WO2003012856A2 - Verfahren zur hermetischen verkapselung eines bauelementes - Google Patents

Verfahren zur hermetischen verkapselung eines bauelementes Download PDF

Info

Publication number
WO2003012856A2
WO2003012856A2 PCT/DE2002/002188 DE0202188W WO03012856A2 WO 2003012856 A2 WO2003012856 A2 WO 2003012856A2 DE 0202188 W DE0202188 W DE 0202188W WO 03012856 A2 WO03012856 A2 WO 03012856A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
film
chip
component
layer
Prior art date
Application number
PCT/DE2002/002188
Other languages
English (en)
French (fr)
Other versions
WO2003012856A3 (de
Inventor
Alois Stelzl
Hans Krüger
Gregor Feiertag
Ernst Christl
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to US10/484,942 priority Critical patent/US7552532B2/en
Priority to EP02747220.8A priority patent/EP1412974B1/de
Priority to JP2003517934A priority patent/JP4299126B2/ja
Publication of WO2003012856A2 publication Critical patent/WO2003012856A2/de
Publication of WO2003012856A3 publication Critical patent/WO2003012856A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0101Neon [Ne]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49146Assembling to base an electrical component, e.g., capacitor, etc. with encapsulating, e.g., potting, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • Y10T29/49171Assembling electrical component directly to terminal or elongated conductor with encapsulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49174Assembling terminal to elongated conductor
    • Y10T29/49176Assembling terminal to elongated conductor with molding of electrically insulating material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece

Definitions

  • a method for the hermetic encapsulation of a component is known, for example, from WO 99/43084.
  • components in particular surface wave components, are applied to a carrier provided with solderable connection surfaces using flip-chip technology.
  • the component is soldered onto the carrier via bumps (solder balls) in such a short distance that the surface with the component structures faces the carrier.
  • bumps solder balls
  • the encapsulation by pressing or casting, z. B. to further stabilize with epoxy resin and to further seal hermetically. The components can then be separated by separating the carrier plate.
  • the invention proposes to first cover a component applied in a flip-chip construction on a carrier with a first film, to connect this in the edge area around the component to the surface of the carrier, to subsequently structure the film, and as a last step to cover a hermetically sealing layer to apply the film so that it is hermetically sealed to the carrier outside the edge area.
  • the first step can be adapted so that the film, in cooperation with the application conditions, lies tightly on the back of the component and in the edge area around the component on the carrier.
  • the structuring of the film takes place in an intermediate step, in particular a dimensioning of the covering film taking place, which defines the size of the encapsulated component.
  • the area of the carrier is exposed, so that the hermetically sealing layer can come into contact with the carrier in order to ensure a tight seal with the carrier.
  • the film which already tightly encloses the component and lies on the carrier, enables the hermetic
  • the hermetically sealing layer can also be applied as a melt.
  • the tightness is considerably improved in the method according to the invention by the two layers or films to be applied independently of one another. While the application of the film can be optimized for positive locking, the second layer can be optimized for tightness.
  • a form-fitting application of the film to the chip back and the carrier is achieved in particular with a thermoplastic film.
  • This can be softened when applied at elevated temperature and laminated under pressure on the back of the chip and the surface of the carrier.
  • the positive application can be supported by applying a vacuum between the film and the carrier.
  • thermoplastic material for the film are those materials which are resistant to contact with live metal surfaces, which are resistant to corrosion and aging, show no outgassing, have high temperature resistance and / or have sufficient adhesion to the carrier material.
  • a further criterion is the laminatability of the corresponding film, which, when softened and laminated while being applied to the chip and the carrier, must not receive any damage and in particular cracks or holes.
  • Films made of polyamide and polyimide, which have a high thermal stability, are particularly suitable.
  • thermosets and reactive resins for example epoxy resins. Because of the limited laminating properties of cured thermosets and reactive resins, films made from such materials are preferably used in an uncured or at least not fully cured state.
  • reactive resins for example, the technique of curtain casting is suitable, in which a liquid polymer, for example a reactive resin thin film is produced by casting on a substrate and then cured on the substrate. With a suitably set consistency of the reaction resin, such a layer can be handled like a film.
  • the film can be applied to the chip with mechanical pressure and the flip-chip connection can be deformed, a material of high strength is advantageously chosen for the bumps which shows no mechanical deformation when the films are applied.
  • a material of high strength is advantageously chosen for the bumps which shows no mechanical deformation when the films are applied.
  • SnAg SnAg
  • Various techniques are suitable for structuring the applied film. For example, it is possible to use photolithography to define and protect the areas of the film which are to remain on the carrier or the component. A wet chemical or a plasma etching process can then be used as the structuring agent.
  • the film directly, for example by means of mechanical layer removal processes or by means of a laser.
  • the structuring takes place in such a way that the film is retained in the edge region of a defined width around the chip, in which it also lies firmly on the carrier.
  • the function of the film as a seal of the component with respect to the application method of the hermetically sealing layer or as a component of the entire encapsulation is thus maintained or guaranteed.
  • the film is then removed outside the edge area at least to the extent that a sufficiently wide surface area of the carrier is exposed in a ring shape around the edge region in order to ensure that the hermetically sealed layer to be applied is sealed with the carrier.
  • the film in a sufficiently wide strip, but to be removed in the area of at least two substantially narrower strips which enclose the edge area at a small distance from it.
  • a hermetic seal of the hermetically sealed layer to the carrier is made possible in the contact area on a much smaller area than when only one strip is used. This reduces the surface area on the carrier required for the hermetic encapsulation of the component and thus also the size of the entire component. It is sufficient, for example, the strips with a width and in one
  • an area of the chip surface is also exposed, in particular on the back or all around on the side surfaces, in order to ensure tight contact of the hermetically sealing layer possible directly with the chip.
  • the film can be partially removed in a strip-shaped region with the aid of a laser technique, the strip either running on the lateral outer surfaces of the chip and being closed in a ring or being arranged on the back of the chip and running in the vicinity of the outer edges of the chip ,
  • the chip on the back can be provided with at least one partial metallization, but preferably metallized over the entire surface.
  • the rear side metallization can also be connected to the component structures on the front side of the chip facing the surface of the carrier. In this way, there is an additional connection possibility for the component structures on the back of the chip.
  • a metal layer is preferably applied as the hermetically sealing layer.
  • This can in particular be produced in a multi-stage process, in which case a base metallization is first applied to the entire surface of the film and the surface of the carrier exposed in the contact area, which is reinforced in a subsequent step.
  • a sputtering process or an electroless metal deposition process or a combination of both processes is preferably used to produce a basic metallization.
  • a base metallization can advantageously be produced by sputtering copper and / or nickel. Copper deposition baths in particular are known for electroless deposition on non-conductive surfaces such as, for example, the film.
  • the currentless stripping process also has the advantage that it also ensures metal deposition at those locations on the component that are not accessible for sputtering. At such points, electrically non-conductive areas could arise with other methods, which then can no longer be reinforced. These points would then be potential leaks for the component and are avoided by using electroless metal deposition.
  • the electroless metal deposition is preferably carried out after the Sputtering of a basic metallization is carried out, since in particular a sputtered titanium / copper layer has advantages with regard to good adhesion to the film and largely prevents diffusion of moisture into the interior of the component during the subsequent wet chemical or electrochemical process.
  • Galvanic processes are particularly suitable for reinforcing the basic metallization, especially if there is already a continuous and dense basic metallization.
  • the deposition of copper is particularly suitable for galvanic reinforcement, which is then covered with a thinner layer of a corrosion-inhibiting metal, for example with nickel or a noble metal.
  • a corrosion-inhibiting metal for example with nickel or a noble metal.
  • the thickness of the metal layer used as the hermetically sealing layer is selected depending on the properties desired. Adequate tightness is obtained with just a few ⁇ m. If the hermetically sealing layer or the metal layer is used for HF shielding of electronic components, in particular for shielding HF frequencies working components, then a higher thickness can be used to achieve the desired HF shielding against external influences or for shielding against radiation from the component to be required. Metal layers with a thickness of approx. 3 to 14 ⁇ m are generally suitable. If the metal layer is used for HF shielding, it is preferably connected to ground. This can be done in such a way that a metallization is provided on the carrier in the contact area which is in direct contact with the metal layer and is connected to the ground connection of the component.
  • this metallization can be contacted by a through-contact through the carrier, which in turn is electrically conductively connected to ground connections on the underside of the carrier.
  • the metal layer is connected both to an electrical connection on the carrier and to the back of the chip. For this purpose, it is necessary to remove the film from the back of the chip at least in the area of this contact during structuring or in a separate step, or to expose the back of the chip there before the hermetically sealing layer is applied.
  • a chip is used which has a metallization on the back of the chip.
  • the electrical connection of this metallization via the metal layer of the hermetically sealing layer with an electrical component connection, for example on the underside of the carrier, can then be used for electrical tuning of the component, in particular for electrical tuning of a component working with acoustic waves, in particular a filter.
  • a layer is applied directly on the back of the chip before or after the application of the film, if in the latter case the back of the chip is exposed during structuring, which is suitable for damping bulk waves
  • the component in this Case is a component working with surface acoustic waves.
  • a bulk wave damping layer is acoustically adapted to the material of the chip and has a suitable E-module for damping.
  • materials are well known.
  • the application of inorganic and ceramic materials for example silicon dioxide, glass or silicon carbide, is also suitable for producing a hermetically sealing layer.
  • materials based on silicon dioxide and in particular glasses can be produced in a number of thin-film processes or applied to any surface. Glasses have the advantage that, due to their low melting point, they can be softened and compressed by means of a tempering step. The softening also results in a flow and thus a good surface-conforming surface coverage.
  • a plastic cover for a further embodiment of the encapsulation according to the invention, it is proposed to apply a plastic cover, a so-called glob top, to the carrier above the hermetically sealing layer.
  • This is applied to the carrier over the hermetically sealing layer in an initially liquid but mostly viscous form, preferably up to a height such that a uniform layer thickness is obtained over the carrier or a flat surface of the entire component.
  • Reaction resins are particularly suitable as glob top masking compounds.
  • thermoplastic molding compounds While the reaction resins can also be dripped or poured on, a suitable injection mold is required to apply molding compounds.
  • a mechanically and electrically adapted material or a combination of such materials is suitable for the carrier used according to the invention.
  • the carrier material preferably has sufficient mechanical strength and is also hermetically sealed against gases and moisture.
  • a carrier with a multilayer structure is preferably used, which has metallizations on the surface for contacting the component via bumps, and that on the back
  • connection metallizations for connecting to a circuit board, especially in SMD technology. Between two Layers can be provided with wiring levels, the connection between the different levels or the intermediate levels and the top and bottom of the carrier being made via vias. To increase the tightness, all plated-through holes from the top to the bottom of the carrier are not continuous and at least laterally offset from one another.
  • the carrier a plurality of materials are suitable, for example, alumina, glass, HTCC, LTCC or organic carriers such as PCB or foil materials such as Kapton ® or Mylar ®.
  • an LTCC ceramic is advantageous which, due to its low shrinkage during firing, has a precisely predetermined geometry of the metallizations.
  • Carriers made of organic materials can also be manufactured with an exact geometry, but they are less impervious to the environment.
  • a carrier can be used for connection to exactly one chip and is then preferably dimensioned in accordance with the chip dimensions. However, it is also possible to provide a carrier for receiving several chips, which then has correspondingly separate or separable metallizations for connecting the individual chips. After the chips have been applied to the carrier by means of flip-chip technology, the encapsulation method according to the invention can be carried out at once for all components or for the entire carrier. Finally, the carrier can then be separated into the individual chips by separating the carrier between the chips. This can be done for example by sawing, breaking or other separation processes.
  • the invention is used to encapsulate a module.
  • the carrier represents the module substrate on which the named component is applied together with other similar or different components.
  • the other components can be applied to the module using flip-chip technology as well as SMD technology. It is essential, however, that the entire module can be encapsulated by covering it with film, structuring the film and applying a hermetically sealing layer.
  • LTCC ceramics are particularly suitable for producing such modules.
  • the method according to the invention is advantageously used for the encapsulation of surface acoustic wave components, the component structures of which on the one hand cannot be covered with additional layers, but on the other hand are particularly sensitive to corrosion and other external influences and therefore require hermetic encapsulation.
  • the need for further miniaturization is particularly pronounced in surface wave components in order to achieve additional volume and weight savings in the preferred application in mobile telecommunications devices.
  • Another group of sensitive components that can be reliably and tightly encapsulated with the encapsulation according to the invention are sensors. It is therefore also possible to encapsulate optical and in particular optoelectronic components according to the invention. In this case, in particular translucent materials and in particular a translucent carrier are used. It is also possible for the encapsulation of optical components to keep the back of the component at least partially free of individual or all layers of the encapsulation.
  • FIG. 1 shows a schematic cross section of a component bonded to a flip chip carrier
  • Figure 2 shows a schematic cross section of the component with the film applied over it
  • FIG. 3 shows the component in a schematic cross section with different strip-like structuring options
  • FIG. 4 shows the component in a top view after a strip-like structuring
  • Figure 5 shows the component in plan view after a varied structuring
  • FIG. 6 shows the component in a schematic cross section after this structuring
  • FIG. 7 shows the component after the hermetically sealing layer has been applied
  • FIG. 8 shows a schematic cross section of the contacting of a rear side metallization on the chip with the hermetically sealing layer
  • FIG. 9 shows a schematic cross section of the electrical contacting of the hermetic layer with a ground connection on the underside of the carrier
  • Figure 10 shows the component after the application of a glob top plastic cover
  • FIG. 11 shows a component with a bulk wave damping layer on the back of the chip
  • FIG. 1 shows a schematic cross section of a chip 1, which carries component structures 2 on its underside and is designed, for example, as a surface wave component.
  • the chip 1 is connected to metal pads on a carrier 4 via bump solder connections 3.
  • the carrier 4 is constructed here in two layers and has multi-layer wiring.
  • the middle metallization level 5 is used for interconnection and, if necessary, for sealing the plated-through holes 7.
  • the component structures 2 are connected to the ones with connection metallizations 6 on the underside of the carrier.
  • the plated-through holes 7 through a separate layer of the carrier are always laterally offset from one another, so that through-holes 4 are avoided through the entire carrier, which represent potential leaks for the hermetic encapsulation of the component.
  • FIG. 2 A plastic film 8 is now applied over the back of the component 1 and the entire carrier 4 and laminated by increasing the temperature and under pressure onto the back of the chip 1 and the surface of the carrier 4 surrounding it. This creates a tight connection between the film 8 and the surface of the carrier 4 in an edge region 13 surrounding the chip 1.
  • FIG. 3 shows in a schematic cross section how strip-shaped structures 9 of the plastic film 8 are also used to expose strip-shaped regions of the carrier surface.
  • FIG. 4 shows a schematic plan view of the carrier 4 and the chip 1 bonded thereon and an exemplary arrangement of these strip-shaped structures 9. Leaving an edge region 13 around the chip 1, the strip-like structures 9 run parallel to the outer edge of the chip or parallel to the edge region. In the strip-like structuring, the bring hermetically sealed layer with the surface of the carrier 4 hermetically.
  • FIG. 3 shows further possibilities for stripe-shaped structuring 10 along the side walls of the chip 1 and structuring 11 on the back of the chip. These, individually or in combination, can also serve to bring the subsequent hermetically sealing layer into intimate (hermetic) contact with the chip body. However, sufficient hermetic coverage is achieved without these additional structures 10 and 11.
  • FIG. 5 shows, in a schematic plan view of the surface of the carrier and the chip 1, a further possibility for structuring the film 8.
  • the film 8 is removed in a wide and, for example, 200 ⁇ m wide strip.
  • FIG. 6 shows the component according to this structuring variant in a schematic cross section.
  • the contact strip 12 is now free of film, in contrast, the film sits tightly on the carrier 4 in the edge region 13.
  • a metal layer 14 is now applied as a hermetically sealing layer to the film 8 structured according to one of the methods mentioned.
  • a metallic base layer is preferably first produced by sputtering on titanium and copper. This layer has a thickness of less than one ⁇ m, for example.
  • the base metallization is then reinforced by electroless deposition of, for example, copper by approximately 1 to 12 ⁇ m.
  • the electrolessly deposited metallization can then be galvanically reinforced, for example also with copper.
  • An approximately 2 ⁇ m thick nickel layer (in particular for RF shielding) is then applied.
  • the metallization is advantageously adapted to the thermal expansion of the carrier.
  • ne hermetically sealed metal layer 14 is obtained, which lies well on all sides on the structured film 8 and which comes into contact with the surface of the carrier 4 in the freely structured edge 12 (contact area) or alternatively in the strip-shaped structuring 9. This contact forms a hermetic seal to the carrier 4 around the chip.
  • FIG. 8 shows a schematic cross section of a further embodiment of the invention, in which the chip 1 has a rear-side metallization 16 at least in parts of its rear side.
  • the rear side metallization 16 is at least partially exposed.
  • the rear side metallization 16 is exposed at point 15 in the form of dots or strips.
  • the hermetically sealed layer or the metal layer 14 is applied, it can come into electrically conductive contact with the rear side metallization 16 exposed there at the point 15.
  • FIG. 9 shows an embodiment in which the metal layer forming the hermetic layer 14 overlaps with a metallization 17 and thus makes an electrical contact.
  • the metallization 17 is electrically conductively connected to a ground connection formed on the underside of the carrier 4. This makes it possible to connect the hermetic layer 14 to ground at freely definable edge locations, as a result of which better HF shielding of the component is achieved.
  • FIG. 10 shows a schematic cross section of a further embodiment of the invention of a glob top cover over the hermetically sealed layer.
  • This plastic cover 18 is applied here at such a height that it forms a flat surface parallel to the surface of the carrier.
  • This cover for example made of reactive resin, leads to a further improved hermetic seal of the component against the environment.
  • FIG. 11 shows a further embodiment of the invention in which the film 8 and the hermetic cover 14 are combined with a bulk wave damping layer 19.
  • the bulk wave damping layer 19 is applied to the back of the chip before the chip is applied. The possibility of removing the film in the region of the rear side above the bulk wave damping layer 19 is not shown. It is also possible to apply the volume wave damping layer 19 in the area of the rear side above the film 8 but below the hermetically sealing layer 14, for example before structuring the plastic layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

Zur hermetischen Verkapselung eines in Flip-Chip-Bauweise auf einem Träger (4) aufgebrachten Bauelements (1) wird vorgeschlagen, dieses zunächst mit einer dicht auf dem Bauelement und dem Träger aufliegenden Folie (8) abzudecken, diese zu strukturieren und darüber eine hermetisch abdichtende Schicht (14), insbesondere eine Metallschicht aufzubringen, die hermetisch mit dem Träger abschließt.

Description

Beschreibung
Verfahren zur hermetischen Verkapselung eines Bauelementes
Ein Verfahren zur hermetischen Verkapselung eines Bauelementes ist beispielsweise aus der WO 99/43084 bekannt. Dort werden Bauelemente, insbesondere Oberflächenwellenbauelemente, auf einem mit lötbaren Anschlußflächen versehenen Träger in Flipchiptechnik aufgebracht. Dabei ist das Bauelement über Bumps (Lotkugeln) im lichten Abstand zum Träger so auf diesem aufgelötet, daß die Oberfläche mit den Bauelementstrukturen zum Träger weist. Zur hermetischen Verkapselung der auf dem Träger befindlichen Bauelemente werden diese schließlich mit einer Metallfolie oder einer metallbeschichteten Kunststoffo- lie auf dem Träger von der Rückseite her abgedeckt und verklebt oder laminiert. Die Folie schließt dabei zwischen den auf dem Träger aufgebrachten Bauelementen dicht mit dem Träger ab, so daß eine hermetische Verkapselung für die Bauelementstrukturen entsteht. Vorgeschlagen wird auch, die Verkap- seiung durch Umpressen oder Vergießen, z. B. mit Epoxidharz weiter zu stabilisieren und weiter hermetisch abzudichten. Anschließend können die Bauelemente durch Auftrennen der Trägerplatte vereinzelt werden.
Es hat sich herausgestellt, daß die Verwendung einer Metall - folie ebenso wie die Verwendung einer metallbeschichteten Kunststoffolie zur direkten Aufbringung auf die Rückseite des Bauelementes mit Problemen behaftet ist und zu Bauelementen führen kann, deren hermetische Abdichtung unbefriedigend ist.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung einer hermetischen Verkapselung anzugeben, welches einfach durchzuführen ist und in sicherer Weise zu einem hermetisch verkappselten Bauelement führt.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestal- tungen der Erfindungen sowie vorteilhafte Anwendungen der Erfindung sind weiteren Ansprüchen zu entnehmen.
Die Erfindung schlägt vor, ein in Flipchipbauweise auf einem Träger aufgebrachtes Bauelement zunächst mit einer ersten Folie zu überdecken, diese im Randbereich um das Bauelement mit der Oberfläche des Trägers zu verbinden, die Folie anschließend zu strukturieren, und als letzten Schritt eine hermetisch abdichtende Schicht über der Folie so aufzubringen, daß sie außerhalb des Randbereiches hermetisch dicht mit dem Träger abschließt.
Durch die Auftrennung der Verkapselung in zwei unabhängig voneinander aufzubringende Schichten ist es möglich, die bei- den Schritte unabhängig voneinander zu optimieren. Der erste Schritt kann dabei so angepaßt werden, daß die Folie im Zusammenwirken mit den Aufbringbedingungen dicht auf Bauelementrückseite und im Randbereich um das Bauelement herum auf dem Träger dicht aufliegt. In einem Zwischenschritt erfolgt die Strukturierung der Folie, wobei insbesondere eine Dimensionierung der abdeckenden Folie erfolgt, die die Größe des verkappselten Bauelementes festlegt. Desweiteren wird bei der Strukturierung außerhalb des Randbereiches, diesen umfassend die Oberfläche des Trägers freigelegt, damit die hermetisch abdichtende Schicht dort in Kontakt mit dem Träger treten kann, um ein dichtes Abschließen mit dem Träger zu gewährleisten.
Die bereits dicht das Bauelement umschließende und auf dem Träger aufliegende Folie ermöglicht es, die hermetische
Schicht in einer Vielzahl unterschiedlicher Verfahren aufzubringen. Da das Bauelement unter der Folie abgedeckt ist, sind auch isotrope Schichterzeugungsverfahren, naßchemische Verfahren, Gas- oder Dampf erfahren ebenso wie Plas averf h- ren einsetzbar. Bei geeignet ausgewählter Folie kann die hermetisch abdichtende Schicht auch als Schmelze aufgebracht werden. Im Vergleich zum bekannten Verfahren, bei dem bei- spielsweise eine metallbeschichtete Kunststo folie als alleinige Abdeckung verwendet wird, wird bei erfindungsgemäßen Verfahren die Dichtigkeit durch die zwei unabhängig voneinander aufzubringenden Schichten bzw. Folien erheblich verbes- sert . Während das Aufbringen der Folie auf Formschlüssigkeit hin optimiert sein kann, kann die zweite Schicht auf die Dichtigkeit optimiert werden.
Ein formschlüssiges Aufbringen der Folie auf die Chiprücksei- te und den Träger gelingt erfindungsgemäß insbesondere mit einer thermoplastischen Folie. Diese läßt sich bei Aufbringung unter erhöhter Temperatur erweichen und unter Druck auf Chiprückseite und Oberfläche des Trägers auflaminieren. Das formschlüssige Aufbringen läßt sich durch Anlegen eines Un- terdrucks zwischen Folie und Träger unterstützen.
Als thermoplastisches Material für die Folie sind insbesondere solche Materialien geeignet, die beständig gegen den Kontakt mit stromführenden Metalloberflächen sind, die korrosi- ons- und alterungsstabil sind, keine Ausgasungen zeigen, eine hohe Temperaturbeständigkeit aufweisen und/oder eine ausreichende Haftung auf dem Trägermaterial besitzen. Ein weiteres Kriterium ist die Laminierfähigkeit der entsprechenden Folie, die beim Erweichen und Laminieren während des Aufbringens auf den Chip und den Träger keine Beschädigungen und insbesondere Risse oder Löcher erhalten darf. Geeignet sind insbesondere Folien aus Polyamid- und Polyimid, die eine hohe Thermostabi- lität aufweisen.
Weitere geeignete Materialien für die Folie sind Duroplaste und Reaktionsharze, beispielsweise Epoxidharze. Wegen der beschränkten Laminiereigensc aften ausgehärteter Duroplaste und Reaktionsharze werden Folien aus solchen Materialien vorzugsweise in einem ungehärteten oder zumindest nichtvollständig ausgehärteten Zustand verwendet. Für Reaktionsharze ist beispielsweise die Technik des Vorhanggießens geeignet, bei dem aus einem flüssigen Polymer, z.B. einem Reaktionsharz, eine dünne Folie durch Gießen auf ein Substrat hergestellt und anschließend auf dem Substrat gehärtet wird. Bei geeignet eingestellter Konsistenz des Reaktionsharzes läßt sich eine solche Schicht wie eine Folie handhaben.
Da die Aufbringung der Folie mit mechanischem Druck auf den Chip und dabei zu einer Verformung der Flip-Chip-Verbindung kommen kann, wird vorteilhaft für die Bumps ein Material hoher Festigkeit gewählt, das beim Aufbringen der Folien keine mechanische Verformung zeigt. Dafür sind insbesondere SnAg,
SnAgCu, SnCu, Au oder Leitkleber geeignet. Damit werden unerwünschte und unkontrollierbare Geometrieänderungen des Bauelements während des Verfahrens vermieden.
Zur Strukturierung der aufgebrachten Folie sind verschiedene Techniken geeignet. Möglich ist es beispielsweise, mit Hilfe einer Photolithographie die Bereiche der Folie zu definieren und zu schützen, die auf dem Träger bzw. dem Bauelement verbleiben sollen. Als Strukturierungsmittel kann dann ein naß- chemisches oder ein Plasma-Ätzverfahren eingesetzt werden.
Möglich ist es jedoch auch, die Strukturierung der Folie direkt vorzunehmen, beispielsweise durch mechanische Schichtabtragungsverfahren oder mittels eines Lasers. Die Strukturierung erfolgt dabei so, daß die Folie in dem Randbereich defi- nierter Breite rund um den Chip, in dem sie auch fest auf dem Träger aufliegt, erhalten bleibt. Die Funktion der Folie als Abdichtung des Bauelementes gegenüber dem Aufbringverfahren der hermetisch abdichtenden Schicht oder als Komponente der gesamten Verkapselung bleibt so erhalten bzw. gewährleistet. Die Folie wird dann außerhalb des Randbereiches zumindest soweit entfernt, daß ringförmig um den Randbereich herum ein ausreichend breiter Oberflächenbereich des Trägers freigelegt wird, um ein dichtes Abschließen der aufzubringenden hermetisch dichten Schicht mit dem Träger zu gewährleisten.
In einer weiteren Ausgestaltung der Erfindung ist es möglich, die Folie nicht in einem ausreichend breiten Streifen, son- dern im Bereich von zumindest zwei wesentlich schmaleren Streifen, die im geringen Abstand parallel zum Randbereich diesen umfassen, zu entfernen. Auf diese Weise wird im Kontaktbereich eine hermetische Abdichtung der hermetisch dich- ten Schicht zum Träger auf einer wesentlich geringeren Fläche ermöglicht, als bei Verwendung nur eines Streifens. Dadurch wird die zur hermetischen Verkapselung des Bauelementes erforderliche Oberfläche auf dem Träger und damit auch die Größe des gesamten Bauelementes reduziert. Ausreichend ist es beispielsweise, die Streifen mit einer Breite und in einem
Abstand zueinander auszubilden, der jeweils ungefähr der Dik- ke der Folie entspricht. Während bei einem einzigen Kontaktstreifen für die hermetische Schicht zum Träger eine relativ große Streifenbreite vorgesehen wird, sind für die z. B. zwei streifenförmigen Kontaktbereiche nur Breiten von beispielsweise eweils ca. 35 μm erforderlich, was einen geringeren Flächenbedarf erfordert. Bei Bedarf ist es möglich, die Folie im Bereich von mehr als zwei parallelen Streifen zu entfernen um die Dichtigkeit der hermetischen Schicht bzw. den dichten Abschluß der hermetischen Schicht gegenüber dem Träger weiter zu erhöhen. Damit wird auch eine weiter verbesserte Dichtigkeit der gesamten Verkapselung erhalten.
In einer weiteren Ausgestaltung der Erfindung wird vorge- schlagen, zur Erhöhung der Dichtigkeit der Verkapselung neben der Oberfläche des Trägers auch einen Bereich der Chipoberfläche, insbesondere auf der Rückseite oder umlaufend an den Seitenflächen frei zu legen, um hier einen dichten Kontakt der hermetisch dichtenden Schicht direkt mit dem Chip zu er- möglichen. Auch hierzu kann die partielle Entfernung der Folie in einem streifenförmigen Bereich mit Hilfe einer Lasertechnik erfolgen, wobei der Streifen entweder auf den seitlichen Außenflächen des Chips verläuft und ringförmig geschlossen ist oder auf der Rückseite des Chips angeordnet ist und in der Nähe der Außenkanten des Chips verläuft. Möglich ist es jedoch auch, einen Teil der Rückseite oder die gesamte Rückseite des Chips mit dem verwendeten Strukturierungsver- fahren, beispielsweise auch mit einer Photolithographie- Technik freizulegen.
In einer weiteren Ausgestaltung der Erfindung, kann der Chip auf der Rückseite mit zumindest einer Teilmetallisierung versehen werden, vorzugsweise aber ganzflächig metallisiert werden. Auf diese Weise kann eine gut wärmeleitende Verbindung zwischen Chip und hermetisch abdichtender Schicht hergestellt werden, was durch die verwendete Folie allein nicht unbedingt gewährleistet ist. Die Rückseitenmetallisierung kann darüber hinaus mit den BauelementStrukturen auf der zur Oberfläche des Trägers weisenden Vorderseite des Chips verbunden sein. Auf diese Weise gelingt eine zusätzliche Anschlußmδglichkeit für die Bauelementstrukturen auf der Rückseite des Chips .
Vorzugsweise wird als hermetisch abdichtende Schicht eine Metallschicht aufgebracht. Diese kann insbesondere in einem mehrstufigen Verfahren erzeugt werden, wobei zunächst eine Grundmetallisierung ganzflächig auf Folie und im Kontaktbe- reich freigelegte Oberfläche des Trägers aufgebracht wird, die in einem anschließenden Schritt verstärkt wird. Vorzugsweise wird zur Erzeugung einer Grundmetallisierung ein Sput- ter-Verfahren oder ein stromloses Metallabscheidungsverfahren oder eine Kombination beider Verfahren verwendet. Vorteilhaft läßt sich beispielsweise eine Grundmetallisierung durch Sput- tern von Kupfer und/oder Nickel erzeugen. Zur stromlosen Abscheidung auf nichtleitenden Oberflächen wie beispielsweise der Folie sind insbesondere Kupferabscheidebäder bekannt. Das stromlose Abseheideverfahren hat außerdem den Vorteil, daß es eine Metallabscheidung auch an solchen Stellen des Bauelementes sicher stellt, die für das Sputtern nicht zugänglich sind. An solchen Stellen könnten mit anderen Verfahren elektrisch nicht leitende Bereiche entstehen, die dann auch nicht mehr verstärkt werden können. Diese Stellen wären dann poten- tielle Undichtigkeiten für das Bauelement und werden durch die Verwendung der stromlosen Metallabscheidung vermieden. Vorzugsweise wird die stromlose Metallabscheidung nach dem Aufsputtern einer Grundmetallisierung durchgeführt, da insbesondere eine aufgesputterte Titan/Kupferschicht Vorteile bezüglich einer guten Haftung auf der Folie aufweist und eine Diffusion von Feuchte in das Bauelement-Innere während des nachfolgenden naßchemischen bzw. elektrochemischen Prozeßes weitgehend verhindert .
Zur Verstärkung der Grundmetallisierung sind insbesondere galvanische Verfahren geeignet, insbesondere wenn bereits ei- ne durchgängige und dichte Grundmetallisierung vorliegt. Zur galvanischen Verstärkung ist insbesondere die Abscheidung von Kupfer geeignet, die anschließend noch mit einer dünneren Schicht eines korrosionsinhibierenden Metalles abgedeckt wird, beispielsweise mit Nickel oder einem Edelmetall. Mög- lieh ist es jedoch auch, die Metallschicht durch stromlose Abscheidung entweder direkt auf das Bauelement oder auf die Grundmetallisierung bis zur gewünschten Dicke zu erzeugen. Möglich ist es jedoch auch, die Metallschicht mit oder ohne Grundmetallisierung durch Aufdampfen eines Metalls oder durch Inkontaktbringen des Bauelements mit einer Metallschmelze zu erzeugen. Geeignet sind auch Kombinationen der angegebenen Verfahren.
Die Dicke der Metallschicht, die als hermetisch abdichtende Schicht verwendet wird, wird in Abhängigkeit von den gewünschten Eigenschaften gewählt . Eine ausreichende Dichtigkeit wird bereits mit wenigen μm erhalten. Wird die hermetisch abdichtende Schicht bzw. die Metallschicht zur HF Abschirmung von elektronischen Bauelementen verwendet, insbe- sondere zur Abschirmung von HF Frequenzen arbeitenden Bauelementen, so kann eine höhere Dicke zum Erreichen der gewünschten HF Abschirmung gegen äußere Einflüsse oder zur Abschirmung gegenüber Abstrahlung aus dem Bauelement erforderlich sein. Geeignet sind generell Metallschichten ab einer Dicke von ca. 3 bis 14 μm. Wird die Metallschicht zur HF-Abschirmung verwendet, so wird sie vorzugsweise mit Masse verbunden. Dies kann dergestalt erfolgen, daß auf dem Träger im Kontaktbereich, der direkt mit der Metallschicht in Kontakt steht, eine Metallisierung vorgesehen ist, die mit dem Masseanschluß des Bauelementes verbunden ist. Beispielsweise kann diese Metallisierung mit einer Durchkontaktierung durch den Träger kontaktiert sein, die wiederum mit Masseanschlüssen auf der Unterseite des Trägers elektrisch leitend verbunden ist. In einer weiteren Aus- gestaltung der Erfindung wird die Metallschicht sowohl mit einem elektrischen Anschluß auf dem Träger als auch mit der Chiprückseite verbunden. Dazu ist es erforderlich, die Chiprückseite zumindest im Bereich dieses Kontaktes bei der Strukturierung oder in einem separaten Schritt von der Folie zu befreien, bzw. die Chiprückseite dort vor dem Aufbringen der hermetisch abdichtenden Schicht freizulegen. Hierzu wird ein Chip verwendet, der auf der Chiprückseite eine Metallisierung aufweist. Die elektrische Anbindung dieser Metallisierung über die Metallschicht der hermetisch abdichtenden Schicht mit einem elektrischen Bauelement Anschluß beispielsweise auf der Unterseite des Trägers kann dann zur elektrischen Abstimmung des Bauelementes, insbesondere zur elektrischen Abstimmung eines mit akustischen Wellen arbeitenden Bauelementes, insbesondere eines Filters dienen.
In einer weiteren Ausgestaltung der Erfindung wird direkt auf der Chiprückseite vor oder nach dem Aufbringen der Folie, wenn im letzteren Fall beim Strukturieren die Rückseite des Chips frei gelegt wird, eine Schicht aufgebracht, die zur Dämpfung von Volumenwellen geeignet ist, wobei das Bauelement in diesem Fall ein mit akustischen Oberflächenwellen arbeitendes Bauelement ist . Eine solche Volumenwellen dämp ende Schicht ist akustisch an das Material des Chips angepaßt und weist einen zur Dämpfung geeigneten E-Modul auf. Solche Mate- rialien sind hinlänglich bekannt. Weiterhin ist zur Erzeugung einer hermetisch abdichtenden Schicht auch das Aufbringen von anorganischen und keramischen Materialien geeignet, beispielsweise Siliziumdioxid, Glas oder Silziumcarbid. Insbesondere Materialien auf der Basis von Silziumdioxid und insbesondere Gläser lassen sich in einer Reihe von Dünnschichtverfahren erzeugen bzw. auf beliebige Oberflächen aufbringen. Gläser haben den Vorteil, daß sie auf Grund ihres niedrigen Schmelzpunktes mittels eines Temperschritts erweicht und verdichtet werden können. Durch das Erweichen wird auch ein Verfließen und damit eine gute oberflächenkonforme Flächenabdeckung erzielt .
Zur weiteren Ausgestaltung der erfindungsgemäßen Verkapselung wird vorgeschlagen, auf dem Träger über der hermetisch ab- dichtenden Schicht noch eine Kunststoffabdeckung aufzubringen, einen sogenannten Glob Top. Dieser wird in zunächst flüssiger aber zumeist viskoser Form ganzflächig auf den Träger über der hermetisch abdichtenden Schicht aufgebracht, vorzugsweise bis zu einer solchen Höhe, daß eine einheitliche Schichtdicke über dem Träger, bzw. eine ebene Oberfläche des gesamten Bauelements erhalten wird. Als Glob Top Abdeckmassen sind insbesondere Reaktionsharze geeignet. Möglich ist es jedoch auch, thermoplastische Pressmassen dazu zu verwenden. Während die Reaktionsharze auch aufgetropft bzw. vergossen werden können, ist zum Aufbringen von Pressmassen eine entsprechende Spritzform erforderlich.
Für den erfindungsgemäß verwendeten Träger ist ein mechanisch und elektrisch angepaßtes Material oder eine Kombination sol- eher Materialien geeignet. Das Trägermaterial weist vorzugsweise ausreichend mechanische Festigkeit auf und ist außerdem hermetisch dicht gegenüber Gasen und Feuchtigkeit. Vorzugsweise wird ein Träger mit mehrschichtigem Aufbau verwendet, welcher auf der Oberfläche Metallisierungen zur Kontaktierung des Bauelements über Bumps aufweist, und der an der Rückseite
Anschlußmetallisierungen zum Verbinden mit einer Leiterplatte, insbesondere in SMD Technik besitzt. Zwischen zwei Schichten können Verdrahtungsebenen vorgesehen sein, wobei die Verbindung zwischen den unterschiedlichen Ebenen bzw. den Zwischenebenen und der Ober- und Unterseite des Trägers über Durchkontaktierungen erfolgt. Zur Erhöhung der Dichtigkeit sind alle Durchkontaktierungen von der Oberseite zur Unterseite des Trägers nicht durchgehend und zumindest seitlich gegeneinander versetzt. Für den Träger sind eine Vielzahl von Materialien geeignet, beispielsweise Aluminiumoxid, Glas, HTCC, LTCC oder organische Träger wie beispielsweise PCB oder Folienmaterialien wie Kapton ® oder Mylar ®. Um bei zunehmender Miniaturisierung der Bauelemente noch eine zuverlässige Kontaktierung zu erreichen, insbesondere beim Flipchip Bonden des Bauelements auf den Träger, ist eine LTCC Keramik von Vorteil, die auf Grund ihres geringen Schwunds beim Brennen eine exakt vorherbestimmte Geometrie der Metallisierungen aufweist . Träger aus organischen Materialien können zwar ebenfalls mit exakter Geometrie hergestellt werden, weisen dafür jedoch eine geringere Dichtigkeit gegenüber Umwelteinflüssen auf.
Ein Träger kann zur Verbindung mit genau einem Chip eingesetzt werden und ist dann vorzugsweise entsprechend den Chipabmessungen dimensioniert. Möglich ist es jedoch auch, einen Träger zur Aufnahme mehrerer Chips vorzusehen, welcher dann entsprechend getrennte bzw. auftrennbare Metallisierungen zum Anschließen der einzelnen Chips aufweist. Nach dem Aufbringen der Chips auf den Träger mittels Flipchiptechnik kann das erfindungsgemäße Verfahren zur Verkapselung für alle Bauelemente bzw. für den gesamten Träger auf einmal durchge- führt werden. Abschließend kann der Träger dann in die einzelnen Chips vereinzelt werden, indem der Träger zwischen den Chips aufgetrennt wird. Dies kann beispielsweise mittels Sägen, Brechen oder anderer Trennverfahren erfolgen.
In einer weiteren Ausgestaltung wird die Erfindung zur Verkapselung eines Moduls verwendet. In diesem Fall stellt der Träger das Modulsubstrat dar, auf dem das genannte Bauelement zusammen mit weiteren gleichartigen oder unterschiedlichen Bauelementen aufgebracht is . Die weiteren Bauelemente können dabei sowohl in Flipchiptechnik als auch in SMD Technik auf dem Modul aufgebracht sein. Wesentlich ist jedoch, daß das gesamte Modul durch Abdeckung mit Folie, Strukturierung der Folie und Aufbringen einer hermetisch abdichtenden Schicht verkapselt werden kann. Zur Herstellung solcher Module sind insbesondere LTCC-Keramiken geeignet .
Eine vorteilhafte Anwendung findet das erfindungsgemäße Verfahren zur Verkapselung von Oberflächenwellenbauelementen, deren Bauelementstrukturen einerseits nicht mit zusätzlichen Schichten abgedeckt werden können, die aber andererseits besonders empfindlich gegen Korrosion und andere äußere Ein- flüsse sind und daher einer hermetischen Verkapselung bedürfen. Darüber hinaus ist bei Oberflächenwellenbauelementen das Bedürfnis zur weiteren Miniaturisierung besonders ausgeprägt, um bei der bevorzugten Anwendung in mobilen Geräten der Telekommunikation eine zusätzliche Volumen- und Gewichtserspar- nis zu erreichen. Mit der erfindungsgemäßen Verkapselung wird eine besonders kleine und leichte Verpackung bzw. Verkapselung der Bauelemente, hier der Oberflächenwellenbauelemente, erreicht .
Eine weitere Gruppe empfindlicher Bauelemente, die mit der erfindungsgemäßen Verkapselung zuverlässig und dicht verkapselt werden können, sind Sensoren. Möglich ist es daher auch, optische und insbesondere optoelektronische Bauelemente erfindungsgemäß zu verkapseln. In diesem Fall werden insbeson- dere lichtdurchlässige Materialien und insbesondere ein lichtdurchlässiger Träger verwendet. Möglich ist es auch, zur Verkapselung von optischen Bauelementen die Rückseite des Bauelements zumindest teilweise von einzelnen oder allen Schichten der Verkapselung freizuhalten.
Im folgenden wird die Erfindung an Hand von Ausführungsbei- spielen und der dazugehörigen Figuren näher beschrieben. Figur 1 zeigt im schematischen Querschnitt ein auf einem Träger Flip Chip gebondetes Bauelement
Figur 2 zeigt im schematischen Querschnitt das Bauelement mit der darüber aufgebrachten Folie
Figur 3 zeigt das Bauelement im schematischen Querschnitt mit unterschiedlichen streifenförmigen Strukturierungsmöglichkei- ten
Figur 4 zeigt das Bauelement in der Draufsicht nach einer streifenförmigen Strukturierung
Figur 5 zeigt das Bauelement in der Draufsicht nach einer variierten Strukturierung
Figur 6 zeigt das Bauelement im schematischen Querschnitt nach dieser Strukturierung
Figur 7 zeigt das Bauelement nach dem Aufbringen der hermetisch abdichtenden Schicht
Figur 8 zeigt im schematischen Querschnitt die Kontaktierung einer Rückseitenmetallisierung auf dem Chip mit der hermetisch abdichtenden Schicht
Figur 9 zeigt im schematischen Querschnitt die elektrische Kontaktierung der hermetischen Schicht mit einem Massean- Schluß auf der Unterseite des Trägers
Figur 10 zeigt das Bauelement nach dem Aufbringen einer Glob Top-Kunststoffabdeckung
Figur 11 zeigt ein Bauelement mit einer Volumenwellen dämpfenden Schicht auf der Rückseite des Chips Figur 1 zeigt im schematischen Querschnitt einen Chip 1, der auf seiner Unterseite BauelementStrukturen 2 trägt, und beispielsweise als Oberflächenwellenbauelement ausgebildet ist. Über Bump-LötVerbindungen 3 ist der Chip 1 mit metallischen Anschlußflächen auf einem Träger 4 verbunden. Der Träger 4 ist hier zweischichtig aufgebaut und weist eine Mehrlagenverdrahtung auf. Die mittlere Metallisierungsebene 5 dient zur Verschaltung und falls erforderlich zur Abdichtung der Durchkontaktierungen 7. Über die Durchkontak ierungen 7 und die Bumps 3 sind die BauelementStrukturen 2 mit den mit Anschlußmetallisierungen 6 auf der Unterseite des Trägers verbunden. Die Durchkontaktierung 7 durch getrennte Schicht des Trägers sind dabei stets seitlich gegeneinander versetzt, so daß durch den gesamten Träger 4 durchgängige Bohrungen vermieden werden, die potentielle Undichtigkeiten für die hermetische Verkapselung des Bauelements darstellen.
Figur 2 : Über die Rückseite des Bauelements 1 und den gesamten Träger 4 wird nun eine aus Kunststoff bestehende Folie 8 aufgebracht und durch Temperaturerhöhung und unter Druck auf die Rückseite des Chips 1 und die sie umgebende Oberfläche des Trägers 4 auflaminiert . Dabei entsteht in einem dem Chip 1 umschließenden Randbereich 13 eine dichte Verbindung der Folie 8 mit der Oberfläche des Trägers 4.
Figur 3 zeigt im schematischen Querschnitt, wie mit Hilfe streifenförmiger Strukturierungen 9 der Kunststoffolie 8 ebenso streifenförmige Bereiche der Trägeroberfläche freigelegt werden.
Figur 4 zeigt in schematischer Draufsicht auf den Träger 4 den darauf aufgebondeten Chip 1 und eine beispielhafte Anordnung dieser streifenförmigen Strukturierungen 9. Unter Belassung eines Randbereichs 13 um den Chip 1 verlaufen die streifenförmigen Strukturierungen 9 parallel zur Chipaußenkante bzw. parallel zum Randbereich. In den streifenförmigen Strukturierungen kann die im späteren Verfahrensschritt auf- gebrachte hermetisch abdichtende Schicht mit der Oberfläche des Trägers 4 hermetisch abschließen.
In Figur 3 sind weitere Möglichkeiten für streifenförmige Strukturierungen 10 entlang der Seitenwände des Chips 1 und Strukturierungen 11 auf der Rückseite des Chips. Diese können einzeln oder in Kombination ebenfalls dazu dienen, die spätere hermetisch abdichtende Schicht in innigen (hermetischen) Kontakt mit dem Chipkörper zu bringen. Doch wird eine ausrei- chende hermetische Abdeckung bereits ohne diese zusätzlichen Strukturierungen 10 und 11 erreicht.
Figur 5 zeigt in schematischer Draufsicht auf die Oberfläche des Trägers und den Chip 1 eine weitere Möglichkeit, die Fo- lie 8 zu strukturieren. Um den den Chip 1 umgebenden Randbereich 13 herum wird die Folie 8 in einem breiten und beispielsweise 200 μm breiten Streifen entfernt.
Figur 6 zeigt das Bauelement nach dieser Strukturierungsvari- ante im schematischen Querschnitt. Der Kontaktstreifen 12 ist nun frei von Folie, im Randbereich 13 dagegen sitzt die Folie dicht auf dem Träger 4 auf .
Auf die nach einem der genannten Verfahren strukturierte Fo- lie 8 wird nun als hermetisch abdichtende Schicht eine Metallschicht 14 aufgebracht. Dazu wird vorzugsweise zunächst eine metallische Grundschicht durch Aufsputtern von Titan und Kupfer erzeugt. Diese Schicht hat beispielsweise eine Dicke von weniger als ein μm. Zur Vermeidung nicht metallisierter Folienbereiche wird die Grundmetallisierung anschließend durch stromlose Abscheidung von beispielsweise Kupfer um ca. 1 bis 12 μm verstärkt. Anschließend kann die stromlos abgeschiedene Metallisierung noch galvanisch verstärkt werden, beispielsweise ebenfalls mit Kupfer. Anschließend wird eine ca. 2 μm dicke Nickelschicht (insbesondere zum RF Shielding) aufgebracht. Vorteilhaft wird die Metallisierung an die thermische Ausdehnung des Trägers angepaßt. Als Ergebnis wird ei- ne hermetisch dichte Metallschicht 14 erhalten, die allseits gut auf der strukturierten Folie 8 aufliegt und die im frei strukturierten Rand 12 (Kontaktbereich) bzw. alternativ in der streifenförmigen Strukturierung 9 in Kontakt mit der Oberfläche des Trägers 4 tritt. Dieser Kontakt bildet um den Chip herum einen hermetischen Abschluß zum Träger 4.
Figur 8 zeigt im schematischen Querschnitt eine weitere Ausgestaltung der Erfindung, bei der der Chip 1 zumindest in Teilbereichen seiner Rückseite eine Rückseitenmetallisierung 16 aufweist. Beim Strukturieren der Folie 8 wird die Rückseitenmetallisierung 16 zumindest teilweise freigelegt. Im dargestellten Ausführungsbeispiel ist die Rückseitenmetallisierung 16 an der Stelle 15 punkt- bzw. streifenförmig freige- legt. Beim Aufbringen der hermetisch dichten Schicht bzw. der Metallschicht 14 kann diese an der Stelle 15 in elektrisch leitenden Kontakt mit der dort freigelegten Rückseitenmetallisierung 16 treten.
Figur 9 zeigt eine Ausgestaltung, bei der die die hermetische Schicht 14 bildende Metallschicht mit einer Metallisierung 17 überlappt und so einen elektrischen Kontakt herstellt . Die Metallisierung 17 ist elektrisch leitend mit einem auf der Unterseite des Trägers 4 ausgebildeten Masseanschluß verbun- den. Dadurch ist es möglich, die hermetische Schicht 14 an frei definierbaren Randstellen mit Masse zu verbinden, wodurch eine bessere HF Abschirmung des Bauelements erreicht wird.
Figur 10 zeigt im schematischen Querschnitt eine weitere Ausgestaltung der Erfindung einer Glob Top-Abdeckung über der hermetisch dichten Schicht. Diese Kunststoffabdeckung 18 ist hier in einer solchen Höhe aufgebracht, daß sie eine ebene Oberfläche parallel zur Oberfläche des Trägers ausbildet. Diese beispielsweise aus Reaktionsharz ausgeführte Abdeckung führt zu einem weiter verbesserten hermetischen Abschluß des Bauelements gegen die Umwelt. Figur 11 zeigt eine weitere Ausgestaltung der Erfindung bei der die Folie 8 und die hermetische Abdeckung 14 mit einer Volumenwellen dämpfenden Schicht 19 kombiniert ist. In der dargestellten Ausführung ist die Volumenwellen dämpfende Schicht 19 vor der Aufbringung des Chips auf der Rückseite des Chips aufgebracht. Nicht dargestellt ist die Möglichkeit, über der Volumenwellen dämpfenden Schicht 19 die Folie im Bereich der Rückseite zu entfernen. Möglich ist es auch, die Volumenwellen dämpfende Schicht 19 im Bereich der Rückseite oberhalb der Folie 8, aber unterhalb der hermetisch abdichtenden Schicht 14 aufzubringen, beispielsweise vor der Strukturierung der Kunststoffschicht .
Die Erfindung konnte zwar nur an Hand weniger konkreter Ausführungsbeispiele erläutert werden, ist jedoch natürlich nicht auf diese beschränkt. Im Rahmen der Erfindung liegen weitere Variationsmöglichkeiten bezüglich der Wahl der Materialien, der Strukturierung oder der Kombination nur in ein- zelnen Figuren dargestellter Merkmale.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer hermetischen Verkapselung für ein elektronisches Bauelement mit den Schritten: a) Befestigen und elektrisches Kontaktieren eines auf einem
Chip (1) aufgebauten Bauelements auf einem elektrische Anschlußflächen (7) aufweisenden Träger (4) so, daß die Bauelementstrukturen (2) tragende Vorderseite des Chips zum Träger weist und nach der Befestigung im lichten Abstand zu diesem angeordnet ist b) Überdecken der Rückseite des Chips mit einer Folie (8) aus Kunststoff so, daß die Ränder der Folie den Chip überlappen c) dichtes Verbinden der Folie (8) mit dem Träger (4) im ge- samten Randbereich (13) rund um den Chip d) Strukturieren der Folie so, daß die Folie außerhalb des Randbereichs zumindest teilweise entfernt wird e) Aufbringen einer hermetisch abdichtenden Schicht (14) über den Folie so, daß die abdichtende Schicht in einem Kon- taktbereich außerhalb des Randbereichs (13) mit dem Träger hermetisch abschließt.
2. Verfahren nach Anspruch 1 , bei dem im Verfahrensschritt b) und c) eine thermoplastische Folie (8) verwendet wird, die den Chip (1) überlappend aufgelegt und unter Druck und erhöhter Temperatur auf die Chiprückseite und den Träger (4) laminiert wird.
3. Verfahren nach Anspruch 1 oder 2 , bei dem im Verfahrensschritt e) zunächst eine Grundmetallisierung auf die Folie (8) und die umgebende Oberfläche des Trägers (4) aufgebracht wird und diese anschließend stromlos und/oder galvanisch verstärkt wird.
4. Verfahren nach Anspruch 1 oder 2, bei dem im Verfahrensschritt e) zunächst eine Grundmetallisierung stromlos auf die Folie (8) und die umgebende Oberflä- ehe des Trägers (4) aufgebracht anschließend auf die erforderliche Dicke verstärkt wird durch zumindest einen der Schritte Sputtern, Aufdampfen, stromlose Abscheidung, galvanische Abscheidung, Inkontaktbringen mit einer Metallschmelze oder durch eine Kombination der Verfahren.
5. Verfahren nach einem der Ansprüche 1-4, bei dem die Folie (8) im Verfahrensschritt c) in zumindest zwei in geringem Abstand zueinander parallel zum Randbereich verlaufenden Streifen (9) durch Laserablation entfernt wird, wobei die Oberfläche des Trägers (4) oder eine darauf befindlichen Metallisierung (17) frei gelegt wird.
6. Verfahren nach Anspruch 5 , bei dem die Streifen (9) mit einer Breite und einem Abstand ausgebildet werden, der ungefähr der Dicke der Folie (8) entspricht .
7. Verfahren nach einem der Ansprüche 1-6 bei dem auf der Rückseite des Chips (1) eine Metallisierung (16) erzeugt wird, und bei dem vor dem Aufbringen der hermetisch abdichtenden Schicht (14) die Folie (8) auf der Rückseite im Bereich der Metallisierung (16) zumindest teilweise entfernt wird.
8. Verfahren nach einem der Ansprüche 1-7 bei dem die Folie (8) im Verfahrensschritt b) mittels Vorhanggießens aufgebracht wird.
9. Verfahren nach einem der Ansprüche 1-8, bei dem außerhalb des Randbereichs (13) auf dem Träger (4) eine mit einem Masseanschluß des Trägers (4) verbindbare Anschlußmetallisierung (17) vorgesehen wird, die mit der hermetisch abdichtenden Schicht (14) überlappt und diese elek- trisch kontaktiert.
10. Verfahren nach einem der Ansprüche 1-9, bei dem nach Verfahrensschritt e) eine Kunststoffabdeckung (18) in zunächst flüssiger Form ganzflächig auf den Träger (4) und die mit der hermetischen Schicht (14) abgedeckte Rückseite des Chips (1) so aufgebracht wird, daß die Kunst- stof abdeckung (18) nach dem Erhärten eine annähernd ebene Ober läche ausbildet .
11.Verfahren nach Anspruch 1-10, bei dem ein Oberflächenwellen Bauelement verwendet wird und bei dem direkt auf die Rückseite des Chips (1) oder auf die Folie (8) über der Rückseite eine zusätzliche, im Wesentlichen organische und Volumenwellen dämpfende Schicht (19) aufgebracht wird.
12. Verfahren nach einem der Ansprüche 1-11, bei dem als hermetisch abdichtende Schicht (14) eine anorganische Schicht aufgebracht wird, ausgewählt aus Si02, SiC oder Glas .
13. Verfahren nach einem der Ansprüche 1-12, bei dem zur Strukturierung der Folie (8) eine Photostruktu- rierung eingesetzt wird.
14. Verfahren nach einem der Ansprüche 1-13, bei dem der Träger (4) ein Modul ist, auf dem weitere Chips
(1) und/oder andere Bauelemente in der genannten Weise aufgebracht, mit dem Träger kontaktiert und gemäß den Verfahrensschritten b) bis e) verkapselt werden.
15. Verfahren nach einem der Ansprüche 1-13, bei dem mittels der Verfahrensschritte a) bis e) mehrere Chips (1) auf einem gemeinsamen Träger (4) befestigt, kontaktiert und verkapselt werden, und bei dem die Chips anschließend durch Auftrennen des gemeinsamen Trägers zwischen den Chips außerhalb der genannten Randbereiche (13) vereinzelt werden .
16.Verfahren nach einem der Ansprüche 1-15, bei dem als Träger (4) eine insbesondere mehrlagige Platte mit lötbaren Metallsierungen auf der dem Chip (1) zugewandten Seite und mit diesen elektrisch leitend verbundenen An- Schlussmetallisierungen (6) auf der Rückseite verwendet wird, deren Basismaterial ausgewählt ist aus Aluminiumoxid, Glas, HTCC, LTCC oder einem organischen Polymer.
17.Verfahren nach einem der Ansprüche 1-16, bei dem für die Bumps ein Material hoher Festigkeit gewählt wird, das beim Aufbringen der Folien (8) keine mechanische Verformung zeigt.
18.Verwendung des Verfahrens nach einem der vorangehenden An- Sprüche zur Verkapselung von Oberflächenwellen-Bauelementen.
19.Verwendung des Verfahrens nach einem der vorangehenden Ansprüche zur Verkapselung von Sensoren.
20.Verwendung des Verfahrens nach einem der vorangehenden Ansprüche zur Verkapselung von optischen und insbesondere zumindest teilweise lichtdurchlässigen Bauelementen, wobei ein Träger aus Glas verwendet wird.
PCT/DE2002/002188 2001-07-27 2002-06-14 Verfahren zur hermetischen verkapselung eines bauelementes WO2003012856A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/484,942 US7552532B2 (en) 2001-07-27 2002-06-14 Method for hermetically encapsulating a component
EP02747220.8A EP1412974B1 (de) 2001-07-27 2002-06-14 Verfahren zur hermetischen verkapselung eines bauelementes
JP2003517934A JP4299126B2 (ja) 2001-07-27 2002-06-14 構成素子を気密封止するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10136743.0 2001-07-27
DE10136743A DE10136743B4 (de) 2001-07-27 2001-07-27 Verfahren zur hermetischen Verkapselung eines Bauelementes

Publications (2)

Publication Number Publication Date
WO2003012856A2 true WO2003012856A2 (de) 2003-02-13
WO2003012856A3 WO2003012856A3 (de) 2003-09-25

Family

ID=7693368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002188 WO2003012856A2 (de) 2001-07-27 2002-06-14 Verfahren zur hermetischen verkapselung eines bauelementes

Country Status (5)

Country Link
US (1) US7552532B2 (de)
EP (1) EP1412974B1 (de)
JP (1) JP4299126B2 (de)
DE (1) DE10136743B4 (de)
WO (1) WO2003012856A2 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992400B2 (en) 2004-01-30 2006-01-31 Nokia Corporation Encapsulated electronics device with improved heat dissipation
EP1624740A2 (de) * 2004-08-05 2006-02-08 Endress + Hauser Wetzer GmbH + Co. KG Vorrichtung zur Aufnahme und zur Befestigung eines elektronischen Bauelements auf einer Leiterplatte
WO2006058850A1 (de) * 2004-11-29 2006-06-08 Siemens Aktiengesellschaft Metallisierte folie zur flächigen kontaktierung
US7239023B2 (en) 2003-09-24 2007-07-03 Tai-Saw Technology Co., Ltd. Package assembly for electronic device
CN100382306C (zh) * 2003-06-30 2008-04-16 西门子公司 节约成本的高频包装
JPWO2006046713A1 (ja) * 2004-10-28 2008-05-22 京セラ株式会社 電子部品モジュール及び無線通信機器
JP4819811B2 (ja) * 2004-08-04 2011-11-24 エプコス アクチエンゲゼルシャフト 2つのバルク波共振器を備えたフィルタ装置
WO2015197551A1 (de) * 2014-06-23 2015-12-30 Epcos Ag Gehäuse für ein elektrisches bauelement und verfahren zur herstellung eines gehäuses für ein elektrisches bauelement
US10448530B2 (en) 2015-12-16 2019-10-15 Rf360 Technology (Wuxi) Co., Ltd. Housing used for electric component and method for manufacturing same

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253163B4 (de) 2002-11-14 2015-07-23 Epcos Ag Bauelement mit hermetischer Verkapselung und Waferscale Verfahren zur Herstellung
FR2857156B1 (fr) * 2003-07-03 2005-09-02 Temex Sa Procede de fabrication de composants electroniques d'epaisseur reduite
JP4704703B2 (ja) * 2004-07-07 2011-06-22 株式会社リコー アレイ型半導体レーザ装置
US7608789B2 (en) 2004-08-12 2009-10-27 Epcos Ag Component arrangement provided with a carrier substrate
US7417220B2 (en) * 2004-09-09 2008-08-26 Toyoda Gosei Co., Ltd. Solid state device and light-emitting element
JP4743764B2 (ja) * 2005-02-02 2011-08-10 セイコーインスツル株式会社 半導体パッケージの製造方法
DE102005008511B4 (de) 2005-02-24 2019-09-12 Tdk Corporation MEMS-Mikrofon
JP4534794B2 (ja) * 2005-02-24 2010-09-01 セイコーエプソン株式会社 電子部品
DE102005008512B4 (de) 2005-02-24 2016-06-23 Epcos Ag Elektrisches Modul mit einem MEMS-Mikrofon
JP4544044B2 (ja) * 2005-06-08 2010-09-15 Tdk株式会社 半導体装置
DE102005053767B4 (de) 2005-11-10 2014-10-30 Epcos Ag MEMS-Mikrofon, Verfahren zur Herstellung und Verfahren zum Einbau
DE102005053765B4 (de) 2005-11-10 2016-04-14 Epcos Ag MEMS-Package und Verfahren zur Herstellung
KR20080023996A (ko) * 2006-09-12 2008-03-17 주식회사 하이닉스반도체 반도체 패키지
DE102007020656B4 (de) 2007-04-30 2009-05-07 Infineon Technologies Ag Werkstück mit Halbleiterchips, Halbleiterbauteil und Verfahren zur Herstellung eines Werkstücks mit Halbleiterchips
US7687895B2 (en) * 2007-04-30 2010-03-30 Infineon Technologies Ag Workpiece with semiconductor chips and molding, semiconductor device and method for producing a workpiece with semiconductors chips
US7633015B2 (en) * 2008-03-31 2009-12-15 Apple Inc. Conforming, electro-magnetic interference reducing cover for circuit components
KR100877551B1 (ko) * 2008-05-30 2009-01-07 윤점채 전자파 차폐 기능을 갖는 반도체 패키지, 그 제조방법 및 지그
JP5288476B2 (ja) * 2009-03-31 2013-09-11 Necカシオモバイルコミュニケーションズ株式会社 基板の製造方法、回路基板、及び電子機器
US8325047B2 (en) * 2009-04-08 2012-12-04 Sabic Innovative Plastics Ip B.V. Encapsulated RFID tags and methods of making same
JP4900498B2 (ja) * 2010-04-26 2012-03-21 セイコーエプソン株式会社 電子部品
JP5677449B2 (ja) * 2010-10-28 2015-02-25 京セラ株式会社 電子装置
DE102010054782A1 (de) 2010-12-16 2012-06-21 Epcos Ag Gehäustes elektrisches Bauelement
DE102011112476A1 (de) * 2011-09-05 2013-03-07 Epcos Ag Bauelement und Verfahren zum Herstellen eines Bauelements
US20130153015A1 (en) * 2011-12-15 2013-06-20 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming solar cells
CN102544884B (zh) * 2011-12-23 2015-04-01 富士康(昆山)电脑接插件有限公司 电连接器、电连接器壳体及其表面处理的方法
CN102970831B (zh) * 2012-11-27 2015-11-25 谢忠 一种ic卡电子芯片与柔性线路板的真空吸附连接绑定工艺
DE102013106353B4 (de) * 2013-06-18 2018-06-28 Tdk Corporation Verfahren zum Aufbringen einer strukturierten Beschichtung auf ein Bauelement
JP6223084B2 (ja) * 2013-09-13 2017-11-01 新日本無線株式会社 半導体装置およびその製造方法
CN103928409B (zh) * 2014-03-17 2017-01-04 江苏省宜兴电子器件总厂 一种集成电路倒扣焊气密性封装结构
DE102015111307A1 (de) 2015-07-13 2017-01-19 Epcos Ag Bauelement mit verbesserter Wärmeableitung
CN106356355B (zh) * 2015-07-15 2020-06-26 恒劲科技股份有限公司 基板结构及其制作方法
CN110678880B (zh) * 2017-04-21 2023-08-08 亚萨合莱有限公司 用于识别装置的壳体
EP3690931A4 (de) * 2017-09-29 2021-02-17 Nagase ChemteX Corporation Verfahren zur herstellung einer montagestruktur und so hergestellte mehrschichtige folie
US11244876B2 (en) 2019-10-09 2022-02-08 Microchip Technology Inc. Packaged semiconductor die with micro-cavity
CN117373966B (zh) * 2023-12-08 2024-02-06 快克智能装备股份有限公司 芯片工装撕膜装置及芯片封装系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138743A1 (de) * 1981-09-29 1983-04-07 Siemens AG, 1000 Berlin und 8000 München In einem dichten gehaeuse montiertes oberflaechenwellenfilter und dergleichen
US5439849A (en) * 1994-02-02 1995-08-08 At&T Corp. Encapsulation techniques which include forming a thin glass layer onto a polymer layer
DE19816309A1 (de) * 1997-04-14 1998-12-24 Cis Inst Fuer Mikrosensorik E Verfahren zur Direktmontage von Silizium-Sensoren und danach hergestellte Sensoren
EP0967647A2 (de) * 1998-06-22 1999-12-29 Fujitsu Limited Verfahren zur Versiegelung einer Halbleitervorrichtung mit Verpackung zur Oberflächenmontage
EP1091406A2 (de) * 1999-10-05 2001-04-11 Nec Corporation Mehrlagenleiterplatte für Halbleiter, ihre Herstellung und Montage des Halbleiters darauf
EP1093159A1 (de) * 1999-10-15 2001-04-18 Thomson-Csf Verfahren zum Einkapseln von elektronischen Komponenten
US20010009277A1 (en) * 1999-01-28 2001-07-26 Michael Anthony Gaynes Structure and method for reinforcing a semiconductor device to prevent cracking

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138294A (en) * 1979-04-11 1980-10-28 Matsushita Electric Ind Co Ltd Method of forming through hole connector
US5081563A (en) * 1990-04-27 1992-01-14 International Business Machines Corporation Multi-layer package incorporating a recessed cavity for a semiconductor chip
US5455459A (en) * 1992-03-27 1995-10-03 Martin Marietta Corporation Reconstructable interconnect structure for electronic circuits
EP0737897A1 (de) * 1995-03-15 1996-10-16 OCG Microelectronic Materials Inc. Nasschemisch entwickelbares, ätzstabiler Photoresist für UV-Strahlung mit einer Wellenlänge unter 200 nm
JP3652067B2 (ja) 1997-06-30 2005-05-25 京セラ株式会社 弾性表面波装置
DE19806818C1 (de) * 1998-02-18 1999-11-04 Siemens Matsushita Components Verfahren zur Herstellung eines elektronischen Bauelements, insbesondere eines mit akustischen Oberflächenwllen arbeitenden OFW-Bauelements
JP2000004139A (ja) 1998-06-16 2000-01-07 Oki Electric Ind Co Ltd 弾性表面波デバイスの封止構造及びその封止方法
US6329739B1 (en) * 1998-06-16 2001-12-11 Oki Electric Industry Co., Ltd. Surface-acoustic-wave device package and method for fabricating the same
US6247229B1 (en) * 1999-08-25 2001-06-19 Ankor Technology, Inc. Method of forming an integrated circuit device package using a plastic tape as a base

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3138743A1 (de) * 1981-09-29 1983-04-07 Siemens AG, 1000 Berlin und 8000 München In einem dichten gehaeuse montiertes oberflaechenwellenfilter und dergleichen
US5439849A (en) * 1994-02-02 1995-08-08 At&T Corp. Encapsulation techniques which include forming a thin glass layer onto a polymer layer
DE19816309A1 (de) * 1997-04-14 1998-12-24 Cis Inst Fuer Mikrosensorik E Verfahren zur Direktmontage von Silizium-Sensoren und danach hergestellte Sensoren
EP0967647A2 (de) * 1998-06-22 1999-12-29 Fujitsu Limited Verfahren zur Versiegelung einer Halbleitervorrichtung mit Verpackung zur Oberflächenmontage
US20010009277A1 (en) * 1999-01-28 2001-07-26 Michael Anthony Gaynes Structure and method for reinforcing a semiconductor device to prevent cracking
EP1091406A2 (de) * 1999-10-05 2001-04-11 Nec Corporation Mehrlagenleiterplatte für Halbleiter, ihre Herstellung und Montage des Halbleiters darauf
EP1093159A1 (de) * 1999-10-15 2001-04-18 Thomson-Csf Verfahren zum Einkapseln von elektronischen Komponenten

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100382306C (zh) * 2003-06-30 2008-04-16 西门子公司 节约成本的高频包装
US7239023B2 (en) 2003-09-24 2007-07-03 Tai-Saw Technology Co., Ltd. Package assembly for electronic device
DE102004040465B4 (de) * 2003-09-24 2009-07-30 Tai-Saw Technology Co., Ltd. Gehäuseanordnung für elektronische Bauelemente und Verfahren zum Verpacken elektronischer Bauelemente
EP1766679A4 (de) * 2004-01-30 2010-02-24 Nokia Corp Verfahren zur verbesserung der wärmeableitung in verkapselten elektronischen komponenten
EP1766679A2 (de) * 2004-01-30 2007-03-28 Nokia Corporation Verfahren zur verbesserung der wärmeableitung in verkapselten elektronischen komponenten
KR100825108B1 (ko) * 2004-01-30 2008-04-25 노키아 코포레이션 캡슐화된 전자 요소들에서 열 소산을 개선하기 위한 방법
US6992400B2 (en) 2004-01-30 2006-01-31 Nokia Corporation Encapsulated electronics device with improved heat dissipation
JP4819811B2 (ja) * 2004-08-04 2011-11-24 エプコス アクチエンゲゼルシャフト 2つのバルク波共振器を備えたフィルタ装置
EP1624740A2 (de) * 2004-08-05 2006-02-08 Endress + Hauser Wetzer GmbH + Co. KG Vorrichtung zur Aufnahme und zur Befestigung eines elektronischen Bauelements auf einer Leiterplatte
EP1624740A3 (de) * 2004-08-05 2008-07-16 Endress + Hauser Wetzer GmbH + Co. KG Vorrichtung zur Aufnahme und zur Befestigung eines elektronischen Bauelements auf einer Leiterplatte
JPWO2006046713A1 (ja) * 2004-10-28 2008-05-22 京セラ株式会社 電子部品モジュール及び無線通信機器
JP2008522394A (ja) * 2004-11-29 2008-06-26 シーメンス アクチエンゲゼルシヤフト 面状接触形成のためのメタライズされた箔
US7910470B2 (en) 2004-11-29 2011-03-22 Siemens Aktiengesellschaft Metallised film for sheet contacting
WO2006058850A1 (de) * 2004-11-29 2006-06-08 Siemens Aktiengesellschaft Metallisierte folie zur flächigen kontaktierung
WO2015197551A1 (de) * 2014-06-23 2015-12-30 Epcos Ag Gehäuse für ein elektrisches bauelement und verfahren zur herstellung eines gehäuses für ein elektrisches bauelement
US10542630B2 (en) 2014-06-23 2020-01-21 Tdk Corporation Housing for an electric component, and method for producing a housing for an electric component
US10448530B2 (en) 2015-12-16 2019-10-15 Rf360 Technology (Wuxi) Co., Ltd. Housing used for electric component and method for manufacturing same

Also Published As

Publication number Publication date
JP2004537178A (ja) 2004-12-09
DE10136743A1 (de) 2003-02-13
EP1412974B1 (de) 2019-07-31
DE10136743B4 (de) 2013-02-14
US7552532B2 (en) 2009-06-30
JP4299126B2 (ja) 2009-07-22
WO2003012856A3 (de) 2003-09-25
EP1412974A2 (de) 2004-04-28
US20040237299A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
DE10136743B4 (de) Verfahren zur hermetischen Verkapselung eines Bauelementes
DE10253163B4 (de) Bauelement mit hermetischer Verkapselung und Waferscale Verfahren zur Herstellung
DE10238523B4 (de) Verkapseltes elektronisches Bauelement und Verfahren zur Herstellung
EP0759231B1 (de) Verkapselung für elektronische bauelemente
DE69718693T2 (de) Elektronisches Bauteil und Herstellungsverfahren
DE69920407T2 (de) Umhülltes oberflächenwellen-bauelement und massenherstellungsverfahren
WO2003032484A1 (de) Verfahren zur verkapselung eines elektrischen bauelementes und damit verkapseltes oberflächenwellenbauelement
DE102011102266B4 (de) Anordnung mit einem MEMS-Bauelement mit einer PFPE Schicht und Verfahren zur Herstellung
EP3231261B1 (de) Leiterplatte mit einem asymmetrischen schichtenaufbau
WO2007045204A1 (de) Gehäuse mit hohlraum für ein mechanisch empfindliches elektronisches bauelement und verfahren zur herstellung
WO2005102910A1 (de) Verkapseltes elektrisches bauelement und verfahren zur herstellung
EP3231262B1 (de) Semiflexible leiterplatte mit eingebetteter komponente
DE102004039229B4 (de) Bauelement-Anordnung mit einem Trägersubstrat
WO2007137568A1 (de) Flip-chip-bauelement und verfahren zur herstellung
WO2011144570A1 (de) Elektrisches bauelement mit flacher bauform und herstellungsverfahren
DE102007035181B4 (de) Verfahren zur Herstellung eines Moduls und Modul
EP1989731A1 (de) Verfahren zum herstellen und planaren kontaktieren einer elektronischen vorrichtung und entsprechend hergestellte vorrichtung
WO2005006432A2 (de) Elektronisches bauelement und verfahren zur herstellung
DE10152343B4 (de) Verfahren zur Verkapselung eines elektrischen Bauelementes und verkapseltes Oberflächenwellenbauelement
DE102004010703B4 (de) Bauelement mit WLP-fähiger Verkapselung und Herstellverfahren
WO2004051745A2 (de) Elektronisches bauelement mit mehreren chips und verfahren zur herstellung
DE102010055627A1 (de) Elektrisches Modul zur Aufnahme durch Bestückungsautomaten mittels Erzeugung eines Vakuums
DE102015122434A1 (de) MEMS Bauelement
WO2012013416A1 (de) Modul und herstellungsverfahren
DE102007012382B4 (de) Mit geführten akustischen Wellen arbeitendes Bauelement und elektrisches Modul mit dem Bauelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002747220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003517934

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002747220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10484942

Country of ref document: US