JP6280365B2 - 薄膜太陽電池の加工溝検出方法および加工溝検出装置 - Google Patents

薄膜太陽電池の加工溝検出方法および加工溝検出装置 Download PDF

Info

Publication number
JP6280365B2
JP6280365B2 JP2013271656A JP2013271656A JP6280365B2 JP 6280365 B2 JP6280365 B2 JP 6280365B2 JP 2013271656 A JP2013271656 A JP 2013271656A JP 2013271656 A JP2013271656 A JP 2013271656A JP 6280365 B2 JP6280365 B2 JP 6280365B2
Authority
JP
Japan
Prior art keywords
groove
light
infrared
lower electrode
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271656A
Other languages
English (en)
Other versions
JP2015126206A (ja
Inventor
良吾 堀井
良吾 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2013271656A priority Critical patent/JP6280365B2/ja
Priority to TW103133638A priority patent/TWI635549B/zh
Priority to KR1020140130823A priority patent/KR102353442B1/ko
Priority to CN201410549396.5A priority patent/CN104752558B/zh
Priority to US14/555,190 priority patent/US9523644B2/en
Publication of JP2015126206A publication Critical patent/JP2015126206A/ja
Application granted granted Critical
Publication of JP6280365B2 publication Critical patent/JP6280365B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning
    • G01N2201/105Purely optical scan
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Description

本発明は、カルコパイライト化合物等の化合物半導体を用いた集積型薄膜太陽電池の加工溝を検出する加工溝検出方法、および、これに用いられる加工溝検出装置に関する。
ここで、カルコパイライト化合物とは、CIGS(Cu(In,Ga)Se)の他に、CIGSS(Cu(In,Ga)(Se,S))、CIS(CuInS)等が含まれる。
化合物半導体を光吸収層として用いる薄膜太陽電池においては、基板上に複数のユニットセルを直列接続した集積型構造が一般的である。
従来のカルコパイライト化合物系集積型薄膜太陽電池の製造方法について説明する。図5は、その製造工程を示す模式図である。
まず、図5(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板11上に、プラス側の下部電極となるMo電極層12を積層した後、スクライブ加工により下部電極分離用の溝Sを形成する。
その後、図5(b)に示すように、Mo電極層12上に、化合物半導体(CIS)薄膜からなる光吸収層13を積層し、その上にヘテロ接合のためのZnS薄膜等からなるバッファ層14を積層する。このバッファ層14は実質的に光吸収層13の一部を構成する。次いで、溝Sから横方向に所定距離離隔した位置に、スクライブ加工によりMo電極層12にまで到達する電極間コンタクト用の溝M1を溝Sに対して平行に形成する。
続いて、図5(c)に示すように、バッファ層14の上にZnO:AI薄膜などからなる上部電極としての透明電極層15を形成し、スクライブ加工により下部のMo電極層12にまで到達する電極分離用の溝M2を、溝M1に対して平行に形成する。
上述した集積型薄膜太陽電池を製造する工程において、各溝をスクライブにより溝加工する技術としては、例えば特許文献1で開示されているようなレーザ光を用いたレーザスクライブ法や、特許文献2および3で開示されているような先端に刃先を有する溝加工ツールを用いたメカニカルスクライブ法が用いられている。
特開平11−312815号公報 特開2002−094089号公報 特開2004−115356号公報
高品質で発電効率の高い太陽電池を得るためには、発電に有効な領域の面積をできるだけ広く確保することが重要である。そのためには電極間コンタクト用の溝M1を、先行して加工してある下部電極分離用の溝Sに対して、所定距離を離隔させた位置で、溝Sに対して平行に加工することが発電領域の面積ロスを抑える上で有効である。なお、溝M2については溝M1の加工後、溝M1に対して平行に加工することになる。そのため、太陽電池基板の上方に配置したカメラで位置を観察し、溝M1を加工するための位置調整を行う際には、予め基板に設けられたアライメントマークを用いた位置調整ではなく、前工程において実際に加工された溝Sを光学的に観察して、溝Sそのものを基準とすることが望ましい。
しかしながら、図5(b)に示されているように、溝M1を加工する時点では、溝Sの上にはCIS等の化合物半導体からなる光吸収層13、バッファ層14が積層されている。光吸収層13は厚さが1μm程度であるが、可視光から近赤外光の波長の太陽光(波長範囲0.3μm〜1.4μm)を吸収して光電変換する層であるため、可視光はほとんど透過しない。よって光吸収層13より下層のMo電極層12の溝Sを光吸収層13の上方から可視光による光学カメラで観測しても、溝Sが隠れているか、微かに写るだけの不鮮明な画像が確認できるにすぎなかった。
そのため、従来は溝M1を加工する際に、微かに写った不鮮明な画像から溝Sの位置を大雑把に検出する方法か、溝Sと加工すべき溝MIとの間隔を予め設計情報から決めておき、画像で確認することなく、この決められた間隔で機械的にスクライブ加工を行う方法をとるようにしていた。しかし、スクライブ装置の各駆動部における移動誤差や太陽電池基板のテーブルへの位置決め誤差、基板の湾曲等の変動要因の影響により、溝M1の位置誤差の発生や、溝Sに平行な方向からの角度誤差の発生を避けることはできなかった。
また、他の方法として、絶縁基板11として可視光が透過可能なガラス基板を用いている場合には、基板11側からガラス面を介して光学カメラで測定することが考えられる。しかしながら、使用されるガラス基板の板厚は1mm以上(例えば1.8mm)であり、基板のソリに基づく光軸の傾きが生じると、無視できない大きさの屈折率誤差(例えば基板面に垂直な方向に対して0.5度の傾きで5μm程度の誤差)が発生することになる。
また、基板を上下反転させて、上からの光学カメラで基板11側(裏面側)から溝Sを観察することも可能であるが、反転して観察した後、光吸収層13に溝M1を加工する際には再び基板を反転しなければならないため、基板11を載置したテーブルを反転するための機構が必要になり、装置が複雑で大掛かりかつ高価になるといった問題点があった。
また、絶縁基板11が可視光を透過しない金属や樹脂からなる場合には、そもそも基板11側から溝Sを観察することができなかった。
そこで本発明は、光吸収層の下側に加工されている下部電極分離用の溝Sを、新たな方法で正確に検出する加工溝検出方法、および、これに用いられる加工溝検出装置を提供することを目的とする。
上記課題を解決するためになされた本発明の加工溝検出方法では、基板上に下部電極層と光吸収層とがこの順で積層されるとともに、前記下部電極層の一部に下部電極分離用の溝が加工された薄膜太陽電池用加工品において、前記光吸収層に覆われた前記溝を検出する加工溝検出方法であって、前記加工品から輻射される前記光吸収層を透過可能な波長領域の撮像用赤外光を、前記光吸収層の上方側に配置され、可視光を検出せず前記撮像用赤外光を検出する赤外線撮像装置で検出して前記撮像用赤外光の輻射強度分布画像データを取得し、前記輻射強度分布画像データに基づいて前記下部電極層の溝を検出するようにしている。
また、別の観点からなされた本発明の加工溝検出装置は、基板上に下部電極層と光吸収層とがこの順で積層されるとともに、前記下部電極層の一部に下部電極分離用の溝が加工された薄膜太陽電池用加工品において、前記光吸収層に覆われた前記溝を検出する加工溝検出装置であって、前記光吸収層を上にして前記加工品が載置されるテーブルと、前記テーブルの上方に配置され、可視光を検出せず前記光吸収層を透過可能な波長領域の撮像用赤外光を検出し、当該撮像用赤外光の輻射強度分布画像データを取得する赤外線撮像装置と、前記輻射強度分布画像データに基づいて前記下部電極層の溝の位置を決定する加工溝決定部とを備えるようにしている。
薄膜太陽電池の光吸収層には、光電変換効率を高めるため太陽光に多く含まれる可視光が効率よく吸収できる材料が選択使用されている。よって可視光は光吸収層を通過する際にほとんど吸収されて透過できないため、光吸収層よりも下側に存在する下部電極層に形成された溝を見ることができない。しかし、光吸収層で吸収されない波長領域の赤外光については光吸収層を透過できる。ここで、本願では、光吸収層で吸収されない波長領域の光を「撮像用赤外光」という。例えばカルコパイライト系太陽電池等では、1.4μm以上の波長であれば確実に光吸収層を透過するため撮像用赤外光に該当する。
一方、下部電極は金属(例えばMo)で形成されており、赤外光は透過されずに一部が吸収され、一部が反射される。したがって、赤外光を含む自然光、あるいは蛍光灯等の照明光が上方から入射したとき、光吸収層を透過して下部電極層に至った赤外光は、当該下部電極層で吸収、反射され、輻射光として再び光吸収層を通過し、輻射赤外光として上方に出射されるようになる。
そこで、可視光の波長領域に対する感度はなく、輻射赤外光の波長領域に対する感度を有する赤外線撮像装置(例えば1.4μm以上の波長の赤外光を検出する赤外線撮像装置)を用いて、薄膜太陽電池用加工品における下部電極分離用の溝が加工された近傍の領域を撮像する。すると、光吸収層(薄膜)の表面で反射される可視光、および、光吸収層内で吸収される可視光については全く検出されず、光吸収層を透過して下部電極層で吸収、あるいは反射されて再び光吸収層を透過した輻射赤外光(撮像用赤外光)については検出されるようになる。このとき撮像される画像データは輻射赤外光の強度の分布を表している。そして下部電極層がない溝の部分については、下部電極層が存在する部分に比べると輻射赤外光の光量がはるかに少ないため、溝の存在する部分はそれ以外の部分に比べて暗く撮像される。したがって、明暗(輝度値の差)によって下部電極層と溝との境界が示された画像データ(サーモグラフィ)を取得することができる。
このようにして得られた画像データに対し、輝度値が大きく変化した位置を抽出することにより、溝と電極との境界の位置を検出することができるので、左右一対の境界の位置を検出することで加工溝の位置や方向を正確に決定することができる。
よって、本発明によれば、可視光に対する感度はなく、輻射赤外光に対する感度を有する赤外線撮像装置により撮像された画像データから下部電極層に形成された溝と下部電極との境界を検出することができ、これにより、光吸収層の下に隠れている下部電極層の溝の位置や方向を正確に把握して基準線とすることができるという優れた効果を奏する。
そして、この基準線に基づいて、平行に溝加工することで光吸収層の溝M1を、下部電極の溝Sと平行になるように加工することが可能となる。これにより発電領域のロスを抑制して発電効率の優れた高品質の薄膜太陽電池を製造することができるといった効果がある。
本発明の加工溝検出装置を備えた薄膜太陽電池加工装置の一実施形態を示す概略的な正面図。 図1における加工溝検出装置の主要部分の説明図。 撮像された画像データから溝の位置を決定する工程の説明図。 本発明の加工溝検出方法を適用した製造工程を示す説明図。 一般的な薄膜太陽電池の製造工程を示す模式図。
以下において、本発明の詳細を図面に基づいて詳細に説明する。
図1は本発明に係る加工溝検出装置を備えた薄膜太陽電池の加工装置の一例を示す概略的な正面図であり、図2はその加工溝検出装置の主要部分を説明するための図である。
加工溝検出装置Aは、ガラス基板上に薄膜層が積層された太陽電池用加工品Wを載置して保持するテーブル1を備えている。テーブル1は、水平なレール2に沿ってY方向(図1の前後方向)に移動できるようになっており、モータ(図示外)によって回転するネジ軸3により駆動される。さらにテーブル1は、モータを内蔵する回転駆動部4により水平面内で回動できるようになっている。
テーブル1を跨ぐように配置された門型のブリッジ5の水平なビーム6には、X方向に延びるガイド7が設けられ、このガイド7にスクライブヘッド8がモータMによってX方向に移動できるように取り付けられている。このスクライブヘッド8に、テーブル1上に載置された太陽電池用加工品(被加工品)Wの薄膜表面を機械的にスクライブして溝を加工する溝加工ツール、あるいは、熱的にスクライブして溝を加工するレーザ照射機構のいずれかの溝加工機構が取り付けられる。本実施例では、このような溝加工機構として、加工対象である溝M1の溝幅とほぼ同じ刃幅を有する刃先を有し、当該刃先を薄膜層に当接させて剥離することにより溝加工を行う溝加工ツール9が取り付けられている。
そして、コンピュータで構成された制御部(図示外)により、スクライブヘッド8のX方向への移動とテーブル1のY方向への移動とを連動させる制御を行うことにより、斜め方向も含むXY面内の任意の方向へのスクライブ加工ができるようにしてある。
加工溝検出装置Aは、被加工品Wの光吸収層を透過可能な波長領域の赤外光(撮像用赤外光)が光吸収層側から入射される環境の下で使用される。ただし、自然光あるいは蛍光灯等の照明Lに含まれる赤外光があれば十分であることから、積極的に撮像用赤外光を照射するための光源を設ける必要はなく、赤外光が照射されない暗室のような場所でさえなければ使用することができる。
テーブル1の上方には、テーブル1に載置された被加工品Wから発生する輻射赤外光を画像データ(サーモグラフィ)として検知するための赤外線撮像装置として、赤外線ラインスキャンカメラ16が設けられている。この赤外線ラインスキャンカメラ16は、光吸収層13、14を透過する波長領域である1.4μm以上の波長の赤外光(撮像用赤外光)を検出することができるとともに、1.4μm以下の波長の可視光(一部赤外光を含む)が検出されないような検出感度を有し、波長範囲が制限されるようにしてある。具体的には1.4μm未満の波長光をカットするフィルタを光路上に介在させることにより簡単に実現することができる。あるいは赤外線カメラに分光測定機能を設けておくことで、1.4μm以上の波長による画像データを作成するようにしてもよい。
そして、テーブル1上の赤外線ラインスキャンカメラ16で撮像できる範囲内に被加工品Wの溝Sの一端側が位置するように当該被加工品Wが載置され、テーブル1を溝Sの方向(Y方向;図1の前後方向)に駆動したときに溝S上の各点が赤外線ラインスキャンカメラ16の撮像範囲に入るようにして、溝Sの各点が画像データとして撮像されるようにしてある。
撮像された画像データは、コンピュータからなる制御部(図示外)に送られ、各点での画像データが合成されて溝Sの近傍を含んだ画像データが作成される。なお、制御部にはこの画像データに基づいて正確な溝Sの位置を決定する機能を有する基準線決定部が設けられている。基準線決定部では、デジタルフィルタ処理、平均化処理等の統計的処理を行って画像データから溝Sの中心位置となる直線の位置を決定するようにしてある。
図3は、撮像された画像データに基づいて基準線決定部が溝Sの位置を決定する工程を説明する図である。ここでは溝Sに沿ってn箇所の撮影点で画像データを撮像するものとする。また、赤外線ラインスキャンカメラ16は1回の撮影で、X方向に画素(例えば64画素)が並んだ画像データが得られるものとする。
被加工品Wが載置されたテーブル1をY方向に移動することにより、図3(a)に示す溝S上の各撮影点1〜nが赤外線ラインスキャンカメラ16の撮像領域に移動し、順次、撮像が行われる。図3(b)は撮影点のうち、撮影点jでの画像データの一例を模式的に示しており、各画素の数値は輝度値を示している。
図2に示すように、照明Lからの光に含まれている1.4μm以上の波長である撮像用赤外光は、被加工品Wの光吸収層13、14を透過し、一部がMo電極層12に到達し、一部がMo電極層12に形成された溝Sに到達する。Mo電極層12に到達した撮像用赤外光は一部がMo電極層12に吸収され、一部は反射された後に輻射赤外光として、再び光吸収層13、14を透過して被加工品Wの上方に出射される。一方、溝Sからはほとんど輻射赤外光は出射されない。
そして、被加工品Wの上方に配置された赤外線ラインスキャンカメラ16は、この輻射赤外光を検出する。
一般に、赤外線輻射率は物質の材料や表面状態によって異なる。蒸着されたMo層は表面が滑らかであり、また、蒸着されるガラス面も滑らかである。この場合、Mo層の表面と溝Sの表面(ガラスの露出面)とでは表面からの輻射量(輻射率)が数倍程度異なる。
よって、赤外線ラインスキャンカメラ16で溝Sの近傍を撮像すると、輻射量の違いが輝度値として明確に検出されるようになり、溝Sが画像データ(輝度データ)として検出される。
すなわち、溝Sに対応する位置では輻射量が小さいため輝度値が小さくなり、下部電極層(Mo電極層)12の位置ではそれよりも輻射量が大きいため輝度値が大きくなる。
図3(b)では輝度値1が溝S、輝度値5が下部電極位置に対応している。そして、隣の画素の輝度値と大きく変化する部分が境界となることから、輝度値が大きく変化している左右の2箇所を境界位置として抽出することで、溝Sの幅(位置)を求めることができる。撮影点1から撮影点nまでの各画像データの左右の境界位置を求め、それらの中間位置を結ぶことにより溝Sの中心を決定する。実際には、振動等の影響を受けたり、また、パルスレーザによるレーザスクライブではパルスごとに溝幅に微小な凹凸が形成され、中心どうしを結ぶ線は完全な直線にならないことから近似計算を行うことになる。例えばデジタルフィルタ処理により振動の影響を除去したり、平均化処理により最も確からしい直線を決定したりする統計処理を行うことで、溝Sの中心位置を溝Sの位置に対応する直線として決定し、これを溝M1の加工のための基準線とすることができる。
このようにして基準線が決定された後は、この線に沿って平行にスクライブヘッド8が移動するように加工装置を調整することにより、溝Sに平行な溝M1の溝加工が行われる。
具体的には、基準線が加工溝検出装置AのY方向と平行になるまでテーブル1を回転する調整を行った後に、溝加工ツール9でスクライブすることにより、基準線に平行なスクライブ加工ができるようになる。あるいは、テーブル1は回転させず、スクライブヘッド8のX方向への移動と、テーブル1のY方向への移動とを制御部により連動させる制御により、斜め方向へのスクライブ加工を行うことで基準線に平行なスクライブができるようになる。
なお、溝Sと溝M1とは平行に加工するだけでなく、各溝間の距離が設計した値になるように加工することが必要である。そのためには、赤外線ラインスキャンカメラ16と溝加工ツール9との間の相対的な位置関係を対応付けておき、溝M1の設計上の加工位置に溝加工ツール9の刃先が移動できるようにしておくことが必要となる。赤外線ラインスキャンカメラ16と溝加工ツール9との位置関係の対応付けは、予め、基準線とそこからの距離を測るスケールが刻まれた標準スケール基板を用いて、赤外線ラインスキャンカメラ16で当該標準スケール基板の基準線を撮像する。そして加工原点位置に移動させた溝加工ツール9で標準スケール基板上に実際にスクライブ線の加工を行って、基準線とスクライブ線との距離を標準スケール基板上のスケールで計測し、計測された距離を加工溝検出装置Aに設定することにより対応付けておけばよい。
次に、本発明を用いた薄膜太陽電池の製造工程全体について説明する。図4は薄膜太陽電池の製造工程を示す説明図である。
まず、図4(a)に示すように、ソーダライムガラス(SLG)等からなる絶縁基板11上に、プラス側の下部電極となるMo電極層12を蒸着法、スパッタリング法によって形成する。次いで、図4(b)に示すように、Mo電極層12に、溝加工ツール9(図1参照)によるスクライブによって下部電極層分離用の溝Sを加工する。なお、既述のように溝Sの加工は、レーザ光を用いたレーザスクライブによっても加工することができる。
次いで、図4(c)に示すように、Mo電極層12上に、化合物半導体(CIGS)の薄膜からなる光吸収層13を蒸着法、スパッタリング法等によって積層する。この光吸収層13の上に、ヘテロ接合のためのZnS薄膜等からなるバッファ層14がCBD法(ケミカルバスデポジション法)により形成され、光吸収層の一部となる。
続いて、図4(d)に示すように、バッファ層14を含む光吸収層13の上に、下部電極分離用の溝Sから横方向に所定距離離隔した平行位置で、溝加工ツール9によりMo電極層12にまで到達する電極間コンタクト用の溝M1が加工されるのであるが、この加工に先立って、上述した赤外線ラインスキャンカメラ(赤外線撮像装置)16でMo電極層12の溝Sを溝方向に沿ってスキャンして溝Sの位置を検出し、これに基づいて溝M1の加工位置、すなわち、溝加工ツール9のスクライブ位置と加工の方向(角度)を決定する。
そして、この距離と方向(角度)とを維持するように溝加工ツール9を移動させることにより、光吸収層13に溝M1を加工する。
これにより、光吸収層13の上方から光吸収層13の下方にあるMo電極層12の溝Sが可視光で見ることができなくても、その位置と方向とを上方から赤外線ラインスキャンカメラ16で正しく計測することができ、これを基準として光吸収層13の溝M1を正確に平行して加工することが可能となり、発電領域の面積ロスを減らすことができる。
続いて、図4(e)に示すように、バッファ層14の上からZnO:AlI薄膜からなる上部電極としての透明電極層15を形成し、光電変換を利用した発電に必要な各機能層を備えた太陽電池基板とする。次いで、溝加工ツール9によるスクライブ加工により、透明電極層15から下部のMo電極層12にまで到達する電極分離用の溝M2を形成する。
この溝M2の加工の際は、透明電極層15が可視光を透過することができるので、先に加工した溝M1を透明電極層15の上方から見ることが可能である。したがって、図示は省略するが、透明電極層15の上方に可視光で見ることができるカメラを設置し、このカメラで溝M1の位置を検出し、この溝M1を基準として溝M1からの設定距離を維持しながら溝加工ツール9を平行移動させることにより、正確に溝M2を設定位置に形成することができる。
以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例に特定されるものでない。例えば上記した溝M1並びに溝M2の加工は、上述した溝加工ツール9に代えて、レーザ光によるレーザスクライブ法で加工することも可能である。
また、赤外線撮像装置としては赤外線ラインスキャンカメラ16を用いて説明したが、これに換えて赤外線二次元カメラを用いてもよい。なお、その場合はラインスキャンカメラが複数並んでいるものとして処理を行うことができる。その他本発明では、その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。
本発明は、化合物半導体膜を用いた集積型薄膜太陽電池の製造に適用することができる。
A スクライブ装置
S 下部電極分離用の溝
M1 電極間コンタクト用の溝
M2 電極分離用の溝
W 太陽電池基板
1 テーブル
8 スクライブヘッド
9 溝加工ツール
11 絶縁基板
12 Mo電極層(下部電極層)
13 光吸収層
14 バッファ層
15 透明電極層
16 赤外線ラインスキャンカメラ(赤外線撮像装置)

Claims (4)

  1. 基板上に下部電極層と光吸収層とがこの順で積層されるとともに、前記下部電極層の一部に下部電極分離用の溝が加工された薄膜太陽電池用加工品において、前記光吸収層に覆われた前記溝を検出する加工溝検出方法であって、
    前記加工品から輻射される前記光吸収層を透過可能な波長領域の撮像用赤外光を、前記光吸収層の上方側に配置され、可視光を検出せず前記撮像用赤外光を検出する赤外線撮像装置で検出して前記撮像用赤外光の輻射強度分布画像データを取得し、
    前記輻射強度分布画像データに基づいて前記下部電極層の溝を検出する加工溝検出方法。
  2. 前記赤外線撮像装置は1.4μm以上の波長領域の赤外光を撮像用赤外線として検出する請求項1に記載の加工溝検出方法。
  3. 前記赤外線撮像装置は赤外線ラインスキャンカメラであり、前記加工品の前記溝近傍に沿って相対的に移動しながら撮像することで溝の近傍の輻射強度分布画像データを取得する請求項1又は請求項2に記載の加工溝検出方法。
  4. 基板上に下部電極層と光吸収層とがこの順で積層されるとともに、前記下部電極層の一部に下部電極分離用の溝が加工された薄膜太陽電池用加工品において、前記光吸収層に覆われた前記溝を検出する加工溝検出装置であって、
    前記光吸収層を上にして前記加工品が載置されるテーブルと、
    前記テーブルの上方に配置され、可視光を検出せず前記光吸収層を透過可能な波長領域の撮像用赤外光を検出し、当該撮像用赤外光の輻射強度分布画像データを取得する赤外線撮像装置と、
    前記輻射強度分布画像データに基づいて前記下部電極層の溝を検出する加工溝決定部とを備えたことを特徴とする加工溝検出装置。
JP2013271656A 2013-12-27 2013-12-27 薄膜太陽電池の加工溝検出方法および加工溝検出装置 Active JP6280365B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013271656A JP6280365B2 (ja) 2013-12-27 2013-12-27 薄膜太陽電池の加工溝検出方法および加工溝検出装置
TW103133638A TWI635549B (zh) 2013-12-27 2014-09-26 薄膜太陽能電池之加工溝槽檢測方法及加工溝槽檢測裝置
KR1020140130823A KR102353442B1 (ko) 2013-12-27 2014-09-30 박막 태양전지의 가공 홈 검출방법 및 가공 홈 검출장치
CN201410549396.5A CN104752558B (zh) 2013-12-27 2014-10-16 薄膜太阳电池的加工槽检测方法及加工槽检测装置
US14/555,190 US9523644B2 (en) 2013-12-27 2014-11-26 Method and apparatus for detecting a trench created in a thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271656A JP6280365B2 (ja) 2013-12-27 2013-12-27 薄膜太陽電池の加工溝検出方法および加工溝検出装置

Publications (2)

Publication Number Publication Date
JP2015126206A JP2015126206A (ja) 2015-07-06
JP6280365B2 true JP6280365B2 (ja) 2018-02-14

Family

ID=53481374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271656A Active JP6280365B2 (ja) 2013-12-27 2013-12-27 薄膜太陽電池の加工溝検出方法および加工溝検出装置

Country Status (5)

Country Link
US (1) US9523644B2 (ja)
JP (1) JP6280365B2 (ja)
KR (1) KR102353442B1 (ja)
CN (1) CN104752558B (ja)
TW (1) TWI635549B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638388B2 (ja) * 2015-12-25 2020-01-29 三星ダイヤモンド工業株式会社 薄膜太陽電池の製造装置およびその制御装置
WO2018119680A1 (en) 2016-12-27 2018-07-05 China Triumph International Engineering Co., Ltd. Method and system for monitoring laser scribing process for forming isolation trenches in solar module
CN106876518B (zh) * 2017-01-10 2019-09-20 西安中易建科技有限公司 薄膜太阳能电池刻划装置及方法
CN111077165A (zh) * 2018-10-20 2020-04-28 杭州纤纳光电科技有限公司 基于机器视觉的钙钛矿薄膜质量在线检测装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11312815A (ja) 1998-04-28 1999-11-09 Matsushita Electric Ind Co Ltd 薄膜太陽電池の製造方法
JP2002094089A (ja) 2000-09-11 2002-03-29 Honda Motor Co Ltd 化合物薄膜太陽電池の製造方法
JP3867230B2 (ja) 2002-09-26 2007-01-10 本田技研工業株式会社 メカニカルスクライブ装置
DE102004018454A1 (de) * 2004-04-16 2005-11-03 Infineon Technologies Ag Verfahren und Vorrichtung zum Überwachen des Ätzvorgangs einer regelmässigen Tiefenstruktur in einem Halbleitersubstrat
US20100074515A1 (en) * 2008-02-05 2010-03-25 Kla-Tencor Corporation Defect Detection and Response
SG158782A1 (en) * 2008-07-28 2010-02-26 Chan Sok Leng Method and system for detecting micro-cracks in wafers
US8197912B2 (en) * 2009-03-12 2012-06-12 International Business Machines Corporation Precision separation of PV thin film stacks
US8649016B2 (en) * 2009-06-23 2014-02-11 Rudolph Technologies, Inc. System for directly measuring the depth of a high aspect ratio etched feature on a wafer
JP2011155151A (ja) * 2010-01-27 2011-08-11 Mitsuboshi Diamond Industrial Co Ltd 薄膜太陽電池用スクライブ装置
JP2011165864A (ja) * 2010-02-09 2011-08-25 Honda Motor Co Ltd カルコパイライト型薄膜太陽電池の製造方法および製造装置
JP5548848B2 (ja) * 2011-07-12 2014-07-16 レーザーテック株式会社 検査装置、検査方法、及び半導体装置の製造方法

Also Published As

Publication number Publication date
CN104752558B (zh) 2020-01-17
TW201526133A (zh) 2015-07-01
US20150185162A1 (en) 2015-07-02
JP2015126206A (ja) 2015-07-06
CN104752558A (zh) 2015-07-01
KR20150077275A (ko) 2015-07-07
TWI635549B (zh) 2018-09-11
US9523644B2 (en) 2016-12-20
KR102353442B1 (ko) 2022-01-21

Similar Documents

Publication Publication Date Title
KR20090086527A (ko) 솔라패널의 라인 스크라이브를 위한 레이저 빔 얼라인먼트 방법과 장치
JP6280365B2 (ja) 薄膜太陽電池の加工溝検出方法および加工溝検出装置
US20080105295A1 (en) Method for structuring of a thin-layer solar module
TWI476399B (zh) 偵測晶圓微裂隙之方法與系統
JP2004115356A (ja) メカニカルスクライブ装置
TW201024771A (en) Inspecting apparatus for photovoltaic devices
KR20110105385A (ko) 박막 태양 전지 제조시 레이저 스크라이브 탐지 및 정렬을 위한 조명 방법 및 시스템
US8420979B2 (en) Method and apparatus for laser beam processing of an element with total transmission for light of a t least 10-5
TW201136693A (en) Laser processing method, laser processing device and solar panel manufacturing method
EP3240652B1 (en) Apparatus for laser scribing
JP2011165864A (ja) カルコパイライト型薄膜太陽電池の製造方法および製造装置
EP3201611A1 (en) Wafer edge inspection with trajectory following edge profile
JP2010145230A (ja) チャックテーブルに保持された被加工物の高さ位置計測装置
TWI414384B (zh) 雷射加工方法、雷射加工裝置及太陽電池板製造方法
JP5328406B2 (ja) レーザ加工方法、レーザ加工装置及びソーラパネル製造方法
JP5268749B2 (ja) 基板状態検査方法及びレーザ加工装置並びにソーラパネル製造方法
TW201414561A (zh) 雷射劃線系統
JP5349352B2 (ja) レーザ光状態検査方法及び装置、レーザ加工方法及び装置並びにソーラパネル製造方法
JP2010240665A (ja) レーザ光状態検査方法及び装置並びにソーラパネル製造方法
CN108461657B (zh) 激光辅助的玻璃料封装方法
JP5371534B2 (ja) レーザ加工方法、レーザ加工装置及びソーラパネル製造方法
TWI419254B (zh) A desk that penetrates lighting
JP2010188396A (ja) レーザ加工方法、レーザ加工装置及びソーラパネル製造方法
KR20220120228A (ko) 레이저 가공장치 및 레이저 가공방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180119

R150 Certificate of patent or registration of utility model

Ref document number: 6280365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150