JP4151088B2 - 水素含有超純水の供給装置 - Google Patents
水素含有超純水の供給装置 Download PDFInfo
- Publication number
- JP4151088B2 JP4151088B2 JP25138797A JP25138797A JP4151088B2 JP 4151088 B2 JP4151088 B2 JP 4151088B2 JP 25138797 A JP25138797 A JP 25138797A JP 25138797 A JP25138797 A JP 25138797A JP 4151088 B2 JP4151088 B2 JP 4151088B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- water
- hydrogen gas
- ultrapure water
- dissolved
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cleaning Or Drying Semiconductors (AREA)
- Degasification And Air Bubble Elimination (AREA)
Description
【発明の属する技術分野】
本発明は、水素含有超純水の供給装置に関する。さらに詳しくは、本発明は、電子材料の洗浄工程において水素ガスを溶解した超純水を、実質的な溶存水素ガス濃度の変化を起こすことなく、未使用の水素含有超純水を排出することなく、かつ必要以上の水素ガスを使用することなく、所望の溶存水素ガス濃度の水素含有超純水を必要な量だけユースポイントに供給することができる水素含有超純水の供給装置に関する。
【0002】
【従来の技術】
従来、半導体用シリコン基板、液晶用ガラス基板などの洗浄は、主として、過酸化水素水と硫酸の混合液、過酸化水素水と塩酸と水の混合液、過酸化水素水とアンモニア水と水の混合液など、過酸化水素をベースとする濃厚な薬液を用いて高温で洗浄した後に超純水ですすぐ、いわゆるRCA洗浄法によって行われてきた。RCA洗浄法は、半導体表面の金属分を除去するために有効な方法であるが、同時に半導体表面に付着した微粒子も除去される。しかし、このような方法では、過酸化水素水、高濃度の酸、アルカリなどを多量に使用するために薬液コストが高く、さらにリンス用の超純水のコスト、廃液処理コスト、薬品蒸気を排気し新たに清浄空気を調製する空調コストなど、多大なコストを要する。これらのコストを低減し、さらに水の大量使用、薬物の大量廃棄、排ガスの放出といった環境への負荷低減を図るために、近年ウェット洗浄工程の見直しが進められている。
本発明者らは、先に、ウェット洗浄工程で除去すべき不純物のうち、特に電子部品性能への影響が大きく問題視されている微粒子が、水素ガスを溶解した超純水により極めて効果的に除去されることを見いだし、低濃度の薬品を用い、室温で、高い洗浄効果を得ることができる方法として、水素含有超純水を用いる電子材料の洗浄方法を開発した。この方法を大量の基板を洗浄する製造現場に適用するために、水素含有超純水を安全かつ自在に取り扱い、水素含有超純水の消費量の変動に対応して、所望の溶存水素ガス濃度の水素含有超純水を必要な量だけ、安定してユースポイントに供給することができる水素含有超純水の供給装置が求められるようになった。
【0003】
【発明が解決しようとする課題】
本発明は、洗浄用の水素含有超純水を、余剰が生じて廃棄することなく、使用水量が変動する場合にも、安定した溶存水素ガス濃度の水素含有超純水をユースポイントに供給することができる水素含有超純水の供給装置を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、超純水の溶存ガスを除去する脱気部と、水素ガス供給部から供給される水素ガスを脱気後の水に溶解させる溶解部と、ユースポイントで使われなかった余剰の水素含有超純水と補給される超純水の混合水を保持する密閉式の水槽を有し、水素含有超純水を送水ポンプによりフィルターを経由してユースポイントに送り、未使用の水素含有超純水を循環して水槽に戻すシステムにより、一定した水素含有超純水を必要量だけユースポイントに供給することが可能となることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)水素含有超純水を用いる電子材料の洗浄工程において、(A)ユースポイントで使われなかった余剰の水素含有超純水及び補給される超純水の混合水を保持する密閉式の水槽、(B)水槽に保持された水を送水するポンプ、(C)送水される水の溶存ガスを除去する脱気部、(D)水素ガス供給部から供給される水素ガスを脱気後の水に溶解させる溶解部であって、該溶解部の下流側で溶存水素ガス濃度センサを設け、水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラーから水素ガス供給配管の供給量制御部に信号を送ることにより水素ガス供給配管のバルブ開度を調整する機構を有する溶解部、(E)フィルター及び(F)ユースポイントを経て水槽に戻る循環配管系を有し、水素含有超純水を循環させながらユースポイントにおいて必要量の水素含有超純水を供給することを特徴とする水素含有超純水の供給装置、及び、
(2)水素含有超純水を用いる電子材料の洗浄工程において、(A)補給される超純水の溶存ガスを除去する脱気部、(B)水素ガス供給部から供給される水素ガスを脱気後の水に溶解させる溶解部であって、該溶解部の下流側で溶存水素ガス濃度センサを設け、水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラーから水素ガス供給配管の供給量制御部に信号を送ることにより水素ガス供給配管のバルブ開度を調整する機構を有する溶解部、(C)溶解部において調製された水素含有超純水及びユースポイントで使われなった余剰の水素含有超純水を保持する密閉式の水槽であって、該水槽の下流側に溶存水素ガス濃度センサを設けて、水槽より送り出される水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラーから水素ガス供給配管の供給量制御部に信号を送ることにより水素ガス供給配管のバルブ開度を調整する機構を有する水槽、(D)水槽から水素含有超純水を送水するポンプ、(E)フィルター及び(F)ユースポイントを経て水槽に戻る循環配管系を有し、水素含有超純水を循環させながらユースポイントにおいて必要量の水素含有超純水を供給することを特徴とする水素含有超純水の供給装置、
を提供するものである。
さらに、本発明の好ましい態様として、
(3)密閉式の水槽の気相部に、水位の変動及び水槽−ユースポイント間の循環系の部材壁面を通した溶存水素ガスの透過、放散量に応じて、水素ガスを補給することができ、かつ気相部を大気圧に保つよう排気し得るものである第(2)項記載の水素含有超純水の供給装置、
(4)高純度薬品を添加する機構を有する第(1)項又は第(2)項記載の水素含有超純水の供給装置、
(5)添加する高純度薬品が、高純度アンモニア水である第(4)項記載の水素含有超純水の供給装置、及び、
(6)溶存ガスを除去する脱気部の下流側において水のpHを測定し、所定のpH値になるよう高純度アンモニア水を添加する機構を有する第(1)項又は第(2)項記載の水素含有超純水の供給装置、
を挙げることができる。
【0005】
【発明の実施の形態】
本発明の水素含有超純水の供給装置は、超純水に水素ガスを溶解して所望の溶存水素ガス濃度とした水素含有超純水を、電子材料の洗浄工程のユースポイントに供給する装置である。本発明に用いる超純水は、25℃における電気伝導率が約6μS/m程度の高純度の水である。本発明に用いる超純水の製造方法には特に制限はなく、公知のプロセスによって製造することができる。
図1は、超純水の製造における二次純水工程の一例を示す工程系統図である。前処理工程及び一次純水工程で処理された一次純水が、外気からの汚染を防止するために高純度の窒素ガスで封入された水槽1に補給される。水槽中の純水は、ポンプ2により紫外線照射装置3、イオン交換装置4及び限外ろ過装置5に順次送られる。純水は、紫外線照射装置において紫外線の照射を受け、水中の微量の有機体炭素が分解されるとともに殺菌され、イオン交換装置において微量のイオン性物質が除去され、限外ろ過装置において微量の微粒子が除去されて超純水となる。二次純水工程で製造された超純水は、各ユースポイントに送られて使用される。
本発明装置により供給される水素含有超純水は、電子部品などの洗浄に使用されるので、二次純水工程において精製された超純水を原水として使用することが好ましい。紫外線照射装置、イオン交換装置及び限外ろ過装置を通過して製造された超純水を、超純水のループ配管から枝分けし、補給超純水ラインを経由して本発明装置に送ることができる。
【0006】
図2は、本発明装置の第一の態様の工程系統図である。本態様においては、ユースポイントで使われなかった余剰の水素含有超純水は、循環配管系6により密閉式の水槽7に戻される。また、密閉式の水槽には、ユースポイントで使われた水素含有超純水に相当する量の超純水が、別に設けた二次純水工程から補給される。密閉式の水槽は、ユースポイントで使われなかった余剰の水素含有超純水及び補給される超純水の混合水を保持する。密閉式の水槽は、外気からの汚染を防止するために高純度の窒素ガスで封入することが好ましい。水槽に保持された混合水は、送水ポンプ8により、水の溶存ガスを除去する脱気部9に送られる。脱気部の機構には特に制限はないが、水中に溶存する気体を除去し得る真空脱気や減圧膜脱気などによることが好ましい。これらの中で、高純度脱気膜モジュールによる膜脱気は、比較的ユースポイントに近いところで、超純水の純度を損なうことなく、溶存する気体を効率よく脱気することができるので、特に好適に使用することができる。脱気膜モジュールにおいては、超純水がガス透過膜を介して気体側に接し、気体側は真空ポンプ10により減圧状態に保たれる。脱気膜モジュールのガス透過膜には特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。
【0007】
本発明装置により供給する水素含有超純水には、必要に応じて高純度薬品を添加することができる。高純度薬品の添加方法には特に制限はなく、例えば、装置に補給する超純水の量に比例して高純度薬品を添加することができ、あるいは、水質を測定し、水質に応じて高純度薬品の添加量を制御することができる。水素含有超純水に高純度アンモニア水を添加してアルカリ性とすることは、水素含有超純水の洗浄力を高める上で好ましいが、高純度アンモニア水の添加量は、補給する超純水の量と比例する量とすることができ、あるいは、水のpHを測定し、所定のpH値になるよう高純度アンモニア水を添加することもできる。例えば、脱気部の下流側において、pHセンサ11によりpHを測定し、pHコントローラー12からポンプ13に信号を送り、薬液タンク14から所定量の高純度アンモニア水を添加することができる。高純度アンモニア水の添加は、脱気によるアンモニアの損失を避けるために、脱気部の下流側で添加することが好ましい。高純度アンモニア水の添加位置は、溶解部のさらに下流側や、ユースポイントの直前とすることもできる。個々のユースポイントにおける必要性に応じて、添加量を個々に設定してもよい。
脱気部において溶存ガスを除去した水は、次いで、水素ガス供給部15から供給される水素ガスを溶解させる溶解部16に送られる。水素ガス供給部は、超純水と同等の純度を保つことができる高純度の水素ガスを供給し得るものであれば特に制限はなく、例えば、高純度水素ガスボンベや、超純水を原水として電気分解により水素ガスを発生させる装置などを挙げることができる。ガス透過膜の液体側に脱気した超純水を通過させ、気体側に水素ガスを供給することにより、水素ガスはガス透過膜を経由して超純水中に移行し溶解する。
【0008】
本発明装置において、脱気後の水に溶解させる水素ガスの量は、0.7mg/リットル以上であることが好ましい。溶存水素ガスの量が0.7mg/リットル以上であれば、水素含有超純水は、電子材料の洗浄工程において十分な洗浄力を発揮する。20℃、大気圧下における水への水素ガスの飽和溶解量は1.6mg/リットルであるので、溶存水素ガスの量を飽和溶解量に対する比、すなわち飽和度として表すと、水素ガスの溶解量0.7mg/リットルは溶存水素ガスの飽和度約0.45倍に相当する。
溶存水素ガスの飽和度を0.45倍以上とするために、脱気部において、水の溶存ガスの飽和度が0.55倍未満となるよう脱気することが好ましい。水の溶存ガスの飽和度を0.55倍未満とすることにより、水中に飽和度0.45倍以上の気体溶解キャパシティーの空きが生じ、溶解部において水素ガスを容易に溶解することができる。20℃で窒素ガスと平衡状態にある水には、窒素ガス19.2mg/リットルが溶解しているので、脱気により水に溶存する窒素ガスの量を約10.6mg/リットル未満とすることにより、飽和度を0.55倍未満とすることができる。
本発明装置においては、水素ガスを溶解させた水素含有超純水の溶存水素ガス濃度を測定し、その測定値に応じて溶存水素ガス濃度が所定の値になるよう溶解部へ供給する水素ガスの量を制御することができる。例えば、溶解部の下流側に溶存水素ガス濃度センサ17を設けて水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラー18から水素ガス供給配管の供給量制御部19に信号を送り、バルブ開度の調整などにより水素ガス供給量を制御することができる。溶存水素ガス濃度センサーは、メイン配管に直接設けることができ、あるいは、一部を分岐した測定専用配管に設けることもできる。また、定常的な運転がなされている場合は、溶解部における水の流量と溶存ガス濃度は一定なので、水素ガスの供給量も一定とすることができる。
【0009】
本発明装置において、水素ガスを溶解させる溶解部の機構には特に制限はなく、例えば、バブリング、インラインミキシング、気体透過膜モジュールの使用など任意の接触方法を使用することができる。これらの中で、単位時間、単位スペースあたりの水素ガス溶解量が大きく、電子材料のウェット洗浄用として使用し得るレベルに水の純度を保ち、水素ガスの溶解効率を容易に高めることができる高純度気体透過膜モジュールが好ましい。高純度気体透過膜モジュールのガス透過膜には特に制限はなく、例えば、ポリプロピレン、ポリジメチルシロキサン、ポリカーボネート−ポリジメチルシロキサンブロック共重合体、ポリビニルフェノール−ポリジメチルシロキサン−ポリスルホンブロック共重合体、ポリ(4−メチルペンテン−1)、ポリ(2,6−ジメチルフェニレンオキシド)、ポリテトラフルオロエチレンなどの高分子膜などを挙げることができる。
本態様の装置においては、溶解部において水素ガスを溶解させた水素含有超純水は、フィルター20で微粒子を除去したのちユースポイントに送られる。フィルターの材質には特に制限はなく、例えば、ミクロろ過膜、限外ろ過膜などの多孔質膜を挙げることができる。多孔質膜の孔径は、0.2μm以下であることが好ましく、0.1μm以下であることがより好ましい。ユースポイントに送られた水素含有超純水は、必要量がユースポイントにおいて使用され、使われなかった余剰の水素含有超純水は循環配管系6を経由して密閉式の水槽7に戻され、補給される超純水と混合してふたたび使用される。
本態様の水素含有超純水の供給装置は、余剰の水素含有超純水をあらたに補給される超純水と混合し、いったん脱気部において水素ガスを含む溶存ガスを実質的に除去し、あらためて溶解部において水素ガスを溶解させているので、水素含有超純水の水質が安定した状態で装置を定常運転することができる。
【0010】
図3は、本発明装置の第二の態様の工程系統図である。本態様においては、補給される超純水は、直接、水の溶存ガスを除去する脱気部21に送られる。脱気部の機構には特に制限はないが、水中に溶存する窒素ガスや酸素ガスなどを除去し得る真空脱気や減圧膜脱気などによることが好ましい。これらの中で、高純度脱気膜モジュールによる膜脱気は、比較的ユースポイントに近いところで、超純水の純度を損なうことなく、微量に溶存する気体を脱気することができるので、特に好適に使用することができる。脱気膜モジュールにおいては、超純水がガス透過膜を介して気体側に接し、気体側は真空ポンプ22により減圧状態に保たれる。脱気膜モジュールのガス透過膜には特に制限はなく、前述のとおりの高分子膜を使用できる。
【0011】
本発明装置により供給する水素含有超純水には、必要に応じて高純度薬品を添加することができる。高純度薬品の添加方法には特に制限はなく、例えば、装置に補給する超純水の量に比例して高純度薬品を添加することができ、あるいは、水質を測定し、水質に応じて高純度薬品の添加量を制御することができる。水素含有超純水に高純度アンモニア水を添加してアルカリ性とすることは、水素含有超純水の洗浄力を高める上で好ましいが、高純度アンモニア水の添加量は、補給する超純水の量と比例する量とすることができ、あるいは、水のpHを測定し、所定のpH値になるよう高純度アンモニア水を添加することもできる。例えば、脱気部の下流側において、pHセンサ23によりpHを測定し、pHコントローラー24からポンプ25に信号を送り、薬液タンク26から所定量の高純度アンモニア水を添加することができる。高純度アンモニア水の添加位置は、溶解部のさらに下流側や、ユースポイントの直前とすることもできる。
脱気部において溶存ガスを除去した水は、次いで、水素ガス供給部27から供給される水素ガスを溶解させる溶解部28に送られる。水素ガス供給部は、超純水と同等の純度を保つことができる高純度の水素ガスを供給し得るものであれば特に制限はなく、例えば、高純度水素ガスボンベや、超純水を原水として電気分解により水素ガスを発生させる装置などを挙げることができる。ガス透過膜の液体側に脱気した超純水を通過させ、気体側に水素ガスを供給することにより、水素ガスはガス透過膜を経由して超純水中に移行し溶解する。
【0012】
本発明装置においては、水素ガスを溶解させた水素含有超純水の溶存水素ガス濃度を測定し、その測定値に応じて溶存水素ガス濃度が所定の値になるよう溶解部へ供給する水素ガスの量を制御することができる。例えば、溶解部の下流側に溶存水素ガス濃度センサ29を設けて水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラー30から水素ガス供給配管の供給量制御部31に信号を送り、バルブ開度の調整などにより水素ガス供給量を制御することができる。溶存水素ガス濃度センサーは、メイン配管に直接設けることができ、あるいは、一部を分岐した測定専用配管に設けることもできる。また、定常的な運転がなされている場合は、溶解部における水の流量と溶存ガス濃度は一定なので、水素ガスの供給量も一定とすることができる。
本発明装置において、水素ガスを溶解させる溶解部の機構には特に制限はなく、前述のように、バブリング、インラインミキシング、気体透過膜モジュールの使用など任意の接触方法を使用することができる。
本態様の装置においては、溶解部において水素ガスを溶解させた水素含有超純水は、密閉式の水槽32に送られる。また、ユースポイントで使われなかった余剰の水素含有超純水も、循環配管系33により密閉式の水槽に戻される。すなわち、密閉式の水槽は、ユースポイントで使われた水素含有超純水に相当する量のあらたに補給された超純水から調製された水素含有超純水と、ユースポイントで使われなかった余剰の水素含有超純水の混合水を保持する。密閉式の水槽には、水素ガス補給管34を設け、水位の変動に応じて、水槽中の水素含有超純水に水素ガスを補給することが好ましい。水槽の下流側に溶存水素ガス濃度センサ35を設けて、水槽より送り出される水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラー36から水素ガス供給配管の供給量制御部37に信号を送り、バルブ開度の調整などにより水素ガス供給量を制御することができる。また、密閉式の水槽には、気相部を大気圧に保つことができるよう、排気装置38を設けることが好ましい。
【0013】
本発明装置において、密閉式の水槽の水素含有超純水は、ポンプ39によりフィルター40で微粒子を除去したのちユースポイントに送られる。フィルターの材質には特に制限はなく、例えば、ミクロろ過膜、限外ろ過膜などの多孔質膜を挙げることができる。多孔質膜の孔径は、0.2μm以下であることが好ましく、0.1μm以下であることがより好ましい。ユースポイントに送られた水素含有超純水は、必要量がユースポイントにおいて使用され、使われなかった余剰の水素含有超純水は循環配管系を経由して密閉式の水槽に戻され、補給された超純水から調製された水素含有超純水と混合してふたたび使用される。
本態様においては、補給された超純水に水素ガスを溶解して調製された水素含有超純水と、ユースポイントで使用されなかった余剰の水素含有超純水とが密閉式の水槽で混合され、ポンプ、フィルターを経てユースポイントへと送られる。この循環系において、溶存水素ガス濃度は、配管、水槽の壁を透過した極微量の放散による減少があるだけであり、数時間オーダーでは実質的に変化しない。さらに長時間にわたる溶存水素ガス濃度の保持と、水槽の水位低下に伴う気相圧力保持とを兼ねて、本態様においては、水素ガスを水槽に供給し得る機構となっている。水素ガスは、通常の超純水水槽を高純度の窒素ガスでパージするように、水槽内気相の気圧変動又は水位変動に連動して水面上に供給することができるが、散気管などを使ったバブリング方式で送りパージする供給方法が、水素ガスの溶解が容易となるのでより好ましい。
【0014】
密閉式の水槽内の気相の圧力が大気圧以上になると、大気圧での飽和溶解度以上の水素ガスが溶け込む。この場合、ユースポイントから出て大気圧下にさらされた水素含有超純水から、飽和溶解度以上の溶解分が気泡となって現れる。洗浄水中の気泡は、均一に洗浄を行う障害となるので望ましくない。特に、水素含有超純水を用いた洗浄に適するメガヘルツ帯の超音波を併用する場合は、その振動により気泡が発生しやすいので、水素ガスを大気圧下における飽和溶解度以上に溶解した水は適さない。このため、密閉式の水槽の上部には、槽内を大気圧に保つ排気装置と、気圧計及びそれと連動して開閉する自動弁を取り付けることが好ましい。
本態様の水素含有超純水の供給装置は、ユースポイントにおいて使われなかった水素含有超純水は、密閉式の水槽において、水位変動に対応する分、供給される水素ガスによって大気圧以下の範囲で水素ガスを補給されたのち、循環して使用されるので、水素ガスの使用量及び脱気に要するエネルギーを必要最小限に抑え、かつ使用水量の変動に対しても安定した溶存水素ガス濃度の水素含有超純水を供給することができる。
超純水中に溶存する水素ガスは自己分解によって減少することがないので、継ぎ手部からのリークや、配管材、水槽材の壁面を透過した放散を厳密に防止すれば、循環を繰り返してもその濃度が保たれる。大気中への水素ガスの放散による危険回避のためにも、水素ガスの透過を防ぐ配管施工、接液部材の選定が望ましい。
【0015】
本発明装置の接液部材は、高純度かつ気体透過性の低い材料であることが好ましい。このような材料としては、例えば、ポリフッ化ビニリデン樹脂や、クリーンポリ塩化ビニル樹脂などを挙げることができる。ポリ四フッ化エチレン樹脂や、四フッ化エチレン−パーフルオロアルコキシエチレン共重合樹脂などのいわゆるテフロン樹脂は、気体透過性が非常に高いので、本発明装置での使用には適していない。
本発明装置において、水素含有超純水循環系への超純水の供給は、ユースポイントにおける水素含有超純水の使用により、密閉式の水槽の水位の低下を検出する水位計に連動して行うことができる。本発明装置においては、脱気、薬注、水素溶解工程を単純化するために、流量の変動する連続給水でもよいが、一定流量の断続給水とすることもできる。この場合、密閉式の水槽の水位が所定レベルまで低下すると、それに連動して超純水の自動供給弁が開き、一定流量で給水が行われる機構とする。気体透過膜モジュールによる脱気と水素ガスの溶解を行う場合には、超純水の補給開始に先立って、脱気膜モジュール気体相の減圧と溶解膜モジュール気体相への水素ガス供給を開始しておくと、超純水補給の初期から所定の溶存水素ガス濃度の水素含有超純水を得ることができる。
本発明装置においては、ユースポイントでの水素含有超純水の使用量の変動があっても水素含有超純水を安定に供給できるよう、循環流量を最大使用量以上に設定することが好ましい。
【0016】
【発明の効果】
本発明の水素含有超純水の供給装置によれば、電子材料の洗浄工程において水素ガスを溶解した超純水を、実質的な溶存水素ガス濃度の変化を生ずることなく、未使用の水素含有超純水を排出することなく、かつ必要以上の水素ガスを使用することなく、所望の溶存水素ガス濃度の超純水を必要な量だけユースポイントに供給することができる。
【図面の簡単な説明】
【図1】図1は、超純水の製造における二次純水工程の一例を示す工程系統図である。
【図2】図2は、本発明装置の第一の態様の工程系統図である。
【図3】図3は、本発明装置の第二の態様の工程系統図である。
【符号の説明】
1 水槽
2 ポンプ
3 紫外線照射装置
4 イオン交換装置
5 限外ろ過装置
6 循環配管系
7 密閉式の水槽
8 送水ポンプ
9 脱気部
10 真空ポンプ
11 pHセンサ
12 pHコントローラー
13 ポンプ
14 薬液タンク
15 水素ガス供給部
16 溶解部
17 溶存水素ガス濃度センサ
18 溶存水素ガス濃度コントローラー
19 供給量制御部
20 フィルター
21 脱気部
22 真空ポンプ
23 pHセンサ
24 pHコントローラー
25 ポンプ
26 薬液タンク
27 水素ガス供給部
28 溶解部
29 溶存水素ガス濃度センサ
30 溶存水素ガス濃度コントローラー
31 供給量制御部
32 密閉式の水槽
33 循環配管系
34 水素ガス補給管
35 溶存水素ガス濃度センサ
36 溶存水素ガス濃度コントローラー
37 供給量制御部
38 排気装置
39 ポンプ
40 フィルター
Claims (2)
- 水素含有超純水を用いる電子材料の洗浄工程において、(A)ユースポイントで使われなかった余剰の水素含有超純水及び補給される超純水の混合水を保持する密閉式の水槽、(B)水槽に保持された水を送水するポンプ、(C)送水される水の溶存ガスを除去する脱気部、(D)水素ガス供給部から供給される水素ガスを脱気後の水に溶解させる溶解部であって、該溶解部の下流側で溶存水素ガス濃度センサを設け、水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラーから水素ガス供給配管の供給量制御部に信号を送ることにより水素ガス供給配管のバルブ開度を調整する機構を有する溶解部、(E)フィルター及び(F)ユースポイントを経て水槽に戻る循環配管系を有し、水素含有超純水を循環させながらユースポイントにおいて必要量の水素含有超純水を供給することを特徴とする水素含有超純水の供給装置。
- 水素含有超純水を用いる電子材料の洗浄工程において、(A)補給される超純水の溶存ガスを除去する脱気部、(B)水素ガス供給部から供給される水素ガスを脱気後の水に溶解させる溶解部であって、該溶解部の下流側で溶存水素ガス濃度センサを設け、水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラーから水素ガス供給配管の供給量制御部に信号を送ることにより水素ガス供給配管のバルブ開度を調整する機構を有する溶解部、(C)溶解部において調製された水素含有超純水及びユースポイントで使われなった余剰の水素含有超純水を保持する密閉式の水槽であって、該水槽の下流側に溶存水素ガス濃度センサを設けて、水槽より送り出される水素含有超純水の溶存水素ガス濃度を測定し、溶存水素ガス濃度コントローラーから水素ガス供給配管の供給量制御部に信号を送ることにより水素ガス供給配管のバルブ開度を調整する機構を有する水槽、(D)水槽から水素含有超純水を送水するポンプ、(E)フィルター及び(F)ユースポイントを経て水槽に戻る循環配管系を有し、水素含有超純水を循環させながらユースポイントにおいて必要量の水素含有超純水を供給することを特徴とする水素含有超純水の供給装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25138797A JP4151088B2 (ja) | 1997-09-01 | 1997-09-01 | 水素含有超純水の供給装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25138797A JP4151088B2 (ja) | 1997-09-01 | 1997-09-01 | 水素含有超純水の供給装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1177021A JPH1177021A (ja) | 1999-03-23 |
JP4151088B2 true JP4151088B2 (ja) | 2008-09-17 |
Family
ID=17222093
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25138797A Expired - Fee Related JP4151088B2 (ja) | 1997-09-01 | 1997-09-01 | 水素含有超純水の供給装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4151088B2 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU778215B2 (en) * | 1999-05-14 | 2004-11-25 | Texaco Development Corporation | Hydrogen recycle and acid gas removal using a membrane |
JP4438077B2 (ja) * | 1999-09-10 | 2010-03-24 | 栗田工業株式会社 | 電子材料洗浄用ガス溶解水の調製方法 |
JP2003334433A (ja) | 2002-05-16 | 2003-11-25 | Kurita Water Ind Ltd | 連続溶解装置、連続溶解方法及び気体溶解水供給装置 |
JP5072062B2 (ja) | 2006-03-13 | 2012-11-14 | 栗田工業株式会社 | 水素ガス溶解洗浄水の製造方法、製造装置及び洗浄装置 |
JP4909648B2 (ja) * | 2006-06-06 | 2012-04-04 | クロリンエンジニアズ株式会社 | 循環型オゾン水製造装置及び該装置の運転方法 |
JP2008124203A (ja) * | 2006-11-10 | 2008-05-29 | Kurita Water Ind Ltd | 洗浄装置 |
JP2009082877A (ja) * | 2007-10-02 | 2009-04-23 | Shimada Phys & Chem Ind Co Ltd | 洗浄装置 |
JP5222059B2 (ja) * | 2008-08-19 | 2013-06-26 | オルガノ株式会社 | 超音波処理装置用供給液の製造装置、超音波処理装置用供給液の製造方法及び超音波処理システム |
JP5099519B2 (ja) * | 2008-11-25 | 2012-12-19 | 栗田工業株式会社 | 気体溶解水供給装置 |
-
1997
- 1997-09-01 JP JP25138797A patent/JP4151088B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1177021A (ja) | 1999-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5072062B2 (ja) | 水素ガス溶解洗浄水の製造方法、製造装置及び洗浄装置 | |
JP5251184B2 (ja) | ガス溶解水供給システム | |
KR101514863B1 (ko) | 전자 재료용 세정수, 전자 재료의 세정 방법 및 가스 용해수의 공급 시스템 | |
US9129797B2 (en) | Cleaning method | |
JP3765354B2 (ja) | 水素含有超純水の製造方法 | |
US11325851B2 (en) | Diluted chemical liquid production apparatus capable of controlling pH and oxidation-reduction potential | |
JP2010017633A (ja) | 水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置 | |
JP4151088B2 (ja) | 水素含有超純水の供給装置 | |
JPH1171600A (ja) | 洗浄液の製造方法およびそのための装置 | |
JP2007000699A (ja) | 窒素ガス溶解水の製造方法 | |
EP0362164B1 (en) | Method and apparatus for treating water using electrolytic ozone | |
WO2014069203A1 (ja) | オゾンガス溶解水の製造方法、及び電子材料の洗浄方法 | |
JP5320665B2 (ja) | 超純水製造装置および方法 | |
KR19990045023A (ko) | 오존함유초순수공급장치 | |
JPH07180076A (ja) | アルシンの電解発生方法及び装置 | |
JP2005262031A (ja) | 循環式ガス溶解水供給装置及び該装置の運転方法 | |
JP3639102B2 (ja) | ウェット処理装置 | |
KR0171584B1 (ko) | 물로부터 용존산소를 제거하는 방법 및 장치 | |
JP4438077B2 (ja) | 電子材料洗浄用ガス溶解水の調製方法 | |
JP5663410B2 (ja) | 超純水製造方法及び装置 | |
JPH11138182A (ja) | オゾンを溶解した超純水の供給装置 | |
JP3966482B2 (ja) | 超純水の比抵抗調整方法及びこれを用いた純水製造装置 | |
JP5358910B2 (ja) | 炭酸水の製造装置及び製造方法 | |
JP5552792B2 (ja) | ガス溶解水製造装置及び製造方法 | |
JP5037748B2 (ja) | オゾン水の濃度調整方法及びオゾン水供給系 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080610 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080623 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110711 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120711 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130711 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140711 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |