WO2005105345A1 - フレーク銅粉及びその製造方法並びに導電性ペースト - Google Patents

フレーク銅粉及びその製造方法並びに導電性ペースト Download PDF

Info

Publication number
WO2005105345A1
WO2005105345A1 PCT/JP2005/007877 JP2005007877W WO2005105345A1 WO 2005105345 A1 WO2005105345 A1 WO 2005105345A1 JP 2005007877 W JP2005007877 W JP 2005007877W WO 2005105345 A1 WO2005105345 A1 WO 2005105345A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper powder
flake
slurry
flake copper
aqueous solution
Prior art date
Application number
PCT/JP2005/007877
Other languages
English (en)
French (fr)
Inventor
Takahiko Sakaue
Katsuhiko Yoshimaru
Yoshinobu Nakamura
Hiroyuki Shimamura
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to US11/587,976 priority Critical patent/US20070209475A1/en
Priority to EP05737035A priority patent/EP1747830A1/en
Priority to CN2005800135690A priority patent/CN1950162B/zh
Priority to KR1020067024287A priority patent/KR101186946B1/ko
Publication of WO2005105345A1 publication Critical patent/WO2005105345A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Definitions

  • the present invention relates to flake copper powder, a method for producing the same, and a conductive paste.
  • flake copper powder used as a raw material of a copper paste used for forming a circuit of a printed wiring board and ensuring electrical continuity of external electrodes of a ceramic capacitor a method for producing the same, and conductivity using the flake copper powder It is related to a conductive paste.
  • a conductive paste in which copper powder, which is a conductive material, is dispersed in a paste is printed on a substrate, and then the paste is baked or cured and cured.
  • a method for forming a circuit There is known a method for forming a circuit.
  • the copper powder used for the conductive paste is particularly oxidized when the copper powder is exposed to oxygen and oxidized when removing the solvent, that is, when removing the paste component from the conductive paste by firing. It is not preferable because the resistance of the formed copper thick film becomes high. Therefore, it is desirable that the copper powder has excellent oxidation resistance. However, it is considered that the oxidation resistance can be increased by enlarging the crystallites in the copper powder and reducing the crystal grain boundaries in the copper powder. Can be Therefore, it is desired that the copper powder has as large a crystallite as possible in the copper powder.
  • a ceramic substrate is used for, for example, a portion generating a large amount of heat, such as an IC knockout.
  • the thermal shrinkage of the ceramic substrate is generally different from the thermal shrinkage of the copper thick film generated from the printed conductive paste.
  • the ceramic substrate and the copper thick film may peel off or the substrate itself may be deformed. For this reason, the thermal shrinkage of the ceramic substrate and the copper thick film generated from the printed conductive paste are reduced.
  • the heat shrinkage ratio is a value as close as possible.
  • One of the causes of the thermal shrinkage of the copper thick film at the time of baking is that voids remaining between the copper powders in the conductive paste when the conductive paste is removed from the medium, cause the copper powders to burn together. It is thought that it will be reduced by the conclusion. Therefore, in order to obtain a copper powder-containing conductive paste having a small heat shrinkage, voids remaining between the copper powders should be as small as possible, that is, the copper powders are likely to be densely filled. The shape is desired. Further, in order to improve the conductivity of the thick copper film obtained by baking the conductive paste, it is preferable that the shape of the copper powder is such that the contact area between the copper powders in the conductive paste is large.
  • the shape anisotropy decreases as the shape of the copper powder of the conductive paste becomes closer to a sphere, and the shape anisotropy increases as the shape of the copper powder becomes flatter. From such a request for the shape of the copper powder, conventionally, it has been studied to use a flake copper powder in which the shape of the copper powder itself is not spherical but flake.
  • the flake copper powder preferably has a sharp particle size distribution so that the conductive paste has good dispersibility in the paste.
  • the copper powder used for the conductive paste is fine, has a sharp particle size distribution, and has a large crystallite.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-119501
  • the aspect ratio ([thickness] Z [D]) represented by the thickness of the powder particles constituting the flake copper powder and the volume cumulative particle diameter D is Flake copper powder which is 0.3 ⁇ 0.7
  • a flake copper powder having a fine particle and a flat flake shape can be obtained.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-119501 (page 2)
  • the flake copper powder described in Patent Document 1 is a fine particle
  • the copper powder in an agglomerated state is pulverized
  • the powder of the copper powder that has been subjected to the pulverization is subjected to a high-energy ball mill. Because it is manufactured by compressive deformation, copper powder is oxidized or deformed during compressive deformation. Or crystallites tend to be small.
  • an object of the present invention is to provide a flake copper powder which is fine, has a sharp particle size distribution, has a large crystallite, and is excellent in oxidation resistance, and a conductive paste using the flake copper powder. is there.
  • flake copper powder containing P in particular, flake copper powder having a specific powder shape
  • a specific phosphorus is used in at least one of a plurality of steps of reducing copper (II) ions contained in a copper salt in a starting material to precipitate copper powder.
  • reducing copper (II) ions contained in a copper salt in a starting material to precipitate copper powder.
  • an acid and a salt thereof are added, a flake copper powder having a small crystallite size and a large crystallite diameter and excellent oxidation resistance can be obtained without performing compression deformation treatment as in Patent Document 1.
  • the inventors have found that copper powder tends to have a sharp particle size distribution, and have completed the present invention.
  • the present invention provides a flake copper powder containing P.
  • the present invention provides a flake copper powder characterized in that the content of P is from 10 ppm to 200 ppm (where D is a laser diffraction scattering particle size distribution measurement method).
  • the cumulative volume particle size ( ⁇ m) at a cumulative volume of 50% by volume is shown. ).
  • D is 0.3 ⁇ m
  • it is 50-7 ⁇ m.
  • the flake copper powder according to the present invention preferably has a crystallite diameter of 25 nm or more.
  • the powder particles constituting the flake copper powder according to the present invention have an average particle diameter D ( ⁇ m) calculated by image analysis of an SEM image obtained by directly observing with a scanning electron microscope.
  • the aspect ratio (D / t) obtained by dividing by the powder thickness t ( ⁇ m) is 2
  • It is preferably in the form of IA to 50 flakes.
  • the flake copper powder according to the present invention is characterized in that SD / D is 0.45 or less.
  • the volume cumulative particle size at 50% by volume of the cumulative volume m) is shown by The standard deviation ( ⁇ m) of the particle size distribution obtained by the method is shown. ), Preferably to be.
  • the flake copper powder according to the present invention is characterized in that D / ⁇ is 3.0 or less.
  • the volume cumulative particle diameter ( ⁇ m) at a cumulative volume of 10% by volume and 90% by volume by the random particle size distribution measurement method is shown, and SD is the standard deviation ( ⁇ m) of the particle size distribution obtained by the above-mentioned method. ) Is preferable.
  • the method for producing flaked copper powder according to the present invention comprises a first step of preparing an aqueous solution containing a copper salt and a complexing agent, and a first slurry containing cupric oxide by adding an alkali hydroxide to the aqueous solution.
  • a method for producing flake copper powder comprising: adding a second reducing agent capable of reducing cuprous oxide to copper to the second slurry to obtain flake copper powder; To adding phosphoric acid and a salt thereof in at least one of the third step and / or adding phosphoric acid and a salt thereof to the second slurry in the fourth step. It is preferable to adopt a production method.
  • the phosphoric acid and the salt thereof added in at least one of the first to third steps, and / or the second step in the fourth step.
  • the total amount of the phosphoric acid and the salt thereof to be added to the slurry is such that the amount of P in the phosphoric acid and the salt thereof is 0 with respect to 1 mol of copper contained in the aqueous solution, the first slurry or the second slurry. It is preferably from 001 mol to 3 mol.
  • the first slurry contains 1.05 equivalent to 1.50 equivalent of the alkali hydroxide per 1 equivalent of the copper salt. Les ,.
  • the complexing agent is an amino acid.
  • the first reducing agent is a reducing sugar.
  • the second reducing agent may be hydrazide. Hydrazine, hydrazine sulfate, hydrazine sulfate, hydrazine carbonate, and hydrazine hydrochloride. .
  • the aqueous solution may be mixed with the complexing agent based on 1 mol of copper contained in the aqueous solution, the first slurry or the second slurry. It preferably contains 0.005 mol to 10 mol.
  • An object of the present invention is to provide a flake copper powder characterized in that an organic surface treatment layer is formed on the surface by the above-described method for producing a flake copper powder according to the present invention.
  • the coverage of the organic surface treatment layer is 0.05% by weight to 2% by weight based on the flake copper powder.
  • Flake copper powder is 0.05% by weight to 2% by weight based on the flake copper powder.
  • the present invention provides a conductive paste containing the flake copper powder and the resin according to the present invention.
  • the flake copper powder according to the present invention is a fine particle that is not subjected to a compression deformation operation and thus is difficult to be oxidized or distorted, has a sharp particle size distribution, and has a large crystallite. In this case, it is excellent in oxidation resistance at the time of removing the solvent, dispersibility in the paste, and filling of the conductive paste, and can further refine electrodes and circuits formed from the copper thick film.
  • the method for producing flake copper powder according to the present invention can efficiently produce the flake copper powder according to the present invention.
  • the conductive paste according to the present invention is excellent in oxidation resistance and filling property at the time of solvent removal, and can further fine-tune electrodes, circuits, and the like formed from a copper thick film.
  • the film can have excellent heat shrink resistance.
  • the flake copper powder according to the present invention is a flake-like powder having a microscopic shape of the particles.
  • the flake-like powder means that the primary particles of the copper powder have a flake shape, and does not refer to the properties of the secondary particles formed by agglomeration of the primary particles.
  • the flake copper powder according to the present invention has a D force of usually 0.3 ⁇ ! ⁇ , Preferably 0.5 xm
  • 50 and D are the cumulative volume of 10 volumes by the laser diffraction scattering particle size distribution measurement method, respectively.
  • %, 50% by volume and 90% by volume indicate the volume cumulative particle size ( ⁇ ).
  • the flake copper powder according to the present invention has a crystallite size of 25 nm or more, preferably 35 nm or more.
  • the crystallite diameter is within the above range, the dimensional change of the copper thick film occurs before and after the formation of the copper thick film by the conductive paste using the flake copper powder, thereby causing thermal contraction of the copper thick film. It is difficult for the film to peel off from the ceramic substrate or for the ceramic substrate to be deformed due to the dimensional change of the copper thick film, and the oxidation resistance of the flake copper powder when the paste is removed from the conductive paste tends to increase. preferable.
  • the crystallite diameter refers to an average value of crystallite diameters obtained from X-ray diffraction of a flake copper powder sample and determined from the half width of the peak of the diffraction angle of each crystal plane.
  • the flake copper powder according to the present invention has a crystallite diameter ZD force of usually 0.01 or more, preferably 0.01 or more.
  • the dimensional change of the thick copper film before and after the formation of the thick copper film by the conductive paste makes it difficult to cause thermal shrinkage of the thick copper film, and the oxidation resistance of the flake copper powder when removing the paste from the conductive paste is reduced. This is preferable because it tends to be high.
  • the crystallite diameter ZD is less than 0.01
  • the heat-shrinkage of the copper thick film due to the dimensional change of the copper thick film before and after the formation of the copper thick film by the conductive paste using the flake copper powder easily occurs. It is not preferable because the oxidation resistance of the flake copper powder at the time of removing the solvent in one strike tends to be low.
  • the flake copper powder according to the present invention has a D force of usually 0.3 ⁇ m
  • the filling property of the conductive paste produced using the flake copper powder is easily improved, which is preferable.
  • D is less than 0.3 m, the viscosity of the conductive paste will increase.
  • D used in the present invention is defined as a cumulative volume of 50% by volume based on a laser diffraction / scattering type particle size distribution measuring method.
  • the average particle diameter of the major axis ( ⁇ m) of the major axis ( ⁇ m) of each flaky copper powder (the number of sampled sampnoles of the flaky copper powder is 10 or more) measured from the SEM image obtained by directly observing the sample at 5000 ⁇ to 20000 ⁇ ⁇ m).
  • the flake copper powder according to the present invention is obtained by dividing D by the thickness t (xm) of the flake copper powder.
  • the contact area between them can be increased and the resistance of the copper thick film can be easily reduced.
  • the aspect ratio (D / t) is less than 2, the copper powder in the conductive paste
  • the thickness t (xm) of the flake copper powder means an average thickness measured by direct observation of a scanning electron micrograph.
  • the flake copper powder according to the present invention contains P in the flake copper powder.
  • the content of P in the flake copper powder is usually 10 ppm to 200 ppm, preferably ⁇ 30 ppm to 100 ppm, and more preferably ⁇ 50 ppm to 80 ppm.
  • the content of P is within the above range, the oxidation resistance of the flake copper powder tends to be high, so that it is preferable.
  • the content of P is less than 10 ppm, it is not preferable because the flake copper powder has insufficient oxidation resistance and the flake copper powder becomes difficult to flatten. Further, when the content of P exceeds 200 ppm, the resistance of the flake copper powder tends to increase, which is not preferable.
  • ppm means parts per million by weight.
  • the flake copper powder according to the present invention has an SD / D of usually 0.45 or less, preferably 0.4 or less. is there. When SD / D is within the above range, the particle size distribution of the flake copper powder is sharp.
  • SD refers to a standard deviation ( ⁇ m) of a particle size distribution obtained by a laser diffraction scattering type particle size distribution measuring method.
  • the flake copper powder according to the present invention has a D / ⁇ of usually 3.0 or less, preferably 2.5 or less.
  • flaky copper powder according to the present invention is generally a specific surface area 0. 2m 2 / g ⁇ 4. 0m 2 / g, preferably 0. 3m 2 / g ⁇ 2. 2m 2 / g. If the specific surface area exceeds 4.0 m 2 / g, the viscosity of the conductive paste formed from the flake copper powder may be too high, which is not preferable.
  • the specific surface area means a BET specific surface area.
  • the tap density is usually 2. Og / cm 3 or more, preferably 3. 3 g / cm 3 ⁇ 5. Og / cm 3.
  • the dispersibility of the flake copper powder in the paste during the preparation of the conductive paste is good, and the preparation of the conductive paste is easy.
  • the formation of appropriate voids between the flake copper powder during the formation facilitates the removal of the solvent from the coating when the coating is fired, thereby increasing the density of the fired film. This is preferable because the resistance of the thick film tends to be low.
  • the flake copper powder according to the present invention further has an organic surface treatment layer formed on the surface thereof, the flakes in the paste may be used to form a thick copper film by firing a conductive paste coating film.
  • the surface of the copper powder can be prevented from being oxidized by oxygen in the firing atmosphere to form a copper oxide film on the surface, thereby preventing the electrical resistance of the thick copper film from increasing due to the change over time. Preferred, because you can.
  • the organic surface treatment layer is formed by coating an organic compound on the surface of flake copper powder.
  • the organic compound used in the present invention include a saturated fatty acid, an unsaturated fatty acid, a nitrogen-containing organic compound, a sulfur-containing organic compound, a silane coupling agent, and the like. Let's do it.
  • saturated fatty acid used in the present invention examples include enanthic acid (C H C HH),
  • Prillic acid C H COOH
  • pelargonic acid C H C ⁇ H
  • Lumitic acid C H C ⁇ H
  • heptadecylic acid C H COOH
  • stearic acid C
  • CHCOOH Henic acid
  • nitrogen-containing organic compound used in the present invention examples include 1,2,3-benzotriazole, carboxybenzotriazole, ⁇ ′, N′-bis (benzotriazolylmethyl) uria, and 1H — Triazole compounds having a substituent such as 1,2,4-triazole and 3-amino-1H-1,2,4-triazole.
  • sulfur-containing organic compound used in the present invention examples include sulfur-containing organic compounds such as mercaptobenzothiazole, thiocyanuric acid, and 2-benzimidazolethiol.
  • silane coupling agent used in the present invention examples include a butyl trimethoxy silane coupling agent, a diphenyl dimethoxy silane coupling agent, and the like.
  • the oxidation resistance of the flake copper powder and the conductivity of the conductive paste prepared from the flake copper powder can be improved. It is preferable because the filling property is easily increased.
  • saturated fatty acids unsaturated fatty acids, nitrogen-containing organic compounds, sulfur-containing organic compounds, silane coupling agents and the like, one or a mixture of two or more thereof can be used. .
  • the flake copper powder according to the present invention has a coating ratio of the organic surface treatment layer of usually 0.05 to 2% by weight, preferably 0.1 to 2% by weight based on the flake copper powder. %.
  • the coverage of the organic surface treatment layer means the ratio of the weight of the organic surface treatment layer to the weight of the untreated flake copper powder having no organic surface treatment layer.
  • the coverage of the organic surface treatment layer is in the above range, the oxidation resistance of the conductive paste is easily improved, and the oxidation resistance of the flake copper powder is easily improved.
  • the coverage of the organic surface treatment layer exceeds 2% by weight, the temporal stability of the viscosity of the conductive paste tends to be low, which is not preferable.
  • the specific surface area is usually 0 ⁇ lm 2 / g ⁇ 3. 5m 2 / g, preferably from 0 ⁇ 2m 2 / g ⁇ 2 0 m 2 / g. If the specific surface area exceeds 3.5 m 2 / g, the viscosity of the conductive paste formed from flake copper powder may be too high, which is not preferable.
  • flaky copper powder according to the present invention when forming the organic surface treatment layer, a tap density of typically 3. Og / cm 3 or more, preferably 3 ⁇ 5g / cm 3 ⁇ 5. 5g / cm 3 is there.
  • the tap density is within the above range, the dispersion of the flake copper powder in the paste during the preparation of the conductive paste is good, and the preparation of the conductive paste is easy.
  • the formation of appropriate voids between the flake copper powders at the time of removal facilitates the removal of the solvent of the coating power when firing the coating film, thereby improving the density of the fired film. This is preferable because the resistance tends to be low.
  • the flake copper powder according to the present invention can be produced, for example, by the following method.
  • the method for producing flake copper powder according to the present invention comprises a first step of preparing an aqueous solution containing a copper salt and a complexing agent (hereinafter, referred to as an “aqueous copper salt solution”), and adding an alkali hydroxide to the aqueous solution.
  • the aqueous copper salt solution is an aqueous solution obtained by mixing a copper salt and a complexing agent, and copper (II) ions derived from the copper salt combine with the complexing agent to form a Cu complex. Is what you have.
  • the copper salt used in the present invention a copper salt soluble in water is used, and for example, copper sulfate, copper nitrate, copper acetate or a hydrate thereof can be used. Among them, copper sulfate pentahydrate and copper nitrate are preferable because they have high solubility as salts and can increase the copper concentration, and flake copper powder having high uniformity in particle size is easily obtained.
  • the complexing agent used in the present invention is a complexing agent for copper ions in an aqueous solution. In the present invention, a copper (II) ion obtained from a copper salt is converted into a Cu complex to form a complex in the second step.
  • the complexing agent for example, amino acids, tartaric acid and the like can be used.
  • amino acid for example, aminoacetic acid, alanine, gnoretamic acid and the like can be used. Of these, aminoacetic acid is preferable because flake copper powder having a high uniformity in particle size can be easily obtained.
  • the complexions may be used alone or in combination of two or more.
  • the aqueous copper salt solution is prepared by dissolving a copper salt and a complex agent in water.
  • the method and order of dissolving the copper salt and the complexing agent in water are not particularly limited.
  • a method for dissolving the copper salt and the complexing agent in water for example, a method in which water is stirred, and the copper salt and the complexing agent are added thereto and stirred.
  • the water used for preparing the aqueous copper salt solution pure water, ion-exchanged water, ultrapure water and the like are preferable because the flake copper powder is fine and the crystallite diameter tends to be large.
  • the water temperature is usually 50 ° C to 90 ° C, preferably 60 ° C to 80 ° C.
  • the aqueous copper salt solution generally contains 0.005 mol to 10 mol, preferably 0.01 mol to 5 mol, of a complexing agent per 1 mol of copper contained therein. It is preferable that the mixing ratio of the complexing agent to the copper salt is within the above range, since the flake copper powder is fine, the crystallite diameter increases, and the shape tends to be a flake having a high flattening rate.
  • the aqueous copper salt solution generally contains 10 to 50 parts by weight, preferably 20 to 40 parts by weight of the copper salt, based on 100 parts by weight of water. It is preferable that the mixing ratio of the copper salt to water is within the above range, since flake copper powder having a high particle size uniformity can be easily obtained.
  • a first slurry containing cupric oxide is prepared by adding an alkali hydroxide to a copper salt aqueous solution.
  • the first slurry refers to a slurry obtained by adding aluminum hydroxide to the aqueous copper salt solution and in which fine particles of cupric oxide (CuO) are precipitated.
  • a method for adding the alkali hydroxide to the copper salt aqueous solution for example, a method in which the copper salt aqueous solution is kept in a stirred state, and an alkali hydroxide aqueous solution is added thereto and stirred.
  • the liquid temperature is usually 50 ° C to 90 ° C, preferably 60 ° C to 80 ° C.
  • the liquid temperature is within the above range, the agglomeration of the primary particles is small, the uniformity of the particle size is high, and the flake copper powder is easily obtained.
  • the alkali hydroxide used in the present invention has an action of converting a Cu complex in the aqueous copper salt solution into cupric oxide (CuO) in the present invention.
  • the alkali hydroxide for example, sodium hydroxide, potassium hydroxide, ammonia, aqueous ammonia or the like can be used. Of these, sodium hydroxide is preferable because it is inexpensive and easily controls the reaction for forming cupric oxide. If the alkali hydroxide is kept in an aqueous solution, when the alkali hydroxide is added to the aqueous solution, the reaction of the Cu complex to cupric oxide (CuO) in the copper salt aqueous solution is rapidly performed. Therefore, it is preferable because the variation in the particle size of the flake copper powder is likely to be small.
  • the first slurry generally contains 1.05 to 1.50 equivalents, preferably 1.10 to 1.30 equivalents of the alkali hydroxide per 1 equivalent of the copper salt. It is preferable that the mixing ratio of the alkali hydroxide be within the above range, since flake copper powder having a high uniformity in particle size can be easily obtained.
  • the equivalents of the copper salt and the alkali hydroxide are the equivalent as an acid and the base, respectively. Means the equivalent.
  • the mixture is further stirred usually for 10 to 60 minutes, preferably for 20 to 40 minutes. If stirring is continued even after the addition of alkali hydroxide, the reaction of the Cu complex to cupric oxide (CuO) is sufficiently performed, and flake copper powder with high uniform particle size is easily obtained. It is good.
  • a first reducing agent capable of reducing cupric oxide to cuprous oxide is added to the first slurry to prepare a second slurry containing cuprous oxide.
  • the second slurry refers to cuprous oxide (Cu) in a liquid obtained by adding a first reducing agent to the first slurry.
  • the first slurry is stirred, and an aqueous solution of the first reducing agent is added thereto, followed by stirring.
  • the liquid temperature is usually 50 ° C to 90 ° C, preferably 60 ° C to 80 ° C.
  • the liquid temperature is within the above range, it is preferable because flake copper powder having a small particle size and high uniformity can be easily obtained.
  • the first reducing agent used in the present invention has an action of reducing cupric oxide (CuO) in the first slurry to cuprous oxide (CuO) in the present invention.
  • CuO cupric oxide
  • CuO cuprous oxide
  • reducing sugar for example, reducing sugar, hydrazine and the like can be used.
  • reducing sugar for example, glucose, fructose, ratatose and the like can be used. Of these, dalcos is preferable because the reaction is easily controlled.
  • the first reducing agent can be used alone or in combination of two or more. If the first reducing agent is in an aqueous solution state, when the first reducing agent is added to the first slurry, cupric oxide (CuO) of cupric oxide (CuO) in the first slurry is added. ) Is rapidly carried out to reduce the particle size of the flake copper powder.
  • the second slurry generally contains the first reducing agent in an amount of 0.1 mol to 3.0 monol, preferably 0.3 monol to 1.5 mol, per 1 mol of the copper salt contained in the first slurry. .
  • cupric oxide (CuO) is reduced to cuprous oxide (CuO).
  • the reaction is performed sufficiently and the synthesized flake copper powder has low primary particle aggregation. It is preferable because it is easy.
  • the third step after the first slurry is added to the first slurry to prepare the second slurry, it is desirable to further stir the mixture for usually 10 minutes to 60 minutes, preferably 20 minutes to 40 minutes.
  • the reduction reaction of cupric oxide (Cu ⁇ ) to cuprous oxide (Cu O) is sufficiently performed.
  • the powder is liable to become agglomerated with primary particles and has low coagulation.
  • a flake copper powder is obtained by adding a second reducing agent capable of reducing cuprous oxide to copper to the second slurry.
  • phosphoric acid and a salt thereof are added in at least one of the first to third steps, and / or added to the second slurry in the fourth step. Therefore, when the second reducing agent is added in the fourth step, phosphoric acid and its salt always exist in the second slurry.
  • phosphoric acid and a salt thereof mean a substance capable of supplying a phosphate ion such as an orthophosphate ion, a pyrophosphate ion, and a metaphosphate ion in the presence of water or less.
  • P is contained in the obtained flake copper powder, which is presumed to have the effect of reducing the particle size of the flake copper powder and increasing the crystallite diameter.
  • Examples of the phosphoric acid and salts thereof used in the present invention include polyphosphoric acid such as phosphoric acid and pyrophosphoric acid; metaphosphoric acid such as trimetaphosphoric acid; phosphates such as sodium phosphate and potassium phosphate; sodium pyrophosphate; Examples include polyphosphates such as potassium pyrophosphate, and metaphosphates such as sodium trimetaphosphate and potassium trimetaphosphate.
  • phosphoric acid and a salt thereof are added, and / or in the fourth step, phosphoric acid and a salt thereof are added to the second slurry.
  • the obtained flake copper powder is not preferable because the oxidation resistance tends to be insufficient and the flake copper powder hardly becomes flat. Also, the P conversion amount exceeds 3 moles. It is not preferable because the resistance of the flake copper powder tends to increase.
  • Examples of a method for adding the second reducing agent to the second slurry include a method in which the second slurry is kept in a stirred state, and an aqueous solution of the second reducing agent is added thereto and stirred. .
  • the liquid temperature is usually 50 ° C to 90 ° C, preferably 60 ° C to 80 ° C. When the liquid temperature is within the above range, it is preferable because the aggregation of primary particles is small, the uniformity of particle diameter is high, and flake copper powder is easily obtained.
  • the second reducing agent used in the present invention has an action of reducing cuprous oxide (CuO) in the second slurry to Cu in the present invention.
  • CuO cuprous oxide
  • the second reducing agent for example,
  • At least one selected from the group consisting of azine can be used.
  • the particle size of the obtained flake copper powder according to the present invention will be described. This is preferable because the particle size of the flake copper powder is easily within the range of the particle size.
  • the time required for the addition is usually 1 minute to 60 minutes, preferably 3 minutes to 40 minutes.
  • the second reducing agent is usually contained in an amount of 0.5 mol to 6.0 mol, preferably 0.8 mol to 3.0 mol, per 1 mol of the copper salt contained in the second slurry.
  • the mixing ratio of the second reducing agent to the copper salt is within the above range, the reduction reaction of cuprous oxide (Cu ⁇ ) to Cu is sufficiently performed.
  • the fourth step after the second reducing agent is added to the second slurry, it is desirable to further stir usually for 20 minutes to 2 hours, preferably for 40 minutes to 1.5 hours. If the stirring is continued after the addition of the second reducing agent, the reduction reaction of cuprous oxide (Cu ⁇ ) to Cu is sufficiently performed.
  • flake copper powder is generated in the slurry.
  • the flake copper powder can be obtained, for example, by filtering a slurry using Nutchi II or the like, washing the filter cake with pure water, further washing with a methanol solution containing oleic acid or the like, and drying.
  • the mechanism by which flake copper powder is obtained only by performing a reducing action is unknown, but in the present invention, phosphoric acid and phosphoric acid are contained in the second slurry before adding the second reducing agent used in the fourth step. If the salt is present, flake copper powder is obtained, so cuprous oxide is reduced to copper It is presumed that phosphoric acid and its salts cause some action to form flaked copper powder.
  • the organic compound When an organic surface treatment layer is formed on the surface of the flaked copper powder, the organic compound may be flaked by a known method such as a dry method or a wet method. A method of coating the surface of copper powder.
  • the conductive paste according to the present invention contains the flake copper powder according to the present invention and a resin.
  • a resin for example, acrylic resin
  • Epoxy resin ethyl cellulose, carboxyethyl cellulose and the like.
  • the content of the flake copper powder according to the present invention is usually 30% to 98% by weight, preferably 40% to 90% by weight. It is preferable that the content of the flake copper powder be within the above range because the specific resistance of the formed copper wiring is likely to be low.
  • the flake copper powder according to the present invention can be used as a raw material for electrodes for firing, a raw material for conductive paste, and the like, by itself or as a mixture with other spherical powder.
  • the flake copper powder according to the present invention is mixed with, for example, a known paste used for producing a conductive paste to obtain a conductive paste in which the flake copper powder is dispersed.
  • the conductive paste can be used as a copper paste used for, for example, forming a circuit of a printed wiring board, securing electrical continuity of external electrodes of a ceramic capacitor, and EMI measures.
  • the obtained slurry was filtered using Nutchi II, and the filter cake was washed with pure water and further washed with methanol. The cake was dried to obtain flake copper powder.
  • the mixture was dispersed with a sonic homogenizer (US-300T, manufactured by Nippon Seiki Seisaku-sho) for 5 minutes.
  • a sonic homogenizer US-300T, manufactured by Nippon Seiki Seisaku-sho
  • Microtrack HRA9320-XI00 manufactured by Nikkiso Co., Ltd., manufactured by Leeds + Northrup Co., Ltd.
  • the cumulative volume determined by the laser diffraction scattering method is 10%, 50%, 90%, and 100%.
  • D, D, D, and D are defined as D, D, D, and D, respectively, and the standard deviation ( ⁇ ) of the particle size distribution obtained in these measurements.
  • the major axis (xm) of the copper powder particles in the copper powder sample was measured for 200 copper powder particles, and the average of the major axes was determined.
  • Method of measuring P content The sample powder was dissolved in dilute nitric acid, the P concentration of the solution was measured using an ICP emission analyzer, and the P content in the powder was calculated from the concentration. .
  • Method for measuring TG The copper powder was heated in an air atmosphere at a heating rate of 10 ° C./min, and the weight change of the copper powder was measured.
  • the obtained slurry was filtered using Nutchi II, and the filter cake was washed with pure water and further washed with methanol.
  • the filter cake was immersed in a methanol solution obtained by dissolving lg oleic acid in 3 L of methanol for 1 hour, washed with methanol, and dried to obtain flake copper powder.
  • a filter paper is laid on the bottom of the notch ⁇ , the flake copper powder is placed on the filter paper, a solution of oleic acid lg dispersed in methanol 11 is added thereto, and the mixture is left for 30 minutes. Activated and suction filtered.
  • the flake copper powder remaining on the glass filter paper was taken out and dried at 70 ° C for 5 hours to obtain flake copper powder having a surface coated with oleic acid.
  • the obtained slurry was filtered using Nutchi II, and the filter cake was washed with pure water and further washed with methanol.
  • the filter cake was immersed in a methanol solution obtained by dissolving lg oleic acid in 3 L of methanol for 1 hour, washed with methanol, and dried to obtain a copper powder.
  • the copper powder was subjected to a treatment for 60 minutes using Dynomill KDL manufactured by Willy A. Bachofen AG Maschinenfabrik as a medium dispersion mill, 0.7 mm zirconia beads as a medium, and methanol as a solvent to plastically deform the copper powder.
  • the diameter, P content and aspect ratio were measured. SD / D and crystallite diameter / D are also calculated.
  • the copper powder produced by mixing phosphoric acid and its salt as a raw material is fine, has a sharp particle size distribution, and has a large crystallite diameter as in Comparative Example 1. It can be seen that the flakes appear without any significant plastic deformation treatment. The smaller crystallite diameter in Comparative Example 1 is due to the plastic deformation treatment.
  • the flake copper powder, the method for producing the same, and the conductive paste according to the present invention are, for example, a copper paste or a raw material thereof used for forming a circuit of a printed wiring board and ensuring electrical continuity of external electrodes of a ceramic capacitor. Can be used as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

 微粒で、粒度分布がシャープであり、結晶子が大きく、耐酸化性に優れたフレーク銅粉を提供することを目的とする。この目的を達成するため、Pを含み、結晶子径/DIAが0.01以上であるフレーク銅粉等を採用する。このフレーク銅粉を製造するため、銅塩及び錯化剤を含む水溶液を調製する第1工程、該水溶液に水酸化アルカリを添加して酸化第二銅を含む第1スラリーを調製する第2工程、該第1スラリーに、酸化第二銅を酸化第一銅に還元し得る第1還元剤を添加して酸化第一銅を含む第2スラリーを調製する第3工程、及び該第2スラリーに、酸化第一銅を銅に還元し得る第2還元剤を添加してフレーク銅粉を得る第4工程を有し、前記第1工程~第3工程の少なくとも1つの工程、及び/又は第4工程において第2スラリーにリン酸及びその塩を添加するフレーク銅粉の製造方法を採用する。

Description

明 細 書
フレーク銅粉及びその製造方法並びに導電性ペースト
技術分野
[0001] 本発明は、フレーク銅粉及びその製造方法並びに導電性ペーストに関し、詳しくは
、例えば、プリント配線板の回路形成、セラミックコンデンサの外部電極等の電気的 導通確保のために用いられる銅ペーストの原料として用いられるフレーク銅粉及びそ の製造方法並びに該フレーク銅粉を用いた導電性ペーストに関するものである。 背景技術
[0002] 従来、電子部品等の電極や回路を形成する方法として、導電性材料である銅粉を ペーストに分散させた導電性ペーストを基板に印刷した後、該ペーストを焼成又はキ ユアリングし硬化させて回路を形成する方法が知られている。
[0003] 近年、電子機器の高機能化により電子デバイスの小型高密度化が求められており 、このため、導電性ペーストの材料である銅粉にも、導電性ペーストとしたときにぺー ストの充填性がよいように粒度分布がシャープであり、微細であることが望まれるよう になってきている。
[0004] また、導電性ペーストに用いられる銅粉は、特に、脱媒時、すなわち焼成による導 電性ペーストからのペースト分の除去の際等において銅粉が酸素に触れて酸化され ると、形成される銅厚膜の抵抗が高くなるため好ましくない。このため銅粉は耐酸化 性に優れていることが望ましいが、該耐酸化性は、銅粉中の結晶子を大きくして銅粉 中結晶粒界を少なくすることにより高めることができると考えられる。従って、銅粉は、 銅粉中の結晶子ができるだけ大きいものであることが望まれている。
[0005] また、上記導電性ペーストが印刷される基板としては、セラミック基板が例えば ICの ノ ッケージ等の発熱が大きい部分等に用いられている。しかし、このセラミック基板に 導電性ペーストを印刷する場合には、セラミック基板の熱収縮率と印刷した導電性べ 一ストから生成される銅厚膜の熱収縮率とが一般的に異なるため、焼成時において セラミック基板と銅厚膜とが剥離したり基板自体が変形したりするおそれがある。この ため、セラミック基板の熱収縮率と印刷した導電性ペーストから生成される銅厚膜の 熱収縮率とは、なるべく近い値を採るものであることが好ましい。
[0006] このような焼成時における上記銅厚膜の熱収縮の一因は、導電性ペーストの脱媒 時に、導電性ペースト中の銅粉同士の間に残存する空隙が、銅粉同士の焼結により 減少することにあるものと考えられる。このため、熱収縮の少ない銅粉含有導電性ぺ 一ストを得るには、銅粉同士の間に残存する空隙がなるべく少ないものであること、す なわち、銅粉同士が密に充填され易い形状であることが望まれている。また、導電性 ペーストを焼成させて得られる銅厚膜の導電性を向上させるためには、銅粉の形状 力 導電性ペースト中の銅粉同士の接触面積の大きくなるものであることが好ましい。 さらに導電性ペーストの銅粉の形状が球状に近いほど形状異方性が低くなり、銅粉 の形状が扁平なほど形状異方性が高くなるものである。このような銅粉の形状への要 請から、従来、銅粉自体の形状を球状でなくフレーク状としたフレーク銅粉とすること が検討されている。
[0007] また、フレーク銅粉は、導電性ペーストを調製したときにペースト中での分散性が良 いように、粒度分布がシャープであると好ましい。
[0008] 上記のように、導電性ペーストに用いられる銅粉、特にフレーク銅粉においては、微 粒で、粒度分布がシャープであり、結晶子が大きいことが望まれている。
[0009] これに対し、特許文献 1 (特開 2003— 119501号公報)には、粒径が lO /i m以下 であって、体積累積粒径 D 、粒度分布の標準偏差 SDを用いて表される SD/D
50 50 が 0. 15〜0. 35であり、且つ、フレーク銅粉を構成する粉粒の厚さと前記体積累積 粒径 D とで表されるアスペクト比([厚さ] Z [D ] )が 0. 3〜0. 7であるフレーク銅粉
50 50
が開示されているおり、該発明によれば、微粒で、扁平なフレーク状を呈するフレー ク銅粉が得られる。
[0010] 特許文献 1:特開 2003 - 119501号公報(第 2頁)
発明の開示
発明が解決しょうとする課題
[0011] し力 ながら、特許文献 1記載のフレーク銅粉は、微粒ではあるものの、凝集状態に ある銅粉を解粒処理し、解粒処理の終了した銅粉の粉粒を高エネルギーボールミル で圧縮変形して製造するものであるため、銅粉が圧縮変形の際に酸化されたり歪み が生じたりし易ぐまた結晶子が小さくなるという問題があった。
[0012] 従って、本発明の目的は、微粒で、粒度分布がシャープであり、結晶子が大き 耐酸化性に優れたフレーク銅粉及び該フレーク銅粉を用いた導電性ペーストを提供 することにある。
課題を解決するための手段
[0013] 力かる実情において、本発明者は鋭意検討を行った結果、 Pを含有しているフレー ク銅粉、特に特定の粉体の形状を有するフレーク銅粉が目的とする導電性ペースト 用に好適であることを知見した。また力かるフレーク銅粉の湿式製造法において、出 発原料中の銅塩に含まれる銅 (II)イオンを還元して銅粉を析出させる複数の工程の うちの少なくとも 1つの工程において特定のリン酸及びその塩を添加すると、特許文 献 1のような圧縮変形処理を行わずに、粒径が小さぐ結晶子径の大き 耐酸化性 に優れたフレーク銅粉が得られ、さらに、該フレーク銅粉は粒度分布がシャープにな り易いことを見出し、本発明を完成するに至った。
[0014] すなわち、本発明は、 Pを含むことを特徴とするフレーク銅粉を提供するものである
[0015] また、本発明は、前記 Pの含有量が 10ppm〜200ppmであることを特徴とするフレ 一ク銅粉 (ただし、前記式において、 D は、レーザー回折散乱式粒度分布測定法に
50
よる累積体積 50容量%における体積累積粒径( μ m)を示す。)を提供するものであ る。
[0016] また、本発明に係るフレーク銅粉は、 D が 0. 3 μ m
50 〜7 μ mであることが好ましレ、。
[0017] また、本発明に係るフレーク銅粉は、結晶子径が 25nm以上であることが好ましい。
[0018] また、本発明に係るフレーク銅粉を構成する粉粒は、走査型電子顕微鏡で直接観 察して得られる SEM像を画像解析して算出した平均粒径 D ( μ m)を該フレーク銅
IA
粉の厚さ t ( μ m)で除して求められるアスペクト比(D /t)が 2
IA 〜50のフレーク状で あることが好ましい。
[0019] また、本発明に係るフレーク銅粉は、 SD/D が 0. 45以下であることを特徴とする
50
フレーク銅粉 (ただし、前記式において、 D は、レーザー回折散乱式粒度分布測定
50
法による累積体積 50容量%における体積累積粒径 m)を示し、 SDは前記測定 法で得られた粒度分布の標準偏差( μ m)を示す。 )であることが好ましレ、。
[0020] また、本発明に係るフレーク銅粉は、 D /Ό が 3. 0以下であることを特徴とする
90 10
フレーク銅粉 (ただし、前記式において、 D 及び D は、それぞれ、レーザー回折散
10 90
乱式粒度分布測定法による累積体積 10容量%及び 90容量%における体積累積粒 径( μ m)を示し、 SDは前記測定法で得られた粒度分布の標準偏差( μ m)を示す。 )である事が好ましい。
[0021] 本発明に係るフレーク銅粉の製造方法は、銅塩及び錯化剤を含む水溶液を調製 する第 1工程、該水溶液に水酸化アルカリを添加して酸化第二銅を含む第 1スラリー を調製する第 2工程、該第 1スラリーに、酸化第二銅を酸化第一銅に還元し得る第 1 還元剤を添加して酸化第一銅を含む第 2スラリーを調製する第 3工程、及び該第 2ス ラリーに、酸化第一銅を銅に還元し得る第 2還元剤を添加してフレーク銅粉を得る第 4工程を有するフレーク銅粉の製造方法であって、前記第 1工程〜第 3工程の少なく とも 1つの工程においてリン酸及びその塩を添加すること、及び/又は第 4工程にお レ、て前記第 2スラリーにリン酸及びその塩を添加することを特徴とする製造方法を採 用することが好ましい。
[0022] また、本発明に係るフレーク銅粉の製造方法において、前記第 1工程〜第 3工程の 少なくとも 1つの工程において添加する前記リン酸及びその塩、及び/又は第 4工程 において前記第 2スラリーに添加する前記リン酸及びその塩の全添加量は、該リン酸 及びその塩中の P換算量が、前記水溶液、第 1スラリー又は第 2スラリー中に含まれる 銅 1モルに対し、 0. 001モル〜 3モルであることが好ましい。
[0023] また、本発明に係るフレーク銅粉の製造方法において、前記第 1スラリーが、前記 銅塩 1当量に対し、前記水酸化アルカリ 1. 05当量〜 1. 50当量を含むことが好まし レ、。
[0024] また、本発明に係るフレーク銅粉の製造方法にぉレ、て、前記錯化剤が、アミノ酸で あることが好ましい。
[0025] また、本発明に係るフレーク銅粉の製造方法において、前記第 1還元剤が、還元糖 であることが好ましい。
[0026] また、本発明に係るフレーク銅粉の製造方法にぉレ、て、前記第 2還元剤が、ヒドラジ ン、水和ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン及び塩酸ヒドラジンからなる群より 選択される少なくとも 1種であることが好ましい。。
[0027] また、本発明に係るフレーク銅粉の製造方法にぉレ、て、前記水溶液が、前記水溶 液、第 1スラリー又は第 2スラリー中に含まれる銅 1モルに対し、前記錯化剤 0. 005モ ル〜 10モルを含むことが好ましい。
[0028] 以上の本発明に係るフレーク銅粉の製造方法によって、表面に有機表面処理層を 形成したことを特徴とするフレーク銅粉を提供するものである。
[0029] また、以上の本発明に係るフレーク銅粉の製造方法によって、前記有機表面処理 層の被覆率が、前記フレーク銅粉に対して 0. 05重量%〜2重量%であることを特徴 とするフレーク銅粉を提供するものである。
[0030] また、本発明に係るフレーク銅粉と樹脂とを含むことを特徴とする導電性ペーストを 提供するものである。
発明の効果
[0031] 本発明に係るフレーク銅粉は、圧縮変形操作を経ていないため酸化されたり歪み が生じたりし難ぐ微粒で、粒度分布がシャープであり、結晶子が大きいため、導電性 ペーストに用いた場合に、脱媒時の耐酸化性、ペースト中での分散性及び導電性べ 一ストの充填性に優れ、銅厚膜から形成される電極や回路等をよりファイン化すること ができる。また、本発明に係るフレーク銅粉の製造方法は、上記本発明に係るフレー ク銅粉を効率よく製造することができる。また、本発明に係る導電性ペーストは、脱媒 時の耐酸化性及び充填性に優れ、銅厚膜から形成される電極や回路等をよりフアイ ンィ匕することができ、また得られる銅厚膜を耐熱収縮性に優れたものとすることができ る。
発明を実施するための最良の形態
[0032] (本発明に係るフレーク銅粉)
本発明に係るフレーク銅粉は、その粒子の微視的形状がフレーク状の粉体である。 本発明においてフレーク状を呈する粉体とは銅粉の一次粒子がフレーク状を呈して いるということであり、該一次粒子が凝集して生じた二次粒子の性状を指すものでは ない。 [0033] 本発明に係るフレーク銅粉は、 D 力 通常 0. 3 μ π!〜 、好ましくは 0. 5 x m
50
〜5 μ m、さらに好ましくは 0. 5 μ m〜4 μ mである。 D が該範囲内にあると、フレー
50
ク銅粉を用いて作製した導電性ペーストの充填性が良好になり易いため好ましい。 一方、 D が 0. 3 z m未満であると導電性ペーストの粘度が高くなり易いため好ましく
50
なぐ 7 μ mを超えると導電性ペーストから形成される銅厚膜の薄層化又はファインラ イン化が困難になり易いため好ましくなレ、。なお、本発明において用いる D
10、D 及
50 び D とは、それぞれ、レーザー回折散乱式粒度分布測定法による累積体積 10容量
90
%、 50容量%及び 90容量%における体積累積粒径(μ ΐη)を示す。
[0034] 本発明に係るフレーク銅粉は、結晶子径が 25nm以上、好ましくは 35nm以上であ る。結晶子径が該範囲内にあると、該フレーク銅粉を用いた導電性ペーストによる銅 厚膜の生成前後で銅厚膜の寸法変化が生じることによる銅厚膜の熱収縮を起こして 銅厚膜がセラミック基板から剥離したりセラミック基板が銅厚膜の寸法変化につられ て変形したりし難ぐまた導電性ペーストからのペーストの脱媒時のフレーク銅粉の耐 酸化性が高くなり易いため好ましい。一方、結晶子径が 25nm未満であると、該フレ 一ク銅粉を用いた導電性ペーストによる銅厚膜の生成前後で銅厚膜の寸法変化が 生じることによる銅厚膜の熱収縮を起こして銅厚膜がセラミック基板から剥離したりセ ラミック基板が銅厚膜の寸法変化につられて変形したりし易ぐまた導電性ペーストか らのペーストの脱媒時のフレーク銅粉の耐酸化性が低くなり易いため好ましくなレ、。 なお、本発明において、結晶子径とは、フレーク銅粉試料に対し X線回折を行って得 られる、各結晶面の回折角のピークの半価幅から求められる結晶子径の平均値をい う。
[0035] 本発明に係るフレーク銅粉は、結晶子径 ZD 力 通常 0. 01以上、好ましくは 0. 0
IA
15以上である。結晶子径 ZD が該範囲内にあると、該フレーク銅粉を用いた導電
IA
性ペーストによる銅厚膜の生成前後で銅厚膜の寸法変化が生じることによる銅厚膜 の熱収縮を起こし難ぐまた導電性ペーストからのペーストの脱媒時のフレーク銅粉 の耐酸化性が高くなり易いため好ましい。一方、結晶子径 ZD が 0. 01未満である
IA
と、該フレーク銅粉を用いた導電性ペーストによる銅厚膜の生成前後で銅厚膜の寸 法変化が生じることによる銅厚膜の熱収縮を起こし易ぐまた導電性ペーストからのぺ 一ストの脱媒時のフレーク銅粉の耐酸化性が低くなり易いため好ましくない。
[0036] 本発明に係るフレーク銅粉は、 D 力 通常 0. 3 μ m
IA 〜8 μ mである。 D が該範囲
IA
内にあると、フレーク銅粉を用いて作製した導電性ペーストの充填性が良好になり易 いため好ましい。一方、 D が 0. 3 m未満であると導電性ペーストの粘度が高くなり
IA
易いため好ましくなぐ 8 μ mを超えると導電性ペーストから形成される銅厚膜の薄層 化又はファインラインィ匕が困難になり易いため好ましくない。なお、本発明において 用いる D とは、レーザー回折散乱式粒度分布測定法による累積体積 50容量%に
IA
おける体積累積粒径(μ η )である上記 D と異なり、走査型電子顕微鏡 (SEM)を用
50
レ、 5000倍〜 20000倍で直接観察して得られる SEM像から測定した個々のフレーク 状銅粉 (フレーク状銅粉の測定サンプノレ数は 10個以上)の長径( μ m)の平均粒径( μ m)を示す。
[0037] 本発明に係るフレーク銅粉は、 D をフレーク銅粉の厚さ t ( x m)で除して求められ
IA
るアスペクト比(D /t)力 通常 2〜50、好ましくは 2〜20、さらに好ましくは 3
IA 〜10 である。アスペクト比(D /t)が該範囲内にあると、導電性ペースト中における銅粉
IA
同士の接触面積を大きくすることができ、銅厚膜を低抵抗化し易いため好ましい。一 方、アスペクト比(D /t)が 2未満であると、導電性ペースト中における銅粉同士の
IA
接触面積が十分に大きくなぐ銅厚膜を低抵抗化し難いおそれがあり、また、 50を超 えると導電性ペーストの粘度が急激に上昇し易いおそれがある。なお、本発明にお いて、フレーク銅粉の厚さ t ( x m)とは、走査型電子顕微鏡写真の直接観察で測定さ れる平均厚さを意味する。
[0038] 本発明に係るフレーク銅粉は、フレーク銅粉中に Pを含む。フレーク銅粉中の Pの 含有量は、通常 10ppm〜200ppm、好まし <は 30ppm〜100ppm、さらに好まし < は 50ppm〜80ppmである。 Pの含有量が該範囲内にあると、フレーク銅粉の耐酸化 性が高くなり易いため好ましレ、。一方、 Pの含有量が lOppm未満であると、フレーク 銅粉の耐酸化性が十分でなかったり、フレーク銅粉が扁平化し難くなつたりするため 好ましくない。また、 Pの含有量が 200ppmを超えるとフレーク銅粉の抵抗が高くなり 易いため好ましくなレ、。本発明におレ、て ppmとは重量基準の百万分率をレ、う。
[0039] 本発明に係るフレーク銅粉は、 SD/D が通常 0. 45以下、好ましくは 0. 4以下で ある。 SD/D が該範囲内にあると、フレーク銅粉の粒度分布がシャープであること
50
により、フレーク銅粉を用いて作製した導電性ペーストの充填性が良好になり易いた め好ましい。 SD/D が上記範囲外であると、フレーク銅粉の粒度分布がブロードで
50
あることにより、フレーク銅粉を用いて作製した導電性ペーストの充填性が低下し易 レ、ため好ましくなレ、。なお、本発明において、 SDとは、レーザー回折散乱式粒度分 布測定法で得られた粒度分布の標準偏差( μ m)を示す。
[0040] 本発明に係るフレーク銅粉は、 D /Ό が通常 3. 0以下、好ましくは 2. 5以下で
90 10
ある。一方、 D /D が上記範囲外であると、フレーク銅粉の粒度分布がブロードで
90 10
あることにより、フレーク銅粉を用いて作製した導電性ペーストの充填性が低下し易 いため好ましくない。
[0041] 本発明に係るフレーク銅粉は、比表面積が通常 0. 2m2/g〜4. 0m2/g、好ましく は 0. 3m2/g〜2. 2m2/gである。該比表面積が 4· 0m2/gを超えると、フレーク銅 粉から形成した導電性ペーストの粘度が高くなりすぎるおそれがあるため好ましくな レ、。本発明において比表面積とは、 BET比表面積をいう。
[0042] 本発明に係るフレーク銅粉は、タップ密度が通常 2. Og/cm3以上、好ましくは 3. 3 g/cm3〜5. Og/cm3である。タップ密度が該範囲内にあると、導電性ペーストの作 製の際にフレーク銅粉のペースト中での分散性が良好で導電性ペーストの作製が容 易であり、また導電性ペーストの塗膜形成の際にフレーク銅粉間に適度な空隙が形 成されることにより塗膜を焼成する際に塗膜からの溶媒の除去が容易に行われて焼 成膜密度が向上し、この結果銅厚膜の抵抗が低くなり易いため好ましい。
[0043] 本発明に係るフレーク銅粉は、その表面にさらに有機表面処理層を形成したもので あると、導電性ペーストの塗膜を焼成して銅厚膜を形成する際にペースト中のフレー ク銅粉の表面が焼成雰囲気中の酸素により酸化されて表面に酸化銅の皮膜が形成 されることを防止することができ、これにより銅厚膜の電気抵抗の経時的変化による 上昇を防止することができるため好ましレ、。
[0044] 該有機表面処理層は、有機化合物をフレーク銅粉の表面に被覆させることにより形 成される。本発明で用いられる有機化合物としては、例えば、飽和脂肪酸、不飽和脂 肪酸、窒素含有有機化合物、硫黄含有有機化合物及びシランカップリング剤等を用 レ、ることができる。
[0045] 本発明で用いられる飽和脂肪酸としては、例えば、ェナント酸(C H C〇〇H)、力
6 13
プリル酸(C H COOH)、ペラルゴン酸(C H C〇〇H)、力プリン酸(C H COO
7 15 8 17 9 19
H)、ゥンデシル酸(C H COOH)、ラウリン酸(C H COOH)、トリデシル酸(C
10 21 11 23 12
H COOH)、ミリスチン酸(C H C〇〇H)、ペンタデシル酸(C H COOH)、ノ
25 13 27 14 29
ルミチン酸(C H C〇〇H)、ヘプタデシル酸(C H COOH)、ステアリン酸(C
15 31 16 33 17
H COOH)、ノナデカン酸(C H COOH)、ァラキン酸(C H COOH)及びべ
35 18 37 19 39
ヘン酸(C H COOH)等が挙げられる。
21 43
[0046] 本発明で用いられる不飽和脂肪酸としては、例えば、アクリル酸(CH =CHCOO
2
H)、クロトン酸(CH CH = CHCO〇H)、イソクロトン酸(CH CH = CHCO〇H)、ゥ
3 3
ンデシレン酸(CH =CH (CH ) C〇〇H)、ォレイン酸(C H COOH)、エライジ
2 2 9 17 33
ン酸(CH (CH ) CH = CH (CH ) COOH)、セトレイン酸(CH (CH ) CH = CH
3 2 7 2 7 3 2 9
(CH ) COOH)、ブラシジン酸(C H COOH)、エル力酸(C H COOH)、ソル
2 9 21 41 21 41 ビン酸(C H COOH)、リノール酸(C H COOH)、リノレン酸(C H COOH)及
5 7 17 31 17 29
びァラキドン酸(C H COOH)等が挙げられる。
13 31
[0047] 本発明で用いられる窒素含有有機化合物としては、例えば、 1 , 2, 3—べンゾトリア ゾール、カルボキシベンゾトリァゾール、 Ν' , N'—ビス(ベンゾトリアゾリルメチル)ユリ ァ、 1H— 1 , 2, 4—トリァゾール及び 3—ァミノ一 1H—1, 2, 4—トリァゾール等の置 換基を有するトリァゾール化合物等が挙げられる。
[0048] 本発明で用いられる硫黄含有有機化合物としては、例えば、硫黄含有有機化合物 には、メルカプトべンゾチアゾール、チオシァヌル酸及び 2 _ベンズイミダゾールチオ ール等が挙げられる。
[0049] 本発明で用いられるシランカップリング剤としては、例えば、ビュルトリメトキシシラン pyング剤、ジフエ二ルジメトキシシランカツプリング剤等が挙げら れる。
[0050] 本発明では、上記有機化合物のうち、ォレイン酸、力プリン酸又はステアリン酸を用 レ、ると、フレーク銅粉の耐酸化性及び該フレーク銅粉から作製した導電性ペーストの 充填性が高くなり易いため好ましい。本発明において、有機化合物は、上記飽和脂 肪酸、不飽和脂肪酸、窒素含有有機化合物、硫黄含有有機化合物及びシランカツ プリング剤等のうち、 1種単独で又は 2種以上混合して用いることができる。
[0051] 本発明に係るフレーク銅粉は、前記有機表面処理層の被覆率が、フレーク銅粉に 対して通常 0. 05重量%〜2重量%、好ましくは 0. 1重量%〜:!重量%である。本発 明において有機表面処理層の被覆率とは、有機表面処理層を形成していない未処 理のフレーク銅粉の重量に対する有機表面処理層の重量の比率を意味する。上記 有機表面処理層の被覆率が上記範囲内にあると、導電性ペーストの耐酸化性が向 上し易いため優れ、また、フレーク銅粉の耐酸化性が向上し易いため好ましい。一方 、上記有機表面処理層の被覆率が 2重量%を超えると、導電性ペーストの粘度の経 時安定性が低くなり易いため好ましくない。
[0052] 本発明に係るフレーク銅粉は、前記有機表面処理層を形成した場合、比表面積が 通常 0· lm2/g〜3. 5m2/g、好ましくは 0· 2m2/g〜2. 0m2/gである。該比表 面積が 3. 5m2/gを超えると、フレーク銅粉から形成した導電性ペーストの粘度が高 くなりすぎるおそれがあるため好ましくなレ、。
[0053] 本発明に係るフレーク銅粉は、前記有機表面処理層を形成した場合、タップ密度 が通常 3. Og/cm3以上、好ましくは 3· 5g/cm3〜5. 5g/cm3である。タップ密度 が該範囲内にあると、導電性ペーストの作製の際にフレーク銅粉のペースト中での分 散性が良好で導電性ペーストの作製が容易であり、また導電性ペーストの塗膜形成 の際にフレーク銅粉間に適度な空隙が形成されることにより塗膜を焼成する際に塗 膜力 の溶媒の除去が容易に行われて焼成膜密度が向上し、この結果銅厚膜の抵 抗が低くなり易いため好ましい。上記本発明に係るフレーク銅粉は、例えば、以下の 方法により製造することができる。
[0054] (本発明に係るフレーク銅粉の製造方法)
本発明に係るフレーク銅粉の製造方法は、銅塩及び錯化剤を含む水溶液(以下、「 銅塩水溶液」と称する。)を調製する第 1工程、該水溶液に水酸化アルカリを添加して 酸化第二銅を含む第 1スラリーを調製する第 2工程、該第 1スラリーに、酸化第二銅を 酸化第一銅に還元し得る第 1還元剤を添加して酸化第一銅を含む第 2スラリーを調 製する第 3工程、及び該第 2スラリーに、酸化第一銅を銅に還元し得る第 2還元剤を 添加してフレーク銅粉を得る第 4工程を有するものであって、前記第 1工程〜第 3ェ 程の少なくとも 1つの工程においてリン酸及びその塩を添加すること、及び Z又は第 4工程において前記第 2スラリーにリン酸及びその塩を添加することを行うものである
[0055] (第 1工程)
第 1工程では、まず、銅塩水溶液を調製する。本発明において銅塩水溶液とは、銅 塩及び錯ィ匕剤を配合して得られる水溶液であって、銅塩由来の銅 (II)イオンが錯化 剤と結合して Cu錯体を形成しているものをいう。
[0056] 本発明で用いられる銅塩としては水に溶解可能な銅塩が用いられ、例えば、硫酸 銅、硝酸銅、酢酸銅又はこれらの水和物等を用いることができる。このうち、硫酸銅 5 水和物及び硝酸銅は、塩としての溶解度が高くて銅濃度を高くすることができ、また 粒度の均一性の高いフレーク銅粉が得られ易いため好ましい。本発明で用いられる 錯化剤は、水溶液中における銅イオンの錯化剤であり、本発明において、銅塩から 得られる銅(II)イオンを Cu錯体にすることにより、第 2工程における水酸化アルカリの 添カ卩による Cu〇の形成を均一にする作用を有するものである。該錯化剤としては、例 えば、アミノ酸、酒石酸等を用いることができる。また、アミノ酸としては、例えば、アミ ノ酢酸、ァラニン、グノレタミン酸等を用いることができる。このうち、ァミノ酢酸は、粒径 の均一性の高いフレーク銅粉が得られ易いため好ましい。錯ィ匕剤は、 1種単独で又 は 2種以上組み合わせて用いることができる。
[0057] 銅塩水溶液は、水に銅塩及び錯ィヒ剤を溶解することにより調製する。なお、水への 銅塩及び錯化剤の溶解方法及び溶解順序は特に限定されなレ、。水への銅塩及び 錯化剤の溶解方法としては、例えば、水を攪拌した状態にしておき、これに銅塩及び 錯化剤を添加して攪拌する方法が挙げられる。銅塩水溶液の調製に用いられる水と しては、純水、イオン交換水、超純水等が、フレーク銅粉が微粒で、結晶子径が大き くなり易いため好ましい。また、銅塩水溶液の調製の際、水温は、通常 50°C〜90°C、 好ましくは 60°C〜80°Cである。水温が該範囲内にあると、次工程において粒径の均 一な酸化銅が形成され易いため好ましい。 [0058] 銅塩水溶液は、これに含まれる銅 1モルに対し、錯化剤を、通常 0. 005モル〜 10 モル、好ましくは 0. 01モル〜 5モル含む。銅塩に対する錯化剤の配合比率が該範 圏内にあると、フレーク銅粉が微粒で、結晶子径が大きくなり、形状が扁平率の高い フレーク状になり易いため好ましい。
[0059] 銅塩水溶液は、水 100重量部に対し、銅塩を、通常 10重量部〜 50重量部、好まし くは 20重量部〜 40重量部含む。水に対する銅塩の配合比率が該範囲内にあると、 粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。
[0060] (第 2工程)
第 2工程では、銅塩水溶液に水酸化アルカリを添加して酸化第二銅を含む第 1スラ リーを調製する。本発明において第 1スラリーとは、上記銅塩水溶液に水酸化アル力 リを添加して得られる、液中に酸化第二銅(CuO)の微粒が析出した状態のスラリー をいう。上記銅塩水溶液への水酸化アルカリの添加方法としては、例えば、上記銅塩 水溶液を攪拌した状態にしておき、これに水酸化アルカリの水溶液を添加して攪拌 する方法が挙げられる。また、第 1スラリーの調製の際、液温は、通常 50°C〜90°C、 好ましくは 60°C〜80°Cである。液温が該範囲内にあると、一次粒子の凝集が少ない 粒径の均一性の高レ、フレーク銅粉が得られ易いため好ましレ、。
[0061] 本発明で用いられる水酸化アルカリは、本発明において上記銅塩水溶液中の Cu 錯体を酸化第二銅(CuO)にする作用を有するものである。該水酸化アルカリとして は、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、アンモニア水等を用いる こと力 Sできる。このうち、水酸化ナトリウムは、安価であり、また酸化第二銅を形成する 反応を制御し易いため好ましい。また、水酸化アルカリは、水溶液の状態にしておく と、水酸化アルカリを水溶液に添加したときに、銅塩水溶液中における Cu錯体の酸 化第二銅(CuO)への反応が速やかに行われて、フレーク銅粉の粒径のバラツキが 小さくなり易いため好ましい。
[0062] 第 1スラリーは、前記銅塩 1当量に対し、前記水酸化アルカリを、通常 1. 05当量〜 1. 50当量、好ましくは 1. 10当量〜 1. 30当量を含む。水酸化アルカリの配合比率 が該範囲内にあると、粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。 ここで、銅塩及び水酸化アルカリの当量とは、それぞれ酸としての当量及び塩基とし ての当量をいう。
[0063] 第 2工程は、銅塩水溶液に水酸化アルカリを添加して第 1スラリーを調製した後、さ らに通常 10分〜 60分、好ましくは 20分〜 40分攪拌することが望ましい。このように 水酸化アルカリの添加後も攪拌を続けると、 Cu錯体の酸化第二銅(CuO)への反応 が十分に行われることにより、粒度の均一性の高いフレーク銅粉が得られ易いため好 ましい。
[0064] (第 3工程)
第 3工程では、上記第 1スラリーに、酸化第二銅を酸化第一銅に還元し得る第 1還 元剤を添加して酸化第一銅を含む第 2スラリーを調製する。本発明において第 2スラ リーとは、上記第 1スラリーに第 1還元剤を添加して得られる、液中に酸化第一銅 (Cu
〇)が析出した状態のスラリーをいう。第 1スラリーへの第 1還元剤の添加方法として
2
は、例えば、第 1スラリーを攪拌した状態にしておき、これに第 1還元剤の水溶液を添 カロして攪拌する方法が挙げられる。また、第 2スラリーの調製の際、液温は、通常 50 °C〜90°C、好ましくは 60°C〜80°Cである。液温が該範囲内にあると、一次粒子の凝 集が少ない粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。
[0065] 本発明で用いられる第 1還元剤は、本発明において第 1スラリー中の酸化第二銅( CuO)を酸化第一銅(Cu O)に還元する作用を有するものである。該第 1還元剤とし
2
ては、例えば、還元糖、ヒドラジン等を用いることができる。また、還元糖としては、例 えば、グルコース、フルクトース、ラタトース等を用いることができる。このうち、ダルコ ースは、反応を制御し易いため好ましい。第 1還元剤は、 1種単独で又は 2種以上組 み合わせて用いることができる。また、第 1還元剤は、水溶液の状態にしておくと、第 1還元剤を第 1スラリーに添加したときに、第 1スラリー中における酸化第二銅(CuO) の酸化第一銅(Cu〇)への還元反応が速やかに行われて、フレーク銅粉の粒径の
2
ノ ラツキが小さくなり易いため好ましい。
[0066] 第 2スラリーは、第 1スラリーに含まれる銅塩 1モルに対し、第 1還元剤を、通常 0. 1 モル〜 3. 0モノレ、好ましくは 0. 3モノレ〜 1 , 5モル含む。銅塩に対する第 1還元剤の 配合比率が該範囲内にあると、酸化第二銅(CuO)の酸化第一銅(Cu Oへの還元
2
反応が十分に行われ、合成されるフレーク銅粉が一次粒子の凝集の低いものとなり 易いため好ましい。
[0067] 第 3工程は、第 1スラリーに第 1還元剤を添加して第 2スラリーを調製した後、さらに 通常 10分〜 60分、好ましくは 20分〜 40分攪拌することが望ましい。本発明におい ては、このように水酸化アルカリの添加後も攪拌を続けることにより、酸化第二銅(Cu 〇)の酸化第一銅(Cu O)への還元反応が十分に行わせると、合成されるフレーク銅
2
粉が一次粒子の凝集の低レ、ものとなり易いため好ましレ、。
[0068] (第 4工程)
第 4工程では、上記第 2スラリーに、酸化第一銅を銅に還元し得る第 2還元剤を添 カロしてフレーク銅粉を得る。ただし、本発明では、リン酸及びその塩を前記第 1工程 〜第 3工程の少なくとも 1つの工程において添加すること、及び/又は第 4工程にお レ、て第 2スラリーに添加することを行うため、第 4工程において第 2還元剤を添加する 際には第 2スラリー中に必ずリン酸及びその塩が存在することになる。
[0069] 本発明においてリン酸及びその塩とは、水存在以下でオルトリン酸イオン、ピロリン 酸イオン、メタリン酸イオン等のリン酸イオンを供給可能な物質を意味し、本発明にお レ、て得られるフレーク銅粉中に Pを含有せしめるものであり、フレーク銅粉の粒径を小 さくし、結晶子径を大きくする作用を有すると推測されるものである。本発明で用いら れるリン酸及びその塩としては、例えば、リン酸、ピロリン酸等のポリリン酸、トリメタリン 酸等のメタリン酸;リン酸ナトリウム、リン酸カリウム等のリン酸塩、ピロリン酸ナトリウム、 ピロリン酸カリウム等のポリリン酸塩、トリメタリン酸ナトリウム、トリメタリン酸カリウム等の メタリン酸塩等が挙げられる。
[0070] また、第 1工程〜第 3工程の少なくとも 1つの工程においてリン酸及びその塩を添カロ する、及び/又は第 4工程において第 2スラリーに添加するリン酸及びその塩の全添 加量は、該リン酸及びその塩中の P (リン)換算量が、前記銅塩水溶液、第 1スラリー 又は第 2スラリー中に含まれる銅 1モルに対し、通常 0. 001モノレ〜 3モノレ、好ましくは 0. 01モル〜 1モルである。該全添加量の P換算量が該範囲内にあると、得られるフ レーク銅粉の耐酸化性が高くなり易いため好ましい。一方、該 P換算量が 0. 001モ ル未満であると得られるフレーク銅粉の耐酸化性が十分でなくなり易かったり、フレー ク銅粉が扁平化し難くなつたりするため好ましくない。また、該 P換算量が 3モルを超 えるとフレーク銅粉の抵抗が高くなり易いため好ましくない。
[0071] 第 2スラリーへの第 2還元剤の添加方法としては、例えば、第 2スラリーを攪拌した状 態にしておき、これに第 2還元剤の水溶液を添加して攪拌する方法が挙げられる。ま た、第 4工程では、第 2スラリーに第 2還元剤を添加する際、液温は、通常 50°C〜90 °C、好ましくは 60°C〜80°Cである。液温が該範囲内にあると、一次粒子の凝集が少 なレ、粒径の均一性の高レ、フレーク銅粉が得られ易いため好ましレ、。
[0072] 本発明で用いられる第 2還元剤は、本発明において第 2スラリー中の酸化第一銅( Cu O)を Cuに還元する作用を有するものである。該第 2還元剤としては、例えば、ヒ
2
ドラジン、水和ヒドラジン (N H ·Η 0)、硫酸ヒドラジン、炭酸ヒドラジン及び塩酸ヒド
2 4 2
ラジンからなる群より選択される少なくとも 1種を用いることができる。
[0073] また、第 2還元剤を第 1スラリーに添加する際は、一挙に添加するのでなぐ時間を かけて少量ずっ徐々に添加すると、得られるフレーク銅粉の粒径を上記本発明に係 るフレーク銅粉の粒径の範囲内にし易いため好ましい。該添加に要する時間としては 、通常 1分〜 60分、好ましくは 3分〜 40分とする。
[0074] 第 4工程において、第 2スラリーに含まれる銅塩 1モルに対し、第 2還元剤を、通常 0 . 5モル〜 6. 0モノレ、好ましくは 0. 8モノレ〜 3. 0モル含む。銅塩に対する第 2還元剤 の配合比率が該範囲内にあると、酸化第一銅(Cu〇)の Cuへの還元反応が十分に
2
行われることにより、粒径の均一性の高いフレーク銅粉が得られ易いため好ましい。
[0075] 第 4工程は、第 2スラリーに第 2還元剤を添加した後、さらに通常 20分〜 2時間、好 ましくは 40分〜 1. 5時間攪拌することが望ましい。このように第 2還元剤の添加後も 攪拌を続けると、酸化第一銅(Cu〇)の Cuへの還元反応が十分に行われることによ
2
り、より一次粒子の凝集の少ないフレーク銅粉が得られ易いため好ましい。
[0076] 第 4工程を行うと、スラリー中にフレーク銅粉が生成する。該フレーク銅粉は、例え ばスラリーを、ヌッチヱ等を用いて濾過した後、濾滓を純水で洗浄し、さらにォレイン 酸等を含むメタノール溶液等で洗浄し、乾燥する方法により得られる。なお、本発明 において還元作用を行うだけでフレーク銅粉が得られるメカニズムは不明であるが、 本発明では第 4工程で用いられる第 2還元剤を添加する前の第 2スラリー中にリン酸 及びその塩が存在していればフレーク銅粉が得られるため、酸化第一銅が銅に還元 される際にリン酸及びその塩が何らかの作用を引き起こしてフレーク銅粉が形成され ているものと推測される。
[0077] また、フレーク銅粉の表面に有機表面処理層を形成する場合、該層を形成する方 法としては、例えば、乾式法、湿式法等公知の方法を用いて上記有機化合物をフレ ーク銅粉の表面に被覆させる方法が挙げられる。
[0078] (本発明に係る導電性ペースト)
本発明に係る導電性ペーストは、本発明に係るフレーク銅粉と樹脂とを含むもので ある。本発明に係る導電性ペーストに用いられる樹脂としては、例えば、アクリル樹脂
、エポキシ樹脂、ェチルセルロース、カルボキシェチルセルロース等が挙げられる。
[0079] また、本発明に係る導電性ペーストは、本発明に係るフレーク銅粉の含有量が、通 常 30重量%〜98重量%、好ましくは 40重量%〜90重量%であることが望ましい。フ レーク銅粉の含有量が該範囲内にあると形成される銅配線の比抵抗が低くなり易い ため好ましい。
[0080] 上記本発明に係るフレーク銅粉は、それ自体で又は他の球形粉等と混合して、焼 成用途の電極の原料、導電性ペーストの原料等の用途に使用することができる。また 、本発明に係るフレーク銅粉は、例えば、導電性ペーストの製造に用いられる公知の ペーストと混合することにより、フレーク銅粉が分散した導電性ペーストが得られる。 該導電性ペーストは、例えば、プリント配線板の回路形成、セラミックコンデンサの外 部電極等の電気的導通確保、 EMI対策のために用いられる銅ペーストとして使用す ること力 Sできる。
[0081] 以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
実施例 1
[0082] 70°Cの純水 6Lに、硫酸銅 5水和物 4kg、ァミノ酢酸 120g、リン酸ナトリウム 50gを 添加し攪拌し、さらに純水を注いで水溶液の液量を 8Lに調整し、このまま 30分間攪 禅を続けた。
次に、水溶液を攪拌した状態で、該水溶液に 25重量%水酸化ナトリウム水溶液 5. 8kgを添カ卩した後、 30分間攪拌を続け、さらにグルコース 1. 5kgを添加した後、 30 分間攪拌を続けた。 次に、水溶液を攪拌した状態で、 100重量%水和ヒドラジン (N H ·Η O) lkgを 5
2 4 2
分間かけて徐々に添加した後、 1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水で 洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。
得られたフレーク銅粉について、下記測定方法により、 D 、D 、D 、D 、SD、
10 50 90 max 結晶子径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径 ZD
50
も算出した。結果を表 2及び表 3に示す。
IA
[0083] (粒径 D 、D 、D 、D 、 SDの測定方法):まず、銅粉試料 0. 2gを、 SNディスパ
10 50 90 max
一サント 5468の 0. 1重量%水溶液 (サンノブコ株式会社製)及び和光純薬工業株 式会社製非イオン性界面活性剤トリトン X— 100 (ポリオキシエチレンォクチルフエ二 ルエーテル)と混合し、超音波ホモジナイザ(日本精機製作所株式会社製 US— 300 T)で 5分間分散させた。 次に、 日機装株式会社製マイクロトラック HRA9320— XI 00型(Leeds + Northrup株式会社製)を用いて、レーザー回折散乱法で求められ る累積体積が 10%、 50%、 90%及び 100%の時点における粒径(μ ΐη)を、それぞ れ D 、D 、D 、D とし、これらの測定の際に得られた粒度分布の標準偏差(μ
10 50 90 max
m)を SDとした。
(粒径 D の測定方法):銅粉試料を SEMで直接観察 (倍率: 5000倍〜 20000倍)
IA
して銅粉試料中の銅粉粒子の円板の長径( x m)を銅粉粒子 200個について測定し 、長径の平均値を求めた。
(結晶子径の測定方法):リガク株式会社製 X線回折装置 RINT200Vを用レ、、結晶 子角军析ソフトにより求めた。
(P含有率の測定方法):試料粉体を希硝酸に溶解し、該溶液について、 ICP発光分 析装置を用いて Pの濃度を測定し、該濃度から粉末中の P含有率を算出した。
(ァスぺ外比の測定方法):走査型電子顕微鏡を用いて粉末の平均厚さ (t ( μ m) ) を測定し、上記 D を該 tで除した値をアスペクト比とした。
IA
実施例 2
[0084] 70°Cの純水 6Lに、硫酸銅 5水和物 4kg、ァミノ酢酸 120g、リン酸ナトリウム 75gを 添加し攪拌し、さらに純水を注いで水溶液の液量を 8Lに調整し、このまま 30分間攪 禅を続けた。
次に、水溶液を攪拌した状態で、該水溶液に 25重量%水酸化ナトリウム水溶液 5. 8kgを添加した後、 30分間攪拌を続け、さらにグルコース 1. 5kgを添加した後、 30 分間攪拌を続けた。
次に、水溶液を攪拌した状態で、 100重量%水和ヒドラジン (N H ·Η O) lkgを 3
2 4 2
0分間かけて徐々に添加した後、 1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水 で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。 得られたフレーク銅粉について、実施例 1と同様にして、 D 、 D 、 D 、 D 、 SD
10 50 90 max
、結晶子径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径 /
50
D も算出した。結果を表 2及び表 3に示す。
IA
また、得られたフレーク銅粉について、下記方法に従って熱重量測定 (TG)を行い 、酸化開始温度を測定した。結果を表 3に示す。
(TGの測定方法):銅粉を大気雰囲気中において昇温速度 10°C/minで加熱して、 銅粉の重量変化を測定した。
実施例 3
70。Cの純水 6Lに、硫酸同 5水禾ロ物 4kg、アミノ醉酸 120g、リン酸ナトリウム 75gを 添加し攪拌し、さらに純水を注いで水溶液の液量を 8Lに調整し、このまま 30分間攪 禅を続けた。
次に、水溶液を攪拌した状態で、該水溶液に 25重量%水酸化ナトリウム水溶液 5. 8kgを添カ卩した後、 30分間攪拌を続け、さらにグルコース 1. 5kgを添加した後、 30 分間攪拌を続けた。
次に、水溶液を攪拌した状態で、 100重量%水和ヒドラジン (N H ·Η O) lkgを 3
2 4 2
0分間かけて徐々に添加した後、 1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水 で洗浄し、さらにメタノールで洗浄した。該濾滓を、ォレイン酸 lgをメタノール 3Lに溶 解させて得られたメタノール溶液に 1時間浸漬した後、メタノールで洗浄し、乾燥して フレーク銅粉を得た。 ヌッチヱ内の底部にろ紙を敷き、該ろ紙上に上記フレーク銅粉を載置し、これにメタノ ール 11にォレイン酸 lgを分散させた溶液を添加して 30分放置した後、吸引ポンプを 稼動して吸引濾過した。
ガラスろ紙上に残ったフレーク銅粉を取り出し、 70°Cで 5時間乾燥して表面にォレ イン酸がコートされたフレーク銅粉を得た。
得られたフレーク銅粉について、実施例 1と同様にして、 D 、 D 、 D 、 D 、 SD
10 50 90 max
、結晶子径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径
50 Z
D も算出した。結果を表 2及び表 3に示す。
IA
実施例 4
[0086] 70°Cの純水 6Lに、硫酸銅 5水和物 4kg、ァミノ酢酸 120gを添加し攪拌し、さらに純 水を注レ、で水溶液の液量を 8Lに調整し、このまま 30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液にリン酸ナトリウム 75gを添加し、さらに 2 5重量%水酸化ナトリウム水溶液 5. 8kgを添加した後、 30分間攪拌を続け、さらにグ ルコース 1. 5kgを添加した後、 30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、 100重量%水和ヒドラジン (N H ·Η O) lkgを 3
2 4 2
0分間かけて徐々に添加した後、 1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水 で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。 得られたフレーク銅粉について、実施例 1と同様にして、 D 、 D 、 D 、 D 、 SD
10 50 90 max
、結晶子径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径
50 Z
D も算出した。結果を表 2及び表 3に示す。
IA
また、得られたフレーク銅粉について、実施例 2と同様にして熱重量測定 (TG)を行 い、酸化開始温度を測定した。結果を表 3に示す。
実施例 5
[0087] 70°Cの純水 6Lに、硫酸銅 5水和物 4kg、ァミノ酢酸 120gを添カ卩し攪拌し、さらに純 水を注レ、で水溶液の液量を 8Lに調整し、このまま 30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に 25重量%水酸化ナトリウム水溶液 5. 8kgを添加した後、 30分間攪拌を続け、リン酸ナトリウム 75gを添加し、さらにダルコ ース 1. 5kgを添加した後、 30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、 100重量%水和ヒドラジン (N H ·Η O) lkgを 3
2 4 2
0分間かけて徐々に添加した後、 1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水 で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。 得られたフレーク銅粉について、実施例 1と同様にして、 D 、 D 、 D 、 D 、 SD
10 50 90 max
、結晶子径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径
50 Z
D も算出した。結果を表 2及び表 3に示す。
IA
また、得られたフレーク銅粉について、実施例 2と同様にして熱重量測定 (TG)を行 い、酸化開始温度を測定した。結果を表 3に示す。
実施例 6
[0088] 70°Cの純水 6Lに、硫酸銅 5水和物 4kg及びアミノ酢酸 120gを添カ卩し攪拌し、さら に純水を注レ、で水溶液の液量を 8Lに調整し、このまま 30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に 25重量%水酸化ナトリウム水溶液 5. 8kgを添加した後、 30分間攪拌を続け、さらにグルコース 1. 5kgを添加した後、 30 分間攪拌を続けた。
次に、水溶液を攪拌した状態で、リン酸ナトリウム 75gを添加した後、 100重量%水 和ヒドラジン (N H ·Η O) lkgを 30分間かけて徐々に添加した後、 1時間攪拌を続
2 4 2
けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水 で洗浄し、さらにメタノールで洗浄した。該濾滓を乾燥してフレーク銅粉を得た。 得られたフレーク銅粉について、実施例 1と同様にして、 D 、 D 、 D 、 D 、 SD
10 50 90 max
、結晶子径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径 /
50
D も算出した。結果を表 2及び表 3に示す。
IA
また、得られたフレーク銅粉について、実施例 2と同様にして熱重量測定 (TG)を行 い、酸化開始温度を測定した。結果を表 3に示す。
比較例 1
[0089] 70°Cの純水 6Lに、硫酸銅 5水和物 4kg、ァミノ酢酸 120gを添カロし、さらに純水を 注レ、で水溶液の液量を 8Lに調整し、このまま 30分間攪拌を続けた。
次に、水溶液を攪拌した状態で、該水溶液に 25重量%水酸化ナトリウム水溶液 5. 8 kgを添加した後、 30分間攪拌を続け、さらにグノレコース 1. 5kgを添加した後、 30分 間攪拌を続けた。
次に、水溶液を攪拌した状態で、 100重量%水和ヒドラジン (N H ·Η O) lkgを 3
2 4 2
0分間かけて徐々に添加した後、 1時間攪拌を続けて反応を終了させた。
反応終了後、得られたスラリーについてヌッチヱを用いて濾過した後、濾滓を純水 で洗浄し、さらにメタノールで洗浄した。該濾滓を、ォレイン酸 lgをメタノール 3Lに溶 解させて得られたメタノール溶液に 1時間浸漬した後、メタノールで洗浄し、乾燥して 銅粉を得た。
該銅粉を、媒体分散ミルとして Willy A. Bachofen AG Maschinenfabrik製 ダイノーミル KDL、メディアとして 0. 7mmのジルコニァビーズ、溶媒としてメタノール を用いて、 60分間処理を行って銅粉を塑性変形させた。
得られた銅粉について、実施例 1と同様にして、 D 、 D 、 D 、 D 、 SD、結晶子
10 50 90 max
径、 P含有率及びアスペクト比を測定した。また、 SD/D 及び結晶子径 /D も算
50 IA 出した。結果を表 2及び表 3に示す。
また、得られたフレーク銅粉について、実施例 2と同様にして熱重量測定 (TG)を行 レ、、酸化開始温度を測定した。結果を表 3に示す。
[表 1]
Figure imgf000022_0001
[表 2]
Figure imgf000023_0001
O p
00
[0092] :表 3]
SD SD/DB0 結晶子径 結晶子径ノ アスペクト比 Ρ含有率 酸化開始
( jU m) (nm ) D,A (ppm) '皿度 実施例 1 0. 26 0. 25 44 0. 037 5 55 ― * 1 実施例 2 0. 59 36 0. 01 6 7 43 260 実施例 3 0. 60 0. 29 36 0. 01 6 7 43 ― * 1 実施例 4 0. 37 38 0. 025 6 46 250 実施例 5 0. 31 0. 25 40 0. 031 6 33 230 実施例 6 0. 26 0. 26 39 0. 039 5 29 230 比較例 1 2. 01 0. 51 1 9 0. 008 6 0 1 80
* 1 測定せず
[0093] 表 1〜表 3より、原料としてリン酸及びその塩を配合して製造した銅粉は、微粒で、 粒度分布がシャープであり、結晶子径が大きぐし力も、比較例 1のような塑性変形処 理を行うことなくフレーク状を呈することが判る。なお、比較例 1の結晶子径が小さくな つているのは塑性変形処理を行ったことによるものである。
産業上の利用可能性
[0094] 本発明に係るフレーク銅粉及びその製造方法並びに導電性ペーストは、例えば、 プリント配線板の回路形成、セラミックコンデンサの外部電極等の電気的導通確保の ために用いられる銅ペースト又はその原料として使用することができる。

Claims

請求の範囲
[1] Pを含むことを特徴とするフレーク銅粉。
[2] 前記 Pの含有量が 10ppm〜200ppmであることを特徴とする請求項 1に記載のフ レーク銅粉。
[3] D が 0. 3 /i m〜7 /i mであることを特徴とする請求項 1又は請求項 2に記載のフレ
50
ーク銅粉。
[4] 結晶子径が 25nm以上であることを特徴とする請求項 1〜請求項 3のいずれ力 1項 記載のフレーク銅粉。
[5] 前記フレーク銅粉は、走査型電子顕微鏡で直接観察して得られる SEM像を画像 解析して算出した平均粒径 D ( μ m)を該フレーク銅粉の厚さ t ( μ m)で除して求め
IA
られるアスペクト比(D /t)力^〜 50のフレーク状であることを特徴とする請求項 1〜
IA
請求項 4のいずれ力 4項記載のフレーク銅粉。
[6] SD/D が 0. 45以下であることを特徴とする請求項 1〜請求項 5のいずれか 1項
50
記載のフレーク銅粉。
(ただし、前記式において、 D は、レーザー回折散乱式粒度分布測定法による累積
50
体積 50容量%における体積累積粒径( μ m)を示し、 SDは前記測定法で得られた 粒度分布の標準偏差( μ m)を示す。 )
[7] D /D が 3. 0以下であることを特徴とする請求項 1〜請求項 6のいずれか 1項記
90 10
載のフレーク銅粉。
(ただし、前記式において、 D 及び D は、それぞれ、レーザー回折散乱式粒度分
10 90
布測定法による累積体積 10容量%及び 90容量%における体積累積粒径(μ η )を 示し、 SDは前記測定法で得られた粒度分布の標準偏差(/ m)を示す。)
[8] 銅塩及び錯化剤を含む水溶液を調製する第 1工程、該水溶液に水酸化アルカリを 添加して酸化第二銅を含む第 1スラリーを調製する第 2工程、該第 1スラリーに、酸化 第二銅を酸化第一銅に還元し得る第 1還元剤を添加して酸化第一銅を含む第 2スラ リーを調製する第 3工程、及び該第 2スラリーに、酸化第一銅を銅に還元し得る第 2 還元剤を添加してフレーク銅粉を得る第 4工程を有するフレーク銅粉の製造方法で あって、前記第 1工程〜第 3工程の少なくとも 1つの工程においてリン酸及びその塩 を添加すること、及び Z又は第 4工程において前記第 2スラリーにリン酸及びその塩 を添加することを特徴とするフレーク銅粉の製造方法。
[9] 前記第 1工程〜第 3工程の少なくとも 1つの工程において添加する前記リン酸及び その塩、及び/又は第 4工程において前記第 2スラリーに添加する前記リン酸及びそ の塩の全添加量は、該リン酸及びその塩中の P換算量が、前記水溶液、第 1スラリー 又は第 2スラリー中に含まれる銅 1モルに対し、 0. 001モル〜 3モルであることを特徴 とする請求項 8記載のフレーク銅粉の製造方法。
[10] 前記第 1スラリーが、前記銅塩 1当量に対し、前記水酸化アルカリ 1. 05当量〜 1. 5
0当量を含むことを特徴とする請求項 8又は請求項 9記載のフレーク銅粉の製造方法
[11] 前記錯化剤が、アミノ酸であることを特徴とする請求項 8〜請求項 10のいずれか 1 項記載のフレーク銅粉の製造方法。
[12] 前記第 1還元剤が、還元糖であることを特徴とする請求項 8〜請求項 11のいずれ 力 1項記載のフレーク銅粉の製造方法。
[13] 前記第 2還元剤が、ヒドラジン、水和ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン及び 塩酸ヒドラジンからなる群より選択される少なくとも 1種であることを特徴とする請求項 8
〜請求項 12のいずれ力 1項記載のフレーク銅粉の製造方法。
[14] 前記水溶液が、前記水溶液、第 1スラリー又は第 2スラリー中に含まれる銅 1モルに 対し、前記錯化剤 0. 005モル〜 10モルを含むことを特徴とする請求項 8〜請求項 1
3のいずれ力 4項記載のフレーク銅粉の製造方法。
[15] 表面に有機表面処理層を形成したことを特徴とする請求項 1〜請求項 7記載のい ずれ力 4項記載のフレーク銅粉。
[16] 前記有機表面処理層の被覆率が、前記フレーク銅粉に対して 0. 05重量%〜2重 量%であることを特徴とする請求項 15記載のフレーク銅粉。
[17] 請求項 1〜請求項 7、請求項 15又は請求項 16のいずれか 1項記載のフレーク銅粉 と樹脂とを含むことを特徴とする導電性ペースト。
PCT/JP2005/007877 2004-04-28 2005-04-26 フレーク銅粉及びその製造方法並びに導電性ペースト WO2005105345A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/587,976 US20070209475A1 (en) 2004-04-28 2005-04-26 Flaky Copper Powder, Method For Producing The Same, And Conductive Paste
EP05737035A EP1747830A1 (en) 2004-04-28 2005-04-26 Flaky copper powder, process for producing the same, and conductive paste
CN2005800135690A CN1950162B (zh) 2004-04-28 2005-04-26 片状铜粉及其制造方法和导电性膏
KR1020067024287A KR101186946B1 (ko) 2004-04-28 2005-04-26 플레이크 동분말 및 그 제조 방법 그리고 도전성 페이스트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-134689 2004-04-28
JP2004134689A JP4868716B2 (ja) 2004-04-28 2004-04-28 フレーク銅粉及び導電性ペースト

Publications (1)

Publication Number Publication Date
WO2005105345A1 true WO2005105345A1 (ja) 2005-11-10

Family

ID=35241489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007877 WO2005105345A1 (ja) 2004-04-28 2005-04-26 フレーク銅粉及びその製造方法並びに導電性ペースト

Country Status (7)

Country Link
US (1) US20070209475A1 (ja)
EP (1) EP1747830A1 (ja)
JP (1) JP4868716B2 (ja)
KR (1) KR101186946B1 (ja)
CN (1) CN1950162B (ja)
TW (2) TW200621404A (ja)
WO (1) WO2005105345A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044509A (ja) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613362B2 (ja) * 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 導電ペースト用金属粉および導電ペースト
JP5144022B2 (ja) * 2006-03-24 2013-02-13 三井金属鉱業株式会社 銅粉の製造方法及びその製造方法で得られた銅粉
JP5563732B2 (ja) * 2007-01-19 2014-07-30 日本光研工業株式会社 平滑薄片状粉体、高光輝性顔料及びそれらの製造方法
JP5006081B2 (ja) * 2007-03-28 2012-08-22 株式会社日立製作所 半導体装置、その製造方法、複合金属体及びその製造方法
JP5392884B2 (ja) * 2007-09-21 2014-01-22 三井金属鉱業株式会社 銅粉の製造方法
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP5255580B2 (ja) * 2010-02-10 2013-08-07 三井金属鉱業株式会社 フレーク銅粉の製造方法
JP5759688B2 (ja) * 2010-08-17 2015-08-05 三井金属鉱業株式会社 扁平銅粒子
JP5820202B2 (ja) * 2010-09-30 2015-11-24 Dowaエレクトロニクス株式会社 導電性ペースト用銅粉およびその製造方法
TWI487581B (zh) * 2010-11-12 2015-06-11 Mitsui Mining & Smelting Co Low carbon copper particles and methods for producing the same
JP6159505B2 (ja) * 2010-12-28 2017-07-05 三井金属鉱業株式会社 扁平銅粒子
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP5768455B2 (ja) 2011-04-14 2015-08-26 日立化成株式会社 電極用ペースト組成物及び太陽電池素子
US20140158196A1 (en) * 2011-07-25 2014-06-12 Yoshiaki Kurihara Element and photovoltaic cell
JP5811186B2 (ja) 2011-11-14 2015-11-11 日立化成株式会社 電極用ペースト組成物、太陽電池素子及び太陽電池
CN102513545B (zh) * 2011-12-14 2013-11-06 温州市汇泰隆科技有限公司 用于纳米涂装工艺的反应剂
EP2820093A2 (en) * 2012-02-29 2015-01-07 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Inks containing metal precursors nanoparticles
US10518323B2 (en) * 2012-11-26 2019-12-31 Mitsui Mining & Smelting Co., Ltd. Copper power and method for producing same
TWI574450B (zh) * 2013-05-13 2017-03-11 日立化成股份有限公司 電極形成用組成物、太陽電池元件及其製造方法、太陽電池及其製造方法
JP6206491B2 (ja) * 2013-05-13 2017-10-04 日立化成株式会社 電極形成用組成物、太陽電池素子及び太陽電池
JP5615401B1 (ja) * 2013-05-14 2014-10-29 石原ケミカル株式会社 銅微粒子分散液、導電膜形成方法及び回路基板
US9799421B2 (en) 2013-06-07 2017-10-24 Heraeus Precious Metals North America Conshohocken Llc Thick print copper pastes for aluminum nitride substrates
EP2822000B1 (en) * 2013-07-03 2020-10-21 Heraeus Precious Metals North America Conshohocken LLC Thick print copper pastes for aluminium nitride substrates
JP6096143B2 (ja) * 2013-09-04 2017-03-15 Dowaエレクトロニクス株式会社 銀被覆フレーク状銅粉及びその製造方法、並びに導電性ペースト
KR101671324B1 (ko) * 2014-02-14 2016-11-02 미쓰이금속광업주식회사 구리분
JP5889938B2 (ja) * 2014-03-06 2016-03-22 日本発條株式会社 積層体および積層体の製造方法
CN103878388B (zh) * 2014-04-19 2016-08-03 中国船舶重工集团公司第七一二研究所 一种超细铜粉的制备方法
DE102014008756A1 (de) * 2014-06-12 2015-12-17 Pfisterer Kontaktsysteme Gmbh Vorrichtung zum Kontaktieren eines elektrischen Leiters sowie Anschluss- oder Verbindungseinrichtung mit einer solchen Vorrichtung
EP3187279A4 (en) * 2014-08-26 2018-04-18 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
US20170253750A1 (en) * 2014-09-12 2017-09-07 Sumitomo Metal Mining Co., Ltd. Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
US20170326640A1 (en) * 2014-11-03 2017-11-16 Heraeus Deutschland GmbH & Co. KG Metal sintering preparation and the use thereof for the connecting of components
JP6060225B1 (ja) * 2015-07-27 2017-01-11 三井金属鉱業株式会社 銅粉及びその製造方法
US20200185722A1 (en) * 2018-12-05 2020-06-11 Honda Motor Co., Ltd. Electroactive materials modified with molecular thin film shell
JP6033485B2 (ja) * 2016-04-21 2016-11-30 協立化学産業株式会社 被覆銅粒子
CN106363165B (zh) * 2016-09-05 2019-02-15 国核电力规划设计研究院 一种片状铜颗粒及其制备方法、催化剂、电极
KR102565564B1 (ko) 2016-12-15 2023-08-10 혼다 기켄 고교 가부시키가이샤 플루오라이드 이온 전기화학 셀을 위한 복합 전극 재료들
CN110740827B (zh) * 2017-06-21 2022-03-01 福田金属箔粉工业株式会社 层压成形用铜粉末以及层压成形产品
TWI652695B (zh) * 2017-08-16 2019-03-01 昇貿科技股份有限公司 Liquid composition
RU2691474C1 (ru) * 2018-08-15 2019-06-14 Марина Владимировна Пузанова Медный порошок для очистки технического тетрахлорида титана от примеси окситрихлорида ванадия
JP7260991B2 (ja) * 2018-10-29 2023-04-19 山陽特殊製鋼株式会社 耐酸化性銅粉末
US20240139804A1 (en) * 2021-03-30 2024-05-02 Mitsui Mining & Smelting Co., Ltd. Copper particles and method for manufacturing same
CN114242300B (zh) * 2021-12-14 2024-05-14 上海正银电子材料有限公司 一种铁氧体磁芯电感用导电铜浆及其制备方法
CN114453578B (zh) * 2022-01-24 2023-12-05 西安隆基乐叶光伏科技有限公司 一种改性铜粉及其改性方法和导电浆料
CN117440868A (zh) 2022-05-18 2024-01-23 三井金属矿业株式会社 铜粉及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256007A (ja) * 1996-03-22 1997-09-30 Murata Mfg Co Ltd 銅粉末の製造方法
JP2003342621A (ja) * 2002-05-27 2003-12-03 Mitsui Mining & Smelting Co Ltd 銅粉の製造方法及びその方法で得られた銅粉
JP2004169081A (ja) * 2002-11-19 2004-06-17 Mitsui Mining & Smelting Co Ltd 金属粉及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2131872A1 (en) * 1993-09-14 1995-03-15 Hirofumi Sugikawa Metallic porous sheet and method for manufacturing same
JPH07166273A (ja) * 1993-12-15 1995-06-27 Sumitomo Metal Mining Co Ltd 銅射出成形粉末冶金製品
JPH11264001A (ja) * 1998-03-16 1999-09-28 Mitsui Mining & Smelting Co Ltd フレーク銅粉及びその製造方法
JP4244466B2 (ja) * 1999-10-13 2009-03-25 株式会社村田製作所 導電性ペーストおよびそれを用いた半導体セラミック電子部品
JP2002110444A (ja) * 2000-09-26 2002-04-12 Murata Mfg Co Ltd 導電性ペーストおよび積層セラミック電子部品
JP4061462B2 (ja) * 2001-01-31 2008-03-19 信越化学工業株式会社 複合微粒子並びに導電性ペースト及び導電性膜
JP4227373B2 (ja) * 2001-08-07 2009-02-18 三井金属鉱業株式会社 フレーク銅粉及びそのフレーク銅粉を用いた銅ペースト
JP4178374B2 (ja) * 2002-08-08 2008-11-12 三井金属鉱業株式会社 銀コートフレーク銅粉及びその銀コートフレーク銅粉の製造方法並びにその銀コートフレーク銅粉を用いた導電性ペースト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256007A (ja) * 1996-03-22 1997-09-30 Murata Mfg Co Ltd 銅粉末の製造方法
JP2003342621A (ja) * 2002-05-27 2003-12-03 Mitsui Mining & Smelting Co Ltd 銅粉の製造方法及びその方法で得られた銅粉
JP2004169081A (ja) * 2002-11-19 2004-06-17 Mitsui Mining & Smelting Co Ltd 金属粉及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044509A (ja) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp 導電性インク組成物及び該組成物を用いて形成された太陽電池モジュール

Also Published As

Publication number Publication date
KR101186946B1 (ko) 2012-09-28
TWI324953B (ja) 2010-05-21
TW200621404A (en) 2006-07-01
KR20070004108A (ko) 2007-01-05
CN1950162B (zh) 2011-05-18
TW200840666A (en) 2008-10-16
CN1950162A (zh) 2007-04-18
EP1747830A1 (en) 2007-01-31
TWI316430B (ja) 2009-11-01
JP2005314755A (ja) 2005-11-10
JP4868716B2 (ja) 2012-02-01
US20070209475A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2005105345A1 (ja) フレーク銅粉及びその製造方法並びに導電性ペースト
WO2014080662A1 (ja) 銅粉及びその製造方法
WO2013122244A1 (ja) 球状銀粉およびその製造方法
WO2014104032A1 (ja) 銅粉末の製造方法及び銅粉末、銅ペースト
TWI468241B (zh) Silver - plated copper powder and its manufacturing method
KR20100071970A (ko) 동분말의 제조 방법 및 동분말
KR20130103540A (ko) 도전성 페이스트용 구리분 및 그 제조 방법
WO2006068061A1 (ja) 超微粒銅粉スラリー及び超微粒銅粉スラリーの製造方法
WO2012077548A1 (ja) 導電ペーストおよびこれを用いた導電膜付き基材、ならびに導電膜付き基材の製造方法
JP2007270334A (ja) 銀粉及びその製造方法
JP5255580B2 (ja) フレーク銅粉の製造方法
WO2017038465A1 (ja) 銀被覆銅粉
JP6234075B2 (ja) 積層セラミックコンデンサ内部電極層形成用ペーストおよび積層セラミックコンデンサ
JP6278969B2 (ja) 銀被覆銅粉
JP2009046708A (ja) 銀粉
JP2003342621A (ja) 銅粉の製造方法及びその方法で得られた銅粉
JP5925556B2 (ja) 銀被覆フレーク状硝子粉およびその製造方法
JP5590289B2 (ja) 銀ペーストの製造方法
TWI487581B (zh) Low carbon copper particles and methods for producing the same
JP2017039991A (ja) 銀コート銅粉とその製造方法、及びそれを用いた導電性ペースト
JP5785433B2 (ja) 低炭素銅粒子
TWI544977B (zh) 導電性糊用銅粉及其製造方法
JP2021017641A5 (ja)
JP7498378B1 (ja) 銅粉及びこれを含む銅ペースト並びに導電膜の製造方法
JP6065699B2 (ja) ニッケル粉末の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580013569.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005737035

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067024287

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067024287

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005737035

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11587976

Country of ref document: US

Ref document number: 2007209475

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11587976

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005737035

Country of ref document: EP