TWI503853B - 軟式超級電容器及其製備方法 - Google Patents

軟式超級電容器及其製備方法 Download PDF

Info

Publication number
TWI503853B
TWI503853B TW102101171A TW102101171A TWI503853B TW I503853 B TWI503853 B TW I503853B TW 102101171 A TW102101171 A TW 102101171A TW 102101171 A TW102101171 A TW 102101171A TW I503853 B TWI503853 B TW I503853B
Authority
TW
Taiwan
Prior art keywords
supercapacitor
layer
soft
active
layers
Prior art date
Application number
TW102101171A
Other languages
English (en)
Other versions
TW201335960A (zh
Inventor
Wenhsien Ho
Chungbo Tsai
Pochou Chen
Yanru Chen
Original Assignee
Taiwan Textile Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/397,883 external-priority patent/US20120208091A1/en
Priority claimed from US13/572,728 external-priority patent/US20120308899A1/en
Priority claimed from US13/585,021 external-priority patent/US9111686B2/en
Application filed by Taiwan Textile Res Inst filed Critical Taiwan Textile Res Inst
Publication of TW201335960A publication Critical patent/TW201335960A/zh
Application granted granted Critical
Publication of TWI503853B publication Critical patent/TWI503853B/zh

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

軟式超級電容器及其製備方法
本發明是有關於一種軟式儲能裝置,且特別是有關於一種軟式超級電容器。
儲能裝置的發展與其功效改善為全球綠能管理是否能成功的關鍵。其中一個重要的挑戰為如何運輸能量,因為有為數眾多之各種電子裝置與應用(例如從可整合至衣物之可穿戴式儲能裝置,到對重量與體積皆有嚴格要求之昂貴的太空應用)皆需要更輕、更小、更堅固之軟式儲能裝置。但是目前對於可應用於其上之軟式儲能裝置才剛開始起步而已。
超級電容器可以儲存電能,因此可被用為電源,像電池一樣。電池是依賴化學反應來儲存與釋放電能,而超級電容器只是將電能儲存在其電極表面上。超級電容器可在數分鐘內充滿電,而非數小時,而且還可充電數百萬次。雖然已經發展出一些軟式超級電容器,其柔軟度仍然面臨挑戰。
因此,本發明之一態樣是在提供一種軟式超級電容器,其包含一聚合物固態電解質層、一第一與第二活性層以及一第一與第二電子傳導層。上述之聚合物固態電解質層包含一鋰鹽與一有機聚合物,且鋰鹽與有機聚合物之重 量比最多為5:1。上述之第一與第二活性層分別位於聚合物固態電解質層相對兩表面上,用以吸附離子。上述之第一與第二電子傳導層分別位於第一與第二活性層之外側表面上。第一與第二電子傳導層包含低阻抗之一碳布層,該碳布層之導電度為至少10 S/cm。
依據一實施例,上述之鋰鹽為LiClO4 、LiBF4 、LiPF6 、LiAsF6 、LiCF3 SO3 、LiBr、LiN(CF3 SO3 )2 或前述鋰鹽之任意組合。
依據另一實施例,上述之有機聚合物為聚乙烯醇(polyvinyl alcohol;PVA)或磺酸化聚醚醚酮(sulfonated polyetheretherketone;SPEEK)。
依據又一實施例,上述之第一與第二活性層包含碳膜,該些碳膜包含10-15 wt%的導電碳黑、60-70 wt%的活性碳以及15-30 wt%的上述有機聚合物。
依據再一實施例,當上述之第一與第二活性層包含碳膜時,上述之導電碳黑的導電度為101 -102 S/cm。
依據再一實施例,當上述之第一與第二活性層包含碳膜時,上述之活性炭的比表面積為1000-2000 m2 /g。
依據再一實施例,上述之第一與第二活性層包含比表面積1000-2000 m2 /g之至少二碳布。
依據再一實施例,當上述之第一與第二活性層包含比表面積1000-2000 m2 /g之至少二碳布時,上述之軟式超級電容器更包含至少二活性碳層,分別位於第一活性層與第一電子傳導層之間,以及第二活性層與第二電子傳導層之間。
依據再一實施例,上述之第一與第二活性層包含比表 面積100-400 m2 /g之奈米碳管層。
依據再一實施例,當上述之第一與第二活性層包含比表面積100-400 m2 /g之奈米碳管層時,上述之第一與第二活性層更包含一結合劑。
依據再一實施例,上述之軟式超級電容器更包含一封裝層,以完整包覆第一與第二電子傳導層、第一與第二活性層與聚合物固態電解質層。
依據再一實施例,上述之封裝層的材料為鋁箔或高分子膜。
依據再一實施例,上述之高分子膜為聚丙烯膜(polypropylene;PP)或聚對苯二甲二乙酯膜(polyethylene terephthalate;PET)。
本發明之另一態樣為提供上述之各種軟式超級電容器的製備方法,其包含下述步驟。首先,由下至上依序排列上述之第一電子傳導層、第一活性層、聚合物固態電解質層、第二活性層與第二電子傳導層,然後進行熱壓合步驟以形成超級電容器。
依據一實施例,上述軟式超級電容器的製備方法更包含用一液體濕潤上述之超級電容器。可用之液體為水、硫酸溶液或硫酸鹽溶液。接著,再封裝濕潤後之超級電容器。
依據另一實施例,上述之硫酸溶液或硫酸鹽溶液的濃度為0.1-1 M。
依據再一實施例,上述之硫酸鹽溶液為硫酸鋰溶液或硫酸鈉溶液。
上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本 揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。
依據上述,提供一種軟式超級電容器及其製造方法。在下面的敘述中,將會介紹上述之軟式超級電容器的例示結構與其例示之製造方法。為了容易瞭解所述實施例之故,下面將會提供不少技術細節。當然,並不是所有的實施例皆需要這些技術細節。同時,一些廣為人知之結構或元件,僅會以示意的方式在圖式中繪出,以適當地簡化圖式內容。
為了使本揭示內容的敘述更加詳盡與完備,下文針對本發明的實施態樣與具體實施例提出了說明性的描述;但這並非實施或運用本發明具體實施例的唯一形式。實施方式中涵蓋了多個具體實施例的特徵以及用以建構與操作這些具體實施例的方法步驟與其順序。然而,亦可利用其他具體實施例來達成相同或均等的功能與步驟順序。
軟式超級電容器
請參照第1圖,其係繪示依照本發明一實施方式的一種軟式超級電容器之剖面結構示意圖。在第1圖中,軟式 超級電容器100包含聚合物固態電解質層110、分別位於聚合物固態電解質層110相對兩面之兩層活性層120、分別位於活性層120外側表面上之兩層電子傳導層130。
上述之聚合物固態電解質層110包含一鋰鹽與一有機聚合物,且鋰鹽與有機聚合物之重量比最多為5:1。一般來說,聚合物固態電解質層110的離子導電度(ionic conductivity)會隨著鋰鹽濃度增加而增加。然而,在試驗過程中發現,當提高鋰鹽比例時,在成膜過程中,膜材內會出現白色混濁物,且膜材表面因成膜不均勻而出現撓曲、不平整的現象。這可能是鋰鹽濃度過高,因而破壞了有機聚合物的結晶性。
依據一實施方式,上述之鋰鹽可為具有較低晶格能的鋰鹽,例如可為過氯酸鋰(LiClO4 )、四氟硼酸鋰(LiBF4 )、六氟磷酸鋰(LiPF6 )、六氟砷酸鋰(LiAsF6 )、三氟甲烷磺酸鋰(LiCF3 SO3 )、三氟甲烷磺酸氮鋰(LiN(CF3 SO3 )2 )或溴化鋰(LiBr)等鋰鹽。具有較低晶格能的鋰鹽可以增加聚合物固態電解質層110的離子導電度。
依據另一實施方式,上述之有機聚合物例如可為聚乙烯醇(polyvinyl alcohol;PVA)或磺酸化聚醚醚酮(sulfonated polyetheretherketone;SPEEK)。有機聚合物之分子量大小會影響聚合物固態電解質層110成膜條件(例如乾燥的溫度與時間)與其機械強度(例如拉伸強度)。因此依據一實施例,上述之聚乙烯醇的分子量可為20,000-186,000 Da。依據另一實施例,磺酸化聚醚醚酮的分子量可為10,000-50,000 Da。然而,聚乙烯醇與磺酸化聚醚醚酮的分子量並不受上面數值的限制。
上述之活性層120係用來吸附離子。一般來說,活性層120所用材料的比表面積(specific surface area)越大,活性層120可以吸附的離子量就越多。但是,當活性層120之比表面積太大時,軟式超級電容器100之儲存電容量又會減少。因此,活性層120所用材料的比表面積較佳為1000-2000 m2 /g,但不受限於此。上述活性層120的材料例如可為碳膜、奈米碳管層或由碳纖維所構成之碳布。
在碳膜的實施例中,碳膜包含10-15 wt%的導電碳黑、60-70 wt%的活性碳以及15-30 wt%的上述有機聚合物。碳膜中之導電碳黑在聚合物固態電解質層110與電子傳導層130之間負責導電,因此導電碳黑的導電度較佳為101 -102 S/cm。碳膜中之活性碳是負責吸附離子的,因此活性碳的比表面積較佳為1000-2000 m2 /g。碳膜中之有機聚合物(例如聚乙烯醇或磺酸化聚醚醚酮)係用來協助薄膜成型,以及增進聚合物固態電解質層110與活性層120之親合度。
在奈米碳管層的實施例中,奈米碳管同時負責導電與吸附離子的兩大功能。由於受限於形狀之故,奈米碳管之比表面積較佳為100-400 m2 /g。另外,可選擇性地讓奈米碳管與一結合劑(binder)混合在一起,以協助薄膜成型。上述之結合劑例如可為聚二氟乙烯(polyvinylidene difluoride;PVDF)或聚四氟乙烯(polytetrafluoroethylene;PTFE)。
在碳纖維所構成之碳布的實施例中,碳布亦是同時扮演導電與吸附離子的角色。碳布之比表面積較佳為1000-2000 m2 /g。此外,可在聚合物固態電解質層110與由碳布構成之活性層120間加入一層活性碳層,以增加聚合物固 態電解質層110與碳布之界面的導電度。上述之活性碳層中還可加入一結合劑,以有助於薄膜成型。上述之結合劑例如可為聚二氟乙烯(polyvinylidene difluoride;PVDF)或聚四氟乙烯(polytetrafluoroethylene;PTFE)。
電子傳導層130負責在軟式超級電容器100與外部電子元件間傳導電流。因此,電子傳導層130的導電度較佳為至少10 s/cm,例如10-20 s/cm。電子傳導層130可為一軟式導電材料,例如碳纖維織布。
依據另一實施方式,軟式超級電容器100還可包含封裝層140來封裝聚合物固態電解質層110、活性層120與電子傳導層130。封裝層140的材料例如可為鋁箔或高分子膜,其中高分子膜例如可為聚丙烯膜(polypropylene;PP)或聚對苯二甲二乙酯膜(polyethylene terephthalate;PET)。
軟式超級電容器的製備方法
請參考第2圖,第2圖為依照本發明一實施方式的一種軟式超級電容器之製造流程圖。在第2圖中,首先步驟210為依序堆疊第1圖中之各層110-130。因此,各層110-130的堆疊順序為(第一)電子傳導層130、(第一)活性層120、聚合物固態電解質層110、(第二)活性層120與(第二)電子傳導層130。
在步驟220中,在室溫至110℃下,壓合各層110-130,讓各層110-130結合在一起,形成超級電容器。
在步驟230中,可以進一步來濕潤結合後之超級電容器以增加其離子導電度,並藉以增加軟式超級電容器100 之儲存電容量。所用之濕潤液體例如可為水、硫酸溶液或硫酸鹽溶液。其中硫酸溶液或硫酸鹽溶液的濃度可為0.1-1 M,硫酸鹽例如可為硫酸鋰或硫酸鈉。濕潤的時間長度可為1-60秒。
在步驟240中,以封裝層140來封裝濕潤後之超級電容器。
循環伏安分析
在此實施例中,所用之超級電容器之各層材料依序為第一碳布層、第一碳膜、SPEEK固態電解質層、第二碳膜與第二碳布層。此超級電容器在封裝前,先以水來濕潤,然後才進行循環伏安分析(cyclic voltammetry analysis)。超級電容器的尺寸為30 mm×30 mm×1.5 mm。所得之循環伏安分析結果顯示在第3圖上。
從第3圖可知,被測試之超級電容器可以在±4 V的區間內操作,沒有任何因氧化或還原反應而造成的譜峰。第3圖曲線內的積分面積大約為54 mF,亦即此被測試超級電容器的儲存電容量。此被測試超級電容器的等同串聯電阻(equivalent series resistance;ESR)大約為354 Ω。
從上述結果可知,與一般商用之單一電化學電容器(single-cell electrochemical capacitor)相比之下,此被測試超級電容器可以在較大電壓區間內工作。一般商用之單一電化學電容器的可操作電壓通常小於3.5 V,因此對於需要高電壓操作的應用,必須要串聯多個電化學電容器才能提供此類應用之所需電壓。
上述軟式超級電容器不僅其工作溫度可高達120-130℃,而且還可以在±4 V相當寬的電壓區間內操作。因此,上述之軟式超級電容器可以在相當廣泛的應用領域內來使用,此實為軟式超級電容器發展上的一大突破。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
110‧‧‧聚合物固態電解質層
120‧‧‧活性層
130‧‧‧電子傳導層
140‧‧‧封裝層
210-240‧‧‧步驟
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:
第1圖是依照本發明一實施方式的一種軟式超級電容器之剖面結構示意圖。
第2圖係繪示依照本發明一實施方式的一種軟式超級電容器之製造流程圖。
第3圖係依照本發明一實施例之循環伏安分析結果。
110‧‧‧聚合物固態電解質層
120‧‧‧活性層
130‧‧‧電子傳導層
140‧‧‧封裝層

Claims (16)

  1. 一種軟式超級電容器,該軟式超級電容器包含:一聚合物固態電解質層,其包含一鋰鹽與磺酸化聚醚醚酮(sulfonated polyetheretherketone;SPEEK),該鋰鹽與該有機聚合物之重量比最多為5:1,其中該磺酸化聚醚醚酮的分子量為10,000-50,000Da;一第一與第二活性層,分別位於該聚合物固態電解質層相對兩表面上,該第一與第二活性層用以吸附離子;以及一第一與第二電子傳導層,分別位於該第一與第二活性層之外側表面上,該第一與第二電子傳導層包含低阻抗之一碳布層,該碳布層之導電度為至少10S/cm。
  2. 如請求項1所述之軟式超級電容器,其中該鋰鹽為LiClO4 、LiBF4 、LiPF6 、LiAsF6 、LiCF3 SO3 、LiBr、LiN(CF3 SO3 )2 或前述鋰鹽之任意組合。
  3. 如請求項1所述之軟式超級電容器,其中該第一與第二活性層包含碳膜,該些碳膜包含10-15wt%的導電碳黑、60-70wt%的活性碳以及15-30wt%的該有機聚合物。
  4. 如請求項3所述之軟式超級電容器,其中該導電碳黑的導電度為101 -102 S/cm。
  5. 如請求項3所述之軟式超級電容器,其中該導電碳黑的比表面積為1000-2000m2 /g。
  6. 如請求項1所述之軟式超級電容器,其中該第一與第二活性層包含至少二碳布,該些碳布之比表面積為1000-2000m2 /g。
  7. 如請求項6所述之軟式超級電容器,更包含至少二活性碳層,該些活性碳層分別位於該第一活性層與該第一電子傳導層之間,以及該第二活性層與該第二電子傳導層之間。
  8. 如請求項1所述之軟式超級電容器,其中該第一與第二活性層包含奈米碳管層,該些奈米碳管之比表面積為100-400m2 /g。
  9. 如請求項8所述之軟式超級電容器,其中該第一與第二活性層更包含一結合劑。
  10. 如請求項1所述之軟式超級電容器,更包含一封裝層完整包覆該第一與第二電子傳導層、該第一與第二活性層與該聚合物固態電解質層。
  11. 如請求項10所述之軟式超級電容器,其中該封裝層的材料為鋁箔或高分子膜。
  12. 如請求項11所述之軟式超級電容器,其中該高分子膜包含聚丙烯膜(polypropylene;PP)或聚對苯二甲二乙酯膜(polyethylene terephthalate;PET)。
  13. 一種如請求項1至6、8至9任一項所述之軟式超級電容器的製備方法,該製備方法包含:由下至上依序排列該第一電子傳導層、該第一活性層、該聚合物固態電解質層、該第二活性層與該第二電子傳導層;以及壓合該第一電子傳導層、該第一活性層、該聚合物固態電解質層、該第二活性層與該第二電子傳導層,以形成一超級電容器。
  14. 如請求項13所述之軟式超級電容器的製備方法,更包含:用一液體濕潤該超級電容器,該液體為水、硫酸溶液或硫酸鹽溶液;以及封裝濕潤後之該超級電容器。
  15. 如請求項13所述之軟式超級電容器的製備方法,其中該硫酸溶液或該硫酸鹽溶液之濃度為0.1-1M。
  16. 如請求項13所述之軟式超級電容器的製備方法,其中該硫酸鹽溶液為硫酸鋰溶液或硫酸鈉溶液。
TW102101171A 2012-02-16 2013-01-11 軟式超級電容器及其製備方法 TWI503853B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/397,883 US20120208091A1 (en) 2011-02-16 2012-02-16 Polymer-Based Solid Electrolytes and Preparation Methods Thereof
US13/572,728 US20120308899A1 (en) 2011-02-16 2012-08-13 Polymer-Based Solid Electrolytes and Preparation Methods Thereof
US13/585,021 US9111686B2 (en) 2011-02-16 2012-08-14 Flexible supercapacitor and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201335960A TW201335960A (zh) 2013-09-01
TWI503853B true TWI503853B (zh) 2015-10-11

Family

ID=48962512

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102101171A TWI503853B (zh) 2012-02-16 2013-01-11 軟式超級電容器及其製備方法

Country Status (2)

Country Link
CN (1) CN103258652B (zh)
TW (1) TWI503853B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048143A1 (en) * 2000-04-12 2002-04-25 Young-Hee Lee Supercapacitor using electrode of new material and method of manufacturing the same
US20020167784A1 (en) * 2000-12-28 2002-11-14 Hiroshi Takatomi Multi-layer type electric double-layer capacitor
US20030169558A1 (en) * 2002-03-11 2003-09-11 Olson John B. Multi-function carbon composite capacitor electrode
US20060098382A1 (en) * 2002-06-24 2006-05-11 Michinari Miyagawa Conductive resin film, collector and production methods therefore
US20060269801A1 (en) * 2005-05-31 2006-11-30 Shin-Kobe Electric Machinery Co., Ltd. Lead-acid battery electrode body, lead-acid batter, and manufacturing method of lead-acid battery
TW201024219A (en) * 2008-12-30 2010-07-01 Ind Tech Res Inst Method for manufacturing nano carbon fibers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031468A (ja) * 2002-06-24 2004-01-29 Mitsubishi Plastics Ind Ltd 電気二重層キャパシター用集電体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048143A1 (en) * 2000-04-12 2002-04-25 Young-Hee Lee Supercapacitor using electrode of new material and method of manufacturing the same
US20020167784A1 (en) * 2000-12-28 2002-11-14 Hiroshi Takatomi Multi-layer type electric double-layer capacitor
US20030169558A1 (en) * 2002-03-11 2003-09-11 Olson John B. Multi-function carbon composite capacitor electrode
US20060098382A1 (en) * 2002-06-24 2006-05-11 Michinari Miyagawa Conductive resin film, collector and production methods therefore
US20060269801A1 (en) * 2005-05-31 2006-11-30 Shin-Kobe Electric Machinery Co., Ltd. Lead-acid battery electrode body, lead-acid batter, and manufacturing method of lead-acid battery
TW201024219A (en) * 2008-12-30 2010-07-01 Ind Tech Res Inst Method for manufacturing nano carbon fibers

Also Published As

Publication number Publication date
CN103258652A (zh) 2013-08-21
CN103258652B (zh) 2016-02-03
TW201335960A (zh) 2013-09-01

Similar Documents

Publication Publication Date Title
Huang et al. Graphene‐based nanomaterials for flexible and wearable supercapacitors
Yan et al. Rational design of nanostructured electrode materials toward multifunctional supercapacitors
JP7150730B2 (ja) エネルギー貯蔵装置及びシステム
Liu et al. Flexible and stretchable energy storage: recent advances and future perspectives
Kammoun et al. Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte
Li et al. Advances and challenges for flexible energy storage and conversion devices and systems
JP7461877B2 (ja) 多層電極膜のための組成物および方法
Samantara et al. Materials development for Active/Passive components of a supercapacitor: background, present status and future perspective
US10692661B2 (en) Composite comprising CNT fibres and an ionic conducting compound as part of an energy storage device
KR101214727B1 (ko) 전극, 이의 제조방법, 및 이를 포함하는 전기 화학 캐패시터
KR101138521B1 (ko) 하이브리드 슈퍼캐퍼시터 및 그 제조방법
JP2013520805A (ja) 長寿命負極板の製造方法及び該負極板を用いたスーパーキャパシタ
TW201316362A (zh) 一種超級電容及其製作方法
CN104617334A (zh) 一种柔性电池及其制造方法
JP2006324288A (ja) 電気化学キャパシタ用電極の製造方法
JP2006332446A (ja) 電気二重層キャパシタ
KR102244961B1 (ko) 에너지 저장 장치를 위한 전극 흑연 필름 및 전극 디바이더 링
CN104599859A (zh) 锂离子电容器及其制作方法
CN106133982A (zh) 钠离子二次电池
US9111686B2 (en) Flexible supercapacitor and preparation method thereof
JP2015515094A (ja) 固体電解質電池
JP2015088605A (ja) 蓄電デバイスの製造方法及び蓄電デバイス
CN106098399B (zh) 复合电极、超级电容器及其制备方法
US9378900B2 (en) Solid electrochemical supercapacitor
JP6757894B2 (ja) 電気化学デバイスの製造方法および電気化学デバイス