WO2004076534A1 - カチオン硬化性含ケイ素化合物の製造方法 - Google Patents

カチオン硬化性含ケイ素化合物の製造方法 Download PDF

Info

Publication number
WO2004076534A1
WO2004076534A1 PCT/JP2004/002285 JP2004002285W WO2004076534A1 WO 2004076534 A1 WO2004076534 A1 WO 2004076534A1 JP 2004002285 W JP2004002285 W JP 2004002285W WO 2004076534 A1 WO2004076534 A1 WO 2004076534A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
represented
siloxane bond
following formula
Prior art date
Application number
PCT/JP2004/002285
Other languages
English (en)
French (fr)
Inventor
Seitarou Tajima
Hiroshi Suzuki
Original Assignee
Toagosei Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd filed Critical Toagosei Co., Ltd
Priority to EP04714889A priority Critical patent/EP1598389A4/en
Priority to JP2005502929A priority patent/JPWO2004076534A1/ja
Priority to US10/547,429 priority patent/US20070055034A1/en
Publication of WO2004076534A1 publication Critical patent/WO2004076534A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a method for producing a cationically curable silicon-containing compound having an oxetanyl group using a hydrolysis condensation reaction.
  • the cationically curable silicon-containing compound obtained by the present invention has excellent curability and ability to form a high-hardness film, and is therefore useful as a hard coat agent or a raw material for a protective film of various base materials. Since the ratio of inorganic components can be increased, it is also useful as a resist raw material. High storage stability! /, Handling, easy, without the need to store in the refrigerator. Background art
  • radical polymerization is inhibited by oxygen in the air, it is necessary to carry out polymerization under an inert atmosphere in order to rapidly and completely polymerize radically polymerizable monomers.
  • the cationically polymerizable monomer is not subject to polymerization inhibition by oxygen, it can be completely polymerized even in air.
  • cationic polymerizable monomer compounds having an epoxy group, a vinyl ether group, and an oxetanyl group are known.
  • Epoxy group-containing cationically polymerizable monomers can provide cured materials with good heat resistance, excellent adhesive strength, and good chemical resistance. It is a material that is difficult to use in an environment where productivity is called for.
  • the cationically polymerizable monomer having a vinyl ether group has a relatively high cationic curability and a performance that is + minute in terms of productivity.
  • the cured product is soft and hard coat agent as the object of the present invention. Or as a protective film for various substrates.
  • the other is a method using a hydrolysis condensation reaction, which is considered to be an industrially advantageous method because inexpensive raw materials can be used and the catalyst can be easily removed.
  • JP-A-11-129640 discloses a method for producing a cationically curable composition comprising a sinoresesquioxane compound having an oxetanyl group, which is represented by the following structural formula (5).
  • a method for producing a cationically curable composition in which the compound to be hydrolyzed in an atmosphere having a pH of 7 or more is disclosed.
  • R is an organic functional group having an epoxy group or an oxetanyl group
  • X is a hydrolyzable group.
  • JP-A No. 11-29640 and JP-A No. 11-199673 disclose a method for producing a cationically curable resin composition in which a hydrolytic condensation reaction is performed in the presence of an alkaline catalyst such as ammonia. In addition, in the step after the hydrolysis condensation reaction, very complicated operation was required to remove the alkaline catalyst.
  • JP-A-10-59984 discloses a oligomer mixture of condensed alkylalkoxysilanes.
  • the process for producing this mixture is based on the fact that the silane used is an alkyltrialkoxysilane having an alkyl group having 3 to 18 carbon atoms and a methoxy and / or ethoxy group as an alkoxy group, and the use of water exceeding 1 mole per mole of Sil.
  • JP-A-8-113648 vinyl trialkoxysilane or an organotrialkoxysilane having a vinyl group as a substituent and another organotrialkoxysilane are mixed and mixed with water in the presence of an acid catalyst. After the reaction and hydrolysis / polycondensation of the trialkoxysilane, the obtained polymer is reacted with a silylating agent without isolation to obtain a polymer.
  • a process for producing a terminal silylated polysilsesquioxane which is characterized in that the terminal group of the coalesced is silylated.
  • the reason for using the acid catalyst in this publication is that the polysilsesquioxane production step and the silylation step can be performed in a series of one-pot steps.
  • the method for producing a terminal silylated polysilsesquioxane disclosed in the publication there is no compound having a highly cationically polymerizable functional group such as an oxetanyl group in the starting alkoxysilane to be brought into contact with an acid catalyst, and the acid catalyst is used as an oxetanyl group.
  • a force-thione-curable silicon-containing compound having the following formula:
  • JP-A-2001-31767 discloses an epoxy-functional organopolysiloxane resin.
  • One of the objects of the publication is to provide an epoxy-functional organopolysiloxane resin capable of hydrolyzing and condensation-polymerizing an epoxy group-containing trialkoxysilane and specific silanes to obtain an amine-curable epoxy-functional organopolysiloxane resin.
  • the gazette discloses that an acid catalyst is also acceptable in the hydrolysis / condensation step.There is no description about the oxetane compound. There is no disclosure or suggestion that it is applicable to manufacturing. Disclosure of the invention
  • An object of the present invention is to provide a method for producing a highly curable, cationically curable silicon-containing compound.
  • the present inventors have avoided the study under alkaline conditions that require a purification step by a neutralization treatment step to solve the above problems, and studied a production method under neutral or acidic conditions.
  • the present inventors have found that a cationically curable silicon-containing compound having excellent storage stability and curability can be obtained without a neutralization treatment step, thereby completing the present invention.
  • the present invention provides an organosilicon compound (A) represented by the following formula (1) and an organosilicon compound (B) represented by the following formula (2) when the pKa at 25 ° C is 5 or less. And the boiling point under atmospheric pressure Cation characterized by hydrolysis co-condensation in the presence of an acidic catalyst at 150 ° C or lower
  • R is an organic functional group having an oxetanyl group
  • X is a siloxane bond-forming group
  • Xs may be the same or different from each other, and may be different.
  • R 2 is an alkyl group, a cycloalkyl group or an aryl group, and ⁇ is an integer of 0 to 2.
  • the present invention provides an organosilicon compound ( ⁇ ) represented by the following formula (1) and an organosilicon compound having a siloxane bond-forming group represented by the following formula (2) and having no oxetanyl group:
  • a method for producing a cationically curable silicon-containing compound, comprising hydrolyzing and condensing a compound ( ⁇ ) and an organic silicon compound (C) represented by the following formula (3) in the presence of an acidic catalyst. is there.
  • R is an organic functional group having an oxetanyl group
  • X is a siloxane bond-forming group
  • Xs may be the same or different from each other.
  • X is a siloxane bond-forming group, is an alkyl group, a cycloanoalkyl group or an aryl group, and n is an integer of 0 to 2.
  • the raw materials in the present invention are the following organic silicon compounds.
  • the organosilicon compound (A) in the present invention is a compound represented by the following formula (1).
  • R is an organic functional group having an oxetanyl group
  • X is a siloxane bond-forming group
  • Xs may be the same or different.
  • the siloxane bond forming group X in the above formula (1) is not particularly limited as long as it is a group having hydrolyzability.
  • Preferred X is a halogen atom, an alkoxy group, a cycloalkoxy group or an aryloxy group, and more preferred X is an alkoxy group, a cycloalkoxy group or an aryloxy group. This is because, in the case of an X-carbogen atom, hydrogen halide is generated by hydrolysis, so that the reaction system becomes a strongly acidic atmosphere and the oxetanyl group may be opened soon due to this.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n- and i-propoxy group, an n-, an i-thio-t-butoxy group and the like.
  • cycloanoreoxy group Represents a cyclohexyloxy group and the like
  • aryloxy group include a phenyloxy group.
  • X is preferably an alkoxy group having 1 to 3 carbon atoms because the alkoxy group has good hydrolyzability. Also, the availability of raw materials is easy and the hydrolysis reaction is easy to control! X is, therefore, particularly preferred, X is an ethoxy group.
  • R in the above formula (1) is an organic functional group having an oxetanyl group.
  • R in the present invention Is one having 20 or less carbon atoms, and is particularly preferable R.
  • R s is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 7 is an alkylene group having 2 to 6 carbon atoms.
  • R s is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and is preferably an ethyl group.
  • R7 is an alkylene group having 2 to 6 carbon atoms, preferably a propylene group. This is because it is easy to obtain or synthesize such an oxetane compound which forms an organic functional group. Further, if the number of carbon atoms of R s or R 7 in the formula (3) is 7 or more, the surface hardness of the cured product tends to be insufficient, which is not preferable.
  • the organic silicon compound (B) in the present invention is an organic silicon compound having a siloxane bond forming group and no oxetanyl group, and a preferred example is a compound represented by the following formula (2).
  • R 2 is an alkyl group, a cycloalkyl group or an aryl group, and n is an integer of 0 to 2.
  • X “siloxane bond forming group” means a group capable of forming a siloxane bond between a silicon atom of the compound represented by the structural formula shown in the above formula (1) by hydrolysis.
  • examples thereof include a hydrogen atom, a hydroxyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, a halogen atom and the like. Preferred are those other than these ⁇ and halogen atoms. This is because, when X ′ is a halogen atom, a halogenated hydrogen is generated by hydrolysis, so that the reaction system becomes a strongly acidic atmosphere, which may cause ring opening of the oxetanyl group and the like.
  • R 2 in the above formula (2) is an alkyl group, a cycloalkyl group or an aryl group.
  • the alkyl group preferably has 1 to 6 carbon atoms, and more preferably has 1 to 4 carbon atoms.
  • Preferred examples of the alkyl group include a methyl group, an ethyl group, an n- and i-propyl group, an n-, i- and t-butyl group, and the like.
  • Examples of the “cycloalkynole group” include a cyclohexyl group and the like, and examples of the “aryl group” include a phenyl group and the like.
  • specific examples include tetramethoxysilane and tetraethoxysilane. That is, when n is 1, specifically, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltriethoxysilane Butyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane and phenyltriethoxysilane.
  • n 2
  • the compound represented by the above formula (2) reduces the concentration of oxetanyl groups in the cationically curable silicon-containing compound, thereby lowering the viscosity or lowering the cross-linking density without lowering the molecular weight of the cinoresesquioxane compound.
  • particularly preferred examples include methyltrimethoxysilane and methyltriethoxysilane.
  • the organosilicon compound (C) in the present invention is represented by the following formula (3), and is bonded to a terminal silanol group generated in the hydrolysis-condensation process in the present invention to form a cationic curable composition obtained by the present invention. It is a component having the effect of improving storage stability.
  • Y is a hydroxyl group or a siloxane bond forming group
  • R 2 is an alkyl group, a cycloalkyl group or an aryl group.
  • R 2 in the above formula (3) is an alkyl group, a cycloalkyl group or an aryl group.
  • Preferred alkyl groups have 1 to 6 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • Preferred examples of the alkynole group include, for example, a methyl group, an ethyl group, n- and i-propynole groups, n-, i- and 1: monobutyl groups.
  • Examples of the “cycloalkyl group” include a cyclohexyl group and the like, and examples of the “aryl group” include a phenyl group and the like.
  • the organic silicon compound represented by the above formula (3) is exemplified below.
  • the production method of the present invention uses the above raw materials at 25 ° C! ) Ka is 5 or less, and the hydrolysis co-condensation is carried out in the presence of an acidic catalyst having a boiling point at atmospheric pressure S150 ° C or less. Thereafter, a step of removing the organic solvent used in the hydrolysis condensation reaction step is performed.
  • organic silicon compounds (A) and organic silicon compounds Compound (B) and organosilicon compound (C) are charged at once (hereinafter referred to as the batch charging method), and after hydrolytic cocondensation of organosilicon compound (A) and organosilicon compound (B)
  • a split charging method there is a method of adding an organic silicon compound (C) to the reaction system.
  • the charging ratio of the organic compounds A to C which are the raw material compounds, except that at least the organic compound A and the organic compound B are used in combination.
  • the preferable charging ratio of the organic compound B is 0.01 to 99 mol, more preferably 1 to 90 mol, per 1 mol of the raw material compound A.
  • the ratio of the organic compound (C) is preferably less than the total amount of the siloxane bond forming groups (X) in the organic compound (A) and the organic compound (B).
  • the amount of the organic compound (C) is preferably less than [3a + (4-n) b] mole.
  • the amount of water used in the hydrolysis co-condensation step is 0.1%, assuming that the amount of water required to completely hydrolyze the siloxane bond-forming groups in the organosilicon compounds (A) and (B) is one equivalent. 5 to: It is preferred to use 10 equivalents, especially 1.5 to 5 equivalents.
  • the system when co-hydrolyzing the compound represented by the above formula (1), the system is preferably set to an acidic atmosphere having a pH of 0.5 to 4.5.
  • the pH is less than 0.5, most of the oxetanyl groups are opened, and the photocurability is significantly reduced.
  • the rate of hydrolysis and condensation reaction decreases, and the production takes a long time.
  • the hydrolysis of the organosilicon compound (A) does not completely proceed, so that a desired cationically curable silicon-containing compound cannot be obtained.
  • the cocondensation of the organic silicon compound (A) and the organic silicon compound (B), or the cocondensation of these with the organic silicon compound (C) may cause gelling under an alkaline atmosphere of pH 7 or more depending on the combination. It happens and cannot be manufactured at all.
  • the acidic catalyst When the atmosphere during hydrolysis is pHO.5 to 4.5 as described above, the acidic catalyst has a pKa at 25 ° C of 5 or less and a boiling point at atmospheric pressure of 150 ° C or less.
  • Preferred acidic catalysts include hydrofluoric acid, hydroiodic acid, hydrobromic acid, hydrochloric acid, sulfurous acid, cyanoacetic acid, formic acid, acrylic acid, p-toluenesulfonic acid, acetic acid, lactic acid, and the like. Among them, preferred is Shii-Danilo Hydrogen Acid, which is easily available.
  • the organic solvent used in the hydrolysis is not particularly limited, and examples thereof include alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; tetrahydrofuran, toluene, Kisane, rig mouth in and the like can be used. It is preferable that the reaction system is made a uniform solution by using one or more of these mixed solvents.
  • the preferred reaction temperature at the time of hydrolysis is 10 to 120 ° C, more preferably 20 to 80 ° C, regardless of the type of the starting compound, and is common to the batch charging method and the split charging method.
  • a suitable reaction time for the hydrolysis is 2 to 30 hours, more preferably 4 to 24 hours.
  • the cationically curable silicon-containing compound (hereinafter abbreviated as a co-condensate) formed by the hydrolytic co-condensation of the organic silicon compounds (A) and (B) is a compound having a hydrolyzable group in the above formulas (1) and (2).
  • X includes a silsesquioxane compound having a three-dimensional (Si—O—Si) bond formed by hydrolysis and having an oxetanyl group.
  • Cationic curable silicon-containing compounds formed by hydrolysis and co-condensation of organic silicon compounds (A) to (C) are commonly used in the batch charging method and the split charging method.
  • the siloxane bond forming group X in the above formulas (1) and (2) consists of a one-dimensional to three-dimensional (Si-O-Si) bond formed by hydrolysis, and the terminal of the formula (3)
  • the compound has a condensed structure.
  • the co-condensate may contain a linear silicone compound. Further, the co-condensate may contain a silsesquioxane compound having a nose-like, cage-like or random-like structure.
  • the co-condensate may contain only one kind of silsesquioxane conjugate, or may contain two or more kinds of silsesquioxane conjugates having different structures or different molecular weights.
  • the co-condensate is The force S varies greatly depending on the types and composition ratios of the mechanical silicon compounds (A) to (C). When manufactured by the batch charging method, it contains a linear silicone compound. In some cases, including a three-dimensional silsesquioxane compound! /, Often.
  • substantially all of the hydrolyzable groups preferably 90% or more of the hydrolyzable groups in the organic silicon compounds (A) and (B) are preferably condensed. It is more preferable that If the ratio of the remaining hydrolyzable groups exceeds 10%, the silsesquioxane structure is not sufficiently formed, and thus the hardness of the film may be reduced or the storage stability of the composition may be reduced.
  • substantially all of the hydrolyzable groups are condensed means, for example, that no peak based on the hydrolyzable group is observed in the NMR chart of the obtained silsesquioxane compound. You can check.
  • the co-condensate comprises a silsesquioxane compound having a reduced oxetanyl group equivalent. This compound is useful as a material having a low viscosity and having a reduced cure shrinkage immediately after handling.
  • the co-condensate can be reduced in viscosity and easy to handle because the molecular weight of the co-condensate itself can be reduced in the batch charging method.
  • the resulting co-condensate has a high molecular weight, but the silanol groups in the product are end-cabbed by the organic silicon compound (C). No hydrogen bonding between them, lower viscosity, easy handling.
  • the silanol group in the product is end-caved, the product can be obtained with extremely little change over time, high storage stability, and a product.
  • the number average molecular weight of the co-condensate obtained according to the present invention is preferably from 600 to 5,000, more preferably from 1,000 to 3,000. If the number average molecular weight is less than 600, a film formed with the composition may not have sufficient hardness. Further, since the viscosity of the composition becomes low, when this composition is used as a node cord composition, squeezing tends to occur on the coated surface. On the other hand, if the number average molecular weight exceeds 5,000, the viscosity of the composition becomes too high, which makes the composition difficult to handle and reduces the coatability when this composition is used as a node code composition.
  • this composition when used as a node coat agent composition, 50% by weight or more of the entire cocondensate is composed of a silsesquioxane disulfide compound having a number average molecular weight of 1,000 to 3,000.
  • a silsesquioxane disulfide compound having a number average molecular weight of 1,000 to 3,000.
  • the number average molecular weight in the present specification It is the molecular weight in terms of polystyrene measured by gel permeation 'chromatography (GPC).
  • the above product was stored in a dark place at 25 ° C for 3 months, and the solubility in THF and the viscosity were measured.
  • the solubility in THF was good, and the viscosity was 52000 mPa's (viscosity increase rate 163%).
  • the solubility in THF was good, and the viscosity was 52000 mPa's (viscosity increase rate 163%).
  • a reactor equipped with a stirrer and a thermometer was charged with 167 g of isopropyl alcohol, 15 g (0.3 mol) of Oxe-TRIE S95, and 72 llg (0.3 mol) of phenyltriethoxysilane, and then 1% hydrochloric acid. 7g (H 2 0;. l 8mol, HC1; 9mmol) was added slowly, and ⁇ at 25 ° C. The progress of the reaction was monitored by gel permeation chromatography, and Oxe-TRIES almost disappeared. The reaction was completed when it was lost (20 hours after the start of the addition of the mixture).
  • a reactor equipped with a stirrer and a thermometer was charged with 50 g of isopropyl alcohol, 32.05 g (0.lmol) of Oxe-TRIES and 10.42 g (0.05 mol) of tetraethoxysilane, and 7.28 g of 1% hydrochloric acid ( H 2 O; 0.40 mol, HCl; 2 mmol) were gradually added, and the mixture was stirred at 25 ° C. The progress of the reaction was monitored by gel permeation chromatography, and the reaction was completed when Oxe-TRIES almost disappeared (20 hours after the start of the addition of the mixture).
  • a colorless and transparent product having a viscosity of 33,000 mPa ⁇ s was obtained in the same manner as in Example 1 except that 200 g of methyl ethyl ketone was used.
  • the above product was stored in a dark place at 25 ° C for 3 months, and the solubility in THF and the viscosity were measured.
  • the solubility in THF was good, and the viscosity was 53000 mPa's (viscosity increase rate 161%).
  • the solubility in THF was good, and the viscosity was 53000 mPa's (viscosity increase rate 161%).
  • a reactor equipped with a stirrer and a thermometer was charged with 2 OO g of isopropynole alcohol, 13 g (0.25 mol) of Oxe-TRIE S80 and 126.59 g (0.71 mol) of methyltriethoxysilane, and then purified water 51 . 71g (H 2 0; 2. 87iriol) was added slowly, and stirred at 65 ° C. The progress of the reaction was monitored by gel permeation chromatography. 20 hours after the start of the addition of the mixture, the Oxe-TRIES peak did not disappear, and the product could not be obtained.
  • a reactor equipped with a stirrer and a thermometer was charged with 60 g of isopropyl alcohol, 115.38 g (360 mmol) of Oxe-TRIES, 32.09 g (180 mmol) of methyltriethoxysilane, and 14.62 g (90 mmol) of hexamethyldisiloxane. 29.2 g of 1% hydrochloric acid was gradually added thereto, followed by stirring at 25 ° C. The progress of the reaction was monitored by gel permeation chromatography, and the reaction was completed when Oxe-TRIE S had almost disappeared (the starting power of the mixture in the mixture was also 20 hours later). Subsequently, the solvent was distilled off under reduced pressure, a colorless and transparent, to obtain a product of viscosity 6600iriP a 'S.
  • the above product was stored in a dark place at 25 ° C for 3 months, and the solubility in THF and the viscosity were measured.
  • the solubility in THF was good, and the viscosity was 6700 mPa's (viscosity increase rate 102%). Met.
  • a reactor equipped with a stirrer and a thermometer was charged with 50 g of isopropyl alcohol, 32.05 g (100 mmol) of Oxe-TRIES and 17.83 g (100 mmol) of methyltriethoxysilane, and 1 g of 1% hydrochloric acid was gradually added. And stirred at 25 ° C. The progress of the reaction was monitored by gel permeation chromatography, and when Oxe-TRIES almost disappeared (20 hours after the start of the addition of the mixture), 0.65 g (4 mmol) of hexamethyldisiloxane was added dropwise. The mixture was heated and stirred at 50 ° C for 1 hour.
  • the composition was applied on a glass substrate to a thickness of about 20 ⁇ using a bar coater, irradiated with ultraviolet rays under the following conditions, and the number of times of irradiation until the surface became tack-free was measured.
  • Lamp 80W / cm high pressure mercury lamp
  • Pencil hardness Each composition was applied to a thickness of about 20 ⁇ m on a steel plate and a glass substrate using a bar coater, and irradiated with ultraviolet light under the above irradiation conditions to obtain a cured film.
  • the pencil hardness of the surface was measured according to JIS K5400, and the results are shown in Table 2 below.
  • the product obtained by the production method of the present invention has an oxetaninole group, so that it exhibits excellent cation curability, and the resulting cured film is composed of a cinoresesquioxane compound. Very hard due to being a film.
  • Table 2
  • the method for producing the cationically curable resin composition of the present invention does not require a neutralization step after the hydrolysis-condensation reaction, and can be easily purified by simply removing the organic solvent by a normal distillation operation. It is useful as a production method with a high productivity of a cationically curable resin composition in which the number of steps after hydrolytic condensation is small as compared with the production method.
  • the production method of the present invention requires only a small amount of waste, so that the burden on the environment is small.
  • composition obtained by the production method of the present invention has high storage stability, it does not need to be stored in a refrigerator and is easy to handle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)

Description

明細書 カチオン硬化性含ケィ素化合物の製造方法 技術分野
本発明は、加水分解縮合反応を利用してォキセタニル基を有するカチオン硬化性含ケ ィ素化合物を製造する方法に関する。
本発明により得られるカチオン硬化性含ケィ素化合物は、硬化性及び高硬度の皮膜を 形成する能力に優れているので、ハードコート剤や各種基材の保護膜用原料として有用 であり、また高度に無機分の比率を上げることができるため、レジストの原料としても有用 である。また保存安定性が高!/、ので冷蔵庫保管をする必要が無く取扱レ、やすレ、。 背景技術
ラジカル重合は、空気中の酸素によって阻害されるため、ラジカル重合性モノマーを速 やかに且つ完全に重合させるためには、不活性雰囲気下で重合を行う必要がある。
これに対してカチオン重合性モノマーは、酸素による重合阻害を受けないため、空気中 にお!/ヽても完全に重合させることができる。
カチオン重合性モノマーとしては、エポキシ基、ビニルエーテル基、ォキセタニル基を 有する化合物が知られてレ、る。
エポキシ基を有するカチオン重合性モノマーは、耐熱性が良ぐ接着力に優れ、且つ 耐薬品性の良好な硬化物を得ることが可能であるが、カチオン硬化性が比較的低いため、 近年のように生産性の向上が叫ばれる環境にあっては使用しにくい材料となっている。 また、ビニルエーテル基を有するカチオン重合性モノマーは、カチオン硬化性が比較 的高く生産性の面では+分なパフォーマンスを有するのである力 その硬化物は柔らか ぐ本発明の目的とするようなハードコート剤や各種基材の保護膜としては使用すること ができない。
上記の材料に対して、ォキセタニル基を有する化合物は、カチオン硬化性が高ぐその 硬化物は物理的な強度に優れていることから、ォキセタニル基を有するハードコート剤の 検討が多くなされ、特に剛性の高レ、シロキサン骨格ヘレ、かに導入するかとレ、う検討がなさ れている。
ォキセタニル基をシロキサン骨格へ導入する方法には、大きく 2通りある。一方は特開 平 6— 16804号公報にあるようなヒドロシリルイ匕反応を利用する方法で、 Si— H結合を有 する原料とヒドロシリル化触媒を使用するのであるが、この原料が比較的高価であり、か っヒドロシリルイ匕触媒の除去が困難であるという問題点を有している。
他方は加水分解縮合反応を利用する方法で、安価な原料を利用でき 触媒の除去が 容易であるため、工業的には有利な方法と考えられる。
米国特許第 3, 338, 867号明細書において、下式 (4)で表される化合物の加水分解 縮合生成物について繰り返し単位の化学構造式が記載されているが、加水分解縮合ェ 程及びその後の生成物取得工程については一切記載がない。
Figure imgf000004_0001
特開平 11一 29640号公報にぉレヽて、ォキセタニル基をもつシノレセスキォキサン化合 物カゝらなるカチオン硬化性組成物の製造方法であって、下記式(5)に示す構造式で表さ れる化合物を pH7以上の雰囲気下で加水分解するカチオン硬化性組成物の製造方法 が開示されている。
Figure imgf000004_0002
(伹し、 R。はォキセタニル基を持つ有機官能基であり、 Xは加水分解性基である。 ) 特開平 11— 199673号公報において、下記式(6)に示す構造式で表される化合物と、 一分子中に一つ以上の加水分解性基を有する反応性シリコーンと、の混合物を加水分 解して得られる加水分解物からなるカチオン硬化性樹脂組成物の製造方法が開示され ている。
X x―†"一 Ro
X ( 6 )
(但し、 R。はエポキシ基またはォキセタニル基を持つ有機官能基であり、 Xは加水分解性 基である。 )
特開平 11— 29640号公報ゃ特開平 11— 199673号公報に開示されたカチオン硬化 性樹脂組成物の製造方法は、何れもアンモニア等のアルカリ性触媒の存在下で加水分 解縮合反応を行うものであり、加水分解縮合反応後の工程において、アルカリ性触媒を 除去するために、非常に煩雑な操作が必要であった。
一方、特開平 10— 59984号公報において、縮合されたアルキルアルコキシシランのォ リゴマー混合物が開示されている。この混合物の製造方法は、使用シランが 3〜18個の 炭素原子を有するアルキル基およびアルコキシ基としてのメトキシ及び/又はエトキシ基 を有するアルキルトリアルコキシシランを、 Silモル当たり 1モルを上回る水の使用下に、 かつ触媒としての HC1の使用下に加水分解及び縮合し、かつ得られた反応混合物を、 減圧下、 95°C未満の缶温度で蒸留により後処理することを特徴とする方法である。 特開平 10— 59984号公報における酸触媒の使用理由は、本質的な説明は無いもの の、ほぼ定量的に除去することができる加水分解触媒として、 HC1を使用するのが有利と されている。
特開平 10— 59984号公報におけるオリゴマーの製法では、酸触媒と接触させる原料 アルコキシシランとしてォキセタニル基のような反応性の高い官能基を有する化合物は存 在せず、酸触媒がォキセタニル基を有するカチオン硬化性樹脂組成物の製造に適用で きることについては全く開示も示唆もない。
また、特開平 8— 113648号公報におレヽては、ビニルトリアルコキシシランまたはビニル 基を置換基として有するオルガノトリアルコキシシラン、およびそれ以外のオルガノトリア ルコキシシランを混合し酸触媒の存在下で水と反応させ、該トリアルコキシシランを加水 分解 ·重縮合させた後、得られた重合体を単離することなくシリル化剤と反応させその重 合体の末端基のシリル化を行なうことを特徴とする末端シリル化ポリシルセスキォキサン の製造法が開示されている。当該公報における酸触媒の使用理由は、ポリシルセスキォ キサン製造工程とシリル化工程をワン一ポットの一連の工程で実施できることにある。当 該公報における末端シリル化ポリシルセスキォキサンの製法では、酸触媒と接触させる 原料アルコキシシランにォキセタニル基のようなカチオン重合性の高い官能基を有する 化合物は存在せず、酸触媒がォキセタニル基を有する力チオン硬化性含ケィ素化合物 の製造に適用できることについては全く開示も示唆もない。
さらに、特開 2001— 31767号公報においては、エポキシ官能性オルガノポリシロキサ ン樹脂が開示されている。当該公報においては、エポキシ基含有トリアルコキシシランお よび特定のシラン類を加水分解 ·縮重合し、ァミン硬化可能なエポキシ官能性オルガノポ リシロキサン樹脂を提供することを目的の 1つにしている。当該公報では加水分解 '縮重 合する工程において酸触媒も許容されることを開示している力 ォキセタン化合物に関す る記述は全く無ぐ酸触媒がォキセタニル基を有するカチオン硬化性含ケィ素化合物の 製造に適用できることについては全く開示も示唆もない。 発明の開示
本発明は、ォキセタニル基を有するカチオン硬化性含ケィ素化合物を加水分解縮合反 応により製造する際、加水分解縮合後に触媒や溶媒を除去する工程において煩雑な操 作が不要であり、生産性の高レ、カチオン硬化性含ケィ素化合物の製造方法を提供する ことを課題とするものである。
本発明者らは上記の課題を解決すベぐ中和処理工程による精製工程の必要なアル カリ性条件下での検討を避け、中性乃至酸性条件下での製造方法を検討した。その結 果、特定のォキセタニル基およびシロキサン結合生成基を有する含ケィ素化合物と、特 定のォキセタ二ル基を有せずシロキサン結合生成基を有する含ケィ素化合物の、酸性触 媒存在下における加水分解縮合反応にお!/、ては、中和処理工程が無くても保存安定性 および硬化性に優れたカチオン硬化性含ケィ素化合物が得られることを見出して本発明 を完成した。
即ち、本発明は、下記式 (1)で示される有機ケィ素化合物 (A)と、下記式 (2)で示され る有機ケィ素化合物 (B)を、 25°Cにおける pKaが 5以下であり、且つ大気圧下の沸点が 150°C以下である酸性触媒の存在下で加水分解共縮合することを特徴とするカチオン
X
硬化性含ケィ素化合物の製造方法である。
X
o
X
(上式において、 R。はォキセタニル基を持つ有機官能基であり、 Xはシロキサン結合生成 基であり、 Xは互いに同一であっても異なってレ、ても良レ、。 )
(R2) n S j Χ4_η (2)
(伹し、 Xはシロキサン結合生成基であり、 R2はアルキル基、シクロアルキル基またはァリ ール基であり、 ηは 0〜2の整数である。 )
また、本発明は、下記式(1)で示される有機ケィ素化合物 (Α)と、下記式 (2)で示され るシロキサン結合生成基を有しォキセタニル基を有しなレ、有機ケィ素化合物 (Β)、下記 式(3)で示される有機ケィ素化合物(C)とを、酸性触媒の存在下で加水分解縮合するこ とを特徴とするカチオン硬化性含ケィ素化合物の製造方法である。
X
X Si― R0
X (1)
(上式において、 R。はォキセタニル基を持つ有機官能基であり、 Xはシロキサン結合生成 基であり、 Xは互いに同一であっても異なっていても良レ、。 )
(R ;) „ S i X4-„ (2)
(伹し、 Xはシロキサン結合生成基であり、 はアルキル基、シクロアノレキル基またはァリ ール基であり、 nは 0〜2の整数である。 )
Figure imgf000008_0001
( 3 )
(伹し、 Yは水酸基又はシロキサン結合生成基であり、 R2はアルキノレ基、シクロアルキル 基またはァリール基である。 ) 発明を実施するための最良の形態
以下、本発明を詳細に説明する。
[1]原料
本発明における原料は、下記有機ケィ素化合物である。
[1一 1]有機ケィ素化合物 (A)
本発明における有機ケィ素化合物 (A)は、下記式(1)で表される化合物である。
X
X—— Si—— R0
X ( 1 )
(上式において、 R。はォキセタニル基を持つ有機官能基であり、 Xはシロキサン結合生成 基であり、 Xは互いに同一であっても異なっていても良い。 )
上記式(1)におけるシロキサン結合生成基 Xは、加水分解性を有する基であれば特に 限定されない。好ましい Xは、ハロゲン原子、アルコキシ基、シクロアルコキシ基またはァリ ールォキシ基等であり、より好ましい Xは、アルコキシ基、シクロアルコキシ基またはァリー ルォキシ基である。これは、 Xカ ヽロゲン原子である場合には加水分解によりハロゲン化 水素が生じるので反応系が強酸性雰囲気となりやすぐこのためォキセタニル基が開環 する恐れがあるためである。
上記「アルコキシ基」としては、例えばメトキシ基、エトキシ基、 n—および i—プロポキシ 基、 n—、 i一おょぴ t—ブトキシ基等が挙げられる。また、「シクロアノレコキシ基」の例として はシクロへキシルォキシ基等が、「ァリールォキシ基」の例としてはフエニルォキシ基等が 挙げられる。これらのうち、アルコキシ基の加水分解性が良好であることから、好ましい X は炭素数 1〜3のアルコキシ基である。また、原料の入手が容易であることや、加水分解 反応が制御しやす!/、ことから、特に好ましレ、Xはエトキシ基である。
上記式(1)における R。は、ォキセタニル基をもつ有機官能基である。
本発明において好ましい R。は、炭素数が 20個以下のものであり、特に好ましい R。は、 下記式 (4)に示す構造式で表される有機官能基である。
Figure imgf000009_0001
( 4 )
(伹し、 Rsは水素原子または炭素数 1〜6のアルキル基であり、 R7は炭素数 2〜6のアルキ レン基である。)
この式 (4)において、 Rsは水素原子または炭素数 1〜6のアルキル基であり、ェチル基 が好ましい。また、 R7は炭素数 2〜6のアルキレン基であり、プロピレン基が好ましい。こ れは、このような有機官能基を形成するォキセタンィヒ合物の入手あるいは合成が容易な ためである。また、式(3)における Rsまたは R7の炭素数が 7以上であると、硬化物の表面 硬度が不足しやすいので好ましくない。
[1一 2]有機ケィ素化合物 (B)
本発明における有機ケィ素化合物(B)は、シロキサン結合生成基を有しォキセタニル 基を有しない有機ケィ素化合物であり、好ましい例は、下記式 (2)で表される化合物であ る。
( R 2 ) n S i Χ 4 _„' ( 2 )
(伹し、 Xはシロキサン結合生成基であり、 R2はアルキル基、シクロアルキル基またはァリ ール基であり、 nは 0〜2の整数である。 )
上記式 (2)において、 X「シロキサン結合生成基」は、加水分解により上記式(1)に示す 構造式で表される化合物のケィ素原子との間にシロキサン結合を生成し得る基をいい、 例えば水素原子、水酸基、アルコキシ基、シクロアルコキシ基、ァリールォキシ基、ハロゲ ン原子などである。これらの內、ハロゲン原子以外のものが好ましい。 X'がハロゲン原子 である場合には、加水分解によりハロゲンィ匕水素が生じるので反応系が強酸性雰囲気と なりやすぐこのためォキセタニル基等が開環する恐れがあるためである。
上記式(2)における R2はアルキル基、シクロアルキル基またはァリール基力 選択され る置換基である。好ましいアルキル基の炭素数は 1〜6であり、より好ましくは炭素数:!〜 4 である。アルキル基の好ましい例として、例えばメチル基、ェチル基、 n—および i一プロピ ル基、 n—、 i一および t一プチル基等が挙げられる。また、「シクロアルキノレ基」の例として はシクロへキシル基等があり、「ァリール基」の例としてはフエニル基等がある。
上記式 (2)で表される化合物を以下に例示する。
即ち、 nが 0の場合、具体的には、テトラメトキシシラン、テトラエトキシシランである。 即ち、 nが 1の場合、具体的にはメチルトリメトキシシラン、メチルトリエトキシシラン、メチ ルトリプロボキシシラン、メチルトリイソプロポキシシラン、ェチルトリメトキシシラン、ェチル 卜リエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、シクロへキシルト リメトキシシラン、シクロへキシルトリエトキシシラン、フエニルトリメトキシシラン及びフエ二 ルトリエトキシシランである。
nが 2の場合、.具体的にはジメチルジメトキシシラン、ジメチルジェトキシシラン、ジェチ ノレジメトキシシラン、ジェチノレジェトキシシラン、ジフエニノレジメトキシシラン、ジフエニノレジ エトキシシラン、メチルフエ二ルジメトキシシラン及びメチルフエ二ルジェトキシシランであ る。
上記式 (2)に示す化合物は、カチオン硬化性含ケィ素化合物中のォキセタニル基濃度 を低減させ、シノレセスキォキサン化合物の分子量を下げずに粘度を低くしたり、架橋密 度を下げることにより硬化収縮率をさげる目的で導入され、とりわけ好ましい例としてはメ チルトリメトキシシランおよびメチルトリエトキシシランが挙げられる。
[1一 3]有機ケィ素化合物 (C)
本発明における有機ケィ素化合物 (C)は、下記式 (3)で表され、本発明における加水 分解縮合過程で発生する末端シラノール基と結合し、本発明により得られるカチオン硬 化性組成物の保存安定性を高める作用を有する成分である。
Figure imgf000011_0001
( 3 )
(但し、 Yは水酸基又はシロキサン結合生成基であり、 R2はアルキル基、シクロアルキル 基またはァリール基である。 )
上記式 (3)における R2はアルキル基、シクロアルキル基またはァリール基力 選択され る置換基である。好ましいアルキル基の炭素数は 1〜6であり、より好ましくは炭素数 1〜4 である。アルキノレ基の好ましい例として、例えばメチル基、ェチル基、 n—および i一プロピ ノレ基、 n—、 i—および 1:一ブチル基等が挙げられる。また、「シクロアルキル基」の例として はシクロへキシル基等があり、「ァリール基」の例としてはフエニル基等がある。
上記式 (3)で表される有機ケィ素化合物を以下に例示する。
即ち、具体的には、トリメチルシラノール、トリエチノレシラノーノレ、トリプロピノレシラノール、 トリプチ/レシラノール、トリフエエルシラノール、トリメチルメトキシシラン、トリメチルエトキシ シラン、トリェチルメトキシシラン、トリエチノレエトキシシラン、トリプロピルメトキシシラン、トリ プロピノレエトキシシラン、トリメチルシリルアセテート、トリメチルシリルべンゾエート、トリエ チノレシリルアセテート、トリエチノレシリノレベンゾェ一ト、ベンジノレジメチルメトキシシラン、ベ ンジルジメチルエトキシシラン、ジフエニルメトキシメチルシラン、ジフエニルエトキシメチル シラン、ァセチルトリフエニルシラン、エトキシトリフエニルシラン、へキサメチルジシロキサ ン、へキサェチルジシロキサン、へキサプロピノレジシロキサン、 1, 3—ジブチノレー 1, 1, 3, 3—テトラメチルジシロキサン、 1, 3—ジフエ二ルー 1, 1, 3, 3—テトラメチルジシロキサ ン、 1, 3—ジメチルー 1, 1, 3, 3—テトラフヱニルジシロキサンである。
[2]製造工程
本発明の製造方法は、上記の原料に対して、 25°Cにおける!) Kaが 5以下であり、且つ 大気圧下の沸点力 S150°C以下である酸性触媒の存在下で加水分解共縮合することを特 徴とするものであり、通常、加水分解共縮合工程の後、加水分解縮合反応工程で使用し た有機溶媒の除去工程を実施するものである。
上記 3種類の原料化合物を仕込む方法として、有機ケィ素化合物 (A)、有機ケィ素化 合物 (B)及び有機ケィ素化合物 (C)を一括で仕込む方法 (以下一括仕込み法と呼ぶ)、 及び有機ケィ素化合物 (A)および有機ケィ素化合物 (B)を加水分解共縮合した後、反 応系へ有機ケィ素化合物 (C)を添加する方法 (以下分割仕込み法と呼ぶ)がある。
[2— 1]原料の仕込み割合
本発明において、少なくとも有機化合物 Aと有機化合物 Bを併用すること以外に、原料化 合物である有機化合物 A〜Cの仕込み割合について、特に制限はない。
有機化合物 Bの好ましい仕込み割合は、原料化合物 A1モル当たり、 0. 01〜99モル、 より好ましくは◦. 1〜90モルである。
有機化合物(C)の好まし!/、仕込割合は、有機化合物 (A)及び有機化合物 (B)におけ るシロキサン結合生成基 (X)の合計量より少なくすることが好ましい。例えば、有機化合 物 (A)を aモル、有機化合物 (B)を bモル仕込んだ場合、有機化合物(C)は [3a+ (4— n) b]モル未満とすることが好ましレ、。
[2— 2]加水分解縮合
[2— 2— 1]水
加水分解共縮合工程で使用する水は、有機ケィ素化合物 (A)および (B)中のシロキサ ン結合生成基を完全に加水分解するのに必要な水の量を 1当量とすると、 0. 5〜: 10当 量を使用するのが好ましぐとりわけ 1. 5〜5当量を使用するのが好ましい。
[2-2-2]pH
加水分解縮合工程では、上記式(1)に示す化合物を共加水分解する際、系を pHO. 5 〜4. 5の酸性雰囲気とすることが好適である。 pHが 0. 5以下であると大部分のォキセタ ニル基が開環してしまい、光硬化性が著しく低下してしまう。 pH力 〜 6の弱酸性下では 加水分解および縮合反応の速度が低下し、製造に長時間を要する。 pHが 7の中性下で は有機ケィ素化合物 (A)の加水分解が完全には進行しないため、所望のカチオン硬化 性含ケィ素化合物が得られない。また、本発明における有機ケィ素化合物 (A)と有機ケ ィ素化合物 (B)、又はこれらと有機ケィ素化合物 (C)の共縮合は、組み合わせによって は pH7以上のアルカリ性雰囲気下ではゲルイ匕が起こり、全く製造できない。
[2— 2— 3]触媒
上記のように加水分解時の雰囲気を pHO. 5~4. 5とする場合、酸性触媒としては、 2 5°Cにおける pKaが 5以下であり、且つ大気圧下の沸点が 150°C以下であるものを用いる 好ましい酸性触媒として、弗化水素酸、沃化水素酸、臭化水素酸、塩化水素酸、亜硫酸、 シァノ酢酸、蟻酸、アクリル酸、 p—トルエンスルホン酸、酢酸、乳酸等が使用可能であり、 なかでも入手が容易な塩ィ匕水素酸が好ましレ、。
[2— 2—4]有機溶媒
加水分解時に用いる有機溶媒は特に限定されず、例えばメチルアルコール、ェチルァ ルコール、イソプロピルアルコール等のアルコーノレ類;アセトン、メチルェチルケトン等の ケトン類;テトラヒドロフラン、トルエン、 1, 4一ジ才キサン、へキサン、リグ口イン等を用いる ことができる。このうち 1種類もしくは 2種類以上の混合溶媒を用いて、反応系を均一な溶 液にすることが好ましい。
[2— 2— 5]反応温度と反応時間
加水分解時における好ましい反応温度は、原料化合物の種類に係わらず、また、一括 仕込み法及び分割仕込み法に共通して 10〜120°Cであり、より好ましくは 20〜80°Cで ある。加水分解のための好適な反応時間は 2〜30時間であり、より好ましくは 4〜24時間 である。
[2— 2— 6]生成物
有機ケィ素化合物 (A)および (B)の加水分解共縮合によって生成したカチオン硬化性 含ケィ素化合物(以下共縮合物と略す)は、上記式(1)及び (2)における加水分解性基 Xが加水分解して形成された三次元の(Si— O— Si)結合からなり、且つォキセタニル基 を有するシルセスキォキサンィヒ合物を含む。
有機ケィ素化合物 (A)〜 (C)の加水分解共縮合によって生成したカチオン硬化性含ケ ィ素化合物 (以下共縮合物と略す)は、一括仕込み法及び分割仕込み法に共通して、上 記式(1)及び (2)におけるシロキサン結合生成基 Xが加水分解して形成された一次元か ら三次元の(Si— O-Si)結合からなり、その末端に上記式 (3)の化合物が縮合した構造 を有する。 共縮合物は、線状のシリコーン化合物を含んでいても良い。また共縮合物はノヽシゴ状、 カゴ状又はランダム状の構造を有するシルセスキォキサン化合物を含んでレ、ても良レ、。 共縮合物は、一種類のシルセスキォキサンィ匕合物のみを含有してもよいし、構造又は分 子量の異なった二種以上のシルセスキォキサンィ匕合物を含んでもよい。共縮合物は、有 機ケィ素化合物 (A)〜(C)の種類と組成比によって大きく異なる力 S、一括仕込み法で製 造した場合には線状シリコーン化合物を含んでいることが多ぐ分割仕込み法で製造した 場合には三次元のシルセスキォキサン化合物を含んで!/、ることが多レ、。
尚、共縮合物は、有機ケィ素化合物 (A)および (B)における加水分解性基のうち 90% 以上が縮合されていることが好ましぐ加水分解性基の実質的に全てが縮合されているこ とが更に好ましい。残存する加水分解性基の割合が 10%を超えると、シルセスキォキサ ン構造が十分に形成されないため皮膜の硬度が低下したり、組成物の貯蔵安定性が低 下したりする恐れがある。ここで「加水分解性基の実質的に全てが縮合されている」ことは、 例えば、得られたシルセスキォキサン化合物の NMRチャートにおいて加水分解性基に 基づくピークが観察されなレ、ことにより確認できる。
共縮合物は、ォキセタニル基当量が低減されたシルセスキォキサン化合物からなる。こ の化合物は、粘度が低く取り扱いやすぐ硬化収縮率を低減化したものとして有用であ る。
共縮合物は、一括仕込み法にぉ 、ては共縮合物自体の分子量を低くすることができる ため、粘度を低くでき、取り扱いやすい。分割仕込み法においては、得られる共縮合物は 高分子量であるにも関わらず、生成物中のシラノール基が有機ケィ素化合物(C)によつ てエンドキヤッビングされているために、シラノール同士の水素結合が無ぐ粘度を低くで き、取り扱いやすレ、。さらに生成物中のシラノール基がエンドキヤッビングされているため、 経時変化が著しく少なレ、、保存安定性の高レ、生成物を得ることができる。
本発明により得られる共縮合物は、その数平均分子量が 600〜5, 000であることが好 ましぐ 1, 000-3, 000であることが更に好ましい。数平均分子量が 600未満であると、 この組成物力 形成される皮膜において十分な硬度が得られない場合がある。また、組 成物の粘度が低くなるので、この組成物をノヽードコード剤組成物として用いる場合におい て塗布面にノヽジキを生じやすい。一方、数平均分子量が 5, 000を超えると組成物の粘 度が高くなり過ぎて、取り扱い性が困難であるとともにこの組成物をノヽードコード剤組成 物として用いる場合において塗工性が低下する。特に、この組成物をノヽードコート剤組成 物として用いる場合には、共縮合物全体の 50重量%以上が、数平均分子量 1 , 000〜3, 000のシルセスキォキサンィ匕合物力 構成されてレ、ることが好ましく
、 70重量%以上であることが更に好ましい。尚、本明細書中における数平均分子量は、 ゲルパーミエ一シヨン'クロマトグラフィー(GPC)によるポリスチレン換算の分子量である。
[2— 3]有機溶媒の除去
加水分解縮合後は、加水分解で消費されなかった水が存在する場合にはその水とカロ 水分解縮合反応工程で使用した有機溶媒の除去を行うが、この工程は常圧ないし減圧 下で通常の蒸留操作を行えばょレ、。 実施例
本発明を実施例により更に具体的に説明する。
(実施例 1)
攪拌機および温度計を備えた反応器に、イソプロピルアルコール 200g、下記式 (7)で 示される 3-ェチル -3- [ [ 3- (トリエトキシシリル)プロポキシ]メチル]ォキセタン(以下、 「〇xe— TRIESJと表す) 80. 13g (0. 25mol)とメチノレトリエトキシシラン 126. 59g (0. 7 lmol)を仕込んだ後、 1°/0塩酸 52. 32g (H20 ; 2. 87mol、 HC1 ; 14. 3mmol)を徐々に 加えて、 25°Cで攪袢した。反応の進行をゲルパーミエーシヨンクロマトグラフィにより追跡 し、 Oxe— TRIESがほぼ消失した時点(混合物の添加開始から 20時間後)で反応完結 とした。引き続き、減圧下に溶媒を留去し、無色透明な、粘度 32000mPa 'sの製品を得 た。
上記の製品を 25°Cの暗所に 3ヶ月保管し、 THFへの可溶性と粘度測定を行ったところ、 THFへの可溶性は良好で、粘度は 52000mPa ' s (粘度上昇率 163%)であった。
Figure imgf000015_0001
(実施例 2)
攪拌機および温度計を備えた反応器に、イソプロピルアルコール 167g、 Oxe— TRIE S95. 15g (0. 3mol)とフエニルトリエトキシシラン 72. llg (0. 3mol)を仕込んだ後、 1%塩酸 32. 7g (H20 ; l. 8mol、 HC1; 9mmol)を徐々に加えて、 25°Cで攒拌した。反 応の進行をゲルパーミエーシヨンクロマトグラフィにより追跡し、 Oxe— TRIESがほぼ消 失した時点 (混合物の添加開始から 20時間後)で反応完結とした。
引き続き、減圧下に溶媒を留去し、無色透明な、粘度 21000mPa'sの製品を得た。上記 の製品を 25°Cの喑所に 3ヶ月保管し、 THFへの可溶性と粘度測定を行ったところ、 THF への可溶性は良好で、粘度は 36000mPa 's (粘度上昇率 171 %)であった。
(実施例 3)
攪拌機および温度計を備えた反応器に、イソプロピルアルコール 50g、 Oxe -TRIES 32. 05g (0. lmol)とテトラエトキシシラン 10. 42g (0. 05mol)を仕込んだ後、 1%塩酸 7. 28g (H2O ; 0. 40mol、 HCl ; 2mmol)を徐々に加えて、 25°Cで攪拌した。反応の進 行をゲルパーミエーシヨンクロマトグラフィにより追跡し、 Oxe— TRIESがほぼ消失した時 点 (混合物の添加開始から 20時間後)で反応完結とした。引き続き、減圧下に溶媒を留 去し、無色透明な、粘度 25000mPa ' sの製品を得た。上記の製品を 25°Cの暗所に 3ケ 月保管し、 THFへの可溶性と粘度測定を行ったところ、 THFへの可溶性は良好で、粘度 は 39000mPa · s (粘度上昇率 156%)であった。
(実施例 4)
1. 6%酢酸 52. 58g (H20 ; 2. 87mol、酢酸; 14. 3mmol)を用いた以外は実施例 1と 同じようにして、無色透明な、粘度 31000mPa ' Sの製品を得た。
上記の製品を 25°Cの暗所に 3ヶ月保管し、 THFへの可溶性と粘度測定を行ったところ、 THFへの可溶性は良好で、粘度は 49000mPa ' s (粘度上昇率 158%)であった。
(実施例 5)
メチルェチルケトン 200gを用いた以外は実施例 1と同じようにして、無色透明な、粘度 3 3000mPa .sの製品を得た。
上記の製品を 25°Cの暗所に 3ヶ月保管し、 THFへの可溶性と粘度測定を行ったところ、 THFへの可溶性は良好で、粘度は 53000mPa 's (粘度上昇率 161%)であった。
(比較例 1)
攪拌機おょぴ温度計を備えた反応器に、イソプロピルアルコール 200g、 Oxe -TRIE S80. 13g (0. 25mol)とメチノレトリエトキシシラン 126. 59g (0. 7 lmol)を仕込んだ、後、 2. 45%テトラメチルアンモェゥムヒドロキシド水溶液 53. 01g (H2O ; 2. 87mol、 HC1; 1 4. 3mmol)を徐々に加えて、 25°Cで提拌した。反応の進行をゲルパーミエーシヨンクロ マトグラフィにより追跡したが、 Oxe— TRIESがほぼ消失した時点 (混合物の添加開始か ら 20時間後)では反応器内容物がゲルィヒしており、製品を得ることができなかった。 (比較例 2)
攪拌機および温度計を備えた反応器に、イソプロピノレアルコール2 OOg、 Oxe-TRIE S80. 13g (0. 25mol)とメチルトリエトキシシラン 126. 59g (0. 71mol)を仕込んだ後、 純水 51. 71g (H20 ; 2. 87iriol)を徐々に加えて、 65°Cで攪拌した。反応の進行をゲル パーミエーシヨンクロマトグラフィにより追跡した力 混合物の添カ卩開始から 20時間後も O xe— TRIESのピークが消失しておらず、製品を得ることができな力 た。
(実施例 6)
攪拌機および温度計を備えた反応器に、イソプロピルアルコール 60g、 Oxe -TRIES 115. 38g (360mmol)とメチルトリエトキシシラン 32. 09g (180mmol)、へキサメチルジ シロキサン 14. 62g (90mmol)を仕込んだ後、 1 %塩酸 29. 2gを徐々に加えて、 25°Cで 攪拌した。反応の進行をゲルパーミエーシヨンクロマトグラフィにより追跡し、 Oxe-TRIE Sがほぼ消失した時点 (混合物の添カ卩開始力も 20時間後)で反応完結とした。引き続き、 減圧下に溶媒を留去し、無色透明な、粘度 6600iriPa' Sの製品を得た。
上記の製品を 25°Cの暗所に 3ヶ月保管し、 THFへの溶解性と粘度測定を行ったところ、 THFへの溶解性は良好で、粘度は 6700mPa 's (粘度上昇率 102%)であった。
(実施例 7)
攪拌機および温度計を備えた反応器に、イソプロピルアルコール 50g、 Oxe -TRIES 32. 05g (100mmol)とメチルトリエトキシシラン 17. 83g (100mmol)を仕込んだ後、 1%塩酸 l lgを徐々に加えて、 25°Cで提拌した。反応の進行をゲルパーミエーシヨンクロ マトグラフィにより追跡し、 Oxe— TRIESがほぼ消失した時点(混合物の添加開始から 2 0時間後)で、へキサメチルジシロキサン 0. 65g (4mmol)を滴下し、 50°Cで 1時間加熱 攪拌した。引き続き、減圧下に溶媒を留去し、無色透明な、粘度 20000mpa 'sの製品を 得た。上記の製品を 25°Cの喑所に 3ヶ月保管し、 THFへの溶解性と粘度測定を行ったと ころ、 THFへの溶解性は良好で、粘度は 21600mPa's (粘度上昇率 108%)であった。 (実施例 8)
攪拌機および温度計を備えた反応器に、イソプロピルアルコール 40g、 Oxe -TRIES 32. 05g (100mmol)とテトラエトキシシラン 10. 42g (50mmol)、へキサメチノレジシロキ サン 4. 06g (25mmol)を仕込んだ後、 1%塩酸 lOgを徐々に加えて、 25°Cで攪拌した。 反応の進行をゲルパーミエーシヨンクロマトグラフィにより追跡し、 Oxe— TRIESがほぼ 消失した時点 (混合物の添加開始力も 20時間後)で反応完結とした。引き続き、減圧下 に溶媒を留去し、無色透明な、粘度 13000mPa' sの製品を得た。上記の製品を 25°Cの 暗所に 3ヶ月保管し、 THFへの溶解性と粘度測定を行ったところ、 THFへの溶解性は良好 で、粘度は 17000mPa' s (粘度上昇率 131%)であった。
上記実施例:!〜 8で得られた化合物 100重量部に対し、カチオン性光重合開始剤とし てのビス(ドデシルフェニル)ョードニゥムへキサフルォロアンチモネート 3重量部を加え、 さらに粘度低下のためにトルエン 10重量部を加えて、カチオン硬化性樹脂組成物 A〜H を調製した。
各組成物 A〜Hで用 Vヽられた化合物の種類は下記表 1の通りである。
表 1
Figure imgf000018_0001
[カチオン硬化性樹脂組成物の評価]
カチオン硬化性樹脂組成物 A〜Hにっき、下記の方法により硬化性、鉛筆硬度を評価し た。その結果を下記に示す。
( 1 )硬化性
組成物を、バーコ一ターを用いてガラス基板上に約 20 μ πιの厚さに塗布し、下記の条 件により紫外線照射を行い、表面のタックがなくなるまでの照射回数を測定した。
[UV照射条件]
ランプ: 80W/cm高圧水銀ランプ
ランプ高さ: 10cmコンベアスピード: lOm/min照射 雰囲気:大気中
( 2 )鉛筆硬度各組成物を、バーコ一ターを用いて鋼板上およびガラス基板上に約 20 μ mの厚さに塗布し、上記照射条件で紫外線照射を行って硬化膜を得た。
この硬化膜を温度 25°C、湿度 60°/oの恒温室内に 24時間放置した後、 JIS K5400に 準じて表面の鉛筆硬度を測定し、下記表 2にその結果を示した。この表力 わ力るように、 本発明の製造方法により得られた生成物はォキセタニノレ基を有するため、優れたカチォ ン硬化性を発現し、得られる硬化膜は、シノレセスキォキサン化合物の膜であることに起因 して、非常に硬い。 表 2
Figure imgf000019_0001
産業上の利用可能性
本発明のカチオン硬化性樹脂組成物の製造方法は、加水分解縮合反応後の中和ェ 程が不要であり、有機溶媒を通常の蒸留操作で除去するだけで、容易に精製できるため、 従来の製造方法と比較して加水分解縮合後の工程数が少なぐカチオン硬化性樹脂組 成物の生産性の高い製法として有用である。
また、本発明の製造方法は、廃棄物も少量ですむため、環境への負荷が小さい。
本発明の製造方法にて得られる組成物は、保存安定性が高いので、冷蔵庫保管をす る必要が無く取扱いやすい。

Claims

請求の範囲 i
1.下記式 (1)で示される有機ケィ素化合物 (A)と、下記式 (2)で示される有機ケィ素化 合物 (B)を、 25 R°C oにおける pKaが 5以下であり、且つ大気圧下の沸点が 150°C以下であ る酸性触媒の存在下で加水分解共縮合することを特徴とするカチオン硬化性含ケィ素化 合物の製造方法。
X
X—— Si—— Rn
X ( 1 )
(上式において、 R。はォキセタニル基を持つ有機官能基であり、 Xは加水分解性基であり、 Xは互いに同一であっても異なっていても良い。 )
( 2 ) „ S i X 4 _ n ( 2 )
(但し、 Xはシロキサン結合生成基であり、 R2はアルキル基、シクロアルキル基またはァリ ール基であり、 nは 0〜2の整数である。 )
2.下記式(1)で示される有機ケィ素化合物 (A)と、下記式 (2)で示されるシロキサン結 合生成基を有しォキセタニル基を有しなレヽ有機ケィ素化合物 (B)、下記式 (3)で示され る有機ケィ素化合物 (C)とを、酸性触媒の存在下で加水分解縮合することを特徴とする カチオン硬化性含ケィ素化合物の製造方法。
X
X ( 1 )
(上式において、 R。はォキセタニル基を持つ有機官能基であり、 Xはシロキサン結合生成 基であり、 Xは互いに同一であっても異なっていても良レ、。 ) (R J „ S i X4_n (2)
(但し、 Xはシロキサン結合生成基であり、 はアルキル基、シクロアルキル基またはァリ ール基であり、 nは 0〜2の整数である。 )
R2
Y—— Si—— 2 R2
(3)
(但し、 Yは水酸基又はシロキサン結合生成基であり、 R2はアルキル基、シクロアルキル 基またはァリール基である。 )
3.上記式(1)における R。が下記式 (4)に示す構造式で表される有機官能基である、請 求項 1又は請求項 2に記載のカチオン硬化性含ケィ素化合物の製造方法。
Figure imgf000021_0001
(伹し、 R3は水素原子または炭素数 1〜6のアルキル基であり、 R4は炭素数 2〜6のアルキ レン基である。 )
4.酸性触媒の仕込量が、有機ケィ素化合物 (A)及び有機ケィ素化合物 (B)の合計に対 し、 1Z50モル〜 1 200モルである請求項 1又は請求項 2の何れかに記載のカチオン 硬化性含ケィ素化合物の製造方法。
PCT/JP2004/002285 2003-02-27 2004-02-26 カチオン硬化性含ケイ素化合物の製造方法 WO2004076534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04714889A EP1598389A4 (en) 2003-02-27 2004-02-26 METHOD FOR PRODUCING A CATIONICALLY HARDENABLE SILICONE COMPOUND
JP2005502929A JPWO2004076534A1 (ja) 2003-02-27 2004-02-26 カチオン硬化性含ケイ素化合物の製造方法
US10/547,429 US20070055034A1 (en) 2003-02-27 2004-02-26 Process for producing cation-curable silicon compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-052030 2003-02-27
JP2003052029 2003-02-27
JP2003-052029 2003-02-27
JP2003052030 2003-02-27

Publications (1)

Publication Number Publication Date
WO2004076534A1 true WO2004076534A1 (ja) 2004-09-10

Family

ID=32929658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002285 WO2004076534A1 (ja) 2003-02-27 2004-02-26 カチオン硬化性含ケイ素化合物の製造方法

Country Status (5)

Country Link
US (1) US20070055034A1 (ja)
EP (1) EP1598389A4 (ja)
JP (1) JPWO2004076534A1 (ja)
KR (1) KR20050106458A (ja)
WO (1) WO2004076534A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111556A (ja) * 2004-10-13 2006-04-27 Shin Etsu Chem Co Ltd かご状オリゴシロキサンの製造方法
JP2006131848A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd ポリオルガノシロキサン及びその製造方法、並びにポリオルガノシロキサンを含有する硬化性組成物
JP2006131849A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 二液型硬化性組成物
JP2007084799A (ja) * 2005-08-24 2007-04-05 Toray Fine Chemicals Co Ltd オキセタニル基を有するシリコーン共重合体
WO2009090916A1 (ja) * 2008-01-15 2009-07-23 Toagosei Co., Ltd. オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物
JP2009191259A (ja) * 2008-01-15 2009-08-27 Toagosei Co Ltd オキセタニル基を有するケイ素化合物の製造方法
JP2009209358A (ja) * 2008-02-06 2009-09-17 Toagosei Co Ltd カチオン硬化性組成物
WO2009131038A1 (ja) 2008-04-22 2009-10-29 東亞合成株式会社 硬化性組成物及び有機ケイ素化合物の製造方法
WO2010073933A1 (ja) * 2008-12-26 2010-07-01 東亞合成株式会社 オキセタニル基を有するケイ素化合物の製造方法
JP5311091B2 (ja) * 2005-04-08 2013-10-09 東亞合成株式会社 ポリカルボシラン及びその製造方法
WO2022168804A1 (ja) 2021-02-05 2022-08-11 東亞合成株式会社 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952117B2 (en) * 2010-12-28 2015-02-10 Toagosei Co., Ltd. Process for producing solvent-soluble reactive polysiloxanes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338867A (en) * 1963-07-24 1967-08-29 Dow Corning Silanes and siloxanes containing oxetane groups
JPH1087834A (ja) * 1996-09-10 1998-04-07 Showa Denko Kk ポリオルガノシルセスキオキサン、その製造方法並びに該化合物を含有する樹脂組成物
JPH10330485A (ja) * 1997-03-25 1998-12-15 Ivoclar Ag 加水分解可能でかつ重合可能なオキセタンシラン
JPH1129640A (ja) * 1997-07-07 1999-02-02 Toagosei Co Ltd 光カチオン硬化性組成物の製造方法及び光カチオン硬化性ハードコート剤組成物
JPH11116682A (ja) * 1997-08-11 1999-04-27 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2000026730A (ja) * 1998-07-09 2000-01-25 Jsr Corp 硬化性組成物、硬化性金属酸化物粒子および硬化性金属酸化物粒子の製造方法
JP2000212443A (ja) * 1999-01-27 2000-08-02 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2000264969A (ja) * 1999-03-16 2000-09-26 Ge Toshiba Silicones Co Ltd 縮合型シリコーン組成物、硬化物、その表面改質方法および平版
JP2001329112A (ja) * 2000-05-23 2001-11-27 Toray Ind Inc シランカップリング剤、硬化性樹脂溶液組成物、及びそれからなる機能性硬化物
JP2003321545A (ja) * 2002-04-26 2003-11-14 Toagosei Co Ltd 光カチオン硬化性樹脂の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161583B2 (ja) * 1995-07-21 2001-04-25 東亞合成株式会社 活性エネルギー線硬化型組成物
FR2758557B1 (fr) * 1997-01-21 1999-11-12 Toagosei Co Ltd Compose ayant un groupe oxetanyle, son procede de preparation et composition de durcissement
US6096903A (en) * 1997-03-25 2000-08-01 Ivoclar Ag Hydrolysable and polymerizable oxetane silanes
JP3796906B2 (ja) * 1997-05-14 2006-07-12 東亞合成株式会社 光カチオン重合性有機ケイ素化合物及びその製造方法、光カチオン重合性塗料組成物、並びに剥離用フィルムコーティング剤
US6121342A (en) * 1998-01-13 2000-09-19 Toagosei Co., Ltd. Photocationically curable compositions and process for producing the same
JP3843575B2 (ja) * 1998-01-13 2006-11-08 東亞合成株式会社 光カチオン硬化性樹脂組成物
TW482817B (en) * 1998-06-18 2002-04-11 Jsr Corp Photosetting compositions and photoset articles
US6344520B1 (en) * 1999-06-24 2002-02-05 Wacker Silicones Corporation Addition-crosslinkable epoxy-functional organopolysiloxane polymer and coating compositions
US6743885B2 (en) * 2001-07-31 2004-06-01 Sumitomo Chemical Company, Limited Resin composition for intermediate layer of three-layer resist
US6743510B2 (en) * 2001-11-13 2004-06-01 Sumitomo Chemical Company, Limited Composition comprising a cationic polymerization compound and coating obtained from the same
US6881765B2 (en) * 2003-03-10 2005-04-19 Toagosei Co., Ltd. Curable release agent and separator using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338867A (en) * 1963-07-24 1967-08-29 Dow Corning Silanes and siloxanes containing oxetane groups
JPH1087834A (ja) * 1996-09-10 1998-04-07 Showa Denko Kk ポリオルガノシルセスキオキサン、その製造方法並びに該化合物を含有する樹脂組成物
JPH10330485A (ja) * 1997-03-25 1998-12-15 Ivoclar Ag 加水分解可能でかつ重合可能なオキセタンシラン
JPH1129640A (ja) * 1997-07-07 1999-02-02 Toagosei Co Ltd 光カチオン硬化性組成物の製造方法及び光カチオン硬化性ハードコート剤組成物
JPH11116682A (ja) * 1997-08-11 1999-04-27 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2000026730A (ja) * 1998-07-09 2000-01-25 Jsr Corp 硬化性組成物、硬化性金属酸化物粒子および硬化性金属酸化物粒子の製造方法
JP2000212443A (ja) * 1999-01-27 2000-08-02 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2000264969A (ja) * 1999-03-16 2000-09-26 Ge Toshiba Silicones Co Ltd 縮合型シリコーン組成物、硬化物、その表面改質方法および平版
JP2001329112A (ja) * 2000-05-23 2001-11-27 Toray Ind Inc シランカップリング剤、硬化性樹脂溶液組成物、及びそれからなる機能性硬化物
JP2003321545A (ja) * 2002-04-26 2003-11-14 Toagosei Co Ltd 光カチオン硬化性樹脂の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524602B2 (ja) * 2004-10-13 2010-08-18 信越化学工業株式会社 かご状オリゴシロキサンの製造方法
JP2006111556A (ja) * 2004-10-13 2006-04-27 Shin Etsu Chem Co Ltd かご状オリゴシロキサンの製造方法
JP2006131848A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd ポリオルガノシロキサン及びその製造方法、並びにポリオルガノシロキサンを含有する硬化性組成物
JP2006131849A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 二液型硬化性組成物
JP5311091B2 (ja) * 2005-04-08 2013-10-09 東亞合成株式会社 ポリカルボシラン及びその製造方法
JP2007084799A (ja) * 2005-08-24 2007-04-05 Toray Fine Chemicals Co Ltd オキセタニル基を有するシリコーン共重合体
JP2009191259A (ja) * 2008-01-15 2009-08-27 Toagosei Co Ltd オキセタニル基を有するケイ素化合物の製造方法
US8329774B2 (en) 2008-01-15 2012-12-11 Toagosei Co., Ltd. Organosilicon compounds which have oxetanyl groups, and a method for the production and curable compositions of the same
KR101587297B1 (ko) 2008-01-15 2016-01-20 도아고세이가부시키가이샤 옥세타닐기를 갖는 유기 규소 화합물 및 그의 제조 방법 및 경화성 조성물
KR20100120288A (ko) * 2008-01-15 2010-11-15 도아고세이가부시키가이샤 옥세타닐기를 갖는 유기 규소 화합물 및 그의 제조 방법 및 경화성 조성물
WO2009090916A1 (ja) * 2008-01-15 2009-07-23 Toagosei Co., Ltd. オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物
JP2009209358A (ja) * 2008-02-06 2009-09-17 Toagosei Co Ltd カチオン硬化性組成物
EP2565217A1 (en) 2008-04-22 2013-03-06 Toagosei Co., Ltd. Curable composition and process for production of organosilicon compound
WO2009131038A1 (ja) 2008-04-22 2009-10-29 東亞合成株式会社 硬化性組成物及び有機ケイ素化合物の製造方法
KR101516037B1 (ko) 2008-04-22 2015-04-29 도아고세이가부시키가이샤 경화성 조성물 및 유기 규소 화합물의 제조 방법
CN102264801B (zh) * 2008-12-26 2013-05-01 东亚合成株式会社 具有氧杂环丁烷基的硅化合物的制备方法
US8110613B2 (en) 2008-12-26 2012-02-07 Toagosei Co., Ltd. Process for producing silicon compound having oxetanyl group
JP5382000B2 (ja) * 2008-12-26 2014-01-08 東亞合成株式会社 オキセタニル基を有するケイ素化合物の製造方法
WO2010073933A1 (ja) * 2008-12-26 2010-07-01 東亞合成株式会社 オキセタニル基を有するケイ素化合物の製造方法
KR101621576B1 (ko) 2008-12-26 2016-05-16 도아고세이가부시키가이샤 옥세타닐기를 갖는 규소 화합물의 제조 방법
WO2022168804A1 (ja) 2021-02-05 2022-08-11 東亞合成株式会社 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法

Also Published As

Publication number Publication date
KR20050106458A (ko) 2005-11-09
EP1598389A4 (en) 2006-06-21
US20070055034A1 (en) 2007-03-08
JPWO2004076534A1 (ja) 2006-06-01
EP1598389A1 (en) 2005-11-23

Similar Documents

Publication Publication Date Title
US5650474A (en) Process for preparing organic functional group-containing organopolysiloxanes, organopolysiloxanes obtained by the process and novel mercapto group and alkoxy group-containing organopolysiloxanes and preparation thereof
KR100359392B1 (ko) 열경화성실리콘수지
JP5662338B2 (ja) シルセスキオキサン樹脂
US8501893B2 (en) Synthetic method for preparing dual curable silicone compositions
EP1022302B1 (en) Catalyst system, process and silicone compositions
JP2003201293A (ja) アミノアルキルアルコキシシロキサン含有混合物、その製造方法及び使用並びにそれを含有するペイント、ラッカー及び樹脂
JP2010116462A (ja) シロキサンポリマー、シロキサン系の架橋性組成物及びシリコーン膜
JPH07292108A (ja) 有機官能基含有オルガノポリシロキサンの製造方法及び前記製造方法から得られるオルガノポリシロキサン
WO2004076534A1 (ja) カチオン硬化性含ケイ素化合物の製造方法
KR101339772B1 (ko) 광경화 투명 수지 조성물
JP4663969B2 (ja) 硬化性シリコーンレジン組成物およびその硬化物
JP3272002B2 (ja) ポリオルガノシルセスキオキサンの製造方法
JP3598749B2 (ja) 光カチオン硬化性組成物の製造方法及び光カチオン硬化性ハードコート剤組成物
JP2003012803A (ja) 液状アルコキシシリル官能性シリコーン樹脂、その製造方法および硬化性シリコーン樹脂組成物
JP3886556B2 (ja) 接着性付与性オルガノシロキサン化合物
KR20090004213A (ko) 수산화 유기 올리고실록산 수지 및 그 제조방법
JP2003041122A (ja) 皮膜形成性シリコーン樹脂組成物
JP2013129809A (ja) 酸無水物基含有オルガノシロキサン及びその製造方法
JP6930354B2 (ja) 硬化性組成物及びその利用
JPH06298773A (ja) ジオール置換有機ケイ素化合物及びその製造方法
JPH10130393A (ja) 全側鎖メルカプト基含有ポリオルガノシルセスキオキサンおよびその製造方法
EP1010714B1 (en) Method for making functionalized siloxanes, compositions containing such siloxanes and articles made therefrom
JP2001089570A (ja) アルコキシル化樹脂−ポリマーオルガノシリコーン網状構造物の製造方法及びそれから製造した製品
JP7234807B2 (ja) 撥水撥油膜組成物及びその利用
Baney et al. Polysilsesquioxanes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502929

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057015939

Country of ref document: KR

Ref document number: 20048052759

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004714889

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015939

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004714889

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007055034

Country of ref document: US

Ref document number: 10547429

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10547429

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004714889

Country of ref document: EP