WO2001068672A1 - Hydrolysats proteiques, procede de preparation associe et boissons et aliments contenant ces hydrolysats proteiques - Google Patents

Hydrolysats proteiques, procede de preparation associe et boissons et aliments contenant ces hydrolysats proteiques Download PDF

Info

Publication number
WO2001068672A1
WO2001068672A1 PCT/JP2001/001902 JP0101902W WO0168672A1 WO 2001068672 A1 WO2001068672 A1 WO 2001068672A1 JP 0101902 W JP0101902 W JP 0101902W WO 0168672 A1 WO0168672 A1 WO 0168672A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
protein hydrolyzate
average pore
molecular weight
porous synthetic
Prior art date
Application number
PCT/JP2001/001902
Other languages
English (en)
French (fr)
Inventor
Hirotoshi Hayasawa
Yoshitaka Tamura
Hiroshi Miyakawa
Toshikazu Shichino
Yasushi Kawaguchi
Hirokatsu Kanehara
Original Assignee
Morinaga Milk Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Morinaga Milk Industry Co., Ltd. filed Critical Morinaga Milk Industry Co., Ltd.
Priority to NZ518375A priority Critical patent/NZ518375A/en
Priority to AU41096/01A priority patent/AU765219B2/en
Priority to EP01912261A priority patent/EP1264838A4/en
Priority to JP2001567762A priority patent/JP3749180B2/ja
Priority to US10/148,274 priority patent/US6908633B2/en
Priority to CA002391063A priority patent/CA2391063A1/en
Publication of WO2001068672A1 publication Critical patent/WO2001068672A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/20Partition-, reverse-phase or hydrophobic interaction chromatography
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C11/00Milk substitutes, e.g. coffee whitener compositions
    • A23C11/02Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
    • A23C11/04Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing non-milk fats but no non-milk proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • A23C9/1526Amino acids; Peptides; Protein hydrolysates; Nucleic acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • A23J3/343Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/341Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins
    • A23J3/343Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins
    • A23J3/344Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of animal proteins of dairy proteins of casein
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/18Peptides; Protein hydrolysates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • A23L33/19Dairy proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a protein hydrolyzate, a method for producing the same, and a food or beverage containing the protein hydrolyzate.
  • the present invention relates to a protein hydrolyzate, a method for producing the protein hydrolyzate, and a food or drink containing the protein hydrolyzate, and more particularly to a protein hydrolyzate having low antigenicity and good emulsifiability, and a food or drink containing the same.
  • the present invention relates to a production method for obtaining the protein degradation product at a high recovery rate.
  • infants may absorb the protein contained in the body with inadequate digestion and antigenicity when ingesting formula or formula. It is pointed out as one of the causes. For this reason, in order to prevent the onset of allergy, particularly in those suspected of having a predisposition to allergy, it is necessary that the infant formula or powdered milk taken in infancy has low antigenicity.
  • whey protein is hydrolyzed with three specific enzymes under specific pH conditions to reduce the residual antigen activity and produce a protein hydrolyzate with excellent emulsifying properties.
  • JP-a 7 2 0 3 8 4 4 JP JP-a 7 2 0 3 8 4 4 JP
  • the antigenic residual activity represents 1 0-5, antigenicity was not a sufficiently reduced (see below).
  • reducing the residual antigen activity to zero as much as possible reduces the risk of food allergies and provides safe food and drink. It is extremely important and is the social mission of food manufacturers. Disclosure of the invention
  • the present invention further reduces the antigenicity, specifically, obtains a protein hydrolyzate having reduced antigen residual activity of the protein to the detection limit of the sandwich ELISA method and improved emulsifiability, and / or
  • the objective is to improve the recovery of protein hydrolyzate from the raw protein.
  • the present inventors have repeated research on methods for producing various protein hydrolysates, in particular, on conditions for hydrolyzing various starting proteins, combinations of various porous synthetic adsorbents, and characteristics of the obtained protein hydrolysates.
  • the present invention has been completed.
  • the protein hydrolyzate of the present invention is a protein hydrolyzate containing at least two kinds of peptides, having a decomposition rate of 30 to 45%, a number average molecular weight of 300 or less, and A protein hydrolyzate characterized in that the ratio of the weight average molecular weight to the number average molecular weight is more than 1 and not more than 2, and has reduced antigenicity and emulsifiability compared to conventional protein hydrolysates. Are better.
  • the raw material protein is hydrolyzed in a degradation ratio of 30 to 45%, and 1 g (protein equivalent) of the obtained protein hydrolyzate is hydrolyzed.
  • 2 types having an average pore diameter of 2 to 8 nm and an average pore diameter of 20 to 3 O nm
  • the porous type synthetic adsorbent classes in the range that the surface area of total 3 0 0 to 3 0 0 0 m 2, to simultaneously or individually contact, which is characterized by recovering the non-adsorbed components, conventional Compared to the method for producing a protein hydrolyzate of the above, it is superior in the reduction of antigenicity, emulsification, and the recovery rate of the protein hydrolyzate from the raw protein.
  • a food or drink of the present invention is characterized by containing the above-mentioned protein hydrolyzate of the present invention.
  • the food and drink of the present invention can be food and drink for allergy prevention or food and drink for allergic patients, and in particular can be prepared milk or milk powder obtained by using a protein derived from milk as a raw material protein.
  • a further aspect of the present invention is the use of the above-mentioned protein hydrolyzate in or in the production or production of foods and beverages for allergy prevention or food and beverage for allergy patients.
  • the protein hydrolyzate of the present invention is a protein hydrolyzate containing at least two types of peptides, which is isolated and purified from a protein hydrolyzate to a single peptide within the scope of the present invention. Not included.
  • a polymer compound such as a protein hydrolyzate is a heterogeneous substance and has a molecular weight Therefore, the molecular weight of the protein hydrolyzate must be indicated by the average molecular weight in order to handle it physicochemically, and the number average molecular weight (hereinafter sometimes abbreviated as Mn) is the molecular weight.
  • Mn the number average molecular weight
  • M n ⁇ M i N i / ⁇ i
  • Mw weight average molecular weight
  • Mw ⁇ M i 'N i ⁇ ⁇ i ⁇ i
  • the number-average molecular weight and the weight-average molecular weight use values measured by high-performance liquid chromatography and a GPC analysis system, which are well known to those skilled in the art. Chromatography I ", Chemical Special Issue No. 102, pp. 241, Kagaku Dojin, Inc., 1984).
  • the number average molecular weight is at most 300, preferably at least 200 and at most 300.
  • the ratio of the weight average molecular weight to the number average molecular weight is more than 1 and 2 or less. 2) Degradation rate of protein
  • the protein degradation rate refers to the weight ratio of formol nitrogen to the total amount of nitrogen in the protein hydrolyzate.
  • the total nitrogen content can be measured by the Kjeldahl method well-known to those skilled in the art, and is specifically described in “Food Analysis Method”, edited by the Japan Food Industry Association, page 102, Korin Co., Ltd., 1984.
  • mercury, mercury oxide (II), and copper sulfate were added to the sample as decomposition accelerators, and the sample was heated and decomposed in concentrated sulfuric acid, sulfuric acid lime or sulfuric acid, and fuming sulfuric acid.
  • Nitrogen is converted to ammonium sulfate, a strong alkali is added thereto, and the mixture is subjected to steam distillation.
  • the released ammonia is collected in a specified amount of acid, and the amount of collected ammonia is determined by back titration of excess acid. Is used to calculate the total amount of nitrogen.
  • Formol nitrogen is a quantitative value of amino acids determined by formol titration in a method well known to those skilled in the art to determine free amino acids in an alkaline standard solution. For example, as described in Mitsuda et al., "Food Engineering Experiment Book", Vol. 5, p. 47, Yokendo, 1970, samples were previously prepared with 0.1 N sodium hydroxide or 0.1 N hydrochloric acid. After adding (or adjusting to pH 7) and adding formalin,
  • Decomposition rate (%) (formal nitrogen amount Z total nitrogen amount) X 100
  • the protein degradation rate is 30 to 45%.
  • the present invention will be described in more detail.
  • a method for producing the protein hydrolyzate of the present invention hereinafter referred to as the method of the present invention I do.
  • the raw material protein used in the method of the present invention includes animal proteins derived from animal milk, eggs, fish meat, animal meat, etc., vegetable proteins derived from soybeans, wheat, etc., molds, yeasts, microorganisms derived from bacteria, etc. It is a protein or any mixture thereof, and is not particularly limited. Further, a protein concentrate obtained by concentrating these proteins by treatment with ultrafiltration, ion exchange resin or the like can also be used. Further, a starting material may be a hydrolyzate obtained by hydrolyzing the protein to a small extent in advance and having a relatively large molecular weight.
  • the raw protein is dispersed and dissolved in water or hot water. Although there is no particular limitation on the concentration of the lysate, it is usually desirable to set the protein concentration to about 5 to 15% in terms of efficiency and operability.
  • the protein solution it is preferable to heat sterilize the protein solution at 65 to 90 ° C. for about 1 to 30 minutes from the viewpoint of preventing spoilage due to contamination by various bacteria.
  • the means for hydrolyzing the raw material protein of the present invention is not particularly limited as long as the rate of protein degradation can be adjusted to 30 to 45%, and is carried out by a protein degrading enzyme method according to a conventional method. Specifically, preliminary experiments set the conditions for hydrolysis using the proteolytic enzyme method, such as the type, amount, temperature, pH, and hydrolysis time of the enzyme that can adjust the protein degradation rate to 30 to 45%. Then, a protein hydrolyzate is prepared.
  • the degradation rate was used as an index of the degree of hydrolysis, and the range was set to 30 to 45%. As is clear from the test examples described below, when the degradation rate was less than 30%, If the hydrolysis rate is higher than 45%, the emulsifiability of the final product, protein hydrolyzate, will decrease.
  • Proteolytic enzymes used in the method for hydrolyzing the raw material protein of the present invention may be derived from animals (eg, pancreatin, trypsin, chymotrypsin, pepsin, etc.), from plants (eg, papain, promelain, etc.), microorganisms Examples include endoproteases and exoproteases (peptidases) of origin (eg, lactic acid bacteria, yeasts, molds, Bacillus subtilis, actinomycetes, etc.), their crude products, disrupted cells, and the like.
  • animals eg, pancreatin, trypsin, chymotrypsin, pepsin, etc.
  • plants eg, papain, promelain, etc.
  • microorganisms examples include endoproteases and exoproteases (peptidases) of origin (eg, lactic acid bacteria, yeasts, molds, Bacillus subtilis, actinomycetes, etc
  • the amount of proteolytic enzyme used for the raw protein is determined by the following: substrate concentration, enzyme titer, although it depends on the reaction temperature and reaction time, hydrolysis is generally carried out by adding the enzyme alone or in a combination of two or more at a ratio of 50 to 1000 active units per gram of the starting protein. Will be The enzyme may be added all at once, or divided into small amounts or each type, and added sequentially.
  • the pH of the protein hydrolysis reaction is selected from the range of pH 2 to 10 corresponding to the optimum pH of the enzyme used. Specifically, before the enzyme is added to the protein solution, the pH is adjusted to a desired pH by adding an acid or alkali agent within the range of pH 2 to 10 depending on the type of the enzyme used. Is done.
  • the acid include hydrochloric acid, citric acid, and phosphoric acid
  • the alkaline agent include sodium hydroxide, potassium hydroxide, and potassium carbonate.
  • the temperature of the protein hydrolysis reaction is not particularly limited, and is selected from a range that can be put to practical use, including an optimum temperature range in which an enzymatic action is exhibited, that is, a range of usually 30 to 70 ° C.
  • an optimum temperature range in which an enzymatic action is exhibited that is, a range of usually 30 to 70 ° C.
  • the progress of the protein hydrolysis reaction depends on the reaction conditions such as the type and combination of the enzymes used, the reaction temperature, and the initial pH. Therefore, as described above, the degradation rate of the protein set in the preliminary experiment was set at 30%. It is necessary to determine the reaction duration as long as it can be adjusted to ⁇ 45%.
  • the enzyme reaction is stopped by inactivating or removing the enzyme when the degree of hydrolysis falls within the range of 30 to 45% based on the hydrolysis conditions set in the preliminary experiment. It is done by doing.
  • the deactivation operation can be performed by a heat treatment (for example, at 85 ° C for 15 minutes).
  • the removal operation can be carried out by using an ultrafiltration membrane (ultrafiltration).
  • precipitates from the digestion solution are obtained by operations such as diatomaceous earth (for example, celite), microfiltration (microfiltration), ultrafiltration, and centrifugation.
  • the solution containing the obtained protein hydrolyzate can be used as it is. If necessary, the solution is concentrated by a known method such as a reverse osmosis membrane method and used as a concentrated solution. It is also possible to further concentrate the concentrated solution by a known method. It is also possible to dry the powder into a powder and to dissolve it in water at a predetermined concentration before use with the porous synthetic adsorbent to be used later.
  • the porous synthetic adsorbent used in the method of the present invention is a so-called porous type having a porous structure in which a large number of pores having a diameter of several nm to several tens of nm are present on the surface. It is known that it absorbs substances such as odor components, bitter components, amino acids, etc. hydrophobically based on van der Waalska, etc. It is an adsorbent that has a simple regeneration process and is industrially easy to use.
  • the porous synthetic adsorbent mainly forms a copolymer of styrene and divinylbenzene or a methacrylic acid ester-based polymer as a resin base structure.
  • These resins do not have ion-exchange groups and are resistant to physical and chemical treatments such as heating, acids, alkalis, etc., so they are easy to wash and sterilize, and be careful against bacterial contamination It is suitable for the production of foods and drinks, pharmaceuticals, etc. that should be paid.
  • various types of adsorbents having different average pore sizes based on the type of resin are commercially available, and the size of the average pore size greatly affects the affinity for the substance to be adsorbed. Therefore, the size of the average pore size is an index of the selection of the adsorbent, and therefore, it is necessary to select the adsorbent based on the size of the average pore size according to the purpose.
  • porous synthetic adsorbents having an average pore diameter of 2 to 8 nm and an average pore diameter of 20 to 30 nm were used, respectively, as is clear from the test examples described later. This is necessary in order to efficiently produce a protein hydrolyzate having extremely low antigenicity and good emulsifiability.
  • the porous synthetic adsorbent having an average pore size of 2 to 8 nm used in the method of the present invention may be any as long as it has an average pore size of 2 to 8 nm.
  • the porous synthetic adsorbent having an average pore diameter of 20 to 3 O nm used in the method of the present invention may be any as long as it has an average pore diameter of 20 to 3 O nm.
  • the adsorption treatment with the porous synthetic adsorbent of the present invention is performed as follows. A protein hydrolyzate having a degradation rate of the protein prepared as described above in the range of 30 to 45% was adjusted to a solution having a concentration of 5 to 20%, and the two types of porous hydrophobic particles were prepared. Contact with synthetic adsorbent simultaneously or individually to perform adsorption treatment.
  • the adsorption treatment is desirably performed in such a manner that the protein hydrolyzate and the two types of porous synthetic adsorbents are efficiently contacted.
  • a certain amount of an aqueous solution of the protein hydrolyzate is contained.
  • aqueous solution of the protein hydrolyzate in contact with the aqueous solution for a predetermined time.
  • the contact time between the aqueous solution of the protein hydrolyzate and the adsorbent is usually represented by a space velocity (hereinafter referred to as SV), and one volume of the adsorbent is used.
  • SV space velocity
  • the contact time with the adsorbent increases and the adsorptivity increases, but if it is extremely slow, the production efficiency deteriorates. Therefore, the SV is usually in the range of 0.5 to 5 h— 1 , preferably 1 to 3 h. — It is desirable to perform within 1 .
  • the pH of the adsorption treatment is preferably performed in a pH region where the adsorption target has no charge because the mechanism of adsorption of the adsorption target to the porous synthetic adsorbent is generally based on hydrophobic adsorption.
  • the temperature of the adsorption treatment is not particularly limited as long as the physical properties, flavor, and bacterial growth of the protein hydrolyzate are taken into consideration.
  • the two types of porous synthetic adsorbents can be mixed and used at the same time, and used separately, that is, the average pore diameter is 2 ⁇ m.
  • the amount of use must be adjusted according to the amount of the substance to be adsorbed. That is, if the amount of the porous synthetic adsorbent used is too large relative to the substance to be adsorbed, the target substance other than the substance to be adsorbed is adsorbed to the target substance for recovery, and the recovery rate decreases. Conversely, if the amount of the porous synthetic adsorbent used is too small relative to the substance to be adsorbed, the removal of the substance to be adsorbed becomes insufficient, and the decrease in antigenicity becomes insufficient.
  • the amount of the adsorbent used is, as is clear from the test examples described later, the protein hydrolysis rate of the protein prepared as described above falling within the range of 30 to 45%.
  • the used adsorbent can be reused by washing it with an acid or an alkali agent, because the adsorbed substance such as the antigenic substance that has been adsorbed can be easily desorbed and regenerated.
  • the ratio of the surface area of a porous synthetic adsorbent having an average pore diameter of 2 to 8 nm to a porous synthetic adsorbent having an average pore diameter of 20 to 30 nm is 3 : 7 to 7: 3 can be used, and it is desirable to change according to the protein decomposition rate within this range.
  • the protein hydrolyzate having a high protein decomposition rate is adsorbed, It is desirable to increase the ratio of the surface area of the porous synthetic adsorbent having an average pore diameter of 2 to 8 nm.
  • the adsorbent used in the method of the present invention is a porous synthetic adsorbent having an average pore diameter of 2 to 8 nm: a surface area ratio of a porous synthetic adsorbent having an average pore diameter of 20 to 30 nm. It is clear from the test examples described later that the ratios consist of 4: 6 to 6: 4. As described above, it is desirable that the recovery rate of the protein hydrolyzate relative to the raw protein is excellent.
  • the resulting solution containing the protein hydrolyzate is preferably subjected to a filtration treatment such as ultrafiltration.
  • a filtration treatment was performed using an ultrafiltration membrane having a molecular weight cut-off of 600 daltons or less, that is, a commercial molecular weight of 1000 to 600 daltons, and a partial filtration treatment was carried out. This is performed by removing high-molecular substances that may be cleaved and collecting the membrane-permeable fraction.
  • the obtained solution containing the protein hydrolyzate can be used as it is, or, if necessary, can be used as a concentrated solution obtained by concentrating the solution by a known method such as a reverse osmosis membrane method. Further, this concentrated liquid can be dried by a known method and used as a powder.
  • the antigenic substance remaining in the protein hydrolyzate can be effectively adsorbed to the porous hydrophobic synthetic adsorbent, and the recovery rate of the protein hydrolyzate from the raw protein can be improved. Can be retained.
  • a protein hydrolysis which is considered to have the lowest antigenicity at present and is practically non-antigenic compared to all conventional techniques, and which is different from purified and separated peptides. Goods can be manufactured.
  • the protein hydrolyzate of the present invention that is, the decomposition rate is 30 to 45%, the number average molecular weight is 300 or less, and the weight average molecular weight with respect to the number average molecular weight
  • a protein hydrolyzate characterized by having a ratio of more than 1 and not more than 2 can be produced.
  • the protein hydrolyzate of the present invention will be described in detail. Since the protein hydrolyzate of the present invention has a decomposition rate of 30 to 45% and a number average molecular weight of 300 or less, the antigenicity is reduced and the protein hydrolyzate has good emulsifying properties. .
  • the ratio of the weight average molecular weight to the number average molecular weight is 2 or less, impurities such as high molecular weight antigenic substances are adsorbed and removed until a molecular weight distribution approximately similar to that of a single substance is obtained. It is a protein hydrolyzate having good properties without properties.
  • the ratio of the weight-average molecular weight to the number-average molecular weight is 1 only when the protein hydrolyzate is a substance having a single molecular weight represented by purified and separated peptides.
  • the protein hydrolyzate of the present invention contains at least two types of compositions containing peptides having different molecular weights. It is easily understood that
  • the protein hydrolyzate of the first invention of the present invention has good emulsifiability and is considered to have the lowest antigenicity as compared with all conventional technologies at present, and is said to have substantially no antigenicity Has excellent features.
  • the food or drink of the present invention is a food or drink containing the protein hydrolyzate of the present invention. Since the protein hydrolyzate of the present invention has substantially no antigenicity, foods and drinks containing the same are preferably used as foods and drinks for allergy prevention or foods and drinks for allergy sufferers.
  • the allergy-preventing food or drink is a food or drink used as a protein source for infants, pregnant women, and sick persons with reduced immune function for the purpose of preventing allergy, and is a sufficient amount for this purpose.
  • Additional c antigenicity refers to reduced food or drink, the allergic patients food or drink, for obvious allergic patients may develop ⁇ Les Energy ingestion of food or drink having antigenic, to develop allergies.
  • the protein hydrolyzate of the present invention has substantially no antigenicity and good emulsifying properties
  • it is particularly preferably used as a powdered milk powder or a raw material of a milk preparation. That is, the prepared powdered milk or the prepared milk obtained by using the protein hydrolyzate of the present invention as a raw material does not cause the separation of fat, which is a problem in the conventional low-antigenic milk formula, and has an appearance, flavor, and absorption rate. are better.
  • the total nitrogen content of the sample was measured by the Kjeldahl method (edited by the Food Science Society of Japan, “Food Analysis Method”, p. 102, Korin Co., Ltd., 1984), and the formol titration method (Mitsuda et al., “Food Engineering Experiment”
  • the first volume, p. 547, Yokendo, 1970 was used to determine the amount of formol nitrogen in the sample, and the decomposition rate was calculated from these measurements using the following formula.
  • Decomposition rate (%) (formal nitrogen content / total nitrogen content) x 100
  • Porihai Dorokishechiru-Asuparuami de 'column Poly Hydoroxyethyl Aspartamide Column: Poly' Enore 'shea one (Po ly LC) manufactured by c diameter 4. 6 mm and length 400 mm] using, 20 mM sodium chloride, Elution was carried out with 50 mM citric acid at an elution rate of 0.5 ml / min.
  • UV detector manufactured by Shimadzu Corporation; absorbance at 215 nm
  • GPC analysis system manufactured by Shimadzu Corporation
  • a specific IgG was purified and used from a rabbit heron antiserum obtained by immunizing a rabbit with an antigenic protein, diluted with a 0.1 M carbonate buffer, and used in a polystyrene microplate (Nunc Co., Ltd.). 1) Dispense 100 ⁇ into each well at 37 ° C for 2 hours After that, the plate was washed with PBS containing 0.05% Tween 20 (hereinafter, sometimes referred to as PBS-Tween).
  • PBS-Tween PBS containing 0.05% Tween 20
  • the biotinylated-specific IgG was diluted with PBS-Tween, dispensed 100 to each of the above gels, left at 37 ° C for 1 hour, and then washed with PBS-Tween.
  • the streptavidin and the biotinylated peroxidase were dissolved in PBS, dispensed in 100 ⁇ l portions into each of the above-mentioned tablets, and washed with PBS-Tween.
  • the absorbance of the reaction product at 492 nm was measured using a microplate reader, and the antigen residual activity of the sample was calculated by comparing with the measured value of the standard protein.
  • the recovery rate (A) of the protein hydrolyzate was calculated by the following equation based on the dry weight of the raw protein (B) and the dry weight of the obtained protein hydrolyzate (C).
  • a (%) (C / B) 100
  • aqueous whey protein aqueous solution having a protein concentration of about 10%.
  • the aqueous whey protein solution was sterilized by heating at 70 ° C for 1 minute using a plate heat exchanger, and the solution temperature was adjusted to 53 ° C, using a 10% aqueous sodium hydroxide solution and a 20% aqueous potassium carbonate solution.
  • PH was adjusted to 9.5, and pancreatin F (manufactured by Amano Pharmaceutical Co., Ltd.), Proteaze N Amano (manufactured by Amano Pharmaceutical Co., Ltd.), and Sumiteam LP20 (manufactured by Shin Nippon Chemical Co., Ltd.)
  • pancreatin F manufactured by Amano Pharmaceutical Co., Ltd.
  • Proteaze N Amano manufactured by Amano Pharmaceutical Co., Ltd.
  • Sumiteam LP20 manufactured by Shin Nippon Chemical Co., Ltd.
  • This hydrolyzate is filtered through an ultrafiltration membrane (Nitto Denko Corporation) with a molecular weight cutoff of 20000, and the filtrate is freeze-dried to obtain a powdery protein hydrolyzate of about 1090 g (protein equivalent: 840 g). I got
  • the whole amount of the obtained protein hydrolyzate was dissolved in 9810 g of deionized water to obtain 10.9 kg of an aqueous solution of the protein hydrolyzate having a concentration of about 10%.
  • a porous synthetic adsorbent As a porous synthetic adsorbent, a porous synthetic adsorbent [Diaion HP-21 (manufactured by Mitsubishi Chemical Corporation) having an average pore diameter of 8 nm. [Diaion HP-20 (manufactured by Mitsubishi Chemical Corporation)], a porous synthetic adsorbent having a specific surface area of 583 m 2 / g] and an average pore diameter of 26 nm. Specific surface area 51 lm 2 / g], 720 g (surface area 420,000 m 2 ) and 820 g (surface area 420,000 m 2 ). g of the adsorbent was used by packing it in a 41 volume acryl column.
  • Solution was allowed to contact at the same time, i.e., the protein hydrolyzate lg (protein equivalent), the surface area of the two types of porous type synthetic adsorbent is brought into contact under conditions that a total of 1000 m 2, and the eluate collected, Lyophilization yielded about 910 g of protein hydrolyzate (700 g of protein equivalent).
  • the hydrolyzate was filtered to remove insolubles by diatomaceous earth and freeze-dried to obtain about 93 g (78 g protein equivalent) of a powdery protein hydrolyzate.
  • the whole amount of the obtained protein hydrolyzate was dissolved in 837 g of deionized water to obtain 930 g of a protein hydrolyzate aqueous solution of about 10% concentration.
  • porous hydrophobic synthetic adsorbent As a porous hydrophobic synthetic adsorbent, a porous synthetic adsorbent having an average pore diameter of 4 nm [Sepabeads SP-850 (manufactured by Mitsubishi Chemical Corporation)]. Porous synthetic adsorbent with a specific surface area of 995 m 2 / g] and an average pore size of 26 nm [Diaion HP-2 0 (Mitsubishi Chemical Corporation).
  • the entire amount of the protein hydrolyzate aqueous solution was passed through the porous synthetic adsorbent filling power ram at a flow rate of SV:?]!- 1 at 25 ° C, and the protein hydrolyzate was passed through the two types of adsorbents. are contacted simultaneously, i.e., with respect to protein hydrolyzate lg (protein equivalent) are contacted under conditions that the surface area of the two types of porous type synthetic adsorbent is total 2000 m 2, and the eluate collected, lyophilized As a result, about 78 g of protein hydrolyzate (65 g as protein equivalent) was obtained.
  • a protein hydrolyzate was prepared according to the method described in Example 1 of Japanese Patent Publication No. 54-36235 (hereinafter referred to as prior art 1).
  • a freeze-dried lyophilized product of Lactobacillus helveticus (Hansen Co., Ltd.) (20,000 active units / g), pancreatin pharmacopeia [Amano Pharmaceutical Co., Ltd., 25,000 active units] / g] and Amano A [manufactured by Amano Pharmaceutical Co., Ltd., 80.000 active units / g] were converted into 1000 active units per gram of protein at a rate of 3000 in total of the number of active units of the three enzymes.
  • the enzyme was inactivated by heating at 80 ° C for 15 minutes and cooled to obtain about 9.51 casein-decomposed liquid. Comparative Example 2
  • a protein hydrolyzate was prepared according to the method described in Example 2 of Japanese Patent Publication No. 62-61039 (hereinafter referred to as Prior Art 2).
  • Whey protein was continuously enzymatically degraded in an enzyme reactor using a 5000 cut-off membrane as an ultrafiltration membrane. Conditions: 40 ° pH 8.5, initial protein content 84.4 g / l, base 2HKOH used, enzyme / substrate ratio 11.8%, pre-hydrolysis period 2 hours, protein in solution fed to reactor Content was 45.5 g / l. Comparative Example 3
  • a protein hydrolyzate was prepared according to the method described in Example 1 of Japanese Patent Publication No. 7-73507 (hereinafter referred to as Conventional Technique 3).
  • casein 200 g was adjusted to pH 8.0 using 10% sodium hydroxide and dissolved to a concentration of 10%. After sterilizing by heating at 90 ° C for 10 minutes, adjust to 45 ° C, pancreatin F (Amano Pharmaceutical) 10g, protease N “Amano” (Amano Pharmaceutical) 2g Lactobacillus helveticus cell extract (per 1g) 4 g was added and enzymatic hydrolysis was performed at 45 ° C for 24 hours. After deactivation by heating at 90 ° C for 5 minutes, the precipitate was removed by filtration. This was freeze-dried to obtain 170 g of a freeze-dried product.
  • a protein hydrolyzate was prepared according to the method described in Example 1 of Japanese Patent No. 2959747 (hereinafter, referred to as prior art 4).
  • a protein hydrolyzate was prepared in accordance with the method described in Example 1 of JP-A-8-228692 (hereinafter, referred to as Conventional Technique 5).
  • aqueous solution was sterilized by heating at 85 ° C for 10 minutes, the temperature was adjusted to 50 ° C, the pH was adjusted to 9.5 by adding sodium hydroxide, and then bioprose sp—20 (Nagase Biochemical) 1,008,000 active units (1,200 active units per gram of protein), Protease N (Amano Pharmaceutical Co., Ltd.) 1,680,000 active units
  • a protein hydrolyzate was prepared according to the method described in Example 2 of Japanese Patent Publication No. 7-203844 (hereinafter referred to as Conventional Technique 6).
  • the protein degradation rate of each sample, the number average molecular weight, the value of the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn), the residual antigen activity, and the emulsifying property were all tested by the above-mentioned test methods.
  • Example 1 of the present invention was found to have extremely low antigen-remaining activity and excellent emulsifying properties as compared with Comparative Examples 1 to 6 of the prior art. did.
  • the type of the raw material protein, the protein degradation rate is in the range of 30 to 45%, the number average molecular weight is in the range of 300 or less, or Mw / Mn is more than 1.
  • the test was carried out with appropriate changes in the range of 2 or less, but almost the same results were obtained.
  • Examples 3 and 4 Four samples (Examples 3 and 4) were prepared in the same manner as in Example 1 except that the stop time of the enzyme reaction was changed and the degradation rate of the starting protein was changed stepwise as shown in Table 2. , And Comparative Examples 7 and 8) were prepared.
  • the protein degradation rate of each sample, the number average molecular weight, the value of the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn), the residual antigen activity, and the emulsifying property were all tested by the above-mentioned test methods.
  • the number average molecular weight is in the range of 300 or less, the antigen residual activity is extremely low. It was shown that the number average molecular weight was desirably 200 or more in consideration of emulsifiability.
  • Example 1 Same as Example 1 except that the average pore size of the porous synthetic adsorbent and the combination thereof were changed using various commercially available porous synthetic adsorbents having different average pore sizes.
  • the following 28 kinds of samples (Examples 7 to 10 and Comparative Examples 9 to 32) were prepared by the above method.
  • Example 7 As a porous synthetic adsorbent, a porous synthetic adsorbent having an average pore diameter of 2 nm (trade name: Sepabead SP-825, manufactured by Mitsubishi Chemical Corporation) and a porous having an average pore diameter of 2 O nm Protein hydrolyzate of the present invention produced by the same method as in Example 1 except that two types of synthetic adsorbents (trade name: Sepabead HP-2 MG, manufactured by Mitsubishi Chemical Corporation) were used.
  • two types of synthetic adsorbents trade name: Sepabead HP-2 MG, manufactured by Mitsubishi Chemical Corporation
  • Example 8 As a porous synthetic adsorbent, a porous synthetic adsorbent having an average pore size of 2 nm and a porous type having an average pore size of 3 O nm (trade name: Sepabead SP-206, manufactured by Mitsubishi Kagaku) Except that two types of synthetic adsorbents were used, the protein hydrolyzate of the present invention produced by the same method as in Example 1
  • Example 9 Example 1 was repeated except that two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 8 nm and a porous synthetic adsorbent having an average pore diameter of 20 nm, were used.
  • the protein hydrolyzate of the present invention produced by the same method as
  • Example 10 Except for using two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 8 nm and a porous synthetic adsorbent having an average pore diameter of 30 nm.
  • the hydrolyzed protein of the present invention produced by the same method as in Example 1.
  • Comparative Example 9 A porous synthetic adsorbent having an average pore diameter of 1 nm (trade name: Sepabead SP-205, manufactured by Mitsubishi Chemical Corporation) was used alone as a porous synthetic adsorbent. Protein hydrolyzate produced by the same method as in Example 1 Comparative Example 10: Except for using a porous synthetic adsorbent having an average pore diameter of 2 nm alone as a porous synthetic adsorbent, Protein hydrolyzate produced by the same method as in Example 1
  • Comparative Example 11 1 Protein hydrolyzate produced by the same method as in Example 1 except that a porous synthetic adsorbent having an average pore diameter of 8 nm was used alone as a porous synthetic adsorbent.
  • Comparative Example 12 Except that the porous synthetic adsorbent having an average pore diameter of 1 O nm (Sepabeads SP-207, manufactured by Mitsubishi Chemical Corporation) having an average pore diameter of 1 Onm was used alone.
  • Comparative Example 14 Porous synthetic adsorbent having an average pore diameter of 3 O nm Protein hydrolyzate produced by the same method as in Example 1 except that the lath-type synthetic adsorbent was used alone.
  • Comparative Example 15 As a porous synthetic adsorbent, a porous synthetic adsorbent having an average pore diameter of 4 O nm (trade name: Amberlite X4D-9, manufactured by Rohm & Haas) was used alone. Protein hydrolyzate produced by the same method as in Example 1 except for
  • Comparative Example 16 Except that two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 1 nm and a porous synthetic adsorbent having an average pore diameter of 2 nm, were used.
  • Comparative Example 18 As a porous synthetic adsorbent, a porous synthetic adsorbent having an average pore diameter of 1 nm Hydrolyzate produced by the same method as in Example 1 except that two types of a synthetic agent and a porous synthetic adsorbent having an average pore diameter of 10 nm were used. Comparative Example 19 9: As a porous synthetic adsorbent Protein hydrolysis produced by the same method as in Example 1 except that two types of porous synthetic adsorbent having an average pore diameter of 1 nm and a porous synthetic adsorbent having an average pore diameter of 20 nm were used.
  • Comparative Example 20 It was confirmed that two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 1 nm and a porous synthetic adsorbent having an average pore diameter of 30 nm, were used. Except for the above, a protein hydrolyzate produced by the same method as in Example 1 Comparative Example 21: As a porous synthetic adsorbent, a porous synthetic adsorbent having an average pore diameter of 1 nm and an average pore diameter of 40 nm A protein hydrolyzate produced by the same method as in Example 1 except that two types of porous synthetic adsorbents were used.
  • Comparative Example 22 2 As a porous synthetic adsorbent, having an average pore diameter of 2 nm Polar type A protein hydrolyzate produced by the same method as in Example 1 except that two types of adsorbent and a porous synthetic adsorbent having an average pore diameter of 8 nm were used.
  • Comparative Example 23 3 As a porous synthetic adsorbent Polar with an average pore size of 2 nm
  • Comparative Example 24 Porous-type protein hydrolyzate produced by the same method as in Example 1 except that two types of synthetic-type adsorbent and porous-type synthetic adsorbent having an average pore diameter of 10 nm were used.
  • Example 2 The same method as in Example 1 was used except that two types of synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 2 nm and a porous synthetic adsorbent having an average pore diameter of 40 nm, were used.
  • Produced protein hydrolyzate Comparative Example 25 Two types of porous synthetic adsorbents, a porous synthetic adsorbent with an average pore diameter of 8 nm and a porous synthetic adsorbent with an average pore diameter of 1 O nm, were used.
  • a protein hydrolyzate produced by the same method as in Example 1 Comparative Example 26: As a porous synthetic adsorbent, a porous synthetic adsorbent having an average pore diameter of 8 nm and an average pore diameter of 4 O With nm A protein hydrolyzate produced by the same method as in Example 1 except that two types of porous synthetic adsorbents were used. Comparative Example 27: The porous synthetic adsorbent has an average pore diameter of 1 O nm. A protein hydrolyzate produced by the same method as in Example 1 except that two types of porous synthetic adsorbent and a porous synthetic adsorbent having an average pore diameter of 20 nm were used.
  • Comparative Example 28 Except for using two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 1 O nm and a porous synthetic adsorbent having an average pore diameter of 30 nm. , A protein hydrolyzate produced by the same method as in Example 1.
  • Comparative Example 29 Except for using two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 1 O nm and a porous synthetic adsorbent having an average pore diameter of 40 nm. , A protein hydrolyzate produced by the same method as in Example 1.
  • Comparative Example 30 Except for using two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 20 nm and a porous synthetic adsorbent having an average pore diameter of 30 nm. , A protein hydrolyzate produced by the same method as in Example 1.
  • Comparative Example 31 1 Porous synthetic adsorbent having an average pore diameter of 2 O nm A protein hydrolyzate produced by the same method as in Example 1 except that two types of synthetic adsorbents were used: a lath-type synthetic adsorbent and a porous-type synthetic adsorbent having an average pore diameter of 40 nm.
  • Comparative Example 32 Except for using two types of porous synthetic adsorbents, a porous synthetic adsorbent having an average pore diameter of 30 nm and a porous synthetic adsorbent having an average pore diameter of 40 nm. , A protein hydrolyzate produced by the same method as in Example 1.
  • the type of the raw material protein and the decomposition rate of the protein are in the range of 30 to 45%, or the total used area of the two types of porous synthetic adsorbents is determined by dividing the raw material protein by the decomposition rate of 30 to 45. % of hydrolyzed in the range, the obtained protein hydrolyzate 1 g (protein equivalent) in the range of 3 0 0 to 3 0 0 O m 2, were tested suitably changed, almost the same The result was obtained.
  • Comparative example 1 1 8 nm alone 10 5 good 81 Comparative example 1 2 1 onm alone 10 one 6 good
  • Example 4 As shown in Table 4, the same procedure as in Example 1 was repeated except that the used surface area (m 2 ) of the porous synthetic adsorbent for protein hydrolyzate lg (protein equivalent) was changed. Examples 9 and 10 and Comparative Examples 33 and 34) were prepared.
  • the type of the raw material protein, the protein degradation rate is in the range of 30 to 45%, the number average molecular weight is in the range of 300 or less, or the average pore diameter of the porous synthetic adsorbent.
  • combinations thereof were tested with appropriate changes within a range in which two types of porous hydrophobic synthetic adsorbents each having an average pore diameter of 2 to 8 nm and an average pore diameter of 20 to 30 nm were used in combination. However, almost the same results were obtained. Table 4
  • the porous synthetic adsorbent having an average pore diameter of 8 nm the same method as in Example 1 except that the surface area ratio of the porous synthetic adsorbent having an average pore diameter of 26 nm was changed.
  • Various kinds of samples Examples 11 and 12 and Comparative Examples 35 and 36 were prepared.
  • the antigen remaining activity and the recovery rate of each sample were all tested by the test method described above.
  • the resulting milk preparation for allergic patients had good emulsifiability and flavor, and had extremely low antigen remaining activity of protein components, and was therefore suitable for beverages for allergy patients.
  • the pre-emulsified product was homogenized using a high-pressure homogenizer (manton-Gaulin Co., Ltd.) by repeating the two-stage treatment of the first stage at 5 MPa and the second stage at 50 MPa five times.
  • a high-pressure homogenizer manufactured-Gaulin Co., Ltd.
  • liquid liquid food is filled into retort varietiess (manufactured by Toyo Seikan Co., Ltd.) in 200 ml increments, and then sterilized by a retort sterilizer (manufactured by Hisaka Seisakusho) at 125 ° C for 10 minutes. Individuals were prepared.
  • the obtained liquid liquid food for treating allergy has good emulsifiability and flavor, and has extremely low antigen residual activity of protein components. Therefore, it was suitable for food and drink for allergy patients.
  • the method for producing a protein hydrolyzate of the present invention has a low antigenicity and emulsifiability that can be used for those who have a predisposition to allergy by maintaining a good recovery rate of the protein hydrolyzate relative to the raw protein.
  • An excellent protein hydrolyzate can be produced. Since the protein hydrolyzate of the present invention has good emulsifiability and has substantially no antigenicity, it can be applied to the prevention of onset of allergy and the food or beverage for allergic patients.
  • the food or drink containing the protein hydrolyzate of the present invention has good emulsifiability and flavor, and has extremely low antigen residual activity of protein components. And useful as a protein source for allergic patients.
  • C Specific examples include various foods and drinks such as formula milk powder, formula milk, nutritional supplements, pathological nutritional foods, and liquid foods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mycology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

明細書
蛋白質加水分解物、 その製造方法、 及びその蛋白質加水分解物を含有する飲食品 技術分野
本発明は、 蛋白質加水分解物、 その製造方法、 及びその蛋白質加水分解物を含 有する飲食品に関し、 特に、 抗原性が低く、 乳化性の良好な蛋白質分解物とこれ を含有する飲食品、 さらに、 この蛋白質分解物を、 高い回収率で得るための製造 方法に関する。 背景技術
近年、 食物アレルギーの発生頻度は増加する傾向にあり、 アレルギー発症の有 効な予防及び治療の重要性が増している。
食物アレルギーの発症については、 乳児が、 調製乳又は調製粉乳等の摂取時に、 含有蛋白質を消化が不充分な状態で抗原性を有したまま体内に吸収してしまうこ とがあり、 これが発症の 1つの原因であると指摘されている。 このため、 特に、 アレルギー発症の素因を有する疑いのある者のアレルギー発症の予防のためには、 乳児期に摂取する調製乳又は調製粉乳が低抗原性であることが必要である。
このため、 従来より、 抗原性物質である乳蛋白質などの蛋白質を加水分解し、 抗原性を低下させて、 抗原残存活性が 1 0— 6以下である蛋白質加水分解物が多数 開発されている (例えば、 特公昭 5 4— 3 6 2 3 5号公報、 特公昭 6 2 - 6 1 0 3 9号公報、 特公平 7— 7 3 5 0 7号公報、 特許第 2 9 5 9 7 4 7号公報、 及び 特開平 8— 2 2 8 6 9 2号公報参照) 。 しかしながら、 これらの蛋白質加水分解 物について、 高感度の抗原残存活性の測定方法であるサンドウイッチ E L I S A 法を用いて抗原残存活性を測定した結果、 抗原残存活性は 1 0— 7以上を示し、 抗 原性が若干残存していた (後述) 。
一方、 蛋白質は高度に加水分解することにより乳化性が低下するため、 高度加 水分解物を原料として得られた調製乳は、 内部の脂肪球の乳化状態を維持するこ とができず、 脂肪球が凝集して分離してしまうという問題があった。 こうして脂 肪が分離した調製乳は、 外観、 風味が不良であるだけでなく、 脂肪の吸収率も低 下する。 そこで、 蛋白質加水分解物の乳化性の改善が、 調製乳及び調製粉乳の製 造において課題となっていた。
この課題を解決するため、 乳清蛋白質を特定の p H条件で、 特定の三種類の酵 素により加水分解することにより、 抗原残存活性が低減され、 乳化性に優れた蛋 白質加水分解物が開発されている (特開平 7— 2 0 3 8 4 4号公報) が、 この抗 原残存活性は 1 0— 5を示し、 抗原性が十分には低減されていなかった (後述) 。 アレルギー発症の予防及び治療が、 重大な課題となっている現代において、 抗 原残存活性を限りなくゼロに近似させることは、 食物アレルギー発生のリスクを 低減し、 安全な飲食品を提供するうえで、 極めて重要であり、 食品メーカーの社 会的使命である。 発明の開示
本発明は、 一層の抗原性の低減、 具体的には、 蛋白質の抗原残存活性をサンド ウイツチ E L I S A法の検出限界まで低減させ、 かつ乳化性を改善した蛋白質加 水分解物の取得、 及び/又は原料蛋白質に対する蛋白質加水分解物の回収率の向 上を目的とする。
本発明者は、 種々の蛋白質加水分解物の製造方法、 特に種々の原料蛋白質の加 水分解条件及び種々のポーラス型合成吸着剤の組み合わせ、 及び得られた蛋白質 加水分解物の特徴について研究を重ね、 本発明を完成させた。
本発明の蛋白質分解物は、 少なくとも 2種類のぺプチドを含有する蛋白質加水 分解物において、 分解率が 3 0乃至 4 5 %であること、 数平均分子量が 3 0 0以 下であること、 及び数平均分子量に対する重量平均分子量の比が 1を超え、 2以 下であることを特徴とする蛋白質加水分解物であり、 従来の蛋白質加水分解物に 比較して、 抗原性の低減及び乳化性に優れている。
本発明の蛋白質分解物の製造方法は、 原料蛋白質を、 分解率が 3 0乃至 4 5 % の範囲で加水分解し、 得られた蛋白質加水分解物 1 g (蛋白質当量) に対して、 それそれ平均細孔径 2乃至 8 nm及び平均細孔径 2 0乃至 3 O nmを有する 2種 類のポーラス型合成吸着剤を、その表面積が合計 3 0 0乃至 3 0 0 0 m2の範囲で、 同時又は個別に接触させ、 非吸着成分を回収することを特徴とするものであり、 従来の蛋白質加水分解物の製造方法に比較して、 抗原性の低減、 乳化性、 及び原 料蛋白質に対する蛋白質加水分解物の回収率に優れている。
またこの製造方法において、 平均細孔径 2乃至 8 nmのポーラス型合成吸着 剤:平均細孔径 2 0乃至 3 0 nmのポーラス型疎水性合成吸着剤の表面積の比が 4 : 6乃至 6 : 4の範囲となるように用いることを望ましい態様としてもいる。 本発明の飲食品は、 前記の本発明の蛋白質加水分解物を含有することを特徴と している。 本発明の飲食品は、 アレルギー予防用飲食品又はアレルギー患者用飲 食品とすることができ、 特に、 乳由来の蛋白質を原料蛋白質として得られた調製 乳又は調製粉乳とすることができる。
したがって、 本発明のさらなる態様は、 アレルギー予防用飲食品若しくはァレ ルギー患者用飲食品中の、 又はその製造における、 上記の蛋白質加水分解物の使 用である。 発明を実施するための最良の形態
本明細書において、 分解率を除き、 百分率は特に断りのない限り、 重量による 表示である。 また、 本明細書において、 蛋白質当量は、 窒素量に 6 . 3 8を乗じ た値である。
本発明の蛋白質加水分解物は、 少なくとも 2種類のぺプチドを含有する蛋白質 加水分解物であって、 蛋白質加水分解物から単一のぺプチドまで単離精製された ものは、 本発明の範囲に包含されない。
1 ) 数平均分子量及び重量平均分子量
一般に、 数平均分子量及び重量平均分子量は、 文献 (社団法人高分子学会編、 「高分子科学の基礎」、 第 1 1 6乃至 1 1 9頁、 株式会社東京化学同人、 1 9 7 8年) に記載されるとおり、 高分子化合物の分子量の平均値を次のとおり異なる 指標に基づき示すものである。
即ち、 蛋白質加水分解物等の高分子化合物は不均一な物質であり、 かつ分子量 に分布があるため、 蛋白質加水分解物の分子量は、 物理化学的に取り扱うために は、 平均分子量で示す必要があり、 数平均分子量 (以下、 M nと略記することが ある。 ) は、 分子の個数についての平均であり、 ペプチド鎖 iの分子量が M iで あり、 その分子数を N iとすると、 次の式により定義される。
M n =∑M i N i /∑ i
i =l i =l また、 重量平均分子量 (以下、 Mwと略記することがある。 ) は、 重量につい ての平均であり、 次の式により定義される。
Mw=∑M i ' N i ΖΣ Μ i Ν i
i=l i =l これら M n及び Mwの関係は、 前記各式から明らかなとおり、 常に Mn≤Mw の関係を有し、 M nは高分子化合物に含まれる低分子量物質の寄与を敏感に受け るのに対して、 Mwは、 高分子量物質の寄与を受け易い。
本来、 アミノ酸配列の定まった単一の未分解蛋白質分子では、 分子量に分布は なく、 M n = Mwとなるが、 加水分解された場合、 生成したペプチド断片の個々 の分子量が大きく異なるため分子量分布が広範囲になる。 即ち、 この分布が広い ものほど、 M n及び Mwの差が大きくなる。 従って、 数平均分子量に対する重量 平均分子量の比の値、 即ち Mw/M nの値は、 蛋白質加水分解物の分子量分布の 広がりを示す指標として用いられる。
本発明において、 数平均分子量及び重量平均分子量は、 当業者には周知である 高速液体クロマトグラフィーと G P C分析システムにより測定した値を用いる (例えば、 宇井信生ら編、 「タンパク質 'ペプチドの高速液体クロマトグラフィ 一」 、 化学増刊第 1 0 2号、 第 2 4 1頁、 株式会社化学同人、 1 9 8 4年) 。 本発明の蛋白質加水分解物において、 数平均分子量は 3 0 0以下、 好ましくは 2 0 0以上 3 0 0以下である。 また、 数平均分子量に対する重量平均分子量の比 は、 1を超え、 2以下である。 2) 蛋白質の分解率
本発明において、 蛋白質の分解率とは、 蛋白質加水分解物中の全窒素量に対す るホルモル窒素の重量比を表す。 全窒素量は、 当業者に周知のケルダール法によ つて測定することができ、 具体的には日本食品工業学会編、 「食品分析法」 、 第 102ページ、 株式会社光琳、 昭和 59年等に記載されているように、 試料に分 解促進剤として水銀 ·酸化水銀 (II) ·硫酸銅を加え、 濃硫酸 ·硫酸力リゥムま たは硫酸 ·発煙硫酸中で加熱分解を行なって試料中の窒素を硫酸アンモニゥムに 変換し、 これに強アルカリを加え水蒸気蒸留し、 遊離したアンモニアを規定量の 酸に捕集し、 過剰の酸を逆滴定することで捕集したアンモニア量を求め、 この量 から全窒素量を算出するものである。 ホルモル窒素は、 アルカリ標準溶液で遊離 アミノ酸を定量するために当業者に周知の方法のホルモル滴定によって求められ たアミノ酸の定量値である。 例えば満田他編、 「食品工学実験書」 、 上巻、 第 5 47頁、 養賢堂、 1970年に記載されているように、 試料をあらかじめ 0. 1 N水酸化ナトリウムまたは 0. 1N塩酸で中和し (あるいは pH7に調節し) 、 ホルマリンを添加すると、
NH3 + CH (R) COO- + HCHO
► H〇CH2NHCH (R) COOH のようにォキシメチル誘導体となるので、 これをフエノールフタレインを指示薬 とするか、 または電位差計を用い、 0. 1N水酸化ナトリウム標準溶液で滴定す る。 [0. IN NaOHの lml] = [1. 4mg ひ一アミノ酸窒素] とし て求めた窒素量が、ホルモル窒素の量である。
こうして得られた、 全窒素量とホルモル窒素量の値から、
分解率 (%) = (ホルモル窒素量 Z全窒素量) X 100
により分解率を求める。 本発明において、 蛋白質の分解率は、 30乃至 45%で ある。 以下、 本発明についてさらに詳細に説明するが、 本発明の理解を容易にするた めに、 最初に本発明の蛋白質加水分解物の製造方法 (以下、 本発明の方法と記載 する。 ) から説明する。
本発明の方法に使用される原料蛋白質は、 獣乳、 卵、 魚肉、 畜肉等に由来する 動物性蛋白質、 大豆、 小麦等に由来する植物性蛋白質、 カビ、 酵母、 細菌等に由 来する微生物蛋白質、 又はこれらの任意の混合物であり、 特に限定されるもので はない。 また、 これらの蛋白質を、 限外濾過、 イオン交換樹脂等の処理により濃 縮した蛋白質濃縮物も使用できる。 更に、 前記蛋白質を予め軽度に加水分解した 分解物であって、 比較的大きな分子量を有する蛋白質加水分解物を出発原料とす ることもできる。
この原料蛋白質を水又は温湯に分散し、 溶解する。 該溶解液の濃度は格別の制 限はないが、 通常、 5〜1 5 %程度の蛋白質濃度とすることが効率性及び操作性 の点から望ましい。
次いで、 前記蛋白質溶液を 6 5〜9 0 °Cで 1〜3 0分間程度加熱殺菌すること が、 雑菌の汚染による腐敗防止の点から望ましい。
本発明の原料蛋白質の加水分解の手段は、 蛋白質の分解率を 3 0乃至 4 5 %に 調製できるものであれば特に限定されるものではなく、 常法に従って、 蛋白質分 解酵素法によって行う。 具体的には、 蛋白質の分解率を 3 0乃至 4 5 %に調製で きる酵素の種類、 量、 温度、 p H、 加水分解時間等の蛋白質分解酵素法による加 水分解条件を予備実験で設定し、 のち蛋白質加水分解物を調製する。
尚、加水分解の程度の指標として、分解率を使用し、その範囲を 3 0乃至 4 5 % としたのは、 後記する試験例からも明らかなとおり、 分解率が 3 0 %未満では、 抗原性が残存するためであり、 分解率が 4 5 %を超えるまで加水分解した場合は、 最終製品である蛋白質加水分解物の乳化性が低下するためである。
本発明の原料蛋白質の加水分解の方法に使用される蛋白質分解酵素は、 動物由 来 (例えば、 パンクレアチン、 トリプシン、 キモトリブシン、 ペプシン等) 、 植 物由来 (例えば、 パパイン、 プロメライン等) 、 微生物由来 (例えば、 乳酸菌、 酵母、 カビ、 枯草菌、 放線菌等) のエンドプロテア一ゼ及びェキソプロテア一ゼ (ぺプチダーゼ)、これらの粗精製物、菌体破砕物等を例示することができる。
前記原料蛋白質に対する蛋白質分解酵素の使用量は、 基質濃度、 酵素力価、 反 応温度及び反応時間により異なるが、 一般的には、 原料蛋白質 1 g当り 5 0〜1 0 0 0 0活性単位の割合で酵素を単独、 又は複数組み合わせて添加することによ り加水分解が行われる。 尚、 酵素の添加は、 一括、 又は少量若しくは種類毎に分 割し、 逐次添加することもできる。
また、 蛋白質加水分解反応の p Hは、 使用酵素の至適 p Hに対応して、 p H 2 〜1 0の範囲から選択される。 具体的には、 前記蛋白質溶液に酵素を添加する前 に、 使用酵素の種類により p H 2〜l 0の範囲内で酸又はアルカリ剤の添加によ り所望の p Hに調整することにより実施される。 この場合、 酸としては塩酸、 ク ェン酸、 リン酸等を、 また、 アルカリ剤としては水酸化ナトリウム、 水酸化カリ ゥム、 炭酸カリウム等をそれそれ例示することができる。
蛋白質加水分解反応の温度は、 格別の制限はなく、 酵素作用の発現する最適温 度範囲を含む実用に供せられ得る範囲、 即ち、 通常 3 0〜7 0 °Cの範囲から選択 される。 温度を酵素の至適温度より低温又は高温、 例えば 5 0〜6 0 °Cの範囲に 維持することにより蛋白質加水分解反応中の腐敗を防止することもできる。
蛋白質加水分解反応の時間は、 使用酵素の種類及び組合せ、 反応温度、 初発 p H等の反応条件によって進行状態が異なることから、 前記のとおり、 予備実験で 設定された蛋白質の分解率を 3 0乃至 4 5 %に調製できる範囲で、 反応継続時間 を決定する必要がある。
酵素反応の停止は、 予備実験で設定された加水分解条件に基づいて加水分解の 程度が、 蛋白質の分解率が 3 0乃至 4 5 %の範囲内となった時点で、 酵素を失活 又は除去することにより行う。 失活操作は加熱処理 (例えば、 8 5 °Cで 1 5分間 等) により行うことができる。 また、 除去操作は限外濾過膜 (ウルトラフイリレト レ一シヨン) 等により実施することができる。 分解液中の酵素の失活又は除去後、 必要に応じて、 ケイソゥ土 (例えば、 セライ ト等) 、 精密濾過 (マイクロフィル トレーシヨン) 、 限外濾過、 遠心分離等の操作により分解液から沈殿を除去する 得られた蛋白質加水分解物を含有する溶液は、 そのまま使用することも可能で あり、 また、 必要に応じてこの溶液を逆浸透膜法等の公知の方法により濃縮し、 濃縮液として使用することも可能であり、 更に、 この濃縮液を公知の方法により 乾燥して粉末となし、 後に行われるポーラス型合成吸着剤による処理の前に所定 濃度で水に溶解して使用することも可能である。
本発明の方法に使用されるポーラス型合成吸着剤は、 直径数 n m乃至数十 nm の細孔が表面に多数存在する多孔質構造を有している、 いわゆるポーラス型であ り、 樹脂の表面積が大きく吸着性が高く、 臭気成分、 苦味成分、 アミノ酸等の物 質を、 ファン ·デル ·ヮ一ルスカに基づく疎水性吸着等をすることが知られてお り、 吸着成分を脱離するための再生工程が容易であり、 工業的に使用し易い吸着 剤である。
また、 ポーラス型合成吸着剤は、 主にスチレン及びジビニルベンゼンの共重合 体、 又はメタクリル酸エステル系ポリマーを樹脂の母体構造として形成するもの である。 これらの樹脂はイオン交換基が導入されておらず、 加熱、 酸、 アルカリ 等の物理的及び化学的処理に対して耐性なため、 洗浄、 殺菌が容易であって、 細 菌汚染に対して注意を払うべき飲食品、 医薬品等の製造のために好適である。 更に、 ポーラス型合成吸着剤として、 樹脂の種類に基づき各種の異なった平均 細孔径を有する吸着剤が市販されており、 平均細孔径の大きさが吸着対象物質へ の親和性に大きく影響することから、 平均細孔径の大きさが吸着剤の選択の指標 となるので、 目的に応じ、 平均細孔径の大きさに基づいて吸着剤を選択する必要 がある。
本発明の方法においては、 後記する試験例からも明らかなとおり、 それそれ平 均細孔径 2乃至 8 nm及び平均細孔径 2 0乃至 3 0 n mを有する 2種類のポーラ ス型合成吸着剤を使用することが、 抗原性が極めて低く、 乳化性が良好な蛋白質 加水分解物を効率よく製造するために、 必要である。
本発明の方法に使用される平均細孔径 2乃至 8 nmを有するポーラス型合成吸 着剤は、 平均細孔径が 2乃至 8 n mを有するものであればいずれであってもよい が、 例えば市販のセパビーズ S P— 8 2 5、 セパビーズ S P— 8 5 0、 ダイヤィ オン H P— 2 1 (いずれも三菱化学社製) 、 アンバーライ ト X A D— 4、 アンバ —ライ ト X A D— 2 0 0 0 (いずれもローム &ハース社製) 等を例示することが できる。 本発明の方法に使用される平均細孔径 2 0乃至 3 O n mを有するポーラス型合 成吸着剤は、 平均細孔径が 2 0乃至 3 O nmを有するものであればいずれであつ てもよいが、 例えば市販のセパビーズ H P— 1 M G、 セパビーズ S P— 2 0 6、 ダイヤイオン H P— 2 0 (いずれも三菱化学社製) 等を例示することができる。 本発明のポーラス型合成吸着剤による吸着処理は、 次のとおり実施する。 前記 のとおり調製された蛋白質の分解率が 3 0乃至 4 5 %の範囲内にある蛋白質加水 分解物を 5乃至 2 0 %の濃度の溶液に調整し、 前記の 2種類のポ一ラス型疎水性 合成吸着剤に同時又は個別に接触させ、 吸着処理を行う。
吸着処理は、 前記蛋白質加水分解物と前記の 2種類のポーラス型合成吸着剤と が効率良く接触する態様で行うことが望ましく、 具体的には、 一定量の蛋白質加 水分解物水溶液の入った容器又はタンクの中に、 スラリー状にした一定量のポー ラス型合成吸着剤を添加して所定時間攪拌若しくは静置するか、 又はカラムに充 填した一定量のポーラス型合成吸着剤に一定量の蛋白質加水分解物水溶液を所定 時間接触する態様で通過させるか、 いずれかの方法により行われる。
カラム法により吸着処理を行う場合には、 蛋白質加水分解物水溶液と吸着剤と が接触する時間は通常、 空間速度 (Space Volume, 以下、 S Vと記載する。 ) に より表され、 吸着剤一体積に対して、 同体積の蛋白質加水分解物水溶液が、 1時 間で通過する速度が S V = 1 (単位; h—1 ) と定められており、 この速度が遅い ほど蛋白質加水分解物水溶液と合成吸着剤とが接触する時間が長くなり吸着性が 高まるが、 極端に遅い場合には生産効率が悪くなるので、 通常は S V = 0 . 5〜 5 h— 1の範囲、 望ましくは 1〜 3 h— 1の範囲で行うことが望ましい。
また、 吸着処理の p Hは、 吸着対象物のポーラス型合成吸着剤への吸着の機序 が一般に疎水性吸着に基づくため、 吸着対象物が電荷をもたない p H領域で行う ことが好ましく、 通常、 p H 5〜7の範囲で吸着処理を行うことが望ましい。 更に、 吸着処理の温度は、 蛋白質加水分解物の物性、 風味、 細菌増殖等の衛生 的条件が考慮されていれば、 特に限定されるものではない。
また、 吸着処理において、 前記の 2種類のポ一ラス型合成吸着剤は、 混合して 同時に使用することができ、 また、 個別に使用すること、 即ち、 平均細孔径 2乃 至 8 nmを有するポーラス型合成吸着剤又は平均細孔径 2 0乃至 3 O n mを有す るポーラス型合成吸着剤のいずれか一方を使用して吸着処理し、 引き続いて他方 のポーラス型合成吸着剤を使用して吸着処理すること、 のいずれの態様でも使用 することができる。
尚、 ポーラス型合成吸着剤は多孔質構造であるため表面積が大きく、 吸着対象 物質の量に対応して使用量 (接触表面積) を調整する必要がある。 即ち、 吸着対 象物質に対してポーラス型合成吸着剤の使用量が多すぎると、 吸着対象物質以外 に回収目的物質まで吸着し、 回収率が低下する。 逆に、 吸着対象物質に対してポ 一ラス型合成吸着剤の使用量が少なすきると、 吸着対象物質の除去が不十分とな り、 抗原性の低下が不十分となる。
本発明の方法においては、 吸着剤の使用量は、 後記する試験例からも明らかな とおり、 前記のとおり調製された蛋白質の分解率が 3 0乃至 4 5 %の範囲内にあ る蛋白質加水分解物 l g (蛋白質当量) に対して、 それそれ平均細孔径 2乃至 8 nm及び平均細孔径 2 0乃至 3 0 nmを有する 2種類のポーラス型合成吸着剤を、 その表面積が合計 3 0 0乃至 3 0 0 O m2の範囲で使用することが低抗原性で、乳 化性の良好な蛋白質加水分解物を高い回収率で製造するために必要である。
使用済の吸着剤は、 酸又はアルカリ剤で洗浄することにより、 吸着されている 抗原性物質等の吸着対象物を容易に脱離して再生することができるので、 反復使 用が可能である。
尚、 本発明の方法において吸着剤は、 平均細孔径 2乃至 8 n mのポーラス型合 成吸着剤:平均細孔径 2 0乃至 3 0 n mのポーラス型合成吸着剤の表面積の比に おいて、 3 : 7乃至 7 : 3の範囲で使用することができ、 この範囲で蛋白質の分 解率に応じて変更することが望ましく、 蛋白質の分解率が高い蛋白質加水分解物 を吸着処理する場合には、 平均細孔径 2乃至 8 nmのポーラス型合成吸着剤の表 面積の比を多くすることが望ましい。
また、 本発明の方法に使用される吸着剤が、 平均細孔径 2乃至 8 nmのポーラ ス型合成吸着剤:平均細孔径 2 0乃至 3 0 n mのポ一ラス型合成吸着剤の表面積 の比において 4 : 6乃至 6 : 4からなることが、 後記する試験例からも明らかな とおり、 原料蛋白質に対する蛋白質加水分解物の回収率がー層優れることから望 ましい。
得られた蛋白質加水分解物を含有する溶液は、 限外濾過等の瀘過処理を行うこ とが望ましい。 具体的には、 6 0 0 0ダルトン以下、 即ち、 市販の 1 0 0 0乃至 6 0 0 0ダルトンに分画分子量を有する限外瀘過膜を使用し、 瀘過処理を行い、 一部残存する可能性のある高分子物質を除去し、 膜透過画分を回収することによ り実施される。
得られた蛋白質加水分解物を含有する溶液は、 そのまま使用することもでき、 また、 必要に応じて、 この溶液を逆浸透膜法等の公知の方法により濃縮した濃縮 液として使用することもでき、 更に、 この濃縮液を公知の方法により乾燥し、 粉 末として使用することもできる。
以上の方法により、 蛋白質加水分解物中に残存する抗原性物質をポ一ラス型疎 水性合成吸着剤に効果的に吸着させることができ、 原料蛋白質に対する蛋白質加 水分解物の回収率を良好に保持させることができる。 そして、 本発明の方法によ つて、 現時点において全ての従来技術と比較して抗原性が最も低いと考えられ実 質的に抗原性を有さない、 精製分離されたべプチドとは異なる蛋白質加水分解物 を製造することができる。
前記本発明の方法により、 本発明の蛋白質加水分解物、 すなわち分解率が 3 0 乃至 4 5 %であること、 数平均分子量が 3 0 0以下であること、 及び数平均分子 量に対する重量平均分子量の比が 1を超え、 2以下であることを特徴とする蛋白 質加水分解物を製造することができる。 次に本発明の蛋白質加水分解物について詳細に説明する。 本発明の蛋白質加水 分解物は、 分解率が 3 0乃至 4 5 %であること及び数平均分子量が 3 0 0以下で あることにより、 抗原性が低減され、 良好な乳化性を有している。 また、 数平均 分子量に対する重量平均分子量の比が 2以下であることにより、 ほぼ単一に近似 した分子量分布を示すまで、 高分子の抗原性物質等の不純物が吸着除去され、 実 質的に抗原性を有さない良好な性質を有する蛋白質加水分解物である。 尚、 数平均分子量に対する重量平均分子量の比が 1となるのは、 蛋白質加水分 解物が、 精製分離されたべプチドに代表される単一の分子量を有する物質である 場合のみである。 したがって、 蛋白質加水分解物の数平均分子量に対する重量平 均分子量の比が 1を超えると定義されたことにより、 本発明の蛋白質加水分解物 が、 少なくとも 2種類の異なる分子量を有するぺプチドを含有する組成物である ことが容易に理解される。
本発明の第一の発明の蛋白質加水分解物は、 良好な乳化性を有し、 かつ現時点 において全ての従来技術と比較して抗原性が最も低いと考えられ、 実質的に抗原 性がないという優れた特徴を有している。 本発明の飲食品は、 上記本発明の蛋白質加水分解物を含有する飲食品である。 本発明の蛋白質加水分解物が実質的に抗原性を有していないことから、 これを 含む飲食品は、 アレルギー予防用飲食品又はアレルギー患者用飲食品として好ま しく用いられる。
本発明において、 アレルギー予防用飲食品とは、 アレルギー予防を目的として、 乳幼児、 妊産婦、 免疫機能の低下した病人への蛋白質供給源として用いられる飲 食品であって、 この目的のために十分な程度に抗原性が低減された飲食品を指す c また、 アレルギー患者用飲食品とは、 抗原性を有する飲食品を摂取するとァレ ルギーを発症することが明らかなアレルギー患者に対する、 アレルギーを発症さ せないための蛋白質供給源として用いられる飲食品であって、 この目的のために 十分な程度に抗原性が低減された飲食品を指す。
さらに、 本発明の蛋白質加水分解物が実質的に抗原性を有していないことに加 え、 乳化性が良好であることから、 特に、 調製粉乳又は調製乳の原料として好ま しく用いられる。 すなわち、 本発明の蛋白質加水分解物を原料として得られた調 製粉乳又は調製乳は、 従来の低抗原性調製乳で問題であった脂肪の分離が起こら ず、 外観、 風味、 及び吸収率に優れている。 実施例
以下、 実施例及び試験例を示して本発明を詳細に説明するが、 本発明は以下の 実施例に限定されるものではない。 以下の試験例においては、 次の試験方法を採用した。
(1) 蛋白質の分解率算出方法
ケルダール法 (日本食品工業学会編、 「食品分析法」 、 第 102ページ、 株式 会社光琳、 昭和 59年) により試料の全窒素量を測定し、 ホルモル滴定法 (満田 他編、 「食品工学実験書」、 上巻、 第 547頁、 養賢堂、 1970年) により試 料のホルモル窒素量を測定し、 これらの測定値から分解率を次式により算出した。
分解率 (%) = (ホルモル窒素量/全窒素量) X 100
( 2 ) 数平均分子量及び重量平均分子量の測定方法
高速液体クロマトグラフィーにより測定した (宇井信生ら編、 「タンパク質 - ペプチドの高速液体クロマトグラフィー」、 化学増刊第 102号、 第 241頁、 株式会社化学同人、 1984年) 。
具体的には、 ポリハイ ドロキシェチル ·ァスパルアミ ド 'カラム [Poly Hydoroxyethyl Aspartamide Column: ポリ 'ェノレ 'シ一 (Po l y LC) 社製 c 直径 4. 6 mm及び長さ 400mm] を使用し、 20mM塩化ナトリウム、 50 mMき酸により溶出速度 0. 5ml/分で溶出した。 検出は UV検出器 (島津製 作所社製。 215nmの吸光度) を使用し、 分子量分布を測定し、 GPC分析シ ステム (島津製作所製) によりデータ解析し、 数平均分子量及び重量平均分子量 を算出した。
( 3 ) 抗原残存活性の測定方法
サンドウイツチ EL I S A法により測定した(松橋直他著、 「免疫学実験入門」、 第 160頁、 学会出版センター、 1985年) 。
具体的には、 抗原蛋白質をゥサギに免疫して得たゥサギ抗血清から特異 I gG を精製して使用し、 これを 0. 1M炭酸緩衝液にて希釈してポリスチレン製マイ クロプレート (ヌンク社製) の各ゥエルに 100〃 1ずつ分注し、 37°Cで 2時 間静置し、 のち 0. 05%Tween20を含む PBS (以下、 PBS-Tween と記 載することがある。 ) により洗浄した。
次いで、 1%ゼラチン (バイオラド社製) を含む PB Sを 100 1ずつ前記 各ゥエルに分注し、 37°Cで 30分間静置し、 のち PBS-Tween により洗浄した。 試料及び標準蛋白質をそれそれ PBS-Tween により希釈し、 100〃 1ずつ前記各 ゥエルに分注し、 37°Cで 1時間静置し、 PBS- Tween により洗浄した。
ピオチン化特異 I gGを PBS-Tween により希釈し、 100 1ずつ前記各ゥェ ルに分注し、 37°Cで 1時間静置後、 PBS-Tween により洗浄した。 ストレブトァ ビジン及びピオチン化ペルォキシダ一ゼを PB Sに溶解し、 100〃1ずつ前記 各ゥ: ルに分注し、 PBS- Tween により洗浄した。
基質として o—フエレンジアミン溶液を 100 i 1ずつ前記各ゥエルに分注し、 室温、 暗所にて 10分間反応させ、 3 M硫酸を各ゥエルに 5 ずつ添加し、 反応を停止した。
次いで、 反応生成物をマイクロプレートリーダ一を用いて、 反応生成物の 49 2 nmの吸光度を測定し、 標準蛋白質の測定値と比較して試料の抗原残存活性を 算出した。
(4) 乳化性の評価方法
試料 100 g、 コーン油 (太陽油脂社製) 200 g、 及びレシチン (味の素社 製) 4gを温水 (60°C) 300mlに添加し、 TKホモミキサー (特殊機化工 業社製) を用いて予備乳化し、 水を添加して総量を 100 Omlに調整し、 これ をホモジナイザ一 (エイ ' ピィ 'ブイ社製) を用いて、 一段目 5 MP a、 二段目 15 MP aの圧力で乳化し、 得られた乳化物の脂肪分離の有無を肉眼で観察し、 乳化性を次の評価基準により評価した。
良:脂肪分離なし
不良:脂肪分離あり
(5) 蛋白質加水分解物の回収率の算出方法
蛋白質加水分解物の回収率 (A) は、 原料蛋白質の乾燥重量 (B) 及び得られ た蛋白質加水分解物の乾燥重量 (C) に基づいて、 次式により算出した。 A (%) = (C/B) 100 実施例 1
市販の牛乳乳清蛋白質濃縮物 1. 3 kg (ミライ社製。 蛋白質当量として lk g) を脱イオン水 9 kgに溶解し、 蛋白質濃度約 10%の乳清蛋白質水溶液 13 kgを調製した。 該乳清蛋白質水溶液をプレート式熱交換器を使用して 70°Cで 1分間加熱殺菌し、 液温を 53°Cに調整し、 10%水酸化ナトリウム水溶液及び 20%炭酸カリウム水溶液を使用して、 pHを 9. 5に調整し、 パンクレアチン F (天野製薬社製) 、 プロテア一ゼ Nアマノ (天野製薬社製) 、 及びスミチーム LP 20 (新日本化学工業社製) をそれそれ蛋白質 1 g当たり 500活性単位、 150活性単位、 及び 200活性単位の割合で添加し、 蛋白質加水分解反応を開 始した。 15時間経過し、 分解率が 35%となった時点で、 プレート式熱交換器 を使用して 120°Cで 15秒間加熱して酵素を失活させ、 酵素反応を停止し、 1 0°Cに冷却した。
この加水分解液を、 分画分子量 20000の限外濾過膜 (日東電工社製) によ り濾過し、 濾液を凍結乾燥し、 粉末状の蛋白質加水分解物約 1090 g (蛋白質 当量として 840 g) を得た。
次いで、 得られた蛋白質加水分解物全量を、 脱イオン水 9810 gに溶解し、 約 10 %濃度の蛋白質加水分解物水溶液 10. 9 k gを得た。
ポーラス型合成吸着剤として、 平均細孔径 8nmを有するポーラス型合成吸着 剤 [ダイヤイオン HP— 21 (三菱化学社製)。比表面積 583m2/g]及び平 均細孔径 26 nmを有するポーラス型合成吸着剤 [ダイヤイオン HP— 20 (三 菱化学社製) 。 比表面積 51 lm2/g]の 2種類を、 それそれ 720 g (表面積 42万 m2)及び 820 g (表面積 42万 m2)、 表面積の比を 1 : 1の割合で混 合した合計 1540 gの吸着剤を 41容量のァクリル製カラムに充填して使用し た。
前記蛋白質加水分解物水溶液の全量を前記ポーラス型合成吸着剤充填カラムに、 流速 SV=3h— 10°Cの条件で通液し、 前記 2種類の吸着剤に蛋白質加水分 解物を同時に接触させ、 即ち、 蛋白質加水分解物 lg (蛋白質当量) に対して、 2種類のポーラス型合成吸着剤の表面積が合計 1000m2となる条件で接触さ せ、 溶出液を回収し、 凍結乾燥し、 蛋白質加水分解物約 910 g (蛋白質当量と して 700 g) を得た。
得られた蛋白質加水分解物を前記試験方法により試験した結果、 数平均分子量 は 260であり、 数平均分子量に対する重量平均分子量の比の値は 1. 8であり、 抗原残存活性は 10— 8であって極めて低く、 乳化性は良好で、 かつ原料蛋白質に 対する蛋白質加水分解物の回収率は 70%と優れていた。 実施例 2
市販の牛乳カゼィン 120 g (ニュージーランドディリーボ一ド製。 蛋白質当 量として 100g) を蒸留水 880 gに分散し、 10%水酸化ナトリウム水溶液 を使用して、 pHを 7. 0に調整し、 カゼインを完全に溶解し、 蛋白質濃度約 1 0%のカゼイン水溶液約 lkgを調製した。 該カゼイン水溶液を 85°Cで 15分 間加熱殺菌し、 液温を 50°Cに調整し、 10%水酸化カリウム水溶液を使用して、 pHを 8. 5に調整し、 パンクレアチン F (天野製薬社製) 、 ァクチナ一ゼ AS
(科研フアルマ社製)、 及びプロテア一ゼ Aアマノ (天野製薬社製) をそれそれ 蛋白質 1 g当たり 400活性単位、 1250活性単位、 及び 250活性単位の割 合で添加し、 蛋白質加水分解反応を開始した。 17時間経過し、 分解率が 38% となった時点で、 90°Cで 20分間加熱して酵素を失活させ、 酵素反応を停止し、
10°Cに冷却した。
この加水分解液を、 ケイソゥ土濾過により不溶物を除去し、 凍結乾燥し、 粉末 状の蛋白質加水分解物約 93 g (蛋白質当量として 78 g) を得た。
次いで、 得られた蛋白質加水分解物全量を、 脱イオン水 837 gに溶解し、 約 10%濃度の蛋白質加水分解物水溶液 930 gを得た。
ポーラス型疎水性合成吸着剤として、 平均細孔径 4nmを有するポーラス型合 成吸着剤 [セパビーズ SP— 850 (三菱化学社製) 。 比表面積 995m2/g] 及び平均細孔径 26 nmを有するポ一ラス型合成吸着剤 [ダイヤイオン HP— 2 0 (三菱化学社製) 。 比表面積 51 lm2/g]の 2種類を、 それそれ 63 g (表 面積 62400m2)及び 183 g (表面積 93600m2)、 いわゆる表面積の 比を 4 : 6の割合で混合した合計 246 gの吸着剤を 100 Oml容量のガラス 製カラムに充填して使用した。
前記蛋白質加水分解物水溶液の全量を前記ポーラス型合成吸着剤充填力ラムに、 流速 SV:?]!—1 25°Cの条件で通液し、 前記 2種類の吸着剤に蛋白質加水分 解物を同時に接触させ、 即ち、 蛋白質加水分解物 lg (蛋白質当量) に対して、 2種類のポーラス型合成吸着剤の表面積が合計 2000m2となる条件で接触さ せ、 溶出液を回収し、 凍結乾燥し、 蛋白質加水分解物約 78 g (蛋白質当量とし て 65 g) を得た。
得られた蛋白質加水分解物を前記試験方法により試験した結果、 数平均分子量 は 258であり、 数平均分子量に対する重量平均分子量の比の値は 1. 7であり、 抗原残存活性は 10— 8であって極めて低く、 乳化性は良好で、 かつ原料蛋白質に 対する蛋白質加水分解物の回収率は 65%と優れていた。 比較例 1
特公昭 54— 36235号公報 (以下、 従来技術 1と記載する。 ) の実施例 1 に記載された方法に従い、 蛋白質加水分解物を調製した。
巿販カゼイン [ハマ一シユタインカゼイン、 メルク社製] 1kgに水 9 kgを 加え、 よく分散させ、 2 N水酸化ナトリウム水溶液を加え、 pHを 7. 0に調整 し、 カゼインを完全に溶解し、 約 10%のカゼイン水溶液を調製した。 該蛋白溶 液を 85°C15分間殺菌し 50°Cに冷却した。 このカゼイン溶液にラクトバチル ス ·ヘルべティカス (ハンゼン社巿販菌株) の菌体破壊凍結乾燥物 (20, 00 0活性単位/ g)、 局方パンクレアチン [天野製薬社製、 25, 000活性単位 /g]及びアマノ A [天野製薬社製、 80. 000活性単位/ g] をそれそれ蛋 白質 1 g当り 1000活性単位ずつ、 3種の酵素の活性単位の数の総和で 300 0の割合で加え、 50°Cで 24時間保持してカゼインを分解した後、 80°Cで 1 5分間加熱して酵素を失活させ、 冷却し約 9. 51のカゼイン分解液を得た。 比較例 2
特公昭 62 - 61039号公報 (以下、 従来技術 2と記載する。 ) の実施例 2 に記載された方法に従い、 蛋白質加水分解物を調製した。
乳漿蛋白質を、 限外ろ過膜としてカツトオフ 5000の膜を用いた酵素反応器 において連続的に酵素分解した。 条件は、 40° pH8. 5、 初期蛋白質含有 量 84. 4g/l、 使用した塩基 2HKOH、 酵素/基質の比 11. 8%、 予備加 水分解期間 2時間、 反応器に供給する溶液の蛋白質含有量 45. 5g/lとした。 比較例 3
特公平 7 _ 73507号公報 (以下、 従来技術 3と記載する。 ) の実施例 1に 記載された方法に従い、 蛋白質加水分解物を調製した。
市販カゼイン 200 gを 10%水酸化ナトリウムを使用し、 pH8. 0に調製 し 10\^ %となるように溶解した。 90°C10分間加熱殺菌後、 45°Cに調整 し、 パンクレアチン F (天野製薬) 10g、 プロテアーゼ N 「ァマノ」 (天野製 薬) 2 g ラクトバチルス ·ヘルべティカス菌体抽出物 ( 1 g当り 20000活 性単位) 4 gを加え 45°Cで 24時間酵素加水分解した。 90°C5分間加熱失活 後、 ろ過により沈澱物を除去した。 これを凍結乾燥し凍結乾燥品 170 gを得た c この凍結乾燥品 18 gを 20 w t %水溶液とし、不溶解物を除去した後、 Sephadex G- 1010x20 cmカラムで溶出した。 溶出液には、 イオン交換水を使用し、 流 速は 10 ml/分とした。 溶出量 200-500mlを分画し、 凍結乾燥し、 乾 燥物 6 gを得た。 比較例 4
特許第 2959747号公報 (以下、 従来技術 4と記載する。 ) の実施例 1に 記載された方法に従い、 蛋白質加水分解物を調製した。
純度 75%の乳清蛋白質粉末 (カリフォルニア 'プロテイン社製) 1kgを、 脱イオン水 9kgに溶解し、 75 °Cに 15秒間保持して殺菌し、 pHを 9. 0に 調整し、 プロテア一ゼ Nアマノ (ァマノ製薬社製) 180万 PUN単位 (乳清蛋 白質当り 2400 PUN単位) 及びラクトバシラス ·ヘルべティカス菌体破砕物 6. 8万活性単位 (乳清蛋白質 1 g当り 90活性単位) を添加し、 50°Cに保持 して加水分解し、 バイオテックアナライザー (旭化成工業社製) を用いて絰時的 に遊離リジンの量を測定し、 遊離リジン量が 14%に達した時点で、 80°Cで 6 分間加熱して酵素を失活させ、 冷却し、 のちクェン酸で pHを 6. 0に調整し、 分画分子量 10, 000の限外ろ過膜 (日東電工社製) で限外ろ過し、 乳清蛋白 質加水分解物を 5. 9%含有する溶液約 16 kgを得た。 比較例 5
特開平 8— 228692号公報 (以下、 従来技術 5と記載する。 ) の実施例 1 に記載された方法に従い、 蛋白質加水分解物を調製した。
市販のカゼイン (ニュージーランドディリ一ボード社製) 1kgに水 9 kgを 加え、 よく分散させ、 10%水酸化ナトリウム水溶液を添加して、 溶液の pHを 7. 0に調整し、 カゼインを完全に溶解し、 濃度約 10%のカゼイン水溶液を調 製した。 該カゼイン水溶液を 85°Cで 10分間加熱殺菌し、 50°Cに温度調整し、 水酸化ナトリウムを添加して pHを 9. 5に調整した後、 ビオプラ一ゼ sp— 2 0 (長瀬生化学工業社製) 1, 008, 000活性単位 (蛋白質 1 g当り 1, 2 00活性単位) 、 プロテアーゼ N (天野製薬社製) 1, 680, 000活性単位
(蛋白質 lg当り 2, 000活性単位) 、 及び PTN6. OS (ノボ 'ノルディ スク社製) 5, 880, 000活性単位 (蛋白質 1 g当り 7, 000活性単位) を添加して、 加水分解反応を開始し、 経時的にカゼインの分解率及び Lーァミノ 酸センサー [バイオテックアナライザ一 (旭化成工業社製) ] により 16種類の アミノ酸のモル数の合計の測定される測定値をそれそれ測定し、 カゼィンの分解 率が 24. 1%及び L—アミノ酸センサ一による測定値が 6. OmMに達した時 点で 80°Cで 6分間加熱して酵素を失活させ、 酵素反応を停止し、 10°Cに冷却 した。 この加水分解液にろ過助剤としてスタンダードスーパーセル (東京珪藻土 社製) を加え、 吸引ろ過し、 次いで、 得られたろ過液を常法により濃縮、 噴霧乾 燥し、 噴霧乾燥品 0. 96 kgを得た。 比較例 6
特閧平 7— 203844号公報 (以下、 従来技術 6と記載する。 ) の実施例 2 に記載された方法に従い、 蛋白質加水分解物を調製した。
市販の WPC (蛋白質含量 85%、 デンマークプロテイン社製) 3kgを 17 kgの精製水に溶解し、 プレート型殺菌装置で 75°Cで 15秒間殺菌し、 のち水 酸化カリウムを添加して溶液の pHを 8. 0に調整し、 蛋白質 lg当りビオプラ ーゼ (長瀬産業社製) 1, 000 PUN単位、 トリプシン (ノボ社製) 10, 0 00USP単位、 パパイン (天野製薬社製) 2, 000 PUN単位及びプロテア ーゼ Aァマノ (天野製薬社製) 200 PUN単位の割合で添カ卩し、 50°Cで 12 時間分解した。 分解後の分解液の pHが 6. 4であったので、 水酸化ナトリウム を添加して pHを 7. 3に調整し、 のちプレート型殺菌装置を用いて 85°Cで 5 分間、 130°Cで 2秒間加熱して酵素を失活させ、 次いで常法により濃縮し、 乾 燥し、 粉末状の乳清蛋白質分解物約 3 kgを得た。 試験例 1
この試験は、 従来技術と比較して本発明の蛋白質加水分解物及びその製造方法 が優れていることを示すために行った。
(1)試料
下記の 7種類の試料を用いた。
•本発明の実施例 1の方法により製造した蛋白質加水分解物
•比較例 1の方法 (従来技術 1の実施例 1と同一の方法) により製造した蛋白質 加水分解物
•比較例 2の方法 (従来技術 2の実施例 2と同一の方法) により製造した蛋白質 加水分解物
•比較例 3の方法 (従来技術 3の実施例 1と同一の方法) により製造した蛋白質 加水分解物 •比較例 4の方法 (従来技術 4の実施例 1と同一の方法) により製造した蛋白質 加水分解物
•比較例 5の方法 (従来技術 5の実施例 1と同一の方法) により製造した蛋白質 加水分解物
•比較例 6の方法 (従来技術 6の実施例 2と同一の方法) により製造した蛋白質 加水分解物
( 2 ) 試験方法
各試料の蛋白質の分解率、 数平均分子量、 数平均分子量に対する重量平均分子 量の比の値 (Mw/M n) 、 抗原残存活性、 及び乳化性を、 いずれも前記の試験 方法により試験した。
( 3 ) 試験結果
この試験の結果は、 表 1に示すとおりである。 表 1から明らかなとおり、 従来 技術の比較例 1〜 6に比較して本発明の実施例 1の蛋白質加水分解物は、 抗原残 存活性が極めて低く、 かつ乳化性に優れていることが判明した。
尚、 本発明の試料については、 原料蛋白質の種類、 蛋白質の分解率を 3 0乃至 4 5 %の範囲で、 数平均分子量が 3 0 0以下の範囲で、 又は Mw/M nを 1を超 え、 2以下の範囲で、 適宜変更して試験したが、 ほぼ同様の結果が得られた。
表 1
Figure imgf000024_0001
試験例 2
この試験は、 抗原残存活性及び乳化性を指標として、 蛋白質加水分解物の適正 な分解率を調べるために行った。
( 1 ) 試料の調製
酵素反応の停止時期を変更して、 表 2に示すとおり、 原料蛋白質の分解率を段 階的に変更したことを除き、 実施例 1と同一の方法により 4種類の試料 (実施例 3及び 4、 並びに比較例 7及び 8 ) を調製した。
( 2 ) 試験方法
各試料の蛋白質の分解率、 数平均分子量、 数平均分子量に対する重量平均分子 量の比の値 (Mw/M n) 、 抗原残存活性、 及び乳化性を、 いずれも前記の試験 方法により試験した。
( 3 ) 試験結果
この試験の結果は、 表 2に示すとおりである。 表 2から明らかなとおり、 抗原 残存活性が極めて低く、 かつ乳化性に優れた蛋白質加水分解物を製造するために は、 原料蛋白質の分解率を 3 0乃至 4 5 %の範囲内とすることが必要であること が判明した。
また、 数平均分子量が 3 0 0以下の範囲である場合に、 抗原残存活性が極めて 低く、 乳化性を考慮すると数平均分子量が 2 0 0以上であることが望ましいこと が示された。
尚、 原料蛋白質の種類、 又は Mw/M nを 1を超え、 2以下の範囲で、 適宜変 更して試験したが、 ほぼ同様の結果が得られた。 表 2
Figure imgf000025_0001
試験例 3
この試験は、 抗原残存活性、 乳化性、 及び回収率を指標として、 ポーラス型疎 水性合成吸着剤の平均細孔径の大きさ及びその組合せを調べるために行った。 ( 1 ) 試料の調製
平均細孔径の大きさの異なる各種の市販ポーラス型合成吸着剤を使用して、 ポ 一ラス型合成吸着剤の平均細孔径の大きさ及びその組合せを変更したことを除き、 実施例 1と同一の方法により次に示す 2 8種類の試料 (実施例 7乃至 1 0、 及び 比較例 9乃至 3 2 ) を調製した。
実施例 7 : ポ一ラス型合成吸着剤として、 平均細孔径 2 nmを有するポーラス 型合成吸着剤 (商品名セパビーズ S P— 8 2 5、 三菱化学社製) 及び平均細孔径 2 O nmを有するポーラス型合成吸着剤 (商品名セパビーズ H P— 2 M G、 三菱 化学社製) の 2種類を使用したことを除き、 実施例 1と同一の方法により製造し た本発明の蛋白質加水分解物 実施例 8 : ポーラス型合成吸着剤として、 平均細孔径 2 nmを有するポーラス 型合成吸着剤及び平均細孔径 3 O nm (商品名セパビーズ S P— 2 0 6、 三菱化 学社製) を有するポーラス型合成吸着剤の 2種類を使用したことを除き、 実施例 1と同一の方法により製造した本発明の蛋白質加水分解物
実施例 9 : ポーラス型合成吸着剤として、 平均細孔径 8 nmを有するポーラス 型合成吸着剤及び平均細孔径 2 0 nmを有するポーラス型合成吸着剤の 2種類を 使用したことを除き、 実施例 1と同一の方法により製造した本発明の蛋白質加水 分解物
実施例 1 0 : ポ一ラス型合成吸着剤として、 平均細孔径 8 nmを有するポーラ ス型合成吸着剤及び平均細孔径 3 0 nmを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した本発明の蛋白質加 水分解物
比較例 9 : ポ一ラス型合成吸着剤として、 平均細孔径 1 nmを有するポーラス 型合成吸着剤 (商品名セパビーズ S P— 2 0 5、 三菱化学社製) を単独で使用し たことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 1 0 : ポ一ラス型合成吸着剤として、 平均細孔径 2 nmを有するポーラ ス型合成吸着剤を単独で使用したことを除き、 実施例 1と同一の方法により製造 した蛋白質加水分解物
比較例 1 1 : ポーラス型合成吸着剤として、 平均細孔径 8 nmを有するポーラ ス型合成吸着剤を単独で使用したことを除き、 実施例 1と同一の方法により製造 した蛋白質加水分解物
比較例 1 2 : ポーラス型合成吸着剤として、 平均細孔径 1 O nmを有するポー ラス型合成吸着剤 (商品名セパビーズ S P— 2 0 7、 三菱化学社製) を単独で使 用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 1 3 : ポーラス型合成吸着剤として、 平均細孔径 2 0 nmを有するポー ラス型合成吸着剤を単独で使用したことを除き、 実施例 1と同一の方法により製 造した蛋白質加水分解物
比較例 1 4 : ポーラス型合成吸着剤として、 平均細孔径 3 O nmを有するポー ラス型合成吸着剤を単独で使用したことを除き、 実施例 1と同一の方法により製 造した蛋白質加水分解物
比較例 1 5 : ポーラス型合成吸着剤として、 平均細孔径 4 O n mを有するポー ラス型合成吸着剤 (商品名アンバーライ ト X 4 D— 9、 ローム &ハース社製) を 単独で使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分 解物
比較例 1 6 : ポーラス型合成吸着剤として、 平均細孔径 1 nmを有するポーラ ス型合成吸着剤及び平均細孔径 2 n mを有するポーラス型合成吸着剤の 2種類を 使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 1 Ί : ポーラス型合成吸着剤として、 平均細孔径 1 nmを有するポーラ ス型合成吸着剤及び平均細孔径 8 nmを有するポ一ラス型合成吸着剤の 2種類を 使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 1 8 : ポーラス型合成吸着剤として、 平均細孔径 1 n mを有するポーラ ス型合成吸着剤及び平均細孔径 1 0 nmを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 1 9 : ポーラス型合成吸着剤として、 平均細孔径 1 nmを有するポーラ ス型合成吸着剤及び平均細孔径 2 0 n mを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 0 : ポ一ラス型合成吸着剤として、 平均細孔径 1 nmを有するポーラ ス型合成吸着剤及び平均細孔径 3 0 n mを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 1 : ポーラス型合成吸着剤として、 平均細孔径 1 nmを有するポーラ ス型合成吸着剤及び平均細孔径 4 0 n mを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 2 : ポ一ラス型合成吸着剤として、 平均細孔径 2 nmを有するポーラ ス型合成吸着剤及び平均細孔径 8 n mを有するポーラス型合成吸着剤の 2種類を 使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 3 : ポーラス型合成吸着剤として、 平均細孔径 2 nmを有するポーラ ス型合成吸着剤及び平均細孔径 1 0 n mを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 4 : ポーラス型合成吸着剤として、 平均細孔径 2 nmを有するポーラ ス型合成吸着剤及び平均細孔径 4 0 nmを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 5 : ポーラス型合成吸着剤として、 平均細孔径 8 nmを有するポーラ ス型合成吸着剤及び平均細孔径 1 O n mを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 6 : ポーラス型合成吸着剤として、 平均細孔径 8 n mを有するポーラ ス型合成吸着剤及び平均細孔径 4 O nmを有するポーラス型合成吸着剤の 2種類 を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解物 比較例 2 7 : ポーラス型合成吸着剤として、 平均細孔径 1 O nmを有するポー ラス型合成吸着剤及び平均細孔径 2 0 n mを有するポーラス型合成吸着剤の 2種 類を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解 物
比較例 2 8 : ポーラス型合成吸着剤として、 平均細孔径 1 O n mを有するポー ラス型合成吸着剤及び平均細孔径 3 0 nmを有するポーラス型合成吸着剤の 2種 類を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解 物
比較例 2 9 : ポーラス型合成吸着剤として、 平均細孔径 1 O nmを有するポー ラス型合成吸着剤及び平均細孔径 4 0 n mを有するポーラス型合成吸着剤の 2種 類を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解 物
比較例 3 0 : ポーラス型合成吸着剤として、 平均細孔径 2 0 n mを有するポー ラス型合成吸着剤及び平均細孔径 3 0 nmを有するポーラス型合成吸着剤の 2種 類を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解 物
比較例 3 1 : ポーラス型合成吸着剤として、 平均細孔径 2 O nmを有するポー ラス型合成吸着剤及び平均細孔径 4 0 n mを有するポーラス型合成吸着剤の 2種 類を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解 物
比較例 3 2 : ポーラス型合成吸着剤として、 平均細孔径 3 O n mを有するポー ラス型合成吸着剤及び平均細孔径 4 0 nmを有するポーラス型合成吸着剤の 2種 類を使用したことを除き、 実施例 1と同一の方法により製造した蛋白質加水分解 物
( 2 ) 試験方法
各試料の抗原残存活性、 乳化性、 及び回収率を、 いずれも前記の試験方法によ り試験した。
( 3 ) 試験結果
この試験の結果は、 表 3に示すとおりである。 表 3から明らかなとおり、 抗原 残存活性が極めて低く、 かつ乳化性に優れた蛋白質加水分解物を、 6 0 %以上の 高回収率で製造するためには、 それそれ平均細孔径 2乃至 8 nm及び平均細孔径 2 0乃至 3 O nmを有する 2種類のポ一ラス型合成吸着剤を使用することが必要 であることが判明した。
尚、 原料蛋白質の種類、 蛋白質の分解率を 3 0乃至 4 5 %の範囲で、 又は前記 2種類のポーラス型合成吸着剤の合計使用面積を、 原料蛋白質を、 分解率が 3 0 乃至 4 5 %の範囲で加水分解し、 得られた蛋白質加水分解物 1 g (蛋白質当量) に対して、 3 0 0乃至 3 0 0 O m2の範囲で、適宜変更して試験したが、ほぼ同様 の結果が得られた。
表 3 試料 ポーラス型合成吸着剤 抗原残存活性 乳化性 回収率 (%) の平均細孔径 (nm)
実施例 1 8nm及び 26nm 10一8 良 70 実施例 5 2nm及び 2 Onm 1 O—8 良 70 実施例 6 2nm及び 3 Onm 10一8 良 67 実施例 7 8nm及び 2 Onm 10_8 良 72 実施例 8 8nm及び 3 Onm 10 -8 良 70 比較例 9 1 nm単独 10—5 良 88 比較例 10 2 nm単独 10_5 良 85 比較例 1 1 8 nm単独 10— 5 良 81 比較例 1 2 1 Onm単独 10一6 良 76 比較例 1 3 2 Onm単独 10一7 良 70 比較例 14 3 Onm単独 10— 7 良 70 比較例 1 5 4 Onm単独 10一8 不良 54 比較例 16 1 nm及び 2nm 10一 5 良 86 比較例 1 7 1 nm及び 8nm 10一 5 良 82 比較例 18 1 nm及び 1 Onm 10— 5 良 77 比較例 1 9 lnm及び 2 Onm 10—6 良 72 比較例 20 lnm及び 3 Onm 10— 7 良 68 比較例 2 1 lnm及び 4 Onm 10-7 不良 62 比較例 22 2nm及び 8nm 10_5 良 79 比較例 23 2nm及び 1 Onm 10一 6 良 75 比較例 24 2腿及び 4 Onm 10一8 不良 59 比較例 25 8 nm及び 10 nm 10一 6 良 76 比較例 26 8nm及び 4 Onm 10—8 不良 58 比較例 27 1 Onm及び 2 Onm 10_8 不良 62 比較例 28 1 Onm及び 3 Onm 10一8 不良 6 1 比較例 29 1 Onm及び 40 nm 10一8 不良 55 比較例 30 2 Onm及び 3 Onm 10一8 不良 51 比較例 31 2 Onm及び 4 Onm 10一8 不良 45 比較例 32 3 Onm及び 4 Onm 10一8 不良 41 試験例 4
この試験は、 抗原残存活性及び回収率を指標として、 ポーラス型合成吸着剤の 使用表面積、 並びに蛋白質加水分解物の適正な数平均分子量に対する重量平均分 子量の比を調べるために行った。
( 1 ) 試料の調製
表 4に示すとおり、 蛋白質加水分解物 l g (蛋白質当量) に対するポーラス型 合成吸着剤の使用表面積(m2 )を変更したことを除き、実施例 1と同一の方法に より 4種類の試料 (実施例 9及び 1 0、 並びに比較例 3 3及び 3 4 ) を調製した。 ( 2 ) 試験方法
各試料の数平均分子量に対する重量平均分子量の比の値 (Mw/M n ) 、 抗原 残存活性、 及び回収率を、 いずれも前記の試験方法により試験した。
( 3 ) 試験結果
この試験の結果は、 表 4に示すとおりである。 表 4から明らかなとおり、 抗原 残存活性が極めて低く、 回収率に優れた蛋白質加水分解物の製造方法においては、 原料蛋白質を、 分解率が 3 0乃至 4 5 %の範囲で加水分解し、 得られた蛋白質加 水分解物 l g (蛋白質当量) に対して、 それそれ平均細孔径 2乃至 8 nm及び平 均細孔径 2 0乃至 3 O nmを有する 2種類のポーラス型合成吸着剤を、 その表面 積が合計 3 0 0乃至 3 0 0 O m2の範囲で使用することが必要であることが判明 した。 また、 蛋白質加水分解物の数平均分子量に対する重量平均分子量の比が 2 以下である場合に、 抗原残存活性が極めて低いことが判明した。
尚、 原料蛋白質の種類、 蛋白質の分解率を 3 0乃至 4 5 %の範囲で、 数平均分 子量が 3 0 0以下の範囲で、 又はポーラス型合成吸着剤の平均細孔径の大きさ及 びその組合せを、 それそれ平均細孔径 2乃至 8 nm及び平均細孔径 2 0乃至 3 0 nmを有する 2種類のポーラス型疎水性合成吸着剤を組合せて使用する範囲で、 適宜変更して試験したが、 ほぼ同様の結果が得られた。 表 4
Figure imgf000032_0001
試験例 5
この試験は、 抗原残存活性及び回収率を指標として、 平均細孔径 2乃至 8 nm のポーラス型合成吸着剤:平均細孔径 2 0乃至 3 0 n mのポーラス型合成吸着剤 の表面積の比の望ましい範囲を調べるために行った。
( 1 ) 試料の調製
表 5に示すとおり、 平均細孔径 8 nmのポーラス型合成吸着剤:平均細孔径 2 6 nmのポーラス型合成吸着剤の表面積の比を変更したことを除き、 実施例 1と 同一の方法により 4種類の試料 (実施例 1 1及び 1 2、 並びに比較例 3 5及び 3 6 ) を調製した。
( 2 ) 試験方法
各試料の抗原残存活性及び回収率を、 いずれも前記の試験方法により試験した
( 3 ) 試験結果
この試験の結果は、 表 5に示すとおりである。 表 5から明らかなとおり、 抗原 残存活性が極めて低い蛋白質加水分解物を、 一層高い回収率で製造するためには、 平均細孔径 2乃至 8 nmのポーラス型合成吸着剤:平均細孔径 2 0乃至 3 O nm のポーラス型合成吸着剤の表面積の比率が、 面積比で 4 : 6乃至 6 : 4の範囲で あることが望ましいことが判明した。 尚、 原料蛋白質の種類、 蛋白質の分解率を 30乃至 45%の範囲で、 ポーラス 型合成吸着剤の平均細孔径の大きさ及びその組合せを、 それそれ平均細孔径 2乃 至 8 nm及び平均細孔径 20乃至 30 nmを有する 2種類のポーラス型合成吸着 剤を組合せて使用する範囲で、 又は前記 2種類のポーラス型合成吸着剤の合計使 用面積を、 原料蛋白質を、 分解率が 30乃至 45%の範囲で加水分解し、 得られ た蛋白質加水分解物 1 g (蛋白質当量)に対して、 300乃至 3000 m2の範囲 で、 適宜変更して試験したが、 ほぼ同様の結果が得られた。 表 5
Figure imgf000033_0001
実施例 13
実施例 1と同一の方法により製造された蛋白質加水分解物 25kg, ラクト一 ス (メグレ社製) 68kg、 ラフイノ一ス (日本甜菜製糖社製) 1 120 g、 マ ルツデキストリン (松谷化学工業社製) 14. 6kg、 ミネラル混合物 (富田製 薬社製) 920 g、 及びビ夕ミン混合物 (田辺製薬社製) 35 gを精製水 300 kgに溶解し、 これにコハク酸モノグリセリ ド (花王社製) 45 O g及び調整脂 肪 (太陽油脂社製) 4 Okgを添加し、 均質化し、 120°Cで 2秒間殺菌し、 濃 縮し、 噴霧乾燥し、 アレルギー予防用粉乳約 145 kgを得た。
得られたアレルギー予防用粉乳を 14%濃度で調乳したミルクは、 乳化性及び 風味が良好であり、 蛋白質成分の抗原残存活性が極めて低いことから、 アレルギ 一予防用飲料に好適であった。 実施例 14
実施例 2と同一の方法により製造された蛋白質加水分解物 16kg、 ラクチュ ロース (森永乳業社製) 500 g、 ラフイノ一ス (日本甜菜製糖社製) 500 g、 マルトデキストリン (松谷化学工業社製) 62 k g、 夕ピオ力澱粉 (松谷化学ェ 業社製) 3kg、 ミネラル混合物 (富田製薬社製) 920 g、 及びビタミン混合 物 (田辺製薬社製) 35 gを精製水 620 kgに溶解し、 これに調整脂肪 (太陽 油脂社製) 20kgを添加し、 均質化し、 80°Cで 6分間殺菌し、 アレルギー患 者用調製乳約 600 kgを得た。
得られたアレルギー患者用調製乳は、 乳化性及び風味が良好であり、 蛋白質成 分の抗原残存活性が極めて低いことから、 アレルギー患者用飲料に好適であつた。 実施例 15
7 kgの温水 (60°C) に、 実施例 1と同一の方法により製造された蛋白質加 水分解物 5 kg及びデキストリン (参松工業社製) 15 kgを添加し、 TKホモ ミキサー (特殊機化工業社製) を用いて溶解、 分散させ、 液状物を調製した。 前記液状物に、 コハク酸モノグリセリ ド (花王社製) 140g、 調整脂肪 (太 陽油脂社製) 2. 2kg, ミネラル混合物 (富田製薬社製) 400 g、 及びビ夕 ミン混合物 (田辺製薬社製) 20gを添カ卩し、 TKホモミキサー (特殊機化工業 社製) を用いて予備乳化し、 水を添加して総量を 100kgに調整した。
次いで、 予備乳化物を高圧ホモジナイザ一 (マントンゴーリン社製) を用いて、 一段目 5 MP a、 二段目 50 MP aの 2段階処理を 5回反復して均質化し、 液状 流動食約 92 kgを調製した。
液状流動食約 11kgを、 レトルトバウチ (東洋製罐社製) に 200mlずつ 充填し、 のちレトルト殺菌機 (日阪製作所社製) により 125°Cで 10分間殺菌 し、 アレルギー患者用液状流動食 50個を調製した。 得られたアレルギー治療用液状流動食は、 乳化性及び風味が良好であり、 蛋白 質成分の抗原残存活性が極めて低いことから、 アレルギー患者用飲食品に好適で めった。 産業上の利用可能性
本発明の蛋白質加水分解物の製造方法は、 原料蛋白質に対する蛋白質加水分 解物の回収率を良好に保持して、 アレルギー発症の素因を有する者に対して使用 可能な低抗原性で乳化性に優れた蛋白質加水分解物を製造することができる。 本発明の蛋白質加水分解物は、良好な乳化性を有し、実質的に抗原性を有さ ないことから、 アレルギー発症の予防及びアレルギー患者のための食品又は飲料 へ応用可能である。
本発明の蛋白質加水分解物を含有する飲食品は、 乳化性及び風味が良好であり、 蛋白質成分の抗原残存活性が極めて低いことから、 低抗原性調製乳及び調製粉乳 などのアレルギー発症の予防食及びアレルギー患者用蛋白質源として有用である c 具体的には、 調製粉乳、 調製乳、 栄養補助食品、 病態栄養食、 流動食等の各種飲 食品を例示することができる。

Claims

請求の範囲
1 . 少なくとも 2種類のペプチドを含有する蛋白質加水分解物において、 蛋白 質の分解率が 3 0乃至 4 5 %であり、 含有されるペプチドの数平均分子量が 3 0 0以下であり、 かつ該数平均分子量に対する重量平均分子量の比が 1を超え 2以 下であることを特徴とする蛋白質加水分解物。
2 . 原料蛋白質を、 分解率が 3 0乃至 4 5 %の範囲で加水分解する工程と、 得られた加水分解物の蛋白質当量 1 gに対して、 2乃至 8 nmの範囲の平均細孔 径、 及び 2 0乃至 3 O n mの範囲の平均細孔径を有する 2種類のポーラス型合成 吸着剤を、それらの表面積の合計が 3 0 0乃至 3 0 0 O m2の範囲で、同時又は個 別に接触させ、 非吸着成分を回収する工程とを含むことを特徴とする蛋白質加水 分解物の製造方法。
3 . 前記 2乃至 8 nmの範囲の平均細孔径を有するポーラス型合成吸着剤と前 記 2 0乃至 3 O nmの範囲の平均細孔径を有するポーラス型合成吸着剤が、 その 表面積の比において 4 : 6乃至 6 : 4の範囲で用いられる、 請求項の範囲第 2項 に記載の蛋白質加水分解物の製造方法。
4 . 請求の範囲第 1項に記載の蛋白質加水分解物を含有することを特徴とする 食ロロ。
5 . 乳由来の蛋白質を原料蛋白質として得られた調製乳又は調製粉乳である、 請求の範囲第 4項に記載の飲食品。
6 . アレルギー予防用飲食品又はアレルギー患者用飲食品である、 請求の範囲 第 4項に記載の飲食品。
7 . アレルギー予防用飲食品若しくはアレルギー患者用飲食品中の、 又はその 製造における、 請求項 1記載の蛋白質加水分解物の使用。
PCT/JP2001/001902 2000-03-13 2001-03-12 Hydrolysats proteiques, procede de preparation associe et boissons et aliments contenant ces hydrolysats proteiques WO2001068672A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
NZ518375A NZ518375A (en) 2000-03-13 2001-03-12 Protein hydrolyzates, process for producing the same and drinks and foods containing the protein hydrolyzates
AU41096/01A AU765219B2 (en) 2000-03-13 2001-03-12 Protein hydrolyzates, process for producing the same and drinks and foods containing the protein hydrolyzates
EP01912261A EP1264838A4 (en) 2000-03-13 2001-03-12 PROTEIN HYDROLYSATES, PROCESS FOR THE PREPARATION THEREOF, AND BEVERAGES AND FOODS CONTAINING SUCH PROTEIN HYDROLYSATES
JP2001567762A JP3749180B2 (ja) 2000-03-13 2001-03-12 蛋白質加水分解物、その製造方法、及びその蛋白質加水分解物を含有する飲食品
US10/148,274 US6908633B2 (en) 2000-03-13 2001-03-12 Protein hydrolyzates, process for producing the same and drinks and foods containing the protein hydrolyzates
CA002391063A CA2391063A1 (en) 2000-03-13 2001-03-12 Protein hydrolyzate, manufacuring method therefor, and foods and drinks containing the protein hydrolyzate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000069023 2000-03-13
JP2000-69023 2000-03-13
JP2000142886 2000-05-16
JP2000-142886 2000-05-16

Publications (1)

Publication Number Publication Date
WO2001068672A1 true WO2001068672A1 (fr) 2001-09-20

Family

ID=26587334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001902 WO2001068672A1 (fr) 2000-03-13 2001-03-12 Hydrolysats proteiques, procede de preparation associe et boissons et aliments contenant ces hydrolysats proteiques

Country Status (9)

Country Link
US (1) US6908633B2 (ja)
EP (1) EP1264838A4 (ja)
JP (1) JP3749180B2 (ja)
KR (1) KR100478118B1 (ja)
CN (1) CN1239513C (ja)
AU (1) AU765219B2 (ja)
CA (1) CA2391063A1 (ja)
NZ (1) NZ518375A (ja)
WO (1) WO2001068672A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597904B2 (en) * 2002-04-29 2009-10-06 Nestec S.A. Metalloproteinase inhibitory agent
JP2016010357A (ja) * 2014-06-30 2016-01-21 森永乳業株式会社 カゼイン加水分解物の製造方法
JP2021510502A (ja) * 2018-01-16 2021-04-30 フリースランドカンピーナ ネーデルランド ベスローテン フェンノートシャップ 低アレルゲン性の乳児用調製乳及びそれを調製する方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3028411B2 (ja) 1997-09-26 2000-04-04 カルピス株式会社 トリペプチド高生産性ラクトバチルス・ヘルベチカス乳酸菌
EP1142481B2 (en) * 1999-01-11 2009-09-02 Calpis Co., Ltd. Process for producing fermented milk containing angiotensin converting enzyme inhibitory peptide and process for producing milk serum
JP4633876B2 (ja) 1999-11-11 2011-02-16 カルピス株式会社 トリペプチドの製造方法
JP2002193817A (ja) * 2000-12-28 2002-07-10 Calpis Co Ltd 整腸剤
US7618669B2 (en) 2005-06-01 2009-11-17 Mead Johnson Nutrition Company Low-lactose partially hydrolyzed infant formula
US20060286208A1 (en) * 2005-06-01 2006-12-21 Nagendra Rangavajla Methods for producing protein partial hydrolysates and infant formulas containing the same
US20080085343A1 (en) * 2006-09-14 2008-04-10 Petty Holly T Novel Low Allergenic Food Bar
EP2244583A2 (en) * 2007-12-28 2010-11-03 DSM IP Assets B.V. Uses for aqueous streams containing proteins
ES2524067T3 (es) * 2009-12-04 2014-12-03 Mjn U.S. Holdings Llc Formulación nutricional que comprende un hidrolizado que contiene péptidos de leche de vaca y/o péptidos derivados del mismo para la inducción de tolerancia
US9523109B2 (en) * 2011-06-24 2016-12-20 Calpis Co., Ltd. Method for enzymatically preparing peptides for use in improvement of brain function
US9474298B2 (en) * 2011-10-11 2016-10-25 Mead Johnson Nutrition Company Partially hydrolyzed casein-whey nutritional compositions for reducing the onset of allergies
WO2019058609A1 (ja) * 2017-09-19 2019-03-28 森永乳業株式会社 エネルギー消費促進用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191041A (ja) * 1986-01-14 1987-08-21 Kanegafuchi Chem Ind Co Ltd 活性化補体成分の吸着体
JPH04190797A (ja) * 1990-11-27 1992-07-09 Fuji Oil Co Ltd ペプチド混合物の製造法及びペプチド混合物を含有する飲料
JPH07264993A (ja) * 1994-03-31 1995-10-17 Fuji Oil Co Ltd 大豆ペプチド混合物の製造法
JPH1017596A (ja) * 1996-07-03 1998-01-20 Miyagi Kagaku Kogyo Kk 抗原性成分の除去方法、非抗原性ペプチド組成物、非抗原性安定化剤および生理活性物質

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670268A (en) 1985-01-29 1987-06-02 Abbott Laboratories Enteral nutritional hypoallergenic formula
FR2634104B1 (fr) 1988-07-18 1991-10-18 Union Coop Agricole Hydrolysat partiel de proteines de lactoserum, procede enzymatique de preparation de cet hydrolysat, et aliment lacte dietetique hypoallergenique le contenant
JP2849843B2 (ja) 1990-02-19 1999-01-27 雪印乳業株式会社 低灰分加水分解乳の製造法及びこれを含有させた発酵乳
JP3183945B2 (ja) 1992-04-02 2001-07-09 明治乳業株式会社 高フィッシャー比ペプチド混合物、その製造法、および肝疾患患者用栄養補給組成物
JPH11509727A (ja) 1995-06-30 1999-08-31 エムディ フーズ エイ.エム.ビィ.エイ. ペプチド混合物の製法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191041A (ja) * 1986-01-14 1987-08-21 Kanegafuchi Chem Ind Co Ltd 活性化補体成分の吸着体
JPH04190797A (ja) * 1990-11-27 1992-07-09 Fuji Oil Co Ltd ペプチド混合物の製造法及びペプチド混合物を含有する飲料
JPH07264993A (ja) * 1994-03-31 1995-10-17 Fuji Oil Co Ltd 大豆ペプチド混合物の製造法
JPH1017596A (ja) * 1996-07-03 1998-01-20 Miyagi Kagaku Kogyo Kk 抗原性成分の除去方法、非抗原性ペプチド組成物、非抗原性安定化剤および生理活性物質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1264838A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597904B2 (en) * 2002-04-29 2009-10-06 Nestec S.A. Metalloproteinase inhibitory agent
JP2016010357A (ja) * 2014-06-30 2016-01-21 森永乳業株式会社 カゼイン加水分解物の製造方法
JP2021510502A (ja) * 2018-01-16 2021-04-30 フリースランドカンピーナ ネーデルランド ベスローテン フェンノートシャップ 低アレルゲン性の乳児用調製乳及びそれを調製する方法
JP7339261B2 (ja) 2018-01-16 2023-09-05 フリースランドカンピーナ ネーデルランド ベスローテン フェンノートシャップ 低アレルゲン性の乳児用調製乳及びそれを調製する方法
US11903392B2 (en) 2018-01-16 2024-02-20 Frieslandcampina Nederland B.V. Hypoallergenic infant formula and methods for preparing the same

Also Published As

Publication number Publication date
KR20020058054A (ko) 2002-07-12
CN1239513C (zh) 2006-02-01
KR100478118B1 (ko) 2005-03-28
EP1264838A1 (en) 2002-12-11
JP3749180B2 (ja) 2006-02-22
CN1392877A (zh) 2003-01-22
US6908633B2 (en) 2005-06-21
NZ518375A (en) 2003-07-25
EP1264838A4 (en) 2003-04-02
AU4109601A (en) 2001-09-24
US20030072863A1 (en) 2003-04-17
CA2391063A1 (en) 2001-09-20
AU765219B2 (en) 2003-09-11

Similar Documents

Publication Publication Date Title
EP0799577B1 (en) Peptide mixture and products thereof
RU2370279C2 (ru) Применение пролинспецифичных эндопротеаз для гидролиза пептидов и белков
WO2001068672A1 (fr) Hydrolysats proteiques, procede de preparation associe et boissons et aliments contenant ces hydrolysats proteiques
JP2017528149A (ja) 低アレルギー誘発性で苦味の低下した大豆オリゴペプチド、その調製方法、およびその用途
JP5493195B2 (ja) 炭水化物およびトリプトファン含有ペプチドを含む組成物
JPS5854786B2 (ja) 乳漿蛋白質から蛋白質水解物を製造する方法
JP2002238462A (ja) 乳清蛋白質加水分解物及びその製造方法
JP3222638B2 (ja) オリゴペプチド混合物及びその製造法
JP5695326B2 (ja) タンパク質合成促進剤
JPH11243866A (ja) カゼイン加水分解物及びその製造法
JP4444450B2 (ja) 蛋白質加水分解物の製造方法
JP2959747B2 (ja) 風味良好な乳清蛋白加水分解物及びその製造法
JPH06245790A (ja) オリゴペプチド混合物およびその製造方法
JPH10271958A (ja) 臭気の低減された蛋白質加水分解物の製造方法
JPH05344847A (ja) 不快味のない低抗原性たん白質分解物 及びその製造方法
JP2887302B2 (ja) カゼインホスホオリゴペプチド混合物、その製造法、及び該混合物を含有する健康食品
JP2000001500A (ja) ホエータンパクペプチド、このホエータンパクペプチド の製造法、並びにこのホエータンパクペプチドを含有す る栄養組成物
JP5365515B2 (ja) 分岐鎖アミノ酸高含有の蛋白質分解物の製造法
JP2000342189A (ja) 低フェニルアラニンペプチド混合物の製造方法
AU701507B2 (en) Peptide mixture and products thereof
JPH0622446B2 (ja) 不快味のない易溶性乳蛋白加水分解物の製造方法
JPH05137515A (ja) 不快味のない低抗原性たん白質分解物 及びその製造方法
JP2003339326A (ja) 乳清蛋白質加水分解物及びその製造方法
JP2001095496A (ja) 乳清蛋白質加水分解物及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID JP KR NZ US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 518375

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 41096/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2391063

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027006869

Country of ref document: KR

Ref document number: 10148274

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001912261

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018029957

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027006869

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567762

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001912261

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 518375

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 518375

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 41096/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027006869

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001912261

Country of ref document: EP