WO2004077580A2 - White light source using emitting diode and phosphor and method of fabrication - Google Patents

White light source using emitting diode and phosphor and method of fabrication Download PDF

Info

Publication number
WO2004077580A2
WO2004077580A2 PCT/US2004/005650 US2004005650W WO2004077580A2 WO 2004077580 A2 WO2004077580 A2 WO 2004077580A2 US 2004005650 W US2004005650 W US 2004005650W WO 2004077580 A2 WO2004077580 A2 WO 2004077580A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitter
light source
material region
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2004/005650
Other languages
English (en)
French (fr)
Other versions
WO2004077580A3 (en
Inventor
James Ibbetson
Eric Tarsa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Inc filed Critical Cree Inc
Priority to CA002517009A priority Critical patent/CA2517009A1/en
Priority to EP04714213.8A priority patent/EP1597777B1/en
Priority to JP2006503876A priority patent/JP2006519500A/ja
Priority to CN200480011028XA priority patent/CN1777999B/zh
Publication of WO2004077580A2 publication Critical patent/WO2004077580A2/en
Publication of WO2004077580A3 publication Critical patent/WO2004077580A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8514Wavelength conversion means characterised by their shape, e.g. plate or foil
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8515Wavelength conversion means not being in contact with the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • H10H20/0361Manufacture or treatment of packages of wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls

Definitions

  • This invention relates to light emitters and, more particularly, to light emitters where the wavelength of at least some of the emitted light is converted to another wavelength by a conversion material region.
  • LEDs are an important class of solid-state devices that convert electric energy to light energy and generally comprise an active layer of semiconductor material sandwiched between two oppositely doped layers . When a bias is applied across the doped layers, holes and electrons are injected into the active layer where they recombine to generate light. Light is typically emitted omnidirectionally from the active layer and from the surfaces of the LED.
  • One disadvantage of conventional LEDs used for lighting applications is that they cannot generate white light from their active layers.
  • One way to cause a single blue emitting LED to emit white light is to surround it with a yellow phosphor, polymer or dye.
  • a yellow phosphor, polymer or dye See Nichia Corp. white LED, Part No. NSPW300BS, NSPW312BS, etc.; See also U.S. Patent No. 5959316 to Hayden, "Multiple Encapsulation of Phosphor-LED Devices"] .
  • the surrounding material “downconverts" the wavelength of at least some of the light, changing its color.
  • a blue emitting LED is surrounded by a yellow phosphor, then some of the blue light passes through the phosphor without being changed while the remaining light is downconverted to yellow. Hence, the LED emits both blue and yellow light, which combines to form a white 1ight .
  • One conventional method for manufacturing an LED surrounded by a conversion material region is to mount the LED in a cup shaped submount with the necessary electrical connections to apply a bias to the LED.
  • a syringe mechanism is filled with an optically clear and curable material (e.g. epoxy, silicon, sol gel, etc.) with the conversion material mixed in the material, where the conversion material typically includes phosphor particles.
  • the syringe mixture is then injected into the submount, covering the LED and partially filling the submount.
  • the clear material is first injected into the cup, the conversion particles are generally uniformly mixed/suspended throughout the material .
  • the clear material is then cured to form the conversion material region and the entire assembly is encased in a clear epoxy.
  • One disadvantage of this manufacturing method is that under certain circumstances the conversion particles can be non-uniformly distributed in the cured state. After the clear material mixture is injected into a cup, there can be a time delay before it is cured. During this delay, the conversion particles can settle toward the base of the cup and over the LED such that there are different concentrations of particles throughout the conversion material region. This settling problem can be compounded in clear materials that dehydrate during the curing process, which allows the conversion particles to settle more quickly. The settled conversion material region can result in light from the emitter appearing as different colors and/or intensities when viewed from different angles because the emitted light encounters different amounts of conversion material.
  • Another disadvantage of this method is that the injection of the optically clear material from a syringe can introduce variations in the concentration of conversion particles from emitter to emitter, which can reduce the consistent reproducibility of the emitters.
  • the conversion particles can settle in the syringe such that emitters injected with the clear material mixture when the syringe is full can have a greater concentration of conversion particles than emitters formed later.
  • the amount of clear material injected from the syringe into the cup can also be difficult to control and different amounts of clear material mixture can be deposited in different emitters. This can also result in different amounts of conversion particles in different emitters.
  • the end surface shape of the cured material can also vary such that light from different LEDs pass through different amounts of clear material and particles.
  • Another disadvantage of the conventional emitter manu acturing method is the waste of material when the emitter does not meet the necessary emission standards. There is no practical method for separating the two so the entire emitter must be discarded if the emitter or the conversion material region is defective. Hence, if the LED is good but the conversion material region is defective, then both will be unusable. Discarding the entire emitter results in the excessive wasting of otherwise good LEDs, which can add to the overall cost of manufacturing .
  • an emitter comprises a light source which emits a first spectrum of light.
  • a conversion material region is included that is formed separately from said light source and includes conversion particles.
  • the conversion material region is positioned in proximity to the light source such that at least some of the light source light passes through the conversion material region.
  • the conversion particles absorb at least some of the light source light passing through the conversion material region and emitting a second spectrum of light.
  • Another embodiment of an emitter according to the present invention comprises a light source which emits a first spectrum of light and a conversion material region formed separately from said light source.
  • the conversion material region is positioned proximate to the light source and arranged to absorb at least some of the light emitted by the light source and re-emit light at a second spectrum of light.
  • the emitter emits a combination of the first and second spectrums of light in a uniform third spectrum of light.
  • One embodiment of a method of fabricating an emitter according to the present invention comprises providing a light source and providing a separately formed conversion material region which includes conversion particles. The conversion material region is then bonded proximate to the light source. The conversion material region is positioned so that at least some of the light emitted from the light source at different angles flows through said conversion material region and through the substantially the same amount of conversion particles.
  • FIG. 1 is a sectional view of one embodiment of a light emitter according to the present invention having a hemispheric shaped phosphor-containing lens that is manufactured separately from the LED and submount;
  • FIG. 2 is a sectional view of the emitter of FIG. 2, with the separate pieces bonded together;
  • FIG. 3 is a sectional view of another embodiment of an emitter according to the present invention having a dome shaped phosphor-containing lens;
  • FIG. 4 is a sectional view of the emitter of FIG. 3, with the separate pieces bonded together;
  • FIG. 5 is a sectional view of another embodiment of an emitter according to the present invention having a dome shaped phosphor-containing lens;
  • FIG. 6 is a sectional view of the emitter of FIG. 5 with the separate pieces bonded together;
  • FIG. 7 is a sectional view of another embodiment of an emitter according to the present invention having a dome shaped phosphor-containing lens;
  • FIG. 8 is a sectional view of the emitter of FIG. 7 with the separate pieces bonded together;
  • FIG. 9 is a sectional view of another embodiment of an emitter according to the present invention having a hemispheric lens with a phosphor-containing layer and scattering particles;
  • FIG. 10 is a sectional view of the emitter of FIG. 9 with the separate pieces bonded together;
  • FIG. 11 is a sectional view of another embodiment of an emitter according to the present invention having a generally hemispheric lens with a phosphor-containing layer;
  • FIG. 12 is a sectional view of the emitter of FIG. 11 with the separate pieces bonded together;
  • FIG. 13 is a sectional view of another embodiment of an emitter according to the present invention having a phosphor-loaded cap;
  • FIG. 14 is a sectional view of the emitter of FIG. 13 with the separate pieces bonded together;
  • FIG. 15 is a sectional view of another embodiment of an emitter according to the present invention having a perforated phosphor loaded cap;
  • FIG. 16 is a sectional view of the emitter of FIG. 15 with the separate pieces bonded together.
  • FIGS. 17 and 18 are flow diagrams illustrating methods of fabricating an emitter according to the present invention.
  • FIGS. 1 and 2 illustrate one embodiment of a light emitter 10 in accordance with the present invention.
  • Emitter 10 can be used in many different applications such as being included in a display system where it is desired to emit light at a uniform color and/or intensity through a range of angles.
  • the system can include a single emitter or an array of emitters, but one emitter is illustrated here for simplicity and ease of discussion.
  • Emitter 10 includes a light source 12 positioned on a surface 11 of a cup shaped submount 14.
  • Light source 12 can be mounted on surface 11 using known bonding methods.
  • a filler material 19 is positioned on surface 11 and surrounds light source 12 so that filler material 19 fills the volume within the cup.
  • a hemispheric lens 16, which includes phosphor, is positioned adjacent to submount 14.
  • Lens 16 includes conversion particles 22 distributed throughout so that lens 16 and particles 22 form a conversion material region 21.
  • Surface 11 can be reflective at the wavelengths of interest so that light emitted by light source 12 reflects from surface 11 and contributes to the light emission of emitter 10. It should be noted that conversion particles 22 are represented as dots in lens 16 as shown in FIGS. 1 and 2, and the rest of the figures shown in this disclosure .
  • a surface 13 of lens 16 bonds to filler material 19 and is held in place relative to submount 14.
  • lens 16 is positioned so that a portion of the light emitted by light source 12 flows through lens 16 from surface 13 to a surface 15.
  • filler material 19 is optional and lens 16 can be bonded directly to a surface 17 of submount 14.
  • Filler material 19 can include an epoxy or another filler material capable of bonding lens 16 to submount 1 .
  • Lens 16 and filler material 19 can include a material transparent to the wavelengths of interest.
  • Conversion particles 22 can include one or more fluorescent or phosphorescent materials such as a phosphor, a fluorescent dye, or a photoluminescent semiconductor material .
  • light source 12 includes a single light emitting diode (LED) .
  • light source 12 can include other light emitters, such as a solid-state laser, a laser diode, an organic light emitting diode, among others.
  • the desired wavelengths of interest typically range from the infrared to the ultraviolet regions, although other wavelengths could be used.
  • light source 12 can include multiple light sources which emit light at the same or different wavelengths .
  • LEDs typically include an active region sandwiched between two oppositely doped layers that are either doped p-type or n-type.
  • the top layer of the LED is usually p- type and the bottom layer is usually n-type, although LEDs also work if the conductivities of the layers are reversed.
  • the p- and n-type layers have respective contacts and an electrical signal can be applied across the contacts so that a current is injected into the active region to produce light emission.
  • Submount 14 can include electrical circuitry (not shown) coupled to light source 12, such as electrical circuitry to provide power for light emission. Submount 14 can also include components and circuitry to protect light source 12 from large electrical signals such as electrostatic shock.
  • light source 12 emits light at a desired wavelength where the emitted light flows through lens 16 either directly from the light source or indirectly by reflection from surface 11. A portion of the light emitted by light source 12 flows through lens 16 and is absorbed by conversion particles 22 [0038] A portion of the absorbed radiation is re-emitted at one or more wavelength spectrums which are generally different from the absorbed wavelength, with the re- emitted light typically having a longer wavelength than the absorbed light. The combination of the transmitted light and the retransmitted light allows the emitter 10 to emit different wavelengths of light than the original emitted light. For example, light source 12 can emit blue light and conversion particles 22 can absorb a portion of the blue light and convert it to yellow light.
  • the emitter 10 then emits a white light combination of The blue and yellow light.
  • a full range of broad yellow spectral emission is possible using conversion particles which include phosphors based on the (Gd, Y) 3 (Al,Ga) 5 0 ⁇ 2 :Ce system.
  • conversion particles 22 can re-emit green light, with a suitable green emitting material being a Sr: thiogallate phosphor.
  • Other conversion particles can be used that absorb blue light and re-emit at different wavelengths of light.
  • Different conversion particles can also be used that absorb different wavelengths of light and re-emit light at different wavelengths, such as particles the absorb ultra-violet light and emit light at a different wavelength.
  • lens 16 is fabricated separately from submount 14 and light source 12.
  • material can be used to mass produce lenses using known methods such as injection molding or the conventional syringe manufacturing process.
  • One advantage is that the manufacturing process can provide lenses which are less expensive than conventional techniques.
  • One reason the process is less expensive is because the formation of emitter 10 reduces the waste generated since light source 12 can be tested before lens 16 is bonded onto submount 14. If emitter 10 has substandard emission or is otherwise defective, then a determination can be made as to whether light source 12 or lens 16 is defective. The defective component can then be discarded and substituted with a new component. The replacement process avoids the waste associated with the conventional manufacturing processes where the entire emitter is discarded if the emission is substandard.
  • Another advantage is that the emitters can be formed with a more flexible manufacturing process. For example, different lenses can be used to match the geometry of submount 14 and light source 12.
  • the color emitted by a particular emitter 10 can be changed by using a lens which includes a different type of conversion particles to produce different light combinations.
  • the changing of lenses can be done at the assembly line by simply substituting a different supply of lenses .
  • Flexibility in the manufacturing process is also obtained because a wider selection of materials can be used to form lens 16. For example, because the clear material is injected directly on the LED in the conventional syringe method, only material with a relatively low melting/curing temperature can be used. If higher temperature materials are used, then light source 12 or submount 14 can be damaged when contacted by the clear material mixture.
  • Lens 16 is manufactured separate from light source 12 and submount 14 and then bonded to submount 14 as discussed above. As a result, materials that might otherwise cause damage in the conventional syringe process can now be used, one such material being glass. By encasing conversion particles 22 in a rugged material such as glass, conversion particles 22 are better protected from contaminants in the ambient atmosphere that can undesirably react with particles 22 and reduce the usable lifetime of emitter 10. It should be understood that the lens 16 can be made of many different materials beyond glass, such as an epoxy or plastic, and the invention is not limited to the particular lens materials mentioned herein.
  • the manufacturing process also has the advantage that the light is emitted with a more uniform color, intensity, and temperature than provided by conventional manuf cturing techniques.
  • One reason better uniformity is achieved is because the light emitted from source 12 at different angles passes through similar thicknesses of lens 16 and, accordingly, through substantially similar amounts of conversion particles 22 since they are have substantially uniform distribution throughout region 21. For example, as shown in FIG. 2, light paths 1, 2, and 3 travels through substantially the same thickness of lens 16 and through substantially the same amount of conversion particles.
  • the uniformity of conversion particles 22 is better controlled since lens 16 is formed separately.
  • the settling of conversion particles 22 can be avoided by quickly curing the material mixture after the mixture is injected into the mold or by shaking the injection mold during curing.
  • conversion material region 21 does not generally contact light source 12, so variations in the surface or shape of light source 12 will not significantly impact the performance of emitter 10. Further, heat can damage conversion particles 22 if conversion material region 21 is positioned too close to light source 12.
  • FIGS. 3 and 4 illustrate an embodiment of an emitter 30 in accordance with the present invention. It should be noted that emitter 30 includes components similar to the components illustrated in FIGS. 1 and 2. Similar numbering is used on similar components with the understanding that the discussion above in conjunction with emitter 10 applies equally to emitter 30 and the other embodiments discussed in the rest of the disclosure.
  • Emitter 30 includes light source 12 mounted to submount 14. Filler material 19 can be positioned on surface 11 to surround light source 12, but is left out here and in the rest of the figures for simplicity and ease of discussion.
  • Emitter 30 includes a lens 36 mounted to surface 17.
  • Lens 36 includes an inside layer 38 with conversion particles 22 and an outside layer 40, where layers 38 and 40 preferably have uniform thicknesses throughout.
  • Lens 36 is dome shaped and is positioned on surface 17 so that a portion of the light emitted from light source 12 flows through lens 36 from a surface 33 to a surface 35.
  • Conversion particles 22 are distributed throughout conversion material region 21.
  • conversion material region 21 includes only a portion of lens 36.
  • conversion particles 22 are distributed throughout inside layer 38 and preferably not within outside layer 40.
  • inside layer 38 can include clear material mixed with conversion particles 22 and outside layer 40 can include clear material.
  • light emitted at different angles from light source 12 passes through nearly the same thickness of lens 36 and the same amount of conversion particles 22. (i.e. light paths 1, 2, and 3 are equal)
  • an inside distance 42 (See FIG. 4) can be maintained between light source 12 and inside layer 38 and conversion particles 22, with distance 42 being optimized for the particular light source 12 and submount 14.
  • the optimum value for distances 42 and thickness 44 depends on the type and dimensions of light source 12 and submount 14.
  • Distance 42 is chosen to allow for light source 12 to provide a higher intensity of light without generating excessive heat which can damage conversion particles 22. Heat can damage conversion particles 22 if conversion material region 21 is positioned too close to light source 12.
  • Distance 42 can also affect the light efficiency of emitter 30.
  • directional light from light source 12 passes into inner layer 38 and is redirected back towards light source 12, a portion of the directional light can be absorbed by conversion particles 22 and re- emitted omnidirectionally. If distance 42 is too small or if conversion particles 22 are positioned directly on light source 12, then some of the re-emitted light can be directed back into and absorbed by light source 12. The absorption of this light can reduce the overall light emitting efficiency of emitter 30 because it can increase the temperature of light source 12. If distance 42 is too large, then thickness 44 can be reduced to a point that light from conversion particles 22 can be trapped in lens 36 by total internal reflection, which also reduces the overall efficiency of emitter 30.
  • FIGS. 5 and 6 illustrate an emitter 50 in accordance with the present invention, where emitter 50 includes a flat submount 5 .
  • a dome shaped lens 56 is positioned over light source 12 and mounted to a surface 51 of submount 54, with light source 12 arranged in the space provided between an inside surface 53 of lens 56 and submount 54 (See FIG. 6) .
  • Light source 12 and inside surface 53 can be spaced apart such that the absorption by light source 12 of re-emitted light from conversion material regions 22 is minimized.
  • Lens 56 includes conversion particles 22 distributed throughout lens 56 such that when light emitted from light source 12 passes through lens 56, a portion of it is absorbed by conversion particles 22 and re-emitted at a different wavelength.
  • FIGS. 7 and 8 illustrate an embodiment of an emitter 70 in accordance with the present invention.
  • emitter 70 includes a dome shaped lens 76 mounted to surface 51 of submount 54.
  • Lens 76 includes an inside layer 78 which has clear material mixed with conversion particles 22 and an outside layer 80 which has clear material, preferably without any conversion particles.
  • Light flow is from light source 12 through lens 76 from a surface 73 to a surface 75.
  • an inside distance 82 is chosen between light source 12 and inside layer 78 to minimize the absorption of re- emitted light from conversion particles 22 into light source 12.
  • FIGS. 9 and 10 illustrate an embodiment of an emitter 90 in accordance with the present invention where emitter 90 includes light source 12 mounted to surface 11 of submount 14.
  • a hemispheric shaped lens 96 is mounted to surface 17 where lens 96 includes a bottom layer 98 with conversion particles 22.
  • layer 98 also includes scattering particles 100 for redirecting some of the light.
  • a portion of the light absorbed and re-emitted by conversion particles 22 in layer 98 is directed along layer 98, as shown by arrow 99 (See FIG. 10) .
  • This re- emitted light can be directed away from surface 95.
  • scattering particles 100 are included in layer 98 is to redirect the light towards surface 95 so that the light emitting efficiency of emitter 90 is increased.
  • the conversion and scattering efficiency of conversion particles 22 can depend on the wavelength of the light and the size of the conversion particles.
  • Conversion material region 21 typically does not scatter light effectively because the conversion efficiency of particles 22 decreases as their size decreases. As a result, it is difficult to obtain high conversion efficiency particles that are smaller than approximately one micron in diameter.
  • the diameter of scattering particles 100 should be approximately one half of the wavelength of the light being scattered. In air, this would result in particles 100 being approximately 0.2 to 0.25 microns in diameter. This range of diameters would be smaller for particles in a different medium, such as epoxy or another material with an index of refraction greater than free space. As a result, phosphor particles are generally too large to effectively scatter light.
  • FIGS. 11 and 12 illustrate an embodiment of an emitter 110 in accordance with the present invention, where emitter 110 includes light source 12 mounted to a surface 111 of a submount 114.
  • a lens 116 is positioned on a surface 117 of submount 114 where lens 116 has a bottom layer 118 which includes conversion particles 22.
  • Light flow is from light source 12 through lens 116 from a surface 103 to a surface 105.
  • Submount 114 includes a surface 101 and a surface 115 which are oriented to redirect light emitted from conversion particles 22 towards surface 105.
  • bottom layer 118 does not have to include scattering particles similar to scattering particles 100 discussed above to scatter the re-emitted light from conversion particles 22.
  • scattering particles 100 can still be included in layer 118, but are left out for simplicity and ease of discussion.
  • Surfaces 101 and 115 are shaped so light directed along layer 118 reflects off surfaces 101 and/or 117 and is combined with the light emitted from light source 12 that flows through layer 118 to surface 105.
  • the light reflected from surfaces 101 and 115 can contribute to the light emitted by emitter 110.
  • the light emission efficiency of emitter 110 is increased by including surfaces 101 and 115 in submount 114.
  • FIGS. 13 and 14 illustrate an embodiment of an emitter 130 in accordance with the present invention, where emitter 130 includes an LED 152 which can be shaped.
  • emitter 130 does not include a submount as in the embodiments discussed previously. Instead, emitter 130 includes contacts 134 and 135 arranged on the bottom of LED 152. Hence, LED 152 can be mounted in a metal cup with contacts 134 and 135 electrically connected to a bias source at the cup to provide power for the illumination of LED 152.
  • emitter 130 includes a phosphor loaded cap 136 having the same basic shape as LED 152 and, preferably, having a generally consistent thickness.
  • Cap 136 can be made of a similar material as the lenses described above and can include conversion particles distributed thoughout .
  • Cap 136 can be manufactured separately from LED 152 by the same methods as the lenses described above, one method being injection molding.
  • Cap 136 can be mounted in place over LED 152 with an epoxy or another similar material.
  • FIGS. 15 and 16 illustrate an embodiment of an emitter 150 in accordance to the present invention where emitter 150 includes LED 152 and a phosphor-loaded cap 154.
  • LED 152 has a bottom contact 156 and a top contact 158.
  • Cap 154 has a top perforation 160 slightly larger that top contact 158 so that when cap 154 is bonded to LED 152, top contact 158 is arranged within, and accessible though, top perforation 160.
  • Perforation 160 can be positioned anywhere along the phosphor cap, but is shown centered on the top for simplicity and ease of discussion.
  • top contact 158 allows an electrical signal to be provided to LED 152 through bottom and top contacts 156 and 158, respectively.
  • the electrical signal is provided to top contact 158 through conductor 162 which is wire bonded to contact 158.
  • the electrical signal can also be provided to bottom contact 156 through a conductor (not shown) or through a metal cup .
  • FIG. 17 is a flow diagram of one embodiment of an emitter fabrication method 170 according to the present invention, where the components of the emitter are fabricated separately and then bonded together.
  • an LED is fabricated using any know method such as fabrication in a MOCVD reactor.
  • the submount is fabricated and in step 176 the LED is bonded to the base of the submount using known bonding methods.
  • the lens with conversion material region is fabricated using known fabrication methods such as injection molding.
  • the lens is bonded to the submount over the LED, with a preferred method being filling the space between the lens and submount/LED with an epoxy or another filler material, and contacting the inside surface of the lens to hold it in place.
  • the emitter can be tested with the lens in place on the submount, but before it is bonded to the submount. If the emission of the emitter is substandard a determination can be made as to whether the LED or the lens is defective. The defective part can then be discarded and replaced with a new part. Bonding step 180 can occur after the testing process is repeated until the emitter operates efficiently.
  • FIG. 18 is a flow diagram of another embodiment of an emitter fabrication method 190 in accordance with the present invention.
  • a step 192 an LED is fabricated using any known method such as fabrication in a MOCVD reactor, where the LED can be arbitrarily shaped.
  • contacts are formed on the LED using known methods such as sputtering.
  • a step 196 a phosphor- loaded cap is fabricated using known methods, such as injection molding.
  • the cap is mounted to the LED so that a portion of the LED light passes through the cap.
  • the cap can be mounted to the LED using epoxy or another bonding material.
  • the contacts are deposited on the bottom surface of the LED and the cap cover's the LED's top and side surfaces.
  • a contact is deposited on the LED's bottom surface and another contact is deposited on the LED's top surface.
  • the cap is perforated on its top surface and when it is bonded to the LED the top contact is housed in, and accessible through, the perforation.
  • the method can also include intermediate steps of testing the emitter before it the cap is bonded to the LED. If either the cap or the LED are found to be defective, then the defective part can be discarded and replaced with a different part. The testing can be repeated until the emitter emits light at a sufficient color and intensity over a range of viewing angles before the cap is bonded to the LED.
  • the sequence of the steps in the methods described above can be different.
  • Other methods according to the invention can use more or less steps and can use different steps.
  • the lenses and caps described above can take many different shapes and layers and can include many different types of conversion particles.
  • the lens and caps can be shaped to adapt to the particular application and can be shaped to focus the emitted light.
  • Each of the lenses and caps described can also include scattering particles throughout or in different locations.

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
PCT/US2004/005650 2003-02-26 2004-02-24 White light source using emitting diode and phosphor and method of fabrication Ceased WO2004077580A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002517009A CA2517009A1 (en) 2003-02-26 2004-02-24 White light source using emitting diode and phosphor and method of fabrication
EP04714213.8A EP1597777B1 (en) 2003-02-26 2004-02-24 Composite white light source and method for fabricating
JP2006503876A JP2006519500A (ja) 2003-02-26 2004-02-24 合成白色光源及びその製造方法
CN200480011028XA CN1777999B (zh) 2003-02-26 2004-02-24 复合式白色光源及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45106703P 2003-02-26 2003-02-26
US60/451,067 2003-02-26

Publications (2)

Publication Number Publication Date
WO2004077580A2 true WO2004077580A2 (en) 2004-09-10
WO2004077580A3 WO2004077580A3 (en) 2005-03-10

Family

ID=32927698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/005650 Ceased WO2004077580A2 (en) 2003-02-26 2004-02-24 White light source using emitting diode and phosphor and method of fabrication

Country Status (9)

Country Link
US (1) US9142734B2 (enExample)
EP (2) EP1597777B1 (enExample)
JP (3) JP2006519500A (enExample)
KR (2) KR20050113200A (enExample)
CN (1) CN1777999B (enExample)
CA (1) CA2517009A1 (enExample)
MY (1) MY142684A (enExample)
TW (2) TW201225339A (enExample)
WO (1) WO2004077580A2 (enExample)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006059535A3 (en) * 2004-11-30 2006-08-17 Matsushita Electric Industrial Co Ltd Semiconductor light emitting device, lighting module, illumination apparatus, surface mount led, and bullet led
WO2006103582A1 (en) * 2005-03-29 2006-10-05 Koninklijke Philips Electronics N.V. Wide emitting lens for led useful for backlighting
JP2007036251A (ja) * 2005-07-26 2007-02-08 Samsung Electro-Mechanics Co Ltd 拡散材料を用いたledパッケージ及びその製造方法
JP2007035882A (ja) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Led照明装置
GB2429840A (en) * 2005-08-12 2007-03-07 Avago Tech Ecbu Ip Phosphor-converted LED device
JP2007088081A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd 発光装置
JP2007116075A (ja) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd 発光装置
JP2007116109A (ja) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Led照明器具
JP2007142279A (ja) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd 発光装置およびその製造方法
JP2007165815A (ja) * 2005-09-20 2007-06-28 Matsushita Electric Works Ltd 発光装置
JP2007173787A (ja) * 2005-12-21 2007-07-05 Samsung Electro Mech Co Ltd Ledパッケージ及びこれを用いたバックライトユニット
JP2007251214A (ja) * 2005-09-20 2007-09-27 Matsushita Electric Works Ltd 発光装置
JP2007266631A (ja) * 2005-09-20 2007-10-11 Matsushita Electric Works Ltd 発光装置
JP2008034799A (ja) * 2006-07-27 2008-02-14 Samsung Electro-Mechanics Co Ltd 表面実装型発光ダイオード素子
WO2008063884A1 (en) * 2006-11-20 2008-05-29 3M Innovative Properties Company Optical bonding composition for led light source
WO2008064070A1 (en) * 2006-11-17 2008-05-29 3M Innovative Properties Company Optical bonding composition for led light source
CN100446283C (zh) * 2004-09-29 2008-12-24 斯坦雷电气株式会社 半导体发光器件的制造方法
US7479662B2 (en) 2002-08-30 2009-01-20 Lumination Llc Coated LED with improved efficiency
JP2009506557A (ja) * 2005-08-30 2009-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オプトエレクトロニクスデバイス
JP2009545888A (ja) * 2006-08-03 2009-12-24 インテマティックス・コーポレーション 光放出蛍光体を包含するled照明配置
GB2462807A (en) * 2008-08-14 2010-02-24 Glory Science Co Ltd A uniform intensity light emitting unit
US7948001B2 (en) 2005-09-20 2011-05-24 Panasonic Electric Works, Co., Ltd. LED lighting fixture
US7956372B2 (en) 2005-09-20 2011-06-07 Panasonic Electric Works Co., Ltd. Light emitting device
WO2012015556A1 (en) * 2010-07-29 2012-02-02 Cree, Inc. Lighting devices that comprise one or more solid state light emitters
KR101518302B1 (ko) * 2006-11-17 2015-05-08 렌슬러 폴리테크닉 인스티튜트 고전력 백색 led 및 그 제조 방법
EP2791984A4 (en) * 2011-12-06 2015-07-22 Cree Inc LIGHT EMITTER DEVICES AND METHOD FOR IMPROVED LIGHTING
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9634203B2 (en) 2008-05-30 2017-04-25 Sharp Kabushiki Kaisha Light emitting device, surface light source, liquid crystal display device, and method for manufacturing light emitting device
WO2018050543A1 (de) * 2016-09-13 2018-03-22 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US10038123B2 (en) 2008-11-13 2018-07-31 Maven Optronics International, Ltd. Phosphor-coated light extraction structures for phosphor-converted light emitting devices
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US7775685B2 (en) * 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
US7244965B2 (en) 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
WO2004077580A2 (en) 2003-02-26 2004-09-10 Cree, Inc. White light source using emitting diode and phosphor and method of fabrication
US20050006659A1 (en) * 2003-07-09 2005-01-13 Ng Kee Yean Light emitting diode utilizing a discrete wavelength-converting layer for color conversion
US7837348B2 (en) * 2004-05-05 2010-11-23 Rensselaer Polytechnic Institute Lighting system using multiple colored light emitting sources and diffuser element
CN1981157B (zh) * 2004-05-05 2011-03-16 伦斯勒工业学院 使用固态发射器和降频转换材料的高效光源
US7315119B2 (en) * 2004-05-07 2008-01-01 Avago Technologies Ip (Singapore) Pte Ltd Light-emitting device having a phosphor particle layer with specific thickness
JP3875247B2 (ja) * 2004-09-27 2007-01-31 株式会社エンプラス 発光装置、面光源装置、表示装置及び光束制御部材
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US7358543B2 (en) * 2005-05-27 2008-04-15 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light emitting device having a layer of photonic crystals and a region of diffusing material and method for fabricating the device
US7980743B2 (en) 2005-06-14 2011-07-19 Cree, Inc. LED backlighting for displays
US7319246B2 (en) * 2005-06-23 2008-01-15 Lumination Llc Luminescent sheet covering for LEDs
EP1897150A2 (en) * 2005-06-23 2008-03-12 Koninklijke Philips Electronics N.V. A light-emitting device and method for its design
JP2008544553A (ja) * 2005-06-23 2008-12-04 レンセレイアー ポリテクニック インスティテュート 短波長ledとダウンコンバージョン物質で白色光を生成するパッケージ設計
US7294861B2 (en) * 2005-06-30 2007-11-13 3M Innovative Properties Company Phosphor tape article
US20070023762A1 (en) * 2005-07-29 2007-02-01 Luxo Asa And Oec Ag White light emitting LED-powered lamp
KR20070033801A (ko) * 2005-09-22 2007-03-27 삼성전기주식회사 발광 다이오드 패키지 및 그 제조 방법
US7614759B2 (en) * 2005-12-22 2009-11-10 Cree Led Lighting Solutions, Inc. Lighting device
JP2009530798A (ja) 2006-01-05 2009-08-27 イルミテックス, インコーポレイテッド Ledから光を導くための独立した光学デバイス
JP4863357B2 (ja) * 2006-01-24 2012-01-25 株式会社エンプラス 発光装置、面光源装置、表示装置及び光束制御部材
US7928462B2 (en) 2006-02-16 2011-04-19 Lg Electronics Inc. Light emitting device having vertical structure, package thereof and method for manufacturing the same
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
KR100783794B1 (ko) * 2006-03-31 2007-12-07 (주)씨티엘 복층 에폭시 수지 구조의 발광 다이오드 패키지
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
US20070257271A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with encapsulated converging optical element
US7525126B2 (en) * 2006-05-02 2009-04-28 3M Innovative Properties Company LED package with converging optical element
US20070258241A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with non-bonded converging optical element
US7390117B2 (en) * 2006-05-02 2008-06-24 3M Innovative Properties Company LED package with compound converging optical element
US20070257270A1 (en) * 2006-05-02 2007-11-08 3M Innovative Properties Company Led package with wedge-shaped optical element
DE102006029203B9 (de) * 2006-06-26 2023-06-22 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierende Vorrichtung
US20080012034A1 (en) * 2006-07-17 2008-01-17 3M Innovative Properties Company Led package with converging extractor
US8735920B2 (en) * 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
WO2008016908A2 (en) * 2006-07-31 2008-02-07 3M Innovative Properties Company Led source with hollow collection lens
CN101513120A (zh) * 2006-08-03 2009-08-19 英特曼帝克司公司 包含发光磷光体的发光二极管照明布置
US7703942B2 (en) * 2006-08-31 2010-04-27 Rensselaer Polytechnic Institute High-efficient light engines using light emitting diodes
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US10295147B2 (en) * 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US20080121911A1 (en) * 2006-11-28 2008-05-29 Cree, Inc. Optical preforms for solid state light emitting dice, and methods and systems for fabricating and assembling same
KR100851183B1 (ko) * 2006-12-27 2008-08-08 엘지이노텍 주식회사 반도체 발광소자 패키지
DE102007006349A1 (de) * 2007-01-25 2008-07-31 Osram Opto Semiconductors Gmbh Anordnung zur Erzeugung von Mischlicht und Verfahren zur Herstellung einer solchen Anordnung
US20080198572A1 (en) 2007-02-21 2008-08-21 Medendorp Nicholas W LED lighting systems including luminescent layers on remote reflectors
US20080237618A1 (en) * 2007-03-26 2008-10-02 Feng-Fu Ko Light emitting diode module and manufacturing method thereof
US20080283864A1 (en) * 2007-05-16 2008-11-20 Letoquin Ronan P Single Crystal Phosphor Light Conversion Structures for Light Emitting Devices
JP5158472B2 (ja) 2007-05-24 2013-03-06 スタンレー電気株式会社 半導体発光装置
JP2010529612A (ja) * 2007-06-05 2010-08-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 照明システム、コリメータ及びスポットライト
WO2009014590A2 (en) 2007-06-25 2009-01-29 Qd Vision, Inc. Compositions and methods including depositing nanomaterial
WO2009014707A2 (en) 2007-07-23 2009-01-29 Qd Vision, Inc. Quantum dot light enhancement substrate and lighting device including same
US8128249B2 (en) 2007-08-28 2012-03-06 Qd Vision, Inc. Apparatus for selectively backlighting a material
DE102007049799A1 (de) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
US8783887B2 (en) * 2007-10-01 2014-07-22 Intematix Corporation Color tunable light emitting device
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
WO2009100358A1 (en) 2008-02-08 2009-08-13 Illumitex, Inc. System and method for emitter layer shaping
JP4479805B2 (ja) 2008-02-15 2010-06-09 ソニー株式会社 レンズ、光源ユニット、バックライト装置及び表示装置
DE102008021436A1 (de) * 2008-04-29 2010-05-20 Schott Ag Optik-Konverter-System für (W)LEDs
DE102008025756B4 (de) * 2008-05-29 2023-02-23 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiteranordnung
US9425172B2 (en) * 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
US7928655B2 (en) * 2008-11-10 2011-04-19 Visera Technologies Company Limited Light-emitting diode device and method for fabricating the same
DE102008057140A1 (de) 2008-11-13 2010-05-20 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
DE102009017946A1 (de) * 2009-04-17 2010-10-21 Osram Opto Semiconductors Gmbh Linse, optoelektronisches Bauelement aufweisend eine Linse und Verfahren zur Herstellung einer Linse
TWM374650U (en) * 2009-04-20 2010-02-21 Hsin I Technology Co Ltd LED packaging structure
US10422503B2 (en) 2009-10-30 2019-09-24 Ideal Industries Lighting Llc One-piece multi-lens optical member and method of manufacture
US8337030B2 (en) 2009-05-13 2012-12-25 Cree, Inc. Solid state lighting devices having remote luminescent material-containing element, and lighting methods
US8724054B2 (en) * 2009-05-27 2014-05-13 Gary Wayne Jones High efficiency and long life optical spectrum conversion device and process
US20100301728A1 (en) * 2009-06-02 2010-12-02 Bridgelux, Inc. Light source having a refractive element
JP2011009572A (ja) * 2009-06-26 2011-01-13 Citizen Electronics Co Ltd フリップチップ実装型led及びフリップチップ実装型ledの製造方法。
US8449128B2 (en) * 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US9385285B2 (en) * 2009-09-17 2016-07-05 Koninklijke Philips N.V. LED module with high index lens
US20110062469A1 (en) * 2009-09-17 2011-03-17 Koninklijke Philips Electronics N.V. Molded lens incorporating a window element
WO2011037877A1 (en) 2009-09-25 2011-03-31 Cree, Inc. Lighting device with low glare and high light level uniformity
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
US9163802B2 (en) * 2009-12-02 2015-10-20 Abl Ip Holding Llc Lighting fixtures using solid state device and remote phosphors to produce white light
US8466611B2 (en) 2009-12-14 2013-06-18 Cree, Inc. Lighting device with shaped remote phosphor
CN102157670A (zh) * 2010-02-11 2011-08-17 亿光电子工业股份有限公司 发光装置
US8205998B2 (en) * 2010-02-15 2012-06-26 Abl Ip Holding Llc Phosphor-centric control of solid state lighting
US8517550B2 (en) * 2010-02-15 2013-08-27 Abl Ip Holding Llc Phosphor-centric control of color of light
US20130313965A1 (en) * 2010-02-18 2013-11-28 Walsin Lihwa Corporation Light Emitting Diode Unit
CN102770796A (zh) * 2010-03-01 2012-11-07 皇家飞利浦电子股份有限公司 照明装置
US8350453B2 (en) * 2010-05-25 2013-01-08 Nepes Led Corporation Lamp cover including a phosphor mixed structure for light emitting device
US20130070168A1 (en) * 2010-05-26 2013-03-21 Sharp Kabushiki Kaisha Led light source, led backlight, liquid crystal display device and tv reception device
DE102010022561A1 (de) * 2010-06-02 2011-12-08 Osram Opto Semiconductors Gmbh Wellenlängenkonversionselement, optoelektronisches Bauelement mit einem Wellenlängenkonversionselement und Verfahren zur Herstellung eines Wellenlängenkonversionselements
JP5395761B2 (ja) * 2010-07-16 2014-01-22 日東電工株式会社 発光装置用部品、発光装置およびその製造方法
DE102010034923A1 (de) 2010-08-20 2012-02-23 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Schichtverbunds aus einer Lumineszenzkonversionsschicht und einer Streuschicht
KR101742615B1 (ko) * 2010-09-20 2017-06-01 엘지이노텍 주식회사 발광 소자 패키지 및 발광 모듈
US8604678B2 (en) 2010-10-05 2013-12-10 Intematix Corporation Wavelength conversion component with a diffusing layer
US8957585B2 (en) 2010-10-05 2015-02-17 Intermatix Corporation Solid-state light emitting devices with photoluminescence wavelength conversion
US8610341B2 (en) 2010-10-05 2013-12-17 Intematix Corporation Wavelength conversion component
US8614539B2 (en) 2010-10-05 2013-12-24 Intematix Corporation Wavelength conversion component with scattering particles
KR20130139938A (ko) 2010-10-05 2013-12-23 인터매틱스 코포레이션 포토루미네센스 파장 변환을 구비한 고체상태 발광 디바이스 및 표지판
US9546765B2 (en) 2010-10-05 2017-01-17 Intematix Corporation Diffuser component having scattering particles
US9140429B2 (en) 2010-10-14 2015-09-22 Cree, Inc. Optical element edge treatment for lighting device
US9648673B2 (en) 2010-11-05 2017-05-09 Cree, Inc. Lighting device with spatially segregated primary and secondary emitters
US8491140B2 (en) 2010-11-05 2013-07-23 Cree, Inc. Lighting device with multiple emitters and remote lumiphor
KR20120050282A (ko) * 2010-11-10 2012-05-18 삼성엘이디 주식회사 발광 소자 패키지 및 그 제조 방법
KR20120082655A (ko) * 2011-01-14 2012-07-24 삼성전자주식회사 엘이디 플래시 렌즈 유닛 및 그 제조방법
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
CN106931333B (zh) 2011-11-23 2020-11-27 夸克星有限责任公司 发光装置
JP5450680B2 (ja) * 2012-02-01 2014-03-26 スタンレー電気株式会社 半導体発光装置
CN104160212B (zh) * 2012-03-01 2018-10-12 飞利浦灯具控股公司 Led照明布置
DE102012203791A1 (de) * 2012-03-12 2013-09-12 Zumtobel Lighting Gmbh LED-Modul
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
US9383496B2 (en) * 2012-06-05 2016-07-05 Rambus Delaware Llc Edge lit lighting assembly with spectrum adjuster
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
CN104412029A (zh) * 2012-06-28 2015-03-11 英特曼帝克司公司 包含发光磷光体的线状led照明布置
US8876330B2 (en) * 2012-11-15 2014-11-04 Illinois Tool Works Inc. Illumination device
KR102029802B1 (ko) * 2013-01-14 2019-10-08 엘지이노텍 주식회사 발광 소자 및 이를 구비한 조명 장치
JP2014139999A (ja) 2013-01-21 2014-07-31 Toshiba Corp 半導体発光装置
US9920901B2 (en) 2013-03-15 2018-03-20 Cree, Inc. LED lensing arrangement
TWI627371B (zh) 2013-03-15 2018-06-21 英特曼帝克司公司 光致發光波長轉換組件
US10400984B2 (en) * 2013-03-15 2019-09-03 Cree, Inc. LED light fixture and unitary optic member therefor
US9587790B2 (en) 2013-03-15 2017-03-07 Cree, Inc. Remote lumiphor solid state lighting devices with enhanced light extraction
JP5698808B2 (ja) * 2013-07-26 2015-04-08 スタンレー電気株式会社 半導体発光装置
CN105900251A (zh) * 2013-11-13 2016-08-24 纳米技术有限公司 包含量子点荧光体的led盖
CN104716244A (zh) * 2013-12-13 2015-06-17 鸿富锦精密工业(深圳)有限公司 白光led封装结构
US9669756B2 (en) * 2014-09-29 2017-06-06 Nissan North America, Inc. Under vehicle illumination
US10495268B1 (en) * 2014-10-31 2019-12-03 The Regents Of The University Of California High intensity solid state white emitter which is laser driven and uses single crystal, ceramic or polycrystalline phosphors
JP6755090B2 (ja) * 2014-12-11 2020-09-16 シチズン電子株式会社 発光装置及び発光装置の製造方法
KR102408618B1 (ko) * 2015-02-16 2022-06-14 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지 및 이를 포함하는 조명 장치
US10488018B2 (en) * 2015-08-17 2019-11-26 Infinite Arthroscopy, Inc. Limited Light source
TWI657293B (zh) 2016-03-29 2019-04-21 友達光電股份有限公司 背光模組
JP6793846B6 (ja) 2017-02-15 2020-12-23 インフィニット アースロスコピー インコーポレーテッド, リミテッド ヘッドユニットと集積光源を備える光ケーブルとを備える無線医療撮像システム
WO2019108771A1 (en) * 2017-11-29 2019-06-06 Corning Incorporated Quantum-dot led backlight module for led displays
USD938584S1 (en) 2020-03-30 2021-12-14 Lazurite Holdings Llc Hand piece
USD972176S1 (en) 2020-08-06 2022-12-06 Lazurite Holdings Llc Light source
US11367810B2 (en) 2020-08-14 2022-06-21 Creeled, Inc. Light-altering particle arrangements for light-emitting devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030025449A1 (en) 2001-08-03 2003-02-06 Osram Opto Semiconductors Gmbh Hybrid LED
EP1418628A1 (en) 2001-07-26 2004-05-12 Matsushita Electric Works, Ltd. Light emitting device using led

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2127239A5 (enExample) 1971-03-01 1972-10-13 Radiotechnique Compelec
US4476620A (en) * 1979-10-19 1984-10-16 Matsushita Electric Industrial Co., Ltd. Method of making a gallium nitride light-emitting diode
JPS60106175A (ja) 1983-11-14 1985-06-11 Mitsubishi Electric Corp 半導体記憶装置の製造方法
JPS61144890A (ja) 1984-12-19 1986-07-02 Stanley Electric Co Ltd Ledランプのレンズの製造方法
JPS62143942A (ja) 1985-12-18 1987-06-27 Taihoo Kogyo Kk 防曇材
JPH01230274A (ja) 1987-11-13 1989-09-13 Iwasaki Electric Co Ltd 発光ダイオード
US5094185A (en) * 1987-11-24 1992-03-10 Lumel, Inc. Electroluminescent lamps and phosphors
JPH01139664A (ja) 1987-11-27 1989-06-01 Sanken Kagaku Kk 溶剤型粘着剤
JPH01287973A (ja) 1988-05-13 1989-11-20 Takiron Co Ltd ドットマトリックス発光表示体
JPH04555A (ja) 1990-04-17 1992-01-06 Matsushita Electric Ind Co Ltd データ処理装置
JPH0428269A (ja) 1990-05-23 1992-01-30 Fujikura Ltd Ledベアチップの実装構造
JPH0646038A (ja) 1991-04-26 1994-02-18 Nec Corp オンライン機能確認方法
JPH058494A (ja) 1991-07-04 1993-01-19 Canon Inc 記録装置
JPH05298384A (ja) 1992-04-20 1993-11-12 Mitsubishi Electric Corp シンボル配置方法
JPH06275866A (ja) 1993-03-19 1994-09-30 Fujitsu Ltd ポーラス半導体発光装置と製造方法
JPH05327012A (ja) 1992-05-15 1993-12-10 Sanyo Electric Co Ltd 炭化ケイ素発光ダイオード
JP3269668B2 (ja) 1992-09-18 2002-03-25 株式会社日立製作所 太陽電池
JPH0769328B2 (ja) 1992-10-30 1995-07-26 株式会社生体科学研究所 代謝解析方法
JPH06177427A (ja) 1992-12-03 1994-06-24 Rohm Co Ltd 発光ダイオードランプ
JPH06214481A (ja) 1993-01-19 1994-08-05 Ricoh Co Ltd 画像形成装置
JPH07193281A (ja) 1993-12-27 1995-07-28 Mitsubishi Materials Corp 指向性の少ない赤外可視変換発光ダイオード
JP3127195B2 (ja) 1994-12-06 2001-01-22 シャープ株式会社 発光デバイスおよびその製造方法
JPH0983018A (ja) 1995-09-11 1997-03-28 Nippon Denyo Kk 発光ダイオードユニット
JPH09138402A (ja) 1995-11-15 1997-05-27 Kouha:Kk 液晶表示装置照明用ledバックライト装置
JP3311914B2 (ja) 1995-12-27 2002-08-05 株式会社シチズン電子 チップ型発光ダイオード
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
CN1264228C (zh) 1996-06-26 2006-07-12 奥斯兰姆奥普托半导体股份有限两合公司 发光半导体器件、全色发光二极管显示装置及其应用
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP3065263B2 (ja) 1996-12-27 2000-07-17 日亜化学工業株式会社 発光装置及びそれを用いたled表示器
JPH10233532A (ja) 1997-02-21 1998-09-02 Houshin Kagaku Sangiyoushiyo:Kk 発光ダイオード
US5813753A (en) * 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
US6784463B2 (en) 1997-06-03 2004-08-31 Lumileds Lighting U.S., Llc III-Phospide and III-Arsenide flip chip light-emitting devices
JPH1126808A (ja) 1997-07-09 1999-01-29 Matsushita Electric Ind Co Ltd 発光素子およびその製造方法
GB2331625B (en) 1997-11-19 2003-02-26 Hassan Paddy Abdel Salam led Lamp
JPH11177129A (ja) 1997-12-16 1999-07-02 Rohm Co Ltd チップ型led、ledランプおよびledディスプレイ
US6252254B1 (en) * 1998-02-06 2001-06-26 General Electric Company Light emitting device with phosphor composition
JP3704941B2 (ja) 1998-03-30 2005-10-12 日亜化学工業株式会社 発光装置
JP2000031548A (ja) 1998-07-09 2000-01-28 Stanley Electric Co Ltd 面実装型発光ダイオードおよびその製造方法
JP3486345B2 (ja) 1998-07-14 2004-01-13 東芝電子エンジニアリング株式会社 半導体発光装置
US5959316A (en) * 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6355508B1 (en) * 1998-09-02 2002-03-12 Micron Technology, Inc. Method for forming electrostatic discharge protection device having a graded junction
US6204523B1 (en) * 1998-11-06 2001-03-20 Lumileds Lighting, U.S., Llc High stability optical encapsulation and packaging for light-emitting diodes in the green, blue, and near UV range
JP3469484B2 (ja) 1998-12-24 2003-11-25 株式会社東芝 半導体発光素子およびその製造方法
JP2000208822A (ja) 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp 半導体発光装置
JP4680334B2 (ja) 1999-01-13 2011-05-11 株式会社朝日ラバー 発光装置
JP2000223749A (ja) 1999-01-29 2000-08-11 Seiwa Electric Mfg Co Ltd 発光ダイオードランプとその製造方法、チップ型発光ダイオード素子及びドットマトリクス型発光ダイオードユニット
US6521916B2 (en) 1999-03-15 2003-02-18 Gentex Corporation Radiation emitter device having an encapsulant with different zones of thermal conductivity
US6222207B1 (en) 1999-05-24 2001-04-24 Lumileds Lighting, U.S. Llc Diffusion barrier for increased mirror reflectivity in reflective solderable contacts on high power LED chip
JP2001000043A (ja) 1999-06-18 2001-01-09 Mitsubishi Chemicals Corp 栽培用光源
JP2001148514A (ja) * 1999-11-18 2001-05-29 Matsushita Electric Works Ltd 照明光源
US7202506B1 (en) 1999-11-19 2007-04-10 Cree, Inc. Multi element, multi color solid state LED/laser
WO2001041225A2 (en) * 1999-12-03 2001-06-07 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
JP2001177153A (ja) 1999-12-17 2001-06-29 Sharp Corp 発光装置
US6486499B1 (en) 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6504860B2 (en) 2001-01-29 2003-01-07 Cymer, Inc. Purge monitoring system for gas discharge laser
JP3696021B2 (ja) 2000-01-20 2005-09-14 三洋電機株式会社 光照射装置
HK1041367A1 (en) * 2000-02-09 2002-07-05 Nippon Leiz Corporation light source
JP4406490B2 (ja) 2000-03-14 2010-01-27 株式会社朝日ラバー 発光ダイオード
US20020123163A1 (en) * 2000-04-24 2002-09-05 Takehiro Fujii Edge-emitting light-emitting semiconductor device and method of manufacture thereof
JP2001345485A (ja) 2000-06-02 2001-12-14 Toyoda Gosei Co Ltd 発光装置
GB0015898D0 (en) 2000-06-28 2000-08-23 Oxley Dev Co Ltd Light
JP2002076443A (ja) 2000-08-29 2002-03-15 Citizen Electronics Co Ltd Ledチップ用反射カップ
US7053419B1 (en) * 2000-09-12 2006-05-30 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
US7064355B2 (en) * 2000-09-12 2006-06-20 Lumileds Lighting U.S., Llc Light emitting diodes with improved light extraction efficiency
JP2002141556A (ja) * 2000-09-12 2002-05-17 Lumileds Lighting Us Llc 改良された光抽出効果を有する発光ダイオード
JP3466144B2 (ja) 2000-09-22 2003-11-10 士郎 酒井 半導体の表面を荒くする方法
US6998281B2 (en) * 2000-10-12 2006-02-14 General Electric Company Solid state lighting device with reduced form factor including LED with directional emission and package with microoptics
US6650044B1 (en) 2000-10-13 2003-11-18 Lumileds Lighting U.S., Llc Stenciling phosphor layers on light emitting diodes
US20020063520A1 (en) * 2000-11-29 2002-05-30 Huei-Che Yu Pre-formed fluorescent plate - LED device
JP3614776B2 (ja) * 2000-12-19 2005-01-26 シャープ株式会社 チップ部品型ledとその製造方法
JP5110744B2 (ja) 2000-12-21 2012-12-26 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 発光装置及びその製造方法
JP2002217450A (ja) 2001-01-22 2002-08-02 Sanken Electric Co Ltd 半導体発光素子及びその製造方法
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
TW516247B (en) * 2001-02-26 2003-01-01 Arima Optoelectronics Corp Light emitting diode with light conversion using scattering optical media
JP2002261333A (ja) 2001-03-05 2002-09-13 Toyoda Gosei Co Ltd 発光装置
JP4430264B2 (ja) 2001-03-19 2010-03-10 日亜化学工業株式会社 表面実装型発光装置
JP2002289923A (ja) 2001-03-28 2002-10-04 Toyoda Gosei Co Ltd 発光ダイオード及びその製造方法
JP4101468B2 (ja) * 2001-04-09 2008-06-18 豊田合成株式会社 発光装置の製造方法
US6686676B2 (en) * 2001-04-30 2004-02-03 General Electric Company UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same
JP2002344029A (ja) 2001-05-17 2002-11-29 Rohm Co Ltd 発光ダイオードの色調調整方法
US6642652B2 (en) 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
JP4789350B2 (ja) 2001-06-11 2011-10-12 シチズン電子株式会社 発光ダイオードの製造方法
JP2003017756A (ja) 2001-06-28 2003-01-17 Toyoda Gosei Co Ltd 発光ダイオード
JP2003037297A (ja) 2001-07-25 2003-02-07 Sanyo Electric Co Ltd 光照射装置とその製造方法及びその光照射装置を用いた照明装置
JP2003036707A (ja) 2001-07-25 2003-02-07 Sanyo Electric Co Ltd 照明装置とその製造方法
JP4122737B2 (ja) 2001-07-26 2008-07-23 松下電工株式会社 発光装置の製造方法
JP2003110146A (ja) 2001-07-26 2003-04-11 Matsushita Electric Works Ltd 発光装置
JP2003051622A (ja) 2001-08-07 2003-02-21 Rohm Co Ltd 白色系半導体発光装置
TW506145B (en) 2001-10-04 2002-10-11 United Epitaxy Co Ltd High Luminescence LED having transparent substrate flip-chip type LED die
US6610598B2 (en) 2001-11-14 2003-08-26 Solidlite Corporation Surface-mounted devices of light-emitting diodes with small lens
TW511782U (en) 2001-11-29 2002-11-21 Wen-Chin Lin Improved structure of light-emitting diode
TW524391U (en) 2001-12-27 2003-03-11 Solidlite Corp Connection type SMT LED
JP4207781B2 (ja) 2002-01-28 2009-01-14 日亜化学工業株式会社 支持基板を有する窒化物半導体素子及びその製造方法
JP2003234509A (ja) 2002-02-08 2003-08-22 Citizen Electronics Co Ltd 発光ダイオード
US6891330B2 (en) * 2002-03-29 2005-05-10 General Electric Company Mechanically flexible organic electroluminescent device with directional light emission
JP2003347601A (ja) 2002-05-28 2003-12-05 Matsushita Electric Works Ltd 発光ダイオード照明装置
JP3707688B2 (ja) * 2002-05-31 2005-10-19 スタンレー電気株式会社 発光装置およびその製造方法
JP4197109B2 (ja) 2002-08-06 2008-12-17 静雄 藤田 照明装置
TW546859B (en) 2002-09-20 2003-08-11 Formosa Epitaxy Inc Structure and manufacturing method of GaN light emitting diode
US6784460B2 (en) 2002-10-10 2004-08-31 Agilent Technologies, Inc. Chip shaping for flip-chip light emitting diode
US7009199B2 (en) 2002-10-22 2006-03-07 Cree, Inc. Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current
JP4277508B2 (ja) 2002-10-28 2009-06-10 パナソニック電工株式会社 半導体発光装置
JP2004238441A (ja) 2003-02-04 2004-08-26 Nitto Denko Corp 光半導体素子封止用樹脂
WO2004077580A2 (en) 2003-02-26 2004-09-10 Cree, Inc. White light source using emitting diode and phosphor and method of fabrication
JP2004266124A (ja) 2003-03-03 2004-09-24 Matsushita Electric Ind Co Ltd 半導体発光装置
JP4504662B2 (ja) 2003-04-09 2010-07-14 シチズン電子株式会社 Ledランプ
KR20110042249A (ko) 2003-06-04 2011-04-25 유명철 수직 구조 화합물 반도체 디바이스의 제조 방법
JP4374913B2 (ja) 2003-06-05 2009-12-02 日亜化学工業株式会社 発光装置
JP3878579B2 (ja) 2003-06-11 2007-02-07 ローム株式会社 光半導体装置
JP4085899B2 (ja) 2003-06-30 2008-05-14 日立エーアイシー株式会社 発光デバイス用基板および発光デバイス
DE102004001312B4 (de) 2003-07-25 2010-09-30 Seoul Semiconductor Co., Ltd. Chip-Leuchtdiode und Verfahren zu ihrer Herstellung
JP4360858B2 (ja) 2003-07-29 2009-11-11 シチズン電子株式会社 表面実装型led及びそれを用いた発光装置
WO2005031882A1 (ja) 2003-09-30 2005-04-07 Kabushiki Kaisha Toshiba 発光装置
JP2005109212A (ja) 2003-09-30 2005-04-21 Stanley Electric Co Ltd 半導体発光装置
JP2005123238A (ja) 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd 半導体発光装置の製造方法および半導体発光装置
US20050082562A1 (en) * 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
JP2005166941A (ja) 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd 発光装置およびその製造方法、並びにその発光装置を用いた照明モジュールと照明装置
JP2005166937A (ja) 2003-12-02 2005-06-23 Toyoda Gosei Co Ltd 発光装置
JP2005191530A (ja) * 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
JP4622253B2 (ja) 2004-01-22 2011-02-02 日亜化学工業株式会社 発光デバイス及びその製造方法
JP4530739B2 (ja) 2004-01-29 2010-08-25 京セラ株式会社 発光素子搭載用基板および発光装置
JP2005268770A (ja) 2004-02-19 2005-09-29 Matsushita Electric Ind Co Ltd 白色発光素子及び白色光源
US20050205874A1 (en) * 2004-03-19 2005-09-22 Ru-Shi Liu Phosphor material and white light-emitting device using the same
US7009285B2 (en) 2004-03-19 2006-03-07 Lite-On Technology Corporation Optoelectronic semiconductor component
JP4228303B2 (ja) 2004-04-12 2009-02-25 住友電気工業株式会社 半導体発光素子搭載部材と、それを用いた半導体発光装置
EP1735838B1 (en) 2004-04-15 2011-10-05 Trustees of Boston University Optical devices featuring textured semiconductor layers
JP4665209B2 (ja) 2004-04-15 2011-04-06 スタンレー電気株式会社 平面照射型led
US7315119B2 (en) * 2004-05-07 2008-01-01 Avago Technologies Ip (Singapore) Pte Ltd Light-emitting device having a phosphor particle layer with specific thickness
KR100658700B1 (ko) 2004-05-13 2006-12-15 서울옵토디바이스주식회사 Rgb 발광소자와 형광체를 조합한 발광장치
KR100586968B1 (ko) 2004-05-28 2006-06-08 삼성전기주식회사 Led 패키지 및 이를 구비한 액정표시장치용 백라이트어셈블리
JP2005353816A (ja) 2004-06-10 2005-12-22 Olympus Corp 発光デバイス、発光デバイスの製造方法、発光デバイスを用いた照明装置、及び、プロジェクタ
US7255469B2 (en) * 2004-06-30 2007-08-14 3M Innovative Properties Company Phosphor based illumination system having a light guide and an interference reflector
JP2006036930A (ja) 2004-07-27 2006-02-09 Nitto Denko Corp 光半導体素子封止用樹脂
JP4817629B2 (ja) 2004-09-15 2011-11-16 京セラ株式会社 発光素子およびその発光素子を用いた照明装置
US7633097B2 (en) 2004-09-23 2009-12-15 Philips Lumileds Lighting Company, Llc Growth of III-nitride light emitting devices on textured substrates
JP2006114909A (ja) 2004-10-14 2006-04-27 Agilent Technol Inc フラッシュ・モジュール
US7462502B2 (en) 2004-11-12 2008-12-09 Philips Lumileds Lighting Company, Llc Color control by alteration of wavelength converting element
US7419839B2 (en) 2004-11-12 2008-09-02 Philips Lumileds Lighting Company, Llc Bonding an optical element to a light emitting device
US7858408B2 (en) 2004-11-15 2010-12-28 Koninklijke Philips Electronics N.V. LED with phosphor tile and overmolded phosphor in lens
KR100638666B1 (ko) * 2005-01-03 2006-10-30 삼성전기주식회사 질화물 반도체 발광소자
JP2006216717A (ja) 2005-02-02 2006-08-17 Harvatek Corp ウエハーレベル電気光学半導体組立構造およびその製造方法
JP4715227B2 (ja) 2005-02-21 2011-07-06 パナソニック株式会社 半導体発光装置の製造方法
WO2006099741A1 (en) 2005-03-24 2006-09-28 Tir Systems Ltd. Solid-state lighting device package
JP2006278675A (ja) 2005-03-29 2006-10-12 Toshiba Corp 半導体発光装置
US7244630B2 (en) 2005-04-05 2007-07-17 Philips Lumileds Lighting Company, Llc A1InGaP LED having reduced temperature dependence
TW200707799A (en) * 2005-04-21 2007-02-16 Aonex Technologies Inc Bonded intermediate substrate and method of making same
JP2006339362A (ja) 2005-06-01 2006-12-14 Ngk Spark Plug Co Ltd 発光素子実装用配線基板
KR100638868B1 (ko) 2005-06-20 2006-10-27 삼성전기주식회사 금속 반사 층을 형성한 엘이디 패키지 및 그 제조 방법
JP2007005091A (ja) 2005-06-22 2007-01-11 Mitsubishi Rayon Co Ltd 線状発光素子アレイ
JP2007080885A (ja) 2005-09-09 2007-03-29 New Japan Chem Co Ltd 光半導体用封止剤、光半導体及びその製造方法
JP4863682B2 (ja) 2005-10-17 2012-01-25 日東電工株式会社 光半導体素子封止用シート
US7514721B2 (en) 2005-11-29 2009-04-07 Koninklijke Philips Electronics N.V. Luminescent ceramic element for a light emitting device
WO2007073001A1 (en) 2005-12-22 2007-06-28 Showa Denko K.K. Light-emitting diode and method for fabricant thereof
JP2007180430A (ja) 2005-12-28 2007-07-12 Toshiba Lighting & Technology Corp 発光ダイオード装置
JP5357379B2 (ja) 2006-02-23 2013-12-04 パナソニック株式会社 発光装置
US7682850B2 (en) 2006-03-17 2010-03-23 Philips Lumileds Lighting Company, Llc White LED for backlight with phosphor plates
JP2007273763A (ja) 2006-03-31 2007-10-18 Sony Corp 半導体装置およびその製造方法
US7635915B2 (en) * 2006-04-26 2009-12-22 Cree Hong Kong Limited Apparatus and method for use in mounting electronic elements
TWI306674B (en) 2006-04-28 2009-02-21 Delta Electronics Inc Light emitting apparatus
KR100809210B1 (ko) 2006-07-10 2008-02-29 삼성전기주식회사 고출력 led 패키지 및 그 제조방법
JP4458116B2 (ja) 2007-05-30 2010-04-28 住友電気工業株式会社 エピタキシャル層成長用iii族窒化物半導体層貼り合わせ基板および半導体デバイス
JP5298384B2 (ja) 2008-08-07 2013-09-25 船井電機株式会社 マイクロホンユニット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418628A1 (en) 2001-07-26 2004-05-12 Matsushita Electric Works, Ltd. Light emitting device using led
US20030025449A1 (en) 2001-08-03 2003-02-06 Osram Opto Semiconductors Gmbh Hybrid LED

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479662B2 (en) 2002-08-30 2009-01-20 Lumination Llc Coated LED with improved efficiency
CN100446283C (zh) * 2004-09-29 2008-12-24 斯坦雷电气株式会社 半导体发光器件的制造方法
US7501657B2 (en) 2004-11-30 2009-03-10 Panasonic Corporation Semiconductor light emitting device, lighting module, illumination apparatus, surface mount LED, and bullet LED
WO2006059535A3 (en) * 2004-11-30 2006-08-17 Matsushita Electric Industrial Co Ltd Semiconductor light emitting device, lighting module, illumination apparatus, surface mount led, and bullet led
WO2006103582A1 (en) * 2005-03-29 2006-10-05 Koninklijke Philips Electronics N.V. Wide emitting lens for led useful for backlighting
JP2007035882A (ja) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Led照明装置
US7790482B2 (en) 2005-07-26 2010-09-07 Samsung Led Co., Ltd. Light emitting diode package with diffuser and method of manufacturing the same
EP1748498A3 (en) * 2005-07-26 2013-01-02 Samsung LED Co., Ltd. Light emitting diode package with diffuser and method of manufacturing the same
JP2007036251A (ja) * 2005-07-26 2007-02-08 Samsung Electro-Mechanics Co Ltd 拡散材料を用いたledパッケージ及びその製造方法
GB2429840B (en) * 2005-08-12 2011-02-23 Avago Tech Ecbu Ip Phosphor-converted LED devices having improved light distribution uniformity
US7667239B2 (en) 2005-08-12 2010-02-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Phosphor-converted LED devices having improved light distribution uniformity
GB2429840A (en) * 2005-08-12 2007-03-07 Avago Tech Ecbu Ip Phosphor-converted LED device
US7329907B2 (en) 2005-08-12 2008-02-12 Avago Technologies, Ecbu Ip Pte Ltd Phosphor-converted LED devices having improved light distribution uniformity
JP2009506557A (ja) * 2005-08-30 2009-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング オプトエレクトロニクスデバイス
JP2007266631A (ja) * 2005-09-20 2007-10-11 Matsushita Electric Works Ltd 発光装置
JP2007088081A (ja) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd 発光装置
US7956372B2 (en) 2005-09-20 2011-06-07 Panasonic Electric Works Co., Ltd. Light emitting device
US7948001B2 (en) 2005-09-20 2011-05-24 Panasonic Electric Works, Co., Ltd. LED lighting fixture
JP2007251214A (ja) * 2005-09-20 2007-09-27 Matsushita Electric Works Ltd 発光装置
JP2007116075A (ja) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd 発光装置
JP2007165815A (ja) * 2005-09-20 2007-06-28 Matsushita Electric Works Ltd 発光装置
JP2007116109A (ja) * 2005-09-20 2007-05-10 Matsushita Electric Works Ltd Led照明器具
JP2007142279A (ja) * 2005-11-21 2007-06-07 Matsushita Electric Works Ltd 発光装置およびその製造方法
US7767475B2 (en) 2005-11-21 2010-08-03 Panasonic Electric Works Co., Ltd. Light emitting device
US8197090B2 (en) 2005-12-21 2012-06-12 Samsung Led Co., Ltd. LED package and backlight unit using the same
JP2007173787A (ja) * 2005-12-21 2007-07-05 Samsung Electro Mech Co Ltd Ledパッケージ及びこれを用いたバックライトユニット
JP2008034799A (ja) * 2006-07-27 2008-02-14 Samsung Electro-Mechanics Co Ltd 表面実装型発光ダイオード素子
JP2013254972A (ja) * 2006-08-03 2013-12-19 Intematix Corp 光放出蛍光体を包含するled照明装置
JP2009545888A (ja) * 2006-08-03 2009-12-24 インテマティックス・コーポレーション 光放出蛍光体を包含するled照明配置
US9045688B2 (en) 2006-08-03 2015-06-02 Intematix Corporation LED lighting arrangement including light emitting phosphor
US9595644B2 (en) 2006-08-03 2017-03-14 Intematix Corporation LED lighting arrangement including light emitting phosphor
US10305001B2 (en) 2006-11-17 2019-05-28 Rensselaer Polytechnic Institute High-power white LEDs
WO2008064070A1 (en) * 2006-11-17 2008-05-29 3M Innovative Properties Company Optical bonding composition for led light source
US8026115B2 (en) 2006-11-17 2011-09-27 3M Innovative Properties Company Optical bonding composition for LED light source
KR101518302B1 (ko) * 2006-11-17 2015-05-08 렌슬러 폴리테크닉 인스티튜트 고전력 백색 led 및 그 제조 방법
US9105816B2 (en) 2006-11-17 2015-08-11 Rensselaer Polytechnic Institute High-power white LEDs
WO2008063884A1 (en) * 2006-11-20 2008-05-29 3M Innovative Properties Company Optical bonding composition for led light source
US8013345B2 (en) 2006-11-20 2011-09-06 3M Innovative Properties Company Optical bonding composition for LED light source
US9634203B2 (en) 2008-05-30 2017-04-25 Sharp Kabushiki Kaisha Light emitting device, surface light source, liquid crystal display device, and method for manufacturing light emitting device
GB2462807A (en) * 2008-08-14 2010-02-24 Glory Science Co Ltd A uniform intensity light emitting unit
US10038123B2 (en) 2008-11-13 2018-07-31 Maven Optronics International, Ltd. Phosphor-coated light extraction structures for phosphor-converted light emitting devices
US8896005B2 (en) 2010-07-29 2014-11-25 Cree, Inc. Lighting devices that comprise one or more solid state light emitters
WO2012015556A1 (en) * 2010-07-29 2012-02-02 Cree, Inc. Lighting devices that comprise one or more solid state light emitters
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
US11563156B2 (en) 2011-07-21 2023-01-24 Creeled, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10490712B2 (en) 2011-07-21 2019-11-26 Cree, Inc. Light emitter device packages, components, and methods for improved chemical resistance and related methods
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
EP2791984A4 (en) * 2011-12-06 2015-07-22 Cree Inc LIGHT EMITTER DEVICES AND METHOD FOR IMPROVED LIGHTING
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
US10557594B2 (en) 2012-12-28 2020-02-11 Intematix Corporation Solid-state lamps utilizing photoluminescence wavelength conversion components
US11056621B2 (en) 2016-09-13 2021-07-06 Osram Oled Gmbh Optoelectronic device
WO2018050543A1 (de) * 2016-09-13 2018-03-22 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement

Also Published As

Publication number Publication date
WO2004077580A3 (en) 2005-03-10
TW200423438A (en) 2004-11-01
EP1597777B1 (en) 2013-04-24
US20050093430A1 (en) 2005-05-05
MY142684A (en) 2010-12-31
CA2517009A1 (en) 2004-09-10
JP5559013B2 (ja) 2014-07-23
EP2262006A2 (en) 2010-12-15
EP1597777A2 (en) 2005-11-23
JP2013093595A (ja) 2013-05-16
TW201225339A (en) 2012-06-16
US9142734B2 (en) 2015-09-22
JP2006519500A (ja) 2006-08-24
KR20110137403A (ko) 2011-12-22
CN1777999A (zh) 2006-05-24
CN1777999B (zh) 2010-05-26
KR20050113200A (ko) 2005-12-01
EP2262006A3 (en) 2012-03-21
JP2011061230A (ja) 2011-03-24

Similar Documents

Publication Publication Date Title
US9142734B2 (en) Composite white light source and method for fabricating
US9082942B2 (en) Method and apparatus for packaging phosphor-coated LEDs
US7714342B2 (en) Chip coated light emitting diode package and manufacturing method thereof
US8872203B2 (en) Light-emitting device
US20040228115A1 (en) High-brightness LED-phosphor coupling
KR101772722B1 (ko) 광전자 소자
KR20090026196A (ko) 효과적인 발광 led 패키지 및 효과적으로 발광하기 위한방법
JP2004517502A (ja) 発光ダイオードとその製造方法
WO2011132599A1 (ja) 発光装置
JP2002232018A (ja) 紫外光源の作製方法および紫外光源部品並びに光学装置の作製方法
JP6212989B2 (ja) 発光装置およびその製造方法
KR20170020577A (ko) 광원 모듈 및 이를 포함하는 조명 장치
US9246068B2 (en) Method and apparatus for fabricating phosphor-coated LED dies
US20120193669A1 (en) Contacting an Optoelectronic Semiconductor Component Through a Conversion Element and Corresponding Optoelectronic Semiconductor Component
US8461609B2 (en) Light emitting device package
US12355013B2 (en) Emission height arrangements in light-emitting diode packages and related devices and methods
CN104037298A (zh) 用于封装涂覆有荧光体的led的方法和装置
KR20180085222A (ko) 반도체 소자 패키지
KR101657093B1 (ko) 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2517009

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057015844

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006503876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004714213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004811028X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004714213

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015844

Country of ref document: KR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)