WO2005105918A1 - アクリル樹脂フィルムおよび製造方法 - Google Patents

アクリル樹脂フィルムおよび製造方法 Download PDF

Info

Publication number
WO2005105918A1
WO2005105918A1 PCT/JP2005/007671 JP2005007671W WO2005105918A1 WO 2005105918 A1 WO2005105918 A1 WO 2005105918A1 JP 2005007671 W JP2005007671 W JP 2005007671W WO 2005105918 A1 WO2005105918 A1 WO 2005105918A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
film
resin film
mass
parts
Prior art date
Application number
PCT/JP2005/007671
Other languages
English (en)
French (fr)
Inventor
Shigetoshi Maekawa
Hideki Moriyama
Mitsuhiro Horiuchi
Akimitsu Tsukuda
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2006512757A priority Critical patent/JPWO2005105918A1/ja
Priority to EP05734442A priority patent/EP1754752A4/en
Priority to US11/578,789 priority patent/US20070243364A1/en
Publication of WO2005105918A1 publication Critical patent/WO2005105918A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/064Copolymers with monomers not covered by C08L33/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters

Definitions

  • the present invention relates to a novel and industrially useful acrylic resin film having excellent transparency, weather resistance, heat resistance and toughness.
  • the acrylic resin film of the present invention is used, for example, for surface materials such as display materials such as flat display panels, interior and exterior materials for vehicles, electrical appliances, inner layers and exterior materials for building materials, and the like.
  • Acrylic resin film with excellent transparency, weather resistance, heat resistance and toughness, and excellent in transparency, weather resistance, heat resistance and toughness used for the protection of skin such as polycarbonate and vinyl chloride Technology related to acrylic resin film
  • Acrylic resin films have excellent transparency, surface gloss, and light resistance. Therefore, optical materials such as liquid crystal display sheets or films, light guide plates, interior and exterior materials for vehicles, and automatic sales It is used for the surface skin of machine exterior materials, electrical appliances, inner layers for building materials and exterior materials, and is used in a wide range of fields such as skin protection for polycarbonate, Shiridani vinyl, and the like.
  • Patent Document 3 since the refractive index of the elastic body is significantly different from that of the acrylic resin, it lacks transparency and cannot be developed for optical applications.
  • Patent Document 4 since styrene is copolymerized, a phase difference in the film plane and in the thickness direction is developed, and a brass substrate and a polarizing plate protective film which require optical isotropy are required. It has been difficult to develop such a device into a room, a prism sheet substrate, a light guide plate, and the like.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2004-2711
  • Patent Document 2 JP-A-7-268036
  • Patent Document 3 JP-A-60-67557
  • Patent Document 4 JP-A-2000-178399
  • Patent Document 5 JP-A-2000-109575
  • An object of the present invention is to provide an acrylic resin film excellent in transparency, weather resistance, heat resistance, and toughness, in view of the fact that such a film has not existed in the past.
  • An object of the present invention is to provide a new and industrially useful acrylic resin film.
  • a further object of the present invention is to provide, for example, a method in which a hard coat layer is formed on at least one surface of the acrylic resin film, and an antireflection film is formed on at least one surface of the film. It is an object of the present invention to provide an acrylic resin film obtained and an optical filter having such a film strength.
  • an acrylic resin film having excellent transparency, weather resistance, heat resistance, and toughness As a result, an acrylic resin containing a dartartic anhydride unit was obtained.
  • An acrylic resin film in which specific acrylic elastic particles are blended with a resin, the total light transmittance, the haze, the heat shrinkage in at least one of the longitudinal direction and the width direction are set to specific values, and the number of times of folding
  • setting the value to 20 or more it is possible to obtain an acrylic resin film that has transparency, weather resistance, and heat resistance, achieves a high level of toughness that cannot be obtained with conventional knowledge, and has excellent processing characteristics. I found something.
  • the acrylic resin film of the present invention has the following constitutions [1] to [16].
  • the acrylic resin (A) is composed of 50 to 90 parts by mass of a methyl methacrylate unit and 10 to 50 parts by mass of a dtaltaric anhydride unit based on 100 parts by mass of the whole acrylic resin (A). ) Total light transmittance 91% or more
  • Rl and R2 represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • the retardation in the film plane for light having a wavelength of 590 nm is 10 nm or less [1] or
  • a total of 100 parts by mass of the acrylic resin (A) and the acrylic elastomer particles (B) contains 0.01 to 5 parts by mass of an ultraviolet absorber based on 100 parts by mass.
  • Acrylic elastic particles (B) whose inner layer is a rubber elastic body containing an alkyl acrylate unit and Z or aromatic butyl, and whose outer layer is mainly composed of an acrylic resin containing a daltaric anhydride unit
  • the acrylic resin according to any one of [1] to [8], wherein the difference in refractive index between the acrylic elastic particles (B) and the acryl resin (A) is 0.01 or less. the film,
  • a substantially unoriented acrylic resin film is stretched in the longitudinal direction and the width direction at a temperature not lower than the glass transition temperature (Tg) and not higher than (glass transition temperature (Tg) + 50) ° C. This is a method for producing an acrylic resin film, which is characterized by being stretched 0 times.
  • a novel and industrially useful acrylic resin film having excellent transparency, weather resistance, heat resistance and high toughness can be obtained.
  • the total light transmittance is 91% or more
  • the haze is 1.5% or less
  • Acrylic resin film with significantly improved force S110 ° C or more and elongation at break of 10% or more has been realized.
  • the acrylic resin film used in the present invention can be preferably used as an industrial material such as an optical filter that requires a processing step at a high temperature. Furthermore, the film thus obtained has good surface hardness, thickness uniformity, and surface adhesiveness, and can be favorably used for various uses other than the optical filter.
  • the acrylic resin (A) used in the present invention needs to contain a dultaric anhydride unit represented by the following general formula (1) in the molecule.
  • the heat resistance of the resin film such as the glass transition temperature (Tg) and the heat distortion temperature, is determined by the degree of freedom of the resin structure, and those with a small degree of freedom, for example, rigid benzene rings are bonded by rigid imide bonds.
  • the aromatic polyimide has a Tg exceeding 400 ° C.
  • Tg of polymethacrylmethyl (PMMA) which is a flexible aliphatic polymer with a high degree of freedom, is less than 100 ° C.
  • the acrylic resin of the present invention can have remarkably improved heat resistance by containing a daltaric anhydride unit having an alicyclic structure. Also, in optical isotropic applications, a small phase difference is required. When an aromatic ring having a large number of ⁇ electrons is introduced here, the heat resistance is improved more than the introduction of an alicyclic structure, but at the same time, the birefringence becomes large, and there is a problem that a phase difference is easily developed. For this reason, it is most preferable to contain an alicyclic structure in order to improve heat resistance while maintaining optical isotropy.
  • Examples of the alicyclic structure include a daltaric anhydride structure, a rataton ring structure, a norbornene structure, and a cyclopentane structure.
  • the same effect can be obtained with any structure.
  • daltaric anhydride unit is industrially very advantageous because it can be obtained from a common acrylic raw material by one-step dehydration and elimination or alcohol removal reaction.
  • the optical isotropic application is an application in which optical isotropy is required inside the material
  • Specific examples include a polarizing plate protective film, a lens, and an optical waveguide core.
  • a polarizing plate protective film In liquid crystal televisions, two polarizing plates are used orthogonally or in parallel. If there is no polarizing plate protective film or if it is optically isotropic, black is displayed when the two polarizing plates are orthogonal. When the two polarizing plates are parallel, white is displayed.
  • the polarizing plate protective film when the polarizing plate protective film is not optically isotropic, when the two polarizing plates are perpendicular to each other, black and purple, for example, are displayed instead of black when the two polarizing plates are parallel, and for example, yellow instead of white when the two polarizing plates are parallel. Is displayed. This coloring depends on the anisotropy of the polarizing plate protective film.
  • the polarizer protective film does not exist optically, but is indispensable for protecting the polarizer from external stress and moisture. Also, in the case of a lens, the lens must be capable of refracting light at its interface. If the inside of the lens is not optically isotropic, there is a problem that the image is distorted.
  • optical waveguide core In the case of the optical waveguide core, if it is not optically isotropic, for example, a difference occurs in the transmission speed of the signal of the horizontal wave and the signal of the vertical wave, which causes a problem of noise and interference.
  • Other optical isotropic uses include prism sheet substrates, optical disk substrates, flat panel display substrates, and the like.
  • Rl and R2 represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • a vinyl monomer (iii) that gives the unit is polymerized to form a copolymer (a), and then the vigorous copolymer (a) is converted to a suitable catalyst.
  • a vinyl monomer (iii) that gives the unit is polymerized to form a copolymer (a), and then the vigorous copolymer (a) is converted to a suitable catalyst.
  • it can be produced by heating in the absence of an alcohol, and performing an intramolecular cyclization reaction by dealcoholation and Z or dehydration.
  • the carboxyl group of the two unsaturated carboxylic acid units is typically dehydrated by heating the copolymer (a), or the adjacent unsaturated carboxylic acid unit and the unsaturated carboxylic acid unit may be dehydrated. Elimination of the alcohol from the alkyl ester unit results in the production of one unit of the above-mentioned dtaltaric anhydride unit.
  • the unsaturated carboxylic acid monomer (i) used in this case is not particularly limited, and may be an unsaturated carboxylic acid monomer of the general formula (4) which can be copolymerized with another vinyl compound (iii). Acid monomers can be used.
  • R 3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms
  • the unsaturated carboxylic acid monomer (i) represented by the above general formula (i) is copolymerized to give an unsaturated carboxylic acid unit having a structure represented by the following general formula (i 2).
  • R3 represents hydrogen or an alkyl group having 1 to 5 carbon atoms
  • unsaturated carboxylic acid alkyl ester monomer (ii) methyl methacrylate is used. It is necessary from the viewpoint of transparency and weather resistance of the obtained film. Further, one or more other unsaturated alkyl carboxylate monomers can be used together with methyl methacrylate. There are no particular restrictions on other unsaturated carboxylic acid alkyl ester monomers! Preferable examples include those represented by the following general formula (ii).
  • R4 represents hydrogen or an aliphatic or alicyclic hydrocarbon group having 1 to 5 carbon atoms
  • R5 represents any substituent other than hydrogen.
  • an acrylate ester and an Z or methacrylic acid ester having an aliphatic or alicyclic hydrocarbon group having 1 to 6 carbon atoms or a hydrocarbon group having a substituent are particularly preferable.
  • the unsaturated carboxylic acid alkyl ester monomer represented by the general formula (ii) gives an unsaturated sulfonic acid alkyl ester unit having a structure represented by the following general formula (ii 2) when copolymerized.
  • R5 represents any substituent other than hydrogen.
  • Preferred specific examples of the unsaturated carboxylic acid alkyl ester monomer (ii) other than methyl methacrylate include ethyl (meth) acrylate, n-propyl (meth) acrylate, and n-propyl (meth) acrylate.
  • vinyl monomers (iii) may be used as long as the effects of the present invention are not impaired.
  • Preferred specific examples of other vinyl monomers (iii) include aromatic vinyl monomers such as styrene, a-methylstyrene, o-methylstyrene, p-methynostyrene, o-ethylstyrene, p-ethylstyrene and p-t-butylstyrene.
  • Monomers acrylonitrile, metacally-tolyl, ethaneacrylo-tolyl, and other cyanuric butyl-based monomers, aryl glycidyl ether, styrene — P-glycidinoleate, ⁇ -glycidyl styrene, maleic anhydride, itaconic anhydride N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, acrylamide, methacrylamide, N-methylacrylamide, butoxymethylacrylamide, N-propylmethacrylamide, aminoethyl acrylate, acrylic acid Pirua Noethyl, dimethylaminoethyl methacrylate, ethylaminopropyl methacrylate, phenylaminoethyl methacrylate, cyclohexylaminoethyl methacrylate, N-viny
  • a known polymerization method such as bulk polymerization, solution polymerization, suspension polymerization, or emulsion polymerization, which is basically based on radical polymerization, can be used.
  • solution polymerization, bulk polymerization, and suspension polymerization are particularly preferable in terms of the amount of the polymer.
  • the polymerization temperature is not particularly limited, but from the viewpoint of color tone, a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer is subjected to a polymerization temperature of 95 ° C or lower. It is preferred to polymerize with.
  • the preferable polymerization temperature is 85 ° C or lower, particularly preferably 75 ° C or lower.
  • the lower limit of the polymerization temperature is not particularly limited as long as the polymerization proceeds. From the viewpoint of productivity in consideration of the above, the temperature is usually 50 ° C. or higher, preferably 60 ° C. or higher.
  • the ability to raise the polymerization temperature as the polymerization progresses in order to improve the polymerization yield or polymerization rate is preferable to control the upper limit temperature to 95 ° C or lower. It is also preferable to carry out the reaction at a relatively low temperature of 75 ° C. or less.
  • the polymerization time is not particularly limited as long as it is a time sufficient to obtain the required degree of polymerization, but is preferably in the range of 60 to 360 minutes from the viewpoint of production efficiency, and is preferably in the range of 90 to 180 minutes. Particularly preferred.
  • the acrylic resin (A) used in the acrylic resin film of the present invention preferably has a specific weight average molecular weight of 80,000 to 150,000.
  • the acrylic resin (A) having such a molecular weight is controlled in advance to a desired molecular weight, that is, a weight average molecular weight of 50,000 to 150,000 at the time of production of the copolymer (a). Can be achieved by doing so.
  • a desired molecular weight that is, a weight average molecular weight of 50,000 to 150,000 at the time of production of the copolymer (a).
  • the method for controlling the molecular weight of the copolymer (a) is not particularly limited, and for example, generally known techniques can be applied.
  • the addition amount of a radical polymerization initiator such as an azoi conjugate or a peroxide
  • a chain transfer agent such as alkyl mercaptan, carbon tetrachloride, carbon tetrabromide, dimethylacetamide, dimethylformamide, and triethylamine.
  • a method of controlling the addition amount of alkyl mercaptan, which is a chain transfer agent can be preferably used in view of the stability of polymerization, ease of handling, and the like.
  • alkyl mercaptan used in the present invention examples include n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan, and the like. Among them, t-dodecyl mercaptan and n-dodecyl mercaptan are preferably used.
  • the amount of the alkyl mercaptan to be added is not particularly limited as long as it is controlled to the specific molecular weight of the present invention. Usually, the addition amount is 0.2 to 100 parts by mass of the total amount of the monomer mixture. To 5.0 parts by mass, preferably 0.3 to 4.0 parts by mass, more preferably 0.4 to 3.0 parts by mass. [0043]
  • the copolymer (a) of the present invention is heated, and an intramolecular cyclization reaction is performed by (a) dehydration and Z or (mouth) dealcoholation to produce a thermoplastic polymer containing dartalic anhydride units.
  • a single-screw extruder equipped with a "meld'-type" screw, a twin-screw extruder, a triple-screw extruder, or a continuous or batch-type kneader can be used.
  • a twin-screw extruder can be preferably used, and more preferably, an apparatus having a structure to which an inert gas such as nitrogen can be introduced.
  • an inert gas such as the above, there is a method of connecting a pipe of an inert gas flow of about 10 to: LOO liter Z from the upper part and the lower part or the lower part of the hopper.
  • the temperature for devolatilization by heating by the above method is not particularly limited as long as it is a temperature at which an intramolecular cyclization reaction is caused by (a) dehydration and Z or (mouth) de-alcohol, but preferably 180 to 180 ° C. 300 ° C range, especially 200-280 ° C range power S preferred ⁇ .
  • the time for heat devolatilization at this time is not particularly limited and can be appropriately set depending on the desired copolymer composition, but is usually 1 minute to 60 minutes, preferably 2 minutes to 30 minutes. In particular, a range of 3 to 20 minutes is preferred.
  • the length Z diameter ratio (LZD) of the extruder screw is 40 or more in order to secure a heating time for a sufficient intramolecular cyclization reaction using an extruder. If an extruder with a short LZD is used, a large amount of unreacted unsaturated carboxylic acid units will remain, and the reaction will proceed again during heating and molding. Sometimes the color tone tends to deteriorate significantly.
  • At least one of an acid, an alkali, and a salt compound is added as a catalyst for promoting a cyclization reaction to dartal anhydride when the copolymer (a) is heated by the above method or the like. can do.
  • the amount of addition is not particularly limited, and is suitably about 0.01 to 1 part by mass with respect to 100 parts by mass of the copolymer (a).
  • Acid catalysts which are not particularly limited include hydrochloric acid, sulfuric acid, p-toluenesulfonic acid, phosphoric acid, phosphorous acid, phenylphosphonic acid, methyl phosphate and the like.
  • Examples of the basic catalyst include metal hydroxides, amines, imines, alkali metal derivatives, alkoxides, and ammonium hydroxide salts.
  • examples of the salt-based catalyst include metal acetate, metal stearic acid, and metal carbonate.
  • a compound containing an alkali metal can be preferably used because it shows an excellent reaction promoting effect with a relatively small amount of addition.
  • hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, sodium methoxide, sodium ethoxide, sodium phenoxide, potassium methoxide, potassium ethoxide, potassium Alkoxide conjugates such as phenoxide; organic carboxylate such as lithium acetate, sodium acetate, potassium acetate, and sodium stearate; and sodium hydroxide, sodium methoxide, lithium acetate, and sodium acetate are preferable. Can be used.
  • the content of the daltaric anhydride unit represented by the general formula (1) is 10 parts by mass with respect to 100 parts by mass of the acrylic resin (A). 5050 parts by mass, more preferably 15-45 parts by mass, most preferably 20-25 parts by mass. If the daltaric anhydride unit is less than 10 parts by mass, the effect of improving heat resistance may be reduced. If the amount of glutaric anhydride exceeds 50 parts by mass, the toughness may deteriorate. There is a trade-off between the improvement in heat resistance and the improvement in toughness, and it can be adjusted by the content of daltaric anhydride units.
  • the content of daltaric anhydride unit should be any value within the range of 10 to 50 parts by mass depending on the application.
  • the content of dartalic anhydride units is most preferably 20 to 25 parts by mass. Better!/,. If the content of the glutaric anhydride unit is 20 to 25 parts by mass, it has a Tg of 120 to 130 ° C after addition of the elastic particles and has sufficient toughness.
  • acrylic resin (A) Other components contained in the acrylic resin (A) are required to contain a methyl methacrylate unit, a force S such as a methacrylic acid unit, and a methyl methacrylate unit.
  • Acrylic resin (A) 100 parts by mass divided by the content of daltaric anhydride units
  • the content is preferably a methyl acrylate unit. That is, the content of the methyl methacrylate unit is preferably 50 to 90 parts by mass.
  • a methacrylic acid unit which is a precursor of the glutaric anhydride unit, may be contained.
  • a methacrylic acid unit or a methyl methacrylate unit is adjacent to a methacrylic acid unit, a dehydration or dealcoholization reaction occurs during heating in a process such as film formation or stretching, which may cause foaming. If daltaric anhydride units are adjacent to each other, a dehydration or dealcoholization reaction cannot occur. Therefore, methacrylic acid units may be included.
  • an infrared spectrophotometer or a proton nuclear magnetic resonance (NMR) measuring device is generally used.
  • NMR proton nuclear magnetic resonance
  • glutaric anhydride units, absorption of 1800 cm _1 and 1760 cm _1 are characterized, can it to distinguish from unsaturated carboxylic acid units and unsaturated carboxylic acid alkyl ester unit.
  • the assignment of the spectrum in a dimethyl sulfoxide heavy solvent is determined by using a peak of 0.5 to 1.5 ppm.
  • the peak at 1.6 to 2.1 ppm is the hydrogen of the methylene group in the polymer main chain
  • the peak at 3.5 ppm is methacrylic acid.
  • Hydrogen of methyl carboxylate (COOCH) peak at 12.4 ppm is carboxylic acid of methacrylic acid
  • the copolymer composition can be determined.
  • hydrogen of the aromatic ring of styrene is observed at 6.5 to 7.5 ppm, and the spectral specific power is similarly increased.
  • the coalescence composition can be determined.
  • the acrylic resin (A) used in the present invention contains an unsaturated carboxylic acid unit and Z or another copolymerizable vinyl monomer unit in the acrylic resin (A). can do.
  • the amount of the unsaturated carboxylic acid unit used in the present invention is preferably 10 parts by mass or less, that is, 0 to LO parts by mass with respect to 100 parts by mass of the acrylic resin (A). 0 to 5 parts by mass, most preferably 0 to 1 part by mass. 10 parts by mass of unsaturated carboxylic acid units When it exceeds, the colorless transparency and the retention stability tend to decrease.
  • (A) It is preferably 5 parts by mass or less, more preferably 0 to 5 parts by mass, per 100 parts by mass, more preferably 0 to 3 parts by mass.
  • an aromatic-bulk monomer unit such as styrene
  • the content exceeds the above range, colorless transparency, optical isotropy, and chemical resistance tend to decrease.
  • the acrylic elastomer particles (B) are composed of a layer containing at least one rubbery polymer and at least one layer composed of a different polymer, and these layers are adjacent to each other.
  • the number of layers constituting the core-shell type multilayer polymer (B-1) used in the present invention is not particularly limited, and is preferably two or more, and is three layers. There may be four or more layers, but it is necessary that the multilayer structure has at least one rubber layer inside.
  • the type of the rubber layer is not particularly limited as long as the polymer component having rubber elasticity is also formed.
  • a rubber composed of an acrylic component, a silicone component, a styrene component, a nitrile component, a conjugated component, a urethane component, or a polymer obtained by polymerizing an ethylene component, a propylene component, an isobutene component, or the like can be used.
  • Preferred rubbers include, for example, acrylic components such as ethyl acrylate units and butyl acrylate units, silicone components such as dimethyl siloxane units and dimethyl siloxane units, styrene components such as styrene units and methyl styrene units, and acrylonitrile.
  • Unit A rubber composed of -tolyl components such as methacrylo-tolyl units and conjugated components such as butanediene units and isoprene units. Also preferred are rubbers composed of a combination of two or more of these components.
  • acrylic components such as ethyl acrylate units and butyl acrylate units; (2) A rubber that also forms a silicone component such as a dimethylsiloxane unit or a phenylmethylsiloxane unit, (2) an acrylate component such as an ethyl acrylate unit or a butyl acrylate unit, and a styrene component such as a styrene unit or an a-methylstyrene unit.
  • silicone component such as a dimethylsiloxane unit or a phenylmethylsiloxane unit
  • an acrylate component such as an ethyl acrylate unit or a butyl acrylate unit
  • styrene component such as a styrene unit or an a-methylstyrene unit.
  • Acrylic component such as ethyl acrylate unit and butyl acrylate unit and conjugated component component such as butanediene unit and isoprene unit; and (4) Ethyl acrylate unit and acrylic acid
  • acrylic components such as butyl units, silicone components such as dimethylsiloxane units and phenylmethylsiloxane units, and rubbers composed of styrene components such as styrene units and a-methylstyrene units.
  • a rubber obtained by crosslinking a copolymer composed of a crosslinking component such as dibutylbenzene unit, aryl acrylate unit and butylene glycol diatalylate unit is also preferable.
  • the type of the layer other than the rubber layer is not particularly limited as long as it is composed of a polymer component having thermoplasticity! However, it preferably has a higher glass transition temperature than the rubber layer and is a polymer component.
  • the polymer having thermoplasticity include an unsaturated carboxylic acid alkyl ester-based unit, an unsaturated carboxylic acid-based unit, an unsaturated glycidyl group-containing unit, an unsaturated dicarboxylic anhydride-based unit, an aliphatic vinyl-based unit, and an aromatic unit.
  • Alkyl carboxylate-based units, unsaturated glycidyl group-containing units and unsaturated dicarboxylic anhydride-based units are preferred.
  • Polymers containing at least one or more selected units are preferred.
  • the monomer used as the raw material for the unsaturated carboxylic acid alkyl ester-based unit is not particularly limited, but (meth) acrylic acid alkyl ester is preferably used. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, n- (meth) acrylate Xyl, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate , Stearyl (meth) acrylate, octadecyl (meth) acrylate, phenyl (meth) acrylate
  • the unsaturated carboxylic acid monomer includes, but is not particularly limited to, acrylic acid, methacrylic acid, maleic acid, and a hydrolyzate of maleic anhydride.
  • Acrylic acid is particularly excellent in thermal stability. Acid and methacrylic acid are preferred, and methacrylic acid is more preferred. These can be used alone or in combination of two or more.
  • the monomer used as the raw material of the unsaturated glycidyl group-containing unit is not particularly limited, but is glycidyl (meth) acrylate, glycidyl itaconate, diglycidyl itaconate, aryl glycidyl ether, styrene.
  • Glycidyl (meth) acrylate is preferably used from the viewpoint that the effect of improving the impact resistance is large, such as 4-glycidyl ether and 4-glycidylstyrene. These units can be used alone or in combination of two or more.
  • Examples of the monomer as a raw material of the unsaturated dicarboxylic anhydride-based unit include maleic anhydride, itaconic anhydride, glutaconic anhydride, citraconic anhydride, and aconitic anhydride, and the like.
  • Maleic anhydride is preferably used from the viewpoint that the effect of improving the property is great. These units can be used alone or in combination of two or more.
  • ethylene, propylene, butadiene or the like is used as a monomer as a raw material of the aliphatic vinyl-based unit
  • a monomer which is a raw material of the above-mentioned unsaturated dicarboxylic acid-based unit such as maleimide, maleic acid, monoethyl maleate, itaconic acid and phthalic acid are used as the raw materials of the above-mentioned other unit-based units.
  • the type of the outermost layer is not particularly limited, and the unsaturated carboxylic acid alkyl ester-based unit and the unsaturated carboxylic acid unit may be used.
  • Acid units unsaturated glycidyl group-containing units, aliphatic vinyl units, aromatic butyl units, cyanide butyl units, maleimide units, unsaturated dicarboxylic acid units, unsaturated dicarboxylic anhydride units, and others And at least one selected from the group consisting of a polymer containing a butyl-based unit of an unsaturated carboxylic acid group, an unsaturated carboxylic acid-based unit, an unsaturated carboxylic acid-based unit, an unsaturated glycidyl group-containing unit and an unsaturated dicarboxylic acid.
  • Polymeric power containing acid anhydride units At least one selected from the group is preferred, and further, unsaturated carboxylic acid alkyl ester units and unsaturated Polymers containing Bonn acid units are more preferable.
  • the outermost layer in the above-mentioned multilayer polymer (B-1) is a polymer containing an unsaturated sulfonic acid alkyl ester-based unit and an unsaturated carboxylic acid-based unit, it may be heated.
  • the intramolecular cyclization reaction proceeds in the same manner as in the production of the thermoplastic copolymer (A) of the present invention described above, and the daltaric anhydride unit represented by the general formula (1) is formed. I found out.
  • the unsaturated alkyl carboxylate A multilayer structure polymer (B-1) having a polymer containing a ter-based unit and an unsaturated carboxylic acid-based unit is blended with a thermoplastic copolymer (A), and then heated and melt-kneaded under appropriate conditions.
  • the monomer used as the raw material for the unsaturated carboxylic acid alkyl ester-based unit is not particularly limited, but (meth) acrylic acid alkyl ester is preferred. Methyl (meth) acrylate is more preferably used.
  • the monomer used as the raw material of the unsaturated carboxylic acid-based unit is not particularly limited, but (meth) acrylic acid is preferred, and methacrylic acid is more preferably used.
  • the core layer is a styrene acrylate polymer and the outermost layer is represented by the above-mentioned general formula (1).
  • Copolymer of methyl phthalic anhydride or methyl methacrylate Z Dtaltaric anhydride unit represented by the above general formula (1) Z methacrylic acid polymer, core layer of dimethyl siloxane Z acrylic Butyl acrylate polymer, the outermost layer of which is methyl methacrylate polymer, the core layer of which is butanezene z styrene polymer and the outermost layer of which is methyl methacrylate polymer, and the core layer which is the outermost layer of butyl acrylate polymer Is a methyl methacrylate polymer ("Z" indicates copolymerization).
  • a preferable example is one in which one or both of the rubber layer and the outermost layer is a polymer containing a glycidyl methacrylate unit.
  • the core layer is a butyl acrylate z-styrene polymer
  • the outermost layer is a methyl methacrylate Z copolymer of dtaltaric anhydride units represented by the above general formula (1), or a methyl methacrylate Z Daltaric anhydride unit represented by the general formula (1):
  • Z-methacrylic acid polymer Ability to approximate the refractive index of acrylic resin (A), which is a continuous phase (matrix phase), and resin composition It is possible to obtain a good dispersion state in the material, and transparency that can meet the demands for higher sophistication has been developed in recent years. Therefore, it can be preferably used.
  • the weight average particle diameter of the multilayer structure polymer (B-1) of the present invention is preferably 50 to 400 nm, more preferably 100 to 200 nm. If the weight average particle size is less than 50 nm, the toughness may not be sufficiently improved, and if it exceeds 400 nm, the Tg may decrease.
  • the weight ratio of the core to the shell is not particularly limited. It is more preferably not less than 90 parts by mass and more preferably not less than 60 parts by mass and not more than 80 parts by mass.
  • the multilayer structure polymer of the present invention a commercially available product satisfying the above-mentioned conditions may be used, or a polymer produced by a known method may be used.
  • Multilayer structure polymer Commercial products of the multilayer structure polymer include, for example, “Metaprene” manufactured by Mitsubishi Rayon Co., Ltd., “Kane Ace” manufactured by Kanegabuchi Chemical Industry Co., Ltd., “Paraloid” manufactured by Kureha Chemical Industry Co., Ltd., and “Atariloid” manufactured by Rohm and Nose Co., Ltd. "Staphyroid” manufactured by Gantui-Danisei Kogyo Co., Ltd. and "Parapet SA” manufactured by Kuraray clay are listed, and these can be used alone or in combination of two or more.
  • a rubbery-containing daraft copolymer (B-2) that can be used as the acrylic elastic particle (B) of the present invention
  • a rubbery polymer can be used in the presence of a rubbery polymer.
  • Copolymerized graft copolymers are exemplified.
  • the rubbery polymer used for the graft copolymer (B-2) is not particularly limited, but a gen-based rubber, an acryl-based rubber, an ethylene-based rubber, or the like can be used. Specific examples include polybutadiene, styrene-butadiene copolymer, styrene-butadiene block copolymer, acrylonitrile-butadiene copolymer, butylbutadiene acrylate copolymer, polyisoprene, butadiene-methyl methacrylate copolymer, acrylic acid Examples thereof include a butyl-methyl methacrylate copolymer, a butadiene acrylate copolymer, an ethylene propylene copolymer, an ethylene propylene-based copolymer, an ethylene isopropylene copolymer, and an ethylene methyl acrylate copolymer. These Can be used alone or in a mixture of two or more.
  • the weight average particle diameter of the rubbery polymer constituting the graft copolymer (B-2) in the present invention is preferably 50 to 400 nm, more preferably 100 to 200 nm. . If the average particle size is less than 50 nm, the toughness may not be sufficiently improved, and if it exceeds 400 nm, Tg may decrease.
  • the weight average particle size of the rubbery polymer is determined by the sodium alginate method described in "Rubber Age, Vol. 88, p. 484—490 (1960), by E. Schmidt, PH Biddison", Using the fact that the particle size of polybutadiene to be creamed differs depending on the sodium concentration, determine the particle size at a cumulative weight fraction of 50% from the cumulative weight fraction of the creamed weight ratio and the sodium alginate concentration. Can be.
  • the graft copolymer (B-2) in the present invention comprises 10 to 80 parts by mass, preferably 20 to 70 parts by mass of a rubbery polymer with respect to 100 parts by mass of the graft copolymer (B-2). More preferably, it is obtained by copolymerizing 20 to 90 parts by mass, preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass of the above monomer (mixture) in the presence of 30 to 60 parts by mass. Can be If the proportion of the rubbery polymer is less than the above range or exceeds the above range, impact strength and surface appearance may be reduced.
  • the graft copolymer (B-2) may contain an ungrafted copolymer formed when the rubber mixture is graft-copolymerized with the monomer mixture.
  • the graft ratio is preferably from 10 to 100%.
  • the graft ratio is a weight ratio of the grafted monomer mixture to the rubbery polymer.
  • the force and impact strength is 0.1 to 0.6 dlZg It is preferably used in view of the balance between the moldability and the moldability.
  • the intrinsic viscosity of the butyl copolymer (B-2) in the present invention measured at 30 ° C in a methyl ethyl ketone solvent is not particularly limited, but is 0.2 to 1. OdlZg.
  • a force from the viewpoint of the balance between the impact strength and the molding performance is also preferably used, and more preferably 0.3 to 0.7 dl / g.
  • the method for producing the graft copolymer (B-2) in the present invention is not particularly limited. It can be obtained by known polymerization methods such as polymerization, solution polymerization, suspension polymerization and emulsion polymerization.
  • the difference in the refractive index is preferably 0.05 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • a method of adjusting each monomer unit composition ratio of the acrylic resin (A) and a rubber material used for Z or acrylic elastic particles (B) are used. The refractive index difference can be reduced by a method of adjusting the composition ratio of the polymer or the monomer, and an acrylic resin film having excellent transparency can be obtained.
  • the core layer is a butyl acrylate Z-styrene polymer
  • the outermost layer is methyl methacrylate Z, a copolymer of dtaltaric anhydride represented by the above general formula (1) having a unit force, or methyl methacrylate Z
  • It is a glutaric anhydride unit Z methacrylic acid polymer represented by the general formula (1).
  • a method of blending the acrylic elastomer particles and other additives with the acrylic resin for example, after blending the acrylic resin or the acrylic resin and other additive components in advance, usually at 200 to 350 ° C. A method of uniformly melting and kneading with a single-screw or twin-screw extruder can be used.
  • the cyclization reaction of the unsaturated carboxylic acid monomer unit and the unsaturated carboxylic acid alkyl ester monomer unit such as the shell portion imparted to the acrylic elastomer particles should be performed at the same time. Can be.
  • the difference in refractive index referred to here means that the acrylic resin film of the present invention is sufficiently dissolved in a solvent in which the acrylic resin (A) is soluble under appropriate conditions to form a cloudy solution, which is then centrifuged. Separation into a solvent-soluble part and an insoluble part by an operation such as separation, and purification of the soluble part (acrylic resin (A)) and the insoluble part (acrylic elastic particles (B)) respectively, followed by measurement The difference in refractive index (23 ° C, measurement wavelength: 550 nm) is shown.
  • the copolymer composition of the acrylic resin (A) and the acrylic elastic particles (B) in the substantial acrylic resin film is obtained by the operation of separating the soluble component and the insoluble component by the above-mentioned solvent. Each component can be analyzed separately.
  • the acrylic resin film of the present invention has the configuration described so far, All properties with a light transmittance of 91% or more, a haze of 1.5% or less, a folding endurance of 20 or more, and a heat shrinkage in at least one of the longitudinal direction and the width direction of less than 5% can be simultaneously satisfied.
  • the heat resistance which is another purpose, is improved.
  • the heat shrinkage in both the longitudinal direction and the width direction may be 5% or more.
  • the total light transmittance may be less than 91% or the haze may exceed 1.5%.
  • the total light transmittance and haze of the acrylic resin are values measured according to JIS-K7361 and JIS-K7136.
  • heat shrinkage means that two lines are drawn so that the film has a width of 10 mm and the measurement length is about 200 mm, and the distance between these two lines is accurately measured and is defined as L. Place this sample in a 100 ° C oven for 30 minutes
  • the acrylic resin film of the present invention is suitably used for optical isotropic use.
  • optical isotropic applications it is necessary to protect the protected object from external stress, heat, chemicals, etc., which does not affect the incident light optically in the material.
  • the total light transmittance needs to be 91% or more, and preferably 92% or more.
  • the upper limit is generally about 99% because loss due to interfacial reflection cannot be avoided. In order to bring the total light transmittance close to 100%, it is necessary to reduce the factors that inhibit this. For this reason, the turbidity, that is, the haze is required to be small, and is ideally zero. In the present invention Haze should be less than 1.5%. If the haze exceeds 1.5%, the total light transmittance may be less than 91%. The haze is preferably at most 1.0%, more preferably at most 0.5%.
  • the acrylic resin film of the present invention is suitably used for a protective film, a disk substrate, and the like.
  • the acrylic resin film withstands external stress for the purpose of protecting an object to be protected. Must withstand bending.
  • the number of times of folding endurance needs to be 20 or more. Here, it is the value obtained by measuring the film sample by the method based on the number of folding endurance and PIO IS P8115-1994.
  • the folding number is preferably 50 or more, and more preferably 100 or more.
  • the heat shrinkage must be small to use as a protective film or lens. Heat shrinkage of the protective film is not preferable because it causes stress to the protected object.
  • the heat shrinkage in at least one of the longitudinal direction and the width direction is less than 5%. It is preferably at most 2%, more preferably at most 1%. Ideally it is 0%. Further, it is preferable that the heat shrinkage in both orthogonal directions is less than 5%.
  • the acrylic resin film of the present invention preferably has an elongation at break in at least one direction of 10% or more, more preferably 15% or more. Further, the elongation at break in the orthogonal direction is more preferably 10% or more.
  • the acrylic resin film has appropriate flexibility, reduces film breakage during film formation and processing, and improves workability such as slitting properties. It is preferable for improvement.
  • the elongation at break of such an acrylic resin film is measured by a method according to IS-C2318.
  • the upper limit of the elongation at break of the acrylic resin film is not particularly limited, but is considered to be about 50% in practice.
  • the acrylic resin film of the present invention preferably has a phase difference of 10 nm or less, more preferably 5 nm or less, and still more preferably 2 nm or less, for a light having a wavelength of 550 nm.
  • the film can be suitably used as a protective film such as a polarizing plate or an optical disk as an optical isotropic film.
  • the phase difference for a light beam with a wavelength of 550 nm is small, but the lower limit is practically considered to be about 0.1 nm.
  • the phase difference with respect to the light having a wavelength of 550 nm according to the present invention was measured using an automatic birefringence meter (KOBRA-21ADH) manufactured by Oji Scientific Co., Ltd.
  • the phase difference for the light beam with a wavelength of 548.3 nm, the phase difference for the light beam with a wavelength of 628.2 nm, and the phase difference for the light beam with a wavelength of 752.7 nm are measured, and the correlation between the phase difference (R) and the measured wavelength ( ⁇ ) at each wavelength is determined.
  • the acrylic resin film of the present invention has a refractive index of nx and ny (where nx ⁇ ny) in the orthogonal axis direction in the plane of the acrylic resin film with respect to a light having a wavelength of 590 nm, and a light having a wavelength of 59 Onm.
  • the retardation Rth in the thickness direction defined by the following equation is preferably 10 ⁇ m or less. More preferably, it is 8 nm or less, still more preferably 5 nm or less, and most preferably 2 nm or less.
  • the acrylic resin film is excellent not only in the optical isotropy in the film plane but also in the thickness direction. It can be more suitably used for protective films such as plates and optical disks.
  • the phase difference Rth in the thickness direction is small, but the lower limit is practically considered to be about 0.1 nm.
  • a film having a thickness of 41 ⁇ m and a phase difference of 0.4 nm in the thickness direction can be obtained.
  • Thickness direction retardation Rth (nm) dx ⁇ (nx + ny) / 2-nz ⁇
  • Acrylic ⁇ film of the present invention preferably photoelastic coefficient is one 2 X 10 _12 / Pa ⁇ 2 X 10 _12 / Pa. More that photoelastic coefficient is one 2 X 10 _12 / Pa ⁇ 2 X 10 _12 / Pa, when used in a liquid crystal television having a large screen, the thermal expansion of the other members are bonded together with acrylic ⁇ film, or It is preferable because the change in retardation is small even when the acrylic resin film is stressed due to residual stress or the like.
  • the photoelastic coefficient of an acrylic resin film is generally small, but when styrene or maleimide is copolymerized or an aromatic substituent is introduced to improve heat resistance, the photoelastic coefficient also increases.
  • the acrylic resin film of the present invention can have both improved heat resistance and a low photoelastic coefficient due to the structure of dtaltaric anhydride.
  • the acrylic resin film of the present invention preferably contains an ultraviolet absorber depending on the application.
  • an ultraviolet absorber depending on the application.
  • the ability to use any substance as the ultraviolet absorber for example, benzotriazole, salicylate, benzophenone, oxybenzophenone, cyanoacrylate, polymer, and inorganic can be exemplified.
  • Commercially available ultraviolet absorbers include, for example, Adeka Stub of Asahi Den-Dani Kogyo Co., Ltd. represented by the following general formula (3), TINUVIN registered trademark, Uvinul of BASF Co., Ltd., and ultraviolet absorber of Johoku Chemical Co., Ltd. . [0094] [Formula 9]
  • the aromatic polymer absorbs ultraviolet rays by the aromatics of the main chain, there is a problem that the main chain is cut off by the ultraviolet rays and deteriorates.
  • the acrylic resin film of the present invention has a main chain portion that emits ultraviolet rays. Since it does not absorb, it does not deteriorate, and it is preferable because a desired ultraviolet cut function can be imparted depending on the type and amount of the ultraviolet absorber to be added. Further, even if the ultraviolet absorber to be added is an aromatic compound, it is preferred because it is present at random and hardly develops a phase difference.
  • the amount of the ultraviolet absorber added is preferably from 0.1 part by mass to 5 parts by mass based on 100 parts by mass of the total of the acrylic resin (A) and the acrylic elastic particles (B). If the amount is less than 0.1 part by mass, a desired effect may not be obtained. On the other hand, if it exceeds 5 parts by mass, problems such as uneven dispersion, a decrease in total light transmittance, and an increase in haze may occur.
  • a light having a wavelength of 380 nm or less is referred to as ultraviolet light.
  • the light transmittance of an atalyl resin film to which an ultraviolet absorber is added is preferably 10% or less for light of 380 nm. More preferably, it is 5% or less.
  • the light transmittance of light at 380 nm can be reduced by increasing the amount of UV absorber, and can be increased by decreasing it. By cutting out UV rays sufficiently, materials that dislike UV rays can be protected.
  • the light transmittance at 380 nm was measured using the following apparatus, and the transmittance corresponding to light of each wavelength was determined.
  • T1 is the intensity of light that has passed through the sample
  • TO is the intensity of light that has passed through air at the same distance except that it has not passed through the sample.
  • UV measuring instrument U 3410 (Hitachi Keisoku Co., Ltd.)
  • Measurement mode Transmission For other purposes, it is measured in the range of 300 nm to 800 nm, and the light transmittance at 380 nm refers to the value at 380 nm.
  • the acrylic resin film of the present invention may include other acrylic resins (for example, polyethylene, polypropylene, acrylic resin, polyamide, polyphenylene sulfide resin, and polystyrene) within a range that does not impair the object of the present invention.
  • Ether ether ketone resin, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, etc. thermosetting resin (for example, phenol resin, melamine resin, polyester resin, silicone resin, epoxy resin) Fats and the like, and hindered phenol, benzoate, and cyanoacrylate antioxidants, higher fatty acids, acid esters and acid amides, and higher alcohols.
  • Lubricants and plasticizers, montanic acid and its Release agents such as salts, esters thereof, half esters thereof, stearyl alcohol, stearamide, and ethylene wax; coloring inhibitors such as phosphites and hypophosphites; halogen-based flame retardants; Additives such as halogen-based flame retardants, nucleating agents, amine-based, sulfonic-acid-based, polyether-based antistatic agents, and coloring agents such as pigments may be arbitrarily contained. However, in view of the characteristics required by the application to which the additive is applied, it is necessary to add the additive within a range where the color of the additive does not adversely affect the thermoplastic polymer and the transparency is not reduced.
  • the method of blending the acrylic resin (A) with the acrylic elastic particles (B), and other optional components such as additional carotenants there is no particular limitation on the method of blending the acrylic resin (A) with the acrylic elastic particles (B), and other optional components such as additional carotenants.
  • a method in which A) and other optional components are preliminarily blended and then uniformly melt-kneaded at 200 to 350 ° C by a single or twin screw extruder is preferably used.
  • the acrylic elastic particles (B) are blended, a method in which both the components (A) and (B) are mixed in a solvent solution and the solvent is removed therefrom can be used.
  • a monomer mixture containing an unsaturated carboxylic acid monomer and an unsaturated carboxylic acid alkyl ester monomer is copolymerized.
  • the copolymer (a) is obtained by the following procedure. After the copolymer (a) and the acrylic elastomer particles (B) are preliminarily blended in the next step, usually at 200 to 350 ° C, a single-screw or twin-screw extruder is used. By uniformly melting and kneading, the cyclization reaction of component (a) In addition, the component (B) can be blended.
  • the cyclization reaction in the case where a copolymer composed of an unsaturated carboxylic acid monomer unit and an unsaturated carboxylic acid alkyl ester monomer unit is included in a part of the component (B) may be simultaneously performed. it can.
  • the acrylic resin used in the acrylic resin film of the present invention is preferably filtered for the purpose of removing foreign substances. By removing foreign matter, it can be usefully used as an optical film.
  • a known method can be used for filtration.A resin dissolved in a solvent such as tetrahydrofuran, acetone, methylethylketone, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, etc. is heated at a temperature of 25 ° C or higher and 100 ° C or lower. It is preferable to appropriately filter with a filter, for example, sintered metal, porous ceramic, sand, wire mesh, or the like in order to prevent coloring of the resin.
  • the acrylic resin film of the present invention has excellent heat resistance at a heat deformation temperature of 110 ° C or more.
  • the upper limit is about 200 ° C. in consideration of the toughness, which is preferably 130 ° C. or more, and the elongation at break.
  • the thermal deformation temperature was determined by raising the temperature of the measurement sample using thermomechanical analysis (TMA) and plotting the amount of deformation against the measured temperature.
  • TMA thermomechanical analysis
  • the temperature at which the amount of deformation changed by 2% or more was defined as the heat deformation temperature.
  • the TMA was applied to a sample having a measurement sample width of 4 mm and a measurement length of 15 mm with a sample measurement module (TM-9400) using a thermal analysis station (MTS-9000) manufactured by Vacuum Riko Co., Ltd.
  • the heat distortion temperature was measured by applying a bow I tension load of 15 kgfZmm 2 per unit cross-sectional area of the measurement sample.
  • a method for producing the acrylic resin film of the present invention a known method can be used. That is, the ability to use a production method such as an inflation method, a T-die method, a calendar method, a cutting method, a solution casting method (casting method), an emulsion method, and a hot press method. Die method, casting method and hot pressing method can be used.
  • the residual volatile component in 100 parts by mass of the acrylic resin film containing the residual volatile component is 3 parts by mass or less.
  • the residual volatile matter exceeds 3 parts by mass, the apparent Tg decreases, the winding property of the film deteriorates due to blocking, and the organic solvent bleeds out with time, and the adhesiveness to other members decreases.
  • the residual volatile matter of the acrylic resin film is defined as being determined by the following evaluation method. The thermal weight loss of the acrylic resin film was measured using a thermo-mass measuring device in a nitrogen atmosphere under the conditions of a heating rate of 10 ° CZ, and the following was determined from the mass at 35 ° C and the mass at 200 ° C. The residual volatile content is determined by the formula.
  • the residual volatile matter is more preferably 2 parts by mass or less, further preferably 1 part by mass or less, and most preferably 0.5 part by mass or less. And The lower the volatile content remaining in the acrylic resin film, the better, but it is practically considered to be about 100 ppm.
  • the solvent for dissolving the acrylic resin is not particularly limited, but a halogenated hydrocarbon-based organic solvent such as methylene chloride, ethylene chloride, and chloroform, a ketone-based organic solvent such as acetone and methyl ethyl ketone, and tetrahydrofuran. And dimethylformamide, dimethylsulfoxide, N-methyl-2-pyrrolidone and the like. These solvents may be used alone or as a mixture of two or more.
  • this polymerization solution may be used as it is as an acrylic solution for film formation, or the isolated acrylic resin may be dissolved in the above organic solvent to form a film for film formation.
  • An acrylic resin solution may be used.
  • examples of the solvent include hydrocarbon organic solvents such as cyclohexane, benzene, toluene, xylene, styrene, and cyclopentane, methanol, ethanol, isopropyl alcohol, n-butanol, tert- Alcohol organic solvents such as butyl alcohol; ether organic solvents such as dimethyl ether, getyl ether, and butyl ether; ester organic solvents such as methyl acetate, ethyl acetate, and n-butyl acetate; ethyl acetate solvent; cellosolve acetate; —Polyhydric organic solvents such as butyl ether solvent may be used alone or in combination of two or more.
  • hydrocarbon organic solvents such as cyclohexane, benzene, toluene, xylene, styrene, and cyclopentane
  • methanol isopropyl alcohol
  • the viscoelasticity and surface tension of the acrylic resin solution change, and the surface properties and drying characteristics of the acrylic resin film, and the releasability from the support can be improved.
  • the solubility of the acrylic resin is poor. If an organic solvent is mixed in a large amount, the stability of the acrylic resin solution will deteriorate and the acrylic resin may precipitate, so care must be taken. is there.
  • the concentration of the acrylic resin solution is appropriately adjusted depending on the type of the solvent and the intended coating thickness of the acrylic resin.
  • the total of A) and the acrylic elastomer particles (B) is preferably in the range of 5 to 40 parts by mass, more preferably in the range of 10 to 30 parts by mass.
  • the concentration of the acrylic resin solution is the concentration of the acrylic resin in the entire acrylic resin solution. If the concentration of acrylic resin solution is less than 5 parts by mass, viscosity is low.Acrylic resin film has poor flatness due to convection of organic solvent during the initial drying stage, and organic solvent is dried. It is not preferable because the productivity is lowered, for example, a long time is required. Conversely, if the concentration of the acrylic resin solution exceeds 40 parts by mass, the viscosity is high, the handling properties are poor, and problems such as difficulty in performing high-precision filtration are not preferred.
  • filter In order to improve the film defect and haze value of the acrylic resin solution, it is preferable to remove foreign substances by filtration.
  • One type of filter used for such filtration is, for example, a filter made of a polymer such as wire mesh, sintered metal, porous ceramic, glass, polypropylene resin or polyethylene resin, or a combination of two or more of the above materials. Filter.
  • the filtration accuracy of the acrylic resin solution is preferably 10 m or less, more preferably 5 m or less, and still more preferably 1 m or less. It is preferable that the filtration accuracy of the acrylic resin solution is as small as possible. However, if the filtration accuracy is too small, the frequency of filter replacement due to clogging increases, which is not preferable because productivity is reduced. It is considered appropriate that the lower limit of the filtration system for acrylic resin solution is about 0: m.
  • a method of applying the acrylic resin solution to the support there is a method that is appropriately selected depending on the viscoelasticity of the acrylic resin solution, the applied thickness of the acrylic resin film, the type of the support, the organic solvent used, and the like.
  • Rotary roll coater, reverse roll coater, gravure coater, knife co 1 ⁇ ta ' ⁇ , blur 1 ⁇ doko 1 ⁇ ta' ⁇ , mouth, / doko 1 ⁇ "ta ' ⁇ ", ⁇ adta ⁇ ⁇ " Coating methods such as "coating”, "coating”, fountain coater, kiss coater, screen coater, comma coater, and slit die coater.
  • a support to which the acrylic resin solution is applied a polymer film, a drum,
  • a polymer film it is preferable to use a polymer film as the support because the peelability between the acrylic resin film after drying and the support is good.
  • the support for such a polymer film is not particularly limited as long as it is resistant to the organic solvent used in the acrylic resin solution. Examples thereof include a polyethylene terephthalate film, a polyethylene naphthalate film, a polypropylene film, and a polyethylene film. And polyphenylene sulfide film, aramide film, polyimide film and the like. Among them, polyethylene terephthalate film excellent in balance among rigidity, thickness unevenness, defect-freeness and cost is preferable.
  • the acrylic resin solution is applied onto a support, dried, and peeled from the support to obtain an atalyl resin film. It is also preferable to use a wet method or the like in which the solution is solidified with a coagulating liquid before the drying step.
  • the film thickness is preferably from 50 to 200 ⁇ m, more preferably from 100 to 150 ⁇ m. If the film thickness of the support is less than 50 m, the film may be applied with low rigidity, or if the film is easily dried, a problem such as poor flatness of the acrylic resin film may easily occur. ,. On the other hand, if the thickness of the support exceeds 200 m, it is not preferable because heat is hardly transmitted to the acrylic resin film which is not economical.
  • the acrylic resin film of the present invention preferably comprises at least three or more steps of initial drying, intermediate drying, and final drying in the step of drying the acrylic resin film applied on the support.
  • Suitable drying conditions for the acrylic resin film applied to the support should be set according to the drying method, the organic solvent used, the viscoelasticity of the acrylic resin solution, the glass transition temperature of the acrylic resin, and the like. However, if the initial drying temperature exceeds the boiling point of the organic solvent to be used, the acrylic resin film is likely to be defective due to foaming, so that the temperature is preferably lower than the boiling point of the solvent. If the temperature is too low, it takes a long time to dry the acrylic resin film and the productivity is poor, so the lower limit is considered to be about 0 ° C.
  • the drying step including the three steps of the initial drying, the intermediate drying, and the final drying may be further increased.
  • the drying temperature may be stepwise or continuous with respect to the viewpoint of foam suppression. Preferably, the temperature is raised continuously.
  • the drying time in each drying step is preferably about 1 to 120 minutes.
  • An appropriate method for drying the acrylic resin film should be selected according to the organic solvent used, the viscoelasticity of the acrylic resin solution, the glass transition temperature of the acrylic resin, the thickness of the acrylic resin film, and the like.
  • drying methods such as hot air injection, a drum method, infrared rays, microwaves (induction heating), electromagnetic induction heating, ultraviolet rays, and electron beams can be used.
  • Drying of the acrylic resin film may be performed on the support until final drying! Alternatively, the support and the acrylic resin film may be peeled off during the drying and dried again. When the film is dried after peeling, it is preferable to hold the film edge for the purpose of preventing flatness from being degraded due to drying shrinkage.
  • the acrylic resin film of the present invention is a single-layer film or a laminated film made of a laminated film, for example, one layer is formed, and another layer is formed thereon. Or a method of laminating in a base or a composite pipe.
  • an ethatruder-type melt extruder equipped with a single-screw or twin-screw extrusion screw can be used.
  • the melt extrusion temperature for producing the film of the present invention is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
  • the melt shear rate is preferably from 1000 S- 1 to 5000 S- 1 .
  • melt-kneading is performed using a melt-extruding apparatus, from the viewpoint of suppressing coloration, it is preferable to perform melt-kneading under reduced pressure using a vent or to perform melt-kneading under a nitrogen stream.
  • the casting method is as follows.
  • the molten resin is measured by a gear pump and then discharged by a T-die capping force. It is preferable to obtain a non-stretched film by closely cooling and solidifying a cooling medium such as a drum by a knife method, a press roll method, or the like, and rapidly cooling to room temperature.
  • the stretching method of biaxial stretching is not particularly limited, and a method such as a sequential two-time stretching method or a simultaneous biaxial stretching method can be used.
  • a method of simultaneous biaxial stretching using a tenter by a driving method using a linear motor Japanese Patent Publication No. 63-12772, etc.
  • a chain driving method, a screw method, a pantograph method, or the like can be adopted as a driving method of the film gripping clip.
  • the temperature for simultaneous biaxial stretching is preferably not lower than the glass transition temperature Tg of the acrylic resin and not higher than (glass transition temperature Tg + 50 ° C.).
  • the stretching ratio may be 1.1 to 5 times in each of the vertical and horizontal directions. In order to improve the folding endurance, 1.1 to 2.5 times is particularly preferable.
  • the stretching speed is not particularly limited, but 100 to 50000% Z is preferable.
  • the obtained unoriented film is treated with the acrylic resin at (glass transition temperature Tg-30 ° C) or more and (glass transition temperature Tg + 50 ° C) or less.
  • the temperature was increased by contact on a group of rolls heated at a time, and the film was stretched 1.1 to 2.5 times in the longitudinal direction. After the film was cooled once, the end of the film was put on a tenter clip.
  • Acrylic resin is stretched 1.1 to 2.5 times in the width direction in an atmosphere of (glass transition temperature Tg + 5 ° C) or more and (glass transition temperature Tg + 50 ° C), and is biaxially oriented.
  • Acrylic resin film is obtained.
  • a cover film is attached to at least one surface and stretched for the purpose of reducing scratches caused by contact between the roll and the film.
  • a known resin film can be used as the force bar film.
  • the cover film include a polyolefin film and a polyester film. Particularly preferred are polypropylene films and Z or polyethylene naphthalate films.
  • the heat treatment conditions are as follows: under constant length, under fine stretching, under a relaxed state, or at a gap, from (glass transition temperature Tg) to (glass transition temperature + It is preferably performed for 0.5 to 60 seconds in the range of (130 ° C), and for 0.5 to LO seconds in the range of (glass transition temperature Tg + 40 ° C) to (glass transition point + 80 ° C). It is most preferred to do so. Below the above range, the heat shrinkage increases, and above the above range, the haze is high and the impact resistance may be reduced.
  • the film biaxially oriented and heat-treated in each of the above methods is gradually cooled to room temperature and wound up by a winder.
  • the cooling method is preferably to gradually cool to room temperature in two or more steps.
  • performing a relaxation treatment of about 0.5 to 10% in the longitudinal direction and the width direction is effective in reducing the heat shrinkage.
  • the first stage (heat treatment temperature 20 ° C) ⁇ (heat treatment temperature 80 ° C), the second stage (first stage cooling temperature 30 ° C) ⁇ (first stage cooling temperature 40 ° C Is preferred, but is not limited thereto.
  • a hard coat layer is formed on at least one surface and an antireflection film is formed on at least one surface of the film.
  • a method using a multifunctional acrylate which can use a known method can be exemplified.
  • polyfunctional acrylates include 1,6-hexanediol diatalylate, 1,4 butanediol diatalylate, ethylene glycol diatalylate, diethylene glycol diatalylate, tetraethylene glycol dioletalate, and tripropylene glycol diatalylate.
  • Diatalylates such as propylene glycol diatalylate, polyethylene glycol diatalylate and bisphenol A dimethacrylate
  • trimethylolpropane triatalylate Triatalylates such as rimethyrolpropane trimetharate, pentaerythritol monohydroxytriatalylate and trimethylolpropanetriethoxytitalylate; tetras such as pentaerythritol tetraaphthalate and di-trimethylolpropane Atalylates; and pentaatalylates such as pentaerythritol (monohydroxy
  • the antireflection film is not limited, and a known method can be used.
  • the antireflection film may be a dry type using an inorganic compound or a wet type using an organic compound.
  • a single-layer type using one low-refractive-index layer, which is preferable, has a high refractive index layer, a low refractive index layer, and a medium refractive index layer.
  • a multilayered structure using an arbitrary layer is also preferably used.
  • the film obtained by forceful use of its excellent transparency, heat resistance, light resistance, and toughness is used in electrical, electronic parts, optical filters, automobile parts, mechanical mechanism parts, OA equipment, and home electric appliances. It can be used for various applications such as housings for containers and the like, their parts, and general goods.
  • the optical filter is a member for a display device, and particularly refers to a member used for a flat panel display such as a liquid crystal display, a plasma display, a field emission display, and an electorescence display.
  • Examples include optical plates, retardation films, light diffusion films, viewing angle widening films, reflection films, antireflection films, antiglare films, brightness enhancement films, prism sheets, and conductive films for touch panels.
  • Specific applications of the molded article include, for example, various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, optical equipment represented by cameras, watches, and the like; Because of its excellent performance, various optical discs (VD, CD, DVD, MD) are used as optical equipment related parts such as cameras, VTRs, viewfinders such as projection TVs, filters, prisms, and Fresnel lenses. LCD, flat panel display, plasma display light guide plate, Fresnel lens, polarizing plate, polarizing plate protective film, retardation film, etc.
  • VD optical discs
  • LCD flat panel display
  • plasma display light guide plate Fresnel lens
  • polarizing plate polarizing plate protective film
  • retardation film etc.
  • Light diffusion film, viewing angle widening film, reflection film, anti-reflection film, anti-glare film, brightness enhancement film Lum, a prism sheet, a conductive film for Tatsuchipane Le, cover, etc., are very useful for these various applications, it is particularly useful as a polarizing plate protective film.
  • the hydrogen of 3 and the peak of 12.4 ppm can determine the copolymer composition from the hydrogen of carboxylic acid of methacrylic acid and the integral ratio of the spectrum.
  • hydrogen of the aromatic ring of styrene is found at 6.5 to 7.5 ppm, and the spectral specific power is also similar.
  • the coalescence composition can be determined.
  • glutaric anhydride unit is characteristic of the absorption of 1800 cm _1 and 1760 cm _1, it can be distinguished from the unit Ya vinyl carboxylic acid Arukirue ester derived from units derived from vinyl carboxylic acid.
  • the weight average particle size of the rubbery polymer is described in "Rubber Age, Vol. 88, p. 484—490.
  • test piece width 5 ⁇ 0. 03mm, a 110 ⁇ 5 mm length, weights and 2. 5kgfZmm 2 per cross-sectional area. The measurement was performed three times, and the average value was obtained.
  • the haze value (%) and the total light transmittance (%) at 23 ° C. were measured using a direct-read haze meter manufactured by Toyo Seiki Co., Ltd. The measurement was performed three times, and the average value was obtained.
  • Total light transmittance and haze were measured according to JIS-K7361 and JIS-K7136. Value.
  • Sample size width 10mm, length 150mm
  • the tensile Young's modulus was determined from the tangent to the rising portion of the obtained load-elongation curve.
  • the elongation at break was calculated by multiplying the value obtained by subtracting the distance between the chucks from the length at the time of film breakage by the distance between the chucks and multiplying by 100. The measurement was performed five times, and the average value was obtained.
  • the refractive index in the direction of the orthogonal axis in the acrylic resin film plane for the light of wavelength 590 nm, nx, ny (where nx ⁇ ny), the refractive index nz in the thickness direction of the acrylic resin film with respect to a light beam having a wavelength of 590 nm was measured, and the following formula force was also obtained when the thickness of the acrylic resin film was d (nm). The measurement was performed once.
  • Tl is the intensity of light that passed through the sample
  • TO is the intensity of light that passed through air at the same distance except that it did not pass through the sample.
  • UV measuring instrument U 3410 (Hitachi Keisoku Co., Ltd.)
  • a sample having a short side of lcm and a long side of 7 cm was cut out.
  • a tension (F) of lkg / mm 2 (9.81 ⁇ 10 6 Pa) was applied in the long-side direction with the upper and lower lcms being checked.
  • Re (nm) was measured using a polarizing microscope 5892 manufactured by Nikon Corporation.
  • the light source used was the sodium D line (589 nm).
  • the measurement was performed using a thermal mass spectrometer (TGA-50H) manufactured by Shimadzu Corporation and a thermal analyzer (TA-50) analyzer combined with a personal computer for data processing.
  • thermomechanical analysis TMA
  • TMA thermomechanical analysis
  • the temperature of the measured sample was raised and the amount of deformation against the measured temperature was plotted.
  • the temperature at which the amount of deformation changed by 2% or more was defined as the heat deformation temperature.
  • TMA was applied to a sample with a sample width of 4 mm and a measurement length of 15 mm using a sample measurement module (TM-9400) using a thermal analysis station (MTS-9000) manufactured by Vacuum Riko Co., Ltd.
  • the heat distortion temperature was measured by applying a bow I tension load of 15 kgf Zmm 2 per unit cross-sectional area of the measurement sample. The measurement was performed once.
  • Acetone was cast on the acrylic resin film of the present invention, refluxed for 4 hours, and this solution was centrifuged at 9,000 rpm for 30 minutes to obtain an acetone-soluble component (component (A)) and an insoluble component ((B)). Component). These were dried under reduced pressure at 60 ° C for 5 hours. Each of the obtained solids was pressed at 250 ° C to form a 0.1 mm thick film, and then refracted at 23 ° C and 550 nm wavelength by Abbe refractometer (DR-M2 manufactured by Atago Co., Ltd.). The rate was measured. The absolute value of the difference in the refractive index between the component (A) and the component (B) was used. The measurement was performed once.
  • thermoplastic polymer as a solvent in dimethylformamide
  • the measurement was carried out using a differential scanning calorimeter (Perkin Elmer DSC-7) at a temperature rising rate of 20 ° C./min under a nitrogen atmosphere. The measurement was performed once.
  • the midpoint glass transition temperature (Tmg) of Pio IS K7121-1987 is adopted as the glass transition temperature (Tg).
  • a 12.1 inch rectangle was punched out with a Thomson punching machine so that the angle of the polarizer absorption axis was at 45 ° to the side.
  • a methyl methacrylate Z-acrylamide copolymer suspension (adjusted by the following method. 20 parts by mass of methyl methacrylate, acrylamide 80 parts by mass, 0.3 parts by mass of potassium persulfate, and 1500 parts by mass of ion-exchanged water are charged into a reactor, and the temperature is maintained at 70 ° C. while the reactor is replaced with nitrogen gas. The solution is obtained by dissolving 0.05 part in 165 parts of ion-exchanged water, obtaining an aqueous solution of methyl acrylate and acrylamide copolymer.
  • the obtained aqueous solution was used as a suspending agent.
  • the following mixture was added while stirring the reaction system, and the temperature was raised to 70 ° C.
  • the time when the internal temperature reached 70 ° C was set as the start of polymerization, and kept for 180 minutes to complete the polymerization.
  • the reaction system was cooled, the polymer was separated, washed, and dried according to a conventional method to obtain a beaded copolymer (a-1).
  • the copolymer (a-1) had a polymerization rate of 98% and a weight average molecular weight of 90,000.
  • the composition ratio of this acrylic resin in the unit of dartal anhydride is 23 mol%.
  • the core-shell polymer obtained as described below was used.
  • a glass container (5 liters capacity) with a cooler was charged with 120 parts by mass of deionized water, 0.5 parts by mass of potassium carbonate, 0.5 parts by mass of dioctyl sulfosuccinate, and 0.005 parts by mass of potassium persulfate. After stirring in a nitrogen atmosphere, 53 parts by mass of butyl acrylate, 17 parts by mass of styrene, and 1 part by mass of aryl methacrylate (crosslinking agent) were charged. The mixture was reacted at 70 ° C. for 30 minutes to obtain a core layer polymer.
  • the acrylic resin film obtained by the force was excellent in heat resistance, transparency and toughness, and also excellent in processing characteristics!
  • the characteristics of the film are as follows.
  • a portion of the acrylic resin solution was placed on a glass plate to which a polyethylene terephthalate film (100 m thick) was fixed, and a uniform film was formed using a bar coater. This was heated at 50 ° C for 10 minutes to obtain a self-supporting film. The resulting film was also peeled off from the polyethylene terephthalate film and fixed to a metal frame, and further heated at 100 ° C for 10 minutes for 120 minutes. The film was heated at 20 ° C for 20 minutes, at 140 ° C for 20 minutes, and at 170 ° C for 40 minutes to obtain a film. Tables 1 and 2 summarize the types, added amounts, and film properties of the acrylic elastomer particles.
  • Adekastab LA36 of Asahi Den-Dani Kogyo Co., Ltd. represented by the general formula (3) was used as the UV absorber.
  • Extrusion and heat treatment were carried out in the same manner as in Example 1, and the extrusion amount was adjusted to obtain an unstretched acrylic resin film having a thickness of 100 ⁇ m.
  • the acrylic resin film obtained by rubbing had cracks during die cutting, which had a small number of fold-resistant times. Also, it is not suitable as an optical filter having a bad haze.
  • the characteristics of the film are as follows.
  • Polymethyl methacrylate [weight average molecular weight 120,000] 30 parts by mass, butyl acrylate-methyl methacrylate copolymer [butyl acrylate unit 20 parts by mass and methyl methacrylate unit 80 parts by mass, weight average molecular weight 300,000] 50 parts by mass Acrylic resin that is also strong (A3) Acrylic polymer with a three-layer structure including 80 mass parts and a spherical rubber elastic layer (B2) [Inner layer: Copolymer of methyl methacrylate, middle layer: butyl acrylate Soft rubber elastic body mainly composed of: outermost layer: polymethyl methacrylate, average particle size 300 nm] (Japanese Patent Publication No.
  • Example 3 20 parts by mass are melt-kneaded to obtain an acrylic resin.
  • the composition was obtained and pelletized with a twin screw extruder.
  • This acrylic resin pellet is converted into a T (A set temperature of 250 ° C.) and cooled so that both sides were completely adhered to a polishing roll to obtain an acrylic resin film.
  • This acrylic resin film was stretched in the width direction using a uniaxial tenter at a stretching temperature of 100 ° C, a stretching ratio of 3 and a stretching speed of 8.6 mZ to obtain an acrylic resin film.
  • the acrylic resin film obtained by rubbing cracked during die cutting which had a small number of folds.
  • the heat dimensional stability is poor because the heat deformation temperature is low.
  • it is suitable as an optical filter with poor haze.
  • the characteristics of the film are as follows.
  • Example 1 A1 59 41 0 0 B1 75/25 70/30 155 25 1-Melting Yes 1 100
  • Example 2 32 2 1 0 B7 75/25 70/30 155 20 in A2 66--Solution 41
  • Example 3 A2 66 32 2 0 B7 75/25 70/30 155 10 ⁇ -Solution 48
  • Example 4 A2 ⁇ 66 32 2 0 B7 75/25 70/30 155 20 LA36 1 No solution 50
  • Example 5 A2 66 32 2 0 B7 75/25 70/30 155 20 ⁇ 36 2 Solution None 50 Comparative Example 1 A1 59 41 1 _ 0 0 B1 75/25 70/30 155 25 1-Melting None 100
  • the film obtained by force is energized by its excellent transparency, heat resistance, light resistance, and toughness. It can be used for various applications such as housings for electrical and electronic parts, optical filters, automobile parts, mechanical mechanism parts, OA equipment, home electric appliances, etc. and their parts, and general goods.
  • Specific applications of the above molded products include, for example, optical devices represented by various covers, various terminal boards, printed wiring boards, speakers, microscopes, binoculars, cameras, watches, etc., and excellent in transparency and heat resistance
  • Substrate protective film, optical switch, optical connector, etc. information equipment related parts, such as liquid crystal display, flat panel display, light guide plate of plasma display, Fresnel lens, polarizing plate, polarizing plate protective film, retardation film, light diffusion Film, viewing angle widening film, reflection film, anti-reflection film, anti-glare film, brightness enhancement film ,
  • a prism sheet, a conductive film for Tatsuchipane Le, cover, etc. is very useful for these various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

【課題】  透明性、耐候性、耐熱性および靱性にともに優れたアクリル樹脂フィルムは存在しなかったということに鑑み、そのような特性を有した新規かつ工業上有用なアクリル樹脂フィルムを提供することにある。  また、該アクリル樹脂フィルムに例えば、該フィルムの少なくとも1面にハードコート層が形成され、さらに該フィルムの少なくとも1面に反射防止膜が形成されてなるアクリル樹脂フィルム、および該フィルムからなる光学フィルターを提供することにある。 【課題を解決するための手段】  グルタル酸無水物単位を含有するアクリル樹脂に、アクリル弾性体粒子を配合したアクリル樹脂フィルムであって、全光線透過率が91%以上、ヘイズが1.5%以下、耐折回数の値が20以上かつ熱収縮試験において、長手方向および幅方向の少なくとも一方の熱収縮率が5%未満であるアクリル樹脂フィルム。

Description

明 細 書
アクリル樹脂フィルムおよび製造方法
技術分野
[0001] 本発明は、新規かつ工業上有用な透明性、耐候性、耐熱性および靱性に優れた アクリル榭脂フィルムに関する。
[0002] さらに詳しくは、本発明のアクリル榭脂フィルムは、例えば、フラットディスプレイパネ ル等の表示材料、車両用内装材および外装材、電化製品、建材用内層および外装 材等の表面表皮に用いられる透明性、耐候性、耐熱性および靱性に優れたアクリル 榭脂フィルム、および、ポリカーボネート、塩ィ匕ビニルなどの表皮保護等に使用され ている、透明性、耐候性、耐熱性および靱性に優れたアクリル榭脂フィルムに関する 背景技術
[0003] アクリル榭脂フィルムは透明性や表面光沢性および耐光性に優れているため、液 晶ディスプレイ用シートまたはフィルム、導光板などの光学材料、車両用内装材およ び外装材、 自動販売機の外装材、電化製品、建材用内層および外装材等の表面表 皮に用いられたり、ポリカーボネート、塩ィ匕ビニルなどの表皮保護等の広範な分野で 使用されている。
[0004] 近年これらの榭脂フィルムは、例えば、自動車のナビゲーシヨンシステム、ハンディ カメラなどの普及により、使用範囲が屋外や自動車の車内などの耐候性、耐熱性が 要求される過酷な使用環境条件下へ拡大してきている。このような過酷な環境条件 下で使用する場合、ポリメタクリル酸メチル榭脂を基板とするシートまたはフィルムは 優れた透明性、耐候性を有するものの、耐熱性が低いために変形が生じるうえに、靱 性が低 、ために加工時に割れやす!/、と 、う問題があった。
[0005] そのため、アクリル榭脂フィルムの耐熱性を改良する目的で、下記一般式(2)で示 されるダルタル酸無水物単位を有するフィルムが開示されて 、る。 (特許文献 1およ [0006] [化 2]
【化 2】
Figure imgf000003_0001
[0007] しかし、単にアクリル榭脂フィルムの組成の調整によって耐熱性を向上させると、柔 軟性が不足し、曲げ応力によって割れやすくなり、加工時に必要な十分な靱性が得 られない。
[0008] アクリル榭脂フィルムの耐熱性と靱性を同時に改良する目的で、下記一般式(1)で 示されるダルタル酸無水物単位を導入したアクリル榭脂に架橋弾性体を含有させた フィルムが開示されている。(特許文献 3、 4)
[0009] [化 3]
【化 3】
Figure imgf000003_0002
[0010] しかし、特許文献 3では弾性体の屈折率がアクリル榭脂と大きく異なるため、透明性 に欠け、光学用途への展開は不可能であった。
[0011] また、特許文献 4ではスチレンを共重合しているために、フィルム面内および厚み方 向の位相差が発現してしまい、光学等方性が要求されるブラ基板、偏光板保護フィ ルム、プリズムシート基板、導光板などへの展開は困難であった。
[0012] また、アクリル系榭脂と、弾性体粒子との組成物カゝらなり、加熱伸縮試験において 加熱収縮率が 5%以上のアクリル榭脂フィルムが開示されている。 (特許文献 5)しか し、例えばハードコート層や反射防止膜を形成する際にかかる熱量により収縮し寸法 が安定しな 、などの、加工時に必要な十分な耐熱性が得られな 、。 特許文献 1:特開 2004 - 2711号公報
特許文献 2:特開平 7 - 268036号公報
特許文献 3:特開昭 60— 67557号公報
特許文献 4:特開 2000— 178399号公報
特許文献 5 :特開 2000— 109575号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明の目的は、従来は、透明性、耐候性、耐熱性および靱性に優れたアクリル 榭脂フィルムは存在しなカゝつたと ヽうことに鑑み、そのような特性を有した新規かつェ 業上有用なアクリル榭脂フィルムを提供することにある。
[0014] また、更なる本発明の目的は、該アクリル榭脂フィルムに例えば、該フィルムの少な くとも 1面にハードコート層が形成され、さらに該フィルムの少なくとも 1面に反射防止 膜が形成されてなるアクリル榭脂フィルム、および該フィルム力もなる光学フィルター を提供することにある。
課題を解決するための手段
[0015] 本発明者らは、上述した問題に鑑み、透明性、耐候性、耐熱性および靱性に優れ たアクリル榭脂フィルムを得るべく鋭意検討した結果、ダルタル酸無水物単位を含有 するアクリル榭脂に、特定のアクリル弾性体粒子を配合したアクリル榭脂フィルムであ つて、全光線透過率、ヘイズ、長手方向もしくは幅方向の少なくとも一方の熱収縮率 を特定の値とし、かつ、耐折回数の値を 20以上とすることにより、透明性、耐候性、耐 熱性を有し、従来の知見では得られな力つた高度な靱性を達成し、加工特性に優れ たアクリル榭脂フィルムが得られることを見いだしたのである。
[0016] かかる知見をもとに、本発明のアクリル榭脂フィルムは、以下〔1〕〜〔16〕の如くの構 成を有するものである。
すなわち、
〔1〕下記構造式(1)で表されるダルタル酸無水物単位を含有するアクリル榭脂 (A)と アクリル弾性体粒子 (B)の合計を 100質量部として、アクリル榭脂 (A) 50〜95質量 部とアクリル弾性体粒子 (B) 5〜50質量部を用いてなる混合物を主たる材料とするァ クリル樹脂フィルムであって、(i)〜 (V)を満足するアクリル榭脂フィルム。
(i)アクリル榭脂 (A)がアクリル榭脂 (A)全体を 100質量部としてメタクリル酸メチル単 位 50〜90質量部およびダルタル酸無水物単位 10〜50質量部を用いてなる、(ii)全 光線透過率が 91%以上
(iii)ヘイズが 1. 5%以下
(iv)耐折回数の値が 20以上
(V)熱収縮試験において、長手方向および幅方向の少なくとも一方の熱収縮率が 5 %未満である
[0017] [化 1]
【化 1】
Figure imgf000005_0001
[0018] (上記式中、 Rl、 R2は、同一または相異なる水素原子または炭素数 1〜5のアルキ ル基を表す。 )
〔2〕破断点伸度が 10%以上である〔1〕に記載のアクリル榭脂フィルム、
〔3〕波長 590nmの光に対するフィルム面内の位相差が 10nm以下である〔1〕または
〔2〕に記載のアクリル榭脂フィルム、
〔4〕 590nmの光に対するフィルム厚み方向の位相差が lOnm以下である〔1〕〜〔3〕 の何れか〖こ記載のアクリル榭脂フィルム、
〔5〕波長 550nmの光に対する光弾性係数が— 2 X 10_12ZPa以上 2 X 10_12ZPa 以下である〔1〕〜〔4〕の何れかに記載のアクリル榭脂フィルム、
〔6〕アクリル榭脂 (A)とアクリル弾性体粒子 (B)の合計 100質量部に対して 0. 01質 量部以上 5質量部以下の紫外線吸収剤を含有する事を特徴とする〔1〕〜〔5〕の何れ かに記載のアクリル榭脂フィルム、
〔7〕 380nmの光の光線透過率が 10%以下である〔1〕〜〔6〕の何れかに記載のアタリ ル榭脂フィルム、
〔8〕アクリル弾性体粒子(B)の粒子径が 50nm以上 400nm以下である請求〔1〕〜〔7 〕の何れか〖こ記載のアクリル榭脂フィルム、
〔9〕アクリル弾性体粒子(B)が内層がアクリル酸アルキルエステル単位および Zまた は芳香族ビュルを含有するゴム弾性体であり、外層がダルタル酸無水物単位を含有 するアクリル榭脂を主成分とする硬質重合体であり、アクリル弾性体粒子 (B)とアタリ ル榭脂 (A)の屈折率差が 0. 01以下である〔1〕〜〔8〕の何れかに記載のアクリル榭 脂フィルム、
〔10〕熱変形温度が 110°C以上である請求の範囲〔1〕〜〔9〕のいずれかに記載のァ クリル樹脂フィルム、
〔11〕残存する揮発分がアクリル榭脂フィルム 100質量部に対して 3質量部以下であ る〔1〕〜〔10〕のいずれかに記載のアクリル榭脂フィルム、
〔 12〕該フィルムの少なくとも 1面にハードコート層が形成され、さらに該フィルムの少 なくとも 1面に反射防止膜が形成されてなる〔1〕〜〔11〕のいずれかに記載のアクリル 榭脂フィルム、
〔13〕〔1〕〜〔12〕のいずれかに記載のアクリル榭脂フィルム力もなる光学フィルター、 〔14〕〔1〕〜〔13〕のいずれかに記載のアクリル榭脂フィルム力もなる偏光板保護フィ ノレム、
〔15〕溶液キャスト法を用いて〔1〕〜〔14〕のいずれかに記載のアクリル榭脂フィルム を製造する事を特徴とする製造方法、
〔16〕実質的に未配向のアクリル榭脂フィルムをガラス転移温度 (Tg)以上、(ガラス 転移温度 (Tg) + 50) °C以下の温度で長手方向および幅方向に 1. 1〜5. 0倍延伸 する事を特徴とするアクリル榭脂フィルムの製造方法 である。
発明の効果
本発明により、優れた透明性、耐候性、耐熱性を有するとともに高度な靱性を有す る新規かつ工業上有用なアクリル榭脂フィルムを得ることができたものである。特に具 体的には、例えば、全光線透過率が 91%以上、ヘイズが 1. 5%以下、熱変形温度 力 S110°C以上、破断点伸度が 10%以上と飛躍的に向上したアクリル榭脂フィルムを 実現できたものである。
[0020] 本発明に力かるアクリル榭脂フィルムは、高温での加工工程を必要とする光学フィ ルターなどの工業材料として好ましく使用することが出来る。さらに、このようにして得 られたフィルムは、表面硬度、厚み均一性、および表面接着性も良好であり、光学フ ィルター以外の各種用途にも良好に用いることができる。
発明を実施するための最良の形態
[0021] 以下に本発明の好ましい実施の形態を説明する。
[0022] 本発明に用いられるアクリル榭脂 (A)は、分子中に下記一般式(1)で表されるダル タル酸無水物単位を含有する事を要する。ガラス転移温度 (Tg)や熱変形温度など、 榭脂フィルムの耐熱性は榭脂構造の自由度により決まり、自由度の小さいもの、例え ば、剛直なベンゼン環が、剛直なイミド結合で結合された芳香族ポリイミドは 400°Cを 越える Tgを持つ。一方、自由度の大きい柔軟な脂肪族の重合体であるポリメタクリル メチル (PMMA)の Tgは 100°Cに満たな ヽ。本発明のアクリル榭脂は脂環構造であ る、ダルタル酸無水物単位を含有することにより、耐熱性を著しく向上する事が出来 る。また、光学等方用途では位相差が小さいことが要求される。ここで π電子を多く持 つ芳香環を導入すると、耐熱性は脂環構造を導入する以上に向上するが、同時に複 屈折が大きくなり、位相差が発現しやすくなる問題がある。このため、光学等方を保つ たまま、耐熱性を向上させるためには脂環構造を含有する事が最も好ましい。脂環 構造としてはダルタル酸無水物構造、ラタトン環構造、ノルボルネン構造、シクロペン タン構造などが挙げられる。光学等方と耐熱性については、どの構造を用いても同様 の効果が得られる力 ラタトン環構造、ノルボルネン構造、シクロペンタン構造などの 導入にはこれら構造を有する高価な原料を使用するか、またはこれら構造の前駆体 となる高価な原料を使用し、数段階の反応を経て、目的の構造にする必要があるた め、工業的に不利である。一方、ダルタル酸無水物単位は一般的なアクリル原料から 1段階の脱水および Ζまたは脱アルコール反応により得られるため工業的に非常に 有利である。
[0023] ここで、光学等方用途とは、その素材の内部で光学的等方性が求められる用途で、 具体的には偏光板保護フィルム、レンズ、光導波路コアなどが例示出来る。液晶テレ ビにおいて、偏光板は 2枚を直交または平行して使用される力 偏光板保護フィルム が存在しないか、光学等方である場合、偏光板 2枚を直交した状態では黒が表示さ れ、偏光板 2枚を平行した状態では白が表示される。一方、偏光板保護フィルムが光 学等方でな 、場合、偏光板 2枚を直交した状態では黒ではなく例えば濃 、紫が表示 され、偏光板 2枚を平行した状態では白ではなく例えば黄色が表示される。この着色 は偏光板保護フィルムの異方性によって異なる。偏光板保護フィルムは光学的には 存在しないことが理想であるが、外からの応力および水分から偏光子を保護する目 的で必要不可欠である。また、レンズの場合、レンズはその界面で光を屈折する事を 目的とする力 レンズ内は均一に光が進むことが必要である。レンズ内が光学等方で ないと、像が歪むなどの問題がある。光導波路コアの場合、光学等方でないと例えば 、横方向の波と、縦方向の波の信号の伝達速度に差が生じるため、ノイズ、混信の問 題を起こす原因となる。他の光学等方用途としては、プリズムシート基材、光ディスク 基板、フラットパネルディスプレイ基板などが挙げられる。
[0024] ダルタル酸無水物単位を含有するアクリル榭脂の製造方法を詳述する。
[0025] [化 4]
【化 4】
Figure imgf000008_0001
[0026] (上記式中、 Rl、 R2は、同一または相異なる水素原子または炭素数 1〜5のアルキ ル基を表す。 )
後の加熱工程により上記一般式(1)で表されるダルタル酸無水物単位を与える不 飽和カルボン酸単量体(i)および不飽和カルボン酸アルキルエステル単量体(ii)と、 その他のビニル系単量体単位を含む場合には該単位を与えるビニル系単量体 (iii) とを重合させ、共重合体 (a)とした後、力かる共重合体 (a)を適当な触媒の存在下あ るいは非存在下で加熱し、脱アルコールおよび Zまたは脱水による分子内環化反応 を行わせることにより製造することが出来る。この場合、典型的には共重合体 (a)をカロ 熱することにより 2単位の不飽和カルボン酸単位のカルボキシル基が脱水されて、あ るいは隣接する不飽和カルボン酸単位と不飽和カルボン酸アルキルエステル単位か らアルコールの脱離により 1単位の前記ダルタル酸無水物単位が生成される。
[0027] この際用いられる不飽和カルボン酸単量体 (i)としては、特に限定はなぐ他のビニ ル化合物 (iii)と共重合させることが可能な、一般式 (4)の不飽和カルボン酸単量体 が使用できる。
[0028] [化 5]
【化 5】
R3
CH2二 C
COOH ■ ■ ■ ■ ■ 、 I )
[0029] (ただし、 R3は水素または炭素数 1〜5のアルキル基を表す)
特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましぐより好ましくはメタタリ ル酸である。これらはその 1種、または 2種以上用いることが出来る。なお、上記一般 式 (i)で表される不飽和カルボン酸単量体 (i)は共重合すると下記一般式 (i 2)で 表される構造の不飽和カルボン酸単位を与える。
[0030] [化 6]
【化 6】
Figure imgf000009_0001
[0031] (ただし、 R3は水素または炭素数 1〜5のアルキル基を表す)
また、不飽和カルボン酸アルキルエステル単量体 (ii)としてはメタクリル酸メチルが 得られるフィルムの透明性、耐候性の点から必要である。さらに他の不飽和カルボン 酸アルキルエステル単量体をメタクリル酸メチルと共に 1種または 2種以上を用いるこ とができる。他の不飽和カルボン酸アルキルエステル単量体としては特に制限はな!/ヽ 力 好ましい例として、下記一般式 (ii)で表されるものを挙げることが出来る。
[0032] [化 7]
【化 7】
R4
し rl2—— に- ヽ
COOR5 ·■
[0033] (ただし、 R4は水素または炭素数 1〜5の脂肪族、もしくは脂環式炭化水素基を示し 、 R5は水素以外の任意の置換基を示す。 )
これらのうち、 R5として、炭素数 1〜6の脂肪族もしくは脂環式炭化水素基または置 換基を有する該炭化水素基をもつアクリル酸エステルおよび Zまたはメタクリル酸ェ ステルが特に好適である。なお、上記一般式 (ii)で表される不飽和カルボン酸アルキ ルエステル単量体は、共重合すると下記一般式 (ii 2)で表される構造の不飽和力 ルボン酸アルキルエステル単位を与える。
[0034] [化 8]
【化 8】
Figure imgf000010_0001
[0035] (ただし、 R4は水素または炭素数] ^の脂肪族、もしくは脂環式炭化水素基を示し
、 R5は水素以外の任意の置換基を示す。 )
メタクリル酸メチル以外の不飽和カルボン酸アルキルエステル単量体(ii)の好まし い具体例としては、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n—プロピル、(メタ)ァク リル酸 n—ブチル、(メタ)アクリル酸 tーブチル、(メタ)アクリル酸 n—へキシル、(メタ) アクリル酸シクロへキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸 2—クロロェ チル、 (メタ)アクリル酸 2 -ヒドロキシェチル、 (メタ)アクリル酸 3 -ヒドロキシプロピル、 (メタ)アクリル酸 2, 3, 4, 5, 6 ペンタヒドロキシへキシルおよび (メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシペンチルなどが挙げられる。
[0036] また、本発明で用いるアクリル榭脂 (A)の製造においては、本発明の効果を損なわ ない範囲で、その他のビュル系単量体(iii)を用いてもかまわない。その他のビニル 系単量体(iii)の好ましい具体例としては、スチレン、 aーメチルスチレン、 o メチル スチレン、 p—メチノレスチレン、 o ェチルスチレン、 p ェチルスチレンおよび p—t— ブチルスチレンなどの芳香族ビュル系単量体、アクリロニトリル、メタタリ口-トリル、ェ タクリロ-トリルなどのシアン化ビュル系単量体、ァリルグリシジルエーテル、スチレン —P グリシジノレエーテノレ、 ρ グリシジルスチレン、無水マレイン酸、無水ィタコン酸 、 N—メチルマレイミド、 N ェチルマレイミド、 N シクロへキシルマレイミド、 N フエ -ルマレイミド、アクリルアミド、メタクリルアミド、 N メチルアクリルアミド、ブトキシメチ ルアクリルアミド、 N—プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プ 口ピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェチルァミノプロピ ル、メタクリル酸フエニルアミノエチル、メタクリル酸シクロへキシルアミノエチル、 N— ビニルジェチルァミン、 N ァセチルビニルァミン、ァリルァミン、メタァリルァミン、 N ーメチルァリルァミン、 p—アミノスチレン、 2—イソプロぺニルーォキサゾリン、 2—ビ ニル ォキサゾリン、 2 ァクロィル ォキサゾリンおよび 2—スチリル ォキサゾリン などを挙げることができるが、透明性、複屈折率、耐薬品性の点で芳香環を含まない 単量体がより好ましく使用できる。これらは単独ないし 2種以上を用いることができる。
[0037] アクリル榭脂 (A)の重合方法については、基本的にはラジカル重合による、塊状重 合、溶液重合、懸濁重合、乳化重合等の公知の重合方法を用いることができるが、 不純物がより少ない点で溶液重合、塊状重合、懸濁重合が特に好ましい。
[0038] 重合温度については、特に制限はないが、色調の観点から、不飽和カルボン酸単 量体および不飽和カルボン酸アルキルエステル単量体を含む単量体混合物を 95°C 以下の重合温度で重合することが好ましい。さらに加熱処理後の着色をより抑制する ために好ましい重合温度は 85°C以下であり、特に好ましくは 75°C以下である。また、 重合温度の下限は、重合が進行する温度であれば、特に制限はないが、重合速度 を考慮した生産性の面から、通常 50°C以上、好ましくは 60°C以上である。重合収率 あるいは重合速度を向上させる目的で、重合進行に従い重合温度を昇温することも 可能である力 この場合も昇温する上限温度は 95°C以下に制御することが好ましぐ 重合開始温度も 75°C以下の比較的低温で行うことが好ましい。また重合時間は、必 要な重合度を得るのに十分な時間であれば特に制限はな 、が、生産効率の点から 6 0〜360分間の範囲が好ましぐ 90〜180分間の範囲が特に好ましい。
[0039] 本発明のアクリル榭脂フィルムに使用するアクリル榭脂 (A)は、重量平均分子量が 特定の 8万〜 15万であることが好ましい。このような分子量を有するアクリル榭脂 (A) は、共重合体 (a)の製造時に、共重合体 (a)を所望の分子量、すなわち重量平均分 子量で 5万〜 15万に予め制御しておくことにより、達成することができる。重量平均分 子量が、 15万を越える場合、後工程の加熱脱気時に着色する傾向が見られる。一方 、重量平均分子量が、 5万未満の場合、アクリル榭脂フィルムの機械的強度が低下 する傾向が見られる。
[0040] 共重合体 (a)の分子量制御方法につ!、ては、特に制限はなぐ例えば通常公知の 技術を適用することができる。例えば、ァゾィ匕合物、過酸化物等のラジカル重合開始 剤の添加量、あるいはアルキルメルカブタン、四塩化炭素、四臭化炭素、ジメチルァ セトアミド、ジメチルホルムアミド、トリェチルァミン等の連鎖移動剤の添加量等により、 制御することができる。特に、重合の安定性、取り扱いの容易さ等から、連鎖移動剤 であるアルキルメルカブタンの添加量を制御する方法が好ましく使用することができ る。
[0041] 本発明に使用されるアルキルメルカプタンとしては、例えば、 n—ォクチルメルカプ タン、 tードデシルメルカプタン、 n—ドデシルメルカプタン、 n—テトラデシルメルカプ タン、 n—ォクタデシルメルカプタン等が挙げられ、なかでも tードデシルメルカプタン 、 n—ドデシルメルカプタンが好ましく用いられる。
[0042] これらアルキルメルカプタンの添加量としては、本発明の特定の分子量に制御する ものであれば、特に制限はないが、通常、単量体混合物の全量 100質量部に対して 、 0. 2〜5. 0質量部であり、好ましくは 0. 3〜4. 0質量部、より好ましくは 0. 4〜3. 0 質量部である。 [0043] 本発明における共重合体 (a)を加熱し、(ィ)脱水および Zまたは(口)脱アルコール により分子内環化反応を行いダルタル酸無水物単位を含有する熱可塑性重合体を 製造する方法は、特に制限はないが、ベントを有する加熱した押出機に通して製造 する方法や不活性ガス雰囲気または真空下で加熱脱揮できる装置内で製造する方 法が生産性の観点から好ましい。中でも、酸素存在下で加熱による分子内環化反応 を行うと、黄色度が悪ィ匕する傾向が見られるため、十分に系内を窒素などの不活性 ガスで置換することが好ましい。特に好ましい装置として、例えば、 "ュ-メルド'タイプ のスクリューを備えた単軸押出機、二軸、三軸押出機、連続式またはバッチ式-一ダ 一タイプの混練機などを用いることができ、とりわけ二軸押出機が好ましく使用するこ とができる。また、これらに窒素などの不活性ガスが導入可能な構造を有した装置で あることがより好ましい。例えば、二軸押出機に、窒素などの不活性ガスを導入する 方法としては、ホッパー上部および Zまたは下部より、 10〜: LOOリットル Z分程度の 不活性ガス気流の配管を繋ぐ方法などが挙げられる。
[0044] なお、上記の方法により加熱脱揮する温度は、(ィ)脱水および Zまたは(口)脱アル コールにより分子内環化反応が生じる温度であれば特に限定されないが、好ましくは 180〜300°Cの範囲、特に 200〜280°Cの範囲力 S好まし ヽ。
[0045] また、この際の加熱脱揮する時間も特に限定されず、所望する共重合組成に応じ て適宜設定可能であるが、通常、 1分間〜 60分間、好ましくは 2分間〜 30分間、とり わけ 3〜20分間の範囲が好ましい。特に、押出機を用いて、十分な分子内環化反応 を進行させるための加熱時間を確保するため、押出機スクリューの長さ Z直径比 (L ZD)が 40以上であることが好ましい。 LZDの短い押出機を使用した場合、未反応 の不飽和カルボン酸単位が多量に残存するため、加熱成形カ卩ェ時に反応が再進行 し、成形品にシルバーや気泡が見られる傾向や成形滞留時に色調が大幅に悪化す る傾向がある。
[0046] さらに本発明では、共重合体 (a)を上記方法等により加熱する際にダルタル酸無水 物への環化反応を促進させる触媒として、酸、アルカリ、塩化合物の 1種以上を添加 することができる。その添加量は特に制限はなぐ共重合体 (a) 100質量部に対し、 0 . 01〜1質量部程度が適当である。また、これら酸、アルカリ、塩化合物の種類につ いても特に制限はなぐ酸触媒としては、塩酸、硫酸、 p—トルエンスルホン酸、リン酸 、亜リン酸、フエニルホスホン酸、リン酸メチル等が挙げられる。塩基性触媒としては、 金属水酸化物、アミン類、イミン類、アルカリ金属誘導体、アルコキシド類、水酸化ァ ンモ-ゥム塩等が挙げられる。さらに、塩系触媒としては、酢酸金属塩、ステアリン酸 金属塩、炭酸金属塩等が挙げられる。ただし、その触媒保有の色が熱可塑性重合体 の着色に悪影響を及ぼさず、かつ透明性が低下しない範囲で添加する必要がある。 中でも、アルカリ金属を含有する化合物が、比較的少量の添加量で、優れた反応促 進効果を示すため、好ましく使用することができる。具体的には、水酸化リチウム、水 酸ィ匕ナトリウム、水酸ィ匕カリウム等の水酸ィ匕物、ナトリウムメトキシド、ナトリウムエトキシ ド、ナトリウムフエノキシド、カリウムメトキシド、カリウムエトキシド、カリウムフエノキシド 等のアルコキシドィ匕合物、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、ステアリン酸 ナトリウム等の有機カルボン酸塩等が挙げられ、とりわけ、水酸化ナトリウム、ナトリウ ムメトキシド、酢酸リチウム、酢酸ナトリウムが好ましく使用することができる。
[0047] 本発明に用いられるアクリル榭脂 (A)中の前記一般式(1)で表されるダルタル酸無 水物単位の含有量は、アクリル榭脂 (A) 100質量部に対して 10〜50質量部、より好 ましくは 15〜45質量部、最も好ましくは 20〜25質量部である。ダルタル酸無水物単 位が 10質量部未満である場合、耐熱性向上効果が小さくなる事がある。また、グルタ ル酸無水物単位が 50質量部を越えると靱性が悪くなる事がある。耐熱性向上と靱性 向上はトレードオフの関係にあり、ダルタル酸無水物単位の含有量で調整可能であ る。このためダルタル酸無水物単位の含有量は用途に応じて 10〜50質量部の中で 任意の値を採用すべきである。例えば、偏光板保護膜には 120°C以上の Tgが要求 される力 弾性体粒子添カ卩による Tg低下を考慮すると、ダルタル酸無水物単位の含 有量は 20〜25質量部が最も好まし!/、。グルタル酸無水物単位の含有量は 20〜25 質量部であれば、弾性体粒子添加後に 120〜130°Cの Tgを持ち、かつ十分な靱性 を有する。
[0048] アクリル榭脂 (A)に含まれる他の成分としてはメタクリル酸メチル単位および、メタク リル酸単位等が挙げられる力 S、メタクリル酸メチル単位が含有されることが必要である
。アクリル榭脂 (A) 100質量部からダルタル酸無水物単位の含有量を除した量力 タ クリル酸メチル単位の含有量であることが好ましい。すなわち、メタクリル酸メチル単 位の含有量は 50〜90質量部が好まし 、。
[0049] グルタル酸無水物単位とメタクリル酸メチル単位以外にグルタル酸無水物単位の前 駆体である、メタクリル酸単位が含まれていても構わない。メタクリル酸単位にメタタリ ル酸単位またはメタクリル酸メチル単位が隣接した場合、製膜や、延伸などの工程で の加熱時に脱水または脱アルコール反応が起こり、発泡の原因となる事があるので 好ましくないが、ダルタル酸無水物単位が隣接していれば、脱水または脱アルコール 反応は起こり得な 、ので、メタクリル酸単位が含まれて 、ても構わな 、。
[0050] 本発明に用いられるアクリル榭脂 (A)における各成分単位の定量には、一般に赤 外分光光度計やプロトン核磁気共鳴 ( NMR)測定機が用いられる。赤外分光 法では、グルタル酸無水物単位は、 1800cm_1及び 1760cm_1の吸収が特徴的で あり、不飽和カルボン酸単位や不飽和カルボン酸アルキルエステル単位から区別す ることができる。また、 H— NMR法では、例えば、ダルタル酸無水物単位、メタクリル 酸、メタクリル酸メチルカ なる共重合体の場合、ジメチルスルホキシド重溶媒中での スペクトルの帰属を、 0. 5〜1. 5ppmのピークがメタクリル酸、メタクリル酸メチルおよ びグルタル酸無水物環化合物の α メチル基の水素、 1. 6〜2. lppmのピークは ポリマー主鎖のメチレン基の水素、 3. 5ppmのピークはメタクリル酸メチルのカルボン 酸エステル( COOCH )の水素、 12. 4ppmのピークはメタクリル酸のカルボン酸
3
の水素と、スペクトルの積分比力 共重合体組成を決定することができる。また、上記 に加えて、他の共重合成分としてスチレンを含有する共重合体の場合、 6. 5〜7. 5p pmにスチレンの芳香族環の水素が見られ、同様にスペクトル比力 共重合体組成を 決定することができる。
[0051] また、本発明に用いられるアクリル榭脂 (A)は、アクリル榭脂 (A)中に不飽和カルボ ン酸単位および Zまたは、共重合可能な他のビニル系単量体単位を含有することが できる。
[0052] 本発明に用いられる不飽和カルボン酸単位量はアクリル榭脂 (A) 100質量部に対 して 10質量部以下、すなわち 0〜: LO質量部であることが好ましぐより好ましくは 0〜 5質量部、最も好ましくは 0〜1質量部である。不飽和カルボン酸単位が 10質量部を 超える場合には、無色透明性、滞留安定性が低下する傾向がある。
[0053] また、アクリル榭脂 (A)に共重合可能な他のビニル系単量体単位量はアクリル榭脂
(A) 100質量部に対して、 5質量部以下、すなわち 0〜5質量部の範囲であることが 好ましぐより好ましくは 0〜3質量部である。特に、スチレンなどの芳香族ビュル系単 量体単位を含有する場合、含有量が上記範囲を超えると、無色透明性、光学等方性 、耐薬品性が低下する傾向がある。
[0054] 本発明にお 、ては、上記のアクリル榭脂 (A)にアクリル弾性体粒子 (B)を分散せし めることにより、アクリル榭脂 (A)の優れた特性を大きく損なうことなく優れた耐衝撃性 を付与することができる。アクリル弾性体粒子 (B)としては、 1以上のゴム質重合体を 含む層と、それとは異種の重合体から構成される 1以上の層から構成され、かつ、こ れらの各層が隣接し合った構造の、いわゆるコアシェル型と呼ばれる多層構造重合 体 (B— 1)や、ゴム質重合体の存在下に、ビニル系単量体など力 なる単量体混合 物を共重合せしめたグラフト共重合体 (B— 2)等が好ましく使用できる。
[0055] 本発明に使用されるコアシェル型の多層構造重合体 (B— 1)としては、これを構成 する層の数は、特に限定されるものではなぐ 2層以上であればよぐ 3層以上または 4層以上であってもよいが、内部に少なくとも 1層以上のゴム層を有する多層構造重 合体であることが必要である。
[0056] 本発明の多層構造重合体 (B— 1)において、ゴム層の種類は、特に限定されるもの ではなぐゴム弾性を有する重合体成分力も構成されるものであればよい。例えば、 アクリル成分、シリコーン成分、スチレン成分、二トリル成分、共役ジェン成分、ウレタ ン成分またはエチレン成分、プロピレン成分、イソブテン成分などを重合させたものか ら構成されるゴムが挙げられる。好ましいゴムとしては、例えば、アクリル酸ェチル単 位やアクリル酸ブチル単位などのアクリル成分、ジメチルシロキサン単位やフ -ルメ チルシロキサン単位などのシリコーン成分、スチレン単位やひ メチルスチレン単位 などのスチレン成分、アクリロニトリル単位ゃメタクリロ-トリル単位などの-トリル成分 およびブタンジェン単位やイソプレン単位などの共役ジェン成分力 構成されるゴム である。また、これらの成分を 2種以上組み合わせたもの力 構成されるゴムも好まし ぐ例えば、(1)アクリル酸ェチル単位やアクリル酸ブチル単位などのアクリル成分お よびジメチルシロキサン単位やフエ-ルメチルシロキサン単位などのシリコーン成分 力も構成されるゴム、(2)アクリル酸ェチル単位やアクリル酸ブチル単位などのアタリ ル成分およびスチレン単位や aーメチルスチレン単位などのスチレン成分から構成 されるゴム、(3)アクリル酸ェチル単位やアクリル酸ブチル単位などのアクリル成分お よびブタンジェン単位やイソプレン単位などの共役ジェン成分力も構成されるゴム、 および(4)アクリル酸ェチル単位やアクリル酸ブチル単位などのアクリル成分、ジメチ ルシロキサン単位やフエ-ルメチルシロキサン単位などのシリコーン成分およびスチ レン単位や a—メチルスチレン単位などのスチレン成分力 構成されるゴムなどが挙 げられる。また、これらの成分の他に、ジビュルベンゼン単位、ァリルアタリレート単位 およびブチレングリコールジアタリレート単位などの架橋性成分力 構成される共重 合体を架橋させたゴムも好まし ヽ。
[0057] 本発明の多層構造重合体 (B— 1)において、ゴム層以外の層の種類は、熱可塑性 を有する重合体成分から構成されるものであれば特に限定されるものではな!、が、ゴ ム層よりもガラス転移温度が高 、重合体成分であることが好ま 、。熱可塑性を有す る重合体としては、不飽和カルボン酸アルキルエステル系単位、不飽和カルボン酸 系単位、不飽和グリシジル基含有単位、不飽和ジカルボン酸無水物系単位、脂肪族 ビュル系単位、芳香族ビュル系単位、シアン化ビュル系単位、マレイミド系単位、不 飽和ジカルボン酸系単位およびその他のビニル系単位などから選ばれる少なくとも 1 種以上の単位を含有する重合体が挙げられ、中でも、不飽和カルボン酸アルキルェ ステル系単位、不飽和グリシジル基含有単位および不飽和ジカルボン酸無水物系 単位力 選ばれる少なくとも 1種以上の単位を含有する重合体が好ましぐさらには 不飽和グリシジル基含有単位および不飽和ジカルボン酸無水物系単位力 選ばれ る少なくとも 1種以上の単位を含有する重合体がより好ましい。
[0058] 上記不飽和カルボン酸アルキルエステル系単位の原料となる単量体としては、特 に限定されるものではないが、(メタ)アクリル酸アルキルエステルが好ましく使用され る。具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸 n プロピル、 (メタ)アクリル酸 n—ブチル、 (メタ)アクリル酸 tーブチル、 (メタ)アクリル 酸 n キシル、(メタ)アクリル酸 2—ェチルへキシル、(メタ)アクリル酸シクロへキシ ル、 (メタ)アクリル酸ステアリル、 (メタ)アクリル酸ォクタデシル、 (メタ)アクリル酸フエ
-ル、 (メタ)アクリル酸ベンジル、 (メタ)アクリル酸クロロメチル、 (メタ)アクリル酸 2— クロロェチル、 (メタ)アクリル酸 2 -ヒドロキシェチル、 (メタ)アクリル酸 3 -ヒドロキシプ 口ピル、 (メタ)アクリル酸 2, 3, 4, 5, 6 ペンタヒドロキシへキシル、 (メタ)アクリル酸 2, 3, 4, 5—テトラヒドロキシペンチル、アクリル酸アミノエチル、アクリル酸プロピルァ ミノェチル、メタクリル酸ジメチルアミノエチル、メタクリル酸ェチルァミノプロピル、メタ クリル酸フエ-ルアミノエチルおよびメタクリル酸シクロへキシルアミノエチルなどが挙 げられ、耐衝撃性を向上する効果が大きいという観点から、(メタ)アクリル酸メチルが 好ましく使用される。これらの単位は単独ないし 2種以上を用いることができる。
[0059] 上記不飽和カルボン酸単量体としては特に制限はなぐアクリル酸、メタクリル酸、 マレイン酸、及びさらには無水マレイン酸の加水分解物などが挙げられる力 特に熱 安定性が優れる点でアクリル酸、メタクリル酸が好ましぐより好ましくはメタクリル酸で ある。これらはその 1種または 2種以上用いることができる。
[0060] 上記不飽和グリシジル基含有単位の原料となる単量体としては、特に限定されるも のではなぐ(メタ)アクリル酸グリシジル、ィタコン酸グリシジル、ィタコン酸ジグリシジ ル、ァリルグリシジルエーテル、スチレン 4ーグリシジルエーテルおよび 4ーグリシジ ルスチレンなどが挙げられ、耐衝撃性を向上する効果が大きいという観点から、(メタ )アクリル酸グリシジルが好ましく使用される。これらの単位は単独な 、し 2種以上を用 いることがでさる。
[0061] 上記不飽和ジカルボン酸無水物系単位の原料となる単量体としては、無水マレイ ン酸、無水ィタコン酸、無水グルタコン酸、無水シトラコン酸および無水アコニット酸な どが挙げられ、耐衝撃性を向上する効果が大きいという観点から、無水マレイン酸が 好ましく使用される。これらの単位は単独ないし 2種以上を用いることができる。
[0062] また、上記脂肪族ビニル系単位の原料となる単量体としては、エチレン、プロピレン およびブタジエンなどを、上記芳香族ビュル系単位の原料となる単量体としては、ス チレン、 a—メチルスチレン、 1—ビュルナフタレン、 4—メチルスチレン、 4 プロピ ルスチレン、 4 シクロへキシルスチレン、 4 ドデシルスチレン、 2 ェチル 4 ベ ンジルスチレン、 4 (フエ-ルブチル)スチレンおよびハロゲン化スチレンなどを、上 記シアンィ匕ビュル系単位の原料となる単量体としては、アクリロニトリル、メタクリロ-ト リルおよびエタタリ口-トリルなどを、上記マレイミド系単位の原料となる単量体として は、マレイミド、 N—メチルマレイミド、 N—ェチルマレイミド、 N—プロピルマレイミド、 N—イソプロピルマレイミド、 N—シクロへキシルマレイミド、 N—フエ-ルマレイミド、 N - (p—ブロモフエ-ル)マレイミドおよび N— (クロ口フエ-ル)マレイミドなどを、上記 不飽和ジカルボン酸系単位の原料となる単量体としては、マレイン酸、マレイン酸モ ノエチルエステル、ィタコン酸およびフタル酸などを、上記その他のビュル系単位の 原料となる単量体としては、アクリルアミド、メタクリルアミド、 N—メチルアクリルアミド、 ブトキシメチルアクリルアミド、 N—プロピルメタクリルアミド、 N—ビ-ルジェチルァミン 、 N—ァセチルビニルァミン、ァリルァミン、メタァリルァミン、 N—メチルァリルァミン、 p—アミノスチレン、 2—イソプロぺニルーォキサゾリン、 2—ビニルーォキサゾリン、 2 —ァクロイル一ォキサゾリンおよび 2—スチリル一ォキサゾリンなどを、それぞれ挙げ ることができ、これらの単量体は単独ないし 2種以上を用いることができる。
[0063] 本発明のゴム質重合体を含有する多層構造重合体 (B— 1)において、最外層の種 類は、特に限定されるものではなぐ不飽和カルボン酸アルキルエステル系単位、不 飽和カルボン酸系単位、不飽和グリシジル基含有単位、脂肪族ビニル系単位、芳香 族ビュル系単位、シアン化ビュル系単位、マレイミド系単位、不飽和ジカルボン酸系 単位、不飽和ジカルボン酸無水物系単位およびその他のビュル系単位などを含有 する重合体など力 選ばれた少なくとも 1種が挙げられ、中でも、不飽和カルボン酸 アルキルエステル系単位、不飽和カルボン酸系単位、不飽和グリシジル基含有単位 および不飽和ジカルボン酸無水物系単位を含有する重合体力 選ばれた少なくとも 1種が好ましぐさらには不飽和カルボン酸アルキルエステル系単位、不飽和カルボ ン酸系単位を含有する重合体がより好まし 、。
[0064] さらに、本発明では、上記の多層構造重合体 (B— 1)における最外層が不飽和力 ルボン酸アルキルエステル系単位および不飽和カルボン酸系単位を含有する重合 体である場合、加熱することにより、前述した本発明の熱可塑性共重合体 (A)の製造 時と同様に、分子内環化反応が進行し、上記一般式(1)で表されるダルタル酸無水 物単位が生成することを見出した。従って、最外層に不飽和カルボン酸アルキルエス テル系単位および不飽和カルボン酸系単位を含有する重合体を有する多層構造重 合体 (B— 1)を熱可塑性共重合体 (A)に配合し、適当な条件で、加熱溶融混練する ことにより、実質的には、連続相(マトリックス相)となる熱可塑性共重合体 (A)中に、 最外層に上記一般式(1)で表されるダルタル酸無水物単位を含有してなる重合体を 有する多層構造重合体 (B— 1)が分散することにより、凝集することなぐ良好な分散 状態が可能となり、耐衝撃性等の機械特性向上とともに、極めて高度な透明性が発 現しうるちのと考免られる。
[0065] ここで!/、う不飽和カルボン酸アルキルエステル系単位の原料となる単量体としては 、特に限定されるものではないが、(メタ)アクリル酸アルキルエステルが好ましぐさら には (メタ)アクリル酸メチルがより好ましく使用される。
[0066] また、不飽和カルボン酸系単位の原料となる単量体としては、特に限定されるもの ではないが、(メタ)アクリル酸が好ましぐさらにはメタクリル酸がより好ましく使用され る。
[0067] 本発明の多層構造重合体 (B— 1)の好ましい例としては、コア層がアクリル酸プチ ル Zスチレン重合体で、最外層がメタクリル酸メチル Z上記一般式(1)で表されるグ ルタル酸無水物単位力 なる共重合体、またはメタクリル酸メチル Z上記一般式(1) で表されるダルタル酸無水物単位 Zメタクリル酸重合体であるもの、コア層がジメチ ルシロキサン Zアクリル酸ブチル重合体で最外層がメタクリル酸メチル重合体である もの、コア層がブタンジェン zスチレン重合体で最外層がメタクリル酸メチル重合体 であるもの、およびコア層がアクリル酸ブチル重合体で最外層がメタクリル酸メチル重 合体であるものなどが挙げられる("Z"は共重合を示す)。さらに、ゴム層または最外 層のいずれか一つもしくは両方の層がメタクリル酸グリシジル単位を含有する重合体 であるものも好ましい例として挙げられる。中でも、コア層がアクリル酸ブチル zスチレ ン重合体で、最外層がメタクリル酸メチル Z上記一般式(1)で表されるダルタル酸無 水物単位からなる共重合体、またはメタクリル酸メチル Z上記一般式(1)で表される ダルタル酸無水物単位 Zメタクリル酸重合体であるもの力 連続相(マトリックス相)で あるアクリル榭脂 (A)との屈折率を近似させること、および榭脂組成物中での良好な 分散状態を得ることが可能となり、近年より高度化する要求を満足しうる透明性が発 現するため、好ましく使用することができる。
[0068] 本発明の多層構造重合体 (B— 1)の重量平均粒子径としては、 50〜400nmとす ることが好ましぐより好ましくは 100〜200nmである。重量平均粒径が 50nm未満の 場合は靱性の向上が十分でないことがあり、 400nmを超える場合は Tgが低下するこ とがある。
[0069] 本発明の多層構造重合体 (B— 1)において、コアとシェルの重量比は、特に限定さ れるものではないが、多層構造重合体全体 100質量部に対して、コア層が 50質量部 以上、 90質量部以下であることが好ましぐさらに、 60質量部以上、 80質量部以下 であることがより好ましい。
[0070] 本発明の多層構造重合体としては、上述した条件を満たす市販品を用いてもよぐ また公知の方法により作製して用いることもできる。
[0071] 多層構造重合体の市販品としては、例えば、三菱レイヨン社製"メタプレン"、鐘淵 化学工業社製"カネエース"、呉羽化学工業社製"パラロイド"、ロームアンドノヽース社 製 "アタリロイド"、ガンツイ匕成工業社製"スタフイロイド"およびクラレネ土製"パラペット S A"などが挙げられ、これらは、単独ないし 2種以上を用いることができる。
[0072] また、本発明のアクリル弾性体粒子 (B)として使用することができるゴム質含有ダラ フト共重合体 (B— 2)の具体例としては、ゴム質重合体の存在下に、不飽和カルボン 酸エステル系単量体、不飽和カルボン酸系単量体、芳香族ビニル系単量体、および 必要に応じてこれらと共重合可能な他のビニル系単量体力 なる単量体混合物を共 重合せしめたグラフト共重合体が挙げられる。
[0073] グラフト共重合体 (B— 2)に用いられるゴム質重合体には特に制限はないが、ジェ ン系ゴム、アクリル系ゴムおよびエチレン系ゴムなどが使用できる。具体例としては、 ポリブタジエン、スチレン ブタジエン共重合体、スチレン ブタジエンのブロック共 重合体、アクリロニトリル ブタジエン共重合体、アクリル酸ブチルーブタジエン共重 合体、ポリイソプレン、ブタジエンーメタクリル酸メチル共重合体、アクリル酸ブチルー メタクリル酸メチル共重合体、ブタジエン アクリル酸ェチル共重合体、エチレンープ ロピレン共重合体、エチレン プロピレン ジェン系共重合体、エチレン イソプレ ン共重合体、およびエチレン アクリル酸メチル共重合体などが挙げられる。これら のゴム質重合体は、 1種または 2種以上の混合物で使用することが可能である。
[0074] 本発明におけるグラフト共重合体 (B— 2)を構成するゴム質重合体の重量平均粒 子径としては、 50〜400nmとすること力 子ましく、より好ましくは 100〜200nmである 。平均粒径が 50nm未満の場合は靱性の向上が十分でないことがあり、 400nmを超 える場合は Tgが低下することがある。
[0075] なお、ゴム質重合体の重量平均粒子径は「Rubber Age, Vol. 88, p. 484— 490 (1960) , by E. Schmidt, P. H. Biddison」に記載のアルギン酸ナトリウ ム法、つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が 異なることを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重 量分率より累積重量分率 50%の粒子径を求める方法により測定することができる。
[0076] 本発明におけるグラフト共重合体 (B— 2)は、グラフト共重合体 (B— 2) 100質量部 に対してゴム質重合体 10〜80質量部、好ましくは 20〜70質量部、より好ましくは 30 〜60質量部の存在下に、上記の単量体 (混合物) 20〜90質量部、好ましくは 30〜 80質量部、より好ましくは 40〜70質量部を共重合することによって得られる。ゴム質 重合体の割合が上記の範囲未満、または上記の範囲を越える場合には、衝撃強度 や表面外観が低下する場合がある。
[0077] なお、グラフト共重合体 (B— 2)は、ゴム質重合体に単量体混合物をグラフト共重合 させる際に生成するグラフトしていない共重合体を含んでいてもよい。ただし、衝撃強 度の観点からは、グラフト率は 10〜 100%であることが好ましい。ここで、グラフト率と は、ゴム質重合体に対するグラフトした単量体混合物の重量割合である。また、ダラ フトして!/、な ヽ共重合体のメチルェチルケトン溶媒、 30°Cで測定した極限粘度には 特に制限はないが、 0. 1〜0. 6dlZgのもの力、衝撃強度と成形力卩ェ性とのバランス の観点力 好ましく用いられる。
[0078] 本発明におけるビュル系共重合体 (B— 2)のメチルェチルケトン溶媒、 30°Cで測 定した極限粘度には、特に制限はないが、 0. 2〜1. OdlZgのもの力 衝撃強度と成 形カ卩ェ性とのバランスの観点力も好ましく用いられ、より好ましくは 0. 3〜0. 7dl/g のものである。
[0079] 本発明におけるグラフト共重合体 (B— 2)の製造方法には、特に制限はなぐ塊状 重合、溶液重合、懸濁重合および乳化重合などの公知の重合法により得ることがで きる。
[0080] また、アクリル榭脂 (A)およびアクリル弾性体粒子 (B)のそれぞれの屈折率が近似 して 、る場合、本発明のアクリル榭脂フィルムにお 、て透明性を得ることができるため 、好ましい。具体的には、屈折率の差が 0. 05以下であることが好ましぐより好ましく は 0. 02以下、とりわけ 0. 01以下であることが好ましい。このような屈折率条件を満た すためには、アクリル榭脂 (A)の各単量体単位組成比を調整する方法、および Zま たはアクリル弾性体粒子 (B)に使用されるゴム質重合体あるいは単量体の組成比を 調製する方法などにより、屈折率差を小さくすることができ、透明性に優れたアクリル 榭脂フィルムを得ることができる。具体的にはコア層がアクリル酸ブチル Zスチレン重 合体で、最外層がメタクリル酸メチル Z上記一般式(1)で表されるダルタル酸無水物 単位力 なる共重合体、またはメタクリル酸メチル Z上記一般式(1)で表されるグルタ ル酸無水物単位 Zメタクリル酸重合体である。ここで、アクリル榭脂にアクリル弾性体 粒子やその他の添加剤を配合する方法としては例えば、アクリル榭脂またはアクリル 榭脂とその他の添加成分を予めブレンドした後、通常 200〜350°Cにて、一軸また は二軸押出機により均一に溶融混練する方法を用いることができる。
[0081] 溶融混練にお!、て、アクリル弾性体粒子に付与したシェル部分などの不飽和カル ボン酸単量体単位や不飽和カルボン酸アルキルエステル単量体単位の環化反応も 同時に行うことができる。
[0082] 尚、ここで言う屈折率差とは、アクリル榭脂 (A)が可溶な溶媒に、本発明のアクリル 榭脂フィルムを適当な条件で十分に溶解させ白濁溶液とし、これを遠心分離等の操 作により、溶媒可溶部分と不溶部分に分離し、この可溶部分 (アクリル榭脂 (A) )と不 溶部分 (アクリル弾性体粒子 (B) )をそれぞれ精製した後、測定した屈折率 (23°C、 測定波長: 550nm)の差を示す。
[0083] また、実質的なアクリル榭脂フィルム中でのアクリル榭脂 (A)とアクリル弾性体粒子( B)の共重合組成は、上記の溶媒による可溶成分と不溶成分の分離操作により、各成 分を個別に分析可能である。
[0084] 本発明のアクリル榭脂フィルムは、ここまで述べた構成を有することにより、その全 光線透過率が 91%以上、ヘイズ 1. 5%以下、耐折回数が 20以上、長手方向および 幅方向の少なくとも一方の熱収縮率が 5%未満の全ての特性を同時に満たすことが 出来る。
[0085] アクリル榭脂フィルム 100質量部中のダルタル酸無水物単位が 50質量部を越える と、他の目的である耐熱性は向上する力 耐折回数が 20未満となる事がある。また、 耐折回数の向上を目的に強度の延伸を行うと長手方向および幅方向の両方の熱収 縮率が 5%以上となる事がある。また、スチレンや、無水マレイン酸を共重合して耐熱 性ゃ耐折回数を改善すると全光線透過率が 91%未満になる事や、ヘイズが 1. 5% を越える事がある。尚、上記アクリル榭脂の全光線透過率およびヘイズは、 JIS—K7 361および JIS— K7136に従い、測定した値である。ここで言う熱収縮率とは、フィル ムを幅 10mm、測定長約 200mmとなるように 2本のラインを引き、この 2本のライン間 の距離を正確に測定しこれを Lとする。このサンプルを 100°Cのオーブン中に 30分
0
間、無荷重下で放置後再び 2本のライン間の距離を測定しこれを Lとし、下式により 熱収縮率を求めた値を言う。
熱収縮率 (%) = { (L -L ) /L } X 100
0 1 0
全光線透過率、耐折回数は大きければ大きいほど好ましぐヘイズ、熱収縮率は小 さければ小さ 、ほど好まし 、事は言うまでもな!/、。
[0086] 本発明のアクリル榭脂フィルムは、光学等方用途で好適に使用される事を説明した 。光学等方用途においては、入射された光に対し、その素材の中では光学的には全 く影響を与える事無ぐ被保護体を外部からの応力、熱、薬品などから保護する事が 求められる。すなわち、光学特性については全光線透過率は 100%である事が理想 である。全光線透過率が低いと、偏光板保護フィルムや、プリズムシートあるいはレン ズとした場合は暗くなる問題があり、光導波路や光ファイバ一のコアとした場合には 信号減衰の問題がある。本発明において、全光線透過率は 91%以上である事が必 要であり、好ましくは 92%以上である。全光線透過率に上限は無いが、界面反射に よる損失が避けられないため一般的には上限は 99%程度である。 全光線透過率を 100%に近づけるためにはこれを阻害する因子を小さくする必要がある。このため濁 度、すなわちヘイズは小さい事が求められ、理想的には 0である。本発明においては ヘイズは 1. 5%以下であることが必要である。ヘイズが 1. 5%を越えると全光線透過 率が 91%未満となる事がある。ヘイズは好ましくは 1. 0%以下であり、より好ましくは 0. 5%以下である。
[0087] 本発明のアクリル榭脂フィルムは、保護フィルム、ディスク基板などに好適に用いら れるが、例えば、保護フィルムとしては被保護体を保護する目的で外部からの応力に 耐え、それ自体も折り曲げに対し耐える必要がある。本発明において耐折回数は 20 以上である事が必要である。ここで耐折回数と ίお IS P8115— 1994に準拠した方 法でフィルムサンプルを測定した値である。耐折回数は好ましくは 50以上、より好ま しくは 100以上である。また、保護フィルム、レンズとして利用するには熱収縮率は小 さい必要がある。保護フィルムが熱収縮を起こすと被保護体に応力を与えるため好ま しくない。またレンズが寸法変化を起こすと焦点などの問題がある。本発明において 長手方向および幅方向の少なくとも一方の熱収縮率が 5 %未満である事が必要であ る。好ましくは 2%以下、さらに好ましくは 1%以下である。理想的には 0%である。さら に直交する両方向の熱収縮率が 5 %未満である事が好ま 、。
[0088] 本発明のアクリル榭脂フィルムは、少なくとも一方向の破断点伸度が 10%以上であ ることが好ましぐ 15%以上であることがより好ましい。また直交方向の破断点伸度も 10%以上であることがさらに好ましい。アクリル榭脂フィルムの破断点伸度が 10%以 上であるとアクリル榭脂フィルムが適度な柔軟性を有し、製膜時や加工時のフィルム 破れが低減し、スリット性などの加工性が向上するため好ましい。このようなアクリル榭 脂フィルムの破断点伸度 ίお IS— C2318に準拠した方法で測定される。なおアクリル 榭脂フィルムの破断点伸度の上限については、特に限定されるものではないが、現 実的には 50%程度であると考えられる。このような破断点伸度のアクリル榭脂フィル ムを得るためには、アクリル榭脂の分子量や環状単位の含有量、アクリル弾性体粒 子の組成、粒子径、添加量、アクリル榭脂フィルム中の分散状態などを適宜調節する とよい。
[0089] 例えば、アクリル弾性体粒子を持たないダルタル酸無水物単位:メタクリル酸メチル 単位:メタクリル酸 = 32: 66: 2質量部である重合体の場合、破断点伸度は 2%である 力 粒径 155 mの 2層粒子を 20質量部添加すると、破断点伸度は 13%とすること ができる。
[0090] 本発明のアクリル榭脂フィルムは、波長 550nmの光線に対する位相差が lOnm以 下であることが好ましぐより好ましくは 5nm以下、さらに好ましくは 2nm以下である。 波長 550nmの光線に対する位相差が lOnm以下であると、光学用等方性フィルムと して偏光板や光ディスクなどの保護フィルム用途で好適に用いることができる。光学 等方性が要求される用途において、波長 550nmの光線に対する位相差は小さい方 が好ましいが、現実的に下限は 0. lnm程度と考えられる。このような光学等方性の アクリル榭脂フィルムを得るためには、位相差を発現させる添加剤や共重合成分を導 入しないようにすることや、製膜時の延伸倍率を低くすることなどが有効である。例え ば、本発明にお 、てダルタル酸無水物単位:メタクリル酸メチル単位:メタクリル酸 = 3 2 : 66 : 2質量部である重合体に粒径 155 mの 2層粒子を 20質量部添加し、溶液製 膜法で製膜する事により厚み 41 μ m、位相差 0. lnmのフィルムを得ることができる。 なお本発明の波長 550nmの光線に対する位相差は、王子計測 (株)社製の自動複 屈折計 (KOBRA— 21ADH)を用い、波長分散測定モードにおいて、波長 480. 4n mの光線に対する位相差、波長 548. 3nmの光線に対する位相差、波長 628. 2nm の光線に対する位相差、波長 752. 7nmの光線に対する位相差を測定し、各波長に おける位相差 (R)および測定波長( λ )からコーシ一の波長分散式 (R ( λ ) = a +b/ X 2 + c/ λ Α + ά/ X Q)の各 a〜dの係数を求め、このコーシ一の波長分散式に波 長 550nm ( = 550)を代入して求められる値とする。
[0091] また本発明のアクリル榭脂フィルムは、波長 590nmの光線に対するアクリル榭脂フ イルム面内の直交軸方向の屈折率をそれぞれ nx、 ny (ただし nx≥ny)とし、波長 59 Onmの光線に対するアクリル榭脂フィルムの厚み方向の屈折率を nz、アクリル榭脂 フィルムの厚みを d (nm)とした時に、下式と定義する厚み方向の位相差 Rthが 10η m以下であることが好ましぐより好ましくは 8nm以下、さらに好ましくは 5nm以下、最 も好ましくは 2nm以下である。アクリル榭脂フィルムの厚み方向の位相差 Rthが 10η m以下であると、フィルム面内の光学等方性のみならず厚み方向の光学等方性にも 優れたアクリル榭脂フィルムとなるため、偏光板や光ディスクなどの保護フィルム用途 でより一層好適に用いることができる。厚み方向の光学等方性が要求される用途に おいて、厚み方向の位相差 Rthは小さい方が好ましいが、現実的に下限は 0. lnm 程度と考えられる。このような厚み方向の位相差 Rthが小さいアクリル榭脂フィルムを 得るためには、厚み方向の位相差を発現させる添加剤や共重合成分を導入しな ヽょ うにすることや、フィルム面内あるいは厚み方向の製膜時の延伸倍率を低くすること などが有効である。例えば本発明においてダルタル酸無水物単位:メタクリル酸メチ ル単位:メタクリル酸 = 32 : 66: 2質量部である重合体に粒径 155 μ mの 2層粒子を 2 0質量部添加し、溶液製膜法で製膜する事により厚み 41 μ m、厚み方向の位相差 0 . 4nmのフィルムを得ることができる。
[0092] 厚み方向の位相差 Rth (nm) =dx { (nx+ny) /2-nz}
本発明のアクリル榭脂フィルムは光弾性係数が一 2 X 10_12/Pa〜2 X 10_12/Pa であることが好ましい。光弾性係数が一 2 X 10_12/Pa〜2 X 10_12/Paである事に より、大画面の液晶テレビに用いたとき、アクリル榭脂フィルムと貼り合わされた他の 部材の熱膨張、あるいは残留応力等に起因して、アクリル榭脂フィルムが応力を与え られた場合にも位相差の変化が小さいため好ましい。光弾性係数は小さいほど、応 力に対する位相差変化が小さいため好ましぐより好ましくは— 1 X 10_12ZPa〜l X 10_12ZPaである。アクリル榭脂フィルムの光弾性係数は一般的に小さいが、耐熱性 向上のために、スチレンや、マレイミドを共重合したり、芳香族置換基を導入すると、 光弾性係数も大きくなつてしまう。本発明のアクリル榭脂フィルムは、ダルタル酸無水 物構造により耐熱性向上と低光弾性係数を両立出来る。
[0093] 本発明のアクリル榭脂フィルムは、用途に応じて紫外線吸収剤を添加することが好 ましい。紫外線吸収剤としては任意の物を利用できる力 例えばべンゾトリアゾール 系、サリチル酸エステル系、ベンゾフエノン系、ォキシベンゾフエノン系、シァノアクリレ ート系、高分子系、無機系が例示できる。市販の紫外線吸収剤としては例えば下記 一般式(3)で表される旭電ィ匕工業株式会社のアデカスタブ、 TINUVIN登録商標、 BASF株式会社の Uvinul、城北化学工業株式会社の紫外線吸収剤が挙げられる。 [0094] [化 9]
【化 9】
Figure imgf000028_0001
[0095] 芳香族高分子は主鎖の芳香族により紫外線を吸収するため、主鎖が紫外線により 切断され、劣化する問題があるが、本発明のアクリル榭脂フィルムは主鎖部分が紫外 線を吸収しないため、劣化することが無ぐまた、添加する紫外線吸収剤の種類と量 により、所望の紫外線カット機能を付与できるため好ましい。さら〖こ、添加する紫外線 吸収剤は芳香族化合物であっても、ランダムに存在するため、位相差が発現しにくい ため好ましい。
[0096] 紫外線吸収剤の添加量としてはアクリル榭脂 (A)とアクリル弾性体粒子 (B)の合計 100質量部に対し、 0. 1質量部以上 5質量部以下であることが好ましい。 0. 1質量部 未満では、所望の効果が得られない事がある。また、 5質量部を越えると均一に分散 しない、全光線透過率が低下する、ヘイズが上昇する等の問題が起こる事がある。
[0097] 一般に 380nm以下の波長の光を紫外線と呼ぶ力 紫外線吸収剤を添加したアタリ ル榭脂フィルムの光線透過率は 380nmの光の光線透過率が 10%以下である事が 好ましい。さらに好ましくは 5%以下である。 380nmの光の光線透過率は紫外線吸 収剤の量を増やすことで低減でき、減らすことで増加出来る。紫外線を十分にカット することで、紫外線を嫌う素材を保護する事が出来る。 380nmの光線透過率は下記 装置を用いて測定し、各波長の光に対応する透過率を求めた。
透過率(%) =Τ1/ΤΟ Χ 100
ただし T1は試料を通過した光の強度、 TOは試料を通過しない以外は同一の距離の 空気中を通過した光の強度である。
装置: UV測定器 U— 3410 (日立計測社製)
波長範囲: 300ηπ!〜 800nm
測定速度: 120nmZ分
測定モード:透過 他の目的のために 300nm〜800nmの範囲で測定するが、 380nmの光線透過率 はこの中で、 380nmの時の値を言う。
[0098] また、本発明のアクリル榭脂フィルムには本発明の目的を損なわな 、範囲で、他の アクリル榭脂(例えばポリエチレン、ポリプロピレン、アクリル榭脂、ポリアミド、ポリフエ 二レンサルファイド榭脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホ ン、ポリフエ-レンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなど)、熱 硬化性榭脂 (例えばフエノール榭脂、メラミン榭脂、ポリエステル榭脂、シリコーン榭 脂、エポキシ榭脂など)の一種以上をさらに含有させることができ、また、ヒンダードフ ェノール系、ベンゾエート系、およびシァノアクリレート系の酸ィ匕防止剤、高級脂肪酸 や酸エステル系および酸アミド系、さらに高級アルコールなどの滑剤および可塑剤、 モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール 、ステアラミドおよびエチレンワックスなどの離型剤、亜リン酸塩、次亜リン酸塩などの 着色防止剤、ハロゲン系難燃剤、リン系やシリコーン系の非ハロゲン系難燃剤、核剤 、アミン系、スルホン酸系、ポリエーテル系などの帯電防止剤、顔料などの着色剤な どの添加剤を任意に含有させてもよい。ただし、適用する用途が要求する特性に照ら し、その添加剤保有の色が熱可塑性重合体に悪影響を及ぼさず、かつ透明性が低 下しな 、範囲で添加する必要がある。
[0099] 本発明にお 、てアクリル榭脂 (A)にアクリル弾性体粒子(B)ある 、はその他の添カロ 剤などの任意成分を配合する方法には、特に制限はなぐアクリル榭脂 (A)とその他 の任意成分を予めブレンドした後、通常 200〜350°Cにおいて、一軸または二軸押 出機により均一に溶融混練する方法が好ましく用いられる。また、アクリル弾性体粒 子 (B)を配合する場合には、(A)、 (B)両成分を溶解する溶媒の溶液中で混合した 後に溶媒を除く方法を用いることができる。
[0100] また、本発明のアクリル榭脂フィルムに使用するアクリル榭脂の製造方法として、不 飽和カルボン酸単量体および不飽和カルボン酸アルキルエステル単量体を含む単 量体混合物を共重合して共重合体 (a)を得、次 ヽでこの共重合体 (a)とアクリル弾性 体粒子(B)を予めブレンドした後、通常 200〜350°Cにおいて、一軸または二軸押 出機により均一に溶融混練することにより、前述した (a)成分の環化反応を行うと同時 に、(B)成分の配合を行うことができる。また、この際、(B)成分の一部に不飽和カル ボン酸単量体単位および不飽和カルボン酸アルキルエステル単量体単位からなる 共重合体を含む場合の環化反応も同時に行うことができる。
[0101] 本発明のアクリル榭脂フィルムに使用するアクリル榭脂は異物を取り除く目的で、濾 過することが好ましい。異物を除去することにより、光学用途フィルムとして有用に使 用できる。濾過は公知の方法を使用することが出来る力 テトラヒドロフラン、アセトン 、メチルェチルケトン、ジメチルホルムアミド、ジメチルスルホキシド、 N—メチルピロリ ドン等の溶剤に溶解した榭脂を 25°C以上 100°C以下の温度で適宜フィルター、例え ば、焼結金属、多孔性セラミック、サンド、金網等で濾過する事が樹脂の着色を防ぐ ためにこのましい。
[0102] 本発明のアクリル榭脂フィルムは、その熱変形温度が 110°C以上の優れた耐熱性 を有する。熱変形温度の上限は特に無いが、 130°C以上であることが好ましぐ靱性 や、破断点伸度との兼ね合いから、 200°C程度が上限となる。
熱変形温度は、熱機械分析 (TMA)を用いて、測定サンプルを昇温し、測定温度に 対する変形量をプロットした時、その変形量が 2%以上変化する温度を熱変形温度と した。なお、 TMAは、真空理工 (株)社製熱分析ステーション (MTS— 9000)を用い 、試料測定モジュール (TM— 9400)で、測定サンプル幅 4ミリ、測定長さ 15ミリのサ ンプルに、該測定サンプル単位断面積当たり 15kgfZmm2の弓 I張荷重をかけて熱 変形温度を測定した。
[0103] 本発明のアクリル榭脂フィルムの製造方法には、公知の方法を使用することができ る。すなわち、インフレーション法、 T—ダイ法、カレンダ一法、切削法、溶液製膜法( 流延法)、エマルシヨン法、ホットプレス法等の製造法が使用できる力 好ましくは、ィ ンフレーシヨン法、 T—ダイ法、キャスト法、ホットプレス法が使用できる。
[0104] 溶液製膜法で製膜する場合、残揮発分を含むアクリル榭脂フィルム 100質量部中 の残存揮発分を 3質量部以下とすることが好ま ヽ。残存揮発分が 3質量部を越える と、見かけの Tgが低下したり、ブロッキングによりフィルムの巻き取り性が悪ィ匕したり、 有機溶媒が経時でブリードアウトして他部材との接着性を低下させるなどの問題が生 じ易くなる。 本発明にお ヽてはアクリル榭脂フィルムの残存揮発分は次の評価方法によって求め られるものと定義する。熱質量測定装置を用いて、窒素雰囲気中、昇温速度 10°CZ 分の条件下でアクリル榭脂フィルムの熱減量を測定し、 35°Cでの質量と 200°Cでの 質量から以下の式で残存揮発分を求める。
[0105] アクリル榭脂フィルムの残存揮発分 (質量部) = ( (35°Cでの質量 200°Cでの質 量) Z35°Cでの質量) X 100。
[0106] 残存揮発分は、より好ましくは 2質量部以下、さらに好ましくは 1質量部以下、最も好 ましくは 0. 5質量部以下とする。とする。アクリル榭脂フィルム中の残存揮発分は低い ほど好ましいが現実的には lOOppm程度と考えられる。
[0107] 次に、本発明の好ましい製膜方法である溶液製膜法について説明する。アクリル榭 脂を溶解する溶媒としては特に限定は無ぐ塩化メチレン、塩ィ匕エチレン、クロ口ホル ムなどのハロゲンィ匕炭化水素系有機溶媒、アセトン、メチルェチルケトンなどのケトン 系有機溶媒、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、 N—メ チル— 2—ピロリドンなどの溶媒を例示出来る。これらの溶媒は単独で用いてもよいし 、 2種以上を混合して用いてもよい。なおアクリル榭脂を溶液重合により調製した場合 には、この重合溶液をそのまま製膜用のアクリル溶液としてもよいし、ー且単離したァ クリル樹脂を上記有機溶媒に溶解させて製膜用のアクリル榭脂溶液としてもよい。
[0108] また溶媒には、上記溶媒以外に、シクロへキサン、ベンゼン、トルエン、キシレン、ス チレン、シクロペンタンなどの炭化水素系有機溶媒、メタノール、エタノール、イソプロ ピルアルコール、 n—ブタノール、 tert—ブチルアルコールなどのアルコール系有機 溶媒、ジメチルエーテル、ジェチルエーテル、ブチルエーテルなどのエーテル系有 機溶媒、酢酸メチル、酢酸ェチル、酢酸 n—ブチルなどのエステル系有機溶媒、ェ チルセ口ソルブ、酢酸セロソルブ、 tert—ブチルセ口ソルブなどの多価アルコール系 有機溶媒など力 選ばれる 1種あるいは 2種以上を混合して用いてもょ 、。これらの 有機溶媒を混合することで、アクリル榭脂溶液の粘弾性や表面張力が変化して、ァク リル榭脂フィルムの表面性や乾燥特性、支持体からの剥離性などの改質を図れるこ とがある。ただしアクリル榭脂の溶解性が悪 ヽ有機溶媒を多量に混合するとアクリル 榭脂溶液の安定性が悪くなり、アクリル榭脂が析出することがあるため注意が必要で ある。
[0109] アクリル榭脂溶液の濃度は、溶媒の種類やアクリル榭脂の目的とする塗布厚みに 応じて適宜調整されるものであるが、アクリル榭脂溶液 100質量部に対し、アクリル榭 脂 (A)とアクリル弾性体粒子 (B)の合計が 5〜40質量部の範囲内であることが好まし く、 10〜30質量部の範囲内であることがより好ましい。なお本発明においてアクリル 榭脂溶液の濃度とは、アクリル榭脂溶液全体に対するアクリル榭脂の濃度である。ァ クリル樹脂溶液の濃度が 5質量部未満であると粘度が低ぐアクリル榭脂塗膜の初期 乾燥段階で有機溶媒の対流によりアクリル榭脂フィルムの平面性が悪くなつたり、有 機溶媒の乾燥に長時間を要するなど生産性が低下するために好ましくない。逆にァ クリル樹脂溶液の濃度が 40質量部を越えると粘度が高ぐハンドリング性が悪くなり、 高精度濾過を行い難くなるなどの問題が生じるため好ましくない。
[0110] アクリル榭脂溶液はフィルム欠点やヘイズ値を良好なものとするため、濾過により異 物を除去することが好ましい。このような濾過に用いるフィルタ一としては、例えば、金 網、焼結金属、多孔質セラミック、ガラス、ポリプロピレン榭脂ゃポリエチレン榭脂など ポリマーからなるフィルター、ある 、は上記素材の 2種類以上を組み合わせたフィルタ 一が挙げられる。
[0111] このアクリル榭脂溶液の濾過精度は、好ましくは 10 m以下、より好ましくは 5 m 以下、さらに好ましくは 1 m以下である。アクリル榭脂溶液の濾過精度を小さいほど 好ましいが、あまり小さ過ぎると目詰まりによるフィルター交換頻度が多くなり、生産性 が低下するため好ましくない。アクリル榭脂溶液の濾過制度の下限は 0.: m程度 が適切と考えられる。
[0112] 支持体にアクリル榭脂溶液を塗布する方法としては、アクリル榭脂溶液の粘弾性、 アクリル榭脂フィルムの塗布厚み、支持体の種類、使用する有機溶媒などにより適宜 選択される力 正回転ロールコーター、リバースロールコーター、グラビアコーター、 ナイフコ1 ~~タ' ~~、ブレ1 ~~ドコ1 ~~タ' ~~、口、、/ドコ1 ~"タ' ~"、ヱアドクタ■ ~"コ^ ~"タ' ~"、力' ~"テンコ 一ター、フアウンテンコーター、キスコーター、スクリーンコーター、コンマコーター、ス リットダイコーターなどの塗布方式が挙げられる。
[0113] アクリル榭脂溶液を塗布する支持体として、ポリマーフィルム、ドラム、エンドレスべ ルトなど!/、ずれを用いてもよ!、が、乾燥後のアクリル榭脂フィルムと支持体の剥離性 が良好であることから、ポリマーフィルムを支持体とすることが好ましい。このようなポリ マーフィルムの支持体としては、アクリル榭脂溶液で使用して ヽる有機溶媒に耐性が あれば特に限定されないが、例えば、ポリエチレンテレフタレートフィルム、ポリエチレ ンナフタレートフィルム、ポリプロピレンフィルム、ポリエチレンフィルム、ポリフエ-レン スルフイドフイルム、ァラミドフィルム、ポリイミドフィルムなどが挙げられ、これらの中で は剛性、厚みムラ、無欠点性、コストなどのバランスに優れたポリエチレンテレフタレ 一トフイルムが好ましい。
[0114] アクリル榭脂溶液は、支持体上に塗布、乾燥および支持体からの剥離を行 ヽアタリ ル榭脂フィルムを得る。乾燥工程の前に溶液を凝固液で固化する湿式法等を用いる ことも好まし 、。
[0115] 支持体としてポリマーフィルムを用いる場合は、フィルム厚みは 50〜200 μ mが好 ましぐ 100〜150 111カ¾り好ましぃ。支持体のフィルム厚みが 50 m未満の場合 はフィルムの剛性が低ぐ塗布ある 、は乾燥段階でシヮが入り易 、ためアクリル榭脂 フィルムの平面性が悪ィ匕するなどの問題が生じ易 、。また支持体のフィルム厚みが 2 00 mを越える場合は経済的でなぐアクリル榭脂フィルムに熱が伝わり難いなどの 問題が生じるため好ましくない。
[0116] 本発明のアクリル榭脂フィルムは、支持体上に塗布したアクリル榭脂フィルムの乾 燥工程において、初期乾燥、中間乾燥、最終乾燥の少なくとも 3段階以上の工程か らなることが好ましい。
[0117] 支持体に塗布したアクリル榭脂フィルムの乾燥条件は、乾燥方式や使用する有機 溶媒、アクリル榭脂溶液の粘弾性、アクリル榭脂のガラス転移温度などによって適切 な条件が設定されるべきものであるが、初期乾燥温度が使用する有機溶媒の沸点を 越えると発泡によるアクリル榭脂フィルムの欠点が生じ易いため溶媒の沸点以下であ る事が好ま 、。あまり低すぎるとアクリル榭脂フィルムの乾燥に長時間を要し生産性 が悪いため、下限は 0°C程度と考えられる。
[0118] 乾燥工程は上記初期乾燥、中間乾燥、最終乾燥の 3段階からなる乾燥工程をさら に増やしてもよい。その場合の乾燥温度は、発泡抑制の観点力も段階的あるいは連 続的に昇温することが好ましい。また各乾燥段階の乾燥時間は、 1〜120分程度で 行うことが好ましい。
[0119] アクリル榭脂フィルムの乾燥方式は、使用する有機溶媒、アクリル榭脂溶液の粘弾 性、アクリル榭脂のガラス転移温度、アクリル榭脂フィルムの厚みなどによって適切な 方式が選択されるべきであるが、熱風噴射、ドラム式、赤外線、マイクロ波 (誘導加熱 )、電磁誘導加熱、紫外線、電子線などの乾燥方式が挙げられる。
[0120] アクリル榭脂フィルムの乾燥は、支持体上で最終乾燥まで行ってもよ!、し、乾燥途 中で支持体とアクリル榭脂フィルムを剥離して再度乾燥させてもよい。剥離後、乾燥 する場合は乾燥収縮による平面性悪ィ匕を防止する目的でフィルム端部を保持する事 が好ましい。
[0121] 本発明のアクリル榭脂フィルムは単層フィルムでも、積層フィルムでもよぐ積層フィ ルムとする場合には、例えば、ー且 1層を形成しておいてその上に他の層を形成する 方法や、 口金内や複合管で積層する方法などを用いればょ ヽ。
[0122] インフレーション法や T ダイ法による製造法の場合、単軸あるいは二軸押出スクリ ユーのついたエタストルーダ型溶融押出装置等が使用できる。好ましくは LZD = 25 以上 120以下の二軸混練押出機が着色を防ぐために好ましい。本発明のフィルムを 製造するための溶融押出温度は、好ましくは 150〜350°C、より好ましくは 200〜30 0°Cである。溶融剪断速度は 1000S—1以上 5000S—1以下が好ましい。また、溶融押 出装置を使用し溶融混練する場合、着色抑制の観点から、ベントを使用し減圧下で の溶融混練ある 、は窒素気流下での溶融混練を行うことが好まし 、。キャスト方法は 溶融した榭脂をギア一ポンプで計量した後に Tダイ口金力 吐出させ、冷却されたド ラム上に、それ自体公知の密着手段である静電印加法、エアーチャンバ一法、エア 一ナイフ法、プレスロール法などでドラムなどの冷却媒体に密着冷却固化させて室温 まで急冷し、未延伸のフィルムを得ること好ましい。
[0123] 耐折回数 20以上のアクリル榭脂フィルムを得るためにはこうして得られた未延伸の フィルムを、さらに二軸延伸する事が好ましい。
[0124] 二軸延伸の延伸方式は特には限定されず、逐次二時延伸方式、同時二軸延伸方 式などの方法を用いることができる。 [0125] 同時二軸延伸法により延伸する場合は、リニアモーターを利用した駆動方式 (特公 昭 63— 12772号公報等)によるテンターを用いて同時二軸延伸する方法が好ま Uヽ 力 特に限定されず、フィルム把持クリップの駆動方式には、チェーン駆動方式、スク リュー方式、パンタグラフ方式、などを採用することもできる。同時二軸延伸の温度と しては、アクリル榭脂のガラス転移温度 Tg以上、(ガラス転移温度 Tg + 50°C)以下で あることが好ましい。延伸温度がこの範囲を大きくはずれると、均一延伸ができなくな り、厚みむらやフィルム破れが生じ好ましくない。延伸倍率は、縦方向、横方向それ ぞれ 1. 1〜5倍とすればよい。耐折回数を向上させるために 1. 1〜2. 5倍が特に好 ましい。延伸速度としては特に限定されないが、 100〜50000%Z分が好ましい。
[0126] また、逐次二軸延伸により延伸する場合は、得られた未配向のフィルムをアクリル榭 脂の(ガラス転移温度 Tg— 30°C)以上、(ガラス転移温度 Tg + 50°C)以下に加熱さ れたロール群上で接触昇温させて、長手方向に 1. 1〜2. 5倍延伸し、これをいつた ん冷却した後に、テンタークリップに該フィルムの端部を嚙ませて幅方向にアクリル榭 脂の(ガラス転移温度 Tg + 5°C)以上、(ガラス転移温度 Tg + 50°C)の温度雰囲気 下の中で 1. 1〜2. 5倍延伸し、二軸配向したアクリル榭脂フィルムを得るのである。
[0127] 逐次二軸延伸により延伸する場合、ロールとフィルムの接触による傷を低減する目 的でカバーフィルムを少なくとも 1方の面に貼り合わせて延伸することが好ましい。力 バーフィルムは、公知の榭脂のフィルムを使用することができる。カバーフィルムの具 体例としては、ポリオレフインフィルム、ポリエステルフィルム等が挙げられる。特に好 ましくは、ポリプロピレンフィルムおよび Zまたはポリエチレンナフタレートフィルムであ る。
[0128] 次に、熱収縮率の低減および平面性を付与するために、必要に応じて熱処理を行 う。本発明の効果である低い熱収縮率を得るために、熱処理条件としては、定長下、 微延伸下、弛緩状態下の!、ずれかで、(ガラス転移温度 Tg)〜 (ガラス転移点 + 130 °C)の範囲で 0. 5〜60秒間行うことが好適であり、(ガラス転移温度 Tg+40°C)〜( ガラス転移点 + 80°C)の範囲で 0. 5〜: LO秒間行うことがもっとも好適である。上記範 囲以下では熱収縮率が大きくなり、上記した範囲以上ではヘイズが高ぐ耐衝撃性 が低下する場合がある。 [0129] このようにそれぞれの方法で二軸配向し熱処理を施したフィルムを、室温まで徐冷 しワインダ一にて巻き取る。冷却方法は、二段階以上に分けて室温まで徐冷するの が好ましい。このとき、長手方向、幅方向に 0. 5〜10%程度のリラックス処理を行うこ とは、熱収縮率を低減するのに有効である。冷却温度としては、一段目が (熱処理温 度 20°C)〜 (熱処理温度 80°C)、二段目が(一段目の冷却温度 30°C)〜(一 段目の冷却温度 40°C)の範囲が好ましいが、これに限定されるものではない。
[0130] 本発明のアクリル榭脂フィルムは少なくとも 1面にハードコート層が形成され、さらに 該フィルムの少なくとも 1面に反射防止膜が形成されてなる事が好ましい様態である。 ハードコート形成方法に特に限定は無ぐ公知の方法を用いることが出来る力 多官 能アタリレートを用いる方法などが例示出来る。多官能アタリレートとしては、 1, 6- へキサンジオールジアタリレート、 1, 4 ブタンジオールジアタリレート、エチレングリ コールジアタリレート、ジエチレングリコールジアタリレート、テトレエチレングリコーノレ ジアタリレート、トリプロピレングリコーリジアタリレート、ネオペンチルグリコールジアタリ レート、 1, 4 ブタンジオールジメタタリレート、ポリ(ブタンジオール)ジアタリレート、 テトラエチレングリコールジメタタリレート、 1, 3 ブチレングリコールジアタリレート、ト リエチレングリコールジアタリレート、トリイソプロピレングリコールジアタリレート、ポリエ チレングリコールジアタリレート及びビスフエノール Aジメタクリレートの如きジアタリレ ート類;トリメチロールプロパントリアタリレート、トリメチロールプロパントリメタタリレート 、ペンタエリスリトールモノヒドロキシトリアタリレート及びトリメチロールプロパントリエト キシトリアタリレートのようなトリアタリレート類;ペンタエリスリトールテトラアタリレート及 びジ -トリメチロールプロパンテトラアタリレートの如きテトラアタリレート類;並びにペン タエリスリトール(モノヒドロキシ)ペンタアタリレートのようなペンタアタリレート類を挙げ ることができる。また、反射防止膜についても限定は無ぐ公知の方法を用いることが 出来る。反射防止膜は無機化合物を用いた乾式でも有機化合物を用いた湿式でも 好ましぐ低屈折率層を 1層用いた単層形でも、高屈折率層、低屈折率層、中屈折率 層を任意の層用いた多層形でも好ましく用いられる。
[0131] 力べして得られるフィルムは、その優れた透明性、耐熱性、耐光性、靱性を活力して 、電気,電子部品、光学フィルター、自動車部品、機械機構部品、 OA機器、家電機 器などのハウジングおよびそれらの部品類、一般雑貨など種々の用途に用いること ができる。
[0132] ここで、光学フィルターとはディスプレイ機器用の部材であり、特に液晶ディスプレイ 、プラズマディスプレイ、フィールドェミッションディスプレイ、エレクト口ルミネッセンス ディスプレイなどフラットパネルディスプレイに用いられる部材を示す。例えば、プラス チック基板、レンズ、偏光板、偏光板保護フィルム、紫外線吸収フィルム、赤外線吸 収フィルム、電磁波シールドフィルムや、プリズムシート、プリズムシート基材、フレネ ルレンズ、光ディスク基板、光ディスク基板保護フィルム、導光板、位相差フィルム、 光拡散フィルム、視野角拡大フィルム、反射フィルム、反射防止フィルム、防眩フィル ム、輝度向上フィルム、プリズムシート、タツチパネル用導電フィルムが例示出来る。
[0133] 上記成形品の具体的用途としては、例えば、各種カバー、各種端子板、プリント配 線板、スピーカー、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、また、 透明性、耐熱性に優れている点から、映像機器関連部品としてカメラ、 VTR、プロジ ェクシヨン TV等のファインダー、フィルター、プリズム、フレネルレンズ等、光記録'光 通信関連部品として各種光ディスク (VD、 CD、 DVD, MD、 LD等)基板保護フィル ム、光スィッチ、光コネクタ一等、情報機器関連部品として、液晶ディスプレイ、フラッ トパネルディスプレイ、プラズマディスプレイの導光板、フレネルレンズ、偏光板、偏光 板保護フィルム、位相差フィルム、光拡散フィルム、視野角拡大フィルム、反射フィル ム、反射防止フィルム、防眩フィルム、輝度向上フィルム、プリズムシート、タツチパネ ル用導電フィルム、カバー等、これら各種の用途にとって極めて有用であり、特に偏 光板保護膜として有用である。
実施例
[0134] [物性の測定法]
以下、実施例により本発明の構成、効果をさらに具体的に説明する。もっとも、本発 明は下記実施例に限定されるものではない。各実施例の記述に先立ち、実施例で 採用した各種物性の測定方法を記載する。
[0135] (1)各成分組成
アクリル榭脂フィルムをアセトンに溶解し、この溶液を 9000rpmで 30分間遠心分離 して、アセトン可溶成分とアセトン不溶成分とに分離した。アセトン可溶成分を 60°Cで 5時間減圧乾燥し、各成分単位を定量してアクリル榭脂の各成分組成を特定した。
[0136] 各成分単位の定量は、プロトン核磁気共鳴( — NMR)法により行った。 'Η-Ν MR法では、例えば、ダルタル酸無水物単位、メタクリル酸、メタクリル酸メチルカゝらな る共重合体の場合、ジメチルスルホキシド重溶媒中でのスペクトルの帰属を、 0. 5〜 1. 5ppmのピーク力メタクリル酸、メタクリル酸メチルおよびダルタル酸無水物環化合 物の α—メチル基の水素、 1. 6〜2. lppmのピークはポリマー主鎖のメチレン基の 水素、 3. 5ppmのピークはメタクリル酸メチルのカルボン酸エステル(一COOCH )
3 の水素、 12. 4ppmのピークはメタクリル酸のカルボン酸の水素と、スペクトルの積分 比から共重合体組成を決定することができる。また上記に加えて、他の共重合成分と してスチレンを含有する共重合体の場合、 6. 5〜7. 5ppmにスチレンの芳香族環の 水素が見られ、同様にスペクトル比力も共重合体組成を決定することができる。
[0137] なお1 H— NMR法の他に、赤外分光法によっても各成分単位の定量が可能である 。当該方法においては、グルタル酸無水物単位は、 1800cm_1および 1760cm_1の 吸収が特徴的であり、ビニルカルボン酸由来の単位ゃビニルカルボン酸アルキルェ ステル由来の単位から区別することができる。
[0138] ゴム質重合体の重量平均粒子径は「Rubber Age, Vol. 88, p. 484— 490
(1960) , by E. Schmidt, P. H. BiddisonJに記載のアルギン酸ナトリウム法、 つまりアルギン酸ナトリウムの濃度によりクリーム化するポリブタジエン粒子径が異なる ことを利用して、クリーム化した重量割合とアルギン酸ナトリウム濃度の累積重量分率 より累積重量分率 50%の粒子径を求める方法により測定することができる。
[0139] (2)耐折回数(回)
JIS P8115— 1994に従う。試験片の寸法は幅 5±0. 03mm、長さ 110 ± 5mmで あり、加重は断面積あたり 2. 5kgfZmm2とする。測定は 3回行い、平均値をとつた。
[0140] (3)ヘイズ値、全光線透過率
東洋精機 (株)製直読ヘイズメーターを用いて、 23°Cでのヘイズ値 (%)と全光線透 過率 (%)を測定した。測定は 3回行い、平均値をとつた。
全光線透過率およびヘイズは、 JIS— K7361および JIS— K7136に従い、測定した 値である。
[0141] (4)破断点伸度
オリエンテック (株)製のフィルム強伸度自動測定装置"テンシロン AMFZRTA— 10
0"を用いて、次の条件で測定した。
試料サイズ:幅 10mm、長さ 150mm
チャック間距離 50mm
引張速度: 300mmZ分
測定環境: 23°C、 65%RH、大気圧下
得られた荷重一伸び曲線の立ち上がり部の接線から引張りヤング率を求めた。また フィルム破断時の長さからチャック間距離を減じたものをチャック間距離で除したもの に 100を乗じて破断点伸度とした。測定は 5回行い、平均値をとつた。
[0142] (5)熱収縮率
フィルムを幅 10mm、測定長約 200mmとなるように 2本のラインを引き、この 2本のラ イン間の距離を正確に測定しこれを Lとする。このサンプルを 100°Cのオーブン中に
0
30分間、無荷重下で放置後再び 2本のライン間の距離を測定しこれを Lとし、下式 により熱収縮率を求める。測定は 1回行った。
熱収縮率 (%) = { (L -L ) /L } X 100
0 1 0
(6)波長 550nmでの位相差
王子計測 (株)社製の自動複屈折計 (KOBRA— 21ADH)を用い、波長分散測定モ ードにおいて、波長 480. 4nmの光線に対する位相差、波長 548. 3nmの光線に対 する位相差、波長 628. 2nmの光線に対する位相差、波長 752. 7nmの光線に対 する位相差を測定し、各波長における位相差 (R)および測定波長( λ )からコーシ一 の波長分散式 (R ( λ ) = a + bZ λ 2 + cZ λ 4 + dZ λ 6)の各 a〜dの係数を求め、 このコーシ一の波長分散式に波長 550nm ( = 550)を代入して求めた。測定は 1 回行った。
[0143] (7)厚み方向の位相差 Rth
王子計測 (株)社製の自動複屈折計 (KOBRA— 21ADH)を用い、波長 590nmの 光線に対するアクリル榭脂フィルム面内の直交軸方向の屈折率、 nx、 ny (ただし nx ≥ny)、波長 590nmの光線に対するアクリル榭脂フィルムの厚み方向の屈折率 nzを 測定し、アクリル榭脂フィルムの厚みを d (nm)とした時に下記式力も求めた。測定は 1回行った。
厚み方向の位相差 Rth (nm) =d X { (nx+ny) /2~nz}
(8) 380nmの光線透過率
下記装置を用いて測定し、各波長の光に対応する透過率を求めた。測定は 1回行つ た。
透過率(%) =Τ1/ΤΟ Χ 100
ただし Tlは試料を通過した光の強度、 TOは試料を通過しない以外は同一の距離の 空気中を通過した光の強度である。
装置: UV測定器 U— 3410 (日立計測社製)
波長範囲: 300ηπ!〜 800nm
測定速度: 120nmZ分
測定モード:透過
(9)光弾性係数
光弾性係数 (10_12ZPa)
短辺 lcm長辺 7cmのサンプルを切り出した。このサンプルを島津 (株)社製 TRANS DUCER U3C1— 5Kを用いて、上下 lcmずつをチェックに挟み長辺方向に lkg /mm2 (9. 81 X 106Pa)の張力(F)をかけた。この状態で、ニコン (株)社製偏光顕 微鏡 5892を用いて Re (nm)を測定した。光源としてはナトリウム D線(589nm)を用 いた。これらの数値を光弾性係数 =ReZ(dX F)にあてはめて光弾性係数を計算し た。測定は 1回行った。
(10)残存揮発分
島津製作所 (株)製の熱質量測定装置 (TGA— 50H)と解析装置サーマルアナライ ザ一(TA— 50)に、データ処理用のパーソナルコンピューターを組み合わせた装置 を用いて測定を行った。支持体力 剥離したアクリル榭脂フィルムまたはアクリル榭脂 フィルム約 7mgを炉内にセットして、炉内を窒素雰囲気下とし、昇温速度 10°CZ分 で室温から 220°Cまで加熱した。得られた熱質量曲線から下式により、アクリル榭脂 フィルムおよびアクリル榭脂フィルムの残存揮発分を求めた。なお測定は 1サンプル にっき 2回の測定を行い、その平均値を残存揮発分として用いた。測定は 1回行った 残存揮発分 (質量部) = ( (35°Cでの質量— 200°Cでの質量) Z35°Cでの質量) X 1 00。
[0145] (11)熱変形温度 (°C)
熱機械分析 (TMA)を用いて、測定サンプルを昇温し、測定温度に対する変形量を プロットした時、その変形量が 2%以上変化する温度を熱変形温度とした。なお、 TM Aは、真空理工 (株)社製熱分析ステーション (MTS— 9000)を用い、試料測定モジ ユール (TM— 9400)で、測定サンプル幅 4ミリ、測定長さ 15ミリのサンプルに、該測 定サンプル単位断面積当たり 15kgf Zmm2の弓 I張荷重をかけて熱変形温度を測定 した。測定は 1回行った。
[0146] (12)屈折率、屈折率差
本発明のアクリル榭脂フィルムにアセトンをカ卩え、 4時間還流し、この溶液を 9, 000 rpmで 30分間遠心分離により、アセトン可溶分( (A)成分)と不溶分( (B)成分)に分 離した。これらを 60°Cで 5時間減圧乾燥した。得られたそれぞれの固形物を 250°C でプレス成形し、厚さ 0. 1mmのフィルムとした後、アッベ屈折計 (株式会社ァタゴ製 、 DR— M2)によって、 23°C、 550nm波長における屈折率を測定した。尚、(A)成 分と(B)成分の屈折率差については、その絶対値を用いた。測定は 1回行った。
[0147] (13)重量平均分子量 (絶対分子量)
得られた熱可塑性重合体をジメチルホルムアミドを溶媒として、 DAWN—DSP型多 角度光散乱光度計 (Wyatt Technology社製)を備えたゲルパーミエーシヨンクロ マトグラフ(ポンプ: 515型, Waters社製、カラム: TSK— gel— GMHXL,東ソ一社 製)を用いて、重量平均分子量 (絶対分子量)を測定した。
[0148] (14)ガラス転移温度ガラス転移温度 (Tg)
示差走査熱量計 (Perkin Elmer社製 DSC— 7型)を用い、窒素雰囲気下、 20°C/ minの昇温速度で測定した。測定は 1回行った。なおガラス転移温度 (Tg)として ίお I S K7121 - 1987の中間点ガラス転移温度 (Tmg)を採用する。 [0149] ( 15)シャルピー衝撃強度 (kjZm2)
JIS K7111に従う。ノッチなし試験片を用い、その幅 10mm長さ 50mmにて行う。測 定は 10回行い、平均値をとつた。
[0150] (16)型抜きテスト
トムソン打抜機で偏光子吸収軸の角度が辺に対して 45° の角度をなすように 12. 1 インチ長方形に打ち抜いた。
割れが発生した場合を不合格( X )とし、割れが発生しなカゝつた場合を合格 (〇)とし た。
[0151] 参考例(1)アクリル榭脂 (A1)
容量が 5リットルで、ノ ッフルおよびファゥドラ型撹拌翼を備えたステンレス製オート クレープに、メタクリル酸メチル Zアクリルアミド共重合体系懸濁剤(以下の方法で調 整した。メタクリル酸メチル 20質量部、アクリルアミド 80質量部、過硫酸カリウム 0. 3 質量部、イオン交換水 1500質量部を反応器中に仕込み反応器中を窒素ガスで置 換しながら 70°Cに保つ。反応は単量体が完全に、重合体に転化するまで続け、ァク リル酸メチルとアクリルアミド共重合体の水溶液として得る。得られた水溶液を懸濁剤 として使用した) 0. 05部をイオン交換水 165部に溶解した溶液を供給し、 400rpm で撹拌し、系内を窒素ガスで置換した。次に、下記混合物質を反応系を撹拌しなが ら添加し、 70°Cに昇温した。内温が 70°Cに達した時点を重合開始として、 180分間 保ち、重合を終了した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、 洗浄、乾燥を行い、ビーズ状の共重合体 (a— 1)を得た。この共重合体 (a— 1)の重 合率は 98%であり、重量平均分子量は 9万であった。
[0152] メタクリル酸 :27質量部
メタクリル酸メチル : 73質量部
tードデシルメルカプタン : 1. 5質量部
2, 2,—ァゾビスイソブチ口-トリル: 0. 4質量部。
[0153] これに添加剤 (NaOCH )を配合し、 2軸押出機 (TEX30 (日本製鋼社製、 L/D
3
=44. 5)を用いて、ホッパー部より窒素を 10LZ分の量でパージしながら、スクリュ 一回転数 100rpm、原料供給量 5kgZh、シリンダ温度 290°Cで分子内環化反応を 行い、ペレット状のアクリル榭脂 (Al)を得た。このアクリル榭脂 (A1) 100質量部中の ダルタル酸無水物単位の組成比は 31質量部であつた。
[0154] 参考例(2)アクリル榭脂 (A2)
アクリル榭脂として、懸濁重合法で得たポリメタクリルメチルーポリメタクリル共重合 体 (MMAZMAA = 72Z28)を用いた以外は参考例 1と同様にしてアクリル榭 脂 (A2)を得た。このアクリル榭脂のダルタル酸無水物単位の組成比は 23モル%で めつに。
[0155] 参考例(3)アクリル弾性体粒子 (B1)
下記により得られたコアシェル重合体を用いた。
[0156] 冷却器付きのガラス容器 (容量 5リットル)内に脱イオン水 120質量部、炭酸カリウム 0. 5質量部、スルフォコハク酸ジォクチル 0. 5質量部、過硫酸カリウム 0. 005質量部 を仕込み、窒素雰囲気下で撹拌後、アクリル酸ブチル 53質量部、スチレン 17質量部 、メタクリル酸ァリル (架橋剤) 1質量部を仕込んだ。これら混合物を 70°Cで 30分間反 応させて、コア層重合体を得た。次いで、メタクリル酸メチル 21質量部、メタクリル酸 9 質量部、過硫酸カリウム 0. 005質量部の混合物を 90分かけて連続的に添加し、更 に 90分間保持して、シェル層を重合させ、この重合体ラテックスを硫酸で凝固し、苛 性ソーダで中和した後、洗浄、濾過、乾燥して、 2層構造のアクリル弾性体粒子 (B) を得た。電子顕微鏡で測定したこの重合体粒子の平均粒子径は 155nmであった。 得られたアクリル弾性体粒子 (B1)とアクリル榭脂 (A1)の屈折率差は 0. 002であつ た。
[0157] 実施例 1
上記の参考例(1)で得られたアクリル榭脂 (A1) 75質量部および参考例(3)で得ら れたアクリル弾性体粒子 (B1)を 25質量部の組成比で配合し、 2軸押出機 (TEX30 ( 日本製鋼社製、 L/D=44. 5)を用いてスクリュー回転数 150rpm、シリンダ温度 28 0°Cで混練し、ペレット状のアクリル榭脂を得た。
[0158] 次いで、 100°Cで 3時間乾燥したペレットをベント付きの 65mm φの一軸押出機を 用いて Τダイ (設定温度 250°C)を介して押出し、ポリシングロールに両面を完全に接 着させるようにして冷却して、未延伸のアクリル榭脂フィルムを得た。このアクリル榭脂 フィルムをリニア式の同時二軸テンターを用いて予熱温度 130°C、延伸温度 145°C、 延伸倍率長手方向 1. 5倍幅方向 1. 5倍で延伸して、延伸配向したフィルムを得た。 得られたフィルムを 155°Cで長手方向、幅方向にそれぞれ 3%リラックス処理を行 ヽ ながら熱処理を 5秒間行ない厚み 100 μ mのアクリル榭脂フィルムを得た。
[0159] 力べして得られたアクリル榭脂フィルムは耐熱性、透明性、靱性ともに優れており、ま た加工特性も優れて!/、た。フィルムの特性は次の通りである。
[0160] 耐折回数(回) : 35
熱変形温度 (°C) : 135
破断点伸度 (%) : 38
ガラス転移温度 (Tg) : 130
全光線透過率(%) : 92
ヘイズ (%) 0. 8
衝撃強度 (kjZm2) : 300
熱収縮率 (%) (MD/TD) : 1. 5/1. 0
型抜きテスト :〇。
[0161] 実施例 2〜5
用いるアクリル榭脂を参考例 2で得たアクリル榭脂 (A2)に変更し、アクリル弾性体 粒子の種類、添加量等を表 1に記載の通りに変更して 2軸押出機 (TEX30 (日本製 鋼社製、 L/D=44. 5)を用いてスクリュー回転数 150rpm、シリンダ温度 280°Cで 混練し、ペレット状のアクリル榭脂を得た。ペレットは真空乾燥機を用いて 80°Cで 8時 間の乾燥を行!ヽ水分を除去した。
[0162] 攪拌機を備えた 300mlセパラブルフラスコに得られたアクリル榭脂 50g、 2—ブタノ ン 150gを入れ、ダブルへリカルリボン撹拌翼で 24時間撹拌した。得られた溶液を 1 μ mカットのガラスフィルターで濾過し、アクリル榭脂溶液を得た。
[0163] アクリル榭脂溶液の一部を、ポリエチレンテレフタレートフィルム(厚み 100 m)を 固定したガラス板上に取り、バーコ一ターを用いて均一な膜を形成せしめた。これを 50°Cで 10分間加熱し、自己支持性のフィルムを得た。得られたフィルムをポリエチレ ンテレフタレートフィルム力も剥がして金枠に固定して、さらに 100°Cで 10分間、 120 °Cで 20分間、 140°Cで 20分間、 170°Cで 40分間加熱し、フィルムを得た。アクリル 弾性体粒子の種類、添加量およびフィルム物性を表 1および表 2にまとめた。
[0164] UV吸収剤は上記一般式(3)に示した旭電ィ匕工業株式会社のアデカスタブ LA36 を使用した。
[0165] 比較例 1
延伸、熱処理をしない以外は実施例 1と同様にし、押出量を調整して未延伸の厚 み 100 μ mのアクリル榭脂フィルムを得た。
[0166] 力べして得られたアクリル榭脂フィルムは耐折回数が少なぐ型抜き時に割れが発 生した。またヘイズも悪ぐ光学フィルタ一として適さない。フィルムの特性は次の通り である。
[0167] 耐折回数(回) 14
熱変形温度 (°C) : 130
破断点伸度 (%) : 20
ガラス転移温度 (Tg) 125
全光線透過率(%) : 92
ヘイズ (%) . 2
衝撃強度 (kjZm2) : 100
熱収縮率 (%) (MD/TD) : 0. 9/0. 5
型抜きテスト
[0168] 比較例 2
ポリメタクリル酸メチル〔重量平均分子量 12万〕 30質量部、アクリル酸プチルーメタ クリル酸メチル共重合体〔アクリル酸ブチル単位 20質量部およびメタクリル酸メチル 単位 80質量部、重量平均分子量 30万〕 50質量部力もなるアクリル榭脂 (A3) 80質 量部と球形のゴム弾性層を含む 3層構造のアクリル系重合体 (B2)〔最内層:メタタリ ル酸メチルの共重合体、中間層:アクリル酸ブチルを主成分とする軟質のゴム弾性体 、最外層:ポリメタクリル酸メチル、平均粒子径 300nm〕(特公昭 55— 27576号公報 実施例 3参照) 20質量部を溶融混練して、アクリル系榭脂組成物を得、二軸押出機 にてペレット化した。このアクリル榭脂ペレットを 65mm φの一軸押出機を用いて Tダ ィ (設定温度 250°C)を介して押出し、ポリシングロールに両面を完全に接着させるよ うにして冷却して、アクリル榭脂フィルムを得た。このアクリル榭脂フィルムを一軸のテ ンターを用いて幅方向に延伸温度 100°C、延伸倍率 3倍、延伸速度 8. 6mZ分で延 伸して、アクリル榭脂フィルムを得た。
[0169] 力べして得られたアクリル榭脂フィルムは耐折回数が少なぐ型抜き時に割れが発 生した。また、熱変形温度が低ぐ熱寸法安定性も悪い。さらにヘイズも悪ぐ光学フ ィルターとして適さな 、。フィルムの特性は次の通りである。
[0170] 耐折回数(回) :10
熱変形温度 (°C) : 85
破断点伸度 (%) : 25
ガラス転移温度 (Tg) : 90
全光線透過率(%) : 90
ヘイズ (%) : 5
衝撃強度 (kjZm2) : 120
熱収縮率(%) (MD/TD) : 20/30
型抜きテスト :χ。
[0171] 比較例 3
用いるアクリル榭脂を参考例 2で得たアクリル榭脂 (A2)に変更し、アクリル弾性体 粒子の種類、添加量を変更して 2軸押出機 (TEX30 (日本製鋼社製、 L/D=44. 5 )を用いてスクリュー回転数 150rpm、シリンダ温度 280°Cで混練し、ペレット状のァク リル榭脂を得た。ペレットは真空乾燥機を用いて 80°Cで 8時間の乾燥を行 、水分を 除去した。
[0172] 攪拌機を備えた 300mlセパラブルフラスコに得られたアクリル榭脂 50g、 2—ブタノ ン 150gを入れ、ダブルへリカルリボン撹拌翼で 24時間撹拌した。得られた溶液を 1 μ mカットのガラスフィルターで濾過し、アクリル榭脂溶液を得た。
[0173] アクリル榭脂溶液の一部を、ポリエチレンテレフタレートフィルム(厚み 100 m)を 固定したガラス板上に取り、バーコ一ターを用いて均一な膜を形成せしめた。これを 50°Cで 10分間加熱し、自己支持性のフィルムを得た。得られたフィルムをポリエチレ ンテレフタレートフィルム力も剥がして金枠に固定して、さらに 100°Cで 10分間、 120 °Cで 20分間、 140°Cで 20分間、 170°Cで 40分間加熱し、フィルムを得た。アクリル 弾性体粒子の種類、添加量およびフィルム物性を表 1および表 2にまとめた。
[表 1]
表 1
グルタ アクリル アクリル
メタクリノレ アクリル コア組成 (ァ
アクリル ル酸 酸プチ アクリル弾 コア/シェ 弾性体 製膜 フィル 酸メチル 酸 クリル酸プチ 粒径 紫外線吸収剤 延伸 樹脂 無水物 ル 性体粒子 ル
ル /スチレン) 粒子添 方法 ム厚み 単位 単位
早 1立 単位 加量
質量部 質量
質量部 質量部 質量部 質量部 mol%/mol% nm 質量部 種類 μ m
/質量部 部
実施例 1 A1 59 41 0 0 B1 75/25 70/30 155 25一 - 浍融 あり 1 100 実施例 2 A2 66に 32 21 0 B7 75/25 70/30 155 20 ― - 溶液 し 41 実施例 3 A2 66 32に 2 0 B7 75/25 70/30 155 10 ― - 溶液 し 48 実施例 4 A2 「 66 32 2 0 B7 75/25 70/30 155 20 LA36 1溶液 無し 50 実施例 5 A2 66 32 2 0 B7 75/25 70/30 155 20 ΪΑ36 2溶液 無し 50 比較例 1 A1 59 41 1 _ 0 0 B1 75/25 70/30 155 25一 - 溶融 無し 100
B2 79/19
比較例 2 A3 90 0 0 10 37/48/15 300 20一 - 溶融 あり 40
(3層構造) (中間層)
比較例 3 A2 66 32 2 0なし - - 一 0 |- - 溶液 無し 一 o
[0175] 2]
Figure imgf000049_0001
産業上の利用可能性
[0176] 力べして得られるフィルムは、その優れた透明性、耐熱性、耐光性、靱性を活力して 、電気,電子部品、光学フィルター、自動車部品、機械機構部品、 OA機器、家電機 器などのハウジングおよびそれらの部品類、一般雑貨など種々の用途に用いること ができる。
上記成形品の具体的用途としては、例えば、各種カバー、各種端子板、プリント配 線板、スピーカー、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、また、 透明性、耐熱性に優れている点から、映像機器関連部品としてカメラ、 VTR、プロジ ェクシヨン TV等のファインダー、フィルター、プリズム、フレネルレンズ等、光記録'光 通信関連部品として各種光ディスク (VD、 CD、 DVD, MD、 LD等)基板保護フィル ム、光スィッチ、光コネクタ一等、情報機器関連部品として、液晶ディスプレイ、フラッ トパネルディスプレイ、プラズマディスプレイの導光板、フレネルレンズ、偏光板、偏光 板保護フィルム、位相差フィルム、光拡散フィルム、視野角拡大フィルム、反射フィル ム、反射防止フィルム、防眩フィルム、輝度向上フィルム、プリズムシート、タツチパネ ル用導電フィルム、カバー等、これら各種の用途にとって極めて有用である。

Claims

請求の範囲 下記構造式(1)で表されるダルタル酸無水物単位を含有するアクリル榭脂 (A)とァク リル弾性体粒子 (B)の合計を 100質量部として、アクリル榭脂 (A) 50〜95質量部と アクリル弾性体粒子 (B) 5〜50質量部を用いてなる混合物を主たる材料とするアタリ ル榭脂フィルムであって、(i)〜 (V)を満足するアクリル榭脂フィルム。 (i)アクリル榭脂 (A)がアクリル榭脂 (A)全体を 100質量部としてメタクリル酸メチル単 位 50〜90質量部およびグルタル酸無水物単位 10〜50質量部を用いてなる、(ii)全光線透過率が 91%以上 (iii)ヘイズが 1. 5%以下 (iv)耐折回数の値が 20以上 (V)熱収縮試験において、長手方向および幅方向の少なくとも一方の熱収縮率が 5 %未満である [化 1]
【化 1】
Figure imgf000051_0001
(上記式中、 Rl、 R2は、同一または相異なる水素原子または炭素数 1〜5のアルキ ル基を表す。 )
[2] 破断点伸度が 10%以上である請求の範囲 1に記載のアクリル榭脂フィルム。
[3] 波長 590nmの光に対するフィルム面内の位相差が 10nm以下である請求の範囲 1 または 2に記載のアクリル榭脂フィルム。
[4] 波長 590nmの光に対するフィルム厚み方向の位相差が 10nm以下である請求の範 囲 1〜3の何れかに記載のアクリル榭脂フィルム。
[5] 波長 550nmの光に対する光弾性係数が— 2 X 10_12ZPa以上、 2 X 10_12ZPa以 下である請求の範囲 1〜4の何れかに記載のアクリル榭脂フィルム。
[6] 紫外線吸収剤をアクリル榭脂 (A)とアクリル弾性体粒子 (B)の合計 100質量部に対 して 0. 01質量部以上 5質量部以下含有することを特徴とする請求の範囲 1〜5のい ずれかに記載のアクリル榭脂フィルム。
[7] 380nmの光の光線透過率が 10%以下である請求の範囲 1〜6のいずれかに記載 のアクリル榭脂フィルム。
[8] アクリル弾性体粒子(B)の粒子径が 50nm以上 400nm以下である請求の範囲 1〜7 の!、ずれかに記載のアクリル榭脂フィルム。
[9] アクリル弾性体粒子(B)力 内層がアクリル酸アルキルエステル単位および Zまたは 芳香族ビュルを含有するゴム弾性体であり、外層がダルタル酸無水物単位を含有す るアクリル榭脂を主成分とする硬質重合体であり、アクリル弾性体粒子 (B)とアクリル 榭脂 (A)の屈折率差が 0. 01以下である請求の範囲 1〜8のいずれかに記載のァク リル樹脂フィルム。
[10] 熱変形温度が 110°C以上である請求の範囲 1〜9のいずれかに記載のアクリル榭脂 フイノレム。
[11] 残存する揮発分がアクリル榭脂フィルム 100質量部に対して 3質量部以下である請 求の範囲 1〜10のいずれかに記載のアクリル榭脂フィルム。
[12] 該フィルムの少なくとも 1面にハードコート層が形成され、さらに該フィルムの少なくと も 1面に反射防止膜が形成されてなる請求の範囲 1〜11のいずれかに記載のアタリ ル榭脂フィルム。
[13] 請求の範囲 1〜12のいずれかに記載のアクリル榭脂フィルム力もなる光学フィルター
[14] 請求の範囲 1〜 13のいずれかに記載のアクリル榭脂フィルム力もなる偏光板保護フ イノレム。
[15] 溶液キャスト法を用いて請求の範囲 1〜14のいずれかに記載のアクリル榭脂フィルム を製造する事を特徴とする製造方法。
[16] 実質的に未配向のアクリル榭脂フィルムをガラス転移温度 (Tg)以上、(ガラス転移温 度 (Tg) + 50) °C以下の温度で長手方向および幅方向に 1. 1〜5. 0倍延伸する事 を特徴とするアクリル榭脂フィルムの製造方法。
PCT/JP2005/007671 2004-04-28 2005-04-22 アクリル樹脂フィルムおよび製造方法 WO2005105918A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006512757A JPWO2005105918A1 (ja) 2004-04-28 2005-04-22 アクリル樹脂フィルムおよび製造方法
EP05734442A EP1754752A4 (en) 2004-04-28 2005-04-22 ACRYLIC RESIN FILMS AND PROCESS FOR THE PRODUCTION OF SAID FILMS
US11/578,789 US20070243364A1 (en) 2004-04-28 2005-04-22 Acrylic Resin Films and Process for Producing the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-133425 2004-04-28
JP2004133425 2004-04-28

Publications (1)

Publication Number Publication Date
WO2005105918A1 true WO2005105918A1 (ja) 2005-11-10

Family

ID=35241655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007671 WO2005105918A1 (ja) 2004-04-28 2005-04-22 アクリル樹脂フィルムおよび製造方法

Country Status (7)

Country Link
US (1) US20070243364A1 (ja)
EP (1) EP1754752A4 (ja)
JP (1) JPWO2005105918A1 (ja)
KR (1) KR20070006928A (ja)
CN (1) CN1946794A (ja)
TW (1) TW200613331A (ja)
WO (1) WO2005105918A1 (ja)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171577A (ja) * 2005-12-22 2007-07-05 Toray Ind Inc フィルム、偏光子保護フィルムおよび表示装置
JP2007169622A (ja) * 2005-11-28 2007-07-05 Asahi Kasei Chemicals Corp 優れた光学材料用樹脂組成物及び成形体
WO2007105485A1 (ja) * 2006-03-10 2007-09-20 Nippon Shokubai Co., Ltd. 偏光子保護フィルム、偏光板、および画像表示装置
WO2007105822A1 (ja) * 2006-03-16 2007-09-20 Zeon Corporation 表示画面用保護フィルム及びそれを用いた偏光板並びに表示装置
WO2008020570A1 (fr) * 2006-08-18 2008-02-21 Toray Industries, Inc. Film de résine acrylique
JP2008052002A (ja) * 2006-08-24 2008-03-06 Nitto Denko Corp 光学フィルム、偏光板、および画像表示装置
JP2008179677A (ja) * 2007-01-23 2008-08-07 Nippon Shokubai Co Ltd 透明導電性フィルム
JP2008242426A (ja) * 2006-12-22 2008-10-09 Nippon Shokubai Co Ltd 位相差フィルムの製造方法
WO2008153143A1 (ja) * 2007-06-14 2008-12-18 Nippon Shokubai Co., Ltd. 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP2008302570A (ja) * 2007-06-07 2008-12-18 Nitto Denko Corp 非晶性樹脂フィルムの製造方法、非晶性樹脂フィルム、偏光板、および画像表示装置
JP2009030001A (ja) * 2007-07-30 2009-02-12 Asahi Kasei Chemicals Corp 光学材料用成形体
JP2009052021A (ja) * 2007-06-14 2009-03-12 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP2009516063A (ja) * 2005-11-15 2009-04-16 スリーエム イノベイティブ プロパティズ カンパニー 輝度向上フィルム及び無機ナノ粒子を表面処理する方法
JP2009161660A (ja) * 2008-01-08 2009-07-23 Toray Ind Inc アクリル樹脂フィルム
JP2009280750A (ja) * 2008-05-26 2009-12-03 Kaneka Corp 光学用フィルムおよび偏光板
JP2009292870A (ja) * 2008-06-02 2009-12-17 Fujifilm Corp アクリルフィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2010024338A (ja) * 2008-07-18 2010-02-04 Asahi Kasei Chemicals Corp 光学フィルム
EP2153972A2 (en) 2008-08-04 2010-02-17 Fujifilm Corporation Method for producing optical film, optical film, polarizer, optical compensatory film, antireflection film and liquid crystal display device
JP2010072135A (ja) * 2008-09-17 2010-04-02 Nippon Shokubai Co Ltd 光学フィルム
JP2010091734A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010091732A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010100801A (ja) * 2008-08-04 2010-05-06 Asahi Kasei Chemicals Corp アクリル系樹脂フィルムの製造方法及びアクリル系樹脂フィルム
JP2010111729A (ja) * 2008-11-05 2010-05-20 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物の製造方法
US20100202050A1 (en) * 2007-09-21 2010-08-12 Lg Chem, Ltd. Optical film and method of manufacturing the same
JP2010197978A (ja) * 2009-02-27 2010-09-09 Lintec Corp 光学用保護フィルム及びその製造方法並びに偏光板及びその製造方法
JP2010231016A (ja) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 偏光子保護フィルム、偏光板及び液晶表示装置
US20110076482A1 (en) * 2008-08-13 2011-03-31 Fields Thomas R Metallized Barrier Material
JP2012003281A (ja) * 2006-03-31 2012-01-05 Nippon Zeon Co Ltd 保護フィルム
US8119739B2 (en) 2006-02-28 2012-02-21 Nippon Shokubai Co., Ltd. Retardation film
JP2012073412A (ja) * 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd 樹脂積層体および携帯型情報端末
JP2012093726A (ja) * 2010-09-30 2012-05-17 Jiroo Corporate Plan:Kk 保護シート及び偏光板
JP2012093725A (ja) * 2010-09-30 2012-05-17 Jiroo Corporate Plan:Kk 保護シート及び偏光板
JP2012093724A (ja) * 2010-09-30 2012-05-17 Jiroo Corporate Plan:Kk 保護シート及び偏光板
JP2013091803A (ja) * 2006-04-06 2013-05-16 Nippon Shokubai Co Ltd アクリル系樹脂組成物の製造方法
KR101381528B1 (ko) * 2008-07-31 2014-04-10 아사히 가세이 케미칼즈 가부시키가이샤 아크릴계 열가소성 수지, 및 그 성형체
US8758655B2 (en) * 2007-09-17 2014-06-24 Lg Chem, Ltd. Optical film and method of manufacturing the same
JP2015221903A (ja) * 2015-07-06 2015-12-10 富士フイルム株式会社 アクリルフィルムおよびその製造方法
EP2865716A4 (en) * 2012-06-26 2015-12-23 Kaneka Corp NON-DOUBLE-BREAKING RESIN MATERIAL AND FOIL
WO2017164137A1 (ja) * 2016-03-25 2017-09-28 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
US10139525B2 (en) 2011-04-22 2018-11-27 Nitto Denko Corporation Optical laminate having hard coat layer composition with specified quantities of monofunctional monomer and varied (meth)acryloyl group containing compounds
US10203430B2 (en) 2011-04-22 2019-02-12 Nitto Denko Corporation Method of producing optical laminate comprising hard coat layer comprised of cured product of composition comprising (meth)acrylic prepolymer having hydroxyl group
US20190235134A1 (en) * 2016-10-17 2019-08-01 Fujifilm Corporation Antireflection film, polarizing plate, image display device, antireflection product, method of manufacturing laminate, and method of manufacturing antireflection film

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008136346A1 (ja) * 2007-04-26 2010-07-29 日本ゼオン株式会社 表示画面用保護フィルムおよび偏光板
US20080291369A1 (en) * 2007-05-23 2008-11-27 Fujifilm Corporation Optical Film, Optical Compensation Film, Polarizing Plate, and Liquid-Crystal Display Device
WO2008147081A1 (en) * 2007-05-25 2008-12-04 Lg Chem, Ltd. Optical film, protection film for polarizer film, polarizer plate fabricated therefrom, and display device employing thereof
JP2008305829A (ja) * 2007-06-05 2008-12-18 Mitsubishi Gas Chem Co Inc 光干渉縞防止光透過型電磁波シールド材料
KR101161600B1 (ko) * 2007-10-22 2012-07-03 가부시키가이샤 닛폰 쇼쿠바이 편광판, 그 제조 방법, 광학 필름 및 화상 표시 장치
KR101065200B1 (ko) * 2008-01-03 2011-09-19 주식회사 엘지화학 광학 필름, 편광자 보호 필름, 이를 이용한 편광판, 및 이를 이용한 화상 표시 장치
CN101990645A (zh) * 2008-01-23 2011-03-23 Lg化学株式会社 延迟膜、其制备方法以及包括该延迟膜的液晶显示器
WO2009151892A1 (en) * 2008-05-19 2009-12-17 Emo Labs, Inc. Diaphragm with integrated acoustical and optical properties
JP5605803B2 (ja) * 2008-06-03 2014-10-15 エルジー・ケム・リミテッド 光学フィルム、その製造方法、位相差フィルム、偏光板及び電子装置
US9663687B2 (en) * 2008-07-01 2017-05-30 Lg Chem, Ltd. Adhesive composition, protective film for a polarizing plate, polarizing plate, and liquid crystal display
WO2010001668A1 (ja) * 2008-07-03 2010-01-07 コニカミノルタオプト株式会社 偏光板、液晶表示装置
EP2415825A1 (en) * 2008-10-02 2012-02-08 LG Chem, Ltd. Optical fim and method of preparing same
US8189851B2 (en) 2009-03-06 2012-05-29 Emo Labs, Inc. Optically clear diaphragm for an acoustic transducer and method for making same
KR101234851B1 (ko) * 2009-12-31 2013-02-19 제일모직주식회사 하드 코팅 조성물 및 하드코트층을 포함하는 적층체
JP5276052B2 (ja) * 2010-05-28 2013-08-28 テクノポリマー株式会社 太陽電池用裏面保護フィルム及びその製造方法並びに太陽電池モジュール
KR101304588B1 (ko) * 2010-06-21 2013-09-05 주식회사 엘지화학 아크릴계 공중합체 및 이를 포함하는 광학필름
US20120009427A1 (en) * 2010-07-08 2012-01-12 Christopher Hable Solvent cast flame retardant polycarbonate coatings, films and laminates
KR101219276B1 (ko) * 2010-11-26 2013-01-08 엘지엠엠에이 주식회사 아크릴계 라미네이트 필름 및 그 제조방법
WO2013028403A1 (en) 2011-08-23 2013-02-28 Dow Global Technologies Llc A multi-stage polymer composition and films and polarizer plates made therefrom
WO2013051239A1 (ja) * 2011-10-05 2013-04-11 株式会社カネカ 耐折曲げ白化性および割れ性に優れたアクリル樹脂フィルム
KR101473521B1 (ko) * 2011-11-23 2014-12-17 (주)엘지하우시스 내후성 및 성형성이 우수한 아크릴계 라미네이트 필름 및 그 제조 방법
KR101522074B1 (ko) * 2012-06-08 2015-05-21 주식회사 엘지화학 광학 필름, 그 제조 방법, 이를 포함하는 편광판 및 화상표시장치
JP6363322B2 (ja) * 2012-06-08 2018-07-25 住友化学株式会社 偏光板の製造方法
KR101560271B1 (ko) * 2012-08-09 2015-10-15 삼성전자 주식회사 광학필름용 고분자 및 이를 포함하는 광학필름
CN103389530A (zh) * 2012-08-22 2013-11-13 宁波东旭成化学有限公司 一种反射膜
KR101640631B1 (ko) * 2012-12-12 2016-07-18 제일모직주식회사 편광판용 접착 필름, 이를 위한 접착제 조성물, 이를 포함하는 편광판 및 이를 포함하는 광학 표시 장치
US9226078B2 (en) 2013-03-15 2015-12-29 Emo Labs, Inc. Acoustic transducers
US10330829B2 (en) 2013-03-27 2019-06-25 Lg Chem, Ltd. Resin composition for a polarizer protective film, a polarizer protective film, a polarizing plate including the same, and a preparation method of a polarizing plate
WO2014162977A1 (ja) * 2013-04-03 2014-10-09 住友化学株式会社 偏光板
US10598822B2 (en) * 2013-04-05 2020-03-24 Kaneka Corporation Optical resin material and optical film
CN105102534B (zh) * 2013-04-05 2019-08-23 株式会社钟化 树脂组合物及其膜
CN105121543B (zh) * 2013-04-12 2018-01-26 株式会社可乐丽 丙烯酸系树脂膜
WO2014204168A1 (ko) * 2013-06-18 2014-12-24 주식회사 엘지화학 다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판
WO2015064732A1 (ja) * 2013-11-01 2015-05-07 富士フイルム株式会社 偏光板保護フィルム、ドープ組成物、偏光板保護フィルムの製造方法、偏光板ならびに液晶表示装置
JP6523176B2 (ja) * 2013-11-22 2019-05-29 株式会社カネカ 樹脂材料、およびそのフィルム
JP6594207B2 (ja) 2013-11-29 2019-10-23 株式会社カネカ 光学用樹脂組成物、およびフィルム
CN105764994B (zh) * 2013-11-29 2019-05-21 株式会社钟化 光学用树脂组合物、以及膜
EP3088473A4 (en) 2013-12-25 2017-08-30 Kaneka Corporation Optical resin composition and molded article
USD741835S1 (en) 2013-12-27 2015-10-27 Emo Labs, Inc. Speaker
USD733678S1 (en) 2013-12-27 2015-07-07 Emo Labs, Inc. Audio speaker
USD748072S1 (en) 2014-03-14 2016-01-26 Emo Labs, Inc. Sound bar audio speaker
US9875987B2 (en) * 2014-10-07 2018-01-23 Nxp Usa, Inc. Electronic devices with semiconductor die attached with sintered metallic layers, and methods of formation of such devices
KR102052150B1 (ko) * 2015-03-31 2019-12-05 아사히 가세이 가부시키가이샤 폴리이미드 필름, 폴리이미드 바니시, 폴리이미드 필름을 이용한 제품 및 적층체
JP6909599B2 (ja) * 2017-03-15 2021-07-28 日東電工株式会社 偏光子保護フィルムの製造方法
CN114986863A (zh) * 2017-03-15 2022-09-02 株式会社钟化 拉伸薄膜和拉伸薄膜的制造方法
WO2019066078A1 (ja) * 2017-09-29 2019-04-04 大日本印刷株式会社 光学フィルムおよび画像表示装置
KR102260108B1 (ko) * 2018-03-27 2021-06-04 엘지엠엠에이 주식회사 아크릴계 광학필름 및 이의 제조방법
KR20200002427A (ko) * 2018-06-29 2020-01-08 주식회사 엘지화학 편광판, 액정 패널 및 디스플레이 장치
JP7566630B2 (ja) 2018-06-29 2024-10-15 エルジー・ケム・リミテッド 偏光板、液晶パネルおよびディスプレイ装置
JP7341643B2 (ja) * 2018-08-28 2023-09-11 日東電工株式会社 表面保護フィルム用基材、該基材の製造方法、該基材を用いた表面保護フィルム、および表面保護フィルム付光学フィルム
CN113454502B (zh) * 2019-02-27 2023-07-11 柯尼卡美能达株式会社 光学膜用混合料、光学膜及其制造方法以及偏振片
CN115315480A (zh) * 2020-03-26 2022-11-08 株式会社可乐丽 丙烯酸类组合物和成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067557A (ja) * 1983-09-22 1985-04-17 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JPS60184504A (ja) * 1984-03-02 1985-09-20 Mitsubishi Rayon Co Ltd 結晶性重合体
JPH05295215A (ja) * 1992-04-16 1993-11-09 Sumitomo Chem Co Ltd アクリル系樹脂組成物
JPH07268036A (ja) * 1994-03-30 1995-10-17 Sumitomo Chem Co Ltd 耐熱性を有する透光性プラスチックフィルター
JP2000178399A (ja) * 1998-12-15 2000-06-27 Mitsubishi Rayon Co Ltd アクリル樹脂フィルム
JP2004002711A (ja) * 2002-03-26 2004-01-08 Toray Ind Inc 熱可塑性重合体、その製造方法および成形品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027220D1 (de) * 2003-03-12 2010-07-01 Toray Industries Thermoplastische harzzusammensetzung, formkörper und folie
JP2005314534A (ja) * 2004-04-28 2005-11-10 Toray Ind Inc アクリル樹脂フィルム、積層フィルムおよび光学フィルター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067557A (ja) * 1983-09-22 1985-04-17 Mitsubishi Rayon Co Ltd 熱可塑性樹脂組成物
JPS60184504A (ja) * 1984-03-02 1985-09-20 Mitsubishi Rayon Co Ltd 結晶性重合体
JPH05295215A (ja) * 1992-04-16 1993-11-09 Sumitomo Chem Co Ltd アクリル系樹脂組成物
JPH07268036A (ja) * 1994-03-30 1995-10-17 Sumitomo Chem Co Ltd 耐熱性を有する透光性プラスチックフィルター
JP2000178399A (ja) * 1998-12-15 2000-06-27 Mitsubishi Rayon Co Ltd アクリル樹脂フィルム
JP2004002711A (ja) * 2002-03-26 2004-01-08 Toray Ind Inc 熱可塑性重合体、その製造方法および成形品

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516063A (ja) * 2005-11-15 2009-04-16 スリーエム イノベイティブ プロパティズ カンパニー 輝度向上フィルム及び無機ナノ粒子を表面処理する方法
JP2007169622A (ja) * 2005-11-28 2007-07-05 Asahi Kasei Chemicals Corp 優れた光学材料用樹脂組成物及び成形体
JP2007171577A (ja) * 2005-12-22 2007-07-05 Toray Ind Inc フィルム、偏光子保護フィルムおよび表示装置
US8119739B2 (en) 2006-02-28 2012-02-21 Nippon Shokubai Co., Ltd. Retardation film
WO2007105485A1 (ja) * 2006-03-10 2007-09-20 Nippon Shokubai Co., Ltd. 偏光子保護フィルム、偏光板、および画像表示装置
JP5075813B2 (ja) * 2006-03-10 2012-11-21 株式会社日本触媒 偏光子保護フィルム、偏光板、および画像表示装置
KR101344996B1 (ko) * 2006-03-10 2013-12-24 닛토덴코 가부시키가이샤 편광자 보호 필름, 편광판 및 화상 표시 장치
US9297932B2 (en) 2006-03-10 2016-03-29 Nippon Shokubai Co., Ltd Polarizer protective film, polarizing plate, and image display apparatus
WO2007105822A1 (ja) * 2006-03-16 2007-09-20 Zeon Corporation 表示画面用保護フィルム及びそれを用いた偏光板並びに表示装置
JP2007248795A (ja) * 2006-03-16 2007-09-27 Nippon Zeon Co Ltd 表示画面用保護フィルム及びそれを用いた偏光板並びに表示装置
JP2012003281A (ja) * 2006-03-31 2012-01-05 Nippon Zeon Co Ltd 保護フィルム
JP2013091803A (ja) * 2006-04-06 2013-05-16 Nippon Shokubai Co Ltd アクリル系樹脂組成物の製造方法
WO2008020570A1 (fr) * 2006-08-18 2008-02-21 Toray Industries, Inc. Film de résine acrylique
JP2008052002A (ja) * 2006-08-24 2008-03-06 Nitto Denko Corp 光学フィルム、偏光板、および画像表示装置
JP2008242426A (ja) * 2006-12-22 2008-10-09 Nippon Shokubai Co Ltd 位相差フィルムの製造方法
JP2008179677A (ja) * 2007-01-23 2008-08-07 Nippon Shokubai Co Ltd 透明導電性フィルム
JP2008302570A (ja) * 2007-06-07 2008-12-18 Nitto Denko Corp 非晶性樹脂フィルムの製造方法、非晶性樹脂フィルム、偏光板、および画像表示装置
JP2009052021A (ja) * 2007-06-14 2009-03-12 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
WO2008153143A1 (ja) * 2007-06-14 2008-12-18 Nippon Shokubai Co., Ltd. 熱可塑性樹脂組成物とそれを用いた樹脂成形品および偏光子保護フィルムならびに樹脂成形品の製造方法
JP2009030001A (ja) * 2007-07-30 2009-02-12 Asahi Kasei Chemicals Corp 光学材料用成形体
JP2014132353A (ja) * 2007-09-17 2014-07-17 Lg Chem Ltd 光学フィルム及びその製造方法
US9187633B2 (en) 2007-09-17 2015-11-17 Lg Chem, Ltd. Optical film and method of manufacturing the same
US8758655B2 (en) * 2007-09-17 2014-06-24 Lg Chem, Ltd. Optical film and method of manufacturing the same
US20100202050A1 (en) * 2007-09-21 2010-08-12 Lg Chem, Ltd. Optical film and method of manufacturing the same
JP2009161660A (ja) * 2008-01-08 2009-07-23 Toray Ind Inc アクリル樹脂フィルム
JP2009280750A (ja) * 2008-05-26 2009-12-03 Kaneka Corp 光学用フィルムおよび偏光板
JP2009292870A (ja) * 2008-06-02 2009-12-17 Fujifilm Corp アクリルフィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2010024338A (ja) * 2008-07-18 2010-02-04 Asahi Kasei Chemicals Corp 光学フィルム
KR101381528B1 (ko) * 2008-07-31 2014-04-10 아사히 가세이 케미칼즈 가부시키가이샤 아크릴계 열가소성 수지, 및 그 성형체
EP2153972A2 (en) 2008-08-04 2010-02-17 Fujifilm Corporation Method for producing optical film, optical film, polarizer, optical compensatory film, antireflection film and liquid crystal display device
JP2010100801A (ja) * 2008-08-04 2010-05-06 Asahi Kasei Chemicals Corp アクリル系樹脂フィルムの製造方法及びアクリル系樹脂フィルム
US20110076482A1 (en) * 2008-08-13 2011-03-31 Fields Thomas R Metallized Barrier Material
JP2010072135A (ja) * 2008-09-17 2010-04-02 Nippon Shokubai Co Ltd 光学フィルム
JP2010091732A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010091734A (ja) * 2008-10-07 2010-04-22 Hitachi Chem Co Ltd コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2010111729A (ja) * 2008-11-05 2010-05-20 Nippon Shokubai Co Ltd 熱可塑性樹脂組成物の製造方法
JP2010197978A (ja) * 2009-02-27 2010-09-09 Lintec Corp 光学用保護フィルム及びその製造方法並びに偏光板及びその製造方法
JP2010231016A (ja) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 偏光子保護フィルム、偏光板及び液晶表示装置
JP2012073412A (ja) * 2010-09-29 2012-04-12 Sumitomo Bakelite Co Ltd 樹脂積層体および携帯型情報端末
JP2012093726A (ja) * 2010-09-30 2012-05-17 Jiroo Corporate Plan:Kk 保護シート及び偏光板
JP2012093725A (ja) * 2010-09-30 2012-05-17 Jiroo Corporate Plan:Kk 保護シート及び偏光板
JP2012093724A (ja) * 2010-09-30 2012-05-17 Jiroo Corporate Plan:Kk 保護シート及び偏光板
US10203430B2 (en) 2011-04-22 2019-02-12 Nitto Denko Corporation Method of producing optical laminate comprising hard coat layer comprised of cured product of composition comprising (meth)acrylic prepolymer having hydroxyl group
US10139525B2 (en) 2011-04-22 2018-11-27 Nitto Denko Corporation Optical laminate having hard coat layer composition with specified quantities of monofunctional monomer and varied (meth)acryloyl group containing compounds
JPWO2014002491A1 (ja) * 2012-06-26 2016-05-30 株式会社カネカ 非複屈折性樹脂材料、およびフィルム
US10035888B2 (en) 2012-06-26 2018-07-31 Kaneka Corporation Non-birefringent resin material and film
EP2865716A4 (en) * 2012-06-26 2015-12-23 Kaneka Corp NON-DOUBLE-BREAKING RESIN MATERIAL AND FOIL
JP2015221903A (ja) * 2015-07-06 2015-12-10 富士フイルム株式会社 アクリルフィルムおよびその製造方法
WO2017164137A1 (ja) * 2016-03-25 2017-09-28 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
JP2017173726A (ja) * 2016-03-25 2017-09-28 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
KR20180114133A (ko) * 2016-03-25 2018-10-17 후지필름 가부시키가이샤 광학 필름, 편광판, 및 화상 표시 장치
KR102178543B1 (ko) 2016-03-25 2020-11-13 후지필름 가부시키가이샤 광학 필름, 편광판, 및 화상 표시 장치
US11644604B2 (en) 2016-03-25 2023-05-09 Fujifilm Corporation Optical film, polarizing plate, and image display device
US20190235134A1 (en) * 2016-10-17 2019-08-01 Fujifilm Corporation Antireflection film, polarizing plate, image display device, antireflection product, method of manufacturing laminate, and method of manufacturing antireflection film

Also Published As

Publication number Publication date
EP1754752A1 (en) 2007-02-21
CN1946794A (zh) 2007-04-11
TW200613331A (en) 2006-05-01
KR20070006928A (ko) 2007-01-11
US20070243364A1 (en) 2007-10-18
JPWO2005105918A1 (ja) 2008-03-13
EP1754752A4 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
WO2005105918A1 (ja) アクリル樹脂フィルムおよび製造方法
US10597525B2 (en) Resin composition and film thereof
US10035888B2 (en) Non-birefringent resin material and film
US10598822B2 (en) Optical resin material and optical film
WO2008020570A1 (fr) Film de résine acrylique
US10578773B2 (en) Optical resin composition and film
JP2008239739A (ja) 熱可塑性樹脂フィルムおよびその製造方法
JP2006241263A (ja) アクリル樹脂組成物フィルムの製造方法
WO2016185722A1 (ja) 樹脂組成物およびフィルム
JP2007119565A (ja) 樹脂フィルム、その製造方法およびそれを用いた表示用部材
JP2007118266A (ja) アクリル系フィルムの製造方法およびアクリル系フィルム
JP2008074918A (ja) 光学用アクリル樹脂フィルム
JP2005314534A (ja) アクリル樹脂フィルム、積層フィルムおよび光学フィルター
WO2005108438A1 (ja) イミド樹脂とその製造方法、およびそれを用いた成形体
US9803078B2 (en) Optical resin composition and film
JP2006283013A (ja) 光学用アクリル樹脂フィルム
JP2007176982A (ja) アクリル系フィルムの製造方法およびアクリル系フィルム
US10174191B2 (en) Resin material and film thereof
JP2006206881A (ja) アクリル樹脂フィルムおよびその製造方法
JP2009227908A (ja) 熱可塑性樹脂フィルムおよびその製造方法
JP2009222743A (ja) 偏光子保護フィルム
JP2008239741A (ja) アクリル樹脂フィルムおよびその製造方法
JP2009052025A (ja) 熱可塑性樹脂フィルム、光学用フィルムおよび偏光板
JP2009053492A (ja) 積層フィルムおよび光学補償層付き偏光板
JP2009227905A (ja) 二軸配向アクリル樹脂フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512757

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11578789

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580012893.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005734442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067024888

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067024888

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005734442

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11578789

Country of ref document: US