WO2004028988A1 - メカニカルスクライブ装置 - Google Patents

メカニカルスクライブ装置 Download PDF

Info

Publication number
WO2004028988A1
WO2004028988A1 PCT/JP2003/011140 JP0311140W WO2004028988A1 WO 2004028988 A1 WO2004028988 A1 WO 2004028988A1 JP 0311140 W JP0311140 W JP 0311140W WO 2004028988 A1 WO2004028988 A1 WO 2004028988A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
size
scribe
tip
flat portion
Prior art date
Application number
PCT/JP2003/011140
Other languages
English (en)
French (fr)
Inventor
Satoshi Yonezawa
Hisashi Ueda
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to AU2003264362A priority Critical patent/AU2003264362A1/en
Priority to EP03798384.8A priority patent/EP1544172B1/en
Publication of WO2004028988A1 publication Critical patent/WO2004028988A1/ja
Priority to US11/077,139 priority patent/US7281334B2/en
Priority to NO20051935A priority patent/NO20051935L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/0064Devices for the automatic drive or the program control of the machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D5/00Arrangements for operating and controlling machines or devices for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D5/02Means for moving the cutting member into its operative position for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/225Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising for scoring or breaking, e.g. tiles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • B26D3/06Grooving involving removal of material from the surface of the work
    • B26D3/065On sheet material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]
    • Y10T83/148Including means to correct the sensed operation

Definitions

  • the present invention relates to a mechanical scribing device for performing scribing on a surface to be processed by a blade, and particularly to a scribing device for electrically thin-film separation of a plurality of cells provided on the same substrate at the time of manufacturing a thin-film solar cell. Compete for the best mechanical scribe machine for machining.
  • CIGS ⁇ Cu (InGn) Se2 ⁇ -based chalcopyrite compound has been used as a solar cell with excellent photoelectric conversion efficiency and structurally stable output characteristics. Thin-film solar cells are being developed.
  • Fig. 1 shows the cell structure of the CIGS thin-film solar cell.
  • an Mo electrode layer 2 serving as a lower electrode on the positive side is formed on an SLG (soda lime glass) substrate 1, and a CIGS-based precursory layer 3 is formed on the Mo electrode layer 2.
  • a transparent electrode layer 6 made of ZnO: A1 or the like serving as a negative upper electrode is provided via a buffer layer 4 made of ZnS or the like.
  • reference numeral 7 denotes a plus side extraction electrode
  • reference numeral 8 denotes a minus side external extraction electrode.
  • a module configuration in which a plurality of such cell structures are monolithically arranged on the same substrate is adopted.
  • each cell must be electrically separated.
  • each cell is easily separated by applying a scribing process for partially removing the thin film by irradiating a laser beam (Japanese Patent Application Laid-Open No. H11-312). 8 No. 15).
  • the present invention is directed to a thin-film solar cell module, in which the cells are separated so that the characteristics of the cells are not degraded due to heat.
  • the scribing process is performed by pressing the edge of the tapered tip with a predetermined pressure vertically against the scribing point on the surface to be machined, and moving the blade along the surface to be machined.
  • An object of the present invention is to provide a mechanical scribing device provided with a means for applying.
  • a mechanical scribe device there are means for measuring the size of the flat portion at the tip of the blade, and means for controlling the initial pressure of the blade according to the measured size of the flat portion. In this way, it is possible to carry out a planned and unusual scribing according to the wear condition of the blade tip.
  • FIG. 1 is a front sectional view showing a cell structure of a general CIGS-based thin film solar cell.
  • FIG. 2 is a diagram showing the basic steps of scribing during the manufacture of a thin-film solar cell.
  • FIG. 3 is a front view showing a mechanical scribe blade.
  • the fourth country is a diagram showing the state of change in the size of the flat portion at the tip of the blade when the tip of the blade is worn.
  • FIG. 5 is a project configuration diagram showing an example of a means for measuring the size of a flat portion at the blade tip.
  • the s a is a characteristic diagram showing an example of the relationship between the amount of wear of the blade and the u-tip area and the characteristics of the blade load optimized for the amount of wear of the blade.
  • FIG. 7 is a schematic structural view of a cylinder of the mechanical scribe device according to the present invention.
  • FIG. 8 is a front view showing a state in which a workpiece to be sucked to a movable table in the canal scribe device is inclined.
  • FIG. 9 is a front view showing a state in which the movable table in the mechanical scribe device is rotated to correct the posture of the workpiece with respect to the actuator for scribing.
  • Fig. 2 shows the basic steps of scribe processing during the manufacture of compound thin-film solar cells.
  • a Mo electrode layer 2 serving as a lower electrode is formed on the SLG substrate 1 by sputtering, and a groove L for separating the lower electrode is formed by laser scribing.
  • a light-absorbing layer 3 composed of a compound semiconductor (CIGS) thin film is formed on the Mo electrode layer 2, and a heterojunction is formed thereon.
  • a vacuum barrier layer 4 consisting of a ZnS thin film is formed by the chemical bath deposition (CBD) method, and an insulating layer 5 consisting of a Zn 0 thin film is formed thereon by sparging.
  • a groove M1 for contact between the lower electrodes is formed at a position distant from the groove L for use by mechanical scribing at a position several hundreds of m laterally to the surface of the Mo electrode layer 2.
  • a CIGS thin film is formed by forming a laminated precursor including an III layer and a Cu—Ga alloy layer by sputtering, and performing a heat treatment in a & Se atmosphere. I do.
  • ZnO A transparent electrode layer 6 serving as an upper electrode made of a thin film A1 is formed, and a groove M2 for separating a lower electrode is formed by mechanical scribing up to the surface of the lower Mo electrode layer 2.
  • the grooves M1 and M2 are formed by laser scribing, the heat of the laser beam will deteriorate the photoelectric conversion characteristics, particularly of the light collecting layer 3.
  • FIG. 3 shows the blade 9 of the mechanical scribe device.
  • the grooves M 1 and M 2 are formed by pressing the blade 9 vertically to a predetermined position on the surface to be processed with a predetermined pressure by a mechanical scribing device and moving the blade 9 along the surface to be processed. Will be able to perform the scribe processing.
  • the size of the flat portion 91 at the tip changes according to the degree of the wear. Then, the degree of wear is detected by measuring the size of the tip portion 9 1 of the tip of the blade 9, and the initial pressure of the blade 9 is increased according to the detected degree of wear. In this way, a constant scrubbing process can be performed.
  • the tip of the blade 9 is photographed by a camera 10, and data of the photographed image is obtained.
  • the arithmetic and control unit 11 digs in and finds the size (b or area) of the flat part 9 1.
  • the apple portion 91 is recognized from the image data, and its size is calculated from the ratio of the flat portion 91 in the entire screen.
  • the arithmetic control device 11 1 previously sets the size of the flat portion 9 1 in advance.
  • the characteristics of the pressing force of the blade 9 with respect to the height are set in a table, and the edge pressure of the blade 9 is controlled so as to have a predetermined pressing force according to the measured size of the flat portion 91.
  • an actuator (not shown) including a cylinder and a piston mechanism for adjusting the pressing force of the blade 9 on the mechanical scribe device main body 12 is appropriately driven. To do.
  • the main body of the mechanical scrubbing device 12 includes a blade 9 detachably attached to the hedged portion by an actuator composed of a cylinder * biston mechanism or the like, vertically at a predetermined position on a surface to be processed with a predetermined pressure.
  • an actuator composed of a cylinder * biston mechanism or the like, vertically at a predetermined position on a surface to be processed with a predetermined pressure.
  • a general one that presses and moves the # 9 along the work surface is used.
  • FIG. 6 shows the characteristic A of the relationship between the wear amount of the blade 9 and the cutting edge area, and the characteristic B of the blade load optimized for the wear amount of the blade 9.
  • the moving speed of the blade 9 is variably controlled under the control of the arithmetic and control unit 11 so that the starting area of the scraping process where positional accuracy is required (for example, the entire scribing area).
  • the moving speed of the blade 9 is set to be high in the middle area between the area of about 10% of the area) and the end area (for example, the area of about 10% of the entire scribe area).
  • FIG. 7 shows an outline of the mechanical scraping apparatus main body 12 according to the present invention.
  • the mechanical scraping device 12 moves the workpiece 13 to 60 with respect to the horizontal surface of the workpiece.
  • Upper back L / L section 1 2 1 for holding and carrying the product at an angle of less than 90 ° and holding it vertically to the loaded workpiece 13
  • Processing section 1 2 2 for performing a predetermined scribe processing in the state of being removed, and a back float type UL / L section 1 2 3 for unloading the scribed workpiece 13. I have.
  • the L / L section 1 2 1 is held by the rear airflow line 14 so that the surfaces of the workpieces 13 are vertical, and the primary scribing is performed by the conveyor 15 It is to be transported to the unit 122.
  • the scribing section 122 attracts the workpiece 13 sent to the movable table 16 in a vertical state, and is an actuator for scribing along the slide rail 17. 1 Move to 8. Then, the upper and lower ends of the scribe line (groove L) formed by laser scribing on the workpiece 13 first are recognized by the cameras 19 1 and 19 2 provided in a pair at the position. I do. At this time, as shown in FIG. 8, when the workpiece 13 slid on the movable table 16 is inclined, as shown in FIG. The movable table 16 is rotated so that the vertical direction is obtained, and the posture of the workpiece 13 with respect to the actuator 18 is corrected.
  • the mechanical scribe device has a The size of the part is measured and the pressing force of the blade is variably controlled according to the size of the measured part. This makes it possible to perform precise scribing with high precision, especially for separating each cell in a thin-film solar cell module. Will not be damaged and the separation can be performed optimally.
  • the blade movement speed is variably controlled so that the movement speed of the blade in the intermediate area between the start and end areas of scribe processing is controlled. Since it is set to a high value, the sloop can be effectively improved.

Abstract

メカニカルスクライブ装置にあって、薄膜太陽電池のモジュールにおける各セルの分離を最適に行わせることができるように、メカニカルスクライブの刃先端の摩耗状態に応じて常に予定した微妙なスクライブ加工を施すことができるようにするために、筒体の先方が所定のテーパー角度をもって先細りになり、その先細りの先端が平坦になった刃を所定の圧力をもって被加工面のスクライブ箇所に垂直に押し付けて、その刃を被加工面に沿って移動させることによってスクライブ加工を施す手段と、刃の先端の平坦部分の大きさを測定する手段と、その測定された平坦部分の大きさに応じて刃の押圧力を可変に制御する手段とを設ける。

Description

明 細 書 ヌカニカルスクライブ装置
技術分野
本発明は、 被加工面に刃によってスクライブ加工を施すメカ二カルスクライブ 装置に係り、 特に薄膜太陽電池の製造時に同一基板上に複数 ffi設された各セルを 電気的に薄膜分離する際のスクラィブ加工に最適なメカ二カルスクライブ装置に 鬨する。
背景技術
最近、 特に光電変換効率に優れ、 構造的に安定した出力特性が得られる太陽電 池として、 C I G S {C u ( I n G n ) S e 2 } 系のカルコパイライト化合物を 先及収層とした薄膜太陽電池の開発が行おれている。
第 1図は、 その C I G S系の薄膜太陽電池のセル構造を示している。
ここでは、 S L G (ソーダライムガラス) 基板 1上にプラス側の下部電極とな る M o電極層 2が形成され、 その M o電極層 2上に C I G S系の先 ¾収層 3が形 成され、 その光吸収層 3上に Z n Sなどからなるバッファ層 4を介してマイナス 側の上部電極となる Z n O: A 1などからなる透明電極層 6が开 έ威されている。 図中、 7はプラス側の并部引出し電極を、 8はマイナス側の外部引出し電極をそ れぞれ示している。
C I G S系の薄膜太陽電池の量産に際しては、 このようなセル構造が同一基板 上にモノリシジクに複数配設されたモジュール構成としている。
そして、 そのモジュール構威にあっては、 各セルをそれぞれ電気的に分離する 必要があるものになっている。
その場合、 従来では、 レーザ光を照射することによって薄膜を部分的に除去す るスクライブ加ェを施すことによつて各セルを容易に分離するようにしている (特開平 1 1—3 1 2 8 1 5号公報参照) 。
しかし、 レーザスクライブ加工によってモジュールにおける各セルを電気的に 分離するのでは、 高熱によるレーザ光を集中的に照射するために、 熱によってセ ルの特性が劣化してしまうものになっている。 このように、 薄膜太陽電池のモジュールにおける各セルの分離を行う場合、 レ —ザスクラィプ加工によるのでは、 高熱によるレーザ光の照射によつてセルの特 性が劣化してしまい、 不適切になってしまうという間題がある。
発明の開示
本発明は、 薄膜太陽電池のモジュールにおける各セルの分離を熱による特性の 劣化をきたすことがないように行わせるのに最適な、 筒体の先方が所定のテーパ —角度ももつて先細リになリ、 その先細リの先端が苹坦になった刃を所定の圧力 をもつて被加工面のスクラィブ箇所に垂直に押し付けて、 その刃を被加工面に沿 つて移動させることによってスクライブ加工を施す手段を設けたメカニカルスク ラィブ装置を提供するものである。
そして、 特に本発明では、 このようなメカニカルスクライプ装置によって薄膜 太陽電池のモジュールにおける各セルの分離を行うに際して、 刃の先端が摩耗し ているとスクライブが不充分となリ、 各セルの分離を確実に行おせることができ なくなって各セル間が短絡扰態になってしまったリ、 先端が摩耗した刃をモジュ ール面のスクライブ箇所に押し付ける力をむやみに加圧してスクライブを行わせ ようとすると、 必要以上にス'クラィプがなされて下層や基板を傷付けてしまうこ とになるのを防止する手段を講ずるようにしている。
具体的には、 メカ二カルスクライブ装置にあって、 刃先端の平坦部分の大きさ を測定する手段と、 その測定された平坦部分の大きさに ISじて刃の抻圧力を制御 する手段とを設けるようにして、 刃先端の摩耗犹態に応じて常に予定した徽妙な スクライブ ¾1ェを施すことができるようにしている。
図面の箇単な説明
第 1図は、 一般的な C I G S系の薄膜太陽電池のセル構造を示す正断面図であ る。
第 2図は、 薄膜太陽電池の製造時におけるスクラィブ加工の基本的な工程を示 す図である。
第 3図は、 メカ二カルスクライブの刃を示す正面図である。
第 4國は、 メ力二カルスクラィプの刃の先端が摩耗したときの刃の先端の平坦 部の大きさの変化状態を示す図である。 第 5図は、 刃先端の平坦部分の大きさを測定する手段の一例を示すプロジク構 成図である。
第 s aは、 刃の摩耗量と u先面積との闊係および刃の摩耗量に対して最適化さ れた刃荷重の特性の一例をそれぞれ示す特性図である。
第 7図は、 本発明におけるメカ二カルスクライブ装置の筒略構成図である。 第 8図は、 カニカルスクライブ装置における可動テーブルに吸着されている 被加工部材が傾いている状態を示す正面図である。
第 9図は、 メカニカルスクライブ装置における可動テーブルを回転させてスク ラィブ加工のァクチユエータに対して被加工部材の姿勢を修正した状態を示す正 面図である。
発明を実施するための最良の形態
第 2図は、 化合物薄膜太陽電池の製造時におけるスクライブ加工の基本的なェ 程を示している。
まず、 第 2図 (a ) に示す第 1の工程として、 S L G基板 1上に下部電極とな る M o電極層 2をスパッタリングにより形成したうえで、 レーザスクライブ加工 によって下部電極分離用の溝 Lを形成する。
なお、 このときレーザスクライブ加工を施しても、 レーザ ¾による熱の影響は 問題にならない。
次いで、 第 2図 (b ) に示す第 2の工程として、 M o電極層 2の上に化合物半 導体 (C I G S ) 薄膜からなる光暧収層 3を形成し、 その上にへテロ接合のため の Z n S薄膜などからなるバジファ層 4を C B D (ケミカルバスデポジション) 法により成膜し、 さらにその上にスパジタリングにより Z n 0薄膜などからなる 絶鎵層 5を形成したうえで、 下部電極分離用の溝 Lから横方に数百^ m離れた位 置にメカ二カルスクライブ加工によって M o電極層 2の面にまで至る上、 下部電 極間コンタクト用の溝 M 1を形成する。
光吸収層 3としては、 例えば、 スパッタリングによって I II層と C u— G a合 金層とからなる積層プリカーサを成膜して、 それ & S e雰囲気中で熱処理するこ とによって C I G S薄膜を形成する。
最終的に、 第 2図 (c ) に示す第 3の工程として、 絶綠層 5の上から Z n O : A 1薄膜からなる上部電極となる透明電極層 6を形成して、 メカ二カルスクライ ブ加工によって下部の M o電極層 2の面にまで至る上、 下部電極分離用の溝 M 2 を形成する。
なお、 溝 M 1および M 2を形成するに際して、 レーザスクライブ加工によるの では、 レーザ光の熱によって特に光啜収層 3の光電変換特性が劣化してしまうこ とになる。
第 3図は、 メカ二カルスクライブ装置の刃 9を示している。 ここでは、 直柽 D = 3 mm, 長さ L = 4 e mの筒体の先方がテーパー角度 θ = 6 0 ° をもって先細 りになり、 その先細りの先端の径 Φが 3 5 iu-nの面積をもって手坦になっている。 実際には、 メカニカルスクライプ装置により、 刃 9を所定の圧力をもって被加 工面の所定箇所に垂直に押し付けて、 その刃 9を被加工面に沿って移動させるこ とによって溝 M 1および M 2のスクライプ加工を行おせることになる。
その際、 第 4図に示すように、 刃 9の先端が摩耗してしまうと (摩耗量 δ ) 、 溝 Μ 1およぴ Μ 2を形成する際のスクラィプ量が不充分となリ、 M o電極層 2の 面に至るまでのスクラィブ加工がなされずに、 各セルの分離を確実に行おせるこ とができなくなってしまう。
そのため、 本発明では、 先方が所定のテ一パー角度をもって先細りになってい る刃 9の先端が摩耗すると、 その摩耗の程度に応じて先端の平坦部分 9 1の大き さが変化することに着目して、 刃 9の先端の苹坦部分 9 1の大きさを測定するこ とによつて摩耗の程度を検知して、 その検知された摩耗の程度に じて刃 9の抻 圧力を増大させることによって、 常に一定のスクラィブ加ェを行わせることがで きるようにしている。
具体的には、 刃 9の先端の平坦部分 9 1の大きさを測定する手段として、 第 5 図に示すように、 刃 9先端部分をカメラ 1 0によって撮影して、 その撮影画像の データを演算制御装置 1 1が敢リ込んで平坦部分 9 1の大きさ (ロ柽または面積) を求める。 その際、 画像データから苹坦部分 9 1を認識して、 画面全体における 平坦部分 9 1の占める割合からその大きさをわり出すようにする。
そして、 その測定された刃 3の先端の平坦部分 9 1の大きさに応じて ¾ 9 ©抻 圧力を可変に制御する手段として、 演算制御装置 1 1に予め平坦部分 9 1の大き さに対する刃 9の押圧力の特性がテーブル設定されており、 測定された平坦部分 9 1の大きさに^じた所定の押圧力になるように刃 9の抻圧力を制御する。 その 際、 演算制御装置 1 1 ©制御下において、 メカ二カルスクライブ装置本体 1 2に おける刃 9の押圧力を調整するシリンダ ピストン機構などからなるァクチユエ ータ (図示せず) の駆動を適宜行うようにする。
その際、 荷重—計によって刃 9の柙圧力を測定しながらフィードバヅク制御を行 つて、 刃先の摩耗に^じた圧力制御を高精度に行うようにする。
なお、 メ力二カルスクラィブ装置本体 1 2としては、 シリンダ *ビストン機構 などからなるァクチユエータによつてへジド部分に着脱自在に取り付けられた刃 9を所定の圧力をもって被加工面の所定箇所に垂直に押し付けて、 その ¾ 9を被 加工面に沿つて移動させる一般的なものが用いられる。
第 6図は、 刃 9の摩耗量と刃先面積との関係の特性 Aおよぴ刃 9の摩耗量に対 して最適化された刃荷重の特性 Bを示している。
刃 9の先端の平坦部分 9 1の大きさから摩耗量を求めるに際して、 先に被加工 面にスクライブ加工したときのスクライブ幅を測定して、 その測定結果から刃先 の摩耗量をおリ出すようにしてもよい。
また、 メカ二カルスクライブ加工を施すに際して、 演算制御装置 1 1の制御下 において刃 9の移動速度を可変に制榔して、 位置精度が要求されるスクラィプ加 ェの開始領域 (飼えば全スクライブ領域の 1 0 %程度の領域) および終了領域 (例えば全スクライブ領域 © 1 0 %程度の領域) に対して、 その中間領域におけ' め刃 9の移動速度を高く設定するようにする。
このようなスクライブ加工の中間領域における刃 9の移動遠度を高めることに より、 モジュール構成による薄膜太陽電池の各セルの分離の作業工程のスループ ットを有効に向上させることができるようになる。
また、 本発明では、 被加工面に対してメカ二カルスクライブ加工を施すに際し て、 被加工面を水平に对して 6 0 ° 以上 9 0 ° 未満の角度に保持してスクライブ 加工を行わせるようにして、 加工時に生ずる切り屑が霧下して被加工面に付着し ないようにしている。 角度を 9 0 ° 未満としているために、 被加工部材 1 3が容 易に落下することが防止される。 第 7図は、 本発明におけるメカニカルスクライプ装置本体 1 2の概要を示して いる。
そのメカ二カルスクライプ装置 1 2は、 被加工部材 1 3をその被加工面が水平 に対して 6 0。 上 9 0 ° 未満の角度をなすように保持して搬入する背面フロー ト式の鎩入 L / L部 1 2 1と、 その搬入された被加工部材 1 3に対してそれが垂 直に保持された状態のままで所定のスクライブ加工を施すスクライブ加工部 1 2 2と、 そのスクライブ加工された被加工部材 1 3を搬出する背面フロート式の搬 出 U L/ L部 1 2 3とからなっている。
被加工部材 1 3の搬入 L / L部 1 2 1は、 背面エアーフローライン 1 4に複数 の被加工部材 1 3の面が垂直になるように保持されて、 コンベア 1 5によって赎 次スクライブ加工部 1 2 2に搬送されるようになっている。
スクライブ加工部 1 2 2は、 徽送されてきた被加工部材 1 3を垂直状態のまま で可動テーブル 1 6に吸着して、 スライドレール 1 7に沿つてスクライブ加工の ァクチユエータ。 1 8のところまで移動させる。 そして、 その位置で上下一対に設 けられたカメラ 1 9 1 , 1 9 2によつて先に被加工部材 1 3にレーザスクライブ 加工によって形成されているスクライブライン (溝 L) の上下端を認識する。 そ の際、 第 8図に示すように、 可動テーブル 1 6に啜着されている被加工部材 1 3 が傾いている場合には、 第 9画に示すように、 その認識されたスクライブライン Lが垂直になるように可動テーブル 1 6を回転させて、 ァクチユエータ 1 8に対 する被加工部材 1 3の姿勢を修正する。 そして、 被加工部材 1 3を送つてスクラ イブ箇所の位置決めを行いながら、 刃 2 2が装着されたへジド 2 0を所定の圧力 をもって被加工部材 1 3に押し付けて、 へジ ド 2 0をへッド駆動部 2 1に沿って 上下方向に動かして所定のスクライブ加工を行うようになっている。 図中、 2 3 はへジドクリーナを、 2 4, 2 5はダウンプロ一排出口をそれぞれ示している。 被加工部材 1 3の搬出 U L / L部 1 2 3は、 スクライブ加工が施された被加工 部材 1 3が背面エアーフローライン 2 6に保持されて、 コンベア 2 7によって順 次搬出されるようになっている。
産業上の利用可能性
本 明によれば、 メカ二カルスクライブ装置にあって、 特に、 刃の先端の平坦 部分の大きさを測定して、 その測定された苹坦部分の大きさに応じて刃の押圧力 を可変に制御するようにしているので、 刃先端の摩耗状態に ^じて常に予定した 徼鈔なスクライプ加工を精度良く施すことができるようになり、 特に薄膜太陽電 池のモジュールにおける各セルの分離を行; bせるに際してスクライブ残りゃ必襄 以上の加圧力によつて下層の膜や基板を傷付けるようなことがなくなり、 その分 離を最適に行おせることができるようになる。
また、 本堯明によれば、 メカ二カルスクライブ加工を施すに際して、 刃の移動 遠度を可変に制御して、 スクライブ加工の開始領域および終了領域に対してその 中間領域の刃の移動速度を高く設定するようにしているので、 スループジトを有 効に向上させることができるようになる。
そして、 被加工面を水平に対して 6 0 ° 上 9 0 ° 未満の角度に保持してスク ライブ加工を行うようにしているので、 スクライブ加工時に生ずる切り屑が基板 に付着するのを防止できるようになる。

Claims

請 求 の 範 囲 筒体の先方が所定のテーパー角度をもって先 りになり、 その先細りの先端 が平坦になつた刃を所定の圧力をもつて被加工面のスクライブ箇所に垂直に押 し付けて、 その刃を被加工面に沿つて移動させることによってスクライプ加ェ を施す手段と、 刃の先端の平坦部分の大きさを測定する手段と、 その測定され た ¥坦部分の大きさに じて刃の押庄カを制御する手段とによつて構成された メカ二カルスクライブ装置。
刃の抻圧力を制御する手段は、 刃先端の平坦部分の大きさに対する刃の押圧 力の特性が予めテーブル設定されたメモリを有しており、 そのメモリから測定 された平坦部分の大きさに応じて読み出した所定の押圧力になるように刃の押 圧力を制御するようにしたことを特徵とする請求項 1の記載によるメカニカル スクライブ装置。
刃先端の平坦部分の大きさが、 直径または面積であることを特徵とする請求 項 1の記載によるメカ二カルスクライブ装置。
刃の先端の平坦部分の大きさを測定する手段は、 カメラ部をそなえ、 その力 メラ部により刃先端の平坦部分の大きさを測定するようにしたことを特徴とす る請求項 1の記載によるメカ二カルスクライブ装置。
カメラ部は、 刃先端を撮影した画像から刃先端の平坦部分の大きさを測定す るようにしたことを特徵とする請求項 4の記載によるメカ二カルスクライブ装 カメラ部は、 先に被加工面をスクライブ加工したときのスクライブ溝を撮影 した画像からそのスクライプ溝の幅を求めて、 そのスクライプ溝の幅から刃先 端の平坦部分の大きさを測定するようにしたことを特徴とする請求項 4の記載 によるメカ二カルスクライブ装置。
被加工面を水平に対して 6 0 ° 玖上 9 0。 未満の角度に保持してスクライブ 加工を行うようにしたことを特徴とする請求項 1の記載によるメカニカルスク ライブ装置。
PCT/JP2003/011140 2002-09-26 2003-09-01 メカニカルスクライブ装置 WO2004028988A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003264362A AU2003264362A1 (en) 2002-09-26 2003-09-01 Mechanical scribe device
EP03798384.8A EP1544172B1 (en) 2002-09-26 2003-09-01 Mechanical scribe device
US11/077,139 US7281334B2 (en) 2002-09-26 2005-03-07 Mechanical scribing apparatus with controlling force of a scribing cutter
NO20051935A NO20051935L (no) 2002-09-26 2005-04-20 Mekanisk risseanordning.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-319028 2002-09-26
JP2002319028A JP3867230B2 (ja) 2002-09-26 2002-09-26 メカニカルスクライブ装置

Publications (1)

Publication Number Publication Date
WO2004028988A1 true WO2004028988A1 (ja) 2004-04-08

Family

ID=32040874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011140 WO2004028988A1 (ja) 2002-09-26 2003-09-01 メカニカルスクライブ装置

Country Status (6)

Country Link
US (1) US7281334B2 (ja)
EP (1) EP1544172B1 (ja)
JP (1) JP3867230B2 (ja)
AU (1) AU2003264362A1 (ja)
NO (1) NO20051935L (ja)
WO (1) WO2004028988A1 (ja)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012976A (ja) * 2005-07-01 2007-01-18 Honda Motor Co Ltd 太陽電池モジュール
JP4703350B2 (ja) 2005-10-13 2011-06-15 本田技研工業株式会社 太陽電池の製造方法
JP2007123720A (ja) * 2005-10-31 2007-05-17 Rohm Co Ltd 光電変換装置およびその製造方法
JP2007123721A (ja) * 2005-10-31 2007-05-17 Rohm Co Ltd 光電変換装置の製造方法および光電変換装置
JP4730740B2 (ja) 2006-01-30 2011-07-20 本田技研工業株式会社 太陽電池およびその製造方法
JP2007201304A (ja) 2006-01-30 2007-08-09 Honda Motor Co Ltd 太陽電池およびその製造方法
DE102006051556A1 (de) 2006-11-02 2008-05-08 Manz Automation Ag Verfahren zum Strukturieren von Solarmodulen und Strukturierungsvorrichtung
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US20100236627A1 (en) 2007-09-28 2010-09-23 Haruo Yago Substrate for solar cell and solar cell
JP2009267337A (ja) 2007-09-28 2009-11-12 Fujifilm Corp 太陽電池
US20090084425A1 (en) * 2007-09-28 2009-04-02 Erel Milshtein Scribing Methods for Photovoltaic Modules Including a Mechanical Scribe
JP4974986B2 (ja) 2007-09-28 2012-07-11 富士フイルム株式会社 太陽電池用基板および太陽電池
JP2009187981A (ja) * 2008-02-01 2009-08-20 Shiraitekku:Kk 太陽電池パネルのスクライブ装置
JP5137187B2 (ja) * 2008-02-01 2013-02-06 株式会社シライテック 太陽電池パネルの縁切り装置
DE102008010783A1 (de) 2008-02-22 2009-08-27 Jenoptik Automatisierungstechnik Gmbh Verfahren zum mechanischen Strukturieren von flexiblen Dünnschichtsolarzellen und eine hierfür geeignete Vorrichtung
KR100954367B1 (ko) * 2008-04-17 2010-04-26 (주)텔리오솔라코리아 태양전지 제조를 위한 패터닝 장치
US20110126688A1 (en) * 2008-05-26 2011-06-02 Masanobu Soyama Scribing apparatus for thin film solar cell
CN101640232B (zh) * 2008-08-28 2011-01-12 苏州富能技术有限公司 薄膜太阳电池模块的加工方法
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US20110018103A1 (en) * 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
WO2010044738A1 (en) * 2008-10-13 2010-04-22 Solibro Research Ab A method for manufacturing a thin film solar cell module
US8082672B2 (en) * 2008-10-17 2011-12-27 Stion Corporation Mechanical patterning of thin film photovoltaic materials and structure
EP2200097A1 (en) * 2008-12-16 2010-06-23 Saint-Gobain Glass France S.A. Method of manufacturing a photovoltaic device and system for patterning an object
JP2010165879A (ja) * 2009-01-16 2010-07-29 Fujifilm Corp スクライブ加工装置、及びスクライブ加工方法
TWI424580B (zh) * 2009-02-24 2014-01-21 Mitsuboshi Diamond Ind Co Ltd A trench processing tool, a trench processing method and a cutting device using a thin film solar cell
JP5308892B2 (ja) 2009-04-01 2013-10-09 三星ダイヤモンド工業株式会社 集積型薄膜太陽電池の製造装置
JP5436007B2 (ja) * 2009-04-06 2014-03-05 株式会社シライテック 太陽電池パネルの製膜スクライブ装置
US8241943B1 (en) 2009-05-08 2012-08-14 Stion Corporation Sodium doping method and system for shaped CIGS/CIS based thin film solar cells
US8372684B1 (en) 2009-05-14 2013-02-12 Stion Corporation Method and system for selenization in fabricating CIGS/CIS solar cells
TW201103681A (en) * 2009-06-12 2011-02-01 Applied Materials Inc Methods and systems for laser-scribed line alignment
US20100330711A1 (en) * 2009-06-26 2010-12-30 Applied Materials, Inc. Method and apparatus for inspecting scribes in solar modules
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
WO2011001962A1 (ja) * 2009-06-29 2011-01-06 京セラ株式会社 光電変換素子の製造方法、光電変換素子の製造装置および光電変換素子
KR101028310B1 (ko) * 2009-06-30 2011-04-11 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8859880B2 (en) * 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
DE102010013253B4 (de) * 2010-03-29 2018-04-19 Oc3 Ag Verfahren zum Strukturieren von CIGS-Dünnschichtsolarzellen
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8142521B2 (en) * 2010-03-29 2012-03-27 Stion Corporation Large scale MOCVD system for thin film photovoltaic devices
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
KR101154654B1 (ko) * 2010-10-05 2012-06-11 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
WO2012070398A1 (ja) * 2010-11-22 2012-05-31 旭硝子株式会社 板ガラスの切線加工装置及び板ガラスの切線加工方法並びに板ガラスの製造方法
JP5728359B2 (ja) * 2010-12-21 2015-06-03 三星ダイヤモンド工業株式会社 薄膜太陽電池用溝加工ツール及び薄膜太陽電池の溝加工装置
JP5170294B2 (ja) * 2010-12-24 2013-03-27 三星ダイヤモンド工業株式会社 パターニング装置
TWI458108B (zh) * 2011-12-07 2014-10-21 Ind Tech Res Inst 渠道刻劃裝置以及渠道刻劃方法
JP5804999B2 (ja) * 2012-03-30 2015-11-04 三星ダイヤモンド工業株式会社 溝加工ツールおよびこれを用いた薄膜太陽電池の溝加工方法ならびに溝加工装置
JP2014004776A (ja) * 2012-06-26 2014-01-16 Mitsuboshi Diamond Industrial Co Ltd 基板の加工装置
JP5981795B2 (ja) * 2012-07-24 2016-08-31 三星ダイヤモンド工業株式会社 基板の溝加工方法及び溝加工装置
JP5486057B2 (ja) 2012-09-10 2014-05-07 昭和シェル石油株式会社 薄膜太陽電池の製造方法
TWI589420B (zh) * 2012-09-26 2017-07-01 Mitsuboshi Diamond Ind Co Ltd Metal multilayer ceramic substrate breaking method and trench processing tools
JP6005571B2 (ja) * 2013-03-28 2016-10-12 三星ダイヤモンド工業株式会社 金属膜積層セラミックス基板溝加工用ツール
KR20150052920A (ko) * 2013-11-06 2015-05-15 삼성에스디아이 주식회사 태양 전지 제조용 스크라이빙 장치
JP6280365B2 (ja) 2013-12-27 2018-02-14 三星ダイヤモンド工業株式会社 薄膜太陽電池の加工溝検出方法および加工溝検出装置
JP6267566B2 (ja) * 2014-03-28 2018-01-24 三星ダイヤモンド工業株式会社 溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置
JP6406006B2 (ja) * 2014-03-28 2018-10-17 三星ダイヤモンド工業株式会社 溝加工ツール並びにこの溝加工ツールを取り付けたスクライブ装置
TW201622929A (zh) * 2014-11-27 2016-07-01 Mitsuboshi Diamond Ind Co Ltd 基板加工用工具
JP2016101664A (ja) * 2014-11-27 2016-06-02 三星ダイヤモンド工業株式会社 基板加工用ツールの製造方法及び基板加工用ツール
JP2016101749A (ja) * 2014-12-29 2016-06-02 三星ダイヤモンド工業株式会社 基板加工用ツールのツールホルダ及び基板加工装置
JP6547397B2 (ja) * 2015-04-30 2019-07-24 三星ダイヤモンド工業株式会社 薄膜太陽電池の加工装置、および、薄膜太陽電池の加工方法
US9859451B2 (en) 2015-06-26 2018-01-02 International Business Machines Corporation Thin film photovoltaic cell with back contacts
DE102016221626B4 (de) 2016-11-04 2019-04-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anordnung zur Überwachung des Ritzprozesses beim Ritzen von Bauteilen mit einem Ritzwerkzeug
JP6600670B2 (ja) 2017-09-15 2019-10-30 株式会社東芝 光電変換素子、その製造方法、およびその製造装置
CN108177258B (zh) * 2017-12-27 2019-08-20 常州三立精图光电有限公司 一种太阳能电池板钻孔装置
JP2021040097A (ja) * 2019-09-05 2021-03-11 株式会社ディスコ 被加工物の切削方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680213A (en) 1969-02-03 1972-08-01 Karl O Reichert Method of grooving semiconductor wafer for the dividing thereof
JPH10287439A (ja) * 1997-04-10 1998-10-27 Denso Corp ガラス切断カッター保持具及び複合加工装置
EP0905097A1 (en) * 1997-09-25 1999-03-31 Beldex Corporation Scribe device
JPH11263632A (ja) * 1998-03-16 1999-09-28 Beldex:Kk スクライブ方法および装置、並びに記憶媒体用ディスク
US6422793B1 (en) 1999-03-29 2002-07-23 Antec Solar Gmbh Separating means for producing a thin-film solar module

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379814A (en) * 1965-03-30 1968-04-23 Mobil Oil Corp Scoring thermoplastic materials
US4502225A (en) * 1983-05-06 1985-03-05 Rca Corporation Mechanical scriber for semiconductor devices
US4589194A (en) * 1983-12-29 1986-05-20 Atlantic Richfield Company Ultrasonic scribing of thin film solar cells
DE3903133A1 (de) * 1988-02-04 1989-08-31 Amada Co Werkstueckbearbeitbarkeitsdetektionsverfahren und verfahren zum spanabhebenden bearbeiten eines werkstuecks mit hilfe einer spanabhebenden bearbeitungsmaschine unter anwendung dieses verfahrens
US5251156A (en) * 1990-08-25 1993-10-05 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and apparatus for non-contact measurement of object surfaces
DE4327250C5 (de) * 1992-09-25 2008-11-20 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren zur Koordinatenmessung an Werkstücken
AU1567895A (en) * 1994-01-18 1995-08-01 Dynatex International Method and apparatus for scribing and/or breaking semiconductor wafers
US5956253A (en) * 1997-09-09 1999-09-21 Glassline Corporation Camera controlled CNC apparatus for processing blanks
JPH11312815A (ja) 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd 薄膜太陽電池の製造方法
US6195618B1 (en) * 1998-10-15 2001-02-27 Microscribe, Llc Component position verification using a probe apparatus
JP2002018482A (ja) * 2000-07-05 2002-01-22 Mitsubishi Heavy Ind Ltd セレン酸還元反応装置
JP3820958B2 (ja) * 2001-10-26 2006-09-13 日本板硝子株式会社 光ファイバ結合系
DE10211070A1 (de) * 2002-03-13 2003-09-25 Gurny Broesch Andrea Vorrichtung zum Vermessen eines Messobjekts
US7165331B1 (en) * 2005-05-24 2007-01-23 Micro Processing Technology, Inc. Apparatus and method for scribing a semiconductor wafer while controlling scribing forces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680213A (en) 1969-02-03 1972-08-01 Karl O Reichert Method of grooving semiconductor wafer for the dividing thereof
JPH10287439A (ja) * 1997-04-10 1998-10-27 Denso Corp ガラス切断カッター保持具及び複合加工装置
EP0905097A1 (en) * 1997-09-25 1999-03-31 Beldex Corporation Scribe device
JPH11263632A (ja) * 1998-03-16 1999-09-28 Beldex:Kk スクライブ方法および装置、並びに記憶媒体用ディスク
US6422793B1 (en) 1999-03-29 2002-07-23 Antec Solar Gmbh Separating means for producing a thin-film solar module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1544172A4

Also Published As

Publication number Publication date
EP1544172A4 (en) 2009-09-09
EP1544172B1 (en) 2016-01-20
AU2003264362A1 (en) 2004-04-19
US20050223570A1 (en) 2005-10-13
JP3867230B2 (ja) 2007-01-10
NO20051935L (no) 2005-04-20
JP2004115356A (ja) 2004-04-15
US7281334B2 (en) 2007-10-16
EP1544172A1 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
WO2004028988A1 (ja) メカニカルスクライブ装置
US20160158890A1 (en) Systems and methods for scribing photovoltaic structures
TWI442592B (zh) Thin film solar cell scribing device
US8309390B2 (en) Method of manufacturing a photovoltaic device and system for patterning an object
EP2284911A2 (en) Laser ablation tool
US20110017711A1 (en) Beam processing apparatus, beam processing method, and beam processed substrate
CN102245340A (zh) 具有视觉校正及/或追踪的激光加工系统和方法
US20110278267A1 (en) Scribing apparatus and scribing method
KR20140071327A (ko) 태양 전지 셀의 제조 방법 및 태양 전지 모듈
CN110444627B (zh) 太阳能电池组件的制备方法
US8021913B2 (en) Method and apparatus for forming the separating lines of a photovoltaic module with series-connected cells
JP5514617B2 (ja) 薄膜光電変換モジュールの製造方法およびスクライブ装置
TW201626592A (zh) 雷射刻畫設備
TW201330075A (zh) 切割裝置及方法
CN104752558B (zh) 薄膜太阳电池的加工槽检测方法及加工槽检测装置
TW201414561A (zh) 雷射劃線系統
JP2004119953A (ja) 薄膜太陽電池およびその製造方法
KR20100105096A (ko) In-situ 레이저 스크라이빙 장치
CN110444621B (zh) 太阳能电池组件的制备方法
KR20130111328A (ko) 홈 가공 툴 및 이것을 이용한 박막 태양 전지의 홈 가공 방법 그리고 홈 가공 장치
CN219881569U (zh) 激光刻蚀设备
JP2010040922A (ja) 光電変換装置の製造方法
KR101233400B1 (ko) 메카니컬 스크라이버의 스크라이브 팁 정렬장치 및 방법
CN220445391U (zh) 一种激光加工设备及系统
CN212398530U (zh) 一种半导体晶圆激光切割机

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003798384

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003798384

Country of ref document: EP