WO2006041089A1 - 活性エネルギー線硬化性樹脂組成物およびシート状光学物品 - Google Patents

活性エネルギー線硬化性樹脂組成物およびシート状光学物品 Download PDF

Info

Publication number
WO2006041089A1
WO2006041089A1 PCT/JP2005/018787 JP2005018787W WO2006041089A1 WO 2006041089 A1 WO2006041089 A1 WO 2006041089A1 JP 2005018787 W JP2005018787 W JP 2005018787W WO 2006041089 A1 WO2006041089 A1 WO 2006041089A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
resin composition
active energy
meth
compound
Prior art date
Application number
PCT/JP2005/018787
Other languages
English (en)
French (fr)
Inventor
Shinji Makino
Tsuyoshi Nakagawa
Koichiro Sanefuji
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to US11/665,185 priority Critical patent/US7786184B2/en
Priority to JP2006540945A priority patent/JP4783296B2/ja
Publication of WO2006041089A1 publication Critical patent/WO2006041089A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31547Of polyisocyanurate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to an active energy ray-curable resin composition used for the production of sheet-like optical articles, particularly prism sheets, lenticular lens sheets, Fresnel lenses, and the like, and a resin composition obtained by curing the resin composition.
  • the present invention relates to a sheet-like optical article containing a cured product.
  • Examples of the sheet-like optical article include a Fresnel lens sheet used for a projection screen such as a projection television, a lenticular lens sheet, and a prism sheet used as a backlight for a liquid crystal display device. These generally have a structure in which a lens portion made of a cured resin is formed on the surface of a transparent sheet-like substrate.
  • a prism sheet is formed between a transparent sheet substrate such as a transparent plastic sheet and a lens mold in which a lens pattern is formed on a cylindrical surface.
  • a composition using a hexafunctional urethane (meth) acrylate and a di (meth) acrylate compound in combination as an active energy ray curable resin for prism sheets is proposed in the examples. Has been.
  • the resin composition exemplified here is excellent in scratch resistance and heat resistance when molded into a prism sheet.
  • this prism sheet is placed on a flat surface with the prism surface facing upward, the four corners of the sheet tend to warp. Therefore, in the process of assembling into the knocklight, there is a problem that it is not easy to handle with a machine, and it is difficult to determine the position where the prism sheet that has been cut or placed is placed.
  • the warpage of the sheet tends to increase more and may adversely affect image quality.
  • An object of the present invention is to provide a sheet-like optical article having good heat resistance and extremely low warpage.
  • the object is to provide an active energy ray-curable resin composition suitable for production, and a sheet-like optical article obtained using the resin composition.
  • the cause of the warpage of the sheet-like optical article composed of the transparent sheet-like base material and the lens part obtained by curing the active energy ray-curable resin is the stress generated in the lens part during the molding of the lens part. It is thought that it remains. Therefore, it is necessary to reduce the residual stress in order to reduce the warpage of the sheet-like optical article.
  • Examples of methods for reducing warpage include a method of lowering the polymerization shrinkage rate of the resin composition, and an elastic modulus of the cured product in order to reduce stress due to cooling shrinkage when changing from the molding temperature to the handling temperature. And a method of lowering the value.
  • the range that can be generally reduced is limited, and it is considered difficult to solve the problem of warpage.
  • the elastic modulus of the cured product can be significantly reduced. Lowering the elastic modulus of elasticity tends to adversely affect heat resistance.
  • the present inventors have dealt with the problem by appropriately designing the dynamic elastic modulus of the active energy ray-curable resin cured product with respect to temperature in order to solve the above-mentioned problems.
  • the present inventors have completed the present invention by finding the conditions under which the warpage of the sheet-like optical article under the environment is extremely small and the heat resistance is good.
  • the dynamic elastic modulus is an elastic modulus that is detected by applying a strain (stress) that vibrates to a cured resin resin by dynamic viscoelasticity measurement, and is generally expressed as G ′.
  • the warpage in question here refers to the warpage of the sheet-like optical product occurring near 25 ° C, and the dynamic elastic modulus of the cured resin resin at 25 ° C is sufficient. If designed low, a sheet-like optical article that does not warp at all can be obtained. However, in that case, the dynamic elastic modulus of the cured resin resin at a high temperature (for example, 60 ° C) tends to be lower than the value necessary to maintain the heat resistance required for the sheet-like optical article. Yes, it tends to cause thermal deformation.
  • the dynamic elastic modulus at 60 ° C is designed to be high to make it difficult to thermally deform, the dynamic elastic modulus at 25 ° C tends to be higher than the value necessary to reduce warpage. The warpage of the sheet-like optical article becomes large.
  • the present inventors have designed a sheet-like cured product by designing the upper limit of the dynamic elastic modulus at 25 ° C and the lower limit of the dynamic elastic modulus at 60 ° C within an optimal range. Reduce the warpage of optical articles, In addition, the inventors considered that the heat resistance could be improved, and intensively studied. As a result, the inventors have found the relationship between the dynamic elastic modulus and temperature of a cured cured resin ideal for reducing warpage and having sufficient heat resistance, and completed the present invention. Furthermore, the present inventors have found an active energy ray-curable resin composition suitable for realizing the relationship between the dynamic elastic modulus and the temperature thus designed, and have completed the present invention.
  • the present invention provides a sheet-like optical article capable of obtaining a cured product having a dynamic elastic modulus at 25 ° C. of 950 MPa or less and a dynamic elastic modulus at 60 ° C. of lOOMPa or more. Active energy ray-curable rosin composition, and a sheet-like optical article obtained using this rosin composition.
  • the present invention relates to hexamethylene diisocyanate and an iso-socyanurate-type triisocyanate compound obtained by trimerizing it, 2-hydroxypropyl acrylate and penta Urethane atelar toy compound (A) obtained by reacting with erythritol triatalylate, di (meth) attareito toy compound that does not have a urethane bond in the molecule and has two (meth) attaroyl groups
  • An active energy ray-curable resin composition for a sheet-like optical article containing the product (B), and a radical photopolymerization initiator (C), and a sheet-like optical article obtained by using this resin composition. is there.
  • the present invention is a sheet-like optical article characterized by having a lens portion having an indentation elastic modulus at 25 ° C of lOOOMPa or less and an indentation elastic modulus at 60 ° C of 90 MPa or more. .
  • an active energy ray-curable resin composition for a sheet-like optical article suitable for forming a lens part such as a prism sheet for a backlight having small warpage and excellent heat resistance, and A sheet-like optical article obtained using the rosin composition can be provided.
  • FIG. 1 is a schematic partial cross section of an embodiment (prism sheet) of a sheet-like optical article of the present invention.
  • FIG. 1 is a schematic partial cross section of an embodiment (prism sheet) of a sheet-like optical article of the present invention.
  • FIG. 2 is a schematic view showing a method for producing a sheet-like optical article (prism sheet) carried out in Examples.
  • FIG. 3 is a schematic diagram showing the shape of a sample for measuring indentation elastic modulus of a sheet-like optical article (prism sheet) carried out in an example.
  • the cured product obtained by curing the resin composition of the present invention with active energy rays has a dynamic elastic modulus at 25 ° C of 950 MPa or less and a dynamic elastic modulus at 60 ° C of lOOMPa or more. More preferably, the dynamic elastic modulus at 25 ° C is 700 MPa or less, and the dynamic elastic modulus at 60 ° C is 150 MPa or more.
  • the warp can be made sufficiently small. If the dynamic elastic modulus at 60 ° C is lOOMPa or more, the warp can be reduced to 60 ° C. As a result, the heat resistance is less likely to be thermally deformed.
  • the active energy ray-curable resin composition of the present invention is a cured product suitable for at least a part of a sheet-like optical article, that is, a dynamic elastic modulus at 25 ° C of 950 MPa or less and 60 ° C.
  • a dynamic elastic modulus at 25 ° C of 950 MPa or less and 60 ° C There is no particular limitation as long as it can obtain a cured product having a dynamic modulus of elasticity of lOOMPa or more.
  • a resin composition containing Z or an epoxy compound, an oxetane compound, a vinyl ether compound, and a cationic photopolymerization initiator can be used.
  • a resin composition containing a urethane (meth) acrylate compound, an ester (meth) acrylate compound, and a radical photopolymerization initiator is particularly preferred.
  • a resin composition containing (B) a di (meth) acrylate compound having no urethane bond in the molecule and having two (meth) atalyloyl groups, and (C) a radical photopolymerization initiator is more preferred.
  • the composition may further contain (D) a compound having one polymerizable double bond group in the molecule and (E) other components.
  • each component will be described.
  • the component (A) used in the resin composition of the present invention is a compound containing at least one urethane (meth) acrylate compound having three or more (meth) attaylyl groups in the molecule.
  • This component (A) is a component that causes a polymerization reaction or a crosslinking reaction when irradiated with an active energy ray such as ultraviolet rays in the presence of a radical polymerizable photopolymerization initiator, and is mainly used as a lens of a sheet-like optical article. Imparts scratch resistance and heat resistance of the part.
  • the component (A) contains only one or two (()) urethane (meth) ataretoyl compounds having three or more (meth) atarylloyl groups in the molecule. It may also contain a urethane (meth) ataretoy compound having a (meth) atallyloyl group.
  • Urethane (meth) ataretoy compound having three or more (meth) attalyloyl groups in a molecule is typically a polyisocyanate having two or more isocyanate groups in the molecule. It is a compound obtained by reacting a compound with one or more (meth) attalyroyl compounds having one or more (meth) atalyloyl groups and a hydroxyl group in the molecule.
  • Examples of polyisocyanate compounds having two or more isocyanate groups in the molecule include various polyisocyanate compounds classified into aliphatic, alicyclic and aromatic groups. Can be used.
  • isophorone diisocyanate, hexamethylene diisocyanate and trimer thereof are preferable.
  • isophorone diisocyanate and isocyanurate type hexamethylene diisocyanate trimer strength are more preferable in terms of the scratch resistance and heat resistance of the resulting cured product.
  • the (meth) attailyl compound having one or more (meth) attalyloyl groups and a hydroxyl group in the molecule examples thereof include hydroxyethyl (meth) acrylate, serine di (meth) acrylate, pentaerythritol tri (meth) acrylate, 2-hydroxy-1- 1-allyloyloxy-3-methacryloyloxypropane, and the like.
  • the ata relay toy compound is more preferable than the catacrylate compound in terms of photocurability.
  • Two or more kinds of the polyisocyanate compound and the (meth) atariloy compound having a hydroxyl group can be used in combination. By changing the type and ratio of the combination, it is possible to develop an elastic modulus and other physical properties that are different from the urethane (meth) ataretoy compound obtained by one kind of strength.
  • the urethane reaction between the polyisocyanate compound and the (meth) atariloy compound having a hydroxyl group can be carried out according to a conventional method.
  • a tin compound such as dibutyltin dilaurate
  • a urethane (meth) acrylate compound can be easily synthesized by heating to 60-: LOO ° C.
  • a reactive diluent such as (meth) acrylate having a low viscosity, which is directly related to the reaction during synthesis, may be used.
  • component (A) hexamethylene diisocyanate and an isocyanurate type triisocyanate compound obtained by trimerizing it (isocyanurate type hexamethylenediocyanate) Nate trimer), 2-hydroxypropyl acrylate, and pentaerythritol triacrylate.
  • urethane ata relay toy compounds include a mixture of urethane ata relay toy compounds represented by the following structural formulas (1) to (7).
  • the resin composition has a relatively low polymerization shrinkage and is hard to be colored during curing, light resistance of the cured product, scratch resistance, heat resistance In addition, it is suitable for adjusting the dynamic elastic modulus of the resin composition to the optimum range.
  • the molar ratio of hexamethylene diisocyanate to isocyanurate type hexamethylene diisocyanate trimer is preferably in the range of 2.0 to 4.0. If this molar ratio is within the above range, the shrinkage rate of the cured product does not become too large, and the dynamic elastic modulus of the cured product does not become too high.
  • the mole ratio of 2-hydroxypropyl acrylate to pentaerythritol triacrylate is preferably in the range of 0.25-1. If this molar ratio is within the above range, sufficient toughness can be imparted without the dynamic elastic modulus of the cured product becoming too high.
  • the molar ratio of the hydroxyl group to the isocyanate group is preferably in the range of 1.0 to 1.5. If this molar ratio is 1.0 or more, the unreacted isocyanate is reduced from remaining in the resin composition, and the storage stability can be improved. If the molar ratio is 1.5 or less, the unreacted pentaerythritol triacrylate and 2-hydroxypropyl acrylate are reduced in content, and the curing shrinkage is large. Can be prevented.
  • the amount of component (A) is preferably 5 to 90 parts by mass, more preferably 10 to 80 parts per 100 parts by mass of the total amount of components (A), (B) and (D). Part by mass, particularly preferably 10 to 50 parts by mass.
  • the lower limits of the above ranges are significant in terms of the scratch resistance and heat resistance of the lens portion of the sheet-like optical article. Further, the upper limit values of the above ranges are significant in that the dynamic elastic modulus of the cured resin can be adjusted by the component (B) and the component (D), and the warpage of the sheet can be reduced.
  • the component (B) used in the resin composition according to the present invention is a di (meth) attareito toy compound having no urethane bond in the molecule and having two (meth) attaroyl groups.
  • This component (B) is a component that causes a polymerization reaction or a crosslinking reaction by irradiation with active energy rays such as ultraviolet rays in the presence of a radical polymerizable photopolymerization initiator.
  • active energy rays such as ultraviolet rays in the presence of a radical polymerizable photopolymerization initiator.
  • the component (B) is preferably, for example, an aliphatic di (meth) acrylate having a molecular weight of 500 or more, a bisphenol A or F-type di (meth) acrylate.
  • component (B) include di (meth) acrylate of polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polybutylene glycol, and the power of hydroxybivalic acid neopentyl glycol ester.
  • polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polybutylene glycol, and the power of hydroxybivalic acid neopentyl glycol ester.
  • Atalylate Bisphenol A ethylene oxide force of several moles or more of di (meth) acrylate
  • Hydrogenated Bisphenol A Ethylene oxide added force of more than moles of di (meth) atrelate bis Examples thereof include di (meth) atalylate having an addition force of several moles or more of phenol F ethylene oxide, di (meth) acrylate having an addition force of ethylene oxide of hydrogenated bisphenol F.
  • Addition of lenoxide to 1 ⁇ 2 mole of di (meth) acrylate, hydrogenated bisphenol F Di (meth) acrylate with an addition number of tylene oxide of 6 mol or more is preferred in terms of adjusting the dynamic elastic modulus of the cured resin.
  • the compounds represented by the following general formulas (I) and (II) are more preferable in that they do not reduce the scratch resistance of the lens portion of the sheet-like optical article.
  • the above component (B) may be used alone or in combination of two or more.
  • the blending amount of component (B) is preferably 10 to 90 parts by mass, more preferably 20 to 90 parts per 100 parts by mass of the total amount of component (A), component (B) and component (D). Part by mass, particularly preferably 30 to 80 parts by mass.
  • the lower limit of each of the above ranges is that the viscosity of the resin composition is reduced, the lens part has good moldability on the surface of the transparent plastic substrate, and the dynamic elasticity of the resin resin cured product at 25 ° C. This is significant in that it is adjusted so that the rate does not increase, and the warpage of the sheet-like optical article is reduced.
  • the upper limit value of each of the above ranges is significant in that the dynamic elasticity of the cured resin is not too low, and sufficient heat resistance can be imparted to the lens portion of the sheet-like optical article. is there.
  • Component (C) used in the resin composition of the present invention is a radical photopolymerization initiator.
  • This component (C) is a compound that initiates radical polymerization of an ethylenically unsaturated compound by free radicals generated by irradiation with active energy rays such as ultraviolet rays and visible rays. It is a thing.
  • component (C) a wide variety of compounds conventionally known as photodynamic radical polymerization initiators can be used.
  • Specific examples of UV-sensitive radical photopolymerization initiators that can be used as component (C) include benzoin, benzoin monomethyl ether, benzoin monoethyl ether, benzoin isopropyl ether, acetoin, acetophenone, benzyl, benzophenone, p- Methoxybenzophenone, diethoxyacetophenone, 2,2-dimethoxy 1,2-diphenylethane 1-one, 2,2-diethoxyacetophenone, 1-hydroxycyclohexyl phenol ketone, methylphenol glyoxylate, ester 2-hydroxy-2-methyl-1-phenolpropane 1-one, 2-methyl-1- [4 (methylthio) phenol] 2 morpholinopropanone-1-one, 2-benzyl-2-one —Dimethylamino 1— (4-morpholinophyl) butanone — 1, 2 Hydr
  • the above radical photopolymerization initiators may be used alone or in combination of two or more.
  • the blending amount of component (C) is preferably 0.01 to: LO parts by mass, more preferably 100 parts by mass of the total amount of components (A), (B) and (D), more preferably 0.05 to 5 parts by mass, particularly preferably 0.1 to 4 parts by mass.
  • the lower limit of each of the above ranges is significant in terms of curability due to the active energy ray of the resin composition.
  • the upper limit value of each of the above ranges is significant in that it can prevent the lens portion of the sheet-like optical article from being markedly yellow.
  • Component (D) used in the resin composition of the present invention is a compound having one polymerizable double bond group in the molecule.
  • This component (D) is a component that causes a polymerization reaction by irradiation with active energy rays such as ultraviolet rays in the presence of a radically polymerizable photopolymerization initiator, and reduces the viscosity of the resin composition, thereby producing a transparent plastic substrate.
  • active energy rays such as ultraviolet rays in the presence of a radically polymerizable photopolymerization initiator
  • It is a component for improving the moldability of the lens part on the surface and further mitigating part of the internal stress generated inside the cured resin due to polymerization shrinkage during curing. That is, the warpage of the sheet-like optical article can be further reduced by replacing the component (D) with the components (A) to (C).
  • component (D) typically, a mono (meth) attareito toy compound can be used. However, it is not limited to this, and any compound having one double bond in the molecule may be used.
  • Specific examples of component (D) include phenol (meth) acrylate, benzyl (meth) acrylate, phenol (meth) acrylate, phenoloxyl (meth) acrylate, paracumyl phenol lenoxide modified (Meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, propyl ( (Meth) acrylate, n-butyl (meth) acrylate, i- butyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acryl
  • the above component (D) may be used alone or in combination of two or more.
  • the blending amount of the component (D) is preferably 0.1 to 20 parts by mass, more preferably 0 to 100 parts by mass of the total amount of the components (A), (B) and (D). 5 to 15 parts by mass, particularly preferably 1 to 10 parts by mass.
  • the lower limits of the above ranges are significant in terms of reducing the viscosity of the resin composition and reducing the warpage of the sheet-like optical article.
  • the upper limit value of each of the above ranges is significant in terms of heat resistance of the lens portion of the sheet-like optical article.
  • a fluorine-containing compound or a compound having a long-chain alkyl group having 8 or more carbon atoms is used for improving scratch resistance or improving releasability. Also good.
  • the fluorine-containing compound include trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, octafluoropentyl (meth) acrylate, heptadecaful. Orodecyl (meth) talylate and the like.
  • the compound having a long-chain alkyl group having 8 or more carbon atoms include dimer diols (for example, trade name Prepol 2033, etc., manufactured by Duchema), and long-chain alkyl compounds such as dimer (di) methacrylate of dimer diols.
  • dimer diols for example, trade name Prepol 2033, etc., manufactured by Duchema
  • long-chain alkyl compounds such as dimer (di) methacrylate of dimer diols.
  • a compound can be used.
  • antioxidants such as antioxidants, UV absorbers, light stabilizers (HALS, etc.), leveling agents, heat stabilizers, film material modifiers, flame retardants, polymerization inhibitors, radical thermal polymerization initiation as appropriate
  • additives such as an agent, a cationic photopolymerization initiator, a cationic thermal polymerization initiator, a photopolymerization accelerator, a sensitizer, and a release agent may be contained.
  • the amount of component (E) used is in a range that does not affect the essential effects of the resin composition of the present invention, for example, the total amount of component (A), component (B) and component (D) is 100 parts by mass. On the other hand, it is preferable to add 0 to: LO parts by mass, more preferably 0 to 4 parts by mass.
  • the active energy ray-curable resin composition for a sheet-like optical article of the present invention having the above components (A) to (D) and optional (E) other component powers is, for example, a stirrer chip or splashing stirring. Use a stick or the like to mix thoroughly. This mixing is suitably performed under illumination such as a yellow lamp so that photopolymerization does not start.
  • the resin composition of the present invention has a viscosity of 100 to 50 at 25 ° C from the viewpoint of the handling property of pouring into a lens mold and the controllability of the thickness of the lens part when producing a sheet-like optical article. It is preferably OOmPa's, and more preferably 150 to 3000 mPa's force. If the viscosity of the resin composition is 5000 mPa's or less, it is possible to transfer and mold the fine details of the fine lens pattern formed in the lens mold, and it is easy to control the thickness of the lens part thinly.
  • the viscosity of the resin composition is lOOmPa's or more, the uncured resin composition sandwiched between the lens mold and the transparent sheet-like base material is difficult to overflow from the side cover. It is possible to prevent the lens portion from becoming too thin.
  • the concentration of the strong acid contained in the resin composition of the present invention depends on the high humidity conditions of the sheet-like optical article formed from the lens part obtained by curing the resin composition and the transparent sheet-like substrate. From the viewpoint of the adhesion between the lens part after treatment and the sheet-like substrate, it is preferably less than lOOppm, and more preferably less than 50ppm.
  • the concentration of the strong acid contained in the resin composition is less than lOOppm, the hydrophilicity of the cured product obtained by irradiating the resin composition with active energy rays can be suppressed, and the sheet-like optical article can be used in a high humidity environment. Moisture absorption of the cured product and moisture permeation into the interface between the lens portion and the sheet-like substrate when treated under conditions are suppressed, and adhesion can be easily maintained.
  • Some of the (meth) atareto toy compounds used in the present invention can be obtained by a production process using a strong acid, and a strong acid mixed as an impurity in the (meth) acrylate compound is a resin composition.
  • strong acids include sulfuric acid, nitric acid, hydrochloric acid, perchloric acid, p-toluenesulfonic acid and the like.
  • Examples of a method for removing strong acid mixed as an impurity in the (meth) atari toy compound include a purification method such as alkali washing.
  • alkali cleaning for example, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate, etc., or ammonia water, etc. is used for the (meth) atre toy compound lg. l Use about 2g in the tank
  • Examples of the method include stirring. This alkali cleaning is preferably repeated a plurality of times until the concentration of the strong acid in the rosin composition becomes lOOppm or less.
  • the sheet-like optical article of the present invention is obtained using the resin composition of the present invention.
  • the sheet-shaped optical article comprises a cured product obtained by irradiating the resin composition of the present invention with an active energy ray and curing it.
  • An article including a lens portion. This lens part is formed, for example, on at least one surface of a transparent sheet-like base material.
  • the prism sheet which is an embodiment of the sheet-like optical article of the present invention will be described with reference to FIG.
  • the prism sheet is composed of a transparent sheet-like substrate 1 and a lens portion 2 in which a large number of prism rows made of a cured product of the resin composition of the present invention are arranged in parallel.
  • the transparent sheet-like substrate 1 is not particularly limited as long as it transmits an active energy ray.
  • acrylic resin, polycarbonate resin, polyester resin, salt resin resin, polymethacrylimide A film, sheet or plate made of a resin such as resin can be used.
  • the lens unit 2 may be provided directly on the surface of the transparent sheet substrate 1. Further, in order to improve the adhesion with the transparent sheet-like substrate 1, the surface of the transparent sheet-like substrate 1 is subjected to a surface treatment for improving the adhesion to form the surface treatment part 3, and then the lens part 2 Let's set up.
  • a surface treatment for example, a method of forming an easy-adhesion layer made of polyester resin, acrylic resin, urethane resin, etc. on the surface of the transparent sheet-like substrate 1, or the surface of the transparent sheet-like substrate 1 is roughened.
  • a surface treatment may be used.
  • the surface processed portion 4 may be formed.
  • an active energy ray-curable resin blended with a diffusing agent such as organic fine particles or silica fine particles having different refractive indexes can be used.
  • the transparent sheet-like substrate 1 can be subjected to other treatments such as antistatic, antireflection, and adhesion prevention between substrates.
  • the hardness, elastic modulus, creep deformation characteristics, elasticity, and the like were measured using test devices called “dynamic micro hardness tester” and “ultra micro hardness test system”. It is possible to measure physical properties related to deformation return.
  • the elastic modulus obtained here is called indentation elastic modulus and has a correlation with Young's modulus.
  • indentation elastic modulus has a correlation with Young's modulus.
  • the indentation elastic modulus of the lens portion of the sheet-like optical article of the present invention is 1000 MPa or less at 25 ° C and 90 MPa or more at 60 ° C.
  • it is 90 OMPa or less at 25 ° C and lOOMPa or more at 60 ° C. More preferably, it is 800 MPa or less at 25 ° C and 300 MPa or more at 60 ° C.
  • the warp can be made sufficiently small. If the indentation elastic modulus at 60 ° C is 90 MPa or more, the warp can be reduced at 60 ° C. Heat resistance that is difficult to be thermally deformed is improved.
  • molds used in the manufacture of sheet-like optical articles include metal molds such as aluminum, brass, and steel, silicone resin, urethane resin, epoxy resin, ABS resin, fluorine resin, and polymethylpentene.
  • metal molds such as aluminum, brass, and steel, silicone resin, urethane resin, epoxy resin, ABS resin, fluorine resin, and polymethylpentene.
  • molds made of synthetic resin such as resin, molds made from these materials, and molds made from materials mixed with various metal powders.
  • metal molds are preferred for heat resistance and strength, and are suitable for continuous production. More specifically, the metal mold has advantages such as being resistant to polymerization heat generation, being difficult to deform, being hardly scratched, being capable of temperature control, and suitable for precision molding.
  • the active energy ray light source used for the production of the sheet-like optical article includes, for example, Chemical lamps, low-pressure mercury lamps, high-pressure mercury lamps, metal halide lamps, electrodeless UV lamps (manufactured by Fusion UV Systems), visible light halogen lamps, xenon lamps, solar light, etc. can be used.
  • the atmosphere at the time of irradiation with active energy rays may be air or an inert gas such as nitrogen or argon.
  • the irradiation energy is, for example, 200-6 OOnm, preferably integrated energy power in the wavelength range of 320 to 390 nm. For example, 0.01 to: LOJ / cm 2 , preferably 0.5 to 8 J / cm 2 It is appropriate to irradiate as follows.
  • part means “part by mass”.
  • This urethane atta relay toy compound (UA2) is represented by the following structural formula (8).
  • component (A) 35 parts of urethane atelar toy compound (UA1) is used, and as component (B), a dimethyl compound represented by the following formula (9) [compound of general formula (I) where 1 is 9]: Tatarirate (trade name: Atariester PBOM, manufactured by Mitsubishi Rayon Co., Ltd.) 25 parts, and dimetathalrate represented by the following formula (10) (trade name: Eufrontia BPEM-10, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) ) 40 parts, and (C) component, 1-hydroxycyclohexyl phenol ketone (trade name Irgacure 184, manufactured by Chino Specialty Chemicals Co., Ltd.) 1.2 parts, mixed with active energy ray curable A rosin composition was obtained.
  • a dimethyl compound represented by the following formula (9) [compound of general formula (I) where 1 is 9]: Tatarirate (trade name: Atariester PBOM, manufactured by Mitsubishi Rayon Co.,
  • dimetatalylate represented by formula (9), which is component (B) was changed to 20 parts, and further, (D) component, Phenoxetyl acrylate (trade name-Eufrontier PHE, Daiichi Industrial An active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that 5 parts of Yakuhin Co., Ltd. was added.
  • Example except that the amount of dimetatalylate represented by formula (10) as component (B) was changed to 30 parts, and 10 parts of fenoxychetyl acrylate was added as component (D). In the same manner as in Example 1, an active energy ray-curable resin composition was obtained.
  • An active energy ray-curable resin composition was obtained in the same manner as in Example 1 except that 60 parts of 8684 (Daiichi Kogyo Seiyaku Co., Ltd.) were used.
  • Active energy ray-curable resin composition similar to Example 1 except that each compound was purified so that the concentration of p-toluenesulfonic acid contained in the resin composition was 70 ppm. Got.
  • the active energy ray-curable resin composition was the same as Example 1 except that each compound was purified so that the concentration of p-toluenesulfonic acid contained in the resin composition was 20 ppm. Got.
  • urethane acrylate compound (UA2) 22 parts of urethane diacrylate compound (UA3) (trade name NK Oligo U-2PPA, manufactured by Shin-Nakamura Engineering Co., Ltd.), represented by formula (9)
  • the active energy ray-curable resin composition was obtained by mixing 38 parts of dimetatalylate and 1.2 parts of 1-hydroxycyclohexyl phenol ketone.
  • Table 1 shows a recipe for the above Examples and Comparative Examples.
  • a transparent sheet-like substrate is formed between a cylindrical prism type 7 in which a copper thin film having a large number of prism rows with an apex angle of 48 ° formed at a pitch of 50 m is wound around the circumference, and a rubber-up roll 6. Material 5 was introduced.
  • This transparent sheet-like substrate 5 has a surface treatment for improving adhesion (Fig. 1: Table A PET (polyethylene terephthalate) film (trade name: A-4100, manufactured by Toyobo Co., Ltd., thickness 188 m) subjected to the surface treatment unit 3) was used.
  • the active energy ray-curable resin composition 10 is passed from the tank 8 through the pipe 9 having a nozzle attached to the tip, and the cylindrical prism type 7 and the transparent sheet shape.
  • the transparent sheet-like substrate 5 was moved at a speed of about 5 mZmin while being supplied between the substrate 5 and the substrate 5.
  • the cylindrical prism mold 7 is rotated in accordance with this, and the active energy ray-curable resin composition 10 sandwiched between the cylindrical prism mold 7 and the transparent sheet substrate 5 is a lamp.
  • the prism sheet thickness was set to 255 ⁇ m, and all samples were manufactured under the same conditions.
  • Heat source equipment such as a sheathed heater and a hot water jacket is placed inside or outside the tank 8 and the cylindrical prism type 7 for storing the active energy ray-curable resin composition in order to keep the temperature constant.
  • the prism sheet was prepared while keeping the temperature of the resin in the tank 8 at 35 ° C and the surface temperature of the cylindrical prism mold 7 at 50-60 ° C.
  • the physical properties and characteristics of the obtained active energy ray-curable resin composition, resin cured product (flat plate) and prism sheet were evaluated by the following methods.
  • the viscosity at 25 ° C of the prepared active energy ray-curable resin composition was measured using an E-type viscometer (RE80 viscometer, manufactured by Toki Sangyo Co., Ltd.).
  • a test piece was prepared by cutting a lmm-thick flat plate into a length of 30mm and a width of 10mm.
  • the dynamic elastic modulus G ' is measured using a rheometer (trade name Rheosol-G3000, manufactured by UBM) under the conditions of torsion mode, frequency 1.59 Hz, twist angle 0.2 deg, and heating rate 4 ° CZmin. went.
  • the prepared prism sheet was cut into a length of 49 mm and a width (prism ridge direction) of 37 mm to obtain a test piece.
  • the amount of warpage was measured at room temperature, placed on a flat stage with the prism surface facing upward, and the vertical distance from the stage surface to the four corners was observed from the side using a microscope, and the average value was evaluated. An average value of 0.5 mm or less was judged good, and a value larger than 0.5 mm was judged bad.
  • the prepared prism sheet was cut into a length of 188 mm and a width (in the prism ridge direction) of 195 mm to form a test piece, which was left in a 60 ° C environment with the prism surface facing up for 6.5 hours. After taking out from the environment at 60 ° C, it was further left at room temperature for 1 day, and the warpage was measured by the same method as the initial warpage measurement. A warp average value of 5. Omm or less was determined to be good, and a value greater than 5. Omm was determined to be defective.
  • the obtained prism sheet is cut out to 49 mm in length and 37 mm in width (in the direction of the ridge line of the prism), placed on an acrylic plate (thickness 3 mm) with the lens surface facing downward, and further loaded onto the prism sheet.
  • a glass plate was placed so as to be 0.8 g / cm 2 . In this state, after standing for 1 hour in an environment of 60 ° C, the prism surface was visually observed. Those with no abnormality on the prism surface were judged good, and those with abnormality due to deformation of the prism shape were judged as bad.
  • the adhesion of the prism sheet was measured at room temperature according to JIS-K5400 “cross-cut tape method” by placing the prism sheet on a flat stage with the prism surface facing up.
  • Treatment of the prism sheet under high-humidity conditions is as follows. This was done by placing it in a 5% environment for 1000 hours.
  • Adhesion retention is before treatment under conditions of 60 ° C and humidity 95%.
  • the adhesion of the prism sheet after the measurement is measured and the adhesion strength after treatment with respect to before treatment is ⁇ ⁇ 40% Is “X”, 41 to 60% is “ ⁇ ”, 61 to 80% is “ ⁇ ”, and 81 to 100% is “ ⁇ ”.
  • a prism sheet 7 was manufactured using the cylindrical prism type 7 for prism array molding with an apex angle of 68 ° and a pitch of 54 m, under the same conditions as those described above.
  • the obtained prism sheet was cut in a direction perpendicular to the prism row using two force razor blades parallel to each other at intervals of 1 mm, and processed into the shape shown in FIG.
  • an adhesive (trade name: Alaldite, manufactured by Showa Polymer Co., Ltd.) was applied to one side of the surface cut with a force razor blade, and fixed on a slide glass to obtain a sample for evaluation.
  • the indentation elastic modulus was measured using an ultra micro hardness test system (device name: Fischerscope HI OOV, manufactured by Fischer).
  • a Vickers square pyramid material: diamond was used as the indenter, and the sample position was adjusted so that the indenter action point was near the center of one prism.
  • a heating stage as an optional microhardness test system was used.
  • the measurement was performed in a constant temperature room at 25 ° C according to the following procedure.
  • Table 2 shows the results of the above evaluations performed on Examples and Comparative Examples.
  • U3 Urethane diacrylate compound (trade name NK Oligo U-2PPA, manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • PBOM Dimetatalylate represented by formula (9) (trade name: Atariester PBOM, manufactured by Mitsubishi Rayon Co., Ltd.)
  • BPEM—10 Dimetatalylate represented by formula (10) (trade name—Eufrontia BPE M—10, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • GX-8684 Dimetatalylate represented by formula (11) (trade name: New Frontier GX-8684, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) ⁇ ]: Phenoxetyl Atylate (Brand name Frontier PHE, Daiichi Kogyo Seiyaku Co., Ltd.)
  • Example 3 Further, comparing the warpage between Example 1 and Example 3, the dynamic elastic modulus at 25 ° C is higher in Example 3, but the warp is clearly smaller in Example 3. . This is due to the warpage reduction effect of the D component included in Example 3 but not included in Example 1.
  • Example 5 was better than Example 1, and Example 6 was even better. This is because the concentration of p-toluenesulfonic acid contained in the resin composition is lower in Examples 5 and 6 than in Example 1. Similarly, when Example 2 and Example 7 were compared, the retention of adhesion was better in Example 7 than in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 25°Cにおける動的弾性率が950MPa以下で、且つ、60°Cにおける動的弾性率が100MPa以上である硬化物を得ることができるシート状光学物品用活性エネルギー線硬化性樹脂組成物、および、この樹脂組成物を用いて得られるシート状光学物品が開示される。このシート状光学物品(例えばプリズムシート)は、耐熱性が良好で且つ反りが極めて少ない。

Description

明 細 書
活性エネルギー線硬化性樹脂組成物およびシート状光学物品
技術分野
[0001] 本発明は、シート状光学物品、特に、プリズムシート、レンチキュラーレンズシート、 フレネルレンズ等の製造に用いられる活性エネルギー線硬化性榭脂組成物、および この榭脂組成物を硬化してなる硬化物を含むシート状光学物品に関する。
背景技術
[0002] シート状光学物品には、例えば、プロジェクシヨンテレビ等の投射スクリーンに使用 されるフレネルレンズシートやレンチキュラーレンズシート、液晶表示装置等のバック ライトとして使用されるプリズムシート等がある。これらは、一般に、透明シート状基材 の表面に榭脂硬化物によるレンズ部が形成された構造を有する。例えば、プリズムシ ートについては、特開 2000— 297246号公報などに記載されているように、透明プ ラスチックシートなどの透明シート状基材と円筒形状の表面にレンズパターンを形成 したレンズ型の間に活性エネルギー線硬化性榭脂を流し込み、シートを搬送しながら シート側カゝら活性エネルギー線を照射して榭脂組成物を硬化することにより、プリズム を連続的に形成させる製造方法がとられている。この特開 2000— 297246号公報で は、プリズムシート用活性エネルギー線硬化性榭脂として、 6官能ウレタン (メタ)アタリ レートとジ (メタ)アタリレート系化合物を併用した組成物が実施例で提案されている。
[0003] ここで例示されている榭脂組成物は、プリズムシートに成形した場合の耐擦傷性や 耐熱性に優れている。しカゝしながら、このプリズムシートは、プリズム面を上にして平ら なところに置くとシートの四隅が反り上がる傾向にある。したがって、ノ ックライトに組 み込む工程において、機械を用いたハンドリングが容易でなぐまたノ、ンドリングした プリズムシートを置く位置が決め難いという問題がある。更に、高温環境に一定時間 以上置くとシートの反りが益々大きくなる傾向が有り、画質へ悪影響を及ぼす場合が ある。
発明の開示
[0004] 本発明の目的は、耐熱性が良好で、且つ反りが極めて少ないシート状光学物品を 製造するのに適した活性エネルギー線硬化性榭脂組成物、およびその榭脂組成物 を用いて得たシート状光学物品を提供することにある。
[0005] 透明シート状基材と活性エネルギー線硬化性榭脂を硬化したレンズ部で構成され るシート状光学物品が反る原因は、レンズ部成形の際にレンズ部内部に発生する応 力が残留するためと考えられる。従って、シート状光学物品の反りを小さくするには残 留応力を低減する必要がある。
[0006] 反りを低減する方法としては、例えば、榭脂組成物の重合収縮率を低くする方法、 成形温度から取り扱い温度まで変化する際の冷却収縮による応力を低下させるため に硬化物の弾性率を低くする方法などが挙げられる。し力しながら、重合収縮率につ いては、一般に低減できる範囲が限られており、反りの問題を解決するのは難しいと 考えられる。一方、硬化物の弾性率については大幅な低減が可能である力 弾性率 を低くすると耐熱性低下などの悪影響を及ぼす傾向がある。
[0007] 本発明者らは、種々の検討の結果、前記課題を解決するために、温度に対する活 性エネルギー線硬化性榭脂硬化物の動的弾性率を適性に設計することにより、取り 扱い環境下でのシート状光学物品の反りを極めて小さくし、且つ耐熱性が良好となる 条件を見出し、本発明の完成に至った。ここで、動的弾性率とは、動的粘弾性測定 により榭脂硬化物に振動するひずみ (応力)を与えて検出される弾性率のことで、一 般に G'と表記される。
[0008] より具体的に説明すると、ここで問題となる反りは 25°C付近で起こるシート状光学物 品の反りを指しており、 25°Cにおける榭脂硬化物の動的弾性率を十分低く設計すれ ば、まったく反らないシート状光学物品が得られる。しかし、その場合、高温時 (例え ば 60°C)における榭脂硬化物の動的弾性率は、シート状光学物品として要求される 耐熱性を維持するのに必要な値よりも低くなる傾向があり、熱変形を起こし易くなつて しまう。また、 60°Cにおける動的弾性率を熱変形させ難くするために高い値に設計す ると、 25°Cにおける動的弾性率は、反りを低くするのに必要な値よりも高くなり易ぐ シート状光学物品の反りが大きくなつてしまう。
[0009] そこで、本発明者らは、榭脂硬化物の 25°Cでの動的弾性率の上限と 60°Cでの動 的弾性率の下限を最適な範囲に設計すれば、シート状光学物品の反りを小さくし、 且つ耐熱性を良好に出来ると考え、鋭意検討した。その結果、反りを小さくし十分な 耐熱性を有するのに理想的な榭脂硬化物の動的弾性率と温度の関係を見出し、本 発明の完成に至った。更に本発明者らは、そのように設計した動的弾性率と温度の 関係を実現するのに適した活性エネルギー線硬化性榭脂組成物を見出し、本発明 の完成に至った。
[0010] 更に、上記特徴を有するシート状光学物品のレンズ部の物性について鋭意検討し た結果、製品形態におけるレンズ部の押込み弾性率と温度との関係が、フラット板に 加工した活性エネルギー線硬化性榭脂硬化物の動的弾性率と温度との関係と同様 の関係であることを見出し、本発明の完成に至った。
[0011] 即ち、本発明は、 25°Cにおける動的弾性率が 950MPa以下で、且つ、 60°Cにお ける動的弾性率が lOOMPa以上である硬化物を得ることができるシート状光学物品 用活性エネルギー線硬化性榭脂組成物、および、この榭脂組成物を用いて得られる シート状光学物品である。
[0012] 更に本発明は、へキサメチレンジイソシァネートおよびそれを 3量ィ匕して得られるィ ソシァヌレート型のトリイソシァネートイ匕合物と、 2—ヒドロキシプロピルアタリレートおよ びペンタエリスリトールトリアタリレートとを反応させて得られるウレタンアタリレートイ匕合 物 (A)、分子中にウレタン結合を有さず、 2つの (メタ)アタリロイル基を有するジ (メタ) アタリレートイ匕合物 (B)、およびラジカル性光重合開始剤 (C)を含有するシート状光 学物品用活性エネルギー線硬化性榭脂組成物およびこの榭脂組成物を用いて得ら れるシート状光学物品である。
[0013] 更に本発明は、 25°Cにおける押込み弾性率が lOOOMPa以下で、且つ、 60°Cに おける押込み弾性率が 90MPa以上であるレンズ部を有することを特徴とするシート 状光学物品である。
[0014] 本発明によれば、反りが小さぐ且つ耐熱性に優れたバックライト用プリズムシート等 のレンズ部形成などに適したシート状光学物品用活性エネルギー線硬化性榭脂組 成物、およびその榭脂組成物を用いて得たシート状光学物品を提供できる。
図面の簡単な説明
[0015] [図 1]本発明のシート状光学物品の一実施態様 (プリズムシート)を模式的部分断面 図である。
[図 2]実施例において実施したシート状光学物品(プリズムシート)の作製方法を示す 概略図である。
[図 3]実施例において実施したシート状光学物品(プリズムシート)の押込み弾性率測 定用サンプルの形状を示す概略図である。
発明を実施するための最良の形態
[0016] (1)シート状光学物品用活性エネルギー線硬化性榭脂硬化物:
本発明の榭脂組成物を活性エネルギー線により硬化した硬化物は、 25°Cにおける 動的弾性率が 950MPa以下で、且つ、 60°Cにおける動的弾性率が lOOMPa以上 である。より好ましくは、 25°Cにおける動的弾性率が 700MPa以下で、且つ、 60°Cに おける動的弾性率が 150MPa以上である。
[0017] 25°Cにおける動的弾性率が 950MPa以下であれば、反りを十分小さくすることが 可能であり、また、 60°Cにおける動的弾性率が lOOMPa以上であれば、 60°Cにお いて熱変形し難ぐ耐熱性が良好となる。
[0018] 本発明の活性エネルギー線硬化性榭脂組成物は、シート状光学物品の少なくとも 一部分に適した硬化物、すなわち 25°Cにおける動的弾性率が 950MPa以下で、且 つ、 60°Cにおける動的弾性率が lOOMPa以上である硬化物を得ることができるもの であれば特に限定されない。例えば、ウレタン (メタ)アタリレート、エポキシ (メタ)ァク リレート、エステル系(メタ)アタリレート、ポリェンとポリチオールと力もなるェンチォー ル系化合物などと、ラジカル性光重合開始剤とを含む榭脂組成物、および Zまたは 、エポキシィ匕合物、ォキセタンィ匕合物、ビニルエーテルィ匕合物などと、カチオン性光 重合開始剤とを含む榭脂組成物が使用できる。この中で、特に、ウレタン (メタ)アタリ レート化合物と、エステル系(メタ)アタリレート化合物と、ラジカル性光重合開始剤と を含む榭脂組成物が好まし ヽ。
[0019] 更に、(A)分子中に 3つ以上の (メタ)アタリロイル基を有するウレタン (メタ)アタリレ 一トイ匕合物を少なくとも 1種以上含有するウレタン (メタ)アタリレートイ匕合物、(B)分子 中にウレタン結合を有さず、 2つの (メタ)アタリロイル基を有するジ (メタ)アタリレート 化合物、および (C)ラジカル性光重合開始剤を含有する榭脂組成物がより好ま 、 。また、この組成物には、更に (D)分子中に 1つの重合性二重結合基を有する化合 物、(E)その他の成分を含有させてもよい。以下、各成分について説明する。
[0020] (A)ウレタン (メタ)アタリレートイ匕合物:
本発明の榭脂組成物に使用する (A)成分は、分子中に 3つ以上の (メタ)アタリロイ ル基を有するウレタン (メタ)アタリレート化合物を少なくとも 1種以上含有する化合物 である。この (A)成分は、ラジカル重合性光重合開始剤の存在下で紫外線等の活性 エネルギー線を照射することにより重合反応や架橋反応を起こす成分であり、主にシ ート状光学物品のレンズ部の耐擦傷性および耐熱性を付与する。 (A)成分は、分子 中に 3つ以上の (メタ)アタリロイル基を有するウレタン (メタ)アタリレートイ匕合物を 1種 以上含有していればよぐ分子中に 1つまたは 2つの (メタ)アタリロイル基を有するゥ レタン (メタ)アタリレートイ匕合物を併せて含有して 、てもよ 、。
[0021] 分子中に 3つ以上の (メタ)アタリロイル基を有するウレタン (メタ)アタリレートイ匕合物 とは、代表的には、分子中に 2つ以上のイソシァネート基を有するポリイソシァネート 化合物と、分子中に 1つ以上の (メタ)アタリロイル基を有し且つ水酸基を有する (メタ) アタリロイルイ匕合物の 1種以上とを反応させて得られる化合物である。分子中に 2っ以 上のイソシァネート基を有するポリイソシァネートイ匕合物としては、脂肪族系、脂環族 系、芳香族系に分類される種々のポリイソシァネートイ匕合物を使用できる。硬化時の 着色性や硬化物の耐光黄変性などを考慮すると、イソホロンジイソシァネート、へキ サメチレンジイソシァネートおよびその 3量体(ァダクト型、ビウレット型またはイソシァ ヌレート型)が好ましい。その中でも、イソホロンジイソシァネートとイソシァヌレート型 のへキサメチレンジイソシァネート 3量体力 得られる硬化物の耐擦傷性および耐熱 性の点でより好ましい。
[0022] 分子中に 1つ以上の (メタ)アタリロイル基を有し且つ水酸基を有する (メタ)アタリ口 ィルイ匕合物としては、特に制限はない。例えば、ヒドロキシェチル (メタ)アタリレート、 セリンジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、 2—ヒドロキシ一 1—アタリロイルォキシ一 3—メタクリロイルォキシプロパンなどが挙げられる。ここで、 アタリレートイ匕合物の方カ タクリレートイ匕合物よりも、光硬化性の点で好ましい。 [0023] ポリイソシァネートイ匕合物および水酸基を有する (メタ)アタリロイルイ匕合物は、それ ぞれ 2種以上を併用することができる。組み合わせの種類および比率を変えることに より、それぞれ 1種力 得られるウレタン (メタ)アタリレートイ匕合物とは異なる弾性率や その他の物性を発現させることができる。
[0024] ポリイソシァネートイ匕合物と水酸基を有する (メタ)アタリロイルイ匕合物とのウレタンィ匕 反応は、常法に従って実施できる。例えば、ジブチル錫ジラウレートなどの錫系化合 物を触媒として用いて、 60〜: LOO°Cに加熱することにより容易にウレタン (メタ)アタリ レートイ匕合物を合成できる。また、ウレタン (メタ)アタリレートの粘度調整のため、合成 時に反応には直接関係な ヽ低粘度の (メタ)アタリレートなどの反応性希釈剤を使用 しても良い。
[0025] 特に、(A)成分としては、へキサメチレンジイソシァネートおよびそれを 3量ィ匕して得 られるイソシァヌレート型のトリイソシァネートイ匕合物(イソシァヌレート型のへキサメチ レンジイソシァネート 3量体)と、 2—ヒドロキシプロピルアタリレートおよびペンタエリス リトールトリアタリレートとを反応させて得られるウレタンアタリレートイ匕合物が好ましい。 このようなウレタンアタリレートイ匕合物としては、例えば、以下の構造式(1)〜(7)で示 される各ウレタンアタリレートイ匕合物の混合物が挙げられる。このような (A)成分を用 いると、榭脂組成物が比較的低い重合収縮率を有し、硬化の際に着色し難ぐ硬化 性、硬化物の耐光性、耐擦傷性、耐熱性に優れ、また榭脂組成物の動的弾性率を 最適範囲に調整するのに適して 、る。
[0026] [化 1]
Cn3 Qh3
CH2 CHCOCH2CHO— C— N— (CH2)6_N— C—OCHCH2OCCH=CH2
O O H H O O
[0027] [化 2]
Figure imgf000008_0001
'
Figure imgf000009_0001
[0032] [化 7]
Figure imgf000009_0002
[0033] イソシァヌレート型のへキサメチレンジイソシァネート 3量体に対するへキサメチレン ジイソシァネートのモル比は、 2. 0〜4. 0の範囲内であることが好ましい。このモル比 が上記範囲内であれば、硬化物の収縮率が大きくなり過ぎることもなぐ硬化物の動 的弾性率が高くなり過ぎることもない。
[0034] ペンタエリスリトールトリアタリレートに対する 2—ヒドロキシプロピルアタリレートのモ ル比は、 0. 25-1. 0の範囲内であることが好ましい。このモル比が上記範囲内であ れば、硬化物の動的弾性率が高くなり過ぎることもなぐ靭性を十分付与できる。
[0035] ウレタンアタリレートイ匕合物の構成において、イソシァネート基に対する水酸基のモ ル比は 1. 0〜1. 5の範囲内であることが好ましい。このモル比が 1. 0以上であれば、 未反応イソシァネートが榭脂組成物中に残留するのを低減し、保管安定性を良好に できる。また、このモル比が 1. 5以下であれば、未反応のペンタエリスリトールトリァク リレートや 2—ヒドロキシプロピルアタリレートが含有量を低減し、硬化収縮性が大きく なるのを防ぐことができる。
[0036] (A)成分の配合量は、(A)成分、(B)成分および (D)成分の合計量 100質量部に 対して、好ましくは 5〜90質量部、より好ましくは 10〜80質量部、特に好ましくは 10 〜50質量部である。上記各範囲の下限値は、シート状光学物品のレンズ部の耐擦 傷性や耐熱性の点などにおいて意義がある。また、上記各範囲の上限値は、(B)成 分や (D)成分により榭脂硬化物の動的弾性率を調整でき、シートの反りを小さくでき る点などにおいて意義がある。
[0037] (B)ジ (メタ)アタリレートイ匕合物:
本発明の榭脂組成物に使用する (B)成分は、分子中にウレタン結合を有さず、 2つ の (メタ)アタリロイル基を有するジ (メタ)アタリレートイ匕合物である。この(B)成分は、 ラジカル重合性光重合開始剤の存在下で紫外線等の活性エネルギー線照射するこ とにより重合反応や架橋反応を起こす成分であり、(A)成分と混合することにより、主 に榭脂組成物の粘度を低下させ、透明プラスチック基材表面へのレンズ部成形性を 向上し、更に榭脂硬化物の動的弾性率を設計値へ調整するための成分である。
[0038] (B)成分としては、例えば、分子量 500以上の脂肪族のジ (メタ)アタリレート、ビスフ ェノール A又は F系のジ (メタ)アタリレートなどが好ましい。
[0039] (B)成分の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ ブチレングリコールなどのポリアルキレングリコールのジ (メタ)アタリレート、ヒドロキシ ビバリン酸ネオペンチルグリコールエステルの力プロラタトン変性ジ (メタ)アタリレート 、ビスフエノール Aのエチレンォキシドの付力卩数カ モル以上のジ (メタ)アタリレート、 水添ビスフエノール Aのエチレンォキシドの付加数力 モル以上のジ (メタ)アタリレー ト、ビスフエノール Fのエチレンォキシドの付力卩数カ モル以上のジ(メタ)アタリレート 、水添ビスフエノール Fのエチレンォキシドの付加数力 モル以上のジ (メタ)アタリレ ートなどが挙げられる。
[0040] この中で、ポリブチレンダリコールのジ (メタ)アタリレート、ビスフエノール Aのェチレ ンォキシドの付加数力 S6モル以上のジ (メタ)アタリレート、水添ビスフエノール Aのェ チレンォキシドの付力卩数カ ½モル以上のジ (メタ)アタリレート、ビスフエノール Fのェチ レンォキシドの付加数力 ½モル以上のジ (メタ)アタリレート、水添ビスフエノール Fのェ チレンォキシドの付加数が 6モル以上のジ (メタ)アタリレートが、榭脂硬化物の動的 弾性率調整の点で好まし 、。
[0041] 更に、下記一般式 (I)および (II)で示される化合物は、シート状光学物品のレンズ 部の耐擦傷性を低下させな 、点でより好まし 、。
[0042] [化 8]
CH3 CH3
CH2=CCO (C4H80)| CC=CH2 ( I )
ό ό
(式中の 1は 5〜 1 5の整数を表す)
[0043] [化 9]
Figure imgf000011_0001
(式中の m、 nは m+ nが 6〜2 0となる整数を表す)
[0044] 以上の(B)成分は 1種を単独で用いても、 2種以上を併用して用いてもよい。
[0045] (B)成分の配合量は、(A)成分、(B)成分および (D)成分の合計量 100質量部に 対して、好ましくは 10〜90質量部、より好ましくは 20〜90質量部、特に好ましくは 30 〜80質量部である。上記各範囲の下限値は、榭脂組成物の粘度を低減し、透明プ ラスチック基材表面へのレンズ部成形性を良好にする点、更には榭脂硬化物の 25°C における動的弾性率が高くならないように調整し、シート状光学物品の反りを小さくす る点などにおいて意義がある。また、上記各範囲の上限値は、榭脂硬化物の動的弾 性率が低くなり過ぎず、シート状光学物品のレンズ部に十分な耐熱性ゃ耐擦傷性を 付与できる点などにおいて意義がある。
[0046] (C)ラジカル性光重合開始剤:
本発明の榭脂組成物に使用する (C)成分は、ラジカル性光重合開始剤である。こ の(C)成分は、紫外線や可視光線等の活性エネルギー線を照射することにより発生 するフリーラジカルによりエチレン性不飽和化合物のラジカル重合を開始させる化合 物である。
[0047] (C)成分としては、従来力 光ラジカル重合開始剤として知られている多種多様な 化合物を用いることができる。(C)成分として使用できる紫外線感応性のラジカル性 光重合開始剤の具体例としては、ベンゾイン、ベンゾインモノメチルエーテル、ベンゾ インモノェチルエーテル、ベンゾインイソプロピルエーテル、ァセトイン、ァセトフエノン 、ベンジル、ベンゾフエノン、 p—メトキシベンゾフエノン、ジエトキシァセトフエノン、 2, 2—ジメトキシ 1, 2—ジフエニルェタン 1 オン、 2, 2—ジエトキシァセトフエノン 、 1ーヒドロキシシクロへキシルフエ-ルケトン、メチルフエ-ルグリオキシレート、ェチ ルフエ-ルグリオキシレート、 2 -ヒドロキシ - 2—メチル 1—フエ-ルプロパン一 1 オン、 2—メチルー 1 [4 (メチルチオ)フエ-ル ] 2 モルフォリノプロパノン— 1—オン、 2—ベンジル一 2—ジメチルァミノ一 1— (4—モルフォリノフエ-ル)ブタノン — 1、 2 ヒドロキシ 1— {4— [4— (2 ヒドロキシ - 2 メチルプロピオ-ル) ベン ジル] フエニル }— 2—メチルプロパン— 1 オン [チバ'スペシャルティ ·ケミカルズ ( 株)製、商品名 IRGACURE 127]等のカルボニル化合物;テトラメチルチウラムモノ スルフイド、テトラメチルチウラムジスルフイドなどの硫黄ィ匕合物; 2, 4, 6 トリメチル ベンゾィルジフエ-ルフォスフィンオキサイド、ビス(2, 6 ジメトキシベンゾィル) 2 , 4, 4 トリメチルペンチルフォスフィンオキサイド、ビス(2, 4, 6 トリメチルベンゾィ ル)フエ-ルフォスフィンオキサイド等のァシルフォスフィンオキサイド類;などが挙げら れる。また、(C)成分として使用できる可視光線感応性のラジカル性光重合開始剤の 具体例としては、カンファーキノン、ビス( 7? 5— 2, 4—シクロペンタジェン一 1—ィル) —ビス(2, 6 ジフルォロ一 3— (1H ピロール一 1—ィル)一フエ-ル)チタニウム [ チバ'スペシャルティ ·ケミカルズ (株)製、商品名 IRGACURE784]等を挙げること ができる。
[0048] この中で、 2, 2 ジメトキシ一 1, 2 ジフエ-ルェタン一 1—オン、ベンゾインモノェ チルエーテル、 1ーヒドロキシシクロへキシルフェニルケトン、メチルフエニルダリオキ シレート、 2—ヒドロキシ一 2—メチル 1—フエ-ルプロパン一 1—オン、 2—ヒドロキ シ一 1— {4— [4— (2 ヒドロキシ一 2—メチルプロピオ-ル)一ベンジル]—フエ-ル }— 2 メチルプロパン— 1 オン、 2 -ベンジル - 2-ジメチルァミノ 1— (4 モル フォリノフエ-ル)ブタノン一 1、 2, 4, 6—トリメチルベンゾィルジフエ-ルフォスフィン オキサイドが、硬化性および榭脂硬化物の着色性の点で好ま ヽ。
[0049] 以上のラジカル性光重合開始剤は 1種を単独で用いても、 2種以上を併用して用い てもよい。
[0050] (C)成分の配合量は、(A)成分、(B)成分および (D)成分の合計量 100質量部に 対して、好ましくは 0. 01〜: LO質量部、より好ましくは 0. 05〜5質量部、特に好ましく は 0. 1〜4質量部である。上記各範囲の下限値は、榭脂組成物の活性エネルギー 線による硬化性の点などにおいて意義がある。また上記各範囲の上限値は、シート 状光学物品のレンズ部が著しく黄色に着色するのを防止できる点などにおいて意義 がある。
[0051] (D)分子中に 1つの重合性二重結合基を有する化合物:
本発明の榭脂組成物に使用する (D)成分は、分子中に 1つの重合性二重結合基 を有する化合物である。この(D)成分は、ラジカル重合性光重合開始剤の存在下で 紫外線等の活性エネルギー線照射することにより重合反応を起こす成分であり、榭 脂組成物の粘度を低下させ、透明プラスチック基材表面へのレンズ部成形性を向上 し、更に、重合収縮により硬化榭脂内部に発生する内部応力の一部を硬化中に緩和 するための成分である。すなわち、この(D)成分を、(A)〜(C)成分にカ卩えることによ り、更にシート状光学物品の反りを小さくすることができる。
[0052] (D)成分として、代表的にはモノ (メタ)アタリレートイ匕合物を使用できる。ただしこれ に限定されず、分子中に 1つの二重結合を有する化合物であればよい。(D)成分の 具体例としては、フエ-ル (メタ)アタリレート、ベンジル (メタ)アタリレート、フエ-ルェ チル (メタ)アタリレート、フエノキシェチル (メタ)アタリレート、パラクミルフエノールェチ レンォキシド変性 (メタ)アタリレート、イソボル-ル (メタ)アタリレート、シクロへキシル( メタ)アタリレート、ジシクロペンテ-ル (メタ)アタリレート、メチル (メタ)アタリレート、ェ チル (メタ)アタリレート、プロピル (メタ)アタリレート、 n—ブチル (メタ)アタリレート、 i— ブチル (メタ)アタリレート、 t—ブチル (メタ)アタリレート、ペンチル (メタ)アタリレート、 2—ェチルへキシル (メタ)アタリレート、 n—へキシル (メタ)アタリレート、 2—ヒドロキシ ェチル (メタ)アタリレート、ラウリル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)ァク リレート、 4ーヒドロキシブチル (メタ)アタリレート、テトラヒドロフルフリル(メタ)アタリレ ート、フォスフォェチル (メタ)アタリレート、 (メタ)アタリロイルモルホリン、ジシクロペン タジェン (メタ)アタリレート、スチレン、ビュルトルエン、クロルスチレン等が挙げられる
[0053] 以上の(D)成分は 1種を単独で用いても、 2種以上を併用して用いてもよい。
[0054] (D)成分の配合量は、(A)成分、(B)成分および (D)成分の合計量 100質量部に 対して、好ましくは 0. 1〜20質量部、より好ましくは 0. 5〜15質量部、特に好ましく は 1〜10質量部である。上記各範囲の下限値は、榭脂組成物の粘度を低下させる 点およびシート状光学物品の反りを低減する点などにおいて意義がある。また、上記 各範囲の上限値は、シート状光学物品のレンズ部の耐熱性の点などにおいて意義 がある。
[0055] (E)その他の成分:
さらに、本発明の榭脂組成物には、必要に応じて、耐擦傷性向上または離型性向 上のためにフッ素含有化合物、炭素数 8以上の長鎖アルキル基を有する化合物を使 用してもよい。フッ素含有ィ匕合物の具体例としては、トリフルォロェチル (メタ)アタリレ ート、テトラフルォロプロピル (メタ)アタリレート、ォクタフルォロペンチル (メタ)アタリレ ート、ヘプタデカフルォロデシル (メタ)タリレート等が挙げられる。炭素数 8以上の長 鎖アルキル基を有する化合物の具体例としては、ダイマージオール (例えば、ュ-ケ マ製、商品名プリポール 2033など)、ダイマージオールのジ (メタ)アタリレート等の長 鎖アルキルィ匕合物などが使用できる。
[0056] その他、適宜、酸化防止剤、紫外線吸収剤、光安定剤 (HALS等)、レべリング剤、 熱安定剤、皮膜物質改質剤、難燃剤、重合防止剤、ラジカル性熱重合開始剤、カチ オン性光重合開始剤、カチオン性熱重合開始剤、光重合促進剤、増感剤、離型剤 等の各種添加剤を含有させても良 ヽ。
[0057] (E)成分の使用量は、本発明の榭脂組成物の本質的な効果に影響しない範囲、 例えば (A)成分、(B)成分および (D)成分の合計量 100質量部に対して、好ましく は 0〜: LO質量部、より好ましくは 0〜4質量部添加することが適当である。
[0058] (2)シート状光学物品用活性エネルギー線硬化性榭脂組成物の調製: 上記の (A)〜(D)成分、並びに任意の (E)その他の成分力もなる本発明のシート 状光学物品用活性エネルギー線硬化性榭脂組成物は、例えば、スターラーチップや はね付き攪拌棒等を使用して、均一に十分混合される。この混合は、光重合が開始 しないように、イェローランプ等の照明のもとで行うのが適当である。
[0059] 本発明の榭脂組成物は、シート状光学物品を製造する際、レンズ型に流し込む作 業の取り扱い性やレンズ部の厚み制御性の点から、 25°Cにおける粘度が 100〜50 OOmPa' sであることが好ましぐ更に 150〜3000mPa' s力より好ましい。榭脂組成 物の粘度が、 5000mPa' s以下であれば、レンズ型に成形された微細なレンズパタ ーンの細部まで転写成形が可能であり、更に、レンズ部の厚みを薄く制御し易い。ま た、榭脂組成物の粘度が、 lOOmPa' s以上であれば、レンズ型と透明シート状基材 との間に挟まれた未硬化榭脂組成物が横カゝら溢れ出し難ぐ更に、レンズ部の厚み が薄くなりすぎるのを防ぐことができる。
[0060] 本発明の榭脂組成物が含有する強酸の濃度は、榭脂組成物を硬化させてなるレン ズ部と透明シート状基材とから形成されるシート状光学物品の高湿度条件で処理後 のレンズ部とシート状基材との密着性の点から、 lOOppm未満であることが好ましぐ 更に 50ppm未満であることがより好ましい。
[0061] 榭脂組成物が含有する強酸の濃度が lOOppm未満であれば、榭脂組成物に活性 エネルギー線を照射して得られる硬化物の親水性が抑制でき、シート状光学物品を 高湿度条件で処理した場合の硬化物の吸湿およびレンズ部とシート状基材との界面 への水分の浸入が抑えられ、密着性の維持が容易となる。
[0062] 本発明で用いる (メタ)アタリレートイ匕合物には、強酸を用いた製造工程で得られる ものもあり、(メタ)アタリレート化合物中に不純物として混在する強酸が榭脂組成物中 に持ち込まれる可能性がある。強酸の具体例としては、硫酸、硝酸、塩酸、過塩素酸 、 p—トルエンスルホン酸等が挙げられる。
[0063] (メタ)アタリレートイ匕合物中に不純物として混在する強酸を除去する方法としては、 アルカリ洗浄等の精製方法を挙げることができる。アルカリ洗浄には、例えば、水酸 化ナトリウム、水酸ィ匕カリウム、炭酸ナトリウム、炭酸水素ナトリウム等の水溶液やアン モ-ァ水等を、(メタ)アタリレートイ匕合物 lgに対して 0. l〜2g程度用い、タンク内で 攪拌する方法等を挙げることができる。このアルカリ洗浄は、榭脂組成物中の強酸の 濃度が lOOppm以下となるまで複数回繰り返すと良い。
[0064] (3)シート状光学物品:
本発明のシート状光学物品は、本発明の榭脂組成物を用いて得られるものであり、 例えば、本発明の榭脂組成物に活性エネルギー線を照射して硬化させた硬化物か らなるレンズ部を含む物品である。このレンズ部は、例えば、透明シート状基材の少 なくとも一方の表面に形成したものである。
[0065] 本発明のシート状光学物品の一実施態様であるプリズムシートを、図 1を参照しな 力 説明する。図 1に示す例においては、プリズムシートは、透明シート状基材 1と本 発明の榭脂組成物の硬化物からなる多数のプリズム列が並列したレンズ部 2から構 成される。
[0066] 透明シート状基材 1としては、活性エネルギー線を透過するものであれば特に限定 はなぐ例えば、アクリル榭脂、ポリカーボネート榭脂、ポリエステル榭脂、塩ィ匕ビュル 榭脂、ポリメタクリルイミド榭脂等の樹脂からなるフィルム、シートまたは板等が使用で きる。
[0067] 一般に、基材フィルムの厚みと片面のみレンズ層を有するシート状光学物品の反り との関係は、同じ材質の場合、厚みが厚いほどシート状光学物品の反りを小さくする のに有利である。ただし、プリズムシートでは厚さが薄い基材に対して巿場ニーズが 高ぐ通常は厚さ 200 m以下の基材が用いられている。本発明において、シート状 光学物品がプリズムシートの場合、基材フィルムの厚みが 50〜200 μ mのものを好 適に使用できる。
[0068] レンズ部 2は、透明シート状基材 1の表面に直接設けてもよい。また、透明シート状 基材 1との密着性を向上させるために、透明シート状基材 1の表面に密着性向上の ための表面処理を施して表面処理部 3を形成してからレンズ部 2を設けてもょ 、。この 表面処理としては、例えば、透明シート状基材 1の表面にポリエステル榭脂、アクリル 榭脂、ウレタン榭脂などからなる易接着層を形成する方法や、透明シート状基材 1の 表面を粗面化処理するなどの方法が挙げられる。更に、透明シート状基材 1のレンズ 部 2と反対側に、プリズムシートの透過光をより均一にするための表面力卩ェを施して、 表面加工部 4を形成してもよい。この表面加工には、活性エネルギー線硬化性榭脂 に屈折率の異なる有機系微粒子やシリカ微粒子等の拡散剤を配合したものが使用 できる。
[0069] また、透明シート状基材 1には、帯電防止、反射防止、基材同士の密着防止など他 の処理を施すこともできる。
[0070] レンズ部の物性については、「ダイナミック超微小硬度計」、「超微小硬さ試験システ ム」と称される試験装置を用いて、硬さ、弾性率、クリープ変形特性、弾性変形戻りな どに関連した物性値を測定することができる。ここで得られる弾性率は、押込み弾性 率と呼ばれ、ヤング率と相関がある。押込み弾性率とヤング率との相関に関する説明 は、「材料試験技術」(vol. 43, No. 2, pl48— 152, 1998年 4月号)に掲載の「ュ -バーサル硬さ試験による材料特性値の評価」(Cornelia Heermant, Dieter Dengel 共著、片山繁雄,佐藤茂夫 共訳)に記載されている。
[0071] 本発明のシート状光学物品のレンズ部の押込み弾性率は、 25°Cにおいて 1000M Pa以下で、且つ、 60°Cにおいて 90MPa以上である。好ましくは、 25°Cにおいて 90 OMPa以下で、且つ、 60°Cにおいて lOOMPa以上である。より好ましくは、 25°Cに おいて 800MPa以下で、且つ、 60°Cにおいて 300MPa以上である。
[0072] 25°Cにおける押込み弾性率が lOOOMPa以下であれば、反りを十分小さくすること が可能であり、また、 60°Cにおける押込み弾性率が 90MPa以上であれば、 60°Cに おいて熱変形し難ぐ耐熱性が良好となる。
[0073] (4)シート状光学物品の製造に用いる金型および光源:
シート状光学物品の製造に用いる金型としては、例えば、アルミニウム、黄銅、鋼な どの金属製の型、シリコン榭脂、ウレタン榭脂、エポキシ榭脂、 ABS榭脂、フッ素榭脂 、ポリメチルペンテン榭脂などの合成樹脂製の型、これらの材料にメツキを施したもの や各種金属粉を混合した材料より作製した型などが挙げられる。特に、金属製の型 は、耐熱性や強度の面力も好ましぐまた、連続生産に適している。より具体的には、 金属製の型は、重合発熱に強い、変形しにくい、傷が付きにくい、温度制御が可能 である、精密成形に適して 、るなどの利点がある。
[0074] シート状光学物品の製造に用いる活性エネルギー線発光光源としては、例えば、 ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ、メタルノヽライドランプ、無電極 UV ランプ(フュージョン UVシステムズ社製)、可視光ハロゲンランプ、キセノンランプ、太 陽光等が使用できる。活性エネルギー線照射時の雰囲気は、空気中でもよいし、窒 素、アルゴン等の不活性ガス中でもよい。照射エネルギーとしては、例えば、 200-6 OOnm、好ましくは 320〜390nmの波長の波長範囲における積算エネルギー力 例 えば、 0. 01〜: LOJ/cm2、好ましくは 0. 5〜8J/cm2となるように照射することが適当で ある。
実施例
[0075] 以下、実施例および比較例を掲げて本発明を更に詳しく説明する。なお、以下の 記載にお!、て「部」は「質量部」を意味する。
[0076] <合成例 1:ウレタンアタリレート化合物(UA1)の合成 >
硝子製フラスコに、イソシァネートイ匕合物として、へキサメチレンジイソシァネート 11 7. 6g (0. 7モル)およびイソシァヌレート型のへキサメチレンジイソシァネート 3量体 1 51. 2g (0. 3モル)と、水酸基を有する(メタ)アタリロイル化合物として、 2 ヒドロキシ プロピルアタリレー卜 128. 7g (0. 99モル)およびペンタエリスリトール卜リアクリレー卜 6 93g (l . 54モル)と、触媒として、ジラウリル酸ジー n ブチル錫 lOOppmと、重合禁 止剤として、ハイドロキノンモノメチルエーテル 0. 55gとを仕込み、 70〜80°Cの条件 にて残存イソシァネート濃度が 0. 1%以下になるまで反応させ、ウレタンアタリレート 化合物 (UA1)を得た。このウレタンアタリレートイ匕合物 (UA1)は、先に記載した構造 式(1)〜(7)で示される各ウレタンアタリレートイ匕合物の混合物である。
[0077] <合成例 2:ウレタンアタリレート化合物(UA2)の合成 >
硝子製フラスコに、イソホロンジイソシァネート(IPDI、ダイセルヒュルス社製) 1110 gと、触媒としてジラウリン酸ジー n—ブチル錫 2gと、重合禁止剤として 2, 6 ジ ter t ブチル 4—メチルフエノール 1. 5gとを仕込み、攪拌しながら 70°Cに加温した。 この液の温度を 70°Cに保持して撹拌しながら、ペンタエリスリトールトリアタリレート( 商品名 NKエステル A—TMM— 3L、新中村化学工業 (株)製) 3129gを 5時間かけ て滴下した。さらに、温度を 70°Cに 8時間保持して、ウレタンアタリレートイ匕合物 (UA 2)を得た。反応の進行はイソシァネート基の滴定により確認し、イソシァネート基の 9 6%以上が消失した時点を反応の終点とした。
[0078] このウレタンアタリレートイ匕合物 (UA2)は、下記構造式 (8)で表されるものである。
[0079] [化 10]
Figure imgf000019_0001
[0080] <活性エネルギー線硬化性榭脂組成物の調合 >
(実施例 1)
(A)成分として、ウレタンアタリレートイ匕合物 (UA1)を 35部、(B)成分として、下記 式(9) [一般式 (I)の 1が 9である化合物]で表されるジメタタリレート(商品名アタリエス テル PBOM、三菱レイヨン (株)製)を 25部、および下記式(10)で表されるジメタタリ レート(商品名-ユーフロンティア BPEM— 10、第一工業製薬 (株)製)を 40部、(C) 成分として、 1—ヒドロキシシクロへキシルフエ-ルケトン(商品名ィルガキュア 184、チ ノ .スペシャルティ ·ケミカルズ (株)製)を 1. 2部、混合して活性エネルギー線硬化性 榭脂組成物を得た。
[0081] [化 11]
Figure imgf000019_0002
[0082] [化 12]
Figure imgf000019_0003
(実施例 2)
(B)成分である式(9)で表されるジメタタリレートの量を 20部に変更し、さらに (D)成 分として、フエノキシェチルアタリレート(商品名-ユーフロンティア PHE、第一工業製 薬 (株)製)を 5部加えたこと以外は、実施例 1と同様にして活性エネルギー線硬化性 榭脂組成物を得た。
[0084] (実施例 3)
(B)成分である式(10)で表されるジメタタリレートの量を 30部に変更し、さらに (D) 成分として、フエノキシェチルアタリレートを 10部加えたこと以外は、実施例 1と同様 にして活性エネルギー線硬化性榭脂組成物を得た。
[0085] (実施例 4)
(A)成分であるウレタンアタリレートイ匕合物(UA1)の量を 40部に変更し、かつ(B) 成分として、下記の式(11)で表されるジメタタリレート(商品名ニューフロンティア GX
— 8684、第一工業製薬 (株)製)を 60部用いたこと以外は、実施例 1と同様にして活 性エネルギー線硬化性榭脂組成物を得た。
[0086] [化 13]
Figure imgf000020_0001
[0087] (実施例 5)
榭脂組成中に含有される p -トルエンスルホン酸の濃度が 70ppmとなるよう、各化 合物の精製を行なったこと以外は、実施例 1と同様にして活性エネルギー線硬化性 榭脂組成物を得た。
[0088] (実施例 6)
榭脂組成中に含有される p -トルエンスルホン酸の濃度が 20ppmとなるよう、各化 合物の精製を行なったこと以外は、実施例 1と同様にして活性エネルギー線硬化性 榭脂組成物を得た。
[0089] (実施例 7)
榭脂組成中に含有される p -トルエンスルホン酸の濃度が 20ppmとなるよう、各化 合物の精製を行なったこと以外は、実施例 2と同様にして活性エネルギー線硬化性 榭脂組成物を得た。 [0090] (比較例 1)
ウレタンアタリレート化合物(UA2)を 40部、ウレタンジアタリレート化合物(UA3) ( 商品名 NKオリゴ U— 2PPA、新中村ィ匕学工業 (株)製)を 22部、式 (9)で表されるジ メタタリレートを 38部、 1—ヒドロキシシクロへキシルフエ-ルケトンを 1. 2部、混合して 活性エネルギー線硬化性榭脂組成物を得た。
[0091] (比較例 2)
ウレタンアタリレート化合物(UA2)を 20部、ウレタンジアタリレート化合物(UA3)を 45部、式(9)で表されるジメタタリレートを 35部、 1ーヒドロキシシクロへキシルフエ- ルケトンを 2. 0部、混合して活性エネルギー線硬化性榭脂組成物を得た。
[0092] (比較例 3)
ウレタンアタリレートイ匕合物(UA2)を 15部、式(10)で表されるジメタタリレートを 60 部、 1—ヒドロキシシクロへキシルフェニルケトンを 2. 0部、フエノキシェチルアタリレー トを 25部、混合して活性エネルギー線硬化性榭脂組成物を得た。
[0093] 以上の実施例および比較例の配合表を表 1に示す。
[0094] く榭脂硬化物 (フラット板)の作製〉
予め内側面を鏡面仕上げした径 70mmのパイレックスガラスモールド 2枚を、間隔 1 mmで平行になるように配置し、その周囲をポリエステルテープで囲んで型を作製し た。そして、この型の内部に、実施例 1〜7および比較例 1〜3の活性エネルギー線 硬化性榭脂組成物をそれぞれ注入した。次いで、 6kW(120WZcm)の高圧水銀ラ ンプにより 800mjZcm2の紫外線を、まず型の片側から照射し、続けて反対側からも 照射し、この両面照射によって榭脂組成物を硬化した。
[0095] <プリズムシートの作製 >
実施例 1〜7および比較例 1〜3の活性エネルギー線硬化性榭脂組成物を用いて 、図 2に示した製造装置でプリズムシートを製造した。以下、図 2を参照しながら説明 する。
[0096] 頂角 48° のプリズム列がピッチ 50 mで多数形成された銅製の薄膜を円周に巻き 付けた円筒形プリズム型 7と、ゴム製-ップロール 6との間に、透明シート状基材 5を 導入した。この透明シート状基材 5としては、密着性向上のための表面処理(図 1 :表 面処理部 3)を施した PET (ポリエチレンテレフタレート)フィルム(商品名 A— 4100、 東洋紡 (株)製、厚さ 188 m)を用いた。
[0097] 透明シート状基材 1が導入された状態において、活性エネルギー線硬化性榭脂組 成物 10をタンク 8から先端にノズルを取り付けた配管 9を通して、円筒形プリズム型 7 と透明シート状基材 5との間に供給しながら、透明シート状基材 5を約 5mZminの速 度で移動させた。この時、円筒形プリズム型 7はこれに合わせて回転しており、円筒 形プリズム型 7と透明シート状基材 5との間に挟まれた活性エネルギー線硬化性榭脂 組成物 10は、ランプ発光長 50cm、 160WZcmの高圧水銀灯を光源とした紫外線 照射装置 11付近に来たところで、照射量約 850mjZcm (測定機器: UV— 350、 ( 株)オーク製作所製使用)の紫外線照射により硬化した。ランプ通過後、円筒形プリ ズム型 7から離型し、シート状光学物品としてプリズムシート 12を得た。
[0098] プリズムシートの厚み設定値は 255 μ mとし、全サンプル同条件で作製した。なお、 活性エネルギー線硬化性榭脂組成物を貯蔵するタンク 8および円筒形プリズム型 7 の内部あるいは外部には、温度を一定に制御するためシーズヒータや温水ジャケット などの熱源設備が配置されており、タンク 8内の榭脂温度は 35°C、円筒形プリズム型 7の表面温度は 50〜60°Cに保ち、プリズムシート作製を行った。
[0099] <物性および特性の評価方法 >
得られた活性エネルギー線硬化性榭脂組成物、榭脂硬化物 (フラット板)およびプ リズムシートの物性 ·特性を以下の方法で評価した。
[0100] (1)粘度:
調合した活性エネルギー線硬化性榭脂組成物の 25°Cにおける粘度を、 E型粘度 計 (RE80型粘度計、東機産業 (株)製)を用いて測定を行った。
[0101] (2)榭脂組成物に含有される強酸の濃度:
実施例および比較例では、強酸として p—トルエンスルホン酸の濃度を測定した。
[0102] 榭脂組成物に含有される p—トルエンスルホン酸の濃度は、 HPLC'フォトダイォー ドアレイ検出器 (Waters製)を用いて測定した。測定は、カラムに ZORBAX Eclips e XDB— C18を使用し、移動相にリン酸バッファーとァセトニトリルを使用し、流速は 0. 2mlZ分、温度は 40°C、検出波長は 222nmとした。 [0103] (3)動的弾性率(25°C、 60°C):
厚さ lmmのフラット板を、長さ 30mm、幅 10mmに切断したものを試験片とした。動 的弾性率 G'の測定は、レオメーター(商品名 Rheosol— G3000、 UBM社製)を用 いて、捻りモード、周波数 1. 59Hz,捻り角 0. 2deg、昇温速度 4°CZminの条件で 行った。
[0104] (4)反り:
<初期 >
作製したプリズムシートを、縦 49mm、横 (プリズム稜線方向) 37mmに切断し試験 片とした。反り量測定は、室温で、プリズム面を上側にして平らなステージの上に置き 、マイクロスコープを用いて、ステージ面から四隅の垂直距離を側面から観測し、平 均値で評価した。平均値が 0. 5mm以下のものを良好、 0. 5mmより大きいものを不 良とした。
[0105] <高温保管後 >
作製したプリズムシートを、縦 188mm、横 (プリズム稜線方向) 195mmに切断し試 験片とし、 60°Cの環境下に、プリズム面を上にして 6. 5時間放置した。 60°Cの環境 下から取り出した後、更に室温で 1日放置し、初期の反り測定と同様の方法により反り 測定を行った。反り平均値が 5. Omm以下のものを良好、 5. Ommより大きいものを 不良とした。
[0106] (5)耐熱性:
得られたプリズムシートを縦 49mm、横(プリズムの稜線方向) 37mmに切り取り、ァ クリル板 (厚さ 3mm)の上に、レンズ面が下向きになるよう置き、更に、プリズムシート の上に、荷重 0. 8g/cm2となるようガラス板を載せた。その状態で、 60°Cの環境下 に 1時間放置後、取り出してプリズム面を目視観察した。プリズム面に異常がないもの を良好、プリズム形状の変形による異常があるものを不良とした。
[0107] (6)密着性の保持率:
プリズムシートの密着性は、プリズム面を上側にしてプリズムシートを平らなステージ の上に置き、 JIS -K5400「碁盤目テープ法」に準じて室温で測定した。
[0108] プリズムシートの高湿度条件での処理は、プリズムシートの試験片を、 60°C、湿度 9 5%の環境下に 1000時間置くことによって行なった。
[0109] 密着性の保持率は、 60°C、湿度 95%の条件で処理前.後のプリズムシートの密着 性を測定し、処理前に対する処理後の密着性力^〜 40%である場合を「X」、 41〜6 0%である場合を「△」、 61〜80%である場合を「〇」、 81〜100%である場合を「◎」 とした。
[0110] (7)押込み弾性率:
<評価用サンプル作製 >
頂角が 68° 、ピッチ 54 mのプリズム列成型用の円筒形プリズム型 7を使用し、前 記くプリズムシートの作製〉と同条件にてプリズムシートを作製した。得られたプリズ ムシートは、 1mm間隔で並行した 2枚の力ミソリ刃を用いて、プリズム列と垂直方向に 切断し、図 3に示す形状に加工した。更に、力ミソリ刃で切断した面の片面に接着剤( 商品名ァラルダイト、昭和高分子 (株)製)を塗布し、スライドガラス上に固定し、評価 用サンプルを得た。
[0111] <測定方法 >
押込み弾性率の測定は、超微小硬さ試験システム (装置名フィッシャースコープ HI OOV、フィッシャー社製)を使用した。圧子はビッカース四角錐 (材質:ダイヤモンド) を用い、プリズム部 1山の中央付近が圧子作用点となるようにサンプルの位置を調節 した。温度コントロールは超微小硬さ試験システムオプションの加熱ステージを用い た。
[0112] くサンプル温度 25°Cにおける測定手順 >
25°C恒温室にて以下の手順で測定を行った。
(1— 1)負荷速度 lmNZsecで荷重 10mNに達するまで荷重を負荷。
(1 -2)最大荷重が負荷された状態で 60秒間保持。
(1— 3)除荷速度 2. 4mNZsecで荷重 0. 4mNに達するまで荷重を除荷。
測定位置を変えながら、以上の(1— 1)〜(1— 3)の一連の手順を繰り返し行い、 1サ ンプルにつき 4点データを取った。
[0113] <サンプル温度 60°Cにおける測定手順 >
(2— 1)サンプルの表面温度が 60°Cになるよう加熱ステージを調節。 (2-2)負荷速度 lmNZsecで荷重 lOmNに達するまで荷重を負荷。
(2— 3)最大荷重が負荷された状態で 10秒間保持 (サンプル加温による引き起こさ れる変位ドリフトの影響をなくす為に短縮)。
(2— 4)除荷速度 2. 4mNZsecで荷重 0. 4mNに達するまで荷重を除荷。
測定位置を変えながら、以上(2— 2)〜(2—4)の一連の手順を繰り返し行い、 1サン プルにつき 4点データを取った。
[0114] <押込み弾性率の計算 >
上記測定方法で得られた、試験力と圧子の押込み深さとの関係より求めることがで きる。超微小硬さ試験システム付属の解析ソフト (設定:リニア外挿モード、最大荷重 の 65% - 95%区間を指定)を用いて、除荷—押込み深さ曲線の最小二乗フィットよ り求めた直線の傾きおよびこの傾きの直線が最大荷重を通るときの押し込み深さ軸と の交点を求め、 ISO 14577- 1 (A. 5)に従って計算を行った。計算の際、圧子の 弾性率は 1200GPa、圧子のポアソン比は 0. 07を用いた。
[0115] 以上の評価を実施例および比較例に対して行なった結果を表 2に示す。
[0116] [表 1]
単位:質量部
Figure imgf000026_0001
表 1中の化合物の略号を次に示す。
「UA1」:合成例 1で得たウレタンアタリレートイ匕合物
「UA2」:合成例 2で得たウレタンアタリレートイ匕合物
「UA3」:ウレタンジァクリレートイ匕合物(商品名 NKオリゴ U— 2PPA、新中村化学 工業 (株)製)
「PBOM」:式(9)で表されるジメタタリレート(商品名アタリエステル PBOM、三菱レ ィヨン (株)製)
「BPEM— 10」:式(10)で表されるジメタタリレート(商品名-ユーフロンティア BPE M— 10、第一工業製薬 (株)製)
「GX— 8684」:式(11)で表されるジメタタリレート(商品名ニューフロンティア GX— 8684、第一工業製薬 (株)製) ΓΡΗΕ]:フエノキシェチルアタリレート(商品名 フロンティア PHE、第一工業 製薬 (株)製)
「HPCK」: 1—ヒドロキシシクロへキシルフエ-ルケトン(商品名ィルガキュア 184 チバ ·スペシャルティ ·ケミカルズ (株)製)
[表 2]
Figure imgf000027_0001
[0119] <物性および特性の評価結果 >
表 2に示すように、 25°Cにおける動的弾性率が 950MPa以下、且つ 60°Cにおける 動的弾性率が lOOMPa以上を満たす実施例 1〜7は、プリズムシートの反りが良好で 、且つ耐熱性も良好であった。一方、 25°Cにおける動的弾性率が 950MPaを超えた 比較例 1および 2はプリズムシートの反りが不良であった。また、 60°Cにおける動的弹 性率が lOOMPa未満の比較例 3については、プリズムシートの反りは良好であつたが 、耐熱性については不良であった。
[0120] 同様に、 25°Cにおける押込み弾性率が lOOOMPa以下、且つ 60°Cにおける押込 み弾性率が 90MPa以上を満たす実施例 1〜7は、プリズムシートの反りが良好で、 且つ耐熱性も良好であった。一方、 25°Cにおける押込み弾性率が lOOOMPaを超 えた比較例 1および 2はプリズムシートの反りが不良であった。また、 60°Cにおける押 込み弾性率が 90MPa未満の比較例 3については、プリズムシートの反りは良好であ つたが、耐熱性については不良であった。
[0121] 更に、実施例 1と実施例 3の反りについて比較すると、 25°Cにおける動的弾性率は 実施例 3の方が高いが、反りは明らかに実施例 3の方が小さくなつている。これは、実 施例 1には含まれず、実施例 3に含まれる D成分の反り低減効果のためである。
[0122] また、実施例 1〜7で得られたプリズムシートをバックライト上に置き、ゴニォメーター を用いて輝度分布を見たところ、プリズム形状の異常に由来する光学的欠陥は見ら れず、レンズ設計通りの高いピーク輝度が観測され、優れた光学特性を有するプリズ ムシートが得られた。
[0123] また、実施例 実施例 5及び実施例 6の密着性の保持率について比較すると、実 施例 1よりも実施例 5が良好であり、更に実施例 6が良好であった。これは、実施例 1 に比べ実施例 5、 6の方が榭脂組成物中に含有される p—トルエンスルホン酸の濃度 が低減されているためである。実施例 2と実施例 7を比較した場合も同様に、密着性 の保持率は実施例 2よりも実施例 7が良好であった。

Claims

請求の範囲
[1] 25°Cにおける動的弾性率が 950MPa以下で、且つ、 60°Cにおける動的弾性率が lOOMPa以上である硬化物を得ることができるシート状光学物品用活性エネルギー 線硬化性榭脂組成物。
[2] 請求項 1記載の活性エネルギー線硬化性榭脂組成物を用いて得られるシート状光 学物品。
[3] (A)へキサメチレンジイソシァネートおよびそれを 3量化して得られるイソシァヌレー ト型のトリイソシァネート化合物と 2—ヒドロキシプロピルアタリレートおよびペンタエリス リトールトリアタリレートとを反応させて得られるウレタンアタリレートイ匕合物、(B)分子 中にウレタン結合を有さず、 2つの (メタ)アタリロイル基を有するジ (メタ)アタリレート 化合物、および (C)ラジカル性光重合開始剤を含有するシート状光学物品用活性ェ ネルギ一線硬化性榭脂組成物。
[4] (A)〜(C)成分に加えて、(D)分子中に 1つの重合性二重結合基を有する化合物 を含有する請求項 3記載のシート状光学物品用活性エネルギー線硬化性榭脂組成 物。
[5] 含有する強酸の濃度が lOOppm未満である請求項 3記載のシート状光学物品用活 性エネルギー線硬化性榭脂組成物。
[6] 請求項 3記載の活性エネルギー線硬化性榭脂組成物を用いて得られるシート状光 学物品。
[7] 25°Cにおける押込み弾性率が lOOOMPa以下で、且つ、 60°Cにおける押込み弹 性率が 90MPa以上であるレンズ部を有することを特徴とするシート状光学物品。
PCT/JP2005/018787 2004-10-15 2005-10-12 活性エネルギー線硬化性樹脂組成物およびシート状光学物品 WO2006041089A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/665,185 US7786184B2 (en) 2004-10-15 2005-10-12 Active energy ray curable resin composition and sheet-like optical article
JP2006540945A JP4783296B2 (ja) 2004-10-15 2005-10-12 活性エネルギー線硬化性樹脂組成物およびシート状光学物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004301700 2004-10-15
JP2004-301700 2004-10-15

Publications (1)

Publication Number Publication Date
WO2006041089A1 true WO2006041089A1 (ja) 2006-04-20

Family

ID=36148377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018787 WO2006041089A1 (ja) 2004-10-15 2005-10-12 活性エネルギー線硬化性樹脂組成物およびシート状光学物品

Country Status (6)

Country Link
US (1) US7786184B2 (ja)
JP (1) JP4783296B2 (ja)
KR (1) KR100937293B1 (ja)
CN (1) CN100478711C (ja)
TW (1) TWI384253B (ja)
WO (1) WO2006041089A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123358A1 (ja) * 2007-03-29 2008-10-16 Dic Corporation 注型重合用活性エネルギー線硬化型樹脂組成物及び硬化物
JP2009265640A (ja) * 2008-03-31 2009-11-12 Mitsubishi Rayon Co Ltd プリズムシート
WO2010035006A1 (en) * 2008-09-29 2010-04-01 Scott Bader Company Limited Crosslinkable moulding composition
JP2010085539A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd 光学シート
JP2010530077A (ja) * 2007-05-23 2010-09-02 コーロン インダストリーズ,インコーポレイテッド 光学シート
JP2011164363A (ja) * 2010-02-10 2011-08-25 Daicel Chemical Industries Ltd 光学シート及びその製造方法
JP2012003074A (ja) * 2010-06-17 2012-01-05 Mitsubishi Rayon Co Ltd 光学フィルム及びそれを用いた光学装置
JP2012149178A (ja) * 2011-01-19 2012-08-09 Hitachi Chemical Co Ltd ウレタンオリゴマー及び樹脂組成物、並びにこれらを用いた硬化物
WO2013077082A1 (ja) * 2011-11-25 2013-05-30 ダイセル・サイテック株式会社 層間充填用活性エネルギー線硬化性組成物
WO2014156452A1 (ja) * 2013-03-28 2014-10-02 三菱レイヨン株式会社 光学フィルムの製造方法、光学フィルム、面発光体及び光学フィルムの製造装置
JP2015187213A (ja) * 2014-03-26 2015-10-29 グンゼ株式会社 樹脂成形体及びそれを用いた積層体
WO2016194765A1 (ja) * 2015-06-04 2016-12-08 Dic株式会社 ウレタン(メタ)アクリレート樹脂及び積層フィルム
EP2260340B2 (en) 2008-03-31 2017-10-04 3M Innovative Properties Company Primer layer for multilayer optical film
JP2018521356A (ja) * 2015-06-30 2018-08-02 スリーエム イノベイティブ プロパティズ カンパニー 微細構造化物品上のバリア要素

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094776A4 (en) 2007-04-13 2010-06-09 Cornerstone Res Group Inc COMPOSITE SELF-HEALING SYSTEM
KR101275422B1 (ko) * 2008-07-07 2013-06-14 코오롱인더스트리 주식회사 감광성 수지 조성물 및 이를 이용한 탄성이 있는 광학 시트
EP2479214B1 (en) * 2009-09-15 2014-12-17 Mitsubishi Rayon Co., Ltd. Polymerizable composition and acrylic resin films
TWI577523B (zh) * 2011-06-17 2017-04-11 三菱麗陽股份有限公司 表面具有凹凸結構的模具、光學物品、其製造方法、面發光體用透明基材及面發光體
CN104254561A (zh) * 2012-03-29 2014-12-31 可隆工业株式会社 光学片
TW201509962A (zh) * 2012-06-15 2015-03-16 Mitsubishi Rayon Co 活性能量線硬化性樹脂組成物以及光透射性物品活性能量線硬化性樹脂組成物
JP5848736B2 (ja) * 2013-09-06 2016-01-27 デクセリアルズ株式会社 静電容量型タッチパネル
JP6226652B2 (ja) * 2013-09-09 2017-11-08 昭和電工株式会社 画像表示装置の製造方法
EP3734141A1 (en) * 2014-12-16 2020-11-04 Sony Corporation Display device
CN104761679B (zh) * 2015-03-31 2017-10-10 长兴化学材料(珠海)有限公司 光固化型镜片及其制造方法
TW201823343A (zh) * 2016-12-23 2018-07-01 奇美實業股份有限公司 熱可塑性樹脂組成物及其所形成的成型品
CN108715752B (zh) * 2018-06-22 2021-09-28 瑞洲树脂(东莞)有限公司 一种光与热双固化镜片、镜头填充胶

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166030A (ja) * 1997-09-22 1999-06-22 Basf Ag 放射線硬化性ウレタン官能性プレポリマーの製法、プレポリマー及びそれを含有する処方物及びプレポリマーの使用、該プレポリマーでの被覆法及びそれで被覆された基材
JP2001113648A (ja) * 1999-10-19 2001-04-24 Nippon Kayaku Co Ltd 放射線硬化型樹脂組成物の硬化皮膜を有するフィルム
JP2003201331A (ja) * 2001-11-02 2003-07-18 Nippon Synthetic Chem Ind Co Ltd:The ポリイソシアネート系誘導体及びそれを用いた活性エネルギー線硬化型樹脂組成物
JP2003302501A (ja) * 2002-04-12 2003-10-24 Natoko Kk レンズシート
JP2004284178A (ja) * 2003-03-20 2004-10-14 Dainippon Printing Co Ltd 賦型方法、賦型フィルム、及び射出成形品
JP2005330403A (ja) * 2004-05-20 2005-12-02 Dai Ichi Kogyo Seiyaku Co Ltd エネルギー線硬化性樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3866443B2 (ja) 1999-04-14 2007-01-10 三菱レイヨン株式会社 光学シート用活性エネルギー線硬化性組成物及び光学シート
JP3545319B2 (ja) * 2000-07-31 2004-07-21 株式会社巴川製紙所 帯電防止性反射防止フィルム
TW200501139A (en) * 2003-01-24 2005-01-01 Mitsubishi Chem Corp Information recording medium
JP4776189B2 (ja) * 2004-08-03 2011-09-21 古河電気工業株式会社 ウエハ加工用テープ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166030A (ja) * 1997-09-22 1999-06-22 Basf Ag 放射線硬化性ウレタン官能性プレポリマーの製法、プレポリマー及びそれを含有する処方物及びプレポリマーの使用、該プレポリマーでの被覆法及びそれで被覆された基材
JP2001113648A (ja) * 1999-10-19 2001-04-24 Nippon Kayaku Co Ltd 放射線硬化型樹脂組成物の硬化皮膜を有するフィルム
JP2003201331A (ja) * 2001-11-02 2003-07-18 Nippon Synthetic Chem Ind Co Ltd:The ポリイソシアネート系誘導体及びそれを用いた活性エネルギー線硬化型樹脂組成物
JP2003302501A (ja) * 2002-04-12 2003-10-24 Natoko Kk レンズシート
JP2004284178A (ja) * 2003-03-20 2004-10-14 Dainippon Printing Co Ltd 賦型方法、賦型フィルム、及び射出成形品
JP2005330403A (ja) * 2004-05-20 2005-12-02 Dai Ichi Kogyo Seiyaku Co Ltd エネルギー線硬化性樹脂組成物

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123358A1 (ja) * 2007-03-29 2008-10-16 Dic Corporation 注型重合用活性エネルギー線硬化型樹脂組成物及び硬化物
JP2010530077A (ja) * 2007-05-23 2010-09-02 コーロン インダストリーズ,インコーポレイテッド 光学シート
EP2260340B2 (en) 2008-03-31 2017-10-04 3M Innovative Properties Company Primer layer for multilayer optical film
JP2009265640A (ja) * 2008-03-31 2009-11-12 Mitsubishi Rayon Co Ltd プリズムシート
WO2010035006A1 (en) * 2008-09-29 2010-04-01 Scott Bader Company Limited Crosslinkable moulding composition
JP2010085539A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd 光学シート
JP2011164363A (ja) * 2010-02-10 2011-08-25 Daicel Chemical Industries Ltd 光学シート及びその製造方法
JP2012003074A (ja) * 2010-06-17 2012-01-05 Mitsubishi Rayon Co Ltd 光学フィルム及びそれを用いた光学装置
JP2012149178A (ja) * 2011-01-19 2012-08-09 Hitachi Chemical Co Ltd ウレタンオリゴマー及び樹脂組成物、並びにこれらを用いた硬化物
WO2013077082A1 (ja) * 2011-11-25 2013-05-30 ダイセル・サイテック株式会社 層間充填用活性エネルギー線硬化性組成物
JP2013129812A (ja) * 2011-11-25 2013-07-04 Daicel-Cytec Co Ltd 層間充填用活性エネルギー線硬化性組成物
WO2014156452A1 (ja) * 2013-03-28 2014-10-02 三菱レイヨン株式会社 光学フィルムの製造方法、光学フィルム、面発光体及び光学フィルムの製造装置
JPWO2014156452A1 (ja) * 2013-03-28 2017-02-16 三菱レイヨン株式会社 光学フィルムの製造方法、光学フィルム、面発光体及び光学フィルムの製造装置
US10174905B2 (en) 2013-03-28 2019-01-08 Mitsubishi Chemical Corporation Optical film production method, optical film, surface light-emitting body and optical film production device
JP2015187213A (ja) * 2014-03-26 2015-10-29 グンゼ株式会社 樹脂成形体及びそれを用いた積層体
WO2016194765A1 (ja) * 2015-06-04 2016-12-08 Dic株式会社 ウレタン(メタ)アクリレート樹脂及び積層フィルム
JP2018521356A (ja) * 2015-06-30 2018-08-02 スリーエム イノベイティブ プロパティズ カンパニー 微細構造化物品上のバリア要素
US10877191B2 (en) 2015-06-30 2020-12-29 3M Innovative Properties Company Barrier elements on a microstructured article having adhesive sealing layer and specified modulus of elasticity
JP7071125B2 (ja) 2015-06-30 2022-05-18 スリーエム イノベイティブ プロパティズ カンパニー 微細構造化物品上のバリア要素

Also Published As

Publication number Publication date
KR100937293B1 (ko) 2010-01-18
US20090030104A1 (en) 2009-01-29
CN101044418A (zh) 2007-09-26
US7786184B2 (en) 2010-08-31
TW200612111A (en) 2006-04-16
JP4783296B2 (ja) 2011-09-28
KR20070065437A (ko) 2007-06-22
CN100478711C (zh) 2009-04-15
TWI384253B (zh) 2013-02-01
JPWO2006041089A1 (ja) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006041089A1 (ja) 活性エネルギー線硬化性樹脂組成物およびシート状光学物品
JP7010455B2 (ja) ポリカーボネートジオールを使用して調製された歯科矯正物品、及びその製造方法
TW546349B (en) Photo curable resin composition and optical parts
JP6822515B2 (ja) 光硬化性樹脂組成物並びにそれを用いた光硬化性遮光塗料、光漏洩防止材、液晶表示パネル及び液晶表示装置、並びに光硬化方法
WO2007116704A1 (ja) 光硬化型塗料
EP2275459A1 (en) Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
JP2008281614A (ja) プリズムシート
US8466208B2 (en) Curable sheet composition
JP5556039B2 (ja) プリズムシート
JP5059538B2 (ja) 硬化性組成物、その硬化物
JP7054753B1 (ja) ハードコート樹脂組成物
JP4013532B2 (ja) 光学部材用活性エネルギー線硬化型組成物
JP2009156998A (ja) 光学部材用放射線硬化性樹脂組成物及び光学部材
JP2016089156A (ja) 活性エネルギー線硬化性樹脂組成物
JP5132946B2 (ja) モールドプリント用活性エネルギー線硬化型樹脂組成物及び賦型物
JP2005263913A (ja) 活性エネルギー線硬化性組成物、及び光学シート
JP5681429B2 (ja) 紫外線硬化型帯電防止性樹脂組成物
JP2009156999A (ja) 光学部材用放射線硬化性樹脂組成物及び光学部材
JP4261421B2 (ja) エネルギー線硬化性樹脂組成物
JP6219083B2 (ja) 耐熱性および寸法精度に優れる硬化物を形成する光硬化性樹脂組成物
JP4710596B2 (ja) 光学部材用放射線硬化性樹脂組成物及び光学部材
JP2005272700A (ja) 活性エネルギー線硬化性組成物、及び光学シート
JP2009128724A (ja) 光学部材用放射線硬化性液状組成物及び光学部材
JP2012149178A (ja) ウレタンオリゴマー及び樹脂組成物、並びにこれらを用いた硬化物
JP2001139645A (ja) 注型光重合用樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006540945

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11665185

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580034964.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077010875

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2082/CHENP/2007

Country of ref document: IN

122 Ep: pct application non-entry in european phase