WO2004001772A1 - 導電性樹脂フィルム、集電体およびそれらの製造方法 - Google Patents

導電性樹脂フィルム、集電体およびそれらの製造方法 Download PDF

Info

Publication number
WO2004001772A1
WO2004001772A1 PCT/JP2003/007961 JP0307961W WO2004001772A1 WO 2004001772 A1 WO2004001772 A1 WO 2004001772A1 JP 0307961 W JP0307961 W JP 0307961W WO 2004001772 A1 WO2004001772 A1 WO 2004001772A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
resin film
conductive resin
layer
film
Prior art date
Application number
PCT/JP2003/007961
Other languages
English (en)
French (fr)
Inventor
Michinari Miyagawa
Takashi Imai
Original Assignee
Mitsubishi Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002182444A external-priority patent/JP2004031468A/ja
Priority claimed from JP2002286799A external-priority patent/JP3981748B2/ja
Priority claimed from JP2002341121A external-priority patent/JP4349793B2/ja
Application filed by Mitsubishi Plastics, Inc. filed Critical Mitsubishi Plastics, Inc.
Priority to AU2003244167A priority Critical patent/AU2003244167A1/en
Priority to KR10-2004-7020921A priority patent/KR20050014875A/ko
Priority to EP03760940A priority patent/EP1553604A4/en
Priority to US10/519,339 priority patent/US7514021B2/en
Publication of WO2004001772A1 publication Critical patent/WO2004001772A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24934Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including paper layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic

Definitions

  • the present invention relates to a single-layer or laminated resin film having excellent conductivity. More specifically, for example, a conductive film having a low electric resistance layer containing fine carbon fibers having particularly excellent corrosion resistance is provided. It relates to a fat laminated film and the like. Further, the present invention relates to a method for producing the conductive resin film and a current collector used for an electric double layer capacitor.
  • polymer materials used in this field include thermosetting resins such as epoxy resins and phenolic resins, and engineering plastics such as polyphenylene oxide, liquid crystal polymers, polyimide, and polycarbonate. Is mentioned.
  • Japanese Patent Publication No. 3-772288 discloses a fine carbon fiber having excellent conductivity as a conductive material.
  • fine carbon fibers are mixed with the resin, there is a problem that the dispersibility in the resin is poor and sufficient conductivity cannot be obtained.
  • 20% of fine carbon fiber (weight ratio) is dried with respect to 80% (weight ratio) of resin, After mixing with a blend, the one molded by an extruder has a large volume resistance value of about 1 ⁇ cm, and does not provide sufficient conductivity.
  • Japanese Patent Application Laid-Open No. 3-55709 describes a conductive sheet in which a specific hollow carbon fipril is dispersed in an electrically insulating polymer material. Is inadequate.
  • An electric double layer capacitor is an electric element composed of a pair of polarizable electrodes, a current collector, and an electrolyte, and is generally classified into a capacitor using an organic solvent-based electrolyte and a capacitor using an aqueous electrolyte.
  • a capacitor using an aqueous electrolyte solution can only obtain a lower output voltage than a capacitor using an organic solvent electrolyte solution. Since the ionic conductivity is large, the internal resistance of the capacitor is reduced, and there is an advantage that a large output current can be obtained.
  • a capacitor using an aqueous electrolyte does not use a flammable liquid like a capacitor using an organic solvent-based electrolyte, and thus has an advantage in terms of safety as well.
  • a polarizable electrode 2 is arranged to face a separator 4, and a current collector 1 is arranged outside the polarizable electrode 2.
  • Current collector 1 is insulated by gasket 3.
  • each capacitor is generated by an aqueous electrolyte, a polarizing electrode, a current collector, an interface between them, and the like.
  • the volume resistance of the current collector has been known.
  • a conductive rubber film As a current collector that has been frequently used, a conductive rubber film has been widely used (for example, Japanese Patent Application Laid-Open No. 2000-128388, Japanese Patent Application Laid-Open No. H05-94925). See). These are made of rubber containing conductive carbon or the like, and have a volume resistivity of about 10 to 100 ⁇ cm, and there has been a demand for a material having a lower volume resistivity.
  • electric double layer capacitors using aqueous electrolytes use a 25 to 50% 'sulfuric acid aqueous solution as the electrolyte, so the current collector is also required to have acid resistance at the same time.
  • metal is used for the conductive material contained in the film!
  • an electrically conductive resin film is known (see Japanese Patent Application Laid-Open No. 2000-128388), it has a disadvantage that its conductivity is unstable in an acidic environment.
  • the use of a noble metal with excellent corrosion resistance as a conductive material has the problem of being extremely expensive, and the carbon-based conductive material has a lower conductivity than metals and has the drawback that sufficient conductivity cannot be obtained. .
  • Japanese Patent Publication No. 3-72728 Japanese Patent Application Laid-Open No. 7-110212, and Japanese Patent Application Laid-Open No. 3-55709.
  • An object of one embodiment of the present invention is to provide a conductive resin film having excellent conductivity and acid resistance, and a method for producing the same.
  • Another object of another embodiment of the present invention is to provide a current collector for an electric double layer capacitor having excellent conductivity and acid resistance.
  • a first aspect of the present invention provides a conductive resin film having a low electric resistance layer, a production method, and a current collector, and relates to the following items 1 to 8.
  • a conductive resin film having a conductive base material layer and a low electrical resistance layer having a volume resistivity in the thickness direction of 0.1 to 1.0 ⁇ cm on at least one outermost layer.
  • a volume resistance value in a thickness direction of the low electric resistance layer is 1/5 or less of a volume resistance value in a thickness direction of the base material layer.
  • the low electric resistance layer is a fine carbon fiber having a fiber diameter of 0.003 to 0.5 ⁇ m and a fiber length of 0.1 to L 0 ⁇ m as a conductive agent in a thermoplastic resin. 3.
  • the thickness of the low electric resistance layer is in the range of 1 to 50 im. 4.
  • the conductive agent contained in the base material layer is graphite powder, expanded graphite, carbon black,.
  • a liquid composition obtained by mixing fine carbon fibers and a thermoplastic resin in a solvent is applied to a smooth surface of a support, dried or cured, and then the resulting film is coated on at least a conductive base layer.
  • a second aspect of the present invention is to provide a single-layer conductive resin film having a low electric resistance, a manufacturing method, and a current collector, and relate to the following items 9 to 14.
  • a conductive resin film obtained by mixing fine carbon fibers having a fiber diameter of 0.001 to 0.5111 and a fiber length of 0.1 to 100 / m with a thermoplastic resin, Mixing volume ratio of plastic resin and fine carbon fiber
  • Thermoplastic resin Z Fine carbon fiber x / (100— X)
  • Coordinates, y Force On the X-y plane, four points of coordinates (50, 0.01), (50, 0.03), (90, 0.1) and (90, 0.5) are defined as vertices.
  • a conductive resin film that is within a range (including a line and a vertex) surrounded by a square.
  • a method for producing a conductive resin film comprising applying a coating to a smooth surface of a body, drying or curing the coating, and then peeling the coating from the support.
  • a third aspect of the present invention is to provide a current collector having a low electric resistance and a high tensile strength at break, and a manufacturing method thereof, and relates to the following items 15 to 23.
  • a current collector for an electric double layer capacitor comprising a conductive resin film containing a conductive agent in a thermoplastic resin, wherein the volume resistivity in the thickness direction of the film is 0.01 to 5 ⁇ cm and JIS
  • thermoplastic resin is selected from the group consisting of fluororesin, fluororubber, polyolefin, and polyolefin elastomer.
  • the conductive layer is transferred by overlapping the conductive layer with at least one surface of a conductive base material layer, and then the support is peeled off to form a conductive resin film.
  • Electric double layer characterized by providing a low electric resistance layer on the surface of A method for manufacturing a current collector for a capacitor.
  • FIG. 1 is a diagram showing an example of a water-based electric double layer capacitor.
  • FIG. 2 is a schematic diagram of an apparatus for measuring a volume resistance value in a thickness direction.
  • 3A and 3B are an SEM image of a cross section of a conductive resin film having a low electric resistance layer containing fine carbon fibers as a conductive agent on the surface, and a SEM image of the surface, respectively.
  • the volume resistance in the thickness direction is a value obtained by converting the resistance in the thickness direction of the film including the contact resistance on the surface into a volume resistance. Specific measurement will be described in Examples.
  • the resin used for the film of the present invention is preferably a thermoplastic resin.
  • the thermoplastic resin is not particularly limited.
  • a polyolefin (PO) resin such as a homopolymer or a copolymer containing ethylene or a polyolefin elastomer
  • Amorphous polyolefin resin (A PO) such as polyolefin
  • PS polystyrene
  • PS polystyrene resin
  • ABS SBS or hydrogenated styrene elastomer
  • SEBS hydrogenated styrene elastomer
  • PVC polysalt
  • P VDC Polyvinylidene chloride
  • PMMA Polymethyl methacrylate
  • PMMA polymethyl methacrylate
  • acrylic resin such as copolymerized acrylic resin
  • Polyester resin such as polyethylene terephthalate (PET); Nylon 6, Polyamide (PA) resins such as nylon 12 and copolymerized nylon; Polyvinyl alcohol (PVA) resin
  • thermoplastic resins use of polyolefin (PO) resin or polyolefin elastomer, which is excellent in heat resistance and acid resistance, hydrogenated styrene elastomer such as SEBS, and fluorine resin or fluorine elastomer are used. Is preferred.
  • fluororesin or elastomer examples include PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene-perfluoroalkylvinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkylvinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene
  • EPE tetrafluoroethylene-hexafluoropropylene-perfluoroalkylbutyl ether copolymer
  • ETFE tetrafluoroethylene-ethylene-ethylene copolymer
  • PCTFE polychlorotriphenylene
  • ECTFE black-mouthed trifluoroethylene-ethylene copolymer
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • THV tetrafluoroethylene
  • VDF—HF P propylene-vinylidene fluoride copolymer) Copolymer
  • TFE-P vinylene fluoride-propylene copolymer
  • fluorinated silicone At least one or more fluororesins or fluororubbers composed of rubber, fluorine-containing butyl ether rubber, fluorine-containing phosphazene rubber, and fluorine-containing thermoplastic elastomer can be used.
  • PVDF, THV, VDF-HFP and TFEP containing vinylidene fluoride are particularly preferred from the viewpoint of moldability.
  • polyolefin-based resins and polyolefin-based elastomers include polyethylene, polypropylene, polybutene, poly (4-methyl-11-pentene), polyhexene, polyoctene, hydrogenated styrene-butadiene rubber, EPDM, EPM and EBM. At least one or more polyolefins selected from the group consisting of polyolefin elastomers can be used.
  • polyethylene, polypropylene, EPDM, and hydrogenated styrene-butadiene rubber are particularly preferable in terms of heat resistance and moldability.
  • the conductive agent used in the present invention imparts conductivity to a resin film.
  • graphite powder such as natural graphite, pyrolytic graphite, Kish graphite, etc.
  • the above-mentioned graphite is immersed in an acidic solution, and then expanded by heating, expanded graphite, Ketjen black, acetylene black, furnace method, etc.
  • metal carbide conductive agent examples include tungsten carbide, silicon carbide, zirconium carbide, tantalum carbide, titanium carbide, niobium carbide, molybdenum carbide, vanadium carbide, chromium carbide and hafnium carbide.
  • tungsten carbide, titanium carbide, and chromium carbide are particularly preferable for applications requiring conductivity and acid resistance.
  • metal oxide-based conductive agent examples include metal oxides such as titanium oxide, ruthenium oxide, and indium oxide.
  • metal nitride-based conductive agent examples include metal nitrides such as chromium nitride, anorenium nitride, molybdenum nitride, zirconium nitride, tantalum nitride, titanium nitride, gallium nitride, niobium nitride, vanadium nitride, and boron nitride. Of these, titanium nitride and zirconium nitride are particularly preferred for applications requiring conductivity and acid resistance.
  • metal-based conductive agent examples include metal fibers such as iron fiber, copper fiber, and stainless steel fiber, and metal powders such as titanium powder, nickel powder, tin powder, tantalum powder, and niobium powder.
  • a conductive resin in which the outermost layer has a low electric resistance layer a conductive resin in which the outermost layer has a low electric resistance layer:
  • the conductive resin film of the first embodiment has a base layer and an outermost layer of a low electric resistance layer on at least one surface.
  • the contacted member when used as a current collector for an electric double layer capacitor, the contacted member may be a carbon-based electrode or an outer case (such as a stainless steel case).
  • the volume resistance value of the resistance layer By making the volume resistance value of the resistance layer smaller than that of the base material layer, the contact resistance with the contact object can be reduced, and the internal resistance value of the electric double layer capacitor can be reduced.
  • the volume resistivity in the thickness direction of the low electric resistance layer must be in the range of 0.0 :! to 1.0 ⁇ cm. If it exceeds 1.0 ⁇ cm, it is difficult to obtain excellent conductivity.
  • the volume resistivity in the thickness direction of the low electric resistance layer should be 15 or less, preferably 1/8 or less of the volume resistivity in the thickness direction of the base material layer. When the volume resistance value is larger than the volume resistance value of 1 Z5 in the thickness direction of the base material layer, the contact resistance with the contacted body tends to increase.
  • the low electric resistance layer contains a resin and a conductive agent.
  • the resin is preferably a thermoplastic resin, and can be appropriately selected from the thermoplastic resins described in the section “Resins Constituting Films” and the like according to the intended use.
  • polyolefin (PO) resin or polyolefin elastomer which is excellent in heat resistance and acid resistance
  • hydrogenated styrene elastomer such as SEBS
  • fluorine resin or fluorine The use of elastomers is preferred.
  • fine fibers particularly carbon fibers, having excellent corrosion resistance and conductivity are suitable.
  • the fiber diameter of the fine carbon fiber is in the range of 0.003 to 0.5 ⁇ , preferably 0.08 to 0.2 ⁇ , and the fiber length is in the range of 0.:! To 100 ⁇ , preferably 1 to 50 ⁇ . The range is preferable because of excellent conductivity.
  • These fine carbon fibers include carbon nanofibers and carbon nanotubes.
  • the ratio of the resin (especially thermoplastic resin) and the fine carbon fibers in the low electric resistance layer is set so that the volume resistance value in the thickness direction of the low electric resistance layer is 0.1 to 1.0 ⁇ cm, and
  • the volume resistivity in the thickness direction of the layer may be appropriately determined so as to be 1 Z5 or less, but the volume ratio of the thermoplastic resin to the fine carbon fibers is preferably in the range of 15Z85 to 85/15.
  • the thickness of the low electric resistance layer is preferably 1 to 50 ⁇ , preferably 3 to 20 ⁇ . Are likely to occur, and a part having a large volume resistance value is likely to be formed. In addition, when the thickness of the low electric resistance layer exceeds 5 cm, a problem that the conductive resin film becomes brittle easily occurs.
  • the low electric resistance layer may be provided on one side or both sides of the base layer. Next, the base layer in the conductive resin film will be described.
  • the base layer is preferably a resin in which a conductive agent is contained in a resin.
  • the resin is preferably a thermoplastic resin, and can be appropriately selected from the thermoplastic resins described in ⁇ Resin Constituting Film> according to the intended use.
  • polyolefin (PO) -based resin or polyolefin-based elastomer which is excellent in heat resistance and acid resistance, hydrogenated styrene-based elastomer such as SEBS, etc., fluorine-based resin or fluorine-based elastomer preferable.
  • the conductive agent that can be contained in the base material layer those described in the section of “conductive agent” can be used. Particularly for applications requiring acid resistance, a conductive agent having excellent acid resistance such as a carbon-based conductive agent is preferable.
  • the volume ratio between the thermoplastic resin and the conductive agent in the base layer is not particularly limited, but is preferably in the range of 300 to 90/10. 30 / volume ratio of thermoplastic resin and conductive agent If it is less than 70, the proportion of the conductive agent is large, so that the fluidity of the resin is poor and thinning tends to be difficult, and the conductive resin film tends to be brittle. On the other hand, if the volume ratio of the thermoplastic resin to the conductive agent exceeds 910, the ratio of the conductive agent is small, and the problem of poor conductivity is likely to occur.
  • the thickness of the base material layer can be appropriately changed according to the application.
  • the thickness of the conductive resin film combined with the low electric resistance layer is 5 ⁇ ! ⁇ 0.5 mm, especially 10 ⁇ n! ⁇ 200 ⁇ m is preferred.
  • the volume resistivity in the thickness direction of the entire conductive resin film is 0.01 to 5 ⁇ , preferably 3 ⁇ or less.
  • the method for producing the base material layer is not particularly limited, and it can be produced by a usual extrusion molding method or roll molding method.
  • the method for producing the low electric resistance layer is not particularly limited.
  • a liquid composition obtained by mixing fine carbon fibers and a thermoplastic resin in a solvent is applied to a smooth surface of a support, and dried or cured.
  • a low electric resistance layer film can be formed on the support.
  • the base material layer and the low electric resistance layer are placed on one or both surfaces of the base material layer formed in advance so that the coated surface of the low electric resistance layer faces each other.
  • a method is preferred in which the support is peeled off after the integration.
  • fine carbon fibers are dispersed.
  • the thermoplastic resin may be dispersed in a solvent or a part or all of the force may be dispersed. Preferably.
  • films can be used as the support.
  • films of polyester, polycarbonate, triacetyl cellulose, cellophane, polyamide, aromatic polyamide, polyimide, polyetherimide, polyphenylene / refide, polysulfone, polyethersulfone, polypropylene and the like can be mentioned.
  • the surface of the support may be subjected to release treatment with silicone or the like in order to improve the releasability of the low electric resistance layer and the support.
  • a polypropylene film polyester film has an appropriate strength and is preferable in terms of workability and price.
  • the thickness of the support is in the range of 5 to 500 ⁇ 1 ⁇ , preferably 10 to 300 m. If the thickness is less than 5 ⁇ m, sufficient strength cannot be obtained as a base film and wrinkles are formed. If it exceeds 5 OO / m, there is a problem that the stiffness becomes too strong, it is difficult to handle and the workability is poor.
  • the substrate layer can be produced by a usual method with good productivity such as an extrusion molding method and a roll molding method, so that there is no problem of film distortion, pinholes, and residual solvents. It is easy to form a thick film and has good productivity. That is, according to this manufacturing method, both film characteristics and electrical characteristics can be solved.
  • this conductive resin laminated film is excellent in conductivity, especially since it can greatly reduce the contact resistance with the object to be contacted. It can be much smaller. Also, since it has excellent acid resistance, it can be used particularly as a current collector for an electric double layer capacitor using an aqueous electrolyte.
  • An electric double layer capacitor to which this conductive resin film can be applied has, for example, a structure as shown in FIG. 1.
  • a polarizable electrode is used. The contact resistance of both the contact with the external connection and the contact with the external connection can be greatly reduced. Further, even when the low electric resistance layer is provided on one surface of the base material layer, the contact resistance of one of them can be significantly reduced.
  • the second embodiment of the present invention relates to a single-layer, low-resistance conductive resin film. That is, a conductive resin film obtained by mixing fine carbon fibers having a fiber diameter of 0.001 to 0.5 ⁇ and a fiber length of 0:! To 100 ⁇ with a thermoplastic resin, The mixing volume ratio of the thermoplastic resin and the fine carbon fiber
  • Thermoplastic resin ⁇ fine carbon fiber ⁇ / (100— X)
  • the coordinates (x, .y) are the coordinates (50, 0.01), (50, 0. 03), (90,
  • the conductive resin film is within a range (including a line and a vertex) surrounded by a rectangle having four points of 0.1) and (90, 0.5) as item points.
  • the conductive resin film of this embodiment is a novel film having a small electric resistance even if the amount of the fine carbon fibers is the same as that of the conventional one (for example, Japanese Patent Application Laid-Open No. 7-102112).
  • thermoplastic resin any of the thermoplastic resins described in the section of “Resin constituting film” can be appropriately selected and used according to the intended use.
  • polyolefin (PO) resin or polyolefin elastomer which has excellent heat resistance and acid resistance
  • hydrogenated styrene elastomer such as SEBS, etc.
  • fluororesin or fluorine elastomer Is preferred.
  • the fine carbon fiber mixed with the thermoplastic resin has a fiber diameter of 0.001 to 0.5 ⁇ , preferably 0.005 to 0.3 ⁇ m, and a fiber length of 0.1 to: 100 ⁇ , preferably Is preferably 0.5 to 30 ⁇ because conductivity can be improved. Further, it can be used as a conductive agent by mixing with another carbon-based conductive material. As other carbon-based conductive materials, artificial graphite, natural graphite, carbon black, expanded black c-carbon fiber, short carbon fiber and the like can be used.
  • a liquid composition obtained by mixing fine carbon fibers and a thermoplastic resin in a solvent can be peeled off by a technique such as a die coating method.
  • a method is preferred in which a film is produced by continuously applying the coating on a smooth surface, drying or hardening the coating, and then peeling the coating from the support.
  • the fine carbon fibers are dispersed, while the thermoplastic resin may be dissolved in a solvent, or may be partially or entirely dispersed, but usually, it is dissolved. Is preferred.
  • the film produced by this method after mixing by dry blending, has a fine carbon fiber dispersed more evenly in the film than the film produced by an extruder. Even if the mixing volume ratio of the fine carbon fibers is small, electricity can easily pass and the internal resistance of the film can be reduced. Furthermore, the film produced by the extruder after mixing with the dry blend has a large contact resistance with the contacted object such as an electrode due to the presence of the resin skin layer on the film surface. In the film, a part of the fine carbon fiber is exposed on the film surface, so that the contact resistance with an object to be contacted such as an electrode can be remarkably reduced.
  • the thickness range of the conductive resin film in the second embodiment is preferably in the range of 10 to 20 ⁇ . If the thickness is less than 10 m, the film is too thin, so that it is easily broken and difficult to handle. When the thickness of the film exceeds 200 ⁇ , a problem that the volume resistance in the thickness direction becomes large tends to occur.
  • this film is excellent in conductivity, so that when it is used as a member of a power storage device or a generator, its internal resistance can be significantly reduced. Also, since it has excellent acid resistance, it can be used as a current collector especially for electric double layer capacitors (for example, those having the structure shown in Fig. 1) using an aqueous electrolyte.
  • a third aspect of the present invention relates to a current collector for an electric double layer capacitor, wherein the volume resistance in the thickness direction of the film, that is, in the direction perpendicular to the film surface, is 0.011 to It is 5 ⁇ cm, preferably 0.01 to 3 Qcm. If it is less than 0. O l Q cm, it is practically impossible to manufacture, and if it exceeds 5 ⁇ cm, the performance as a current collector is insufficient. Further, the tensile strength at break (measured according to JISK 712) is 10 to 30 MPa, preferably 20 to 30 MPa. If it is less than OMPa, the strength is inferior and practicality is poor, and if it exceeds 3 OMPa, it is too hard to handle.
  • thermoplastic resin used in this embodiment includes: And the thermoplastic resin described in the section.
  • fluorine resin, fluorine elastomer, polyolefin resin and polyolefin elastomer are preferred.
  • PVDF, THV, VDF-HFP and TFE-P containing bi-lidene fluoride, and polyethylene, polypropylene and EPDM are particularly preferred from the viewpoint of heat resistance and moldability.
  • carbon nanofiber, carbon nanotube and carbon nanohorn, metal carbide and metal nitride can be preferably used as the conductive agent used in this embodiment.
  • the carbon nanotubes and carbon nanofipers have a fiber diameter of 0.001 to 0.5 ⁇ , preferably 0.003 to 0.2 ⁇ m, and a fiber length of:! 1100 ⁇ , preferably 1-30 ⁇ is preferred for improving conductivity.
  • the conductive agent may be mixed with another carbon-based conductive agent.
  • artificial graphite, natural graphite, carbon black, expanded graphite, carbon fiber and the like can be used.
  • metal carbides tungsten carbide, titanium carbide, and chromium carbide, which have excellent conductivity and acid resistance, can be suitably used.
  • metal nitrides titanium nitride and zirconium nitride, which are excellent in conductivity and resistance to acid, are preferred.
  • the thickness of the conductive resin film containing the thermoplastic resin and the conductive agent is 0.01 m ⁇ ! It is desirable to be within the range of 0.5 mm.
  • the film is less than 0.01 mm, the film is brittle and easily broken, which tends to cause a problem of difficulty in handling. Further, when the thickness exceeds 0.5 mm, the thickness of the current collector increases, and there is a problem that the internal resistance of the electric double layer capacitor increases and a problem that the electric double layer capacitor increases. .
  • the method for producing the conductive resin film for the current collector is not particularly limited, but may be a conventional extrusion method. Forming and roll forming may be used. For example, after a thermoplastic resin and a conductive agent are mixed in advance by a twin-screw extruder or the like, a conductive resin film can be formed by extrusion molding or roll molding. Further, as described in the second embodiment, a film may be formed by a method in which the film is applied to a smooth surface of a peelable support, dried or cured, and then the film is peeled from the support.
  • the volume resistance value of 0.01 to 5 ⁇ cm and 10 to 3 O can be obtained by appropriately selecting the resin, the conductive agent and the compounding ratio thereof.
  • a current collector that satisfies both the tensile strength at break of MPa can be obtained.
  • the low electric resistance layer can be formed by forming a resin layer containing a conductive agent on the surface of the conductive resin film or by embedding the conductive agent in the surface of the conductive resin film.
  • a conductive agent a carbon-based conductive agent, a metal-carbide-based conductive agent, a metal-nitride-based conductive agent, and the like described in the section of ⁇ Conductive Conduction> can be used.
  • a conductive agent alone or appropriately dispersed in a solvent together with a thermoplastic resin preferably, the resin is preferably dissolved
  • a conductive agent layer is formed by curing, transferred to a conductive base material layer (that is, a separately prepared conductive resin film), and then the support is peeled off to provide a low electric resistance layer.
  • a conductive base material layer that is, a separately prepared conductive resin film
  • the support is peeled off to provide a low electric resistance layer.
  • a polyester film or the like can be used as the support.
  • the conductive resin film described in the first embodiment that is, the low electric resistance layer having a volume resistance of 0.1 to 1.0 ⁇ cm is used.
  • the conductive agent for example, if it is a granular material such as tungsten carbide, it may be formed by embedding it on the surface (a thermoplastic resin may be used as a binder). .
  • a current collector made of a conductive resin film with a low electric resistance layer formed on the surface reduces the contact resistance due to the high density of the conductive agent on the surface, lowering the overall volume resistance in the film thickness direction There are advantages that can be. Therefore, it is included in the base material layer. Since sufficient conductivity can be obtained even with a relatively small amount of conductive material, a current collector satisfying both low resistance and high tensile strength can be easily obtained.
  • the volume resistance in the thickness direction (perpendicular to the plane) of the layer or film was evaluated by the following method.
  • Load device YSR-8 type (Yamazaki Seiki Laboratory Co., Ltd.)
  • Electrode 2 brass flat plates (area 6.45 cm 2 , mirror finish, surface gold plating)
  • Open terminal voltage 2 OmV peak or less
  • the measurement sample 12 was sandwiched between the brass electrodes 11 from both sides, and while applying a predetermined load, the voltage when a predetermined current was applied was measured by a four-terminal method.
  • thermoplastic resin and the conductive agent were mixed in the ratio shown in Table 1 using a twin-screw extruder (extruder temperature: 230 ° C).
  • the prepared mixture was extruded from a die with a single screw extruder (extruder temperature 230 ° C) to prepare a conductive base film.
  • the thickness of each of the obtained base films was 100 ⁇ , and the volume resistivity in the thickness direction of the film is shown in Table 1.
  • thermoplastic resins and conductive agents shown in Table 1 were used.
  • Titanium carbide
  • the fine carbon fibers used had a fiber diameter of 150 nm, a fiber length of 10 to 20 m, a bulk specific gravity of 0.035 g / cc, and a true specific gravity of 2.0 gZc c.
  • This dispersion is coated on a support (polypropylene film: thickness 50 ⁇ m) with a per coater (# 70 manufactured by Matsuo Sangyo), dried at 80 ° C, and a composite of support and low electric resistance layer I got
  • the low electrical resistance layer A was peeled from the composite of the obtained support and the low electrical resistance layer, and the thickness and the volume resistance were measured.
  • the thickness of the low electrical resistance layer A was 20 m
  • the thickness of the film was The volume resistivity in the direction was 0.94 ⁇ cm.
  • Fluoro-elastomer (THV220G, specific gravity 2) manufactured by Sumitomo 3LM Co., Ltd. and fine carbon fiber (vapor-grown carbon fiber VGCF, specific gravity 2) manufactured by Showa Denko KK are solid at a volume ratio of 60Z40. Each was mixed with MIBK (methyl isobutyl ketone) so as to have a partial concentration of 8% by weight to prepare a dispersion solution.
  • MIBK methyl isobutyl ketone
  • the fine carbon fibers used had a fiber diameter of 150 nm, a fiber length of 10 to 20 m, a bulk specific gravity of 0.035 g / cc, and a true specific gravity of 2.0 gZc c.
  • This dispersion is applied onto a support (polypropylene film: thickness 5 Ojum) with a per coater (# 70 manufactured by Matsuo Sangyo) and dried at 80 ° C to obtain the support-low electric resistance layer composite.
  • a support polypropylene film: thickness 5 Ojum
  • a per coater # 70 manufactured by Matsuo Sangyo
  • the low electric resistance layer B was peeled from the composite of the obtained support and the low electric resistance layer, and the thickness and the volume resistance were measured. As a result, the thickness of the low electric resistance layer B was 20 m, and the thickness of the film was The volume resistivity in the direction was 0.73 ⁇ cm.
  • the base film obtained by the above method and the low electric resistance layers A and B are arranged in the order of low electric resistance layer / substrate layer Z low electric resistance layer in the combination shown in Table 2, and then hot pressed. Then, a conductive resin laminated film was produced.
  • the conditions of the hot press method were a heating temperature of 140 ° C. and a pressure of 4.9 ⁇ 10 6 Pa (50 kgf / cm 2 ).
  • the conductive resin laminated film having a low electric resistance layer produced by the method of the present invention has a smaller thickness in the film thickness direction than the conductive film of Table 1 having no low electric resistance layer. It can be seen that the volume resistivity of the sample is remarkably small and the conductivity is excellent.
  • 3A and 3B show a SEM image of a cross section of a conductive resin film having a low electric resistance layer containing fine carbon fibers as a conductive agent on the surface, and a SEM image of the surface, respectively. From these forces, if specific fine carbon fibers are used, the conductive agent is exposed on the surface, and the ratio of the conductive agent in direct contact with the contacted body increases, so the contact resistance is thought to decrease.
  • Fluorine-based elastomer manufactured by Sumitomo SLIM Co., Ltd.
  • fine carbon fiber vapor-grown carbon fiber manufactured by Showa Denko KK, VGCF> specific gravity 2
  • MIBK methylisobutyl ketone
  • the fine carbon fibers used had a fiber diameter of 150 nm, a fiber length of 10 to 20 ⁇ m, a bulk specific gravity of 0.035 g / cc, and a true specific gravity of 2.0 g / cc.
  • volume ratio of fluororesin (THV220G specific gravity 2 manufactured by Sumitomo 3LM Co., Ltd.) and fine carbon fiber (vapor-grown carbon fiber ⁇ VGCF> specific gravity 2 manufactured by Showa Denko KK) 50Z50, 60/40, 70/30, 80/20, 90 No.10, each mixed with a twin screw extruder (mixing temperature 250 ° C), extruded from a die, and tried to make a conductive film
  • the volume ratio of fluorocarbon fine carbon fibers was 50/50 and 60/40, the amount of fine carbon fibers was large and they could not be mixed in the resin, so the same volume ratio of 70/30, 80/20, Only 90Z10 obtained three types of conductive films.
  • the thickness of each of the three types of conductive films obtained was 100 ⁇ m.
  • the volume resistivity of the obtained conductive film was measured by the following measurement method according to JIS K 7194.
  • This measuring method is a method for measuring the volume resistivity of the entire film.
  • the conductive film containing fine carbon fibers produced by the method of the present invention falls within the range of the volume resistance value of the present invention, and the conductive film of the same composition produced by the extrusion method. It can be seen that the volume resistivity is much smaller than that of the film, and the film has excellent conductivity.
  • Fluorine resin manufactured by Sumitomo 3LM Co., Ltd., THV220G specific gravity 2 23 parts by weight (70% by volume) and conductive "raw filler" (tungsten carbide, WC20 specific gravity 15.5) 77 weight 77 weight Parts (30% by volume) were mixed with a twin-screw extruder (extruder temperature 250 ° C).
  • the prepared mixture was extruded from a die with a single screw extruder (extruder temperature: 250 ° C) to prepare a conductive resin film.
  • the thickness of the obtained conductive resin film was 0.3 mm, which was designated as Sample No. 1.
  • the prepared mixture was extruded from a die with a twin-screw extruder (extruder temperature: 250 ° C.) to prepare a conductive resin film.
  • the thickness of the obtained conductive resin film was 0.3 mm, which was designated as Sampnore 3.
  • Fluororesin (THV220G, specific gravity 2) manufactured by Sumitomo 3LM Co., Ltd. 2) 63 parts by weight (60% by volume) and short carbon fiber (HTA-0040, specific gravity 1.77, manufactured by Toho Tenax Co., Ltd.) 37 parts by weight ( (Volume ratio: 40%) was mixed in a twin-screw extruder (mixing temperature: 250 ° C) The same short carbon fiber was used as in Comparative Example 1. The prepared mixture was mixed with a twin-screw extruder (extruder) The conductive resin film was extruded from the die at a temperature of 250 ° C.) The thickness of the obtained conductive resin film was 0.3 mm, which was designated as Sampnole 4.
  • the volume resistivity in the thickness direction of the obtained sample film was measured by the method described in ⁇ Measurement method of thickness volume resistivity>.
  • the tensile breaking strength of the obtained sample film was measured as follows in accordance with JIS K7127.
  • Table 4 shows the volume resistance value and the tensile strength at break.
  • the volume resistivity of the conductive resin film of Sampnole 1 mixed with tungsten carbide and Sample 2 mixed with carbon nanotubes was lower than that of Sample 3 mixed with short carbon fiber and fluororesin. It was found to be in the range of 0.01 to 5 Q'cm, indicating excellent conductivity. Further, in Sample 4, in which more carbon short fibers were mixed with the fluororesin than in Sample 3, the volume resistance value was low, but the tensile strength at break decreased. However, the conductive resin films of Sample 1 mixed with tungsten carbide and Sample 2 mixed with carbon nanotubes within the scope of the present invention had high tensile breaking strength and were good in the range of 10 to 30 MPa.
  • a low electric resistance layer was provided on the surface.
  • Fluorine-based elastomer (specific gravity of “THV220G” manufactured by Sumitomo 3LM Co., Ltd. 2) and fine carbon fibers (specific gravity of “vapor-grown carbon fiber VGCF” manufactured by Showa Denko KK) 2) was mixed with MIBK (methyl isobutyl ketone) at a volume ratio of 55/45 so as to have a solid concentration of 8% by weight to prepare a dispersion solution.
  • MIBK methyl isobutyl ketone
  • the fine carbon fibers used had a fiber diameter of 150 nm, a fiber length of 10 to 20 m, a bulk specific gravity of 0.035 gZc c and a true specific gravity of 2.0 gZc c.
  • This dispersion solution is coated on a support (polypropylene film: thickness 50 ⁇ ) with a bar coater (Matsuo Sangyo # 70), dried at 80 ° C, and the support-low electric resistance layer composite I got
  • the low electric resistance layer was peeled off from the obtained support-low electric resistance layer composite, and the thickness and volume resistance were measured.
  • the thickness of the low electric resistance layer B was 20 ⁇ m, and the thickness direction of the film was Had a volume resistance of 0.65 ⁇ cm.
  • the above low electric resistance layer was arranged in the order of low electric resistance layer base layer (sample 3) / low electric resistance layer. Then, they were integrated by a hot press to produce a conductive resin film provided with a low electric resistance layer.
  • the hot pressing conditions were a heating temperature of 140 ° C. and a pressure of 4.9 ⁇ 10 6 Pa (50 kgf / cm 2 ).
  • the thickness of the obtained conductive resin film was 330 ⁇ , and the volume resistance value and tensile breaking strength in the thickness direction of the film are as shown in Table 5.
  • Table 5 As shown in Table 5, the molded film with the low electric resistance layer on both sides of Sample 3 has almost the same tensile strength as Sample 3, and the volume resistance in the thickness direction of the film is smaller than that of Sample 3. was extremely small, and the molded film satisfied both low resistance and tensile strength at break.
  • the conductive resin film of the present invention has a low volume resistance value, particularly in the thickness direction of the film, has excellent corrosion resistance, and can be produced at a relatively low cost. Can be used for

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

導電性を有する基材層の少なくとも片面の最外層に、微細な炭素繊維と樹脂とを含む厚み方向の体積抵抗値が0.1~1.0Ωcmの低電気抵抗層を設けた導電性樹脂フィルムが開示される。このフィルムは、導電性材料の混合比率が少なくても優れた導電性を有し、また耐酸性にも優れる。

Description

明 細 書
導電性樹脂 , 集電体およびそれらの製造方法 技術分野
本発明は、 導電性に優れた単層または積層樹脂フィルムに関し、 詳細には、 例 えば特に耐蝕性に優れた微細な炭素繊維を含有してなる低電気抵抗層を設けてな る導電性榭脂積層フィルム等に関する。 さらに本発明は, その導電性樹脂フィル ムの製造方法、 および電気二重層キャパシタに用いられる集電体に関する。
背景技術
エレクトロ-タス分野において、 使用する高分子材料に求められる主要特性は 製品や用途によって異なるが、 成形性、 耐熱性、 耐久性、 高導電性、 耐蝕性、 リ サイクル性、 電磁波遮蔽性等がある。 通常、 この分野で使用される高分子材料と しては、 エポキシ樹脂、 フエノール樹脂等に代表される熱硬化性樹脂や、 ポリフ ェニレンオキサイド、 液晶ポリマー、 ポリイミド、 ポリカーボネート等に代表さ れるエンジニアリングプラスチックが挙げられる。
しかしながら、 上記に挙げた各機能を総合的に具備した材料に対する要望は強 いものがあるが、 技術的に困難であり、 価格面で不利となることが多いという問 題があった。 そのような要求特性のひとつに導電性があり、 更に耐蝕性を兼ね備 えた高分子材料が求められている。
特公平 3— 7 7 2 8 8号公報には、 導電性に優れた微細な炭素繊維が導電性材 料として示されている。 しかしながら、 このような微細な炭素繊維を樹脂に混合 した場合、樹脂への分散性に劣り、充分な導電性が得られないという問題がある。 具体的には、特開平 7— 1 0 2 1 1 2号公報に示されている通り、樹脂 8 0 % (重 量比) に対して微細な炭素繊維 2 0 % (重量比) を、 ドライブレンドで混合した 後、 押出機にて成形したものは、 体積抵抗値が 1 Ω c m程度と大きく、 充分な導 電性が得られない。 また、 特開平 3— 5 5 7 0 9号公報には、 特定の中空状の炭 素フィプリルを電気絶縁性高分子材料中に分散した導電性シートが記載されてい るが、 同様に体積抵抗値が不十分である。
ところで、 導電性とともに耐蝕性特性が要求される用途として水系電解液を用 いる電気二重層キャパシタがある。 電気二重層キャパシタは、 一対の分極性電極 および集電体と電解質からなる電気素子であり、 一般に、 有機溶媒系電解液を用 いるキャパシタと水系電解液を用いるキャパシタに大別されている。
これら 2種のキャパシタについて比較すると、 一般的には、 水系電解液を用い るキャパシタは、 有機溶媒系電解液を用いるキャパシタに比べ、 低い出力電圧し か得ることができないが、 電角军液のイオン伝導度が大きいために、 キャパシタが 有する内部抵抗は低くなり、大きな出力電流を得ることができるメリットがある。 また、 水系電解液を用いるキャパシタは、 有機溶媒系電解液を用いるキャパシタ のような可燃性液体を使用することがないため、 安全性の面でも取り扱い易いメ リットがある。
水系電解液を用いる電気二重層キャパシタは、 図 1に示すように、 分極性電極 2がセパレータ 4を介して対向して配され、 分極性電極 2の外側にそれぞれ集電 体 1が配され、 集電体 1はガスケット 3により絶縁されている。
水系電解液を用いる電気二重層キャパシタにおいて、 より高い出力電圧を得る 目的で、 複数のキャパシタを、 直列や並列にて接続し使用する場合には、 これら キャパシタの複合体全体が有する内部抵抗が大きくなつてしまい、 低い出力電流 し力得られない場合がある。 このようなことから、 個々のキャパシタが有する内 部抵抗を出来るだけ小さくすることが望まれている。
個々のキャパシタが有する内部抵抗は、 水系電解液、 分極性電極、 集電体ゃこ れらの界面などによって生じることが知られており、 従来、 例えば、 集電体が有 する体積抵抗値を小さくすることで、 キャパシタが有する内部抵抗を小さくする ことなどが行われてきた。
従来から多用されている集電体は、導電ゴムフィルムが多く用いられていた (例 えば、 特開 2 0 0 0 - 1 2 3 8 8号公報、 特開平 5— 9 4 9 2 5号公報参照) 。 これらは、 導電性カーボン等を含むゴムを材料としたもので、 体積抵抗値が 1 0 〜: 1 0 0 Ω c m程度が多く、 さらに体積抵抗値の低い素材の要求があった。
また、水系電解液を用いる電気二重層キャパシタは、電解液として 2 5〜5 0 % ' 程度の硫酸水溶液を使用するため、 集電体に対しては同時に耐酸性も要求されて いる。 上記集電体としてはフィルム中に含まれる導電性材料に金属を用!/ヽた導電性樹 脂フィルムが知られているが (特開 2 0 0 0 - 1 2 3 8 8号公報参照) 、 酸性環 境下では導電性が不安定であるという欠点がある。 導電性材料として耐蝕性に優 れた貴金属を用いると極めて高価になるという問題があり、 炭素系の導電材料は 金属に比べて導電性が低く、 充分な導電性が得られないという欠点がある。
<文献の表示 >
導電性樹脂フィルムに関し、 特公平 3— 7 7 2 8 8号公報、 特開平 7— 1 0 2 1 1 2号公報おょぴ特開平 3— 5 5 7 0 9号公報。
電気二重層キャパシタに関し、 特開 2 0 0 0—1 2 3 8 8号公報、 特開平 5 - 9 4 9 2 5号公報。 発明の開示
本発明の 1つの態様における目的は、 優れた導電性を有するとともに、 耐酸性 のある導電性樹脂フィルムぉよびその製造方法を提供することである。
また、 本発明の異なる態様における目的は、 優れた導電性を有するとともに、 耐酸性のある電気二重層キャパシタ用の集電体を提供することである。
本発明の第 1の態様は、 低電気抵抗層を有する導電性樹脂フィルム、 製造方法 およぴ集電体を提供するものであり、 次の 1〜 8の事項に関する。
1 . 導電性を有する基材層と、 少なくとも片面の最外層に、 厚み方向の体積 抵抗値が 0 . 1〜: 1 . 0 Ω c mの低電気抵抗層を有する導電性樹脂フィルム。
2 . 前記低電気抵抗層の厚み方向の体積抵抗値が、 前記基材層の厚み方向の 体積抵抗値の 1 / 5以下であることを特徴とする上記 1記載の導電性樹脂フィル ム。
3 . 前記低電気抵抗層は、 熱可塑性樹脂に導電剤として繊維径が 0. 0 0 3 〜 0 . 5 μ m、 繊維長が 0 . 1〜: L 0 0 μ mである微細な炭素繊維が添カ卩された 層であることを特徴とする上記 1または 2記載の導電性樹脂フィルム。
4 . 前記低電気抵抗層の厚みが 1〜5 0 i mの範囲であることを特徴とする 上記:!〜 3のいずれか 1項記載の導電性樹脂フィルム。
5 . 前記基材層に含まれる導電剤が、黒鉛粉、膨張黒鉛、カーボンブラック、. カーボン繊維、 カーボンナノファイバー、 カーボンナノチューブ、 金属炭化物、 金属窒化物、 金属酸化物、 金属繊維および金属粉末から選ばれることを特徴とす る上記 1〜 4のいずれか 1項記載の導電性樹脂フィルム。
6. 微細な炭素繊維と熱可塑性樹脂を溶媒に混合した液状組成物を、 支持体 の平滑面に塗工し、 乾燥または硬化した後、 得られる被膜を、 導電性を有する基 材層の少なくとも片面に重ね合わせ、 接合することを特徴とする、 少なくとも片 面の最外層に低電気抵抗層を有する導電性樹脂フィルムの製造方法。
7. 電気二重層キャパシタ用集電体として用いられる上記 1〜 5のいずれか 1項記載の導電性樹脂フィルム。
8. 上記 7の導電性樹脂フィルムを用いた電気二重層キャパシタ用集電体。 本発明の第 2の態様は、 低電気抵抗の単層の導電性樹脂フィルム、 製造方法お よぴ集電体を提供するものであり、 次の 9〜 14の事項に関する。
9. 熱可塑性樹脂に、 繊維径が 0. 001〜0. 5 111、 繊維長が0. 1〜 100 / mである微細な炭素繊維を混合してなる導電性樹脂フィルムであって、 前記熱可塑性樹脂と微細な炭素繊維との混合体積比を
熱可塑性樹脂 Z微細な炭素繊維 = x/ ( 100— X)
と表し、 フィルムの体積抵抗値を y (単位 Q cm) で表したとき、
座標 , y) 力 X— y平面上で、 座標 (50, 0. 01) 、 (50, 0. 03) 、 (90, 0. 1) および (90, 0. 5) の 4点を頂点とする四角形で 囲まれる範囲内 (但し、 線上および頂点を含む) にあることを特徴とする導電性 樹脂フィルム。
10. 前記導電性樹脂フィルムの厚みが 10〜200/zmであることを特徴 とする上記 9記載の導電性樹脂フィルム。
1 1. 繊維径が 0. 001〜0. 5 μπι、 繊維長が 0. 1〜: L 00 / mであ る微細な炭素繊維と熱可塑性榭脂を溶媒に混合した液状組成物を、 支持体の平滑 面に塗工し、 乾燥または硬化した後、 被膜を前記支持体から剥離することを特徴 とする導電性樹脂フィルムの製造方法。
12. 上記 1 1の方法で製造された導電性樹脂フィルム。 13. 電気二重層キャパシタ用集電体として用いられる上記 9、 10または 12に記載の導電性樹脂フィルム。
14. 上記 13の導電性樹脂フィルムを用いた電気二重層キャパシタ用集電 体。 本発明の第 3の態様は、 低電気抵抗と高い引張り破断強度と有する集電体およ ぴ製造方法を提供するものであり、 次の 15〜23の事項に関する。
15. 熱可塑性樹脂に導電剤を含む導電性樹脂フィルムからなる電気二重層 キャパシタ用集電体であって、 フィルムの厚み方向の体積抵抗値が、 0. 01〜 5 Ω cmであると共に、 J I S K7127に準じて測定した引張り破断強度が 10〜3 OMP aであることを特徴とする電気二重層キャパシタ用集電体。
16. 前記熱可塑性樹脂がフッ素樹脂、 フッ素ゴム、 ポリオレフインおよび ポリオレフインエラストマ一からなる群より選ばれることを特徴とする上記 15 記載の電気二重層キャパシタ用集電体。
17. 前記導電剤が、 カーボンナノチューブ、 カーボンナノファイバー、 金 属炭化物および金属窒化物からなる群より選ばれることを特徴とする上記 15ま たは 16記載の電気二重層キャパシタ用集電体。
18. 前記熱可塑性樹脂と前記導電剤の割合が体積比で、 前者/後者 = 50 /50〜90/10であることを特徴とする上記 15〜17のいずれか 1項記載 の電気二重層キャパシタ用集電体。
19. 前記導電性樹脂フィルムの厚みが 0, 01mm〜0. 5 mmであるこ とを特徴とする上記 Γ 5〜 18のいずれか 1項記載の電気二重層キャパシタ用集 電体。
20. 前記導電性樹脂フィルムの少なくとも片面に低電気抵抗層が設けられ ていることを特徴とする上記 15〜19のいずれか 1項記載の電気二重層キャパ シタ用集電体。
21. 剥離可能な支持体上に導電層を形成した後、 導電性を有する基材層の 少なくとも片面と重ね合わせて前記導電層を転写した後、 支持体を剥離して、 導 電性樹脂フィルムの表面に低電気抵抗層を付設することを特徴とする電気二重層 キャパシタ用集電体の製造方法。
2 2 . 上記 2 1の方法で製造された電気二重層キャパシタ用集電体。
2 3 . 電気二重層キャパシタが水系電解液を用いるものである上記 1 5〜2
0、 および 2 2のいずれか 1項記載の電気二重層キャパシタ用集電体。 図面の簡単な説明
図 1は、 水系電気二重層キャパシタの 1例を示す図である。
図 2は、 厚み方向の体積抵抗値を測定する装置の概略図である。
図 3 Aおよぴ図 3 Bは、 それぞれ、 導電剤として微細な炭素繊維を含む低電気 抵抗層を表面に有する導電性樹脂フィルムの断面の S EM画像と、 表面の S EM 画像である。
符号の説明
2 分極性電極
3 ガスケット
4 セノ レータ
1 :真鍮製電極 (表面金メツキ)
2 :サンプル 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明において、 厚み方向の体積抵抗値は、 表面における接触抵抗を含めたフ イルムの厚さ方向の抵抗を体積抵抗に換算した値である。 具体的な測定は、 実施 例で説明する。
{材料の説明 }
くフィルムを構成する樹脂 >
本発明のフィルムに使用される樹脂は、 熱可塑性樹脂が好ましい。 熱可塑性樹 脂としては特に制限はなく、 例えば、 エチレンを含む単独重合体または共重合体 等のポリオレフイン (P O) 系樹脂またはポリオレフイン系エラストマ一;環状 ポリオレフイン等の非晶質ポリオレフイン樹脂(A PO);ポリスチレン(P S)、 AB S、 SB S等のポリスチレン系樹脂または S EB S等の水素添加されたスチ レン系エラストマ一;ポリ塩ィヒビュル (PVC) 樹脂;ポリ塩化ビニリデン (P VDC)樹脂;ポリメチルメタクリレート (PMMA)、共重合アクリル等の (メ タ) ァクリレートまたは (メタ) アクリル系樹脂;ポリエチレンテレフタレート (PET) 等のポリエステル系樹脂;ナイロン 6、 ナイロン 12、 共重合ナイ口 ン等のポリアミ ド (PA) 系樹脂;ポリビエルアルコール (PVA) 樹脂、 ェチ レン一ビュルアルコール共重合体(EVOH)等のポリビュルアルコール系樹脂; ポリイミ ド (P I)樹脂;ポリエーテルイミ ド (PE I)樹脂;ポリサルホン (P S) 樹脂;ポリエーテルサルホン (PES) 樹脂;ポリアミドイミド (PAI) 樹脂;ポリエーテルエーテルケトン (PEEK)樹脂;ポリカーボネート (PC) 樹脂;ポリビュルプチラール (PVB) 樹脂;ポリアリレート (PAR) 樹脂; ポリフエ二レンスルフィ ド (PPS) 樹脂;フッ素系樹脂またはエラストマ一な どが挙げられる。
上記熱可塑性樹脂の中では、 耐熱性、 耐酸性に優れるポリオレフイン (PO) 系樹脂またはポリオレフイン系エラストマ一、 SEBS等の水素添加されたスチ レン系エラストマ一およびフッ素系樹脂またはフッ素系エラストマ一の使用が好 ましい。
フッ素系樹脂またはエラストマ一の具体例としては PTFE (ポリテトラフル ォロエチレン) 、 PFA (テトラフルォロエチレン一パーフルォロアルキルビ二 ルエーテル共重合体) 、 FEP (テトラフルォロエチレン一へキサフルォロプロ ピレン共重合体) 、 EPE (テトラフルォロエチレン一へキサフルォロプロピレ ン—パーフルォロアルキルビュルエーテル共重合体) 、 ETFE (テトラフルォ 口エチレン一エチレン共重合体) 、 PCTFE (ポリクロロトリフノレォロェチレ ン) 、 ECTFE (クロ口トリフルォロエチレン一エチレン共重合体) 、 PVD F (ポリフッ化ビユリデン) 、 PVF (ポリビュルフルオライド) 、 THV (テ トラブルォロエチレン一へキサフルォロプロピレン一フッ化ビユリデン共重合 体)、 VDF— HF P (フッ化ビユリデン一へキサフノレオ口プロピレン共重合体)、 TFE-P (フッ化ビユリデン一プロピレン共重合体) 、 含フッ素シリコーン.系 ゴム、 含フッ素ビュルエーテル系ゴム、 含フッ素フォスファゼン系ゴム、 含フッ 素熱可塑性エラストマ一からなる少なくとも 1種類以上のフッ素樹脂またはフッ 素ゴムが使用できる。
この中でも、 成形性の点から特にフッ化ビニリデンを含む P VD F、 T HV、 VD F -H F Pおよび T F E— Pが好ましい。
ポリオレフイン系樹脂おょぴポリオレフイン系エラストマ一の具体例としては、 ポリエチレン、 ポリプロピレン、 ポリプテン、 ポリ 4一メチル一 1一ペンテン、 ポリへキセン、 ポリオクテン、 水素添加スチレンブタジエンゴム、 E P DM、 E P Mおよび E BMから選ばれる少なくとも 1種類以上のポリオレフインおょぴポ リオレフインエラストマ一が使用できる。
この中でも、 耐熱性、 成形性の点から特にポリエチレン、 ポリプロピレン、 E P DM、 水素添加スチレンブタジエンゴムが好ましい。
<導電剤 >
本発明で用いられる導電剤は、 樹脂製のフィルムに導電性を付与するものであ る。
炭素系導電剤として、 天然黒鉛、 熱分解黒鉛、 キッシュ黒鉛等の黒鉛粉、 酸性 溶液に前述した黒鉛を浸漬させた後、 加熱して膨張させた膨張黒鉛、 ケッチェン ブラック、 アセチレンブラックやファーネス法等で作られたカーボンブラック、 P AN系、 ピッチ系等の炭素繊維、 アーク放電法、 レーザ蒸着法、 気相成長法等 で作られたカーボンナノフアイパー、 カーボンナノチューブおよぴカーボンナノ ホーン等を挙げることができる。
金属炭化物系導電剤として、 炭化タングステン、 炭化ケィ素、 炭化ジルコユウ ム、炭化タンタル、炭化チタン、炭化ニオブ、炭化モリプデン、炭化バナジウム、 炭化クロムおょぴ炭化ハフニウム等を挙げることができる。 その中でも、 導電性 と耐酸性が要求される用途には、 特に炭化タングステン、 炭化チタン、 炭化クロ ムが好ましい。
金属酸化物系の導電剤としては、 酸化チタン、 酸化ルテニウム、 酸化インジゥ ムなどの金属酸化物を挙げることができる。 金属窒化物系導電剤としては、 窒化クロム、 窒化ァノレミニゥム、 窒化モリプデ ン、窒化ジルコユウム、窒化タンタノレ、窒化チタン、窒化ガリゥム、窒化ニオブ、 窒化バナジウム、 窒化ホウ素などの金属窒化物を挙げることができる。 この中で も導電性および耐酸性が要求される用途には、 特に窒化チタン、 窒化ジルコユウ ムが好ましい。
金属系導電剤としては、 鉄繊維、 銅繊維、 ステンレス繊維などの金属繊維、 チ タン粉、ニッケル粉、錫紛、タンタル紛、ニオブ粉などの金属粉末が挙げられる。
<第 1の態様:最外層が低電気抵抗層を有する導電性樹脂:
第 1の態様の導電性樹脂フィルムは、 基材層と少なくとも片面に低電気抵抗層 の最外層を有する。 低電気抵抗層の体積抵抗値を基材層より小さくすることで、 被接触体との接触抵抗が大幅に低減できる。 そのため、 フィルム全体としての導 電剤の混合比率を下げることもできる。
特に本発明の導電性樹脂フィルムを電気二重層キャパシタ用集電体として使用 する場合、 被接触体は炭素系電極や外装ケース (ステンレス製ケース等) となる が、 導電性樹脂フィルム中の低電気抵抗層の体積抵抗値を基材層より小さくする ことで、 被接触体との接触抵抗が低減でき、 電気二重層キャパシタの内部抵抗値 を小さくすることができる。
低電気抵抗層の厚み方向の体積抵抗値は 0 . :!〜 1 . 0 Ω c mの範囲とする必. 要があり、 1 . 0 Ω c mを超えると優れた導電性が得られ難い。 低電気抵抗層の 厚み方向の体積抵抗値は、 基材層の厚み方向の体積抵抗値の 1 5以下、 好まし くは 1 / 8以下にするのが良く、 低電気抵抗層の厚み方向の体積抵抗値が、 基材 層の厚み方向の体積抵抗値の 1 Z 5より大きいと、 被接触体との接触抵抗が大き くなり易い。
低電気抵抗層は、 樹脂と導電剤を含むものである。 樹脂は好ましくは熱可塑性 樹脂であり、 くフィルムを構成する樹脂 >で説明した熱可塑性樹脂等から、 用途 に合わせて適宜選んで使用することができる。 特に、 耐熱性および耐酸性に優れ るポリオレフイン (P O) 系樹脂またはポリオレフイン系エラストマ一、 S E B S等の水素添加されたスチレン系エラストマ一およびフッ素系樹脂またはフッ素 系エラストマ一の使用が好ましい。
低電気抵抗層に含有させる導電剤は、 耐蝕性と、 導電性に優れる微細な繊維、 特に炭素繊維が好適である。微細な炭素繊維の繊維径は 0. 003〜0. 5 μπι、 好ましくは 0. 08〜0. 2 μπιの範囲が良く、 繊維長は 0. :!〜 100 μηι、 好ましくは 1〜50 μηιの範囲が導電性に優れており好ましい。 これらの微細な 炭素繊維には、 カーボンナノファイバーおよびカーボンナノチューブ等が含まれ る。
低電気抵抗層の樹脂 (特に熱可塑性樹脂) と微細な炭素繊維の割合は、 低電気 抵抗層の厚み方向の体積抵抗値が、 0. 1〜1. 0Ω cmになるように、 また基 材層の厚み方向の体積抵抗値の 1 Z 5以下になるように適宜決めればよいが、 熱 可塑性樹脂と微細な炭素繊維の体積比率が 15Z85〜85/15の範囲が好ま しい。
低電気抵抗層の厚みは 1〜50 μηι、好ましくは、 3〜20 μπι.の範囲が良く、 低電気抵抗層の厚みが 1 μπι未満では、 厚みが薄いために低電気抵抗層にピンホ ールが発生しやすく、 体積抵抗値の大きくなる部位ができやすい。 また、 低電気 抵抗層の厚みが 5 C mを越えると、 導電性性樹脂フィルムが脆くなるという問 題が発生しやすい。また低電気抵抗層は基材層の片面でも、両面に設けてもよい。 次に、 導電性樹脂フィルム中の基材層について説明する。
基材層は、 樹脂中に導電剤を含有させたものが好ましい。 樹脂は好ましくは熱 可塑性樹脂であり、 <フィルムを構成する樹脂 >で説明した熱可塑性樹脂等から、 用途に合わせて適宜選んで使用することができる。 特に、 耐熱性および耐酸性に 優れるポリオレフイン (PO) 系樹脂またはポリオレフイン系エラストマ一、 S EB S等の水素添加されたスチレン系エラストマ一おょぴフッ素系樹脂またはフ ッ素系エラストマ一め使用が好ましい。
またその際に基材層に含有させることのできる導電剤は、 く導電剤〉の項で説 明したものを用いることができる。 特に耐酸性が要求される用途には、 炭素系導 電剤等の耐酸性に優れる導電剤が好ましい。
'前記基材層の熱可塑性樹脂と導電剤との体積比率は、 特に制限はないが、 30 0〜90/10の範囲が良い。 熱可塑性樹脂と導電剤との体積比率が 30/ 7 0未満では、 導電剤の割合が多いため、 樹脂の流動性が悪く薄膜化が困難にな りがちであり、 また導電性樹脂フィルムが脆くなりやすい。 また、 熱可塑性樹脂 と導電剤との体積比率が 9 0 1 0を越えると導電剤の割合が少ないため、 導電 性に劣るという問題が発生しやすい。
基材層の厚みは、 用途に合わせて適宜変更することができ、 低電気抵抗層と合 わせた導電性樹脂フィルムとしての厚さが 5 μ π!〜 0 . 5 mm、 特に 1 0 μ n!〜 2 0 0 μ mが好ましい。 導電性榭脂フィルム全体としての厚み方向の体積抵抗値 は、 0 . 0 1〜5 Ω、 好ましくは 3 Ω以下である。
次に、 本態様の導電性樹脂フィルムの製造方法を説明する。
基材層の製造方法は特に制限がなく、 通常の押出成形法やロール成形法によつ て製造できる。
低電気抵抗層の製造方法は特に制限はないが、 例えば、 微細な炭素繊維と熱可 塑性樹脂を溶媒に混合した液状組成物を、 支持体の平滑面に塗工し、 乾燥または 硬化して、 支持体上に低電気抵抗層の膜を形成することができる。 その後、 予め 形成しておいた基材層の片面または両面に、 基材層と低電気抵抗層塗工面が向き 合うように配置し、 熱圧着法等により、 基材層と低電気抵抗層を一体ィ匕した後、 支持体を剥離する方法が好ましい。 尚、 液状組成物中では、 微細な炭素繊維は分 散しており、 一方、 熱可塑性樹脂は溶媒に溶解している力 \ または一部もしくは 全部が分散していてもよいが、 通常は溶解しているのが好ましい。
上記支持体としては、 公知の各種フィルムを用いることができる。 例えば、 ポ リエステル、 ポリカーボネート、 トリァセチルセルロース、 セロハン、 ポリアミ ド、 芳香族ポリアミ ド、 ポリイミ ド、 ポリエーテルイミ ド、 ポリフエ二レンス/レ フイ ド、 ポリスルホン、 ポリエーテルスルホン、 ポリプロピレン等のフィルムが 挙げられる。 また、 低電気抵抗層と支持体の離型性を向上させるために支持体表 面にシリコーン等により離型処理を行ってもよい。 なかでも、 ポリプロピレンフ イルムおょぴポリエステルフィルムは適度な強度を有しており、 作業性おょぴ価 格などの点から好ましい。
また、 上記支持体の厚みは、 5〜5 0 0 μ ΐη、 好ましくは 1 0〜 3 0 0 mの 範囲であり、 5 μ m未満では基材フィルムとして充分な強度が得られず皺が入り やすくなり、 5 O O / mを越えると腰が強くなりすぎて、 取り扱いにくく作業性 が悪いという問題がある。
この製造方法によつて形成された低電気抵抗層は、 微細な炭素繊維が樹脂中に 均一に分散しており、 微細な炭素繊維の割合が少なくても、 優れた導電性が発現 できる。 この低電気抵抗層を最外層とした本態様の導電性樹脂フィルムでは、 微 細な炭素繊維が表面に露出するため、 被接触体との接触抵抗が大幅に低減する。 また、 この製造方法の利点として、 基材層は、 押出成形法およびロール成形法 等の通常の生産性のよい方法で製造できるので、 フィルムの歪み、 ピンホール、 残留溶剤の問題がなく、 また厚膜フィルムの形成も容易で、 生産性がよい。 つま り、 この製造方法によればフィルム特性と電気特性の両方を解決できる。
この導電性樹脂積層フィルムの用途は、 導電性に優れ、 特に被接触体との接触 抵抗を大幅に低減することができるため、 蓄電デバィスゃ発電機等の部材として 使用した場合、 その内部抵抗を格段に小さくすることができる。 また、 耐酸性に も優れるため、 特に水系電解液を用いる電気二重層キャパシタの集電体として使 用できる。
この導電性樹脂フィルムを適用できる電気二重層キャパシタは、 例えば図 1に 示したような構造のものであり、 低電気抵抗層が基材層の両面に設けられている 場合には、 分極性電極との接触および外部接続との接触の両方の接触抵抗を大幅 に低減することができる。 また、 低電気抵抗層が基材層の片面に設けられている 場合にも、 どちらか一方の接触抵抗を大幅に低減することができる。
{第 2の態様:単層の低抵抗:
本発明の第 2の態様は、 単層であって低抵抗の導電性樹脂フィルムに関するも のである。 即ち、 熱可塑性榭脂に、 繊維径が 0. 001〜0. 5 ηι、 繊維長が 0. :!〜 100 μ πιである微細な炭素繊維を混合してなる導電性樹脂フィルムで あって、 前記熱可塑性樹脂と微細な炭素繊維との混合体積比を
熱可塑性樹脂 Ζ微細な炭素繊維 = χ/ ( 100— X )
と表し、 フィルムの体積抵抗値を y (単位 Q cm) で表したとき、座標 (x,. y) が、 X— y平面上で、 座標 (50, 0. 01) 、 (50, 0. 03) 、 (90, 0. 1)および(90, 0. 5) の 4点を項点とする四角形で囲まれる範囲内 (但 し、 線上および頂点を含む) にある導電性樹脂フィルムである。
つまり、 熱可塑性樹脂と微細な炭素繊維との混合体積比は、 熱可塑性樹脂 Z微 細な炭素繊維 = 50Z5,0〜90Z10の範囲にあり、 混合体積比が 50/50 のフィルムの体積抵抗値は 0. 01〜0. 03 Ω ο mの範囲であり、 混合体積比 が 90/10のフィルムは、 体積抵抗値が 0. :!〜 0. 5 Q cmの範囲にある。 この態様の導電性樹脂フィルムでは、 微細な炭素繊維の量が、 従来 (例えば特 開平 7—1021 1 2号公報) と同量であっても電気抵抗が小さい新規なフィル ムである。
熱可塑性樹脂としては、 くフィルムを構成する樹脂 >の項で説明した熱可塑性 樹脂等から、 用途に合わせて適宜選んで使用することができる。 特に、 耐熱性お ょぴ耐酸性に優れるポリオレフイン (PO) 系樹脂またはポリオレフイン系エラ ストマ一、 S EB S等の水素添加されたスチレン系エラストマ一おょぴフッ素系 樹脂またはフッ素系エラストマ一の使用が好ましい。
熱可塑性樹脂に混合する微細な炭素繊維は、繊維径が 0. 001〜0· 5 μιη、 好ましくは 0. 005〜0. 3 μ mであり、 繊維長が 0. 1〜: 100μπι、 好ま しくは 0. 5〜30 μπιのものが導電性が向上できて好ましい。 また、 導電剤と して他の炭素系導電材と混合して用いることもできる。 他の炭素系導電材として は、 人造黒鉛、 天然黒鉛、 カーボンブラック、 膨張黒 c カーポンファィパー、 カーボン短繊維等及を用いることができる。
このようなフィルムを製造する手段としては、 種々の方法が考えられるが、 微 細な炭素繊維と熱可塑性樹脂を溶媒に混合した液状組成物をダイコーティング法 等の手法により、 剥離可能な支持体の平滑面に、 連続的に塗工し、 乾燥または硬 化した後、 被膜を支持体から剥離することによりフィルムを製造する方法が好ま しい。 尚、 液状組成物中では、 微細な炭素繊維は分散しており、 一方、 熱可塑性 樹脂は溶媒に溶解しているか、または一部もしくは全部が分散していてもよいが、 通常は溶解しているのが好ましい。
この方法で製造したフィルムは、 ドライブレンドで混合した後、 押出機にて製 造したフィルムに比べ、 微細な炭素繊維がフィルム中に均一に分散するため、 微 細な炭素繊維の混合体積比が少なくても、 電気が通りやすくなり、 フィルムの内 部抵抗を小さくすることができる。 更には、 ドライブレンドで混合した後、 押出 機にて製造したフィルムはフィルム表面に樹脂スキン層が存在するために、 電極 等の被接触体との接触抵抗が大きいが、 前述した方法で製造したフィルムは、 微 細な炭素繊維の一部がフィルム表面に露出するため、 電極等の被接触体との接触 抵抗を格段に小さくすることができる。
第 2の態様における導電性樹脂フィルムの厚み範囲は、 1 0〜2 0 Ο μ πιの範 囲が良く、 厚みが 1 0 m未満では、 フィルムが薄過ぎるため、 破れ易く、 取り 扱いにくいという問題があり、 またフィルム厚みが 2 0 0 μ πιを越えると、 厚み 方向の体積抵抗値が大きくなるという問題が生じやすい。
このフィルムの用途は、 導電性に優れるため、 蓄電デバイスや発電機等の部材 として使用した場合、 その内部抵抗を格段に小さくすることができる。 また、 耐 酸性にも優れるため、 特に水系電解液を用いる電気二重層キャパシタ (例えば図 1に示したような構造のもの) の集電体として使用できる。
{第 3の態様:電気二重層キャパシタ用集電体 }
本発明の第 3の態様は、電気二重層キャパシタ用集電体に関するものであって、 フィルムの厚み方向、 即ちフィルム面に垂直方向での体積抵抗値が、 体積抵抗値 は 0 . 0 1〜5 Ω c m、 好ましくは 0 . 0 1〜3 Q c mである。 0 . O l Q c m 未満は実質的に製造不能であり、 5 Ω c mを越えるものは集電体としての性能が 不十分である。 また、 引張り破断強度 (J I S K 7 1 2 7に準じて測定) は 1 0〜3 0 MP a、 好ましくは 2 0〜3 O MP aである。 l O MP a未満では強度 に劣り実用性に乏しく、 また 3 O MP aを越えるものでは硬すぎて取り扱いにく いという問題がある。
低い抵抗値と高い引張り強度は、 いずれも集電体として必要な†生能であるが、 この両方を満足するような集電体は従来は全く存在しなかったのである。 すでに 説明した第 1の態様および第 2の態様の導電性樹脂フィルムの一部は、 第 3の態 様の集電体として用いることができる。
この態様で用いられる熱可塑性樹脂としては、 くフィルムを構成する樹脂 >の 項で説明した熱可塑性樹脂を挙げることができる。 特に、 フッ素系樹脂、 フッ素 系エラストマ一、 ポリオレフイン系樹脂おょぴポリオレフイン系エラストマ一が このましい。 成形性の点から特にフッ化ビ-リデンを含む PVDF、 THV、 V DF— HF Pおよび TFE— P、 および耐熱性、 成形性の点から特にポリェチレ ン、 ポリプロピレン、 E P DMが好ましい。
この態様で用いられる導電剤としては、 カーボンナノファイバー、 カーボンナ ノチューブおよびカーボンナノホーン、 金属炭化物おょぴ金属窒化物が好適に使 用できる。
カーボンナノチューブおよびカーボンナノフアイパーは、 繊維径が 0. 0 0 1 〜0. 5 μπι、 好ましくは 0. 00 3〜0. 2 β mであり、 繊維長が:!〜 1 00 μ πι、 好ましくは 1〜3 0 μηιが導電性向上において好ましい。 また、 導電剤と しては、 他の炭素系導電剤と混合してもよい。 他の炭素系導電剤としては、 人造 黒鉛、 天然黒鉛、 カーボンブラック、 膨張黒鉛、 カーボン繊維等を用いることが できる。
金属炭化物の中では、 導電性、 耐酸性に優れる、 炭化タングステン、 炭化チタ ン、 炭化クロムが好適に使用できる。 金属窒化物の中では、 導電' I"生、 耐酸性に優 れている窒化チタン、 窒化ジルコニゥムが好ましレ、。
熱可塑性樹脂と導電剤の割合は、 前者 Ζ後者 = 50 50〜 9 0/1 0 (体積 比) 、 好ましくは前者/後者 = 6 0 40〜8 5/1 5 (体積比) が良い。 熱可 塑性榭脂と導電剤の割合が、 前者 Ζ後者 =50Ζ50 (体積比) 未満では熱可塑 性樹脂の割合が少ないので成形が困難となり、前者/後者 = 90Z10 (体積比) を越える場合では導電剤の割合が少ないので導電性に劣るという問題がある。 上記の熱可塑性樹脂と導電剤を含む導電性樹脂フィルムの厚みは、 0. 0 1 m π!〜 0. 5 mmの範囲であることが望ましい。 フィルムの厚みが 0. 0 1 mm未 満では脆く、 割れやすいため取り扱いにくいという問題が生じ易い。 また、 厚み が 0. 5 mmを越えると集電体の厚みが厚くなり、 電気二重層キャパシタが有す る内部抵抗が大きくなるという問題と、 電気二重層キャパシタが大きくなるとい う問題がある。.
集電体用の導電性樹脂フィルムの製造方法は特に限定されないが、 通常の押出 成形、 ロール成形法によればよい。 例えば、 予め熱可塑性樹脂と導電剤を 2軸押 出機等で混合した後、 押出成形、 ロール成形法により、 導電性榭脂フィルムを製 膜することができる。 また、 く第 2の態様 >で説明したように、 剥離可能な支持 体の平滑面に塗布し、 乾燥または硬化した後、 皮膜を支持体から剥離する方法で フィルムを成形してもよい。
以上のような導電性樹脂フィルムを単層で用いる場合は、 樹脂、 導電剤および それらの配合比等を適切に選ぶことにより 0 . 0 1〜5 Ω c mの体積抵抗値と 1 0〜3 O MP aの引張り破断強度の両方を満足する集電体を得ることができる。 また、 さらに電極との接触抵抗を低減させる目的で導電性樹脂フィルムの少な くとも片面の表面に低電気抵抗層を設けることが好ましい。
低電気抵抗層は、 導電剤を含む樹脂層を導電性樹脂フィルム表面に形成するこ とにより、 または導電剤を導電性樹脂フィルム表面に埋め込むことで形成するこ とができる。 導電剤としては <導電奔』>の項で説明した炭素系導電剤、 金属炭化 物系導電剤、 金属窒化物系導電剤等を用いることができる。 具体的には、 用いる 種類により導電剤単独または適宜熱可塑性樹脂ととも溶剤に分散させたもの (樹 脂は溶解していることが好ましい) を、 予め剥離可能な支持体上に塗布し、 乾燥 または硬化させて導電剤層を形成し、 導電性を有する基材層 (即ち、 別途作製し た導電性樹脂フィルム) に転写した後、 支持体を剥離して低電気抵抗層を付設す ることにより設けることができる。 支持体としてはポリエステルフィルム等が使 用できる。
この表面に低電気抵抗層を設けた形態の 1例としては、 第 1の態様で説明した 導電性樹脂フィルム、 即ち体積抵抗値が 0 . 1〜1 . 0 Ω c mである低電気抵抗 層を基材層の最外層に設けた導電性樹脂フィルムを集電体として用いる形態を挙 げることができる。 また、 導電剤の種類によって、 例えば炭化タングステンのよ うな粒状のものであれば、 例えば表面に埋め込むことで (パインダーとして熱可 塑性樹脂があってもよい。 ) 形成される形態を挙げることができる。
表面に低電気抵抗層を形成した導電性樹脂ブイルムによる集電体は、 表面に導 電剤が高密度で存在するために接触抵抗が下がり、 全体としてのフィルム厚み方 向の体積抵抗値を下げることができる利点がある。 そのため、 基材層に含まれる 導電材量が比較的少量でも十分な導電性が得られるため、 低抵抗と高引張り破断 強度の両方を満たす集電体を容易に得ることができる。 実施例
以下、 実施例について説明するが、 本発明はこれに限定されるものではない。 <厚み方向の体積抵抗値の測定方法 >
実施例中の、 層またはフィルムの厚み方向 (面に垂直方向) の体積抵抗値は以 下の方法で評価した。 抵抗計: YMR— 3型 ( (株) 山崎精機研究所社製)
負荷装置: YSR— 8型 ( (株) 山崎精機研究所社製)
電極:真鍮製平板 2枚 (面積 6. 45 cm2, 鏡面仕上げ、 表面金メッキ)
2. 測定条件
方法: 4端子法
印加電流: 10mA (交流、 287Hz)
開放端子電圧: 2 OmVピーク以下
荷重: 1. 8MP a (18. 6 k g f /cm2)
3. 測定方法
図.2に示した測定装置により、 測定サンプル 12を両側から真鍮製電極 1 1で挟み、 所定の荷重を加えながら、 4端子法にて所定の電流印加時の電圧を測 定した。
4. 体積抵抗算出方法
上記方法で測定された抵抗値 R (Ω) と電極面積 (6. 45 cm2) およ ぴサンプル厚み t (cm) 力 ら厚み方向の体積抵抗値は
厚み方向の体積抵抗値 (Q cm) =RX (6. 45 cm2/t)
で算出できる。
{第 1の態様の実施例 }
ぐ基材層の作製 > 熱可塑性樹脂と導電剤を表 1に記載した割合で 2軸押出機 (押出機温度 23 0°C) にて混合した。
作成した混合物を、 単軸押出機 (押出機温度 230°C) にて口金から押出して 導電性を有する基材フィルムを作成した。
得られた基材フィルムの厚みはいずれも 100 μπιであり、 フィルムの厚さ方 向への体積抵抗値を表 1に示した。
なお、 表 1記載の熱可塑性樹脂および導電剤は以下のものを使用した。
1. ポリオレフイン系エラストマ一:
出光興産 (株) 製 「Τ310Ε」 比重 0. 88
2. スチレン系エラストマ一:
旭化成 (株) 製 「タフテック HI 041」 比重 0. 91
3. フッ素系エラストマ一:
住友スリーェム (株) 製 「THV220G」 比重 2
4. カーボンブラック :
ライオン (株) 製 「ケッチェンブラック EC 600 J D」 比重 1. 5
5. 人造黒鉛粉:
昭和電工 (株) 製 「UFG— 30」 比重 2. 2
6. 炭化チタン :
(株) ァライドマテリアル製 「チタンカーバイド」 比重 4. 9
<低電気抵抗層 Aの作製 >
SEBS (旭化成 (株) 製 「タフテック HI 041」 比重 0. 91) と微 細な炭素繊維 (昭和電工 (株) 製 「気相法炭素繊維 VGCF」 比重 2) を体 積比で 60/40の割合で、 固形分濃度 8重量%になるように、 それぞれ T H F (テトラヒドロフラン) に混合し、 分散溶液を作製した。
使用した微細な炭素繊維は、 繊維径 150 n m、 繊維長 10〜20^m、 嵩 比重 0. 035 g/c c、 真比重 2. 0 gZc cのものを使用した。
この分散液を支持体 (ポリプロピレンフィルム :厚み 50 ^m) 上にパーコー タ ( 「松尾産業製」 # 70番) で塗布し、 80°Cで乾燥し、 支持体—低電気抵抗 層の複合体を得た。 得られた支持体一低電気抵抗層の複合体から低電気抵抗層 Aを剥離し、 厚みと 体積抵抗値を測定した結果、 低電気抵抗層 Aの厚みは 20 mであり、 フィルム の厚さ方向への体積抵抗値は 0. 94Ω cmであった。
<低電気抵抗層 Bの作製 >
フッ素系エラストマ一 (住友スリーェム (株) 製 「THV220G」 比重 2) と微細な炭素繊維 (昭和電工 (株) 製 「気相法炭素繊維 VGCF」 比重 2) を体積比で 60Z40の割合で、 固形分濃度 8重量%になるように、 それぞ れ MI BK (メチルイソブチルケトン) に混合し、 分散溶液を作製した。
使用した微細な炭素繊維は、 繊維径 150 n m、 繊維長 10〜 20 m、 嵩比 重 0. 035 g/c c、 真比重 2. 0 gZc cのものを使用した。
この分散液を支持体 (ポリプロピレンフィルム :厚み 5 Ojum) 上にパーコー タ ( 「松尾産業製」 # 70番) で塗布し、 80°Cで乾燥し、 支持体一低電気抵抗 層複合体を得た。
得られた支持体一低電気抵抗層の複合体から低電気抵抗層 Bを剥離し、 厚みと 体積抵抗値を測定した結果、 低電気抵抗層 Bの厚みは 20 mであり、 フィルム の厚さ方向への体積抵抗値は 0. 73 Ω cmであった。
実施例 1〜 6
<導電性樹脂積層フィルムの作製 >
上記方法で得られた基材フィルムと、 低電気抵抗層 A、 Bを、 表 2記載の組み 合わせで、 低電気抵抗層/基材層 Z低電気抵抗層の順に配置し、 熱プレスにて一 体ィ匕し、 導電性樹脂積層フィルムを作製した。
熱プレス法の条件は、 加熱温度 140°C、 圧力 4. 9 X 106P a (50 k g f /cm2) であった。
得られた導電性樹脂積層フィルムの厚みはいずれも 130 j mであり、 フィル ムの厚さ方向への体積抵抗値は表 2に示した。 表 1
Figure imgf000021_0001
表 2
Figure imgf000021_0002
表 2に示す通り、 本発明の方法にて作製した低電気抵抗層を有する導電性樹脂 積層フィルムは、 低電気抵抗層を設けていない表 1の導電フィルムに比べ、 フィ ルムの厚さ方向への体積抵抗値が、格段に小さく、導電性に優れることが分かる。 また、 図 3 Aおよび図 3 Bに、 導電剤として微細な炭素繊維を含む低電気抵抗 層を表面に有する導電性樹脂フィルムの断面の S EM画像と、 表面の S EM画像 をそれぞれ示す。 これら力 ら、 特定の微細な炭素繊維を用いると、 表面に導電剤 が露出しており、 被接触体と導電剤が直接に接する割合が増加するので、 接触抵 抗が低下すると考えられる。
{第 2の態様の実施例 }
フッ素系エラストマ一 ( 「住友スリ一ェム (株) 」 製 THV 2 2 0 G 比重 2) と微細な炭素繊維(「昭和電工(株)」製 気相法炭素繊維く VGCF> 比 重 2) を体積比で 50Z50, 60/40, 70/30、 80/20、 90/1 0の割合で、 固形分濃度 20重量%になるように、 それぞれ MI BK (メチルイ ソプチルケトン) に混合し、 5種類の分散溶液を作製した。
使用した微細な炭素繊維は、 繊維径 150 n m、 繊維長 10〜 20 μ m、 嵩比 重 0. 035 g/c c、 真比重 2. 0 g/c cのものを使用した。
これら 5種類の分散溶液をダイコーティング法により厚さ 20 Ομπιのポリエ ステルフィルム上に、 それぞれ塗工し、 乾燥炉で残留溶剤濃度が 0. 1重量%以 下になるまで乾燥した後、 ポリエステルフィルムから剥離し、 5種類の導電性フ イルムを得た。得られた導電性フィルムの厚みは 5種類とも 100 μπιであった。
(参考例)
参考例として、 フッ素樹脂 ( 「住友スリーェム (株) 」 製 THV220G比 重 2) と微細な炭素繊維 ( 「昭和電工 (株) 」 製 気相法炭素繊維 <VGCF> 比重 2) を体積比で、 50Z50、 60/40, 70/30、 80/20、 90 ノ 10の配合で、 それぞれ二軸押出機 (混合温度 250°C) にて混合し、 口金か ら押出し、 導電性フィルムの作成を試みたが、 フッ素樹脂 微細な炭素繊維の体 積比が 50/50および 60/40は微細な炭素繊維量が多く、 樹脂中に混合で きなかったため、 同体積比 70/30、 80/20, 90Z10のみ 3種類の導 電性フィルムを得た。 得られた 3種類の導電性フィルムの厚みはいずれも 100 μ mであつ 。
この実施例おょぴ参考例では得られた導電性フィルムの体積抵抗値を J I S K 7194に準じて、 以下の測定方法で行った。 尚、 この測定方法は、 フィル ム全体の体積抵抗率を測定する方法である。
Lo r e s t a HP (三菱化学 (株) 製)
2 測定方式
四端子四探針法 (ASPタイププローブ)
3 測定印可電流
100 mA 上記方式にて測定した体積抵抗値を表 1に示した c
表 3
Figure imgf000023_0001
表 3に示す通り、 本発明の方法にて作製した微細な炭素繊維を含む導電性フィ ルムは、 本発明の体積抵抗値の範囲に入り、 また、 押出法で作製した同配合の導 電性フィルムに比べ、格段に体積抵抗値が小さく、導電性に優れることが分かる。
{第 3の態様の実施例 }
(実施例 C一 1)
フッ素樹脂 ( 「住友スリーェム (株) 」 製 THV220G 比重 2) 23重 量部 (体積比 70%) と導電"生フイラ一 (炭化タングステン 「 (株) ァライド マテリアル」 製 WC20 比重 15. 5) 77重量部 (体積比 30 %) を 2軸 押出機 (押出機温度 250°C) にて混合した。
作製した混合物を、 単軸押出機 (押出機温度 250°C) にて口金から押出して 導電性樹脂フィルムを作製した。 得られた導電性樹脂フィルムの厚みは 0. 3m mで、 サンプノレ 1とした。
(実施例 C一 2)
フッ素樹脂 ( 「住友スリーェム (株) 」 製 THV220G 比重 2) 70重 量部 (体積比 70%) とカーボンナノチューブ ( 「昭和電工 (株) 」 製 気相法 炭素繊維 VGCF 比重 2) 30重量部 (体積比 30%) を 2軸押出機 (押出 機温度 250°C) にて混合した。 使用したカーボンナノチューブは、 直径 0. 1 5 zm、 長さ:!〜 20μιη、 嵩比重 0. 04 g " c m3のものである。 作製した混合物を、単軸押出機(押出機温度 250°C)にて口金から押出して、 導電性樹脂フィルムを作製した。 得られた導電性樹脂フィルムの厚みは 0. 3m mで、 サンプノレ 2とした。
(比較例 C_l) ,
フッ素樹脂 ( 「住友スリーェム (株) 」 製 THV220G 比重 2) 75重 量部 (体積比 70%) とカーボン短繊維 ( 「東邦テナックス (株) 」 製 HTA — 0040 比重 1. 77) 25重量部 (体積比 30%) を二軸押出機 (混合温 度 250°C) にて混合した。 使用したカーボン短繊維は、 直径 4〜7μπι、 長さ 40〜: L, Ο Ο Ομηι、 嵩比重 0. 07 g c m 3のものである。
作成した混合物を、二軸押出機(押出機温度 250°C)にて口金から押出して、 導電性樹脂フィルムを作成した。 得られた導電性樹脂フィルムの厚みは 0. 3m mであり、 サンプノレ 3とした。
(比較例 C一 2)
フッ素樹脂 ( 「住友スリーェム (株) 」 製 THV220G 比重 2) 63重 量部 (体積比 60%) とカーボン短繊維 ( 「東邦テナックス (株) J 製 HTA -0040 比重 1. 77) 37重量部 (体積比 40 %) を二軸押出機 (混合温 度 250°C)にて混合した。カーボン短繊維は、比較例 1と同じものを使用した。 作成した混合物を、 二軸押出機 (押出機温度 250°C) にて口金から押出して、 導電性樹脂フィルムを作成した。 得られた導電性樹脂フィルムの厚みは 0. 3m mであり、 サンプノレ 4とした。
得られた上記サンプルフィルムの厚み方向の体積抵抗値をく厚み体積抵抗値の 測定方法 >で説明した方法により測定した。
得られた上記サンプルフィルムの引張り破断強度は J I S K7127に準じ て以下のように測定した。
1. 引張り試験機
万能材料試験機
2.
23°C
3 試験片形状 2号形式試験片
4
50. 0 mm/ m i n
体積抵抗値および引張り破断強度を表 4に示した。 表 4
Figure imgf000025_0001
表 4に示す通り、 カーボン短繊維をフッ素樹脂に混合したサンプル 3に比べ、 炭化タングステンを混合したサンプノレ 1、 およぴカーボンナノチューブを混合し たサンプル 2の導電性樹脂フィルムは、 体積抵抗値が 0. 01〜5 Q ' cmの範 囲となりなり、 優れた導電性を示すことがわかった。 また、 サンプル 3よりカー ボン短繊維を多くフッ素樹脂に混合したサンプル 4は、体積抵抗値は低くなるが、 引張り破断強度が低下する。 しかし、 本発明の範囲にある炭化タングステンを混 合したサンプル 1、 およびカーボンナノチューブを混合したサンプル 2の導電性 樹脂フィルムは、 引張り破断強度が大きく、 10〜30MP aの範囲で良好であ つた。
(実施例 C— 3)
この実施例では、 表面に低電気抵抗層を設けた。
低電気抵抗層の作製
フッ素系エラストマ一 (住友スリーェム (株) 製 「THV220G」 比重 2) と微細な炭素繊維 (昭和電工 (株) 製 「気相法炭素繊維 VGCF」 比重 2) を体積比で 55/45の割合で、 固形分濃度 8重量%になるように、 それぞ れ MI BK (メチルイソブチルケトン) に混合し、 分散溶液を作製した。
使用した微細な炭素繊維は、 繊維径 150 n m、 繊維長 10〜 20 m、 嵩比 重 0. 035 gZc c、 真比重 2. 0 gZc cのものを使用した。
この分散溶液を支持体 (ポリプロピレンフィルム:厚み 50 μπι) 上にバーコ ータ ( 「松尾産業製」 # 70番) で塗布し、 80°Cで乾燥し、 支持体—低電気抵 抗層複合体を得た。
得られた支持体一低電気抵抗層複合体から低電気抵抗層を剥離し、 厚みと体積 抵抗値を測定した結果、 低電気抵抗層 Bの厚みは 20 μ mであり、 フィルムの厚 み方向の体積抵抗値は 0. 65 Ω c mであった。
導電性樹脂フィルムの作製
比較例 C—1で得た導電性樹脂フィルム (サンプル 3) を基材層として、 上記 の低電気抵抗層を、 低電気抵抗層 基材層 (サンプル 3) /低電気抵抗層の順に 配置し、 熱プレスにて一体化し、 低電気抵抗層を付設した導電性樹脂フィルムを 作製した。
熱プレス条件は、 加熱温度 140°C、 圧力 4. 9 X 106P a ( 50 k g f / cm2) であった。
得られた導電性樹脂フィルムの厚みは 330 μπιであり、 フィルムの厚み方向 の体積抵抗値および引張り破断強度は表 5に示すとおりである。 表 5
Figure imgf000026_0001
表 5に示すとおり、 サンプル 3の両面に低電気抵抗層を付設した成形フィルム は、 サンプル 3とほぼ同等の引張強度を有し、 尚かつサンプル 3に比べてフィル ムの厚み方向の体積抵抗値が格段に小さく、 低抵抗を髙引張り破断強度の両方を 満たす成形フィルムであった。 産業上の利用可能性
本発明の導電性樹脂フィルムは、 特にフィルムの厚さ方向への体積抵抗値が小 さく、 耐蝕性に優れ、 比較的低コストで生産可能なことから、 電気二重層キャパ シタ用集電体等に利用することができる。

Claims

請求の範囲
1 . 導電性を有する基材層と、 少なくとも片面の最外層に、 厚み方向の体積 抵抗値が 0 . :!〜 1 , 0 Ω c mの低電気抵抗層を有する導電性樹脂フィルム。
2 . 前記低電気抵抗層の厚み方向の体積抵抗値が、 前記基材層の厚み方向の 体積抵抗値の 1 / 5以下であることを特徴とする請求項 1記載の導電性樹脂フィ ルム。
3 . 前記低電気抵抗層は、 熱可塑性樹脂に導電剤として繊維径が 0 . 0 0 3 〜 0 . 5 μ m、 繊維長が 0 . 1〜: L 0 0 μ mである微細な炭素繊維が添加された 層であることを特徴とする請求項 1または 2記載の導電性樹脂フィルム。
4. 前記低電気抵抗層の厚みが 1〜 5 0 μ mの範囲であることを特徵とする 請求項 1〜 3のいずれか 1項記載の導電性樹脂フィルム。
5 . 前記基材層に含まれる導電剤が、黒鉛粉、膨張黒鉛、カーボンブラック、 カーボン繊維、 カーボンナノファイバー、 カーボンナノチューブ、 金属炭化物、 金属窒化物、 金属酸化物、 金属繊維および金属粉末から選ばれることを特徴とす る請求項 1〜 4のいずれか 1項記載の導電性樹脂フィルム。
6 . 微細な炭素繊維と熱可塑性榭脂を溶媒に混合した液状組成物を、 支持体 の平滑面に塗工し、 乾燥または硬化した後、 得られる被膜を、 導電性を有する基 材層の少なくとも片面に重ね合わせ、 接合することを特徴とする、 少なくとも片 面の最外層に低電気抵抗層を有する導電性樹脂フィルムの製造方法。
7 . 電気二重層キャパシタ用集電体として用いられる請求項 1〜 5のいずれ か 1項記載の導電性樹脂フィルム。
8. 請求項 7の導電性樹脂フィルムを用いた電気二重層キャパシタ用集電体。
9. 熱可塑性樹脂に、 繊維径が 0. 001〜0. 5 ^ 111、 繊維長が0. :!〜 100 mである微細な炭素繊維を混合してなる導電性樹脂フィルムであって、 前記熱可塑性樹脂と微細な炭素繊維との混合体積比を
熱可塑性樹脂/微細な炭素繊維 = X / ( 100— X )
と表し、 フィルムの体積抵抗値を y m Qcm) で表したとき、
座標 (x, y) 力 X— y平面上で、 座標 (50, 0. 01) 、 (50, 0. 03) 、 (90, 0. 1) および (90, 0. 5) の 4点を頂点とする四角形で 囲まれる範囲内 (但し、 線上および頂点を含む) にあることを特徴とする導電性 mm-
10. 前記導電性樹脂フィルムの厚みが 10〜200 //mであることを特徴 とする請求項 9記載の導電性樹脂:
1 1. 繊維径が 0. 001〜0. 5 !11、 繊維長が0. 1〜: L 00/imであ る微細な炭素繊維と熱可塑性樹脂を溶媒に混合した液状組成物を、 支持体の平滑 面に塗工し、 乾燥または硬化した後、 被膜を前記支持体から剥離することを特徴 とする導電性樹脂フィルムの製造方法。
12. 請求項 11の方法で製造された導電性樹脂フィルム。
13. 電気二重層キャパシタ用集電体として用いられる請求項 9、 10また は 12に記載の導電性樹脂フィルム。
14. 請求項.13の導電性樹脂フィルムを用いた電気二重層キャパシタ用集
5. 熱可塑性樹脂に導電剤を含む導電性樹脂フィルムからなる電気二重層 キャパシタ用集電体であって、 フィルムの厚み方向の体積抵抗値が; 0. 01〜 5 Ω cmであると共に、 J I S K7127に準じて測定した引張り破断強度が 10〜3 OMP aであることを特徴とする電気二重層キャパシタ用集電体。
16, 前記熱可塑†生樹脂がフッ素樹脂、 フッ素ゴム、 ポリオレフインおよび ポリオレフインエラストマ一からなる群より選ばれることを特徴とする請求項 1 5記載の電気二重層キャパシタ用集電体。
17. 前記導電剤が、 カーボンナノチューブ、 カーボンナノファイバー、 金 属炭化物およぴ金属窒化物からなる群より選ばれることを特徴とする請求項 15 または 16記載の電気二重層キャパシタ用集電体。
18. 前記熱可塑性樹脂と前記導電剤の割合が体積比で、 前者/後者- 50 Z50〜90/l 0であることを特徴とする請求項 15〜17のいずれか 1項記 載の電気二重層キャパシタ用集電体。
19. 前記導電性樹脂フィルムの厚みが 0. 01mm〜0. 5mmであるこ とを特徴とする請求項 15〜18のいずれか 1項記載の電気二重層キャパシタ用
20. 前記導電性榭脂フィルムの少なくとも片面に低電気抵抗層が設けられ ていることを特徴とする請求項 15〜19のいずれか 1項記載の電気二重層キヤ パシタ用集電体。
21. 剥離可能な支持体上に導電層を形成した後、 導電性を有する基材層の 少なくとも片面と重ね合わせて前記導電層を転写した後、 支持体を剥離して、 導 電性榭脂フィルムの表面に低電気抵抗層を付設することを特徴とする電気二重層 キャパシタ用集電体の製造方法。
. 請求項 2 1の方法で製造された電気二重層キャパシタ用集電体。 . 電気二重層キャパシタが水系電解液を用いるものである請求項 1 5〜 、 および 2 2のいずれか 1項記載の電気二重層キャパシタ用集電体。
PCT/JP2003/007961 2002-06-24 2003-06-24 導電性樹脂フィルム、集電体およびそれらの製造方法 WO2004001772A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003244167A AU2003244167A1 (en) 2002-06-24 2003-06-24 Conductive resin film, collector and production methods therefore
KR10-2004-7020921A KR20050014875A (ko) 2002-06-24 2003-06-24 도전성 수지필름, 집전체 및 그것들의 제조 방법
EP03760940A EP1553604A4 (en) 2002-06-24 2003-06-24 CONDUCTIVE RESIN FILM, COLLECTOR AND MANUFACTURING METHOD THEREFOR
US10/519,339 US7514021B2 (en) 2002-06-24 2003-06-24 Conductive resin film, collector and production methods therefore

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002182444A JP2004031468A (ja) 2002-06-24 2002-06-24 電気二重層キャパシター用集電体
JP2002-182444 2002-06-24
JP2002-286799 2002-09-30
JP2002286799A JP3981748B2 (ja) 2002-09-30 2002-09-30 導電性熱可塑性樹脂フィルム及びその製造方法
JP2002341121A JP4349793B2 (ja) 2002-11-25 2002-11-25 導電性樹脂積層フィルム及びその製造方法
JP2002-341121 2002-11-25

Publications (1)

Publication Number Publication Date
WO2004001772A1 true WO2004001772A1 (ja) 2003-12-31

Family

ID=30003582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007961 WO2004001772A1 (ja) 2002-06-24 2003-06-24 導電性樹脂フィルム、集電体およびそれらの製造方法

Country Status (7)

Country Link
US (1) US7514021B2 (ja)
EP (2) EP2367176A3 (ja)
KR (1) KR20050014875A (ja)
CN (1) CN100358056C (ja)
AU (1) AU2003244167A1 (ja)
TW (1) TWI241598B (ja)
WO (1) WO2004001772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650768A1 (en) * 2004-10-19 2006-04-26 E.I. du Pont de Nemours and Company Electroconductive paste composition

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
JP2010503214A (ja) * 2006-09-01 2010-01-28 バッテル メモリアル インスティテュート カーボンナノチューブのナノコンポジット、カーボンナノチューブのナノコンポジットを作製する方法、およびナノコンポジットを含むデバイス
KR100790424B1 (ko) * 2006-12-22 2008-01-03 제일모직주식회사 전자파 차폐용 열가소성 수지 조성물 및 플라스틱 성형품
CN102789131A (zh) * 2008-08-22 2012-11-21 日立化成工业株式会社 感光性导电膜、导电膜的形成方法、导电图形的形成方法以及导电膜基板
US20120086664A1 (en) * 2009-06-29 2012-04-12 Gerald Leto Multifunctional writing apparatus with capacitive touch screen stylus
JP5414450B2 (ja) * 2009-10-19 2014-02-12 キヤノン株式会社 加圧部材、像加熱装置、及び画像形成装置
CN103119671B (zh) 2010-09-22 2016-10-12 大金工业株式会社 膜电容器用膜和膜电容器
CN102173250B (zh) * 2011-01-30 2013-03-13 焦作市卓立烫印材料有限公司 一种热转印导电箔及其制备方法
US9111686B2 (en) * 2011-02-16 2015-08-18 Taiwan Textile Research Institute Flexible supercapacitor and preparation method thereof
CN102181249B (zh) * 2011-04-13 2012-10-17 肇庆理士电源技术有限公司 一种电池粘合剂及其制造方法
US9953739B2 (en) * 2011-08-31 2018-04-24 Tesla Nanocoatings, Inc. Composition for corrosion prevention
JP5628768B2 (ja) * 2011-09-07 2014-11-19 富士フイルム株式会社 紐状フィラー含有塗布物の製造方法
TWI503853B (zh) * 2012-02-16 2015-10-11 Taiwan Textile Res Inst 軟式超級電容器及其製備方法
KR20150011811A (ko) * 2012-05-15 2015-02-02 니폰 제온 가부시키가이샤 도전성 조성물
TWI729017B (zh) * 2016-10-25 2021-06-01 日商迪思科股份有限公司 保護膜形成用樹脂劑及雷射加工方法
EP3544030A4 (en) * 2017-01-16 2020-08-12 Tomoegawa Co., Ltd. RESISTANCE ELEMENT
CN109280317B (zh) * 2017-07-19 2022-12-06 滁州杰事杰新材料有限公司 一种纤维外露型金属纤维丙烯腈-丁二烯-苯乙烯/聚碳酸酯合金材料及其制备方法
CN107731546B (zh) * 2017-09-29 2019-11-12 程杰 一种活性炭电极及其制备方法
CN107857965A (zh) * 2017-11-17 2018-03-30 苏州甫众塑胶有限公司 一种复合导电薄膜材料的制备方法
CN110253983B (zh) * 2019-06-19 2021-05-14 安徽天富环保科技材料有限公司 一种活性碳纤维布及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174599A (ja) * 1990-06-07 1992-06-22 Hiraoka & Co Ltd 高電磁波シールド性複合シートの製造方法
US5458967A (en) * 1992-01-27 1995-10-17 Yazaki Corporation Composite sheet for elecromagnetic wave shield
JPH11144737A (ja) * 1997-11-04 1999-05-28 Tdk Corp 集電体及びこれを用いたシート状電極構造
JPH11297332A (ja) * 1998-04-13 1999-10-29 Tdk Corp 集電体及びこれを用いたシート型電気化学素子

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3830656A (en) * 1967-11-15 1974-08-20 T Okiyama Resistor film
US4915985A (en) * 1985-08-05 1990-04-10 Allied-Signal Inc. Process for forming articles of filled intrinsically conductive polymers
JPH028052A (ja) * 1988-06-27 1990-01-11 Kuraray Co Ltd ポリエステル樹脂シート状物
US5096793A (en) * 1989-06-28 1992-03-17 Minolta Camera Kabushiki Kaisha Photosensitive member excellent in antioxidation
JP3029115B2 (ja) * 1989-07-21 2000-04-04 ハイピリオン・カタリシス・インターナショナル・インコーポレイテッド 導電性シート
JPH0377288A (ja) 1989-08-19 1991-04-02 Mitsubishi Electric Corp Ic用ソケット
US5110669A (en) * 1989-09-28 1992-05-05 The Dow Chemical Company Conductive polymer laminates
JP2918497B2 (ja) * 1990-06-07 1999-07-12 平岡織染株式会社 高電磁波シールド性複合シートの製造方法
JPH0594925A (ja) 1991-10-01 1993-04-16 Japan Storage Battery Co Ltd 電気二重層コンデンサー
JPH07102112A (ja) * 1993-09-10 1995-04-18 Hyperion Catalysis Internatl Inc 熱可塑性エラストマー組成物および樹脂組成物
JPH07161589A (ja) * 1993-12-06 1995-06-23 Nisshinbo Ind Inc 電気二重層キャパシタ
JPH08138978A (ja) * 1994-11-02 1996-05-31 Japan Gore Tex Inc 電気二重層コンデンサとその電極の製造方法
JPH09208313A (ja) * 1996-01-30 1997-08-12 Kyocera Corp 固形状活性炭及びその製造方法及びこれを用いた電気二重層コンデンサー
JP4003090B2 (ja) * 1996-04-11 2007-11-07 東洋紡績株式会社 導電性組成物
JP4108136B2 (ja) * 1997-03-11 2008-06-25 日本ゼオン株式会社 導電性エラストマーフィルム、その製造方法、および導電性エラストマー組成物
JP3032491B2 (ja) * 1997-08-27 2000-04-17 大塚化学株式会社 印刷用シート
US6392867B1 (en) * 1998-05-12 2002-05-21 Mitsubishi Rayon Co., Ltd. Electric double layer capacitor and method for preparing the same
JP2000012388A (ja) * 1998-06-25 2000-01-14 Sumitomo Bakelite Co Ltd 集電体用導電性フィルム
US6241057B1 (en) * 1998-12-03 2001-06-05 Westinghouse Air Brake Company Hydraulic parking brake lever arrangement for a railroad vehicle braking system
JP2000252171A (ja) * 1999-03-03 2000-09-14 Asahi Glass Co Ltd 電気二重層キャパシタの製造方法
JP2001076971A (ja) * 1999-09-03 2001-03-23 Nec Corp 電気二重層コンデンサおよびその製造方法
JP4406484B2 (ja) * 1999-12-03 2010-01-27 ポリマテック株式会社 熱伝導性電磁波シールドシート
JP4458700B2 (ja) * 2000-03-14 2010-04-28 キヤノン株式会社 画像形成装置及びプロセスカートリッジ
JP2002124265A (ja) * 2000-10-18 2002-04-26 Toray Ind Inc 電池電極用導電性樹脂シートおよびその製造方法
AU2002219507A1 (en) * 2000-12-20 2002-07-01 Showa Denko K K Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
JP2002203749A (ja) * 2000-12-28 2002-07-19 Daiso Co Ltd 積層型電気二重層キャパシタ
JP2002353075A (ja) * 2001-03-21 2002-12-06 Morinobu Endo 電気二重層コンデンサの電極材料およびこれを用いた電気二重層コンデンサ
JP2005238534A (ja) * 2004-02-25 2005-09-08 Mitsubishi Plastics Ind Ltd 導電性熱可塑性樹脂フィルム
JP4597727B2 (ja) * 2005-03-18 2010-12-15 本田技研工業株式会社 電気二重層キャパシタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174599A (ja) * 1990-06-07 1992-06-22 Hiraoka & Co Ltd 高電磁波シールド性複合シートの製造方法
US5458967A (en) * 1992-01-27 1995-10-17 Yazaki Corporation Composite sheet for elecromagnetic wave shield
JPH11144737A (ja) * 1997-11-04 1999-05-28 Tdk Corp 集電体及びこれを用いたシート状電極構造
JPH11297332A (ja) * 1998-04-13 1999-10-29 Tdk Corp 集電体及びこれを用いたシート型電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553604A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650768A1 (en) * 2004-10-19 2006-04-26 E.I. du Pont de Nemours and Company Electroconductive paste composition
US7242573B2 (en) 2004-10-19 2007-07-10 E. I. Du Pont De Nemours And Company Electroconductive paste composition

Also Published As

Publication number Publication date
CN100358056C (zh) 2007-12-26
TWI241598B (en) 2005-10-11
EP2367176A2 (en) 2011-09-21
US7514021B2 (en) 2009-04-07
US20060098382A1 (en) 2006-05-11
TW200407914A (en) 2004-05-16
KR20050014875A (ko) 2005-02-07
AU2003244167A1 (en) 2004-01-06
EP1553604A1 (en) 2005-07-13
CN1663001A (zh) 2005-08-31
EP2367176A3 (en) 2011-11-02
EP1553604A4 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
WO2004001772A1 (ja) 導電性樹脂フィルム、集電体およびそれらの製造方法
JP4633626B2 (ja) 燃料電池用セパレータ
JP6346291B2 (ja) 電気的接続構造
JP4975262B2 (ja) 燃料電池用セパレータおよびその製造方法
JP2008207404A (ja) 導電性フィルムおよび前記フィルムを有する複合フィルム
EP1762587A1 (en) Conductive thermoplastic resin film and layered conductive thermoplastic resin film
JP2007324146A (ja) 燃料電池用セパレータ
JP4072371B2 (ja) 燃料電池用セパレータ
JP2006332035A (ja) 燃料電池用セパレータ、その製造方法及びそれを用いた燃料電池
JP2003192914A (ja) 導電性に優れた熱可塑性樹脂成形体
JP2004014272A (ja) 燃料電池用セパレータ
JP4349793B2 (ja) 導電性樹脂積層フィルム及びその製造方法
JP5153993B2 (ja) 導電性熱可塑性樹脂フィルム
CN101188150B (zh) 导电树脂薄膜、集电器及其制备方法
JP4082484B2 (ja) 燃料電池用セパレータ
JP2004192855A (ja) 燃料電池用セパレータ
JP2005238534A (ja) 導電性熱可塑性樹脂フィルム
JP5207331B2 (ja) 導電性熱可塑性樹脂フィルム
JP2003109618A (ja) 燃料電池用セパレータ
JP2005144929A (ja) 導電性熱可塑性樹脂フィルム
JP2004323653A (ja) 導電性樹脂フィルムの製造方法
JP4179759B2 (ja) 燃料電池用セパレータ
JP3981748B2 (ja) 導電性熱可塑性樹脂フィルム及びその製造方法
JP2008117564A (ja) 燃料電池用セパレータ、その製造方法及びそれを用いた燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003760940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047020921

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038147963

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047020921

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003760940

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006098382

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519339

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10519339

Country of ref document: US