WO2005086322A1 - 車両用回転電機装置 - Google Patents

車両用回転電機装置 Download PDF

Info

Publication number
WO2005086322A1
WO2005086322A1 PCT/JP2005/003622 JP2005003622W WO2005086322A1 WO 2005086322 A1 WO2005086322 A1 WO 2005086322A1 JP 2005003622 W JP2005003622 W JP 2005003622W WO 2005086322 A1 WO2005086322 A1 WO 2005086322A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter unit
electric machine
rotating electric
cooling
inverter
Prior art date
Application number
PCT/JP2005/003622
Other languages
English (en)
French (fr)
Inventor
Yutaka Kitamura
Yoshihito Asao
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/555,090 priority Critical patent/US7414339B2/en
Priority to EP05719926.7A priority patent/EP1722463B1/en
Publication of WO2005086322A1 publication Critical patent/WO2005086322A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/22Synchronous generators having windings each turn of which co-operates alternately with poles of opposite polarity, e.g. heteropolar generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electric machine device for a vehicle mounted on an electric vehicle or a hybrid vehicle, and more particularly to a rotating electric machine device for a vehicle in which a rotating electric machine and an inverter unit for controlling the rotating electric machine are integrated. is there.
  • the functions required for the rotating electric machine mounted on a hybrid vehicle include idling stop when the vehicle is stopped, energy regeneration during deceleration, and torque assist during acceleration.
  • the realization of these functions improves fuel efficiency. Is possible.
  • a motor generator is mounted laterally outside the engine, a belt is stretched between the motor generator and the crankshaft pulley, and the motor generator is connected to the engine. And bidirectional driving force transmission is performed between the two.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-95103 (FIGS. 1 and 2)
  • the present invention has been made in order to solve the above-described problems, and in particular, in a rotating electric machine for a vehicle in which an inverter unit is integrated, a reduction in the size of the rotating electric machine including the inverter unit, torque characteristics, and the like.
  • An object of the present invention is to provide a rotating electric machine for a vehicle that can improve efficiency.
  • a vehicular rotating electrical machine includes a shaft rotatably supported by a pair of brackets having an intake hole on an end face and an exhaust hole on an outer periphery, and the shaft provided in the pair of brackets.
  • a rotor having field windings mounted therein and cooling fans mounted on both end surfaces thereof, and a pair of brackets fixedly attached to the outer periphery of the rotor so as to surround the rotor.
  • a rotating electric machine having an armature comprising an armature core on which an armature winding is wound;
  • the DC power of the battery is converted to AC power and supplied to the armature winding to generate rotational power in the rotor, or the AC power generated in the armature winding is converted to DC power and converted to DC power.
  • the inverter unit has a substantially hollow cylindrical shape or a hollow polygonal column shape, and has a large number of radiating fins on at least a part of the outer surface.
  • a heat sink that surrounds the shaft at the non-load side end of the rotating electric machine, and The cooling fan is arranged to cool the radiating fins before cooling air from the cooling fan cools the rotating electric machine.
  • the inverter unit is integrally fixed to the non-load side end of the rotating electric machine, and the radiating fins of the inverter unit are forcibly cooled before the cooling air from the cooling fan cools the rotating electric machine.
  • the heat sink of the inverter unit can be effectively cooled and the inverter unit itself can be downsized.
  • the combination of the rotating electric machine and the inverter unit saves a lot of space, improves the mounting in the engine room, and fixes the inverter unit integrally with the rotating electric machine.
  • AC wiring can be reduced, the voltage drop in the AC wiring can be suppressed, the torque characteristics of the rotating electrical machine can be significantly improved, and further reduction in weight and cost can be realized by reducing the AC wiring.
  • FIG. 1 is a longitudinal sectional view showing a structure in which an inverter unit and a rotating electric machine are integrated in a vehicular rotating electric machine device according to Embodiment 1 of the present invention
  • FIG. 2 is a rear view of the inverter unit when a cover is removed in FIG.
  • FIG. 3 is a conceptual diagram of a system circuit in a hybrid vehicle equipped with the vehicular rotating electrical apparatus according to Embodiment 1 of the present invention.
  • the line AA in FIG. 2 shows a cutting line corresponding to the longitudinal sectional view in FIG.
  • rotating electric machine 2 is a wound field synchronous motor generator, and has an armature winding 24 of an armature (not shown) and a field winding 21 of a rotor (not shown). Equipped with
  • the inverter unit 4 in the case of this figure comprises an inverter module 40 which also has a power with a plurality of switching elements 41 and a diode 42 connected in parallel with each switching element 41, and a capacitor connected in parallel with the inverter module 40. 43 and.
  • the inverter module 40 is configured by arranging three sets of two sets of a switching element 41 and a diode 42 connected in parallel and connecting them in series. Then, the intermediate force between the switching elements 41 connected in series via the Y-connection (star connection) end force AC wiring 9 of the armature winding wire 24 (however, it is abolished in the first embodiment). Each point is electrically connected. Also, the positive terminal and the negative terminal of the notch 5 are electrically connected to the positive terminal and the negative terminal of the inverter module 40 via the series wiring 8, respectively! RU
  • the switching operation of the switching element 41 of the inverter module 40 is controlled by the control device 44. Further, the controller 44 controls the field current controller 45 to adjust the field current flowing through the field winding 21.
  • the rotating electric machine 2 is rotatably disposed in a case composed of a front bracket 18 and a lya bracket 19 with a shaft 16 supported by bearings 10 and 11 so as to be rotatable.
  • a rotor 20 having a winding 20B and a field winding 21 and a radial end of each of both ends in the axial direction of an armature core 23 are sandwiched between a front bracket 18 and a rear bracket 19 so as to surround the rotor 20.
  • Armature 22 provided.
  • the front bracket 18 and the rear bracket 19 are fastened together by a through bolt 25.
  • a rotary electric motor pulley 12 is fixed to an end of the shaft 16 of the rotor 20 extending from the front bracket 18.
  • Cooling fans 28 are fixed to both end faces in the axial direction of the rotor 20, respectively.
  • a pair of slip rings 29 are mounted on the shaft 16 on the side of the rear.
  • the brush holder 30 is disposed on the outer wall surface of the rear bracket 19 such that the brush holder 30 is located on the outer periphery of the shaft 16 on the rear side, and the pair of brushes 31 are disposed in the brush holder 30 so as to slide on the slip ring 29.
  • intake holes 18a and 19a are formed in the end faces of the front bracket 18 and the rear bracket 19
  • exhaust holes 18b and 19b are formed in the outer peripheral surfaces of the front bracket 18 and the rear bracket 19.
  • the inverter unit 4 is cut out only at the brush holder 30 so as to surround the slip ring 29, and has a roughly hollow cylindrical or polygonal column shape, and has an insulating circuit terminal for connection from outside to inside. It comprises a circuit board 4a covered with a fat, an inner peripheral side heat sink 401, a heat sink 402 opposite the rear bracket side, and an outer peripheral side heat sink 403 integrally fixed to the circuit board 4a.
  • the heat sinks 401, 402, and 403 are made of a material having good heat conductivity, such as copper and aluminum, and the heat radiation fins 401a, 402a, and 403a are directed toward the center as shown in FIG. It is erected radially by force.
  • the circuit board 404 is disposed on the side of the heat sink 402 opposite to the heat radiation fin in an electrically insulated state and housed in the inverter unit 4.
  • the switching element 41, the diode 42, and the capacitor 43 are mounted on the circuit board 404 so as to form the circuit shown in FIG.
  • the inverter unit 4 configured as described above is directly attached to the end face of the lya bracket 19 so as to surround the shaft 16, and the lead wires 201, 202, and 203 that also extend the Y-connection end force of the armature winding 24 are connected to the lya bracket 19. It extends from the bracket 19 via the insulating bush 300 and is electrically connected directly to the connection terminal 420 of the circuit board 4a of the inverter unit 4.
  • notch 5 is electrically connected to a power terminal (not shown) of the inverter unit 4 via the DC wiring 8.
  • a cover 50 is attached so as to surround the inverter unit 4 and the brush holder 30 disposed on the outer end surface of the luggage bracket 19, and the cover 50 has an intake hole 50a in a surface opposed to the radiation fin 402a. Are drilled.
  • the engine (not shown) is stopped. Then, when the conditions for restarting the engine are met, DC power is supplied from the notch 5 to the inverter unit 4 via the DC wiring 8. Therefore, the control device 44 performs ONZOFF control on each switching element 41 of the inverter module 40, and the DC power is converted into three-phase AC power. Then, the three-phase AC power is supplied to the armature winding 24 of the rotary electric machine 2 via lead wires 201, 202, and 203 extending from the armature winding 24. As a result, a rotating magnetic field is applied around the field winding 21 of the rotor 20 to which the field current is supplied by the field current control device 45, and the rotor is driven to rotate.
  • the rotating power of the rotor 20 is transmitted to the engine via the rotating electric machine pulley 12, a belt (not shown), and a crank pulley (not shown), and the engine is started.
  • the rotational power of the engine is transmitted to the rotary electric machine 2 via the crank pulley, the belt, and the rotary electric machine pulley 12.
  • the controller 44 controls the ON / OFF of each switching element 41, and the three-phase AC power induced in the armature winding 24. Is converted to DC power, and the battery 5 is charged.
  • the inverter unit 4 directly mounted on the non-load side (opposite pulley side) end of the rotating electric machine 2 includes a rotor in which cooling fans 28 are fixed to both end surfaces. 20 is cooled by rotation.
  • the cooling air is sucked from the intake hole 50a of the cover 50 and flows from the radiation fins 402a to 40 la.
  • the heat generated by the switching element 41, the diode 42, and the capacitor 43 flows along the heat radiation fins 402a and 403a, and is radiated to the cooling air via the heat radiation fins 402a, 401a, and 403a.
  • the cooling air is introduced into the air intake holes 19a provided in the rear bracket 19, is bent in the centrifugal direction by the cooling fan 28, and is discharged from the exhaust holes 19b, whereby the flow of the cooling air is formed.
  • the armature winding 24 is cooled by the cooling wind bent in the centrifugal direction by the cooling fan 28.
  • the inverter unit 4 is first cooled by the cooling air forcedly formed by the cooling fan 28 to cool the radiation fins 401a, 402a, and 403a of the inverter unit 4.
  • the heat generated from the armature 22 of the rotating electric machine 2 is hardly affected, and the heat generated by power such as the switching element 41 inside the inverter unit 4 can be efficiently radiated to the outside. Is efficiently cooled. Therefore, the radiation fins 401a, 402a, and 403a of the heat sinks 401, 402, and 403 can be formed in a shape of / J.
  • the inverter unit 4 can be downsized, and the mountability of the inverter unit 4 on the rear bracket 19 can be improved.
  • the cooling medium of the inverter unit 4 is shared with the cooling medium (cooling air) of the rotating electric machine 2, and the cooling structure is reduced. Simplified.
  • inverter unit 4 is directly attached to the outer end surface of rear bracket 19 of rotary electric machine 2, and lead wires 201, 202, and 203 of armature winding 24 are directly electrically connected to inverter unit 4. Therefore, there is no increase in resistance due to the AC wiring between the inverter unit and the armature winding 24. Thereby, the voltage drop between the inverter unit 4 and the armature winding 24 is minimized, and the torque characteristics of the rotating electric machine 2 can be greatly improved. Also, since the inverter unit 4 is directly mounted on the rotating electric machine 2, the mounting space can be reduced and the layout can be improved.
  • the switching element generating a large amount of heat and the capacitor generating a relatively large amount of heat can be efficiently cooled by the radiation fins of the inverter unit.
  • FIG. 4 is a longitudinal sectional view showing a structure in which an inverter unit and a rotating electric machine are integrated in a vehicular rotating electric machine apparatus according to Embodiment 2 of the present invention, and FIG. FIG.
  • the inverter unit 4 has a substantially cylindrical shape or a polygonal column shape in which only the brush holder 30 is cut off so as to surround the slip ring 29, and the circuit terminal for connection from the outside to the inside has an insulating property.
  • the external appearance is also composed of a lid-shaped case 4b covered with grease and a heat sink 410 integrally fixed to the case 4b!
  • the heat sink 410 is made of a material having good heat conductivity, such as copper or aluminum.
  • the outer peripheral surface of the heat sink 410 has a fin 410a on the outer peripheral side, and the heat sink 410 has a fin 410a on the outer bracket side.
  • the radiation fins 41 Ob on the bracket side are arranged substantially parallel to the shaft 16 and radiating from the center.
  • the circuit board 404 is disposed on the fin surface on the side opposite to the rear bracket of the heat sink 410 in an electrically insulated state and housed in the inverter unit 4.
  • the switching element 41, the diode 42, and the capacitor 43 are mounted on the circuit board 404 so as to form the circuit shown in FIG.
  • the circuit board 405 is disposed on the heat sink 410 in an electrically insulated state and housed in the inverter unit 4.
  • the control device 44 and the field current control device 45 are mounted on the circuit board 405 so as to constitute the circuit shown in FIG.
  • the inverter unit 4 configured as described above is directly attached to the outer end surface of the rear bracket 19, and the lead wires 201, 202, 203 extending from the Y-connection end of the armature winding 24.
  • the force extends from the S-bra bracket 19 via the insulating bush 300 and is electrically connected to the connection terminal 420 of the case 4b of the inverter unit 4.
  • a cover 50 is mounted so as to surround the inverter unit 4 and the brush honoreda 30 disposed on the outer end surface of the rear bracket 19, and the outer peripheral surface of the cover 50 faces the outer peripheral surface side heat radiation fin 410a.
  • An intake hole 50b is provided.
  • a partition wall 50c around the outside of the exhaust hole 19b is provided at the open end of the cover 50 to prevent the high-temperature cooling air exhausted from the exhaust hole 19b of the rear bracket 19 from circulating to the intake hole 50b side of the cover 50. It is provided in.
  • the other configuration is the same as that of the first embodiment.
  • the cooling air is sucked from the intake hole 50b of the cover 50 as shown by the arrow in FIG. Then, as shown in FIG. 5, it flows along the outer peripheral side heat radiation fins 410a and the rear bracket side heat radiation fins 410b, and the switching element 41, the diode 42, the capacitor 43, the control device 44, and the field current control.
  • the heat generated in the device 45 is radiated to the cooling air via the radiation fins 410a and 410b.
  • the cooling air is introduced into the air intake holes 19a provided in the rear bracket 19, is bent in the centrifugal direction by the cooling fan 28, and is discharged from the exhaust holes 19b, whereby the flow of the cooling air is formed.
  • the cooling air discharged from the exhaust hole 19b does not circulate in the direction of the intake hole 50b of the power bar 50, and the exhaust direction is controlled by a partition wall 50c provided at the opening end of the cover 50. I have.
  • the armature winding wire 24 is cooled by the cooling air that is bent in the centrifugal direction by the cooling fan 28.
  • the partition wall 50c may be a wind guide wall that controls the exhaust direction of the cooling air.
  • inverter unit 4 is cooled by the cooling air forcedly formed by cooling fan 28, inverter unit 4 is efficiently cooled. Therefore, the heat sink 410 and the radiation fins 410a and 410b can be made smaller, the size of the inverter unit 4 can be reduced, and the mountability of the inverter unit 4 on the rear bracket 19 can be improved. Further, since the inverter unit 4 and the rotating electric machine 2 are cooled by the cooling air formed by the cooling fan 28, the cooling medium of the inverter unit 4 is shared with the cooling medium (cooling air) of the rotating electric machine 2, and the cooling structure is provided. Simplified.
  • the inverter unit 4 is directly attached to the outer end surface of the rear bracket 19 of the rotating electric machine 2, and the lead wires 201, 202, 203 of the armature winding 24 are directly electrically connected to the inverter unit 4. Therefore, there is no increase in resistance due to the AC wiring between the inverter unit and the armature winding 24. Thereby, the voltage drop between the inverter unit 4 and the armature winding 24 is minimized, and the torque characteristics of the rotating electric machine 2 can be greatly improved. Also, since the inverter unit 4 is directly mounted on the rotating electric machine 2, the mounting space can be reduced and the layout can be improved.
  • the radiation fins 410a and 410b are arranged along the direction in which the cooling air sucked from the intake hole 50b flows, the radiation fins are efficiently cooled and the ventilation resistance is increased. Since the amount of cooling air does not decrease, the overall cooling efficiency does not deteriorate!
  • the inverter unit 4 by covering the inverter unit 4 with a metal cover 50, the effect of preventing the noise generated by the inverter unit 4 and its connection wiring from being emitted to the outside, and conversely, the inverter unit 4 due to external noise 4 has the effect of avoiding malfunction
  • FIG. 6 is a longitudinal sectional view showing a structure in which an inverter unit and a rotating electric machine are integrally formed in a vehicular rotating electric machine device according to Embodiment 3 of the present invention.
  • the inverter unit 4 has a substantially hollow cylindrical or polygonal column shape in which only the brush holder 30 is cut out so as to surround the slip ring 29, and insulates a circuit terminal for connection from the outside to the inside.
  • the exterior is composed of a circuit board 4a covered with a conductive resin, an inner peripheral side heat sink 401, a rear bracket end side heat sink 402, and an outer peripheral side heat sink 403 integrally fixed to the circuit board 4a.
  • the heat sinks 401, 402, and 403 are made of a material having good heat conductivity, such as copper or aluminum, and the radiation fins 401a, 402a, and 403a are respectively provided on the outer surfaces thereof. It is erected.
  • the circuit board 404 is disposed on the anti-radiation fin surface of the heat sink 402 in an electrically insulated state and housed in the inverter unit 4.
  • the switching element 41, the diode 42, and the capacitor 43 are mounted on the circuit board 404 so as to form the circuit shown in FIG.
  • the inverter unit 4 configured as described above is directly attached to the inner end surface of the rear bracket 19, and has lead wires 201, 202, and 203 extending from the Y-connection end of the armature winding 24. It is electrically connected to the connection terminal 420 of the circuit board 4a.
  • a donut-shaped partition plate 406 having a ventilation hole 406a at the center is fixed in a body shape, and partitions between the rotor 20 and the armature 22. It is configured so as not to circulate on the side of the high temperature cooled wind power inverter unit near the armature winding 24.
  • the other configuration is the same as that of the first embodiment.
  • the heat flows from the radiating fins 402a to 401a, and also flows along the radiating fins 402a and 403a. The heat is radiated by the cooling air.
  • the cooling air is introduced into a ventilation hole 406a provided at the center of the partition plate 406, is bent in a centrifugal direction by the cooling fan 28, and is discharged from the exhaust hole 19b to form a flow of the cooling air.
  • the armature winding wire 24 is cooled by the cooling air that is bent in the centrifugal direction by the cooling fan 28.
  • inverter unit 4 since inverter unit 4 is cooled by the cooling air forcedly formed by cooling fan 28, inverter unit 4 is efficiently cooled. Therefore, the radiation fins 401a, 402a, and 403a of the heat sinks 401, 402, and 403 can be formed into a shape of / J. As a result, the inverter unit 4 can be downsized, and
  • the mountability of the 4 on the rear bracket 19 is improved.
  • the inverter unit 4 Since the cooling unit 28 is cooled by the cooling air formed by the cooling fan 28, the cooling medium of the inverter unit 4 is shared with the cooling medium (cooling air) of the rotating electric machine 2, and the cooling structure is simplified.
  • the inverter unit 4 is directly attached to the inner end face of the rear bracket 19 of the rotary electric machine 2, and the lead wires 201, 202, and 203 of the armature winding 24 are directly electrically connected to the inverter unit 4. Therefore, there is no increase in resistance due to the AC wiring between the inverter unit and the armature winding 24. Thereby, the voltage drop between the inverter unit 4 and the armature winding 24 is minimized, and the torque characteristics of the rotating electric machine 2 can be greatly improved. Also, since the inverter unit 4 is directly mounted on the rotating electric machine 2, the mounting space can be reduced and the layout can be improved.
  • partition plate 406 is fixed integrally with the inverter unit 4, the assemblability of the partition plate 406 is improved.
  • FIG. 7 is a longitudinal sectional view showing another configuration of the inverter unit in the rotary electric machine for a vehicle according to Embodiment 4 of the present invention.
  • the fourth embodiment differs from the second embodiment particularly in the inverter unit structure, and the same reference numerals are used in the same configuration as the second embodiment.
  • the inverter unit 4 includes a circuit board 4a in which a circuit terminal for connection from the outside to the inside is covered with insulating resin, a lid-shaped case 4b also made of insulating resin, and a case 4b.
  • a heat sink 411 which is sandwiched and fixed integrally with the circuit board 4a, and a heat sink 410, which is fixed to the other surface of the circuit board 4a and has an outer peripheral side fin 410a and a rear bracket side fin 410b, which are erected. Is composed.
  • the circuit board 404 is disposed on the fin surface on the side opposite to the rear bracket of the heat sink 410 in an electrically insulated state and housed in the inverter unit 4.
  • the switching element 41, the diode 42, and the capacitor 43 are mounted on the circuit board 404 so as to form the circuit shown in FIG.
  • the circuit board 405 is disposed on the heat sink 411 in an electrically insulated state and housed in the inverter unit 4.
  • the circuit board 405 includes a control device 44 and a field current control device 45 so as to form a circuit shown in FIG. Has been implemented.
  • the circuit board 4a functions as a relay terminal for connecting the switching element 41 on the circuit board 404 and the control device 44 on the circuit board 405.
  • the switching element 41, the diode 42, and the capacitor 43 which generate a relatively large amount of heat and require sufficient cooling, are mounted on the heat sink 410 on which the large radiating fins 410a and 410b are erected.
  • the control device 44 and the field current control device 45 are mounted on the heat sink 411 and separated, so that electronic components that require sufficient cooling can be cooled efficiently, and Since the heat sinks are not thermally influenced by each other by the circuit board 4a, there is an effect of preventing a decrease in quality reliability due to a difference in heat resistance.
  • the switching element 41 and the control device 44 for controlling the switching operation of the switching element are configured in the same inverter unit 4, both can be directly connected in the inverter unit 4, and the switching element 41 and the control device 44 are connected. In this case, the configuration of a special connecting portion for the connection can be omitted, and the reliability of the connecting portion is improved.
  • the field current control device 44 configured in the inverter unit 4 includes a brush 31 electrically slidably connected to a field winding 21 mounted inside the rotor 20 via a slip ring 29. Can be disposed in the vicinity of the brush holder 44, so that the wiring configuration for supplying the field current can be compact and the reliability of the connection portion can be improved.
  • FIG. 8 is an external view as viewed from the rear side showing a configuration of an inverter unit in a rotating electrical machine for a vehicle according to Embodiment 5 of the present invention, which is divided and arranged in a circumferential direction. (With the cover removed)
  • the fifth embodiment differs from the first embodiment particularly in the inverter unit structure, and the same reference numerals are used as in the first embodiment.
  • the heat sink 401 on the inner peripheral surface of the inverter unit 4 The heat sink 402 and the outer peripheral side heat sink 403 are each separated in the circumferential direction by a heat conduction cut-off portion 430 made of, for example, resin, and the heat influence between the divided portions of each heat sink is mutually affected. It is constructed so that it has no effect.
  • each of the heat sinks divided in the circumferential direction by the heat conduction cutoff unit 430 for example, the switching element 41, the diode 42, and the capacitor 43, which generate a relatively large amount of heat and need sufficient cooling, are composed of many heat radiation fins.
  • the control unit 44 and the field current control unit 45 are mounted on the smaller heat sink and separated, so that electronic components that require sufficient cooling
  • the heat sink can be efficiently cooled, and the heat sinks are not thermally influenced by each other by the heat conduction interrupting section 430, so that the quality reliability is prevented from deteriorating due to the difference in heat resistance. There is.
  • FIG. 9 is a characteristic diagram showing the relationship between the on-resistance of the switching element used in the inverter unit and the rated voltage in the vehicular rotating electrical apparatus according to Embodiment 6 of the present invention.
  • a Si-MOSFET using Si (silicon) as a composition material and a SiC using SiC (silicon carbide) as a material are generally used as a switching element 41 in an inverter unit 4 at present.
  • the relationship between the rated voltage of the MOSFET and the on-resistance is shown in comparison.
  • the SiC-MOSFET can be reduced to about 1Z15 of the on-resistance of Si-MOSFET.
  • Embodiment 7 if the SiC-MOSFET is used as a switching element, the amount of heat generated can be greatly reduced due to low on-resistance, and the heat radiation fin of the heat sink can be downsized. In addition to the above, there is an effect that the efficiency as a rotating electric machine including an inverter is improved because resistance loss is reduced.
  • FIG. 10 is a characteristic diagram showing a relationship between an on-resistance of a switching element used in an inverter unit and a rated voltage in a rotating electric machine for a vehicle according to a seventh embodiment of the present invention.
  • Figure 10 shows the relationship between the rated voltage and the on-resistance under certain conditions for the SiC MOSFET described in the sixth embodiment and the SiC SIT (Static Induction Transistor) using the same SiC composition material. Show by comparison.
  • the on-resistance of SiC-SIT is reduced to about 1Z several hundreds of the on-resistance of SiC-MOSFET. it can. Therefore, if SiC-SIT is used as a switching element, the amount of heat generated can be greatly reduced due to low on-resistance, and the radiating fins of the heat sink can be downsized, further reducing the size of the entire inverter unit including the heat sink. As a result, the resistance as well as the resistance loss is reduced, so that the efficiency of the rotating electric machine including the inverter is further improved.
  • SiC-SIT using SiC composition material has higher withstand voltage than Si-MOSFET using Si (silicon) composition material which is generally adopted at present, and high surge voltage. Therefore, high reliability can be obtained.
  • FIG. 11 is an external perspective view showing a configuration of a claw-pole type rotor having a permanent magnet in the vehicular rotating electrical apparatus according to Embodiments 1 to 7 of the present invention.
  • rotor 20 is a claw-pole type rotor
  • rotor cores 20A and 20B have claw-shaped magnetic pole portions 20a and 20a opposed to the inner diameter of armature core 23 via a predetermined gap.
  • the magnetic pole portions 20a and 20b are formed to have a predetermined number of poles, and alternately intersect so as to cover the outer diameter side of the field winding 21 and have adjacent magnetic pole portions 20a and 20b.
  • Permanent magnets 26 and 27 are interposed between the adjacent magnetic pole portions 20a and 20b, and the permanent magnets 26 and 27 have the same magnetic pole portions 20a and 20b as those of the magnetic field winding 21. It is magnetized to become a magnetic pole. Since permanent magnets 26 and 27 for supplying magnetic flux to the armature core 23 together with the field winding 21 are provided, the total magnetic flux increases, and switching is performed by the inverter module 40 necessary to obtain the same torque characteristics.
  • the radiating fins 401a, 402a, 403a, 410a, 410b force S / J ⁇ shape can be formed, the entire inverter unit 4 including the heat sinks 401, 402, 403, 410 can be reduced in size, and the resistance loss is reduced, so that the efficiency as a rotating electric machine is improved.
  • FIG. 1 is a longitudinal sectional view showing a rotating electric machine for a vehicle according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram of the inverter unit when the cover is removed in FIG.
  • FIG. 3 is a conceptual diagram showing a system circuit in a hybrid vehicle equipped with the vehicular rotating electrical machine device according to Embodiment 1 of the present invention.
  • FIG. 4 is a longitudinal sectional view illustrating a vehicular rotating electrical machine device according to Embodiment 2 of the present invention.
  • FIG. 5 is a view of the radiation fins of the inverter unit in the rotating electric machine device for a vehicle according to the second embodiment of the present invention, also showing the force on the rear bracket side.
  • FIG. 6 is a longitudinal sectional view showing a rotating electric machine for a vehicle according to a third embodiment of the present invention.
  • FIG. 7 is an external view showing a configuration in which a rotating electric machine device for a vehicle according to a fourth embodiment of the present invention is divided axially by an inverter cut and arranged.
  • FIG. 8 is an external view showing a configuration in which a rotating electric machine device for a vehicle according to a fifth embodiment of the present invention is divided circumferentially by an inverter cut and arranged.
  • FIG. 9 is a characteristic diagram showing a relationship between an on-resistance of a switching element used in an inverter unit and a rated voltage in the vehicular rotating electrical apparatus according to Embodiment 6 of the present invention.
  • FIG. 10 is a characteristic diagram showing a relationship between an on-resistance of a switching element used in an inverter unit and a rated voltage in a rotating electric machine for a vehicle according to a seventh embodiment of the present invention.
  • a permanent magnet in the vehicular rotating electrical machine apparatus according to Embodiments 1 to 7 of the present invention It is an external view of a claw pole type rotor provided with a stone.

Abstract

【課題】 電気自動車やハイブリッド自動車等に搭載される車両用回転電機装置において、回転電機と該回転電機を制御するインバータユニットとを一体化した回転電機装置の小型化とトルク特性および効率を向上させる。 【解決手段】 インバータユニット4が冷却ファン28によって強制的に形成された冷却風により冷却されるので、インバータユニット4が効率よく冷却される。そこで、ヒートシンク401、402、403の放熱フィン401a、402a、403aを小型化でき、結果インバータユニット4の小型化が図られ、インバータユニット4のリヤブラケット19への搭載性が向上される。さらに、インバータユニット4と回転電機2とが冷却ファン28によって形成される冷却風により冷却されるので、インバータユニット4の冷却媒体が回転電機2の冷却媒体(冷却風)と共用され、冷却構造が簡素化される。

Description

明 細 書
車両用回転電機装置
技術分野
[0001] この発明は、電気自動車やハイブリッド自動車等に搭載される車両用回転電機装 置、特に回転電機と該回転電機を制御するインバータユニットとを一体ィ匕した車両用 回転電機装置に関するものである。
背景技術
[0002] 近年、地球温暖化防止を背景に C02の排出量削減が求められている。そして、自 動車における C02の削減は、燃費性能の向上を意味しており、その解決策の一つと して、電気自動車 (EV)あるいはハイブリッド自動車 (HEV)の開発、実用化が進めら れている。
特に、ハイブリッド自動車に搭載される回転電機に要求される機能としては、車両 停止時のアイドリングストップ、減速走行中のエネルギー回生、加速走行中のトルクァ シスト等であり、これらの実現によって燃費性能の向上が可能となっている。
[0003] そして、このための回転電機として電動発電機がエンジンの外側に横置き式に搭 載され、ベルトが電動発電機とクランク軸プーリとの間に掛け渡され、電動発電機とェ ンジンとの間で双方向の駆動力伝達が行われるようになつている。
そして、電動時には、バッテリの直流電力がインバータにより交流電力に変換される 。この交流電力が電動発電機に供給され、電動発電機が回転駆動される。この回転 力がベルトを介してエンジンに伝達され、エンジンが始動される。一方、発電時には、 エンジンの駆動力の一部がベルトを介して電動発電機に伝達され、交流電力が発生 する、この交流電力がインバータにより直流電力に変換され、ノ ッテリに蓄えられる。 (例えば、特許文献 1参照)
[0004] 特許文献 1 :特開 2001— 95103号公報(図 1、図 2)
発明の開示
発明が解決しょうとする課題
[0005] 従来の車両用電動発電装置では、インバータが電動発電機から遠く離れて配設さ れているので、インバータと電動発電機との間を電気的に接続する交流配線の配線 長さが長くなつてしまう。その結果、交流配線での配線抵抗が大きくなり、交流配線で の電圧降下が大きくなるので、電動発電機に所望のトルクを出力させるだけの電力を 供給できな力つたり、電動発電機を所望の回転速度まで回転を上げることができなく なったりすると 、う事態を発生させてしまうと 、う問題があった。
また、交流配線での電圧降下を抑えるために、交流配線の太さを大きくして配線抵 抗を小さくすることも考えられる。しかし、この場合には、配線重量および配線コストが 大幅に増加してしまうと 、う問題があった。
さら〖こ、エンジンルーム内にぉ 、てインバータ及びその制御装置を新たに追加搭載 するスペースを確保することが非常に困難になってきており、インバータ及びその制 御装置を大幅に小型化することが必要であるという課題があった。
[0006] この発明は、上記の問題を解消するためになされたもので、特にインバータユニット を一体ィ匕した車両用回転電機装置において、インバータユニットを含めた回転電機 装置の小型化とトルク特性および効率を向上させることができる車両用回転電機装 置を提供するものである。
課題を解決するための手段
[0007] この発明による車両用回転電機装置は、端面に吸気孔と、外周に排気孔を有する 一対のブラケットに回転自在に支承されたシャフトと、上記一対のブラケット内に配設 され、上記シャフトに固着されて内部に界磁卷線を装着すると共に両端面には冷却 ファンを装着してなる回転子と、上記回転子の外周に該回転子を包囲するように上記 一対のブラケットに固着され、電機子卷線が卷回された電機子鉄心からなる電機子と を有する回転電機と、
バッテリの直流電力を交流電力に変換して上記電機子卷線に供給して上記回転子 に回転動力を発生させるか、あるいは上記電機子卷線で発生する交流電力を直流 電力に変換して上記バッテリを充電するインバータユニットとを備えた車両用回転電 機装置において、上記インバータユニットは、概略中空の円筒形状あるいは中空の 多角柱形状を成し、少なくとも外表面の一部に多数の放熱フィンを有するヒートシンク を構成し、上記回転電機の反負荷側端部に、上記シャフトを取り囲み、かつ上記冷 却ファンによる冷却風が上記回転電機を冷却する前に、上記放熱フィンを冷却する ように配置されている。
発明の効果
[0008] この発明によれば、インバータユニットを回転電機の反負荷側端部に一体に固定し て、インバータユニットの放熱フィンを冷却ファンによる冷却風が上記回転電機を冷 却する前に強制冷却することによって、インバータユニットのヒートシンクを効果的に 冷却してインバータユニット自体の小型化が実現できる。その結果、回転電機とイン バータユニットの組合せで大幅な省スペースとなり、エンジンルーム内への搭載性が 良好になると共に、インバータユニットを回転電機に一体に固定したので、インバータ ユニットと回転電機を接続する交流配線を削減でき、交流配線での電圧降下を抑え て回転電機のトルク特性を大幅に改善でき、さらに交流配線を削減することによる大 幅な重量低減とコストダウンが実現できる。
発明を実施するための最良の形態
[0009] 実施の形態 1.
図 1はこの発明の実施の形態 1に係る車両用回転電機装置におけるインバータュ ニットと回転電機を一体化した構造を示す縦断面図、図 2は図 1においてカバーを外 した場合のインバータユニットをリャ側力 見た図、図 3はこの発明の実施の形態 1に 係る車両用回転電機装置を搭載したハイブリッド自動車におけるシステム回路の概 念図である。なお、図 2の A— A線は図 1の縦断面図に対応する切断線を示す。
[0010] 図 3において、回転電機 2は卷線界磁式同期電動発電機であり、電機子(図示せ ず)の電機子卷線 24と回転子(図示せず)の界磁卷線 21を備えて ヽる。
また、この図の場合のインバータユニット 4は、複数のスイッチング素子 41と各スイツ チング素子 41に並列に接続されたダイオード 42と力も成るインバータモジュール 40 と、このインバータモジュール 40に並列に接続されたコンデンサ 43とを備えている。 そして、インバータモジュール 40は、並列に接続されたスイッチング素子 41およびダ ィオード 42の組を 2組直列に接続したものを並列に 3つ配置して構成されている。 そして、電機子卷線 24の各 Y結線 (スター結線)端部力 交流配線 9 (但し、本実施 の形態 1では廃止されている)を介して直列に接続されたスイッチング素子 41の中間 点にそれぞれ電気的に接続されている。また、ノ ッテリ 5の正極側端子および負極側 端子が、直列配線 8を介してインバータモジュール 40の正極側および負極側にそれ ぞれ電気的に接続されて!、る。
インバータモジュール 40は、制御装置 44によりスイッチング素子 41のスイッチング動 作が制御される。また、制御装置 44は、界磁電流制御装置 45を制御して界磁卷線 2 1に流す界磁電流を調整する。
図 1において、回転電機 2は、ベアリング 10、 11を介してシャフト 16を軸支されてフ ロントブラケット 18とリャブラケット 19とからなるケース内に回転自在に配設さ れ、回転子鉄心 20A、 20Bと界磁卷線 21を備えた回転子 20と、電機子鉄心 23の軸 方向両端の径方向端部をフロントブラケット 18とリャブラケット 19とに挟持されて回転 子 20を囲繞するように配設された電機子 22とを備えている。そして、フロントブラケッ ト 18とリャブラケット 19とが通しボルト 25により締着一体ィ匕されている。また、回転電 機用プーリ 12が回転子 20のシャフト 16のフロントブラケット 18からの延出端に固着さ れている。冷却ファン 28が回転子 20の軸方向両端面にそれぞれ固着されている。そ して、一対のスリップリング 29がシャフト 16のリャ側に装着されている。さらに、ブラシ ホルダ 30がシャフト 16のリャ側外周に位置するようにリャブラケット 19の外壁面に配 設され、一対のブラシ 31がそれぞれスリップリング 29に摺接するようにブラシホルダ 3 0内に配設されている。また、吸気孔 18a、 19aがフロントブラケット 18およびリャブラ ケット 19の端面に穿設され、排気孔 18b、 19bがフロントブラケット 18およびリャブラ ケット 19の外周面に穿設されている。
インバータユニット 4は、スリップリング 29を囲むようにしてブラシホルダ 30の部分だ け切り欠!、た概略中空の円筒形状あるいは多角柱形状を成し、外部から内部への接 続用サーキットターミナルを絶縁性榭脂で覆ってなるサーキットボード 4aと、サーキッ トボード 4aに一体に固着された内周面側ヒートシンク 401、反リャブラケット側ヒートシ ンク 402、外周面側ヒートシンク 403とから構成されている。これらそれぞれのヒートシ ンク 401、 402、 403の素材には、例えば銅、アルミニウム等の良熱伝導性金属を用 い、図 2に示すようにそれぞれ放熱フィン 401a、 402a, 403aが概略中心方向に向 力つて放射状に立設されて 、る。 そして、回路基板 404が電気絶縁状態にヒートシンク 402の反放熱フィン側面上に配 設されてインバータユニット 4内に収納されている。この回路基板 404には、スィッチ ング素子 41、ダイオード 42およびコンデンサ 43が図 3に示される回路を構成するよう に実装されている。このように構成されたインバータユニット 4は、リャブラケット 19の 端面にシャフト 16を囲むように直接取り付けられており、電機子卷線 24の Y結線端 部力も延びる口出し線 201、 202、 203がリャブラケット 19から絶縁ブッシュ 300を介 して延出し、インバータユニット 4のサーキットボード 4aの接続端子部 420に電気的に 直接接続されている。さらに、ノ ッテリ 5が直流配線 8を介してインバータユニット 4の 電源端子(図示せず)に電気的に接続されている。そして、リャブラケット 19の外端面 に配設されたインバータユニット 4、ブラシホルダ 30を囲むように、カバー 50が装着さ れており、このカバー 50には放熱フィン 402aに対向する面に吸気孔 50aが穿設され ている。
次にこのように構成された実施の形態 1の回転電機装置のハイブリッド自動車にお けるアイドリングストップ時の動作について説明する。
まず、アイドリングストップを開始するための条件が成立すると、エンジン(図示せず) は停止される。そして、エンジンを再始動する条件が揃うと、ノ ッテリ 5から直流配線 8 を介して直流電力がインバータユニット 4に給電される。そこで、制御装置 44がインバ ータモジュール 40の各スイッチング素子 41を ONZOFF制御し、直流電力が三相 交流電力に変換される。そして、この三相交流電力が電機子卷線 24から延びた口出 し線 201、 202、 203を介して回転電機 2の電機子卷線 24に供給される。これにより、 界磁電流制御装置 45により界磁電流が供給されている回転子 20の界磁卷線 21の 周囲に回転磁界が与えられ、回転子が回転駆動される。
そして、この回転子 20の回転動力が回転電機用プーリ 12、ベルト(図示せず)、ク ランクプーリ(図示せず)を介してエンジンに伝達されて、エンジンが始動される。 そして、エンジンが始動されると、エンジンの回転動力がクランクプーリ、ベルト及び 回転電機用プーリ 12を介して回転電機 2に伝達される。これにより、回転子が回転駆 動されて電機子卷線 24に三相交流電圧が誘起される。そこで、制御装置 44が各ス イッチング素子 41を ONZOFF制御し、電機子卷線 24に誘起された三相交流電力 を直流電力に変換して、バッテリ 5を充電する。
このような一連のアイドルストップ動作にぉ 、て、回転電機 2の反負荷側 (反プーリ側 )端部に直接取り付けられたインバータユニット 4は、冷却ファン 28が両端面に固着さ れた回転子 20が回転することによって冷却される。
回転子 20が回転駆動され、冷却ファン 28が回転駆動されると、図 1中矢印に示さ れるように、冷却風がカバー 50の吸気孔 50aから吸入されて放熱フィン 402aから 40 laへと、同じく放熱フィン 402a力ら 403aに沿って流れて、スイッチング素子 41、ダイ オード 42およびコンデンサ 43で発生した熱がこれら放熱フィン 402a、 401a, 403a を介して冷却風に放熱される。そして、この冷却風はリャブラケット 19に設けられた吸 気孔 19aに導入されて冷却ファン 28によって遠心方向に曲げられて排気孔 19bから 排出され、冷却風の流れが形成される。冷却ファン 28に遠心方向に曲げられた冷却 風によって電機子卷線 24が冷却される。
[0013] 従って、この実施の形態 1では、インバータユニット 4が冷却ファン 28によって強制 的に形成された冷却風により、まず最初にインバータユニット 4の放熱フィン 401a、 4 02a、 403aを冷却するように構成したので、回転電機 2の電機子 22から発生する熱 の影響をほとんど受けず、インバータユニット 4内部のスイッチング素子 41など力も発 生する熱を効率よく外部に放熱することができ、インバータユニット 4が効率よく冷却さ れる。そこで、ヒー卜シンク 401、 402、 403の放熱フィン 401a、 402a, 403aを/ J、型 化でき、その結果インバータユニット 4の小型化が図られ、インバータユニット 4のリャ ブラケット 19への搭載性が向上される。さらに、インバータユニット 4と回転電機 2とが 冷却ファン 28によって形成される冷却風により冷却されるので、インバータユニット 4 の冷却媒体が回転電機 2の冷却媒体 (冷却風)と共用され、冷却構造が簡素化され る。
[0014] そして、インバータユニット 4が回転電機 2のリャブラケット 19の外側端面に直接取り 付けられ、電機子卷線 24の口出し線 201、 202、 203がインバータユニット 4に直接 電気的に接続されているので、インバータユニットと電機子卷線 24との間の交流配 線による抵抗増加がない。これにより、インバータユニット 4と電機子卷線 24との間で の電圧降下が最小となり、回転電機 2のトルク特性を大幅に向上させることができる。 また、インバータユニット 4を回転電機 2に直接取り付けているので、取付スペース が削減でき、レイアウト性が向上する。
また、インバータユニット 4から回転電機 2への交流配線を削減できることによって、 重量低減とコストダウンが実現できる。また、交流配線の誤配線などの巿場トラブルが 防止できる。
さらに、発熱量が大きいスイッチング素子と、比較的発熱量が大きいコンデンサを上 記インバータユニットの放熱フィンによって効率良く冷却できる。
実施の形態 2.
図 4はこの発明の実施の形態 2に係る車両用回転電機装置におけるインバータュ ニットと回転電機を一体化した構造を示す縦断面図、図 5はインバータユニットの放 熱フィンをリャブラケット側力も見た図である。
図 4において、インバータユニット 4は、スリップリング 29を囲むようにしてブラシホル ダ 30の部分だけを切り欠いた概ね円筒形状あるいは多角柱形状を成し、外部から内 部への接続用サーキットターミナルを絶縁性榭脂で覆ってなる蓋状のケース 4bと、ケ ース 4bに一体に固着されたヒートシンク 410と力も外観は構成されて!、る。このヒート シンク 410の素材には、例えば銅、アルミニウム等の良熱伝導性金属を用い、図 5で 示すようにそのヒートシンク 410の外周面側には外周面側フィン 410a、リャブラケット 側にはリャブラケット側放熱フィン 41 Obが概略シャフト 16と平行でかつ中心方向から 放射状に拡つて配設されて ヽる。
そして、回路基板 404が電気絶縁状態にヒートシンク 410の反リャブラケット側フィン 面上に配設されてインバータユニット 4内に収納されている。この回路基板 404には、 スイッチング素子 41、ダイオード 42およびコンデンサ 43が図 3に示される回路を構成 するように実装されている。また同様に、回路基板 405も電気絶縁状態にヒートシンク 410上に配設されてインバータユニット 4内に収納されている。この回路基板 405に は、制御装置 44および界磁電流制御装置 45が図 3に示される回路を構成するように 実装されている。
このように構成されたインバータユニット 4は、リャブラケット 19の外側端面に直接取り 付けられており、電機子卷線 24の Y結線端部から延びる口出し線 201、 202、 203 力 Sリャブラケット 19から絶縁ブッシュ 300を介して延出し、インバータユニット 4のケー ス 4bの接続端子部 420に電気的に接続されている。
そして、リャブラケット 19の外端面に配設されたインバータユニット 4、ブラシホノレダ 3 0を囲むようにカバー 50が装着されており、このカバー 50の外周面には外周面側放 熱フィン 410aに対向する吸気孔 50bが穿設されている。また、カバー 50の開口側端 部には、リャブラケット 19の排気孔 19bから排気された高温の冷却風をカバー 50の 吸気孔 50b側に循環させないための仕切り壁 50cが排気孔 19bの外側周辺に設けら れている。
なお、他の構成は上記実施の形態 1と同様に構成されている。
[0016] この実施の形態 2において、回転子 20が回転駆動され、冷却ファン 28が回転駆動 されると、図 4中の矢印に示されるように、冷却風がカバー 50の吸気孔 50bから吸入 されて、図 5に示されているように外周面側放熱フィン 410a、リャブラケット側放熱フ イン 410bに沿って流れて、スイッチング素子 41、ダイオード 42、コンデンサ 43、制御 装置 44および界磁電流制御装置 45で発生した熱がこれら放熱フィン 410a、 410b を介して冷却風に放熱される。そして、この冷却風はリャブラケット 19に設けられた吸 気孔 19aに導入されて冷却ファン 28によって遠心方向に曲げられて排気孔 19bから 排出され、冷却風の流れが形成される。尚、排気孔 19bから排出された冷却風は、力 バー 50の吸気孔 50bの方向に循環しな 、ようにカバー 50の開口側端部に設けられ た仕切り壁 50cによって排気方向を制御されている。電機子卷線 24は、冷却ファン 2 8に遠心方向に曲げられた冷却風によって冷却される。なお、この仕切り壁 50cは冷 却風の排気方向を制御するような導風壁であっても良い。
[0017] 従って、この実施の形態 2では、インバータユニット 4が冷却ファン 28によって強制 的に形成された冷却風により冷却されるので、インバータユニット 4が効率よく冷却さ れる。そこで、ヒートシンク 410、放熱フィン 410a、 410bを小型にでき、インバータュ ニット 4の小型化が図られ、インバータユニット 4のリャブラケット 19への搭載性が向上 される。さらに、インバータユニット 4と回転電機 2とが冷却ファン 28によって形成され る冷却風により冷却されるので、インバータユニット 4の冷却媒体が回転電機 2の冷却 媒体 (冷却風)と共用され、冷却構造が簡素化される。 [0018] そして、インバータユニット 4が回転電機 2のリャブラケット 19の外側端面に直接取り 付けられ、電機子卷線 24の口出し線 201、 202、 203がインバータユニット 4に直接 電気的に接続されているので、インバータユニットと電機子卷線 24との間の交流配 線による抵抗増加がない。これにより、インバータユニット 4と電機子卷線 24との間で の電圧降下が最小となり、回転電機 2のトルク特性を大幅に向上させることができる。 また、インバータユニット 4を回転電機 2に直接取り付けているので、取付スペース が削減でき、レイアウト性が向上する。
[0019] また、吸気孔 50bから吸入された冷却風の流れる方向に沿って放熱フィン 410a、 4 10bを配設したので放熱フィンが効率良く冷却されるとともに、通風抵抗が大きくな らな 、ので冷却風量が減少することがな 、ので、全体の冷却効率が悪くならな!ヽと ヽ う効果がある。
また、排気孔 19bから排出される高温度の排気冷却風がカバー 50の吸気孔 50bに 循環して吸入されないので、吸気孔 50bからは常に低温の冷却風が吸入され、イン バータユニット 4を効率良く冷却できる。
さらに、インバータユニット 4を金属性のカバー 50で覆うことにより、インバータュ -ッ ト 4及びその結線類力 発生するノイズを外部に放出しないようにする効果と、逆に外 部からのノイズによってインバータユニット 4が誤動作することを回避できる効果がある
[0020] 実施の形態 3.
図 6はこの発明の実施の形態 3に係る車両用回転電機装置におけるインバータュ ニットと回転電機を一体ィ匕した構造を示す縦断面図である。
図 6において、インバータユニット 4は、スリップリング 29を囲むようにしてブラシホル ダ 30の部分だけを切り欠いた概ね中空の円筒形状あるいは多角柱形状を成し、外 部から内部への接続用サーキットターミナルを絶縁性榭脂で覆ってなるサーキットボ ード 4aと、サーキットボード 4aに一体に固着された内周面側ヒートシンク 401、リャブ ラケット端面側ヒートシンク 402、外周面側ヒートシンク 403とから外観は構成されて ヽ る。これらそれぞれのヒートシンク 401、 402、 403の素材には、例えば銅、アルミ-ゥ ム等の良熱伝導性金属を用い、それぞれ放熱フィン 401a、 402a, 403aが外表面に 立設されている。
そして、回路基板 404が電気絶縁状態にヒートシンク 402の反放熱フィン面上に配設 されてインバータユニット 4内に収納されている。この回路基板 404には、スィッチン グ素子 41、ダイオード 42およびコンデンサ 43が図 3に示される回路を構成するように 実装されている。
このように構成されたインバータユニット 4は、リャブラケット 19の内側端面に直接取り 付けられており、電機子卷線 24の Y結線端部から延びる口出し線 201、 202、 203 力 Sインバータユニット 4のサーキットボード 4aの接続端子部 420に電気的に接続され ている。
そして、インバータユニット 4のサーキットボード 4a上には、中央部に通風孔 406aの 開いたドーナツ状の仕切り板 406がー体状に固定されており、回転子 20及び電機子 22との間を仕切り、電機子卷線 24近辺の高温度の冷却風力インバータユニット側に 循環しな 、ように構成して 、る。
なお、他の構成は上記実施の形態 1と同様に構成されている。
[0021] この実施の形態 3において、回転子 20が回転駆動され、冷却ファン 28が回転駆動 されると、図 6中の矢印に示されるように、冷却風がリャブラケット 19端面の吸気孔 19 aから吸入されて、放熱フィン 402aから 401aへと、同じく放熱フィン 402a力ら 403a に沿って流れて、スイッチング素子 41、ダイオード 42およびコンデンサ 43で発生した 熱がこれら放熱フィン 402a、 401a, 403aを介して冷却風に放熱される。
そして、この冷却風は仕切り板 406の中央に設けられた通風孔 406aに導入されて冷 却ファン 28によって遠心方向に曲げられて排気孔 19bから排出され、冷却風の流れ が形成される。電機子卷線 24は、冷却ファン 28に遠心方向に曲げられた冷却風に よって冷却される。
[0022] 従って、この実施の形態 3では、インバータユニット 4が冷却ファン 28によって強制 的に形成された冷却風により冷却されるので、インバータユニット 4が効率よく冷却さ れる。そこで、ヒー卜シンク 401、 402、 403の放熱フィン 401a、 402a, 403aを/ J、型 化でき、結果インバータユニット 4の小型化が図られ、インバータユニット
4のリャブラケット 19への搭載性が向上される。さらに、インバータユニット 4と回転電 機 2とが冷却ファン 28によって形成される冷却風により冷却されるので、インバータュ ニット 4の冷却媒体が回転電機 2の冷却媒体 (冷却風)と共用され、冷却構造が簡素 化される。
[0023] そして、インバータユニット 4が回転電機 2のリャブラケット 19の内側端面に直接取り 付けられ、電機子卷線 24の口出し線 201、 202、 203がインバータユニット 4に直接 電気的に接続されているので、インバータユニットと電機子卷線 24との間の交流配 線による抵抗増加がない。これにより、インバータユニット 4と電機子卷線 24との間で の電圧降下が最小となり、回転電機 2のトルク特性を大幅に向上させることができる。 また、インバータユニット 4を回転電機 2に直接取り付けているので、取付スペース が削減でき、レイアウト性が向上する。
また、仕切り板 406をインバータユニット 4と一体に固定したので、仕切り板 406の組 み付け性が向上する。
[0024] 実施の形態 4.
図 7はこの発明の実施の形態 4に係わる車両用回転電機装置におけるインバータ ユニットの他の構成を示す縦断面図である。
実施の形態 4は、実施の形態 2に対して特にインバータユニット構造が異なっており 、同一符号部分は実施の形態 2と同様に構成されている。
図 7において、インバータユニット 4は、外部から内部への接続用サーキットターミナ ルを絶縁性榭脂で覆ってなるサーキットボード 4aと、同じく絶縁性の榭脂でなる蓋状 のケース 4bと、ケース 4bとサーキットボード 4aとに挟まれて一体に固着されているヒ ートシンク 411と、サーキットボード 4aの他方の面に固着され外周面側フィン 410aとリ ャブラケット側フィン 410bが立設されたヒートシンク 410で外観は構成されている。 そして、回路基板 404が電気絶縁状態にヒートシンク 410の反リャブラケット側フィン 面上に配設されてインバータユニット 4内に収納されている。この回路基板 404には、 スイッチング素子 41、ダイオード 42およびコンデンサ 43が図 3に示される回路を構成 するように実装されている。また同様に、回路基板 405も電気絶縁状態にヒートシンク 411上に配設されてインバータユニット 4内に収納されている。この回路基板 405に は、制御装置 44および界磁電流制御装置 45が図 3に示される回路を構成するように 実装されている。サーキットボード 4aは、回路基板 404上のスイッチング素子 41と、 回路基板 405上の制御装置 44とを接続するための中継ターミナルとしての機能を果 たしている。このように、実施の形態 4は、ヒートシンク 410上にスイッチング素子 41、 ダイオード 42、コンデンサ 43を実装してなる回路基板 404と、ヒートシンク 411上に 制御装置 44、界磁電流制御装置 45を実装してなる回路基板 405とを軸方向に多段 に重ねてなる構成を示して ヽる。
[0025] 以上のように、比較的発熱量が大きく充分な冷却が必要なスイッチング素子 41とダ ィオード 42とコンデンサ 43とを、大きな放熱フィン 410a、 410bが立設されたヒートシ ンク 410に実装し、比較的発熱量の小さ!/、制御装置 44と界磁電流制御装置 45とをヒ ートシンク 411に実装して分けたので、充分な冷却が必要な電子部品を効率良く冷 却でき、また、それぞれのヒートシンクをサーキットボード 4aによってお互いに熱的な 影響を受けな 、ようにして 、るので、耐熱性の違いによる品質信頼性の低下を防止 する効果がある。
また、スイッチング素子 41と、スイッチング素子のスイッチング動作を制御する制御 装置 44とを同じインバータユニット 4内に構成したので、両者をインバータユニット 4 内で直接接続でき、スイッチング素子 41と制御装置 44を接続するための特別な接続 部の構成が省略できるとともに接続部の信頼性が向上する効果がある。
さらに、インバータユニット 4内に構成した界磁電流制御装置 44は、回転子 20の内 部に装着している界磁卷線 21にスリップリング 29を介して電気的に摺動接続された ブラシ 31を内蔵して 、るブラシホルダ 44の近傍に配置できるので、界磁電流を通電 するための配線構成をコンパクトィ匕できるともに、結線部の信頼性が向上できる。
[0026] 実施の形態 5.
図 8はこの発明の実施の形態 5に係わる車両用回転電機装置におけるインバータ ユニットで、周方向に分割して配置した構成を示すリャ側カゝら見た外観図である。(伹 し、カバーを外した状態)
実施の形態 5は、実施の形態 1に対して特にインバータユニット構造が異なっており 、同一符号部分は実施の形態 1と同様に構成されている。
図 8において、インバータユニット 4の内周面側ヒートシンク 401、反リャブラケット側 ヒートシンク 402、外周面側ヒートシンク 403は、たとえば榭脂などで構成された熱伝 導遮断部 430によってそれぞれが周方向に分断されており、それぞれのヒートシンク の分断部間で互 、に熱的影響を及ぼさな 、ように構成されて 、る。
そして、熱伝導遮断部 430によって周方向に分断されたそれぞれのヒートシンクにお いて、たとえば、比較的発熱量が大きく充分な冷却が必要なスイッチング素子 41とダ ィオード 42とコンデンサ 43は多くの放熱フィンが立設された大きなヒートシンクに実 装し、比較的発熱量の小さ ヽ制御装置 44と界磁電流制御装置 45は小さな方のヒー トシンクに実装して分けるので、充分な冷却が必要な電子部品を効率良く冷却でき、 また、それぞれのヒートシンクを熱伝導遮断部 430によってお互いに熱的な影響を受 けな 、ようにして 、るので、耐熱性の違いによる品質信頼性の低下を防止する効果 がある。
実施の形態 6.
図 9はこの発明の実施の形態 6に係わる車両用回転電機装置におけるインバータ ユニットに使用されるスイッチング素子のオン抵抗と定格電圧の関係を示す特性図で ある。
図 9において、現在一般的にインバータュ -ット 4の中のスイッチング素子 41として 使用されて 、る Si (シリコン)を組成材とした Si— MOSFETと SiC (炭化シリコン)組成 材を用いた SiC— MOSFETとの定格電圧とオン抵抗の関係を比較して示して ヽる。 車両用回転電機の電動時や発電時には、電機子卷線ゃ界磁卷線の蓄積磁気エネ ルギー量が非常に大きいため、それらが瞬時に放出される事故に対する対策として インバータユニット 4のスイッチング素子 41の定格電圧をバッテリ電圧の数十倍に設 定する必要があり、例えば、この定格電圧を 250 (V)と仮定した場合には、図 9の特 性の比較から明らかなように SiC— MOSFETのオン抵抗は Si— MOSFETのオン抵 抗の約 1Z15程度まで低減できる。従って、 SiC— MOSFETをスイッチング素子とし て使用すれば、オン抵抗が低いため発熱量も大幅に低減でき、ヒートシンクの放熱フ イン部が小型化できるので、ヒートシンクを含めたインバータユニット全体のさらなる小 型化が可能となるとともに、抵抗損が低下するのでインバータも含めた回転電機とし ての効率が向上するという効果がある。 [0028] 実施の形態 7
図 10はこの発明の実施の形態 7に係わる車両用回転電機装置におけるインバータ ユニットに使用されるスイッチング素子のオン抵抗と定格電圧の関係を示す特性図で ある。
図 10において、実施の形態 6で説明した SiC— MOSFETと、同じく SiC組成材を 用いた SiC— SIT (Static Induction Transistor:静電誘導トランジスタ)のある条件下 での定格電圧とオン抵抗の関係を比較して示して 、る。
図 9の特性の比較力も明らかなように、例えば、定格電圧を 250 (V)と仮定した場合 には、 SiC— SITのオン抵抗は SiC— MOSFETのオン抵抗の約 1Z数百程度まで低 減できる。従って、 SiC— SITをスイッチング素子として使用すれば、オン抵抗が低い ため発熱量も大幅に低減でき、ヒートシンクの放熱フィン部が小型化できるので、ヒー トシンクを含めたインバータユニット全体のさらなる小型化が可能となるとともに、抵抗 損が低下するのでインバータも含めた回転電機としての効率がさらに向上するという 効果がある。
また、 SiC組成材を用いた SiC— SITは、現在一般的に採用されている Si (シリコン) を組成材とした Si— MOSFETに比べて高耐電圧性を有しており、高 ヽサージ電圧 に対しても十分に耐え得るので高い信頼性が得られる。
[0029] 実施の形態 8.
図 11はこの発明の実施の形態 1から 7に係わる車両用回転電機装置における永久 磁石を備えたクローポール型回転子の構成を示す外観斜視図である。
図 11において、回転子 20はクローポール型の回転子であり、回転子鉄心 20Aおよ び 20Bは電機子鉄心 23の内径に対して所定の空隙を介して対向する爪状の磁極 部 20aおよび 20bを有し、磁極部 20aおよび 20bはそれぞれ所定の極数に形成され ると共に、界磁卷線 21の外径側を覆うように交互に交差しており、相隣る磁極部 20a と 20bとは周方向に所定の間隔を介して一定のピッチで配列され、界磁卷線 21によ り交互に異極となるように磁ィ匕される。そして、相隣る磁極部 20aと 20bとの間には永 久磁石 26、 27が介挿され、永久磁石 26、 27は各磁極部 20aおよび 20bが界磁卷線 21による磁ィ匕と同一磁極になるように磁ィ匕されている。 前記界磁卷線 21と共に前記電機子鉄心 23に磁束を供給する永久磁石 26、 27を 備えて 、るので総磁束量が増加し、同じトルク特性を得るために必要なインバータモ ジュール 40でスイッチング制御して電機子卷線 24に供給する電流量が低減できる ので、上記スイッチング素子 41での発熱量が減り、結果的にヒートシンク 401、 402、 403、 410の放熱フィン咅401a、 402a, 403a, 410a, 410b力 S/Jヽ型ィ匕でき、ヒートシ ンク 401、 402、 403、 410を含めたインバータユニット 4全体が小型化できるとともに 、抵抗損が低くなるので回転電機としての効率が向上する。
図面の簡単な説明
圆 1]この発明の実施の形態 1による車両用回転電機装置を示す縦断面図である。
[図 2]図 1においてカバーを外した場合のインバータユニットをリャ側力 見た図であ る。
圆 3]この発明の実施の形態 1による車両用回転電機装置を搭載したハイブリッド自 動車におけるシステム回路を示す概念図である。
圆 4]この発明の実施の形態 2による車両用回転電機装置を示す縦断面図である。 圆 5]この発明の実施の形態 2による車両用回転電機装置におけるインバータュ -ッ トの放熱フィンをリャブラケット側力も見た図である。
圆 6]この発明の実施の形態 3による車両用回転電機装置を示す縦断面図である。 圆 7]この発明の実施の形態 4による車両用回転電機装置におけるインバータュ -ッ トで軸方向に分割して配置した構成を示す外観図である。
圆 8]この発明の実施の形態 5による車両用回転電機装置におけるインバータュ -ッ トで周方向に分割して配置した構成を示す外観図である。
圆 9]この発明の実施の形態 6に係わる車両用回転電機装置におけるインバータュ ニットに使用されるスイッチング素子のオン抵抗と定格電圧の関係を示す特性図であ る。
圆 10]この発明の実施の形態 7に係わる車両用回転電機装置におけるインバータュ ニットに使用されるスイッチング素子のオン抵抗と定格電圧の関係を示す特性図であ る。
圆 11]この発明の実施の形態 1から 7に係わる車両用回転電機装置における永久磁 石を備えたクローポール型回転子の外観図である。
符号の説明
2 回転電機、 4 インバータユニット、 4a サーキットボード、 4b ケース、 5 バッテリ、 8 直流配線、 9 交流配線、 10 ベアリング、 11 ベアリング、 12 プーリ、 16 シャフト、 18 フロントブラケット、 18a 吸気孔、 18b 排気孔、 19 リャブラケット 、 19a 吸気孔、 19b 排気孔、 20 回転子、 20A、 20B 回転子鉄心、 20a, 20b 磁極部、 21 界磁卷線、 22 電機子、 23 電機子鉄心、 24 電機子卷線、 25 通し ボルト、 26、 27 永久磁石、 28 冷却ファン、 29 スリップリング、 30 ブラシホルダ、 31 ブラシ、 40 インバータモジュール、 41 スイッチング素子、 42 ダイオード、 43 コンデンサ、 44 制御装置、 45 界磁電流制御装置、 50 カバー、 50a、 50b 吸 気孔、 50c 仕切り壁、
201、 202、 203 口出し線、 300 絶縁ブッシュ、 401 内周面側ヒートシンク、 402 反リャブラケットィ則ヒー卜シンク、 403 外周面ィ則ヒー卜シンク、 401a, 402a, 403a 放熱フィン、 404 回路基板、 405 回路基板、 406
仕切り板、 406a 通風孔、 410 ヒートシンク、 410a 外周面側放熱フィン、 410b リャブラケット側放熱フィン、 411 ヒートシンク、 420 接続端子部、 430 熱伝導遮 断部

Claims

請求の範囲
[1] 端面に吸気孔と、外周に排気孔を有する一対のブラケットに回転自在に支承され たシャフトと、上記一対のブラケット内に配設され、上記シャフトに固着されて内部に 界磁卷線を装着すると共に両端面には冷却ファンを装着してなる回転子と、上記回 転子の外周に該回転子を包囲するように上記一対のブラケットに固着され、電機子 卷線が卷回された電機子鉄心からなる電機子とを有する回転電機と、
バッテリの直流電力を交流電力に変換して上記電機子卷線に供給して上記回転子 に回転動力を発生させるか、あるいは上記電機子卷線で発生する交流電力を直流 電力に変換して上記バッテリを充電するインバータユニットとを備えた車両用回転電 機装置において、
上記インバータユニットは、
概略中空の円筒形状あるいは中空の多角柱形状を成し、少なくとも外表面の一部に 多数の放熱フィンを有するヒートシンクを構成し、
上記回転電機の反負荷側端部に、上記シャフトを取り囲み、かつ上記冷却ファンに よる冷却風が上記回転電機を冷却する前に、上記放熱フィンを冷却するように配置さ れて ヽることを特徴とする車両用回転電機装置。
[2] 上記インバータユニットは、少なくとも内周面あるいは反ブラケット側端面あるいは 外周面の中の一箇所以上が金属材力 成る多数の放熱フィンを有するヒートシンクを 構成し、上記一対のブラケットのどちらか一方の外側端面に一体に固定されると共に 、軸方向端面に吸気孔を設けたカバーにより覆われ、
かつ、上記冷却ファンにより上記カバーの軸方向端面の吸気孔から吸入された冷却 風が、上記回転電機を冷却する前に、上記放熱フィンを冷却するように配置されたこ とを特徴とする請求項 1記載の車両用回転電機装置。
[3] 上記インバータユニットは、少なくともブラケット側端面あるいは外周面の中の一箇 所以上に金属材から成る多数の放熱フィンを有するヒートシンクを構成し、上記一対 のブラケットのどちらか一方の外側端面に一体に固定されると共に、外周面に多数の 吸気孔を配設したカバーにより覆われ、
かつ、上記冷却ファンにより上記カバーの外周面の吸気孔から吸入された冷却風が 、上記回転電機を冷却する前に、上記放熱フィンを冷却するように配置されたことを 特徴とする請求項 1記載の車両用回転電機装置。
[4] 上記放熱フィンの一部または全部が概略中心方向に向力つて放射状に配設されて
Vヽることを特徴とする請求項 3記載の車両用回転電機装置。
[5] 上記放熱フィンの一部または全部が概略シャフトと平行でかつ中心方向力も放射 状に拡がって配設されて!/ヽることを特徴とする請求項 3記載の車両用回転電機装置
[6] 上記ブラケット外周に設けられた排気孔力 排出される高温度の排気冷却風が上 記カバーの吸気孔に循環して吸入されな 、ように、上記カバーあるいは上記インバ ータユニットが固定されているブラケットに、仕切り壁あるいは排気方向を制御する導 風壁を設けたことを特徴とする請求項 3な ヽし 5の 、ずれか 1項に記載の車両用回転 電機装置。
[7] 上記カバーの素材が金属であることを特徴とする請求項 2な 、し 6の 、ずれか 1項 に記載の車両用回転電機装置。
[8] 上記インバータユニットは、少なくとも内周面あるいはブラケット側端面あるいは外 周面の中の一箇所以上が金属材力 成る多数の放熱フィンを有するヒートシンクを構 成し、上記一対のブラケットのどちらか一方の内側端面に一体に固定されると共に、 上記回転子
及び電機子との間を中心に通風孔が開いた概ねドーナツ状の仕切り板によって区切 られ、上記冷却ファンにより上記ブラケットの軸方向端面の吸気孔から吸入された冷 却風が、上記回転電機を冷却する前に、上記放熱フィンを冷却するように配置された ことを特徴とする請求項 1記載の車両用回転電機装置。
[9] 上記仕切り板が上記インバータユニットに一体に固定されていることを特徴とする請 求項 8記載の車両用回転電機装置。
[10] 上記インバータユニットは、複数のスイッチング素子を含むインバータモジュールを 内蔵して 、ることを特徴とする請求項 1な 、し 9の 、ずれか 1項に記載の車両用回転 電機装置。
[11] 上記インバータユニットは、複数のスイッチング素子を含むインバータモジュールと 、上記インバータモジュールと並列に接続されたコンデンサとを内蔵していることを特 徴とする請求項 1な 、し 9の 、ずれか 1項に記載の車両用回転電機装置。
[12] 上記インバータユニットは、複数のスイッチング素子を含むインバータモジュールと
、上記インバータモジュールと並列に接続されたコンデンサと、上記複数のスィッチン グ素子のスイッチング動作を制御する制御装置とを内蔵していることを特徴とする請 求項 1な!、し 9の 、ずれか 1項に記載の車両用回転電機装置。
[13] 上記インバータユニットは、複数のスイッチング素子を含むインバータモジュールと
、上記インバータモジュールと並列に接続されたコンデンサと、界磁電流を制御する 界磁電流制御装置と、上記複数のスイッチング素子のスイッチング動作を制御する 制御装置とを内蔵して 、ることを特徴とする請求項 1な 、し 9の 、ずれか 1項に記載 の車両用回転電機装置。
[14] 上記インバータユニットが、上記ヒートシンク部を含めて周方向あるいは軸方向に複 数に分割されて配置されて ヽることを特徴とする請求項 10な ヽし 13の ヽずれか 1項 に記載の車両用回転電機装置。
[15] 上記スイッチング素子が SiC組成材を用いた SiC— MOSFETから成ることを特徴と する請求項 10から請求項 14のいずれか 1項に記載の車両用回転電機装置。
[16] 上記スイッチング素子が SiC組成材を用いた SiC— SITから成ることを特徴とする請 求項 10な 、し請求項 14の 、ずれか 1項に記載の車両用回転電機装置。
[17] 上記回転子が、相隣る磁極が異極をなすようにクローポール型に形成された磁極 部と界磁卷線を有する円筒部とからなる回転子鉄心と、
前記回転子鉄心の磁気回路に設けられ、前記界磁卷線と共に前記電機子鉄心に磁 束を供給する永久磁石を備えて 、ることを特徴とする請求項 1な 、し 16の 、ずれか 1 項に記載の車両用回転電機装置。
PCT/JP2005/003622 2004-03-03 2005-03-03 車両用回転電機装置 WO2005086322A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/555,090 US7414339B2 (en) 2004-03-03 2005-03-03 Vehicular rotating electrical machine apparatus
EP05719926.7A EP1722463B1 (en) 2004-03-03 2005-03-03 Rotary electric machine for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004059547A JP4156542B2 (ja) 2004-03-03 2004-03-03 車両用回転電機装置
JP2004-059547 2004-03-03

Publications (1)

Publication Number Publication Date
WO2005086322A1 true WO2005086322A1 (ja) 2005-09-15

Family

ID=34917978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003622 WO2005086322A1 (ja) 2004-03-03 2005-03-03 車両用回転電機装置

Country Status (6)

Country Link
US (1) US7414339B2 (ja)
EP (2) EP1722463B1 (ja)
JP (1) JP4156542B2 (ja)
KR (1) KR100770103B1 (ja)
CN (1) CN100461590C (ja)
WO (1) WO2005086322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111909A (ja) * 2014-11-28 2016-06-20 株式会社ミツバ 回転電機ユニットの配置構造及び回転電機ユニット

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4286773B2 (ja) * 2004-12-27 2009-07-01 三菱電機株式会社 電動発電機装置
JP4583191B2 (ja) * 2005-01-28 2010-11-17 三菱電機株式会社 回転電機
WO2007007387A1 (ja) * 2005-07-11 2007-01-18 Hitachi, Ltd. 界磁巻線型同期モータの制御装置,電動駆動システム,電動4輪駆動車およびハイブリッド自動車
JP4278643B2 (ja) * 2005-08-30 2009-06-17 三菱電機株式会社 車両用回転電機
EP1962409B1 (en) 2005-12-16 2018-01-24 Mitsubishi Electric Corporation Motor generator for vehicle
JP4470927B2 (ja) * 2006-09-07 2010-06-02 株式会社デンソー 車両用交流発電機
EP2149969B1 (en) 2007-05-22 2019-02-20 Mitsubishi Electric Corporation Ac generator for vehicle
JP4931739B2 (ja) * 2007-08-31 2012-05-16 日立オートモティブシステムズ株式会社 車両用交流発電機
US7663272B2 (en) * 2007-10-15 2010-02-16 Honeywell International Inc. Motor housing and cooling fin assembly
FR2926687B1 (fr) * 2008-01-18 2018-12-07 Valeo Equip Electr Moteur Machine electrique tournante, notamment alternateur de vehicule automobile
JP5349888B2 (ja) * 2008-10-10 2013-11-20 日立オートモティブシステムズ株式会社 電動アクチュエータの制御装置
JP4907694B2 (ja) * 2009-05-13 2012-04-04 三菱電機株式会社 回転電機
JP4810589B2 (ja) * 2009-05-28 2011-11-09 三菱電機株式会社 回転電機
JP4754009B2 (ja) * 2009-06-04 2011-08-24 三菱電機株式会社 車両用回転電機
JP5508778B2 (ja) * 2009-07-30 2014-06-04 日立オートモティブシステムズ株式会社 インバータ装置一体型回転電機装置
JP5407749B2 (ja) * 2009-10-26 2014-02-05 日本電気株式会社 インサーキットテストフィクスチャの冷却構造
JP4851575B2 (ja) * 2009-11-02 2012-01-11 三菱電機株式会社 制御装置一体型回転電機
DE102009055273A1 (de) 2009-12-23 2011-06-30 Robert Bosch GmbH, 70469 Elektromaschine
JP5014445B2 (ja) 2010-02-10 2012-08-29 三菱電機株式会社 電力供給ユニット一体型回転電機
JP5031060B2 (ja) * 2010-04-12 2012-09-19 三菱電機株式会社 回転電機
JP5287787B2 (ja) 2010-04-16 2013-09-11 株式会社デンソー 電動装置
JP5202573B2 (ja) * 2010-05-10 2013-06-05 三菱電機株式会社 車両用制御装置一体型回転電機
JP5012953B2 (ja) 2010-05-21 2012-08-29 株式会社デンソー 駆動装置
JP5177711B2 (ja) * 2010-05-21 2013-04-10 株式会社デンソー 電動装置
RU2488210C2 (ru) * 2010-07-20 2013-07-20 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Генератор
RU2494519C2 (ru) * 2010-07-20 2013-09-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Синхронный генератор
CN201813258U (zh) * 2010-10-01 2011-04-27 中山大洋电机制造有限公司 一种电机的散热结构
TWM402396U (en) * 2010-11-05 2011-04-21 Holimay Corp Motor mask for the water discharge device for cooling or air-conditioning device
US9780716B2 (en) * 2010-11-19 2017-10-03 General Electric Company High power-density, high back emf permanent magnet machine and method of making same
US9685900B2 (en) 2010-11-19 2017-06-20 General Electric Company Low-inductance, high-efficiency induction machine and method of making same
US20120126728A1 (en) * 2010-11-19 2012-05-24 El-Refaie Ayman Mohamed Fawzi Integrated electric machine and silicon carbide power converter assembly and method of making same
FR2969410B1 (fr) * 2010-12-20 2012-12-28 Valeo Equip Electr Moteur Dispositif regulateur de tension pour une machine electrique tournante, palier d'une telle machine equipe d'un tel dispositif et une telle machine comportant un tel palier
JP5799220B2 (ja) * 2011-03-23 2015-10-21 パナソニックIpマネジメント株式会社 電動工具
KR101418291B1 (ko) * 2011-04-27 2014-07-11 엘지전자 주식회사 전동기 및 이를 구비한 전기차량
JP5710396B2 (ja) * 2011-06-22 2015-04-30 株式会社日立製作所 エレベータ装置用巻上機
JP2013090532A (ja) * 2011-10-21 2013-05-13 Mitsuba Corp ブラシレスモータ
JP5721852B2 (ja) * 2011-10-25 2015-05-20 三菱電機株式会社 回転電機
JP6146047B2 (ja) * 2012-10-04 2017-06-14 株式会社豊田自動織機 ハイブリッド車両の駆動装置
JP5929678B2 (ja) * 2012-10-04 2016-06-08 株式会社デンソー ハイブリッド車の制御装置
CN104521114B (zh) * 2012-10-04 2017-09-15 三菱电机株式会社 驱动控制装置一体型旋转电机
JP5562395B2 (ja) * 2012-10-18 2014-07-30 三菱電機株式会社 回転電機の組立方法
CN103117607A (zh) * 2012-11-13 2013-05-22 浙江安美德汽车配件有限公司 一种车用交流发电机高效转子总成
CN103051086A (zh) * 2012-11-13 2013-04-17 浙江安美德汽车配件有限公司 一种混合励磁式高效节能汽车交流发电机
JP2014168333A (ja) * 2013-02-28 2014-09-11 Toyota Industries Corp インバータ一体型回転電機
JP6086033B2 (ja) * 2013-06-05 2017-03-01 株式会社豊田自動織機 インバータ装置
JP6079452B2 (ja) * 2013-06-05 2017-02-15 株式会社豊田自動織機 インバータ一体型回転電機
JP6148126B2 (ja) * 2013-09-05 2017-06-14 アスモ株式会社 モータ
FR3010590B1 (fr) * 2013-09-09 2015-10-09 Valeo Equip Electr Moteur Ensemble electronique pour machine electrique tournante pour vehicule automobile
KR101998284B1 (ko) * 2014-02-21 2019-07-09 한온시스템 주식회사 차량용 쿨링팬 모터
FR3018013B1 (fr) * 2014-02-26 2018-01-12 Valeo Equipements Electriques Moteur Ensemble electronique pour machine electrique tournante pour vehicule automobile
JP6413509B2 (ja) * 2014-09-03 2018-10-31 株式会社Ihi 航空機の電動駆動ユニット冷却システム
JP6354487B2 (ja) * 2014-09-19 2018-07-11 株式会社デンソー 回転電機一体型制御装置
JP6056827B2 (ja) * 2014-09-30 2017-01-11 株式会社デンソー 回転電機制御装置
JP6009609B1 (ja) * 2015-04-13 2016-10-19 三菱電機株式会社 制御装置一体型回転電機
JP2016214034A (ja) * 2015-05-13 2016-12-15 株式会社デンソー 回転電機及びその製造方法
US20170244304A1 (en) * 2016-02-22 2017-08-24 Prestolite Electric, Inc. Systems and methods for cooling stator windings by an internal fan in a brushless alternator
DE102016119822A1 (de) * 2016-10-06 2018-04-12 Lsp Innovative Automotive Systems Gmbh Hochleistungsgenerator Niedervolt mit Starter-Unterstützungsfunktion und Drehmoment-Kompensation
JP6365654B2 (ja) * 2016-12-25 2018-08-01 株式会社デンソー 回転電機
US20180205292A1 (en) * 2017-01-17 2018-07-19 Headline Electric Co., Ltd. Motor forcibly cooling device with rear drive assembly
JP2018157613A (ja) * 2017-03-15 2018-10-04 日本電産サンキョー株式会社 モータ
EP3826148B1 (en) * 2018-07-17 2023-05-10 Mitsubishi Electric Corporation Rotating electric machine
JP2020105997A (ja) * 2018-12-28 2020-07-09 本田技研工業株式会社 発電装置
JP7339882B2 (ja) * 2019-12-26 2023-09-06 株式会社日立製作所 ホイール内蔵電動装置
JP6921265B1 (ja) * 2020-04-02 2021-08-18 三菱電機株式会社 制御装置一体型回転電機
CN112533428B (zh) * 2020-12-24 2022-01-18 广州信溢创科技股份有限公司 一种智能型网络通讯设备
JP7186843B1 (ja) * 2021-10-13 2022-12-09 三菱電機株式会社 回転電機
WO2023187802A1 (en) * 2022-03-27 2023-10-05 Tvs Motor Company Limited An electric motor assembly

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266854A (ja) * 1989-04-04 1990-10-31 Honda Motor Co Ltd エンジンの始動・発電装置
JPH08331818A (ja) * 1995-06-02 1996-12-13 Nippondenso Co Ltd 交流発電機
JPH09252563A (ja) * 1996-03-14 1997-09-22 Toshiba Corp 制御装置一体型モータ
JPH10257718A (ja) * 1997-03-13 1998-09-25 Toshiba Corp インバータ装置付きモータ
JPH1127903A (ja) * 1997-07-03 1999-01-29 Hitachi Ltd 制御装置一体型電動機
JPH11206183A (ja) * 1998-01-12 1999-07-30 Hitachi Ltd 回転電機内蔵用インバータ及びそれを用いたインバータ内蔵形回転電機
JP2004274992A (ja) * 2003-02-18 2004-09-30 Denso Corp インバータ一体型交流モータ
JP2004312852A (ja) * 2003-04-04 2004-11-04 Hitachi Ltd 車両用回転電機

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2571284A (en) * 1946-07-06 1951-10-16 Chrysler Corp Power transmission
US4604538A (en) * 1985-02-19 1986-08-05 General Motors Corporation Air cooling for diode-rectified alternating current generators
DE4243044C2 (de) * 1991-12-20 1996-07-11 Gold Star Co Wechselrichter-Motorkombination
US5517401A (en) * 1992-02-07 1996-05-14 Fuji Electric Co., Ltd. Three level pulse width modulated inverter for an electric vehicle
US5793144A (en) * 1993-08-30 1998-08-11 Nippondenso Co., Ltd. Rotor for a rotating electric machine
US5780953A (en) * 1993-12-07 1998-07-14 Nippondenso Co., Ltd. Alternator
US5491370A (en) * 1994-01-28 1996-02-13 General Motors Corporation Integrated AC machine
US5731689A (en) * 1995-06-06 1998-03-24 Nippondenso Co., Ltd. Control system for A.C. generator
JP3342987B2 (ja) * 1995-06-28 2002-11-11 三菱電機株式会社 車両用交流発電機
DE19629346C2 (de) * 1996-07-20 1998-05-14 Mannesmann Sachs Ag Hybridantrieb
US5993350A (en) * 1997-12-01 1999-11-30 Lawrie; Robert E. Automated manual transmission clutch controller
JP3561400B2 (ja) 1997-12-18 2004-09-02 本田技研工業株式会社 電気自動車における配線構造
JP3956524B2 (ja) * 1999-03-03 2007-08-08 株式会社デンソー 車両用交流発電機
JP3443363B2 (ja) * 1999-05-26 2003-09-02 三菱電機株式会社 車両用交流発電機
JP3547347B2 (ja) 1999-09-20 2004-07-28 株式会社日立製作所 車両用電動発電装置
JP3949370B2 (ja) * 2000-11-08 2007-07-25 三菱電機株式会社 車両用交流発電機
JP3750851B2 (ja) * 2002-01-18 2006-03-01 株式会社デンソー 車両用交流発電機
JP3958593B2 (ja) * 2002-01-29 2007-08-15 三菱電機株式会社 車両用電源装置
JP3823856B2 (ja) * 2002-03-19 2006-09-20 株式会社デンソー 車両用交流発電機の整流装置
JP3559909B2 (ja) * 2002-11-07 2004-09-02 日産自動車株式会社 機電一体型駆動装置
JP2004187437A (ja) * 2002-12-05 2004-07-02 Nissan Motor Co Ltd モータ駆動ユニット
WO2005008860A2 (en) * 2003-07-10 2005-01-27 Magnetic Applications Inc. Compact high power alternator
JP2005117708A (ja) * 2003-10-02 2005-04-28 Denso Corp 制御手段一体型交流モータ
JP4339832B2 (ja) * 2005-08-11 2009-10-07 三菱電機株式会社 車両用回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02266854A (ja) * 1989-04-04 1990-10-31 Honda Motor Co Ltd エンジンの始動・発電装置
JPH08331818A (ja) * 1995-06-02 1996-12-13 Nippondenso Co Ltd 交流発電機
JPH09252563A (ja) * 1996-03-14 1997-09-22 Toshiba Corp 制御装置一体型モータ
JPH10257718A (ja) * 1997-03-13 1998-09-25 Toshiba Corp インバータ装置付きモータ
JPH1127903A (ja) * 1997-07-03 1999-01-29 Hitachi Ltd 制御装置一体型電動機
JPH11206183A (ja) * 1998-01-12 1999-07-30 Hitachi Ltd 回転電機内蔵用インバータ及びそれを用いたインバータ内蔵形回転電機
JP2004274992A (ja) * 2003-02-18 2004-09-30 Denso Corp インバータ一体型交流モータ
JP2004312852A (ja) * 2003-04-04 2004-11-04 Hitachi Ltd 車両用回転電機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1722463A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111909A (ja) * 2014-11-28 2016-06-20 株式会社ミツバ 回転電機ユニットの配置構造及び回転電機ユニット

Also Published As

Publication number Publication date
EP1722463B1 (en) 2018-10-03
CN100461590C (zh) 2009-02-11
US7414339B2 (en) 2008-08-19
US20070035270A1 (en) 2007-02-15
EP1722463A4 (en) 2015-03-18
JP2005253184A (ja) 2005-09-15
KR100770103B1 (ko) 2007-10-24
EP1722463A1 (en) 2006-11-15
EP3193433A1 (en) 2017-07-19
CN1771649A (zh) 2006-05-10
KR20060009858A (ko) 2006-02-01
JP4156542B2 (ja) 2008-09-24

Similar Documents

Publication Publication Date Title
KR100770103B1 (ko) 차량용 회전 전기기계 장치
JP3958593B2 (ja) 車両用電源装置
JP3985760B2 (ja) 回転電機システム
CN101005224B (zh) 集成有控制设备的电动发电机
JP4523240B2 (ja) 車両用電動発電装置
US7400070B2 (en) Rotating electric machine for vehicles
US7545061B2 (en) Rotating electric machine for vehicles
KR100727744B1 (ko) 차량용 회전 전기기계 장치
JP2010268541A (ja) 回転電機
US7960880B2 (en) Automotive electric motor-generator with radial plates and circuit boards disposed in a fan shape in a common plane around shaft of rotor
JPS62268370A (ja) 内燃機関起動用スタ−タ発電機
US7800261B2 (en) Rotary electric machine with stator outer surface designed to enhance heat dissipation
JP2008187853A (ja) 回転電機装置
JP2005224044A (ja) 車両用発電電動装置
JP2007166900A (ja) 車両用電源装置
JP2002142424A (ja) 車両用交流発電機
JP2005508130A (ja) 電気機械、有利には自動車用三相交流オルタネータ
JP4349113B2 (ja) 車両用発電電動装置
JP2004282937A (ja) 車両用交流発電機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057020001

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20058001874

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005719926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007035270

Country of ref document: US

Ref document number: 10555090

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057020001

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005719926

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10555090

Country of ref document: US