WO2003097223A1 - Procede et dispositif de dissolution continue, alimentation en eau a gaz dissous - Google Patents

Procede et dispositif de dissolution continue, alimentation en eau a gaz dissous Download PDF

Info

Publication number
WO2003097223A1
WO2003097223A1 PCT/JP2003/003289 JP0303289W WO03097223A1 WO 2003097223 A1 WO2003097223 A1 WO 2003097223A1 JP 0303289 W JP0303289 W JP 0303289W WO 03097223 A1 WO03097223 A1 WO 03097223A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
dissolved
dissolving
liquid
Prior art date
Application number
PCT/JP2003/003289
Other languages
English (en)
French (fr)
Inventor
Hiroshi Morita
Junichi Ida
Kazumi Tsukamoto
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Priority to KR1020047018459A priority Critical patent/KR100567116B1/ko
Priority to EP03752888.2A priority patent/EP1512457B1/en
Priority to US10/507,539 priority patent/US20050093182A1/en
Publication of WO2003097223A1 publication Critical patent/WO2003097223A1/ja
Priority to US11/653,664 priority patent/US7329312B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23764Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2111Flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/883Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise using flow rate controls for feeding the substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2204Mixing chemical components in generals in order to improve chemical treatment or reactions, independently from the specific application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/58Mixing semiconducting materials, e.g. during semiconductor or wafer manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers

Definitions

  • the present invention relates to a continuous dissolution apparatus and a continuous dissolution method. More specifically, the present invention is capable of stably obtaining a solution having a constant concentration even when the flow rate of a mainstream liquid fluctuates. Particularly, the present invention relates to cleaning water and surface treatment water used for electronic materials that require a precise clean surface.
  • the present invention relates to a continuous dissolving apparatus and a continuous dissolving method capable of supplying water without waste, and a cleaning gas dissolving water supply apparatus provided with the discontinuous dissolving apparatus of the present invention. Background art
  • a device that dissolves a specific gas such as hydrogen or a specific gas and a chemical solution can accurately obtain functional water with a target concentration of gas or a chemical solution dissolved only when a constant flow of mainstream liquid is supplied.
  • a specific gas such as hydrogen or a specific gas and a chemical solution
  • the concentration of the obtained functional water gas and chemical solution fluctuates, which is a practical problem. There was a problem.
  • the supply of a specific gas may be stopped and only a small amount of the mainstream liquid may continue to flow. After that, when entering the time zone for using functional water, even if the supply of a specific gas is started, it may take some time for the dissolved concentration to reach a predetermined value and stabilize. Had been a problem.
  • a feedback mechanism that receives an output signal from a concentration measurement unit provided downstream of the dissolving device and controls the supply amount of gas to be dissolved is generally used.
  • applying this mechanism to the preparation of functional water does not produce the desired results. Cannot be obtained.
  • an undesired concentration of functional water is prepared, and so-called PID control is performed, but the concentration / 'and the ching phenomenon cannot be avoided.
  • the present invention can stably obtain a solution having a constant concentration even when the flow rate of the mainstream liquid fluctuates, and especially, wastes washing water and surface treatment water used for electronic materials that require a precise clean surface.
  • the purpose of the present invention is to provide a continuous dissolving apparatus and a continuous dissolving method that can be supplied without any problem.
  • the inventors of the present invention have conducted intensive studies to solve the above-described problems, and as a result, have found that a flowmeter that measures the flow rate of a mainstream liquid and outputs a signal of a measured value, and supplies a gas based on the input signal.
  • a flow control mechanism that controls the amount or supply of gas and other liquids, it is possible to stably produce functional water with a constant gas or chemical concentration even if the flow rate of the mainstream liquid fluctuates.
  • the present invention was completed based on this finding.
  • a continuous dissolution apparatus having a dissolution unit for dissolving a gas in the mainstream liquid, a flowmeter that measures the flow rate of the mainstream liquid and outputs a signal of the measured value, and a gas supply amount based on the input signal
  • a continuous flow dissolving device comprising: a flow control mechanism for controlling the flow rate; and a degassing device for a mainstream liquid in an upstream portion of the dissolving portion for dissolving the gas.
  • a continuous dissolving method characterized by controlling a gas supply amount or a gas and other liquid supply amount based on the flow rate, (5) A flow meter that measures the flow rate of pure water or ultrapure water and outputs a signal of the measured value, and controls the supply amount of gas dissolved in pure water or ultrapure water based on the input signal.
  • a gas-dissolved water production unit comprising a gas dissolving device having a flow control mechanism for controlling the amount of pure water or ultrapure water supplied to the gas dissolving device is provided.
  • a water tank that receives the excess gas dissolved water that has not been used, a piping system in which the gas dissolved water goes from the water tank to the use point, and the excess gas dissolved water returns to the water tank, and a gas obtained by the gas dissolved water production unit.
  • a gas-dissolved water supply unit including a gas-dissolved water supply pipe for supplying dissolved water to the water tank; and a gas-dissolved water supply device configured to control the water amount adjusting means according to the water level of the water tank.
  • liquids include ammonia, sodium hydroxide, potassium hydroxide,
  • solution X containing lamethylammonium, hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, phosphoric acid, acetic acid, oxalic acid, or hydrogen peroxide is a mixed solution thereof, and
  • FIG. 1 is a process gun diagram of one embodiment of the device of the present invention
  • FIG. 2 is a process system diagram showing another embodiment of the gas-dissolved water supply device of the present invention.
  • reference numeral 6 denotes an injection unit
  • 7 denotes a membrane deaerator
  • 8 denotes a flow meter
  • 9 denotes a mass flow controller
  • 10 denotes a hydrogen gas generator
  • 11 denotes a gas dissolving membrane module
  • 13 denotes an ammonia water storage tank
  • 14 is a chemical injection pump
  • 15 is an in-line mixer
  • 16 is a dissolved hydrogen concentration meter
  • 17 is 11 meters
  • 19 is a valve
  • 21 is a water tank
  • 25 is a water level.
  • 26 is a seal gas supply pipe
  • 28 is a gas dissolved water supply pipe
  • 30 is a cover.
  • the continuous dissolution apparatus of the present invention is a continuous dissolution apparatus having a dissolving device for dissolving a gas in a mainstream liquid, comprising: a flowmeter for measuring a flow rate of the mainstream liquid and outputting a signal of a measured value; A flow control mechanism that controls the gas supply based on the flow rate.
  • a supply amount of a gas or a gas and another liquid is determined based on a flow rate of the mainstream liquid. Control the supply.
  • the apparatus of the present invention and the method of the present invention can be suitably applied to the production of functional water in which the mainstream liquid is pure water or ultrapure water, and is a gas or an aqueous solution in which an alkali or an acid is dissolved together with a gas.
  • pure water is pure water whose purity can be regarded as almost the same as pure water from which impurities have been removed as much as possible.
  • the substance and impurities are removed with high efficiency, and the dissolved substance is extremely high purity water at the level of 1 g ZL.
  • Functional water in which an aqueous solution in which gas is dissolved in pure water or ultrapure water or an aqueous solution in which gas and an alkali or acid are dissolved is used for a semiconductor substrate, a liquid crystal substrate, a photomask It can be suitably used as washing water and surface treatment water for electronic materials such as substrates for substrates and hard disk substrates.
  • the gas supply amount control is proportional control or PID control.
  • Functional water in which a constant concentration of gas is dissolved can always be produced by proportionally controlling the gas supply amount with respect to fluctuations in the flow rate of the mainstream liquid, or by PID control.
  • the flow meter that measures the flow rate of the mainstream liquid used in the present invention.
  • an orifice flow meter such as a bench lily flow meter, a resistive flow meter, an area flow meter, a laminar flow Liquid resistance type flow meter such as flow meter, Kalman vortex flow meter, swirl flow meter, fluid vibration type flow meter such as fluidic flow meter, positive displacement flow meter, impeller flow meter, water hammer flow rate Meter, electromagnetic flow meter, ultrasonic flow meter and the like.
  • Karman vortex flowmeters and ultrasonic flowmeters with no sliding parts are desirable to avoid water contamination.
  • the flow rate of the mainstream liquid is measured by these flow meters, and the supply amount of gas or the supply amount of gas and other liquids is controlled based on the output signal of the measured value.
  • the supplied gas when the gas is dissolved in the mainstream liquid (pure water or ultrapure water), it is preferable that the supplied gas is completely dissolved in the pure water or ultrapure water.
  • the mainstream liquid pure water or ultrapure water
  • the volume of gas dissolution that can be dissolved increases.
  • the mainstream liquid ultrapure water or pure water
  • the supplied gas amount can be completely dissolved.
  • the desired gas is dissolved in the mainstream liquid (ultra pure water or pure water). Insufficient capacity to achieve desired concentration. In such a case, the concentration of the gas dissolved in the mainstream liquid (ultra pure water or pure water) may not be set to a desired concentration based on the flow rate change of the mainstream liquid (ultra pure water or pure water). .
  • a gas with low solubility for example, hydrogen gas
  • a mainstream liquid ultra pure water or pure water
  • the mainstream liquid ultra pure water or pure water
  • the signal of the measuring instrument that measures the flow rate of the mainstream liquid is input.
  • the flow rate control mechanism quickly controls the supplied gas supply amount, and the gas supply amount is completely dissolved, so that a desired concentration can be set. Even if the flow rate of the mainstream liquid (ultrapure water or pure water) changes, such a mechanism quickly returns to the desired concentration.
  • the mainstream liquid (ultra-low water or pure water), but pure water or ultra-pure water is treated and dissolved by a membrane deaerator consisting of a module with a built-in gas permeable membrane. After removing the gas to increase the permanent gas dissolving capacity, it is preferable to supply the dissolving part with an amount of gas equal to or less than the saturation solubility.
  • the gas dissolving part it is preferably a dissolving part composed of a module having a gas-permeable membrane.
  • the mainstream liquid flowing into the melting section and the supplied gas stay in the liquid phase section and the gas phase section of the melting section for a certain period of time, respectively.
  • the gas to be dissolved is not particularly limited, and examples thereof include hydrogen, oxygen, nitrogen, helium, argon, ozone, ammonia, and carbon dioxide. Fine particles adhering to the surface of electronic materials can be removed by functional water in which hydrogen, oxygen, helium, argon, or the like is dissolved in pure water or ultrapure water. Organic substances and metals attached to the surface of the electronic material can be removed by functional water in which ozone or the like is dissolved in pure water or ultrapure water. The generation of static electricity can be prevented by functional water in which carbon dioxide is dissolved in pure water or ultrapure water.
  • the position at which the flow rate of the mainstream liquid is measured may be in front of the dissolving section for dissolving the gas.
  • the flow rate of the mainstream liquid may be measured either before or after the degassing section.
  • an injection section for injecting another liquid into the mainstream liquid circulation pipe is provided.
  • the injection section is provided before the mixing means such as an in-line mixer.
  • the injection section is connected to another liquid storage tank via a chemical injection pump. Since the liquid supplied as another liquid is often an aqueous solution, it is relatively easily homogeneously mixed with the mainstream liquid, pure water or ultrapure water.
  • the flow rate of the liquid can be controlled by adjusting the flow rate by pulse control of the chemical injection pump.
  • the flow rate of the mainstream liquid is measured with a flow meter, and the measured value is controlled by the flow rate of the chemical pump Input to the mechanism to control the amount of liquid injected into the mainstream liquid.
  • the other liquid to be dissolved is not particularly limited, and examples thereof include an aqueous solution of an alkali such as ammonia, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid. , Phosphoric acid, acetic acid, oxalic acid and the like, and aqueous hydrogen peroxide.
  • the mixed solution include a mixed solution of ammonia and hydrogen peroxide, and a mixed solution of ammonia and hydrofluoric acid.
  • a gas and another liquid can be dissolved together with the mainstream liquid.
  • the supply control of the gas and other liquids to the mainstream liquid can be performed in the same manner as when the gas is supplied alone.
  • the above-mentioned gas and other liquid to be dissolved alone can be appropriately combined and used.
  • the effect of removing fine particles of functional water can be enhanced by dissolving hydrogen and ammonia water in ultrapure water.
  • the production of functional water according to the fluctuation of the required water amount is automatically performed, which is extremely useful.
  • the required water volume depends on the condition of each washing machine (with or without functional water). It changes between LZ minutes.
  • functional water is continuously supplied under a constant condition of 20 L / min, and excess functional water is discharged from the washing machine side or the functional water production device. Since functional water can be produced, the discharge of surplus water can be eliminated.
  • the gas-dissolved water (functional water) having a predetermined concentration obtained by the continuous dissolution apparatus of the present invention as described above is supplied via a pipe to a use point used as washing water for electronic materials and surface treatment water. , used. May be sent directly to the point of use from the melting device Power and functional water can be received in a water tank and supplied through a circulating supply pipe formed between the water tank and the point of use. The functional water supplied to the point of use is returned to the water tank via the circulation pipe without being discharged from the pipe as excess unused functional water when it is unnecessary or when the amount used is small.
  • the unused functional water in which the gas is dissolved can be reused with almost no change in the gas dissolved concentration, it is only necessary to supply the water tank with only the reduced amount of functional water that has dropped from the predetermined water level.
  • the water tank is equipped with a water level meter that measures the water level, and the newly constructed functional water is supplied to the water tank according to the water level. Since the functional water produced by the continuous dissolution apparatus of the present invention can control the dissolved gas concentration to a desired concentration, make sure that the replenished functional water matches the dissolved gas concentration of unused functional water in the water tank (circulation piping system). Therefore, the concentration of functional water supplied to the use point can be kept constant, and stable washing of electronic materials can be performed.
  • FIG. 1 is a process flow diagram of one embodiment of the device of the present invention.
  • functional water used for removing fine particles obtained by dissolving hydrogen and ammonia water in ultrapure water is manufactured.
  • the dissolved gas is removed in the membrane deaerator 7 and the gas dissolving capacity for dissolving the hydrogen is expanded.
  • the flow rate of the degassed ultrapure water is measured by a flow meter 8, and a signal is sent to a mass flow controller 9 and a chemical injection pump 14 having a flow rate control function.
  • the amount of hydrogen supplied from the hydrogen source such as the hydrogen gas generator 10 to the gas-dissolved membrane module 11 is controlled by the mass flow controller 9 according to the flow rate of ultrapure water, and a predetermined amount of hydrogen is converted to ultrapure water. Supplied and dissolved.
  • a predetermined amount of ammonia water is injected into the ultrapure water in which hydrogen has been dissolved from the ammonia water storage tank 13 by the chemical injection pump 14 at the injection section 6 according to the flow rate of the ultrapure water.
  • the injected ammonia water is uniformly mixed in the in-line mixer 15 to produce functional water in which hydrogen and ammonia are dissolved.
  • the chemical solution injection section 6 may be provided on the upstream side of the gas dissolving membrane module 11 or the membrane deaerator 7.
  • the gas dissolving membrane module 11 or the membrane deaerator 7 can be used as a mixing means instead of the in-line mixer 15.
  • the dissolved hydrogen concentration of the functional water is measured by the dissolved water concentration meter 16 and the pH is measured by the pH meter 17 before being sent to the youth point.
  • the dissolved hydrogen concentration meter 16 and the pH meter 17 are used to confirm that they have the desired values.
  • FIG. 2 shows the gas dissolved water (functional water) supply device using the continuous dissolution device of the present invention.
  • the gas-dissolved water supply device is composed of a functional water production section A and a functional water supply section B.
  • Functional water production department A has the same configuration as the dissolution apparatus of Fig. 1, but furthermore, the amount of water that regulates the amount of ultrapure water supplied to the ultrapure water supply pipe 18 to the membrane deaerator 7
  • a valve 19 is provided as an adjusting means.
  • the valve 19 can adjust the flow rate from 0 to a desired flow rate by adjusting the opening thereof, and can control the supply flow rate while supplying and stopping the supply of ultrapure water.
  • a pump can be used instead of the valve, or together with the valve, as a means for adjusting the water flow.
  • the functional water supply section B of ultrapure water is provided with a water tank 21, and a circulation pipe system is provided by a pipe 22 extending from the water tank 21 to the use point and a pipe 22 ′ returning from the use point to the water tank.
  • the pipe 22 is provided with a pump 23 as a drive source for flowing functional water into the circulation pipe system, and further provided with a filter 24 downstream of the pump.
  • the water tank 21 is covered by a cover 30 so as to be shut off from the atmosphere, but a seal gas supply pipe 26 is opened in the gas phase of the water tank so that the inside of the gas phase of the water tank 21 can be sealed with.
  • an exhaust part is also provided to keep the internal pressure of the water tank constant.
  • the same gas as the gas dissolved in the gas-dissolved water or an inert gas such as nitrogen gas can be used.
  • an inert gas such as nitrogen gas
  • a gas-dissolved water supply pipe 28 to which the functional water obtained in the functional water production unit A is supplied is connected to the water tank.
  • a water level gauge 25 is provided in the water tank 21, and the signal of the water level gauge is transmitted to the valve 19 of the functional water production department A, so that the valve is opened and closed and the opening degree is adjusted. I have.
  • the volume of the gas phase portion of the water tank 21 should be as small as possible.
  • the water level gauge 25 covers the surface of the gas-dissolved water as much as possible, so that it can be detected near the lower surface of 30.
  • the functional water in the water tank 21 is sent from the pipe 22 to the use point by the pump 23, and the excess functional water not used at the use point is removed. Return to the water tank 21 via the pipe 2 2 ′ and circulate through the circulation pipe system. In addition, During the circulation, fine particles are generated from the rotating part of the pump 23 and may be contained in the functional water. 1 The particles are removed when passing through the filter 24. As the filter 24, a membrane filter such as a microfilter or an ultrafilter is suitable. When the functional water is used at the point of use, the water level in the water tank 21 drops.
  • the signal of the water level gauge is transmitted to the valve 19, the supply of ultrapure water to the functional water production unit A is started, and the supply flow rate is controlled by adjusting the valve opening.
  • the flow rate of the supplied ultrapure water is measured by the flow meter 8, and the gas dissolved in the ultrapure water (for example, , Hydrogen) is controlled and supplied to the gas dissolving membrane module 11 to produce functional water having the same concentration as the functional water gas dissolving concentration of the water tank.
  • a predetermined amount of a chemical solution for example, ammonia water is added to the functional water according to the ultrapure water flow rate.
  • the produced functional water is sent to the water tank 21 and is stored in the water tank together with unused surplus functional water, and is used at the point of use through the circulation piping system.
  • the signal of the water level gauge closes the valve 19, the supply of ultrapure water stops, and the functional water production department
  • the dissolution function in A is paused.
  • an overflow mechanism (not shown) is installed in the water tank 21 so that the stored gas-dissolved water does not exceed the capacity of the water tank 21. To discharge.
  • the dissolved gas concentration of the produced functional water can be adjusted to the desired concentration even if the flow rate of the ultrapure water fluctuates, so that the water level of the water tank can be quickly recovered to the upper limit, slowly recovered,
  • the concentration of unused functional water can be the same, and a constant concentration of functional water can be sent to the point of use. Therefore, if the gas-dissolved water supply device of the present invention is used, surplus functional water at the point of use can be collected in a water tank and used together with replenished functional water. Conventionally, if the amount of make-up water fluctuates, it is difficult to obtain functional water of a certain concentration, and it is difficult to match the concentration of surplus functional water.Therefore, surplus functional water is discharged to the outside or surplus functional water is discharged.
  • the water level in the water tank be kept substantially constant at a high position even when the usage amount fluctuates, whereby the gas component ratio between the gas phase and the water phase is stabilized, and the change in the gas concentration in water can be suppressed.
  • the gas phase in the upper part of the water tank is sealed with a seal gas to keep the gas components in the gas phase constant. Should be maintained.
  • a heat exchanger is installed at an appropriate position in the circulation piping system, for example, between the pump 23 and the filter 24, the water temperature rise due to the heat of the pump can be suppressed. It is more desirable next.
  • Hydrogen water was produced using the functional cleaning water production apparatus shown in FIG.
  • the ultrapure water used contained dissolved gas of 10 to 18 ppm of nitrogen gas and 0.01 to 2 ppm of oxygen gas. This ultrapure water was passed through a membrane deaerator to degas until the dissolved nitrogen gas became 1.5 ppm or less and the dissolved oxygen gas became 0.5 ppm or less.
  • the degassed ultrapure water is supplied to the dissolving section, and a flow signal of the ultrapure water is output from the Karman vortex flow meter. was controlled in proportion to.
  • Hydrogen was dissolved in ultrapure water in a dissolving section consisting of a module with a built-in gas permeable membrane, producing hydrogen water.
  • Production of hydrogen water was started under the conditions of ultrapure water flow rate of 20 LZmin and hydrogen supply rate of 260 raLZmin.
  • the flow rate of ultrapure water is 10 LZmin 30 minutes after the start of production, 15 L / rain 60 minutes after the start of production, 20 L / min after 80 minutes of the start of production, and 25 minutes after the start of the production.
  • L min changed to 20 LZmin after 120 minutes from start of production, 2 LZmin after 150 minutes from start of manufacture, and 20 LZmin after 180 minutes from start of manufacture, and hydrogen water was manufactured for a total of 200 minutes. .
  • Table 1 shows the measured flow rates of ultrapure water, the amount of hydrogen supply, and the dissolved hydrogen concentration of hydrogen water.
  • ADVANTAGE OF THE INVENTION According to the continuous dissolution apparatus and the continuous dissolution method of the present invention, even if the flow rate of the mainstream liquid fluctuates, a solution having a constant gas concentration can be obtained stably, and in particular, an electronic material requiring a precise clean surface. Cleaning and surface treatment water can be supplied without waste, and cleaning and surface treatment can be performed with good reproducibility. Also, when changing from a state where the flow rate is reduced to save water for normal use, the dissolved gas concentration of functional water is always constant, and there is no need for waiting time for stabilization. The amount of water can be reduced.
  • surplus unused functional water can be collected and reused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Accessories For Mixers (AREA)

Description

明細書 連続溶解装置、 連続溶解方法及び気体溶解水供給装置 技 fe分野
本発明は、 連続溶解装置及ぴ連続溶解方法に関する。 さらに詳しくは、 本発明は、 主流液体の流量が変動しても、 安定して一定濃度の溶液を得ることができ、 とりわけ 精密な清浄表面を必要とする電子材料に用いる洗浄水や表面処理水を無駄なく供給す ることができる連続溶解装置及び連続溶解方法に関し、 また、 本発明の違続溶解装置 を備えた洗浄用気体溶解水供給装置に関するものである。 背景技術
電子材料のゥエツト洗浄プロセスでは、 超純水に特定の気体や特定の薬液を微量に 溶解させて調製された、 いわゆる洗浄用機能水の実用性が認められるようになり、 そ の普及が進んでいる。 溶解部又は脱気部と溶解部に、 気体透過性の膜を内蔵したモジ ユール.を適用する装置が一般的に用いられる。 主流液体に予備脱気を施すことにより、 飽和濃度以内であれば供給する気体を全て溶解させることができるので、 有用な溶解 装置となっている。
しかし、 水素などの特定の気体又は特定の気体と薬液を溶解する装置は、 一定流量 の主流液体が供給されている場合にのみ、 目的濃度の気体や薬液を溶解した機能水が 精度よく得られるものであった。 主流液体の供給量が何ら の外的要因で変動したり、 節水などのために変動'させられた場合には、 得られる機能水の気体や薬液の濃度が変 動する点に、 実用上の問題があった。
また、 機能水を使用しない時間帯は、 特定の気体の供給を'止めて、 主流液体のみを 少量流通し続ける場合がある。 この後、 機能水を使う時間帯に入ったときに、 特定の 気体の供給を開始しても、 その溶解濃度が所定の値に達して安定するまでに時間がか かることも、 実用上の問題となっていた。
溶存する気体の濃度を安定化するために、 溶解装置の下流側に設けた濃度計測部か らの出力信号を受け、 溶解させるべき気体の供給量を制御するフィードバック機構が 一般に行われている。 しかし、 この機構を機能水の調製に適用しても、 望ましい結果 は得られない。 少なくとも、 フィードバックの遅れ時間の間は、 所望でない濃度の機 - 能水が調製され、 いわゆる P I D制御を行,つても、. 濃度の/'、ンチング現象は避け,られ ないためである。
このために、 主流液体の流量が変動しても、 機能水の水質すなわち気体や薬液の濃 度が安定な状態を保ち得る連続溶解装置及ぴ連続溶解方法が求められていた。
本発明は、 主流液体の流量が変動しても、 安定して一定濃度の溶液を得ることがで き、 とりわけ精密な清浄表面を必要とする電子材料に用いる洗浄水や表面処理水を無 駄なく供給することができる連続溶解装置及ぴ連続溶解方法を提供することを目的と してなされたものである。
また、 安定して一定濃度の溶液を得ることができる連続溶解装置を利用した気体溶 解水供給装置を提供することを目的とする。 発明の開示
本発明者らは、 上記の課題を解決すべく鋭意研究を重ねた結果、 主流液体の流量を 計測して計測値の信号を出力する流量計と、 入力される該信号に基づいて気体の供給 量又は気体と他の液体の供給量を制御する流量制御機構を設けることにより、 主流液 体の流量が変動しても、 気体や薬液の濃度が一定である機能水を安定して製造し得る ことを見いだし、 この知見に基づいて本発明を完成するに至った。
すなわち、 本発明は、
( 1 ) 主流液体に気体を溶解させる溶解部を有する連続溶解装置において、 主流液体の 流量を計測して計測値の信号を出力する流量計と、 入力される該信号に基づいて気体の 供給量を制御する流量制御機構を有し、 且つ気体を溶解させる溶解部の上流部分に主流 液体の脱気装置を有することを特徴とする連続溶解装置、
( 2 ) 主流液体が純水又は超純水である第 1項記載の連続溶解装置、
( 3 ) 主流液体に他の液体を注入する手段を有し、 該他の液体の注入量を該信号に基づ いて制御するようにした、 第 2項記載の連続溶解装置、
( 4 ) 主流液体に気体又は気体と他の液体を違続的に溶解させる連続溶解方法において、 気体を溶解する前に該主流液体を脱気し、 脱気前又は脱気後の主流液体の流量に基づい て気体の供給量又は気体と他の液体の供給量を制御することを特徴とする連続溶解方法、 (5) 純水または超純水の流量を計測して計測値の信号を出力する流量計およぴ入力さ れる該信号に基づいて純水または超純水に溶解させる気体の供給量を制御する流量制御 機構を有する気体溶解装置と、 該気体溶解装置への純水または超純水の供給量を調整す る水量調整手段とを具備した気体溶解水製造部が設けられるとともに、 ユースボイント で使用されなかった余剰の気体溶解水を受ける水槽と、 気体溶解水が水槽からユースポ イントへ向かい、 余剰の気体溶解水が水槽に戻る配管系と、 該気体溶解水製造部で得ら れた気体溶解水を該水槽に供給する気体溶解水供給配管とを具備した気体溶解水供給部 が設けられ、 該水槽の水位により、 該水量調整手段を制御するようにした気体溶解水供 給装置、 及び
(6) 水槽は密閉型であり、 シールガスを供給する供給部を備えており、 供給するシ ールガスは気体溶解水に溶解している気体と同一である第 5項記載の気体溶解水供給 装置、
を提供するものである。
さらに、 本発明の好ましい態様として、
(7) 気体の供給量制御が、 比例制御又は P I D制御である第 1項記載の連続溶解装
( 8 ) 溶解部が気体透過性の膜を内蔵したモジュールからなることを特徴とする第 1 項記載の連続溶解装置、
(9) 脱気装置が気体透過性の膜を内蔵したモジュールからなることを特徴とする第 1項記載の連続溶解装置、
(1 0) マスフローコントローラーからなる流量制御機構を有する第 1項記載の連続 溶解装置、
(1 1) 気体が、 水素、 酸素、 窒素、 ヘリウム、 アルゴン、 オゾン、 アンモニア、 若 しくは二酸化炭素、 又はそれらの混合気体である第 1項記載の連続溶解装置、
(1 2) 主流液体流通配管は他の液体を注入する注入部を有し、 さらにその注入部は 混合手段の前段に設けられている第 3項記載の連続溶解装置、
(1 3) 流量可変性の薬注ポンプからなる流量制御機構を有する第 3項記載の連続溶 解装置、
(14) 他の液体が、 アンモニア、 水酸化ナトリウム、 水酸化カリ ウム、 水酸化テト ラメチルアンモ-ゥム、 塩酸、 硫酸、 硝酸、 フッ酸、 燐酸、 酢酸、 蓚酸又は過酸化水 素を含む溶液 Xはこれらの混合液である第 3項記載の連続溶解装置、 及び、'
( 1 5 ) 気体の供給量の制御が、 比例制御又は P I D制御である第 4項記載の連続溶 解方法、
を拳げることができる。 図面の簡単な説明
F i g . 1は、 本発明装置の一の態様の工程系銃図であり、 F i g . 2は、 本発明 の気体溶解水供給装置の他の態様を示す工程系統図である。
図中符号は 6は注入部、 7は膜脱気装置、 8は流量計、 9はマスフローコントローラ 一、 1 0は水素ガス発生器、 1 1は気体溶解膜モジュール、 1 3はアンモニア水貯槽、 1 4は薬注ポンプ、 1 5はインラインミキサー、 1 6は溶存水素濃度計、 1 7は 11計、 1 9は弁、 2 1は水槽、 2 2及び 2 2 'は配管、 2 5は水位計、 2 6はシールガス供 給管、 2 8は気体溶解水供給配管、 3 0は覆いである。 発明を実施するための最良の形態
本発明の連続溶解装置は、 主流液体に気体を溶解させる溶解 ¾を有する連続溶解装 置において、 主流液体の流量を計測して計測値の信号を出力十る流量計と、 入力され る該信号に基づいて気体の供給量を制御する流量制御機構を有する。 本発明の連続溶 解方法においては、 主流液体に気体又は気体と他の液体を連続的に溶解させる連続溶 解方法において、 主流液体の流量に基づいて気体の供給量又は気体と他の液体の供給 量を制御する。
本発明装置及び本発明方法は、 主流液体が純水又は超純水であり、 気体又は気体と 共にアルカリ若しくは酸を溶解した水溶液である機能水の製造に好適に適用すること ができる。 本発明において、 純水とは、 不純物をできる限り取り除いた純粋の水とほ とんど同一とみなすことができる純度の髙ぃ水であり、 超純水とは、 水中の懸濁物質、 溶解物質及び不純物を高効率に取り除き、 溶解物質が 1 g Z Lレベルの極めて高純 度の水である。 純水又は超純水に気体を溶解した水溶液又は気体とアルカリ若しくは 酸を溶解した水溶液を溶解した機能水は、 半導体用基板、 液晶用基板、 フォトマスク 用基板、 ハードディスク用基板などの電子材料用の洗浄水、 表面処理水などとして好 適に用いることができる。 :
本発明においては、 気体の供給量制御が比例制御又は P I D制御であることが好ま しい。 主流液体の流量の変動に対して、 気体の供給量を比例的に制御することにより、 又は P I D制御により、 常に一定の濃度の気体を溶解した機能水を製造することがで きる。
本発明に用いる主流液体の流量を計測する流量計に特に制限はなく、 例えば、 オリ フィス流量計、 ベンチユリ一流量計などの絞り方式の流量計、 抵抗体流量計、 面積式 流量計、 層流流量計などの液体抵抗方式の流量計、 カルマンうず流量計、 スワール流 量計、 フルィディック流量計などの液体振動方式の流量計、 容積式流量計、 翼車流量 計、 水撃方式の流量計、 電磁流量計、 超音波流量計などを挙げることができる。 なか でも、 水の汚染を避けるために、 摺動部がないカルマンうず流量計、 超音波流量計が 望ましい。 本発明においては、 これらの流量計により主流液体の流量を計測し、 出力 される計測値の信号に基づいて、 気体の供給量又は気体と他の液体の供給量を制御す る。
本発明において、 主流液体 (純水又は超純水) に気体を溶解する場合、 供給された 気体が純水又は超純水に完全に溶解することが好ましい。 供給された気体が主流液体 (純水又は超純水) に完全に溶解するために、 主流液体を予め脱気しておくことが'必 要である。 主流液体 (超純水又は純水) を脱気しておけば、 理想的には、 主流液体 (超純水又は純水) に既に溶解していた種々の気体は除去され、 所望の気体を溶解す ることができる気体溶解の容量が増加する。 このような状態の主流液体 (超純水又は 純水) において、 その気体溶解容量が所望気体の供給量以上であれば、 供給されるガ スの量は完全に溶解することが可能である。 逆に言えば、 所望の気体の溶解前に主流 液体 (超純水又は純水) 中に種々の気体が残留していると主流液体 (超純水又は純 水) に所望の気体を溶解する容量が不足して、 所望の濃度にはならない。 このような ことでは、 主流液体 (超純水又は純水) の流量変化に基づいて主流液体 (超純水又は 純水) 中に溶解する気体の濃度を所望の濃度に設定できなくなるおそれがある。 特に、 溶解度の小さい気体、 例えば水素ガスを主流液体 (超純水又は純水) に溶解させる場 合、 たとえ主流液体 (超純水又は純水) の流量が変動しても、 一定の濃度にたもった めには、 予め主流液体 (超純水又は純水) を脱気しておくことが必要である。 主流液 体 (超純水又は純水) を気体溶解前に脱気しておくことにより、 主流液体 (超純水又 は純水) の流量を計測している計測計の信号が入力されて流量制御機構によって、 供 給される気体の供給量が速やかに制御され、 そして、 気体の供給量が完全に溶解する ことで、 所望の濃度に設定できる。 たとえ、 主流液体 (超純水又は純水) の流量が変 化しても、 このような機構によって、 速やかに、 所望の濃度に復帰する。
主流液体 (超鈍水又は純水) を脱気する方法に特に制限はないが、 純水又は超純水 を気体透過性の膜を内蔵したモジュールからなる膜脱気装置で処理し、 溶存する気体 を除去して永の気体溶解キャパシティを高めたのち、 飽和溶解度以下の量の気体を溶 解部に供給することが好ましい。 気体の溶解部に特に制限はないが、 気体透過性の膜 を内蔵したモジュールからなる溶解部であることが好ましい。 溶解部に流入する主流 液体と供給された気体は、 それぞれ溶解部の液相部と気相部に一定時間滞留するので、 該モジュールは気体の供給量の変動や若干の時間的遅れに対して緩衝機能を発揮し、 溶解した気体の濃度の変動の少ない機能水を安定して製造することができる。 溶解す る気体に特に制限はなく、 例えば、 水素、..酸素、 窒素、 ヘリウム、 アルゴン、 オゾン、 アンモニア、 二酸化炭素などを挙げることができる。 純水又は超純水に水素、 酸素、 ヘリウム、 アルゴンなどを溶解した機能水により、 電子材料の表面に付着した微粒子 を除去することができる。 純水又は超純水にオゾンなどを溶解した機能水により、 電 子材料の表面に付着した有機物と金属分を除去することができる。 純水又は超純水に 二酸化炭素を溶解した機能水により、 静電気の発生を防止することができる。
本発明において主流液体の流量を測定する位置は、 気体を溶解させる溶解部の前で あればよい。 上記脱気部の前又は後のどちらで主流液体の流量を測定してもよい。 本発明において、 純水又は超純水にガスの溶解とともに他の液体を注入する場合、 主流液体流通配管に他の液体を注入する注入部を設ける。 注入部はィンラインミキサ 一のような混合手段の前段に設ける。 注入部は薬注ポンプを介して他の液体の貯槽に つながつている。 他の液体として供給される液体は、 多くの場合水溶液であるので、 比較的容易に主流液体である純水又は超純水に均一に混合される。 液体の流量制御は、 薬注ポンプのパルス制御による流量調整により行うことができる。 ガスを溶解する場 合と同様、 主流液体の流量を流量計で測定し、 測定値を薬注ポンプが有する流量制御— 機構に入力して、 液体の主流液体への注入量を制御する。
本発明において、 溶解する他の液体に特に制限はなく、 例えば、 アンモニア、 水酸 化ナトリ ウム、 水酸化カリウム、 水酸化テトラメチルアンモニゥムなどのアルカリの 水溶液、 塩酸、 硫酸、 硝酸、 フッ酸、 燐酸、 酢酸、 蓚酸などの酸の水溶液、 過酸化水 素水などを挙げることができる。又混合液としてァンモニァと過酸化水素水の混合液、 アンモニアとフッ酸の混合液を挙げることができる。
本発明においては、 主流液体に気体及び他の液体を併用して溶解することができる。 気体及び他の液体の主流液体への供給量制御は、 気体を単独で供給する場合と同様に して行うことができる。 溶解する気体及び他の液体としては、 上記の単独で溶解する 気体及び他の液体を適宜組み合わせて用いることができる。 例えば、 水素とアンモ- ァ水を超純水に溶解することにより、 機能水の微粒子を除去する効果を高めることが できる。
本発明においては、 必要水量の変動に応じた機能水の製造が、 自動的に行われ、 極 めて有用である。 例えば、 5 L /分の水量を必要とする洗浄機 4台に機能水を供給す る場合、 それぞれの洗浄機の状態 (機能水使用/不使用) によって、 必要水量は O L /分〜 2 0 L Z分の間で変化する。 従来では 2 0 L/分の一定条件で機能水を供給し 続け、 余剰機能水は洗浄機側か機能水製造装置から排出することになるが、 本発明で は必要水量に応じて一定濃度の機能水を製造できるから、 余剰水の排出をなくするこ とができる。
また、 しばらく機能水が必要でない時間帯にも、 滞留中の菌繁殖などによる水質悪 化を防ぐために通常の条件で流しつづけるか、 気体、 薬液の供給を停止した上で純水 もしくは超純水を少量流しつづける、 少流量通水が一般的に行われる。 少流量通水後 の再使用に際しては、 水の流量を上げ、 気体、 薬液の供給を再開するが、 このときに 所定濃度に達するまでに従来では数分〜十数分間かかり、 この間洗浄できない状態で あるが、 本発明では少流量通水中もその水量に応じた気体、 薬液の供給を継続しつづ ければ、 洗浄再開時にも直ちに所定濃度の機能水を得ることができる。
上述のようにして本発明の連続溶解装置で得られた所定濃度の気体溶解水 (機能 水) は、 電子材料用の洗浄水、 表面処理水として使用されるユースポイントへ配管を 介して供給され、 使用される。 溶解装置から直接ユースポイントへ送給されてもよい 力 、 機能水はー且水槽に受け、 水槽とユースポイント間で形成する循環型供給配管を 介して供給することもできる。 ユースポイントへ供給された機能水は、 不要時には、 あるいは使用量が少ないときには余剰の未使用機能水として配管から排出されずに、 循環配管を経由して水槽に戻る。 ガスを溶解した未使用の機能水はほとんどガス溶解 濃度は変化せず再利用できるので、 水槽には所定水位から低下した減量分の機能水の みを捕給するだけでよい。 水槽には水位を計測する水位計が設けられ、 水位に応じて 新たに製造した機能水が水槽に捕給されるように構成されている。 本発明の連続溶解 装置で製造した機能水は溶存ガス濃度'を所望の濃度に制御できるから、 補給された機 能水は水槽 (循環配管系) の未使用機能水の溶存ガス濃度と合わせることができ、 ュ ースポイントに供給される機能水の濃度は一定に保持でき、 安定した電子材料の洗浄 等を行うことができる。
F i g . 1は、 本発明装置の一の態様の工程系統図である。 本態様においては、 超 純水に水素とアンモニア水を溶解した微粒子の除去などに用いられる機能水が製造さ れている。 超純水は、 膜脱気装置 7において溶解している気体が除去され、 水素を溶 解するための気体溶解キャパシティが拡大される。 脱気された超純水の流量が流量計 8により計測され、 信号がマスフローコントローラー 9と流量制御機能を有する薬注 ポンプ 1 4に送られる。 水素ガス発生器 1 0等の水素源からの気体溶解膜モジュール 1 1への水素の供給量が、 超純水の流量に応じてマスフローコントローラー 9により 制御され、 所定量の水素が超純水に供給され、 溶解される。 水素を溶解した超純水に、 アンモニア水貯槽 1 3から、 超純水の流量に応じて所定量のアンモニア水が薬注ポン プ 1 4により注入部 6において注入される。 注入されたアンモニア水は、 インライン ミキサー 1 5において均一に混合され、 水素とアンモニアを溶解した機能水が製造さ れる。 薬液の注入部 6は気体溶解膜モジュール 1 1又は膜脱気装置 7の上流側に設け てもよい。 その場合は気体溶解膜モジュール 1 1又は膜脱気装置 7はインラインミキ サー 1 5の代用として混合手段とすることができる。 機能水の溶存水素濃度が溶存水 秦濃度計 1 6により測定され、 p Hが p H計 1 7により測定されたのち、 ユースボイ ントに送られる。 溶存水素濃度計 1 6、 p H計 1 7は所望の値になっていることを確 認するために用いられる。
F i g . 2は、 本発明の連続溶解装置を利用した気体溶解水 (機能水) 供給装置の 一態様である。 気体溶解水供給装置は、 機能水製造部 Aと機能水供給部 Bとから形成 されている。 機能水製造部 Aは F i' g . 1の溶解装置と同じ構成であるが、 さらに、 膜脱気装置 7への超純水供給配管 1 8に、 超純水の供給量を調整する水量調整手段と して弁 1 9が設けられている。 弁 1 9はその開度調整により流量が 0から所望の流量 まで調整が可能であり、 超純水の供給、 供給停止とともに供給流量の制御もできる。 水量調整手段としては弁の代わりに、 あるいは弁と共にポンプを使用することもでき る。
超純水の機能水供給部 Bは、 水槽 2 1が設けられ、 水槽 2 1からユースポイントへ 向かう配管 2 2と、 ユースボイントから水槽へ戻る配管 2 2 'とによって循環配管系 が設けられ、 配管 2 2には循環配管系に機能水を流す駆動源としてポンプ 2 3が設け られ、 さらにポンプの下流側にろ過器 2 4が設けられて形成されている。 水槽 2 1は 大気と遮断されるように覆い 3 0によって密閉されているが、 水槽 2 1の気相部内を でシールできるように水槽の気相部にシールガス供給管 2 6が開口し、 図示していな いが、 水槽の内圧を一定に維持する排気部も設けられている。 シールする気体として、 気体溶解水に溶解している気体と同一の気体か窒素ガスなどの不活性ガスを用いるこ とができる。 前者において、 複数の気体を純水又は超純水に溶解する場合には、 夫々 溶解している気体の分圧に等しい混合ガスを用いることにより、 水槽内の気体溶解濃 度の変化が抑制されるので、 混合ガスを用いるのが望ましい。 水槽にはまた機能水製 造部 Aで得られた機能水が供給される気体溶解水供給配管 2 8が連結されている。 さ らに、 水槽 2 1には水位計 2 5が設けられ、 水位計の信号は機能水製造部 Aの弁 1 9 に伝えられ、 弁の開閉、 開度の調整が行われるようになつている。 貯められている気 体溶解水の濃度の変化を抑制するために、 水槽 2 1の気相部の容積ができるだけ小さ いほうがよい。 そのためには、 水位計 2 5はできるだけ、 気体溶解水の水面が覆い 3 0の下面近くで検出できるようにしたほうがよい。 気相部の容積を小さくすることに より、 水相に溶解している気体の分圧と気相部の分圧が短時間に平衡状態となり、 溶 解濃度変化力 、さくなる。
このような F i g . 2の気体溶解水供給装置では、 水槽 2 1の機能水は、 ポンプ 2 3によって配管 2 2からユースポイン卜に送られ、 ユースポイントで使用されなかつ た余剰の機能水は配管 2 2 'を経て水槽 2 1に戻り、 循環配管系を循環する。 なお、 循環中にポンプ 2 3の回転部分から微粒子が発生し、 機能水中に含まれる恐れがある 1 ろ過器 2 4を通過する際に除去される。 ろ過器 2 4として精密ろ過器、 限外ろ過 器など膜ろ過装置が適している。 機能水がユースポイントで使用されると、 水槽 2 1 の水位は低下する。 水位が下限値に達すると、 水位計の信号は弁 1 9に伝わり、 機能 水製造部 Aへの超純水の供給が始まると共に、 供給流量が弁開度の調整によって制御 される。 機能水製造部 Aでは、 F i g . 1の説明で述べたように、 供給された超純水 の流量が流量計 8で計測され、 計測値に応じ、 超純水に溶解される気体 (例えば、 水 素) の供給量が制御されて気体溶解膜モジュール 1 1に供給され、 水槽の機能水気体 溶解濃度と同濃度の機能水が製造される。 また同様に、 超純水流量に応じて薬液 (例 えば、 アンモニア水) の所定量が機能水に加えられる。 製造された機能水は水槽 2 1 へ送られ、 未使用の余剰機能水と共に水槽に一且貯留され、 循環配管系を通じてユー スポイントでの使用に供される。 水槽に新たに製造した機能水を補給し、 水槽の水位 が上限値になった場合は、 水位計の信号により弁 1 9が閉となり、 超純水の供給は停 止し、 機能水製造部 Aにおける溶解機能は一時休止する。 または、 たとえ水位計 2 5 で検出されても、 機能水製造部 Aの清浄度を保っために少量の気体溶解水を継続して 通水させてもよい。 この場合、 貯められていく気体溶解水が水槽 2 1の容量を超えな いようにするために、 水槽 2 1に図示してないオーバーフロー機構を設置して、 水槽 2 1から余分な気体溶解水を排出する。 製造された機能水の溶存気体濃度は、 超純水 流量が変動しても所望濃度に調整できるので、 水槽の水位を上限まで急速に回復させ る場合でも、 ゆっくりと回復させる場合でも、 水槽の未使用機能水の濃度と同じにす ることができ、 一定濃度の機能水をユースポイントに送ることができる。 したがって、 本発明の気体溶解水供給装置を使用すれば、 ユースポイントで余剰となった機能水を 水槽に回収し、 補給された機能水とともに使用することができる。 従来、 補給水量が 変動すると一定濃度の機能水を得ることが困難であり、 余剰の機能水の濃度と一致さ せることは難しいので、 余剰の機能水は外部に排出するか、 余剰機能水を一旦脱気処 理して超純水として回収していたことと対比すれば、 極めて効率的な回収といえる。 なお、 水槽における水位は使用量が変動しても高い位置でほぼ一定にしておくこと が望ましく、 それにより気相と水相の気体成分比が安定し、 水中の気体濃度の変化を 抑制できる。 また、 水槽上部の気相はシールガスでシールし、 気相の気体成分を一定 に維持させるのがよい。
さらに、 循環配管系の適当な位置に、 例え 、 ポンプ 2 3とろ過器 24との間に熱 交換器を設置すると、 ポンプの熱による水温上昇を抑制できるので、 機能水の温度条 件が一定となりより望ましい。
実施例
以下に、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれらの実施 例によりなんら限定されるものではない。
実施例 1
F i g . 1に示す機能性洗浄水製造装置を用いて水素水を製造した。 使用した超純 水は窒素ガスが、 1 0〜1 8 p pm、 酸素ガスが 0. 0 1〜 2 p p mの溶存ガスを含 んでいた。 この超純水を膜脱気装置に通水して、 溶存窒素ガスが 1. 5 p pm以下に、 溶存酸素ガスが 0. 5 p p m以下になるまで脱気した。 脱気した超純水を溶解部に供 給するとともに、 カルマンうず流量計から超純水の流量信号を出力し、 該信号に基づ いてマスフローコントローラ一により水素の供給量を超純水の流量に比例して制御し た。 水素は、 気体透過性の膜を内蔵したモジュールからなる溶解部において、 超純水 に溶解し、 水素水が製造された。
超純水の流量 2 0 LZmin、 水素供給量 2 6 0 raLZminの条件で水素水の製造を開始 した。 超純水の流量を、 製造開始 3 0分後に 1 0 LZmin、 製造開始 6 0分後に 1 5 L/rain, 製造開始 8 0分後に 2 0 L/min、 製造開始 1 1 0分後に 2 5 L min、 製 造開始 1 2 0分後に 20 LZmin、 製造開始 1 5 0分後に 2 LZmin、 製造開始 1 8 0 分後に 2 0 LZminに変更し、 水素水の製造を合計 2 0 0分間行った。
実測した超純水の流量、 水素の供給量及び水素水の溶存水素濃度の値を、 第 1表に 示す。
Figure imgf000014_0001
第 1表に見られるように、 超純水の流量約 20 L/miriの条件で水素水の製造を鬨 始すると、 10分後には溶存水素濃度が 1.00mg/Lを超え、 14分後に l . l lmg /Lに達し、 電子部品洗浄用の機能水として使用可能な状態になる。 製造開始 30分 後、 60分後、 80分後、 1 10分後、 120分後、 150分後及び 180分後の超 純水の流量変更に対して、 水素供給量は自動的に制御され、 製造される水素水の溶存
12 差替え用紙 (規則 26) 水素濃度は、 常に 1 . 1 0〜 1 . 1 5 mg/ Lの範囲で安定している。
本発明装置及び本発明方法を用いることにより、 製造開始後しばらくの溶存水素濃 度の低い水素水が発生することなく、 常に所定の溶存水素濃度を有する水素水を製造 することができ、 かつ、 超純水の流量が変動しても、 水素の供給量が超鈍水量の変動 に追随して比例的に制御され、 常に所定の溶存水素濃度を有する水素氷を製造するこ とができる。 産業上の利用可能性
本発明の連続溶解装置及び連続溶解方法によれば、 主流液体の流量が変動しても、 安定して一定の気体濃度の溶液を得ることができ、 とりわけ精密な清浄表面を必要と する電子材料に用いる洗浄水や表面処理水を無駄なく供給し、 再現性よく洗浄や表面 処理を行うことができる。 また、 節水などのために流量を絞った状態から、 通常の使 用状態に変更する場合にも、 機能水の溶存気体濃度は常に一定であり、 安定化のため の待ち時間の必要がなく、 水量の無駄もなくすることができる。
また、 本発明の気体溶解水供給装置によれば、 余剰の未使用機能水を回収し再使用 することができる。

Claims

請求の範囲
1 . 主流液体に気体を溶解させる溶解部を有する連続溶解装置において、 主流液体の 流量を計測して計測値の信号を出力する流量計と、 入力される該信号に基づいて気体 の供給量を制御する流量制御機構を有し、 且つ気体を溶解させる溶解部の上流部分に 主流液体の脱気装置を有することを特徴とする連続溶解装置。
2 . 主流液体が純水又は超純水である請求項 1記載の連続溶解装置。
3 . 主流液体に他の液体を注入する手段を有し、 該他の液体の注入量を該信号に基づい て制御するようにした、 請求項 2記載の連続溶解装置。
4 . 主流液体に気体又は気体と他の液体を連続的に溶解させる連続溶解方法において、 気体を溶解する前に該主流液体を脱気し、 脱気前又は脱気後の主流液体の流量に基づい て気体の供給量又は気体と他の液体の供給量を制御することを特徵とする連続溶解方法。
5 . 純水または超純水の流量を計測して計測値の信号を出力する流量計および入力され る該信号に基づいて純水または超純水に溶解させる気体の供給量を制御する流量制御機 構を有する気体溶解装置と、 該気体溶解装置への純水または超純水の供給量を調整する 水量調整手段とを具備した気体溶解水製造部が設けられるとともに、 ユースポイントで 使用されなかつた余剰の気体溶解水を受ける水槽と、 気体溶解水が水槽からユースボイ ントへ向かい、 余剰の気体溶解水が水槽に戻る配管系と、 該気体溶解水製造部で得られ た気体溶解水を該水槽に供給する気体溶解水供給配管とを具備した気体溶解水供給部が 設けられ、 該水槽の水位により、 該水量調整手段を制御するようにした気体溶解水供給
6 . 水槽は密閉型であり、 シールガスを供給する供給部を備えており、 供給するシー ルガスは気体溶解水に溶解している気体と同一である請求項 5記載の気体溶解水供給
PCT/JP2003/003289 2002-05-16 2003-03-18 Procede et dispositif de dissolution continue, alimentation en eau a gaz dissous WO2003097223A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047018459A KR100567116B1 (ko) 2002-05-16 2003-03-18 연속용해장치, 연속용해방법 및 기체 용해수 공급장치
EP03752888.2A EP1512457B1 (en) 2002-05-16 2003-03-18 Gas-dissolved water supply
US10/507,539 US20050093182A1 (en) 2002-05-16 2003-03-18 Continuous dissolving device, continuous dissolving method, and gas-dissolved water supply
US11/653,664 US7329312B2 (en) 2002-05-16 2007-01-16 Apparatus for supplying water containing dissolved gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-142032 2002-05-16
JP2002142032A JP2003334433A (ja) 2002-05-16 2002-05-16 連続溶解装置、連続溶解方法及び気体溶解水供給装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10507539 A-371-Of-International 2003-03-18
US11/653,664 Division US7329312B2 (en) 2002-05-16 2007-01-16 Apparatus for supplying water containing dissolved gas

Publications (1)

Publication Number Publication Date
WO2003097223A1 true WO2003097223A1 (fr) 2003-11-27

Family

ID=29544968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003289 WO2003097223A1 (fr) 2002-05-16 2003-03-18 Procede et dispositif de dissolution continue, alimentation en eau a gaz dissous

Country Status (8)

Country Link
US (2) US20050093182A1 (ja)
EP (1) EP1512457B1 (ja)
JP (1) JP2003334433A (ja)
KR (1) KR100567116B1 (ja)
CN (1) CN100525893C (ja)
SG (1) SG147323A1 (ja)
TW (1) TWI277443B (ja)
WO (1) WO2003097223A1 (ja)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005262031A (ja) * 2004-03-17 2005-09-29 Kurita Water Ind Ltd 循環式ガス溶解水供給装置及び該装置の運転方法
JP4470101B2 (ja) * 2004-03-24 2010-06-02 栗田工業株式会社 窒素溶解超純水の製造方法
JP4077845B2 (ja) * 2005-03-18 2008-04-23 セメス株式会社 機能水供給システム、及び機能水供給方法
JP2006289201A (ja) * 2005-04-07 2006-10-26 Sato Kogyo Kk 酸化還元電位水製造装置
US20060288874A1 (en) * 2005-06-24 2006-12-28 The Coca-Cola Compay In-Line, Instantaneous Carbonation System
JP4786955B2 (ja) * 2005-07-21 2011-10-05 日本碍子株式会社 機能水生成装置及びそれを用いた機能水生成方法
JP5072062B2 (ja) * 2006-03-13 2012-11-14 栗田工業株式会社 水素ガス溶解洗浄水の製造方法、製造装置及び洗浄装置
JP4909648B2 (ja) * 2006-06-06 2012-04-04 クロリンエンジニアズ株式会社 循環型オゾン水製造装置及び該装置の運転方法
JP5320665B2 (ja) * 2006-09-29 2013-10-23 栗田工業株式会社 超純水製造装置および方法
WO2008049001A2 (en) * 2006-10-17 2008-04-24 Mks Intruments, Inc. Devices, systems, and methods for carbonation of deionized water
JP4896657B2 (ja) * 2006-10-19 2012-03-14 オルガノ株式会社 生活用水供給方法及び装置
JP5019422B2 (ja) * 2006-10-19 2012-09-05 オルガノ株式会社 生活用水供給方法及び装置
JP2008147591A (ja) * 2006-12-13 2008-06-26 Nec Electronics Corp 半導体製造装置及び半導体製造方法
JP5358910B2 (ja) * 2007-08-10 2013-12-04 栗田工業株式会社 炭酸水の製造装置及び製造方法
JP5251184B2 (ja) * 2008-03-14 2013-07-31 栗田工業株式会社 ガス溶解水供給システム
JP2009260020A (ja) * 2008-04-16 2009-11-05 Kurita Water Ind Ltd 電子材料用洗浄水、電子材料の洗浄方法及びガス溶解水の供給システム
KR101255895B1 (ko) * 2009-12-10 2013-04-17 가부시키가이샤 코아테크노로지 포화 가스 함유 나노 버블수의 제조 방법
CN102446755B (zh) * 2011-10-12 2014-03-12 上海华力微电子有限公司 一种降低化学机械抛光后微粒缺陷的方法
CN102500254A (zh) * 2011-10-17 2012-06-20 中国石油化工股份有限公司 一种环己酮肟溶液的配制方法
CA2856196C (en) 2011-12-06 2020-09-01 Masco Corporation Of Indiana Ozone distribution in a faucet
JP6059871B2 (ja) * 2011-12-20 2017-01-11 野村マイクロ・サイエンス株式会社 気体溶解水製造装置及び気体溶解水製造方法
CN102928550B (zh) * 2012-10-19 2015-09-23 中国船舶重工集团公司第七一八研究所 一种测量核电厂安全壳内氢气浓度的方法
US10501348B1 (en) 2013-03-14 2019-12-10 Angel Water, Inc. Water flow triggering of chlorination treatment
JP2016064386A (ja) * 2014-09-18 2016-04-28 株式会社荏原製作所 ガス溶解水製造装置および製造方法
WO2016042740A1 (ja) * 2014-09-18 2016-03-24 株式会社荏原製作所 ガス溶解水製造装置および製造方法
US10503182B2 (en) 2014-11-19 2019-12-10 Veeco Precision Surface Processing Llc Apparatus and method for metals free reduction and control of resistivity of deionized water
JP5999222B2 (ja) * 2015-05-29 2016-09-28 栗田工業株式会社 ガス溶解水供給装置及びガス溶解水の製造方法
KR20170009539A (ko) * 2015-07-17 2017-01-25 세메스 주식회사 처리액 공급 유닛 및 기판 처리 장치
CN108463437B (zh) 2015-12-21 2022-07-08 德尔塔阀门公司 包括消毒装置的流体输送系统
JP6232086B2 (ja) * 2016-01-29 2017-11-15 野村マイクロ・サイエンス株式会社 機能水製造装置及び機能水製造方法
DE102016004612A1 (de) * 2016-04-19 2017-10-19 Merck Patent Gmbh Verfahren und Befüllungsvorrichtung zum Befüllen eines Transportbehälters mit einem Fluid
JP6148759B1 (ja) * 2016-05-11 2017-06-14 MiZ株式会社 水素含有液体の水素濃度を求める方法及び水素含有液体の生成装置
JP7086068B2 (ja) * 2016-11-11 2022-06-17 エムケイエス インストゥルメンツ, インコーポレイテッド アンモニアガスをその中に溶解した脱イオン水を含む導電性液体を生成するためのシステム及び方法
JP6350706B1 (ja) * 2017-03-30 2018-07-04 栗田工業株式会社 水質調整水製造装置
JP6602334B2 (ja) 2017-03-30 2019-11-06 栗田工業株式会社 規定濃度水の供給方法及び装置
JP6477771B2 (ja) * 2017-04-14 2019-03-06 栗田工業株式会社 洗浄水供給装置
JP6477772B2 (ja) 2017-04-14 2019-03-06 栗田工業株式会社 洗浄水供給装置
US11518696B2 (en) 2018-08-29 2022-12-06 Mks Instruments Ozonated water delivery system and method of use
JP7193972B2 (ja) * 2018-10-10 2022-12-21 株式会社ディスコ 混合装置
TWI842869B (zh) 2019-04-08 2024-05-21 美商Mks儀器公司 用於供應包括超純水及氨氣之沖洗液體之系統以及用於供應包括其中溶解有所期望濃度之氨氣之超純水之沖洗液體之方法
EP4065313A4 (en) 2019-11-27 2023-08-02 Diversified Fluid Solutions, LLC ON-LINE BLENDING AND DISTRIBUTION OF CHEMICALS ON DEMAND
JP7099603B1 (ja) 2021-09-07 2022-07-12 栗田工業株式会社 半導体製造用液体供給装置
US20230093179A1 (en) * 2021-09-21 2023-03-23 Statco Engineering & Fabricators LLC Continuous multi-stream liquid product deaeration system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138182A (ja) 1997-11-10 1999-05-25 Kurita Water Ind Ltd オゾンを溶解した超純水の供給装置
JP2000216130A (ja) 1999-01-26 2000-08-04 Kurita Water Ind Ltd 電子材料用洗浄水及び電子材料の洗浄方法
JP2000271549A (ja) 1999-03-25 2000-10-03 Kurita Water Ind Ltd ガス溶解水供給装置
JP2001079376A (ja) 1999-09-10 2001-03-27 Kurita Water Ind Ltd ガス溶解水の調製方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438385A (en) * 1965-01-21 1969-04-15 Honeywell Inc Flow blending control system
US4595498A (en) * 1984-12-27 1986-06-17 Thomson Components-Mostek Corporation Water-polishing loop
US5246026A (en) * 1992-05-12 1993-09-21 Proudman Systems, Inc. Fluid measuring, dilution and delivery system
US5464480A (en) 1993-07-16 1995-11-07 Legacy Systems, Inc. Process and apparatus for the treatment of semiconductor wafers in a fluid
JP2700777B2 (ja) 1995-04-14 1998-01-21 コフロック株式会社 オゾン水製造用装置およびオゾン水の製造方法
JPH09232270A (ja) 1996-02-27 1997-09-05 Shibaura Eng Works Co Ltd 洗浄処理装置
JPH09232273A (ja) 1996-02-28 1997-09-05 Sumitomo Sitix Corp 半導体ウエーハの洗浄方法及び洗浄装置
JP3537976B2 (ja) 1996-11-22 2004-06-14 大日本スクリーン製造株式会社 基板処理装置
JP3445456B2 (ja) 1996-11-22 2003-09-08 大日本スクリーン製造株式会社 基板処理装置
JPH10202242A (ja) 1997-01-23 1998-08-04 Ngk Insulators Ltd 超純水の比抵抗調整方法
US5800626A (en) 1997-02-18 1998-09-01 International Business Machines Corporation Control of gas content in process liquids for improved megasonic cleaning of semiconductor wafers and microelectronics substrates
JP4151088B2 (ja) * 1997-09-01 2008-09-17 栗田工業株式会社 水素含有超純水の供給装置
JP3765354B2 (ja) 1997-09-02 2006-04-12 栗田工業株式会社 水素含有超純水の製造方法
JPH11121417A (ja) 1997-10-09 1999-04-30 Mitsubishi Electric Corp 半導体基板の処理システムおよび処理方法
JPH11333475A (ja) 1998-05-22 1999-12-07 Tokico Ltd オゾン水生成装置
JP3029608B1 (ja) 1998-11-19 2000-04-04 株式会社プレテック オゾン水生成装置およびオゾン水を生成する方法
JP2000208471A (ja) * 1999-01-11 2000-07-28 Kurita Water Ind Ltd 電子材料用洗浄水の調製装置
JP2001025715A (ja) * 1999-07-16 2001-01-30 Japan Organo Co Ltd 機能水製造方法及び装置
JP2001085304A (ja) * 1999-09-10 2001-03-30 Toshiba Corp 半導体製造装置および半導体製造方法
JP2001286833A (ja) 2000-04-10 2001-10-16 Toppan Printing Co Ltd 洗浄装置及びカラーフィルタの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138182A (ja) 1997-11-10 1999-05-25 Kurita Water Ind Ltd オゾンを溶解した超純水の供給装置
JP2000216130A (ja) 1999-01-26 2000-08-04 Kurita Water Ind Ltd 電子材料用洗浄水及び電子材料の洗浄方法
JP2000271549A (ja) 1999-03-25 2000-10-03 Kurita Water Ind Ltd ガス溶解水供給装置
JP2001079376A (ja) 1999-09-10 2001-03-27 Kurita Water Ind Ltd ガス溶解水の調製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1512457A4

Also Published As

Publication number Publication date
KR20050010005A (ko) 2005-01-26
CN1642627A (zh) 2005-07-20
US20050093182A1 (en) 2005-05-05
JP2003334433A (ja) 2003-11-25
EP1512457B1 (en) 2013-11-06
CN100525893C (zh) 2009-08-12
US7329312B2 (en) 2008-02-12
TWI277443B (en) 2007-04-01
EP1512457A4 (en) 2012-01-25
KR100567116B1 (ko) 2006-03-31
SG147323A1 (en) 2008-11-28
EP1512457A1 (en) 2005-03-09
US20070114682A1 (en) 2007-05-24
TW200306886A (en) 2003-12-01

Similar Documents

Publication Publication Date Title
WO2003097223A1 (fr) Procede et dispositif de dissolution continue, alimentation en eau a gaz dissous
EP2104648B1 (en) System and method for carbonation of deionized water
US8999069B2 (en) Method for producing cleaning water for an electronic material
TWI797206B (zh) 氣體溶解液製造裝置及氣體溶解液的製造方法
WO2009113682A1 (ja) ガス溶解水供給システム
TW201938260A (zh) 臭氧水供給方法及臭氧水供給裝置
WO2015064657A1 (ja) 流量調整機構、希釈薬液供給機構、液処理装置及びその運用方法
TW201821153A (zh) 產生包含具有氨氣溶於其中的去離子水之導電液體之系統及方法
TWI720302B (zh) 洗淨水供給裝置
KR20200139630A (ko) 가스 용해액 공급 장치 및 가스 용해액 공급 방법
JP5099519B2 (ja) 気体溶解水供給装置
TW202220746A (zh) 氣體溶解液供給裝置
JP5412135B2 (ja) オゾン水供給装置
JP2009291681A (ja) 微小気泡生成装置、微小気泡生成方法および基板処理装置
JP6777533B2 (ja) 希釈液製造装置および希釈液製造方法
JP3029608B1 (ja) オゾン水生成装置およびオゾン水を生成する方法
JP4872613B2 (ja) ガス溶解洗浄水の製造装置及び製造方法
JP2005270793A (ja) 窒素溶解水の製造装置
JPH11138182A (ja) オゾンを溶解した超純水の供給装置
JP6059871B2 (ja) 気体溶解水製造装置及び気体溶解水製造方法
JP7550720B2 (ja) ガス溶解液供給装置
JP2003284936A (ja) 混合装置
US12030024B2 (en) Dilute chemical supply device
JP2024032251A (ja) ウェハ洗浄水供給装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003752888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10507539

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038061910

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047018459

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047018459

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003752888

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020047018459

Country of ref document: KR