303847B2 (en) 2006-09-29 2012-11-06 Dowa Electronics Materials Co., Ltd. Phosphor, manufacturing method of phosphor sheet and phosphor, and light emitting device using the phosphor
JP2008088257A (ja) * 2006-09-29 2008-04-17 Dowa Electronics Materials Co Ltd 蛍光体、蛍光体シート及び蛍光体の製造方法、並びに当該蛍光体を用いた発光装置
JP2008218998A (ja) * 2007-02-09 2008-09-18 Toshiba Lighting & Technology Corp 発光装置
JP2008280471A (ja) * 2007-05-14 2008-11-20 Sony Corp 発光組成物及びこれを用いた光源装置並びにこれを用いた表示装置
JP2008285576A (ja) * 2007-05-17 2008-11-27 Nec Lighting Ltd 緑色発光蛍光体、その製造方法及びそれを用いた発光素子
JP2009001760A (ja) * 2007-06-25 2009-01-08 Nec Lighting Ltd 緑色発光酸窒化物蛍光体、その製造方法及びそれを用いた発光素子
US8608980B2 (en) 2007-09-03 2013-12-17 National Institute For Materials Science Phosphor, method for producing the same and light-emitting device using the same
JP2009064999A (ja) * 2007-09-07 2009-03-26 He Shan Lide Electronic Enterprise Co Ltd 低色温度光を生成する方法及びその方法を用いた光放出装置
JP2009073870A (ja) * 2007-09-18 2009-04-09 Toshiba Corp 蛍光体および発光装置
WO2009051138A1 (ja) * 2007-10-17 2009-04-23 Denki Kagaku Kogyo Kabushiki Kaisha 蛍光体とその製造方法
JP2010031201A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 蛍光体およびそれを用いた発光装置
US8685277B2 (en) 2008-07-31 2014-04-01 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device employing the same
US8603361B2 (en) 2008-07-31 2013-12-10 Kabushiki Kaisha Toshiba Fluorescent substance and light-emitting device employing the same
US8550645B2 (en) 2008-11-28 2013-10-08 Showa Denko K.K. Illumination device for display device, and display device
KR101356367B1 (ko) * 2008-11-28 2014-01-27 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 표시 장치용 조명 장치 및 표시 장치
JP2010129906A (ja) * 2008-11-28 2010-06-10 Showa Denko Kk 表示装置用照明装置及び表示装置
TWI417616B (zh) * 2008-11-28 2013-12-01 Nat Inst For Materials Science 顯示裝置用照明裝置及顯示裝置
US9708531B2 (en) 2009-02-26 2017-07-18 Nichia Corporation Fluorescent substance, method of manufacturing the fluorescent substance, and light emitting device using the fluorescent substance
JP2011168708A (ja) * 2010-02-19 2011-09-01 Toshiba Corp 蛍光体およびそれを用いた発光装置
US8501039B2 (en) 2010-02-19 2013-08-06 Kabushiki Kaisha Toshiba Fluorescent material and light-emitting device employing the same
US8552437B2 (en) 2010-03-09 2013-10-08 Kabushiki Kaisha Toshiba Fluorescent substance, process for production of fluorescent substance, light-emitting device and light-emitting module
JP2011195688A (ja) * 2010-03-18 2011-10-06 Toshiba Corp 赤色蛍光体およびその製造方法、ならびに発光装置
JP2013538253A (ja) * 2010-07-22 2013-10-10 ゼネラル・エレクトリック・カンパニイ 酸窒化物蛍光体、製造方法及び発光装置
JP2011017007A (ja) * 2010-08-18 2011-01-27 Toshiba Corp 蛍光体およびそれを用いた発光装置
JP2010268004A (ja) * 2010-08-18 2010-11-25 Toshiba Corp 赤色蛍光体およびそれを用いた発光装置
US8937328B2 (en) 2010-08-23 2015-01-20 Kabushiki Kaisha Toshiba Light emitting device and manufacturing method thereof
JP2012188640A (ja) * 2010-09-02 2012-10-04 Toshiba Corp 蛍光体およびそれを用いた発光装置
US8546824B2 (en) 2010-09-06 2013-10-01 Kabushiki Kaisha Toshiba Light emitting device
US8558251B2 (en) 2010-09-06 2013-10-15 Kabushiki Kaisha Toshiba Light emitting device
US8921878B2 (en) 2010-09-07 2014-12-30 Kabushiki Kaisha Toshiba Light emitting device
US8471277B2 (en) 2010-09-08 2013-06-25 Kabushiki Kaisha Toshiba Light emitting device
US8310145B2 (en) 2010-09-08 2012-11-13 Kabushiki Kaisha Toshiba Light emitting device including first and second red phosphors and a green phosphor
US8652359B2 (en) 2010-09-09 2014-02-18 Kabushiki Kaisha Toshiba Red light-emitting fluorescent substance and light-emitting device employing the same
US8414795B2 (en) 2010-09-09 2013-04-09 Kabushiki Kaisha Toshiba Red light-emitting fluorescent substance and light-emitting device employing the same
US8858835B2 (en) 2010-09-09 2014-10-14 Kabushiki Kaisha Toshiba Red light-emitting flourescent substance and light-emitting device employing the same
US9512979B2 (en) 2011-02-06 2016-12-06 Denka Company Limited Phosphor, production method for the same, and light-emitting device
US9512358B2 (en) 2011-02-06 2016-12-06 National Institute For Materials Science Phosphor, production method for the same, and light-emitting device
WO2012105687A1 (ja) 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
TWI487774B (zh) * 2011-02-06 2015-06-11 獨立行政法人物質 材料研究機構 螢光體、其製造方法及發光裝置
US9624428B2 (en) 2011-02-06 2017-04-18 National Institute For Materials Science Phosphor, production method for the same, and light-emitting device
KR101525339B1 (ko) * 2011-02-06 2015-06-03 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 형광체, 그 제조 방법 및 발광 장치
WO2012105689A1 (ja) 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
WO2012105688A1 (ja) 2011-02-06 2012-08-09 独立行政法人物質・材料研究機構 蛍光体、その製造方法及び発光装置
KR101357515B1 (ko) 2011-03-09 2014-02-03 가부시끼가이샤 도시바 형광체 및 그 형광체를 이용한 발광 장치
JP5955835B2 (ja) * 2011-03-17 2016-07-20 株式会社東芝 蛍光体および発光装置
JPWO2012124480A1 (ja) * 2011-03-17 2014-07-17 株式会社東芝 蛍光体および発光装置
WO2012124480A1 (ja) * 2011-03-17 2012-09-20 株式会社東芝 蛍光体および発光装置
JP2011153319A (ja) * 2011-05-02 2011-08-11 Toshiba Corp 蛍光体の製造方法
JP2013127054A (ja) * 2011-11-15 2013-06-27 National Institute For Materials Science 蛍光体、その製造方法、発光装置および画像表示装置
JP2013127055A (ja) * 2011-11-15 2013-06-27 National Institute For Materials Science 蛍光体、その製造方法、発光装置および画像表示装置
US9133391B2 (en) 2011-11-16 2015-09-15 Kabushiki Kaisha Toshiba Luminescent material
US9399731B2 (en) 2012-12-14 2016-07-26 Denka Company Limited Phosphor, method for producing the same, and luminescent device using the same
JPWO2014119313A1 (ja) * 2013-01-31 2017-01-26 株式会社東芝 発光装置及びled電球
US9520540B2 (en) 2013-03-07 2016-12-13 Kabushiki Kaisha Toshiba Light-emitting device with phosphor excited by blue excitation light
JP2014175378A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 発光装置
US9190582B2 (en) 2013-04-03 2015-11-17 Kabushiki Kaisha Toshiba Light emitting device
US8957447B2 (en) 2013-05-15 2015-02-17 Kabushiki Kaisha Toshiba Phosphor
JP2015000965A (ja) * 2013-06-18 2015-01-05 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
JP2013256675A (ja) * 2013-10-02 2013-12-26 Nec Lighting Ltd 緑色発光酸窒化物蛍光体
JP2015124303A (ja) * 2013-12-26 2015-07-06 住友金属鉱山株式会社 シリケート蛍光体粒子の製造方法およびシリケート蛍光体粒子
CN113889588A (zh) * 2016-04-07 2022-01-04 三星显示有限公司 有机发光二极管
WO2022244523A1 (ja) * 2021-05-21 2022-11-24 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光素子および発光装置

Also Published As

Publication number Publication date
EP1867697B1 (en) 2014-05-14
EP1867697A4 (en) 2012-03-21
US8372309B2 (en) 2013-02-12
CN101133137A (zh) 2008-02-27
CN101133137B (zh) 2013-05-08
US20110084235A1 (en) 2011-04-14
EP1867697A1 (en) 2007-12-19
US20130026908A1 (en) 2013-01-31
JP5145934B2 (ja) 2013-02-20
US7887718B2 (en) 2011-02-15
KR20070115951A (ko) 2007-12-06
CN102827603A (zh) 2012-12-19
JP2012092350A (ja) 2012-05-17
JPWO2006093298A1 (ja) 2008-08-07
US20090236963A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
WO2006093298A1 (ja) 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
JP4975269B2 (ja) 蛍光体およびその製造方法、並びに当該蛍光体を用いた発光装置
JP5643424B2 (ja) 炭窒化物系蛍光体およびこれを使用する発光素子
JP4524470B2 (ja) 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
JP5847908B2 (ja) オキシ炭窒化物蛍光体およびこれを使用する発光素子
TWI374178B (en) Novel aluminate-based green phosphors
JP5361886B2 (ja) 熱安定性の酸窒化物蛍光体及びこの種の蛍光体を有する光源
JP4617323B2 (ja) 新しい組成の黄色発光Ce3+賦活シリケート系黄色蛍光体、その製造方法及び前記蛍光体を包含する白色発光ダイオード
TWI424045B (zh) A phosphor, a phosphor sheet, and a phosphor, and a light-emitting device using the phosphor
JPWO2006106883A1 (ja) 蛍光体、蛍光体シートおよびその製造方法、並びに当該蛍光体を用いた発光装置
JP6528418B2 (ja) 蛍光体及びこれを用いた発光装置
WO2007037059A1 (ja) 蛍光体およびその製造方法、並びに該蛍光体を用いた発光装置
JP5222600B2 (ja) 蛍光体
JP2012519216A (ja) ジルコニウムおよびハフニウムで同時ドープされたニトリドシリケート
JP2017008130A (ja) 窒化物蛍光体、その製造方法及び発光装置
JP2011032340A (ja) 蛍光体および発光装置
JP6718991B2 (ja) 窒化ルテチウム蛍光粉末、及びその蛍光粉末を有する発光装置
JP2012062472A (ja) 緑色蛍光体およびその製造方法、ならびにそれを含む白色発光素子
JP2018501349A (ja) 蛍光体組成物及びその照明装置
JP6833683B2 (ja) 蛍光体およびその製造方法、ならびにledランプ
JP2017518412A (ja) 変換蛍光体
WO2014203482A1 (ja) 赤色蛍光体材料および発光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007164.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007506042

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11885439

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077020732

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006715234

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006715234

Country of ref document: EP