WO2001054187A1 - Appareil de commande de transfert de tranches et procede de transfert de tranches - Google Patents

Appareil de commande de transfert de tranches et procede de transfert de tranches Download PDF

Info

Publication number
WO2001054187A1
WO2001054187A1 PCT/JP2000/009404 JP0009404W WO0154187A1 WO 2001054187 A1 WO2001054187 A1 WO 2001054187A1 JP 0009404 W JP0009404 W JP 0009404W WO 0154187 A1 WO0154187 A1 WO 0154187A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
time
processing
unit
execution time
Prior art date
Application number
PCT/JP2000/009404
Other languages
English (en)
French (fr)
Inventor
Yoichi Kobayashi
Yasumasa Hiroo
Tsuyoshi Ohashi
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to US10/181,293 priority Critical patent/US6772029B2/en
Priority to JP2001553578A priority patent/JP3995478B2/ja
Priority to EP00987798A priority patent/EP1255294A4/en
Publication of WO2001054187A1 publication Critical patent/WO2001054187A1/ja
Priority to US10/869,848 priority patent/US7072730B2/en
Priority to US11/385,760 priority patent/US7313452B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/135Associated with semiconductor wafer handling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/907Continuous processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/907Continuous processing
    • Y10S438/908Utilizing cluster apparatus

Definitions

  • the present invention relates to a substrate transfer control device and a substrate transfer method, and more particularly, to a substrate transfer control device that sequentially transfers a plurality of substrates in a substrate processing apparatus such as a semiconductor manufacturing apparatus to a plurality of processing apparatuses using a transfer device, and a processing method. It relates to the substrate transfer method. Further, the present invention relates to a substrate processing apparatus in which the transfer of a substrate is controlled by the substrate transfer control device.
  • a plurality of semiconductor substrates are sequentially loaded from a cassette and transported between a plurality of processing devices by a plurality of transporters.
  • substrates that are processed in parallel and that have been completely processed are collected in cassettes.
  • a plurality of cassettes can be mounted or exchanged.
  • the semiconductor manufacturing apparatus is continuously operated by appropriately replacing the cassette with an unprocessed substrate. be able to.
  • the control of these semiconductor manufacturing apparatuses in particular, the control of the operation of the transfer device is performed by the substrate transfer control device.
  • the status of the transfer device is constantly input from the transfer device being controlled. And based on the status of this transporter, Detects the transporter that is not operating at (not operating). If a non-operating transporter is detected, for each non-operating transporter, the presence or absence of a processed substrate in the processing equipment at the source, an empty arm for the transporter to receive the substrate, and a destination Inspects available processing equipment and finds the next possible operation. Next, for each non-operating transporter having a possible operation, one operation to be performed next is determined, and a command to execute this operation is transmitted to the corresponding transporter. The non-operating transporter that has received the command starts the next operation given.
  • the non-operating transfer device moves from the current position to the position of the processing equipment to transfer or receive the substrate only after the operable condition is satisfied. . That is, even if the transporter is not operating, it cannot operate before the operable condition is satisfied, so that the throughput of the semiconductor manufacturing apparatus may deteriorate.
  • the next operation is determined sequentially.
  • the time at which the final substrate finishes processing and is collected in the cassette is the earliest value that is logically possible (earliest time). than There was a big delay.
  • a substrate processed by a certain processing equipment is promptly transferred to the next processing equipment and processed (immediateness) in terms of process processing.
  • the substrate after plating is left untreated, its quality will deteriorate due to oxidation, etc., so it should be immediately transported to the next processing equipment for post-treatment such as cleaning. Is required. That is, there may be a case where a certain constraint condition regarding the operation time of the transfer device (in the above-described example, the condition that the waiting time of the transfer device with respect to the processed substrate becomes 0) is required.
  • the present invention has been made in view of such problems of the related art.
  • Another object of the present invention is to provide a substrate processing apparatus incorporating such a substrate transfer control device.
  • one embodiment of the present invention provides a substrate transfer device that transfers a substrate by a transfer device between a plurality of processing devices installed in the substrate processing device.
  • a substrate to be processed is set based on a predetermined conditional expression including, as parameters, a time required for each operation of the transporter and a time required for processing the substrate in each processing device.
  • Calculate the execution time of each operation of the transporter such that the time at which the last sheet of the transporter finishes all processing and is collected from the substrate processing apparatus is the earliest, and becomes the calculated execution time of each operation of the transporter.
  • a substrate transfer method in which the operation is instructed to a corresponding transfer device when the transfer is performed.
  • a preferred aspect of the present invention is a substrate transfer method, wherein an execution time of each operation of the transfer device is calculated based on a linear programming method. Further, according to a preferred aspect of the present invention, it is determined whether or not the solution of the execution time of each operation of the transfer device is obtained based on the conditional expression, and when it is determined that the solution of the execution time is not obtained.
  • the present invention provides a substrate transport method, wherein the conditional expression is corrected so as to reduce the average number of substrates simultaneously existing in the substrate processing apparatus, and the calculation of the execution time is retried.
  • a board transfer method is characterized in that a new execution time is calculated for a board up to the final board determined above while holding a scheduling result before the assumed time.
  • the throughput can be approximately maximized while satisfying the process processing constraints.
  • the number of additional substrates to be scheduled can be estimated in consideration of the number of sheets that can be calculated, so scheduling should be performed even in a conference where the processing capacity is relatively low. I can do it.
  • a time at which the carrier starts to perform each operation is acquired, and a contradiction or a predetermined time is determined between the acquired time and the execution time in the scheduling result obtained in the past. Judgment is made as to whether there is a difference greater than or equal to the prescribed range. If it is determined that there is a contradiction or a difference greater than the predetermined range, it is determined that there is a contradiction or a difference greater than the predetermined range. Is This is a substrate transfer method characterized by correcting the execution time of each operation of a transfer device that has not been performed at a given time.
  • One preferred aspect of the present invention is to detect a change in conditions relating to a substrate scheduled to be put into the substrate processing apparatus after the operation of the substrate processing apparatus is started, and to detect a change in conditions relating to the substrate.
  • a method of transporting a substrate comprising correcting the execution time of each operation of the transporter with respect to the substrate after the substrate whose condition has been changed.
  • the present invention when the processing of one or more substrates in one or more processing equipment in the substrate processing apparatus is omitted, the one or more substrates are transported by skipping the one or more processing equipments.
  • the present invention provides a method of transporting a substrate, which calculates an execution time of each operation of the transporter.
  • the substrate can be transferred while skipping unnecessary processing equipment types, so that a plurality of processing equipment types can be properly used according to purposes. Therefore, the throughput can be greatly improved, and a flexible operation corresponding to high-mix low-volume production becomes possible.
  • Another aspect of the present invention is directed to a substrate transfer control device that controls transfer of a substrate by a transfer device between a plurality of processing apparatuses installed in a substrate processing apparatus.
  • An input device for inputting a time required for each operation of the transfer device and a time required for processing a substrate in each processing device, and the time input by the input device as a parameter.
  • Based on a predetermined conditional expression calculate the execution time of each operation of the transporter such that the time at which the last substrate of the target substrate is completely processed and collected from the substrate processing apparatus is the earliest.
  • a substrate transport comprising: a schedule calculation unit; and an operation command unit that instructs the corresponding transport device to perform the operation when the execution time of each operation of the transport device calculated by the schedule calculation unit comes. It is a control device.
  • a preferred aspect of the present invention is the substrate transfer control device, wherein the schedule calculation unit calculates an execution time of each operation of the transfer device based on a linear planning method.
  • a preferred aspect of the present invention is a solution determining unit that determines whether or not the solution of the execution time of each operation of the transporter is obtained by the schedule calculation unit, and a solution determination unit that determines the solution of the execution time by the solution determining unit. If it is determined that the time has not been obtained, the conditional expression is modified so as to reduce the average number of substrates simultaneously existing in the substrate processing apparatus, and the calculation of the execution time by the schedule calculation unit is retried. And a retry unit for performing the operation.
  • a schedule determination unit that determines whether or not it is necessary to newly calculate the execution time of each operation of the transfer machine by the schedule calculation unit after the operation of the substrate processing apparatus is started.
  • the schedule determination unit determines whether the calculated execution time is a new one and the final substrate of the target substrate in the calculation of the execution time by the schedule calculation unit.
  • Calculation condition determining unit for determining Wherein the schedule calculation unit is determined by the calculation condition determination unit while holding a scheduling result obtained in the past and before the assumed time determined by the calculation condition determination unit.
  • This is a substrate transfer control device characterized in that a new execution time is calculated for substrates up to the final substrate.
  • a result time acquisition unit for acquiring a time at which the transport device starts to perform each operation; a time acquired by the result time acquisition unit; and an execution time in a scheduling result obtained in the past.
  • Re-scheduling to determine whether there is an inconsistency or a difference exceeding a predetermined range between the re-scheduling judgment unit and the re-scheduling judgment unit.
  • a correction unit that corrects the execution time of each operation of the transporter that has not been performed when it is determined that there is a contradiction or a difference that exceeds a predetermined range. This is a substrate transfer control device.
  • a condition change detection unit that detects a change in a condition relating to a substrate scheduled to be put into the substrate processing apparatus after the start of the operation of the substrate processing apparatus;
  • a correction unit configured to correct, when the detection unit detects a change in the condition relating to the substrate, the execution time of each operation of the transfer device with respect to the substrate after the substrate for which the condition has been changed. This is a substrate transfer control device.
  • a substrate transfer control device is characterized in that the execution time of each operation of the transfer device is calculated so as to be transferred while skipping the above processing equipment.
  • a substrate processing apparatus including a plurality of processing apparatuses for processing a substrate, wherein the substrate is processed by transporting the substrate by a transporter between the processing apparatuses.
  • a substrate processing apparatus provided with a control device.
  • FIG. 1 is a schematic diagram showing a configuration of a semiconductor manufacturing apparatus according to one embodiment of the present invention
  • FIG. 2 is a diagram showing an example of a hardware configuration according to the first embodiment of the present invention
  • FIG. 3 is a block diagram showing a configuration of substrate transfer control according to the first embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a procedure of substrate transfer control according to the first embodiment of the present invention
  • FIG. 5 is a block diagram showing a configuration of substrate transfer control according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing a procedure of substrate transfer control according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing an image of a time domain to be scheduled in the second embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a configuration of substrate transfer control according to the third embodiment of the present invention.
  • FIG. 9 is a flowchart showing a procedure of a process performed in a schedule correction unit according to the third embodiment of the present invention.
  • FIG. 10 shows a configuration of substrate transfer control according to the fourth embodiment of the present invention. Block diagram
  • FIG. 11 is a flowchart showing a procedure of processing performed in a schedule correction unit according to the fourth embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a configuration of a substrate processing apparatus
  • FIG. 13 is a diagram showing an example of the flow of a substrate between the types of processing equipment in FIG. 12;
  • Figures 14A and 14B show the order of the substrates to be scheduled in Figure 13;
  • FIG. 15 is a diagram showing an example of the flow of a substrate between the types of processing equipment in FIG. 12;
  • Figures 16A and 16B show the order of the substrates to be scheduled in Figure 15;
  • FIG. 17 is a diagram showing an example of the configuration of a substrate processing apparatus
  • Figure 18 is a diagram showing an example of the flow of the substrate between the processing equipment types of Figure 17;
  • FIGS. 19A to 19C are diagrams showing the order of substrates to be scheduled in FIG. 18;
  • FIG. 20 is a block diagram showing the overall configuration of a substrate processing apparatus in which the substrate transfer apparatus according to the present invention is incorporated;
  • FIG. 21 is a diagram showing a scheduling result immediately after the start of operation when the execution time of the transfer device is scheduled using the substrate transfer control device according to the second embodiment of the present invention.
  • FIG. 22 is a diagram showing a scheduling result after a lapse of a fixed time from the start of operation when the execution time of the transfer device is scheduled using the substrate transfer control device according to the second embodiment of the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • a substrate transfer control device controls transfer of a substrate between a plurality of processing apparatuses installed in a substrate processing apparatus.
  • the substrate processing apparatus in which the substrate transfer is controlled by the substrate transfer control apparatus according to the present invention is a semiconductor manufacturing apparatus that performs processing on a semiconductor substrate (a wafer).
  • the present invention is not limited to this, and can be applied to, for example, a substrate processing apparatus that performs processing for manufacturing an LCD on a glass substrate.
  • FIG. 1 is a schematic diagram illustrating a configuration of a semiconductor manufacturing apparatus according to the present embodiment.
  • a semiconductor manufacturing apparatus controlled by a substrate transfer control device includes transfer devices 1a to 1c for transferring substrates, cassettes 2a and 2b on which substrates are loaded, and substrates. 3a, 3b, reversing machine 4, washing / drying machine 5a, 5b, chemical washing machine 6a, 6b, coarse washing machine 7, pretreatment tank 8a, 8b, plating Tanks 9a to 9d are provided.
  • the semiconductor manufacturing apparatus can be configured as various apparatuses such as a CVD apparatus for performing a film forming process and a polishing apparatus for performing a polishing process. can do.
  • the substrate loaded in cassette 2a or 2b is loaded into the device by transporter 1a, transported to temporary storage 3a, and then transported to temporary storage 3b by transporter 1b. .
  • the substrate is transferred to the pretreatment tank 8a or 8b by the transfer device 1c, processed, and inverted. After that, it is tightened by transporter 1c It is transported to the tanks 9 a to 9 d for processing, and further transported to the rough washing machine 7.
  • the substrate after the rough cleaning is transported by the transport device 1b to the chemical cleaning device 6a or 6b, processed, and further transported to the reversing device 4 to be reversed.
  • the substrate is finally conveyed to the washing / drying machine 5a or 5b by the transfer machine 1a, processed, and collected in the cassette 2a or 2b that has been loaded first.
  • the substrate is not limited to a single substrate, and may be a set of a plurality of substrates integrated by being connected by a jig or the like.
  • each operation of the transporters 1 a to 1 c is defined in advance.
  • the operations of the transporter 1c include an operation C of moving to the temporary placing table 3b to receive the substrate, an operation D of transporting the substrates to the preprocessing tanks 8a and 8b and delivering the substrate D, and an operation of the preprocessing tank 8 a, 8b to receive the pre-processed substrate E, transfer to plating tanks 9a to 9d and deliver the substrate F, move to plating tanks 9a to 9d for plating
  • the operation G which receives the subsequent substrate and moves it to the rough cleaning machine to deliver the substrate, is defined.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the substrate transfer control device according to the present embodiment
  • FIG. 3 is a block diagram illustrating a configuration of the substrate transfer control device according to the present embodiment.
  • the board transfer controller 10 is a central processing unit (CPU) 11, a communication device for reading pointing devices such as a keyboard and a mouse, and other devices stored in the console. It comprises an input device 12 such as a device, and a ROM 13, a memory 14, and a hard disk 15 as storage devices.
  • the substrate transfer control device 10 is connected to the transfer devices 1 a to lc of the semiconductor manufacturing apparatus via an input / output interface 16, and receives signals from the CPU 11.
  • 1 evening field 1 6 Are transferred to the transporters 1 a to lc of the semiconductor manufacturing apparatus via the control unit, thereby controlling the transporters 1 a to lc.
  • the R ⁇ M 13 and the hardware and disk 15 store computer program codes for giving instructions to the CPU 11 etc. in cooperation with the OS (Operating System) and controlling board transfer. I have.
  • This computer program is executed by being loaded into the memory 14, and performs the substrate transfer control described below in cooperation with the CPU 11.
  • the schedule calculation unit 21, solution determination unit 22, time table creation unit 23, operation command unit 24, A retry section 25 is configured.
  • the hard disk 15 (or the memory 14) stores a time table 17 created (updated) by a time table creation unit 23 described later.
  • FIG. 4 is a flowchart showing a procedure of substrate transfer control in the substrate transfer control device 10 according to the present embodiment.
  • the time required for each of the operations 1 a to lc (hereinafter referred to as the scheduled operation time), for example, the estimated time required for the transfer machines 1 a to 1 c to receive the substrate from the processing equipment and the transfer device 1 Enter the expected time required for a to lc to move from one processing equipment position to another processing equipment position (step 1).
  • the input of the scheduled operation time is performed via the input device 12 described above.
  • the scheduled processing time for example, the time scheduled for cleaning the substrate in the rough cleaning machine 7. Enter (Step 2). This The input of the scheduled processing time is also performed via the input device 12.
  • the input device for inputting the scheduled operation time and the scheduled processing time is not limited to the keyboard / pointing device.
  • the input scheduled operation time and the scheduled processing time are stored in the storage device 1 in advance. 4 or 15 may be stored as a file, and by reading this file, the scheduled operation time and the scheduled processing time may be input. Alternatively, such a file may be stored in another computer. The scheduled operation time and the scheduled processing time may be input by reading this via the communication device.
  • the scheduled operation time is stored in a file, for example, the time required for each operation of the transfer machine is actually measured by a computer connected to each transfer machine, and the measured time is used as the estimated operation time. It may be stored in a file.
  • the schedule calculation unit 21 uses the transfer devices 1a to 1c to set the time at which the last substrate (final substrate) to be collected from the semiconductor manufacturing apparatus is completed as soon as possible.
  • the operation time of each operation (hereinafter referred to as the execution time) is derived (step 3).
  • the derivation of the execution time is performed by calculating a solution that satisfies a predetermined conditional expression. The details will be described later.
  • Step 4 determines whether or not a solution that satisfies the above conditional expression is obtained after the operation by the above schedule operation unit 21.
  • the time table creator 23 sets the time table 17 based on the execution time, that is, when the obtained execution time and the execution time are reached.
  • a table is created (updated) in correspondence with the operation of the transfer machine to be performed, and the table 1 is stored in the hard disk 15 (step 5).
  • the operation command unit 24 controls the transporters 1 a to 1 c with reference to the time table 17 stored in the hard disk 15. That is, when the execution time described in the time table 17 is reached, the operation of the corresponding transporter is instructed to the transporter via the input / output interface 16. As a result, the time at which the last substrate to be processed is collected from the semiconductor manufacturing apparatus after completing the entire processing is earlier.
  • the operation command section 24 instructs the transfer devices 1a to lc to operate, the transfer device is not operating and the processing of the substrate in the transfer source processing device has been completed. After confirming that the preceding board does not exist in the processing equipment of the transfer destination and that the reset has been completed, the command is transmitted. If these conditions are not satisfied, the operation command section 24 waits until the above conditions are satisfied before transmitting the command.
  • the retry unit 25 sets the average number of substrates that exist simultaneously on the transporter in the apparatus and on the processing equipment.
  • the condition of the substrate is adjusted so as to reduce the above, that is, the above-mentioned conditional expression is corrected, and the processing after the above step 3 is retried (step 6).
  • This conditional expression is modified by inserting virtual substrates (hereinafter referred to as empty substrates) between the substrates at appropriate intervals with the scheduled operation time of the transporter and the scheduled processing time of the processing equipment set to 0. Will be At this time, if the number of substrates simultaneously present in the apparatus is reduced, the operation of the transporter is frequently performed.
  • the degree becomes smaller and the carrier has a margin the probability of obtaining a solution increases. If the solution cannot be obtained even after retrying by the retry unit 25, the above conditional expression is modified so as to further reduce the average number of boards that exist simultaneously in the above-mentioned equipment. After the processing of the preceding substrate has been completed and collected in cassette 2a or 2b, the next substrate is loaded into the apparatus.
  • the numbers (operation numbers) k of the operations of the transporters 1 a to 1 c are assigned in the order of 1, 2, 3, 3,..., K along the path from the input of the substrate to the semiconductor manufacturing apparatus to the collection. Is defined. Assuming that sufficient time has passed since the start of operation of the semiconductor manufacturing equipment and there are enough substrates in the semiconductor manufacturing equipment and the semiconductor manufacturing equipment is operating steadily, the operation k is executed next to the corresponding transporter. The number of the action performed is denoted by kp (k). Furthermore, it is assumed that an appropriate number of the above-mentioned empty substrates exist before the first substrate at the start of the operation of the semiconductor manufacturing apparatus and after the last substrate at the end of the operation.
  • the board number n is determined in the order of loading from the cassette 2a or 2b into the semiconductor manufacturing equipment, and the board number of the board to be operated when moving from operation k to the next operation kp (k) is determined.
  • the semiconductor manufacturing apparatus shown in FIG. 1 is defined as follows.
  • Operation to convey the received substrate to preprocessing tank 8a or 8b and deliver it D to k 4
  • the operation sequence of the transfer machine is determined. deep.
  • the operation order of the transporter 1c is periodically defined such that the operation number is 3546 ⁇ 73 7 '. In this case,
  • the increment np of the board number when moving from the operation k to the next operation kp (k) is defined as follows. This np is determined in consideration of the number of processing devices 3a to 9d for each type.
  • each substrate is a processing device of the same type (for example, 8a to 8b, Assuming that they are assigned in order of 9a to 9d) in order of application ⁇ Periodic, the scheduled operation time shown below is uniquely determined.
  • These scheduled operation times are input by the input device 12 described above, or are calculated based on the input values in consideration of the position and route of the transporter.
  • T g (k, n) T g (k, n). That is,
  • T g (k, n) M 1 (k, n) + G 1 (k, n)
  • X f (k, n) idle time of the processing equipment immediately before transferring the substrate to the processing equipment by operation k on the substrate n ⁇ xw (k, n) is the operation including the reception of the substrate from the processing equipment Defined only when Xf (k, n) is the drawing of the substrate to the processing equipment. Only the operation including transfer is defined, but practically, the operation may be limited to the operation of transferring a substrate to a relay-type processing device used for transfer of the substrate between transfer devices.
  • Equation 3 P (k, n) in (Equation 2) is the scheduled processing time of the board number n after the operation represented by the operation number k, and This is calculated based on the input value or the input value.In addition to the scheduled processing time such as plating and cleaning, which is usually specified for each substrate, it is necessary to perform processing on processing equipment. This includes the time required for the pre-operation such as closing the shirt and filling the liquid that is performed in advance, and the time required for the post-operation such as draining and shutting down the liquid after the processing is completed.
  • U (k) in (Equation 3) represents the number of devices in the type for the processing device that delivers the substrate in operation k.
  • Equation 1 is the operation performed by the same transporter after the operation k for the substrate n.
  • Equation 2 is the start time of the next operation k + 1 after processing of substrate n by the processing equipment
  • Equation 3) is the transfer machine receiving the processed substrate from the processing equipment.
  • the start time of the operation of transferring the next substrate n is defined by the above (Equation 1) to (Equation 3), where T, Xr, Xw, and Xf are t (k, ⁇ ), ⁇ r (k , ⁇ ), ⁇ w (k, ⁇ ), ⁇ f (k, ⁇ ), Rm, Wm, Fm as an appropriate matrix, and Rv, Wv, Fv as an appropriate column
  • T, Xr, Xw, and Xf are t (k, ⁇ ), ⁇ r (k , ⁇ ), ⁇ w (k, ⁇ ), ⁇ f (k, ⁇ ), Rm, Wm, Fm as an appropriate matrix, and Rv, Wv, Fv as an appropriate column
  • the vector T on the left side has an element corresponding to t ( ⁇ , N) representing the start time of the collection operation for the final substrate N (excluding the empty substrate).
  • condition for making the collection time earliest can be expressed as follows, where c is an appropriate vector.
  • the corresponding element on the right side of (Equation 3b) indicates this time.
  • the transporter 1a after the transporter 1a receives the substrate after the inversion, the transporter 1b can deliver the next substrate only after the inversion mechanism is reset. In such a case, the reset required time is added to the corresponding element on the right side.
  • the time from receiving the substrate from the immediately preceding processing device in operation k0 to transferring it to the next processing device in operation k0 + 1 is also set.
  • a similar form of inequality can be derived.
  • a lower-limit constraint condition can be set between the start times of any two operations, whereby it is possible to perform a schedule with some allowance for the transfer device.
  • the waiting time before the processing from when the substrate n is delivered to the processing equipment by the operation k until the processing is actually started is defined as xww (k, n), and the waiting time is defined as the variable vector Xr. It is also possible to formulate it. In this case, the upper bound constraint on xw (k + 1, n) The probability that the condition is satisfied can be increased.
  • Equations lb) to (Equation 3b) and (Equation 5) can be expressed by the following equations, where A is an appropriate matrix and b is an appropriate column vector.
  • FIG. 5 is a block diagram illustrating the configuration of the substrate transfer control device 10 according to the present embodiment
  • FIG. 6 is a flowchart illustrating the procedure of the substrate transfer control in the substrate transfer control device 10 according to the present embodiment
  • FIG. FIG. 4 is a diagram showing an image of a time domain to be scheduled according to the embodiment.
  • the substrate transfer control device of the present embodiment can cope with such a case.
  • the substrate transfer control device 10 in the present embodiment repeats the sequential scheduling while moving the scheduling target time region shown in FIG. 7 backward during the operation of the semiconductor manufacturing apparatus, and contradicts the result of each scheduling.
  • the control is carried out without adding.
  • the board transfer control device 10 according to the present embodiment has a hard disk 15 in which a calculation time table 18 is stored, and a computer program stored in storage devices 13 to 15.
  • schedule decision unit 31 computation condition decision unit 32, schedule computation unit 33, solution decision unit 34, time table creation unit 35, operation command unit 36, retry
  • the part 37 is composed.
  • the expected operation time is input by the input device 12 (step 21), and the expected processing time is input by the input device 12 (step 22).
  • the data input by the input device is temporarily stored in the storage device 14 or 15, and by reading the data, the scheduled operation time and the scheduled processing time are input.
  • the schedule determination unit 31 determines whether a new scheduling is necessary (step 23). In other words, it checks whether there is a substrate for which the scheduled processing time has been input but the scheduling has not yet been performed.
  • the schedule determination unit 31 determines that there is no board that has not been scheduled, that is, if it is determined that new scheduling is not required, the process returns to step 22 again, and the scheduled processing time is input. Wait for
  • the calculation condition determining unit 32 sets the scheduled time after the present time and the target of the scheduling calculation.
  • the final substrate (excluding the empty substrate) is determined (step 24).
  • the final board is It is assumed that this is the last substrate to be newly added as a target of the scheduling operation in addition to the already scheduled substrates, and is not an empty substrate.
  • the estimated time and the final substrate are calculated based on the previously derived scheduling results, and the first non-empty substrate (meaning that is not an empty substrate) is entered into the semiconductor manufacturing equipment and the first empty substrate
  • the number of additional substrates is estimated within the range of the number of substrates for which the scheduled processing time has been input but the scheduled processing time has not yet been entered. If a positive number of additional substrates cannot be obtained, the estimated time is obtained by shifting the estimated time to the time of collection of the next scheduled substrate. In this way, as shown in FIG. 7, a period from the above-mentioned assumed time to the time when the last substrate is collected is a rough time zone for scheduling.
  • the average value of the time required for the scheduling calculation with respect to the number of added boards is stored in the hard disk 15 as a calculation time table 18.
  • An appropriate number of additional boards is estimated in consideration of the time required for the calculation stored in the time table 18.
  • the time for collecting the final substrate by this new scheduling is usually later than the true earliest value (earliest time) realized when the scheduled processing time for all substrates is given in advance, If the number of substrates to be added in each scheduling is increased to some extent, it can be approximated to the true earliest value approximately.
  • the calculation condition determination unit 32 sets the estimated time and the target of the scheduling After the final board is determined, the schedule calculation unit 33 next performs each operation of the transporting machine within the above-mentioned scheduling target time domain based on the conditional expression after adding the above-described additional board.
  • the lower limit of the board number of interest for each operation k Ask for may be determined by obtaining an operation that can occur after the estimated time depending on the expected processing time or the expected operation time from the operation order of the transporter. In this way, in the past scheduling results, the execution time of many operations before the assumed time is retained, but there may be an operation where the execution time is not retained near the estimated time.
  • an operation that can occur before the start time of the operation of collecting the last substrate to be processed into the cassette for the above scheduling operation is determined, and the upper limit of the substrate number is determined.
  • the upper limit of the substrate number is determined.
  • the unknown column vectors T, Xr, and the like described above are configured based on the lower and upper limits of the board numbers thus determined, and the scheduling operation is performed. Then, in each scheduling operation, the average value of the required time of the operation stored in the operation time table 18 is updated based on the time actually required for the operation.
  • the minimum value of k l, 2, ... ⁇ ⁇ Calculate the operation time in the order of, K.
  • the collection time of the substrate becomes the most. Be faster.
  • the substrates are processed by the processing equipment 3a to 9d and immediately transferred to the next processing equipment by the transporters 1a to 1c. Conveyed. Therefore, an optimal solution that satisfies the given constraints is obtained.
  • step 26 it is determined whether or not the solution of the execution time is obtained by the solution determination unit 34 (step 26), and the solution of the execution time is determined.
  • a time table is created (updated) by the time table creating section 35 (step 27). After the time table is created (updated), the process returns to step 22 and repeats the subsequent steps.
  • the operation command unit 36 controls the transporters 1 a to 1 c by referring to the time table 17 stored in the hard disk 15, as in the first embodiment.
  • step 28 when the solution determination unit 34 determines that the solution at the execution time was not obtained, an empty board is inserted between the boards by the retry unit 37 as in the first embodiment ( In step 28), in such a case, the calculation condition determining unit 32 considers the empty board to be inserted and sets the estimated time and scheduling so that a non-empty additional board exists. Determine the final board to be calculated.
  • the safety factor is set to a large value in the above estimation of the number of additional substrates. Therefore, it is necessary to complete the scheduling calculation earlier than the expected time so that the operation instruction unit 36 can issue an operation instruction to the transfer device.
  • FIG. 8 is a block diagram illustrating a configuration of the substrate transfer control device 10 according to the present embodiment.
  • the board transfer control device 10 includes a scheduling unit 40, a schedule correction unit 50, and an operation command unit 60. Is stored.
  • the operation command section 60 corresponds to the operation command section 36 in the above-described second embodiment.
  • the scheduling unit 40 includes the schedule determination unit, the calculation condition determination unit, the schedule calculation unit, the solution determination unit, the time table creation unit, and the retry unit in the second embodiment.
  • the schedule correction unit 50 includes an actual time acquisition unit 51, a rescheduling determination unit 52, an invalidation unit 53, an elapsed data acquisition unit 54, a correction unit 55, and an activation unit 56. . Both the scheduling unit 40 and the schedule correcting unit 50 are realized by cooperation between the computer program stored in the storage devices 13 to 15 and the CPU 11.
  • FIG. 9 is a flowchart showing a procedure of processing performed by the schedule correction unit 50 in the present embodiment.
  • the basic processing flow in the scheduling unit 40 is the same as the processing described in the second embodiment described above.
  • the condition data such as the scheduled operation time and the scheduled processing time and the above-described t ( k, n), xr (k, n), and the result of the scheduling result such as the last board number that has been scheduled, etc., as an elapsed data file 19, which is inconsistent with the schedule correction unit 50. It differs from the second embodiment in that it is shared and updated.
  • the scheduled processing time is also stored in the memory 14 as an elapsed time file 19. Or, it is stored in the hard disk 15.
  • the elapsed time file 19 is read, and based on this, the time table generation unit Steps up to the creation (update) of 17 are executed, and the results are stored in the progress file 19.
  • the data stored in the progress data file 19 is sequentially deleted from old and unnecessary ones, for example, by referring to the numbers of the boards collected in the cassette after actually completing all the processes at each point in time.
  • the schedule determination unit determines the necessity of a new scheduling operation and the calculation condition determination unit determines the final board, taking into account the storage capacity of the transit data file 19 and the frequency of time correction. Then, the range of the substrate to be subjected to the scheduling operation may be restricted.
  • the following processing is performed in the schedule correction section 50.
  • the actual time acquisition section 51 is connected to the input / output
  • the time at which the transporters 1a to 1c actually started each operation via the face 16 (hereinafter, referred to as the actual time) is obtained (step 41).
  • the re-scheduling determination unit 52, the actual time acquired by the actual time acquisition unit 51, and the past scheduled by the schedule operation unit of the scheduling unit 40, and the time table 17 Find the difference from the execution time described in It is determined whether or not this difference exceeds a predetermined allowable range (step 42).
  • the rescheduling determination unit 52 may determine whether or not inconsistency has occurred in the operation based on the relationship between the actual time and the execution time described in the time table 17. For example, if the operation of one of the transporters is delayed and the other transporter is scheduled to receive the substrate from the processing equipment before actually delivering the substrate to the relay-type processing equipment, Since there is a contradiction, the execution time may be corrected in this case.
  • the execution time can be corrected more finely.
  • the invalidating section 53 invalidates or stops the processing in the scheduling section 40 (step 43), and the elapsed time and overnight acquisition section 54 outputs the elapsed time.
  • the elapsed time is obtained by referring to the file 19 (step 44).
  • the correction unit 55 calculates the substrates existing on the transfer machine and the processing equipment in the semiconductor manufacturing apparatus, and Leading single substrate before entering semiconductor manufacturing equipment Regarding the operations that have not been performed at this point in time (including any empty substrates), a new value that satisfies the above (Equation 1) to (Equation 3) and does not fall below the previously scheduled time is set as the new ( The (corrected) execution time is calculated (step 45).
  • the scheduled final substrate is the first substrate before being put into the above-mentioned semiconductor manufacturing apparatus, and an appropriate number of blank plates are inserted after that for convenience of calculation.
  • the correction unit 55 updates the time table 17 and the elapsed data file 19 based on the corrected execution time (step, repeat 46).
  • the time scheduled in the past may be uniformly moved backward according to the delay of the latest actual time. Also, the comparison with the past scheduling results may be made for the time when the transfer device finishes receiving the substrate from the transfer source processing device or the time when the transfer device finishes transferring the substrate to the transfer destination processing device.
  • the validating unit 56 re-enables or restarts the processing in the scheduling unit 40 that has been invalidated or stopped by the invalidating unit 53.
  • Step 47 After this activation or restart, the scheduling unit 40 performs processing based on the contents of the updated progress data file 19 described above.
  • FIG. 10 is a block diagram showing the configuration of the substrate transport control device 10 in the present embodiment.
  • the board transfer control device 10 includes a scheduling unit 40, a schedule correction unit 70, and an operation command unit 60. Is stored.
  • the scheduling unit 40 and the schedule correction unit 70 are both realized by cooperation between the computer program stored in the storage devices 13 to 15 and the CPU 11.
  • the schedule correction unit 70 includes a condition change detection unit 71, an invalidation unit 72, an elapsed data acquisition unit 73, a scheduled processing time update unit 74, a correction unit 75, and an activation unit 7. It consists of six parts.
  • FIG. 11 is a flowchart showing a procedure of processing performed in the schedule correction unit 70 in the present embodiment.
  • the condition change detection unit 71 changes the condition of a board to be put into the apparatus (hereinafter, referred to as an unloaded board) after the start of the operation, for example, canceling the scheduled time of the apparatus input, and setting the processing time.
  • the presence or absence of a change or a change in the device input order is detected via the input device 12 (step 51). conditions If the change detection unit 71 detects a change in the condition relating to an unloaded substrate, the execution time described in the time table 17 needs to be corrected, so the following process is performed.
  • the invalidating unit 72 invalidates or stops the processing in the scheduling unit 40 (step 52), and the elapsed time / night acquisition unit 73 refers to the elapsed time data file 19 to execute the above process.
  • the scheduled processing time updating unit 74 refers to the above-mentioned change in the condition regarding the unloaded substrate (cancellation of the scheduled loading of the device, change of the scheduled processing time, change of the order of loading the devices, and the like), and obtains the above-mentioned progress data.
  • the data on the scheduled processing time accumulated in the past is updated (step 54).
  • a new loading order is set for the unloaded substrates after the condition is changed, and the scheduled processing time is updated based on the loading order.
  • the constraint on transport is specified for each substrate, the constraint is similarly updated.
  • the correction unit 75 determines the current board based on the past scheduling result in the elapsed data. Cancel the scheduling result after the board and insert an appropriate number of empty boards. Then, a new (corrected) execution time is calculated as a minimum value that satisfies the above (Equation 1) to (Equation 3) and does not fall below the previously scheduled time (step 55). At this time, the scheduled last board is the last board whose scheduled processing time has not been changed in step 54. Then, the correction unit 75 updates the time table 17 and the elapsed data file 19 based on the corrected execution time (step 56). Note that in step 55, the transfer device is A comparison with past scheduling results may be made for the time when the substrate is completely received from the server or the time when the substrate is finished being delivered to the processing equipment of the transfer destination.
  • the validating unit 76 re-validates or restarts the processing in the scheduling unit 40 that has been invalidated or stopped by the invalidating unit 72 (step 57).
  • the scheduling section 40 performs processing based on the updated contents of the progress file 19.
  • the operation execution time can be recalculated based on the changed scheduled processing time for the substrates subsequent to the first substrate whose scheduled processing time has been changed in step 54 above. In this way, even if there is a change in the condition regarding the substrate that has not been loaded, such as cancellation of processing, a change in the scheduled processing time, or a change in the order of loading the equipment, the substrate processing apparatus is operated flexibly in response to this change. It becomes possible.
  • schedule correction unit 70 of the present embodiment and the schedule correction unit 50 of the third embodiment described above may be configured to function simultaneously.
  • the schedule calculation unit in each of the above embodiments executes the execution time of each operation of the transporter such that the time at which the last substrate of the target substrate has been processed and collected from the semiconductor manufacturing apparatus is the earliest. Is derived.
  • each operation of the transfer machine is performed such that the tomb plate is transported over the specified processing equipment even when the processing of a certain processing equipment for a specific substrate is designated to be omitted. It is possible to calculate the execution time. Omission of such processing can be designated, for example, by setting the scheduled processing time for a specific substrate in a certain processing apparatus to zero. When a substrate is transported by jumping over processing equipment in this way, an appropriate number of empty substrates are inserted immediately before the processing equipment that jumps and immediately before the target substrate.
  • the execution time is calculated by the calculation based on the linear programming described above.
  • processing equipment types S 1 to S 3 are installed in a substrate processing apparatus. Operations including delivery of substrates to processing equipment types S1 to S3 k ⁇ 1, k, and k + 1 are performed by the same transporter, and substrates A, B, C, and D are processed in this order. It shall be thrown into the equipment and transported and processed.
  • FIG. 13 and FIG. 15 which will be described later show examples of the flow of the substrate between the processing device types in FIG. 12, and the time axis is taken downward.
  • this operation [k + 1, 2] does not inhibit the operation [k-1, 5] including the transfer of the substrate C (5) to the processing device type S1.
  • the operation [k, 4] is treated as an operation on an empty substrate, that is, an operation having no operation time of zero.
  • the processing equipment type of the transfer source is replaced from S2 to S1, and the operation including the transfer of the board D (6) to the processing equipment type S1
  • This operation [k + 1, 3] is performed before the operation [k, 5] including the reception of the substrate C (5) from the processing equipment type S 1 so as not to disturb [k ⁇ 1, 6].
  • the substrate C is transferred from the processing device type S1 to the processing device type S3.
  • the action [k, 5] is also treated as an insubstantial action.
  • the empty substrate before the substrates B and C is moved to the rear of the substrates B and C after the operation [k + 1, 3] as shown in FIG. 14B. It will move.
  • a number obtained by subtracting 1 from the number of devices 2 of the processing device type S2, that is, one empty substrate ⁇ ⁇ is inserted immediately before the substrate B.
  • the operation including the reception of the substrate B (3) from the processing device type S 1 [k: [3] is treated as an operation on an empty substrate, and the next operation, that is, an operation [k + 1, 2] on an empty substrate ⁇ ⁇ ⁇ ⁇ ⁇ , is performed by replacing the processing equipment type of the transfer source from S2 to S1.
  • the substrate B is transferred from the processing device type S1 to the processing device type S3.
  • the transporter can transfer these substrates C and D to the processing device type S1 without any problem.
  • the empty substrate in front of the substrates B and C moves to the rear of the substrates B and C as shown in FIG. 16B.
  • the transfer of the substrate to another transfer device via the relay type processing device type is performed instead of the operation k-1.
  • the jump can be performed by determining the number of empty substrates to be inserted so as not to affect the operation order of the other transfer device.
  • FIG. 17 a case will be described as an example where processing equipment types S1 to S4 are installed in the substrate processing apparatus.
  • the operations k—1, k, k + 1, and k + 2, including the transfer of the board to the processing equipment types S1 to S4, are performed by the same transporter, and the boards A, B, C, D, E, and F are In this order, they are loaded into the substrate processing apparatus, transported and processed.
  • the operation sequence of the conveyor during the steady operation is k + 2, k + 1 3 k, a k-1, is assumed to operate conveyor is in the order shown in FIG. 18. In FIG. 18 as well, the time axis is set downward.
  • the processing equipment type of the transport source in the above operation [k + 1, 5] is replaced with S1 from S2, and the operation [k, 1] including the reception of the substrate E (7) from the processing equipment type S1
  • the above operation [k + 1, 5] is performed prior to 7].
  • the substrate E is transported over the processing equipment S2.
  • one of the empty substrates moves to the rear of the substrate D.
  • the processing equipment type of the transport source in the operation [k + 2, 4] is replaced with S2 from S3, and the operation [k + 1, 4] including the reception of the substrate D from the processing equipment type S2 is performed.
  • the above operation [k + 2, 4] is performed prior to 6].
  • the substrate D is transported while skipping the processing equipment S3.
  • the processing equipment type of the transport source in the above operation [k + 1, 6] is replaced with S1 from S2, and the operation [k, 1] including the reception of the board F (8) from the processing equipment type S1
  • the above operation [k + 1, 6] is performed prior to [8].
  • the substrate F is transported over the processing equipment S2.
  • the two empty substrates move behind the substrate F as shown in FIG. 19C.
  • the present invention during continuous operation of the substrate processing apparatus, for each substrate, an unnecessary processing device type is skipped and the substrate is transported, or a plurality of processing device types are selectively used according to purposes.
  • the throughput can be greatly improved compared to a case where the continuous operation is stopped once and a substrate that performs different processing is handled, and when a substrate processing apparatus is separately prepared for each purpose. Compared with this, the cost can be significantly reduced.
  • the correction unit (reference numeral in FIG. 8) is used. In the case of 55 and 75 in Fig. 10, jumping is also considered.
  • FIG. 20 shows a substrate processing apparatus according to the present embodiment.
  • FIG. 2 is a block diagram showing an overall configuration of a (semiconductor manufacturing apparatus).
  • This substrate processing apparatus includes, as a main body, transfer apparatuses 1a to 1c, cassettes 2a and 2b, and processing apparatuses 3a to 9d shown in FIG.
  • the substrate processing apparatus includes an apparatus control unit 100 including a computer, a scheduler 102 including an independent computer, a display apparatus 104 for displaying the state of the apparatus, and the like.
  • the above-mentioned input device 12 for inputting operating conditions and control conditions of the device is provided.
  • the storage devices inside the device control unit 100 and the scheduler 102 store the above-mentioned computer program for board control and the computer program for device control.
  • the device control unit 100 and the scheduler 102 may be configured by cooperating a plurality of computers, or they may be configured by a single computer. Good.
  • the apparatus control unit 100 includes controllers 1a to 1c connected to the transporters 1a to 1c, cassettes 2a and 2b, and the processing devices 3a to 9d in the apparatus body. 1 and a main controller 120 connected to these controllers 110 to 112.
  • the controllers 110 to 112 receive a command from the main controller 120 and transmit the command to each of the devices 1a to 9d. Further, the controllers 110 to 112 monitor the devices 1 a to 9 d and transmit the states of the devices 1 a to 9 d to the main controller 120.
  • the main controller 120 has a function of transmitting a processing start command, processing conditions, and the like to the processing devices 3 a to 9 d, and an operation command section (reference numeral 24 in FIG. 3; Reference numerals 36 in FIG.
  • FIG. 8 and reference numeral 60 in FIG. 10 an actual time acquisition unit (reference numeral 51 in FIG. 8), a rescheduling judgment unit (reference numeral 52 in FIG. 8), and conditions.
  • Change detection unit (signs in Fig. 10 7 1) is included.
  • a display device 104 and an input device 12 are connected to the main controller 120.
  • the scheduler 102 includes a schedule calculation unit (reference numeral 21 in FIG. 3 and reference numeral 33 in FIG. 5) for controlling the above-described transport device, a solution determination unit (reference numeral 22 in FIG. 3, reference numeral 34 in FIG. 5). ), Retry section (reference number 25 in FIG. 3, reference number 37 in FIG. 5), remote table creation section (reference number 23 in FIG. 3, reference number 35 in FIG. 5), schedule determination section (see FIG. 5).
  • Reference numeral 31 an operation condition determination unit (reference numeral 32 in FIG. 5), an invalidation unit (reference numeral 53 in FIG. 8, reference numeral 72 in FIG. 10), and a progress data acquisition unit (refer to FIG. 8)
  • the configuration of the main controller 120 and the scheduler 102 is just an example, and it goes without saying that the main controller 120 and the scheduler 102 may have a different configuration.
  • the power supply of the device main body is linked to the power supply of the device control unit 100, the display device 104, the input device 12, and the scheduler 102.
  • the device control unit 1 0 0, display device 104, input device 12 and scheduler 102 are also automatically turned on, and the device control unit 100, display device 104, input device 12 and scheduler 1-2 are started. I do.
  • the scheduler 102 is in a standby state for a signal from the main controller 120.
  • the input device 12 allows the use of each of the processing devices 3 a to 9 d of the apparatus main body, and each processing unit 1 a to lc performs each processing.
  • a transfer route indicating the order in which substrates are transferred between the types of the physical devices 3a to 9d, the order of basic operations of the transfer devices 1a to 1c during normal operation, and the like are input.
  • an operation command is transmitted from the main controller 120 to each of the transporters 1a to 1c to operate the transporters 1a to 1c in the apparatus main body, and the respective transporters 1a to 1c are operated. The time required for the operation may be obtained.
  • the main controller 120 performs start processing such as returning to the home position of the transporters 1 a to lc and initializing the processing devices 3 a to 9 d.
  • start processing such as returning to the home position of the transporters 1 a to lc and initializing the processing devices 3 a to 9 d.
  • the scheduler 102 transmits to the scheduler 102 an operation start command and data such as the above-described transport path, basic operation sequence, and scheduled operation time.
  • the scheduler 102 reads these data and performs initialization processing such as setting of the internal memory.
  • the input device 12 inputs the scheduled processing time for these unprocessed substrates and constraints on transport.
  • the data is transmitted to the scheduler 102 via the main controller 120.
  • the scheduler 102 reads the data on the scheduled processing time and the constraint conditions, calculates the execution time of each operation for the first substrate by the above-described substrate transfer control, creates a time table, This time table is transmitted to the main controller 120.
  • the main controller 120 starts the operation of the transporter and the processing in each processing device corresponding thereto based on the time table, and starts measuring the execution time of each operation.
  • the main controller 120 commands the conveyors 1a to 1c to operate.
  • the main controller 120 transmits the execution time of each operation to the scheduler 102, and transmits the position of each board, the progress of the processing, and the like to the output device 104. .
  • the transmission of the status of the main body of the device will be performed continuously at appropriately determined intervals.
  • the scheduler 102 sets an appropriate number of additional boards as described above with respect to the second and subsequent boards for which the scheduled processing time is first obtained, and sequentially schedules them by the linear programming method. Send the updated timetape to the main controller 120.
  • the scheduler 102 issues a command to stop the time of the main controller 120 before transmission, prohibits the start of a new operation, and disables the time table during transmission. Only the portion corresponding to the unexecuted operation may be transmitted, and after this transmission, the time of the main controller 120 may be restarted.
  • the time table is stored and accumulated in the storage device in the scheduler 102, and a fixed amount of schedule is created starting from the unexecuted operations.
  • the data may be transmitted to the main controller 120 sequentially at regular intervals regardless of the scheduling operation.
  • the scheduled processing time of each substrate and constraints on transport are entered in the same manner as described above.
  • the input and input data is transmitted from the main controller 120 to the scheduler 102.
  • the scheduler 102 reads these data and accumulates them in the progress data file, and continues the sequential scheduling by the linear programming described above.o
  • the scheduler 102 waits until the scheduled processing time of the next board that has not been loaded is input. I do.
  • the main controller 120 measures the execution time of each operation during the operation of the apparatus main body, and monitors the difference between the measured time and the time specified on the time table. As described above, if there is a delay in the operation time of each transporter 1a to 1c, the processing time in each processing equipment 3a to 9d, and the reset time, the execution time of the resulting operation will be delayed. Sometimes. In such a case, the main controller 120 sends a time correction command to the scheduler 102 by the rescheduling determination unit described above, and in response, the scheduler 102 receives the execution time of the unexecuted operation. Update the time table with the correction, and send it to the main controller 120. At this time, the main controller 120 stops the time before transmitting the correction command and restarts after receiving the time table, so that there is no inconsistency between the corrected time table and the actual operation. To
  • the input device 12 cancels the input of the unprocessed substrate or changes the processing time.
  • the information is transferred from the main controller 120 to the scheduler 102 together with the correction instruction for the board not yet input.
  • the scheduler 102 updates a part of the timetable and updates To the main controller 120. Note that, as in the case of the above-described time correction command, the main controller 120 stops the time before transmitting the correction command for the not-input board to the scheduler 102, and after receiving the time table, restart.
  • the main controller 120 stops checking the transmission from the scheduler 102 and clears the memory. End processing such as release is performed, and the state returns to the state after the above-described activation. Similarly, the scheduler 102 and the input device 12 also return to the state after the start. In this case, the next operation can be performed by resetting the transfer route, the order of the basic operation, the scheduled operation time, and the like from the input device 12. Alternatively, the processing can be restarted by inputting the operation start command again with the settings as they are, installing the cassette of the unprocessed substrate, and restarting the processing.
  • FIG. 21 and FIG. 22 show an example of a result of scheduling the execution time of the transfer device using the substrate transfer control device according to the second embodiment described above.
  • the numbers represent the board numbers
  • the solid lines sandwiched by X corresponding to the transporters 1 a to lc indicate that each transporter is operating.
  • the solid line between * corresponding to devices 3a to 9d indicates that processing is being performed in each processing device.
  • FIG. 21 shows the scheduling result immediately after the start of the operation of the substrate transfer control device. It can be seen that the margin of the transfer devices 1a to 1c at this time is large.
  • FIG. 22 shows a steady state in which a certain time has elapsed from the start of operation of the substrate transfer control device. In Fig. 22, each transporter has a short downtime and is almost always in operation, but nevertheless, the plating tanks 9a to 9 with the constraint that the transporter wait time after substrate processing is set to 0 In d, Figure 22 As shown above, it can be seen that the transporter started to move to the plating tank before the processing was completed, immediately received the processed substrate, and was transported to the rough cleaning machine 7.
  • the present invention is to schedule the execution time of each operation of the transporter such that the time at which the last substrate of the target substrate has been completely processed and collected from the substrate processing apparatus is the earliest. Therefore, the throughput of the substrate processing apparatus can be maximized.
  • the final conditions of the target board are all processed while satisfying the constraints set for the operation time of the transporter.
  • the time at which the substrate is collected from the substrate processing apparatus can be made earliest, and the requirements for the processing can be satisfied, and the throughput of the substrate processing apparatus can be maximized.
  • the throughput can be approximately maximized while satisfying the constraints on the process processing.
  • the number of additional substrates to be scheduled can be estimated in consideration of the number of sheets that can be calculated, so scheduling is performed even in a computer with relatively low processing capacity. be able to.
  • the substrate processing equipment can be transferred while skipping unnecessary processing equipment types, so that a plurality of processing equipment types can be properly used according to purposes. Therefore, the throughput can be greatly improved, and the flexible operation corresponding to high-mix low-volume production becomes possible.
  • the present invention is directed to a substrate transfer control device that sequentially transfers a plurality of substrates in a substrate processing apparatus such as a semiconductor manufacturing apparatus to a plurality of processing devices by using a transfer device, and processes the substrates. It is suitably used for a substrate processing apparatus to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Manufacturing & Machinery (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Primary Health Care (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • General Factory Administration (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Control Of Conveyors (AREA)

Description

明 細 書 基板搬送制御装置及び基板搬送方法
技術分野 '
本発明は、 基板搬送制御装置及び基板搬送方法に関し、 特に、 搬送機 により半導体製造装置などの基板処理装置内の複数の基板を複数の処理 機器に順次搬送して処理を行う基板搬送制御装置及び基板搬送方法に関 するものである。 また、 本発明は、 かかる基板搬送制御装置によって基 板の搬送が制御される基板処理装置に関するものである。
背景技術
半導体製造装置には種々の構成のものがあるが、 一般に、 複数枚の半 導体基板 (ウェハ) が、 カセッ トから順次投入され、 複数の搬送機によ り複数の処理機器間を搬送されて並行的に処理され、 全処理を終えた基 板がカセッ トに回収されるものが多く用いられている。 更に、 カセッ ト を複数個装着可能 ·交換可能としたものもあり、 このような装置では、 適宜未処理の基板が装填されたカセッ トに交換することによって連続的 に半導体製造装置の運転を行うことができる。 そして、 これらの半導体 製造装置の制御、 特に、 搬送機の動作の制御は基板搬送制御装置により 行われる。
ここで、 従来の基板搬送制御装置における代表的な制御方法について 簡単に説明する。
従来の基板搬送制御装置においては、 制御中の搬送機から搬送機の状 況が常時入力されている。 そして、 この搬送機の状況に基づいて現時点 で動作していない (非動作中の) 搬送機を検出する。 非動作中の搬送機 が検出された場合には、 それぞれの非動作中の搬送機について、 搬送元 の処理機器における処理後基板の有無、 搬送機が基板を受け取るための アームの空き、 搬送先の処理機器の空きなどを検査して、 次に可能な動 作をすベて求める。 次に、 可能な動作が存在したそれぞれの非動作中の 搬送機について、 次に行うべき 1個の動作を決定し、 この動作を実行す る指令を対応する搬送機に送信する。 該指令を受け取った非動作中の搬 送機は与えられた次の動作を開始する。
即ち、 半導体製造装置の運転中の各時点において、 搬送機が非動作中 であることを検出すると、 所定の動作が可能である条件 (動作可能条件) の成立性を判別し、 この条件を満たす動作があれば、 そのうちで最も優 先順位が高い動作を選択して実行を指令する。
このような処理が繰り返されることにより、 上述した半導体製造装置 の基板搬送に関する制御が行われる。
しかしながら、 従来の基板搬送制御装置では、 上記動作可能条件が成 立してからはじめて、 非動作中の搬送機が現在位置から基板の引き渡し 又は受け取りを行うべき処理機器の位置に移動することとなる。 即ち、 搬送機がたとえ非動作中であっても、 動作可能条件が成立する以前に動 作することができないため、 半導体製造装置のスループッ 卜が悪化する 場合があった。
また、 搬送元の処理機器における処理終了時刻を予測する等して、 各 搬送機が早めに移動を開始できるように可能な限り動作可能条件を改変 したとしても、 次の動作を順次決定する方法を採用しているため、 複数 枚の基板を連続的に処理する場合には、 最終基板が全処理を終えてカセ ッ トに回収される時刻が論理的に可能な最早値 (最も早い時刻) よりも 大きく遅れることがあった。
更に、 半導体製造装置においては、 一般にプロセス処理の面から、 あ る処理機器で処理された基板を速やかに次段の処理機器に搬送して処理 すること (即時性) が望まれる。 例えば、 めっき等の処理を行う場合に おいて、 めっき処理後の基板を放置すると酸化等により品質の悪化を招 くため、 直ちに次段の処理機器に搬送して洗浄等の後処理を行うことが 要求される。 即ち、 搬送機の動作時刻に関する一定の制約条件 (上述の 例では、処理後基板にとつての搬送機の待ち時間が 0となるような条件) が要求されることがある。
しかし、 上述した従来の基板搬送制御装置では、 搬送機が動作中であ れば、 優先度の高い動作に関する動作可能条件が成立しても、 すぐには その動作を実行できないため、 このような搬送機の動作時刻に関する制 約条件を考慮した制御をすることができなかった。
このため、 半導体製造装置の運転に先立って事前にシミユレ一ション を行い、 このような制約条件を満たす制御をすることができるかどうか を確認する必要があり、 煩わしい作業となっていた。 あるいは、 上記搬 送機の動作時刻に関する制約条件が成立するように、 処理機器の種別ご とに、 設定される処理予定時間に制約を設ける必要があり、 また、 結果 的に搬送機の動作の即時性に対する要求を満たせず、 品質や歩留まりの 悪化につながることがあった。 あるいは、 即時性を要求される後処理を 本処理と一体化して機器を構成しなければならないなど、 装置構成上の 制約ともなつていた。 発明の開示
本発明は、 このような従来技術の問題点に鑑みてなされたもので、 容 易に半導体製造装置などの基板処理装置のスループッ トを最大にするこ とができ、 また搬送機の動作の即時性に対する要求を満足させることが できる基板搬送制御装置及び基板搬送方法を提供することを目的とする。 また、 本発明は、 かかる基板搬送制御装置を組み込んだ基板処理装置を 提供することを目的とする。
このような従来の基板搬送制御装置における問題点を解決するために、 本発明の一態様は、 基板処理装置内に設置された複数の処理機器間にお いて搬送機により基板を搬送する基板搬送方法において、 上記搬送機の 各動作に必要とされる時間と各処理機器における基板に対する処理に必 要とされる時間とをパラメ一夕として含む所定の条件式に基づいて、 対 象とする基板の最終枚が全処理を終えて上記基板処理装置から回収され る時刻を最も早くするような搬送機の各動作の実行時刻を算出し、 上記 算出された搬送機の各動作の実行時刻になったときに、 対応する搬送機 に該動作を指令することを特徴とする基板搬送方法である。
また、 本発明の好ましい一態様は、 線形計画法に基づいて上記搬送機 の各動作の実行時刻を算出することを特徴とする基板搬送方法である。 また、 本発明の好ましい一態様は、 上記条件式に基づいて搬送機の各 動作の実行時刻の解が得られたか否かを判断し、 上記実行時刻の解が得 られなかったと判断された場合に、 上記基板処理装置内に同時に存在す る基板の平均枚数を減少させるように上記条件式を修正し、 上記実行時 刻の算出を再試行することを特徴とする基板搬送方法である。
これにより、 対象とする基板の最終枚が全処理を終えて上記基板処理 装置から回収される時刻を最も早くするような搬送機の各動作の実行時 刻をスケジュ一リングすることができるので、 基板処理装置のスループ ッ トを最大にすることができる。 また、 煩わしい事前の検討や処理予定時間の制約を伴うことなく、 搬 送機の動作時刻に関連して設定された制約条件を満たしつつ、 対象とす る基板の最終枚が全処理を終えて上記基板処理装置から回収される時刻 を最も早くすることができ、 プロセス処理上の要求を満たすことができ ると共に、 基板処理装置のスループヅ トを最大にすることができる。 また、 本発明の好ましい一態様は、 上記基板処理装置の運転開始後に おいて、 上記搬送機の各動作の実行時刻の算出が新たに必要か否かを判 断し、 上記実行時刻の算出が新たに必要であると判断された場合に、 一 の想定時刻と実行時刻の算出において対象とする基板の最終基板とを決 定し、 過去に求められたスケジユーリング結果であって上記決定された 想定時刻以前のスケジユーリング結果を保持しつつ、 上記決定された最 終基板までの基板を対象として新たに実行時刻を算出することを特徴と する基板搬送方法である。
これにより、 連続運転中の各基板の処理予定時間が逐次分割して得ら れるような場合においても、 プロセス処理上の制約を満たしつつスルー プッ トを近似的に最大とすることができる。
更に、 各回のスケジューリングの試行において、 計算可能な枚数を考 慮してスケジュ一リングの対象となる追加基板数を推定し得るので、 比 較的処理能力の低いコンビュー夕でもスケジユーリングを行うことがで きる。
更に、 本発明の好ましい一態様は、 搬送機が各動作をし始めた時刻を 取得し、 上記取得された時刻と過去に求められたスケジュ一リング結果 における実行時刻との間に矛盾又は予め決められた範囲以上の差がある か否かを判断し、 矛盾又は予め決められた範囲以上の差があると判断さ れた場合に、 該矛盾又は予め決められた範囲以上の差があると判断され た時点において未実施の搬送機の各動作の実行時刻を補正することを特 徴とする基板搬送方法である。
これにより、 搬送機の動作又は処理機器における基板処理に予定から の遅れが生じたとしても、 プロセス処理上の制約やスループッ トに対す る影響を小さく抑え、 かつ、 将来にその影響を引きずらずに基板処理装 置を運転することが可能となる。
本発明の好ましい一態様は、上記基板処理装置の運転開始後において、 基板処理装置への投入が予定されている基板に関する条件の変更を検知 し、 上記基板に関する条件の変更が検知された場合に、 該条件が変更さ れた基板以降の基板に対する搬送機の各動作の実行時刻を補正すること を特徴とする基板搬送方法である。
これにより、 処理の取消、 処理予定時間の変更、 装置投入順序の変更 などの未投入基板に関する条件の変更があつた場合においても、 この変 更に柔軟に対応して基板処理装置を運転することが可能となる。
本発明の好ましい一態様は、 1以上の基板について上記基板処理装置 内の 1以上の処理機器における処理が省略される場合に、 上記 1以上の 基板が上記 1以上の処理機器を飛び越して搬送されるように、 上記搬送 機の各動作の実行時刻を算出することを特徴とする基板搬送方法である。
これにより、 基板処理装置の連続運転中に、 不要な処理機器種別を飛 び越して基板を搬送することができるため、 複数の処理機器種別を目的 に応じて使い分けることができる。 従って、 大幅にスループヅ トを向上 することができると共に多品種少量生産に対応した柔軟な運転が可能と なる。
また、 本発明の他の態様は、 基板処理装置内に設置された複数の処理 機器間における搬送機による基板の搬送を制御する基板搬送制御装置に おいて、 上記搬送機の各動作に必要とされる時間と各処理機器における 基板に対する処理に必要とされる時間とを入力する入力装置と、 上記入 力装置により入力された時間をパラメータとして含む所定の条件式に基 づいて、 対象とする基板の最終枚が全処理を終えて上記基板処理装置か ら回収される時刻を最も早くするような搬送機の各動作の実行時刻を算 出するスケジュール演算部と、 上記スケジュール演算部により算出され た搬送機の各動作の実行時刻になったときに、 対応する搬送機に該動作 を指令する動作指令部とを備えることを特徴とする基板搬送制御装置で ある。
また、 本発明の好ましい一態様は、 上記スケジュール演算部は線形計 画法に基づいて上記搬送機の各動作の実行時刻を算出することを特徴と する基板搬送制御装置である。
更に、 本発明の好ましい一態様は、 上記スケジュール演算部により搬 送機の各動作の実行時刻の解が得られたか否かを判断する解判断部と、 上記解判断部により上記実行時刻の解が得られなかったと判断された場 合に、 上記基板処理装置内に同時に存在する基板の平均枚数を減少させ るように上記条件式を修正し、 上記スケジュール演算部による実行時刻 の算出を再試行する再試行部とを備えることを特徴とする基板搬送制御 装置である。
また、 本発明の好ましい一態様は、 上記基板処理装置の運転開始後に おいて、 上記スケジュール演算部による上記搬送機の各動作の実行時刻 の算出が新たに必要か否かを判断するスケジユール判断部と、 上記スケ ジュール判断部により上記実行時刻の算出が新たに必要であると判断さ れた場合に、 一の想定時刻と上記スケジュール演算部による実行時刻の 算出において対象とする基板の最終基板とを決定する演算条件決定部と を備え、 上記スケジュール演算部は、 過去に求められたスケジユーリン グ結果であって上記演算条件決定部により決定された想定時刻以前のス ケジユーリング結果を保持しつつ、 上記演算条件決定部により決定され た最終基板までの基板を対象として新たに実行時刻を算出することを特 徴とする基板搬送制御装置である。
また、 本発明の好ましい一態様は、 搬送機が各動作をし始めた時刻を 取得する実績時刻取得部と、 上記実績時刻取得部により取得された時刻 と過去に求められたズケジユーリング結果における実行時刻との間に矛 盾又は予め決められた範囲以上の差があるか否かを判断する再スケジュ —リング判断部と、 上記再スケジュ一リング判断部により矛盾又は予め 決められた範囲以上の差があると判断された場合に、 該矛盾又は予め決 められた範囲以上の差があると判断された時点において未実施の搬送機 の各動作の実行時刻を補正する補正部とを備えることを特徴とする基板 搬送制御装置である。
更に、 本発明の好ましい一態様は、 上記基板処理装置の運転開始後に おいて、 基板処理装置への投入が予定されている基板に関する条件の変 更を検知する条件変更検知部と、 上記条件変更検知部により上記基板に 関する条件の変更が検知された場合に、 該条件が変更された基板以降の 基板に対する搬送機の各動作の実行時刻を補正する補正部とを備えるこ とを特徴とする基板搬送制御装置である。
また、 本発明の好ましい一態様は、 上記スケジュール演算部が、 1以 上の基板について上記基板処理装置内の 1以上の処理機器における処理 が省略される場合に、 上記 1以上の基板が上記 1以上の処理機器を飛び 越して搬送されるように、 上記搬送機の各動作の実行時刻を算出するこ とを特徴とする基板搬送制御装置である。 本発明の更なる他の一態様は、 基板の処理を行う複数の処理機器を備 え、 該処理機器間において搬送機により基板を搬送して基板を処理する 基板処理装置において、 上述した基板搬送制御装置を備えたことを特徴 とする基板処理装置である。 図面の簡単な説明
図 1は、 本発明に係る一実施形態における半導体製造装置の構成を示 す模式図;
図 2は、 本発明の第 1の実施形態におけるハ一ドウェア構成の一実施 例を示す図 ;
図 3は、 本発明の第 1の実施形態における基板搬送制御の構成を示す プロック図 ;
図 4は、 本発明の第 1の実施形態における基板搬送制御の手順を示す フ π—チヤ一ト ;
図 5は、 本発明の第 2の実施形態における基板搬送制御の構成を示す プロック図 ;
図 6は、 本発明の第 2の実施形態における基板搬送制御の手順を示す フ口一チヤ一ト ;
図 7は、 本発明の第 2の実施形態におけるスケジユーリングの対象と する時間領域のイメージを示す図 ;
図 8は、 本発明の第 3の実施形態における基板搬送制御の構成を示す ブロック図 ;
図 9は、 本発明の第 3の実施形態におけるスケジュール補正部におい て行われる処理の手順を示すフローチャー ト ;
図 1 0は、 本発明の第 4の実施形態における基板搬送制御の構成を示 すブロック図;
図 1 1は、 本発明の第 4の実施形態におけるスケジュール補正部にお いて行われる処理の手順を示すフローチャート ;
図 1 2は、 基板処理装置の構成の一例を示す図;
図 1 3は、 図 1 2の処理機器種別間における基板の流れの一例を示す 図;
図 1 4 A及び図 1 4 Bは、 図 1 3においてスケジュ一リングの対象と なる基板の順序を示す図;
図 1 5は、 図 1 2の処理機器種別間における基板の流れの一例を示す 図;
図 1 6 A及び図 1 6 Bは、 図 1 5においてスケジューリングの対象と なる基板の順序を示す図 ;
図 1 7は、 基板処理装置の構成の一例を示す図 ;
図 1 8は、 図 1 7の処理機器種別間における基板の流れの一例を示す 図;
図 1 9 A乃至図 1 9 Cは、 図 1 8においてスケジューリングの対象と なる基板の順序を示す図 ;
図 2 0は、 本発明に係る基板搬送装置が組み込まれた基板処理装置の 全体構成を示すブロック図 ;
図 2 1は、 本発明の第 2の実施形態の基板搬送制御装置を用いて搬送 機の実行時刻をスケジューリングした場合における運転開始直後のスケ ジユーリング結果を示す図;
図 2 2は、 本発明の第 2の実施形態の基板搬送制御装置を用いて搬送 機の実行時刻をスケジユーリングした場合における運転開始から一定時 間経過した後のスケジユーリング結果を示す図である。 発明を実施するための最良の形態
以下、 本発明に係る基板搬送制御装置の第 1の実施形態について図 1 乃至図 4を参照して説明する。 本発明に係る基板搬送制御装置は、 基板 処理装置内に設置された複数の処理機器間における基板の搬送を制御す るものである。 なお、 以下の説明においては、 本発明に係る基板搬送制 御装置によって基板の搬送が制御される基板処理装置が、半導体基板(ゥ ェハ) に対して処理を行う半導体製造装置である場合について説明する が、 本発明はこれに限らず、 例えば、 ガラス基板に対して L C D製造用 の処理を行う基板処理装置についても適用することができる。
図 1は、 本実施形態における半導体製造装置の構成を示す模式図であ る。 図 1に示すように、 本発明に係る基板搬送制御装置によって制御さ れる半導体製造装置は、 基板を搬送する搬送機 1 a〜 1 c、 基板が装填 されるカセッ ト 2 a, 2 b、 基板の受け渡しに用いる仮置き台 3 a , 3 b、 反転機 4、 水洗乾燥機 5 a , 5 b、 薬液洗浄機 6 a , 6 b、 粗洗浄 機 7、 前処理槽 8 a , 8 b、 めっき槽 9 a〜 9 dを備えている。 ここで、 本実施形態においては、 プロセス処理を行う 5 a〜9 dだけでなく、 仮 置き台 3 a , 3 b、 反転機 4も含めて処理機器として扱う。 また、 半導 体製造装置を、 例えば、 成膜処理を行う C V D装置、 研磨処理を行うポ リ ヅシング装置等の種々の装置として構成することもでき、 これに応じ て処理機器もさまざまな機器とすることができる。
カセッ ト 2 a又は 2 bに装填された基板は、 搬送機 1 aにより装置内 に投入され仮置き台 3 aに搬送された後、 更に搬送機 1 bにより仮置き 台 3 bに搬送される。 次に基板は、 搬送機 1 cにより前処理槽 8 a又は 8 bに搬送され処理されて反転される。 その後、 搬送機 1 cによりめつ き槽 9 a〜9 dに搬送されて処理され、 更に粗洗浄機 7に搬送される。 粗洗浄を終えた基板は、 搬送機 1 bにより薬液洗浄機 6 a又は 6 bに搬 送され処理されて、 更に反転機 4に搬送され反転される。 基板は、 最後 に搬送機 1 aによって水洗乾燥機 5 a又は 5 bに搬送され処理されて、 最初に装填されていたカセッ ト 2 a又は 2 bに回収される。 なお、 基板 は単一の基板だけでなく、 治具により連結されるなどにより一体化され た複数枚の基板の組であってもよい。
ここで、 本実施形態においては、.搬送機 1 a〜 1 cの各動作が予め定 義されている。 例えば、 搬送機 1 cの動作としては、 仮置き台 3 bに移 動して基板を受け取る動作 C、 前処理槽 8 a , 8 bに搬送して該基板を 引き渡す動作 D、 前処理槽 8 a , 8 bに移動して前処理後の基板を受け 取る動作 E、 めっき槽 9 a〜 9 dに搬送して基板を引き渡す動作 F、 め つき槽 9 a〜9 dに移動してめっき処理後の基板を受け取り粗洗浄機に 移動して該基板を引き渡す動作 Gが定義されている。
次に、 本実施形態に係る基板搬送制御装置について説明する。 図 2は 本実施形態に係る基板搬送制御装置のハードウェア構成の一実施例を示 す図、 図 3は本実施形態における基板搬送制御装置の構成を示すプロッ ク図である。
図 2に示すように、 基板搬送制御装置 1 0は、 中央処理装置 (C P U ) 1 1、 キーボード、 マウス等のポインティングデバイスや他のコンビュ 一夕内に格納されたデ一夕を読み込むための通信装置等の入力装置 1 2、 及び記憶装置としての R O M 1 3、 メモリ 1 4、 ハードディスク 1 5を 含んで構成される。 また、 この基板搬送制御装置 1 0は、 入出力イン夕 一フェイス 1 6を介して上記半導体製造装置の搬送機 1 a〜l cと接続 されており、 上記 C P U 1 1からの信号が入出力ィン夕一フヱイス 1 6 を介して半導体製造装置の搬送機 1 a〜 l cに送られることによって該 搬送機 1 a 〜 l cが制御される。
R〇 M 1 3及びハード、ディスク 1 5には、 O S ( Operating System) と協動して C P U 1 1等に命令を与え、 基板搬送制御を行うためのコン ピュー夕プログラムのコードが格納されている。 このコンピュータプロ グラムは、 メモリ 1 4にロードされることによって実行され、 C P U 1 1と協動して以下に述べる基板搬送制御を行う。 このようなコンビユー 夕プログラムと C P U 1 1 との協動によって、 図 3に示すように、 後述 するスケジュール演算部 2 1、 解判断部 2 2、 タイムテーブル作成部 2 3、 動作指令部 2 4、 再試行部 2 5が構成される。 また、 ハードデイス ク 1 5 (又はメモリ 1 4 ) には、 後述するタイムテ一ブル作成部 2 3に よって作成 (更新) されるタイムテーブル 1 7が格納される。
以下、 本実施形態に係る基板搬送制御装置 1 0における基板搬送制御 の手順について説明する。 図 4は、 本実施形態に係る基板搬送制御装置 1 0における基板搬送制御の手順を示すフローチヤ一トである。
まず、 基板処理装置の運転開始に先立って、 半導体製造装置の搬送機
1 a〜 l cの各動作に必要とされる時間 (以下、 動作予定時間という) 、 例えば、 搬送機 1 a〜 1 cが処理機器から基板を受け取るために必要と される予定時間や搬送機 1 a〜 l cがある処理機器位置から他の処理機 器位置に移動するために必要とされる予定時間などを入力する (ステツ プ 1 ) 。 この動作予定時間の入力は、 上記入力装置 1 2を介して行われ
^ ο - また、 処理機器 3 a〜 9 dにおける基板に対する処理に必要とされる 時間 (以下、 処理予定時間という) 、 例えば、 粗洗浄機 7において基板 を洗浄するために予定される時間などを入力する (ステップ 2 ).。 この 処理予定時間の入力も、 上記入力装置 1 2を介して行われる。
なお、 これら動作予定時間及び処理予定時間を入力するための入力装 置は、キ一ボードゃポィンティングデバイス等に限られるものではなく、 例えば、 上記動作予定時間や処理予定時間を予め記憶装置 1 4又は 1 5 にファイルとして格納しておき、 このファイルを読み込むことにより動 作予定時間及び処理予定時間を入力することとしてもよいし、 また、 こ のようなフアイルを他のコンピュー夕に保存しておき、 これを通信装置 を介して読み込むことにより動作予定時間及び処理予定時間を入力する こととしてもよい。 動作予定時間をファイルに格納する場合には、 例え ば、 各搬送機に接続されたコンピュータによって実際に搬送機の各動作 に必要とされる時間を計測し、 この計測された時間を動作予定時間とし てファイルに格納することとしてもよい。 また、 この場合には、 装置の 運転中に搬送機の各動作に必要とされる時間を計測し、 平均化などの処 理を行って上記ファイルに格納された動作予定時間を更新すれば、 動作 予定時間の精度を向上させたり、 経時変化に対処させたりすることが可 能となる。
次に、スケジュール演算部 2 1によって、対象とする基板の最終枚(最 終基板) が全処理を終えて半導体製造装置から回収される時刻を最も早 くするような搬送機 1 a〜 l cの各動作の動作時刻 (以下、 実行時刻と いう) が導出される (ステップ 3 ) 。 この実行時刻の導出は所定の条件 式を満たす解を算出することによって行うが、 この詳細については後述 する。
ここで、 上記条件式を満たす解は必ず存在するとは限らず、 上記スケ ジュール演算部 2 1による演算の後、 上記条件式を満たす解が得られた か否かが解判断部 2 2により判断される (ステップ 4 ) 。 解が得られたと判断された場合には、 タイムテ一ブル作成部 2 3がこ の実行時刻に基づいたタイムテーブル 1 7、 即ち、 上記得られた実行時 刻と該実行時刻になったときに行う搬送機の動作とを対応づけたテーブ ルを作成 (更新) し、 該夕ィムテ一ブル 1 Ίを上記ハードディスク 1 5 内に格納する (ステップ 5 ) 。
そして、 半導体製造装置の運転時には、 動作指令部 2 4がハードディ スク 1 5に格納されたタイムテーブル 1 7を参照して搬送機 1 a〜 1 c の制御を行う。 即ち、 タイムテーブル 1 7に記述された実行時刻になつ たときに、 対応する搬送機の動作を入出力ィン夕一フェイス 1 6を介し て該搬送機に指令する。 これにより、 対象とする基板の最終枚が全処理 を終えて半導体製造装置から回収される時刻が錢も早くなる。 なお、 動 作指令部 2 4が搬送機 1 a〜 l cに動作を指令する際には、 その搬送機 が非動作中であること、 搬送元の処理機器における基板の処理が完了し ていること、 及び搬送先の処理機器に先行する基板が存在せずリセッ ト も完了していることを確認した上で、 指令を送信する。 これらの条件が 満足されない場合には、 動作指令部 2 4は上記条件が満足されるまで待 つてから指令を送信する。
一方、 解判断部 2 2により上記条件式を満たす解が得られなかったと 判断された場合には、 再試行部 2 5が、 装置内の搬送機及び処理機器上 に同時に存在する基板の平均枚数を減じるように、 即ち、 基板の投入間 隔を調整して、 上記条件式を修正し、 上記ステップ 3以降の処理を再試 行する (ステップ 6 ) 。 この条件式の修正は、 搬送機の動作予定時間と 処理機器における処理予定時間とを 0とした仮想的な基板 (以下、 空基 板という) を適当な間隔で基板間に挿入することにより行われる。 この とき、 装置内に同時に存在する基板の枚数が減れば、 搬送機の動作の頻 度が小さくなって搬送機に余裕が生じるため、解が得られる確率が増す。 再試行部 2 5による再試行後も解が得られない場合には、 更に上述の装 置内に同時に存在する基板の平均枚数を減じるように上記条件式を修正 することとし、 極端な場合には、 先行する基板の全処理が終了してカセ ッ ト 2 a又は 2 bに回収されてから、 次の基板が装置内に投入されるこ とになる。
次に、 上述のスケジュール演算部 2 1における条件式の設定及び実行 時刻の導出を具体例と共に説明する。 なお、 以下に説明する条件式の設 定及び実行時刻の導出は一例であり、 他のあらゆる手法を用いて行うこ ともできる。
まず、 搬送機 1 a〜 1 cの動作の番号 (動作番号) kを基板が半導体 製造装置に投入されてから回収されるまでの経路に沿って順に 1 , 2 , 3 , · · ·, Kと定義する。 また半導体製造装置の運転開始から十分に 時間が経過し半導体製造装置内に基板が十分にあって定常的に運転され ている状態を想定して、 動作 kに関し、 対応する搬送機の次に実行され る動作の番号を k p ( k ) と表す。 更に、 半導体製造装置の運転開始時 には 1枚目の基板の前に、 また、 運転終了時には最終基板の後に、 上述 した空基板が適当枚数存在すると仮定することにし、 これら空基板を含 めて、 カセッ ト 2 a又は 2 bから半導体製造装置への投入順に基板番号 nを定めることとして、 動作 kから次の動作 k p ( k ) に移るときに動 作の対象とする基板の基板番号の増分を n p ( k ) と表す。 例えば、 図 1に示す半導体製造装置については以下のように定義する。
搬送機 1 aがカセッ ト 2 a又は 2 bに装填された基板を仮置き台 3 a に搬送する動作 Aを k = 1、 搬送機 1 bが仮置き台 3 a上の基板をもう 1つの仮置き台 3 bに搬送する動作 Bを k = 2、 搬送機 1 cが仮置き台 3 bに移動して基板を受け取る動作 Cを k = 3、 上記受け取った基板を 前処理槽 8 a又は 8 bに搬送して引き渡す動作 Dを k = 4、 前処理槽 8 a又は 8 bに移動して基板を受け取る動作 Eを k = 5、 上記受け取った 基板をめつき槽 9 a〜 9 dに搬送して引き渡す動作 Fを k= 6、 めっき 槽 9 a〜 9 dに移動してめっき処理後の基板を受け取り粗洗浄機に移動 して該基板を引き渡す動作 Gを k = 7などと定義する。
更に、 半導体製造装置の運転開始から十分に時間が経過して、 半導体 製造装置内に基板が十分にあって定常的に運転されている状態を想定し て、 搬送機の動作の順序を定めておく。 例えば、 搬送機 1 cの動作順序 を動作番号が 3 5 4 6→ 7 3 · · ' となるように周期的に定 義する。 この場合には、
kp ( 3 ) = 5
k p ( 4 ) = 6
k p ( 5 ) = 4
kp ( 6 ) = 7
k p ( 7 ) = 3
と表すことができる。 更に、 動作 kから次の動作 kp (k) に移るとき の基板番号の増分 npも以下のように定めておく。 なお、 この npは、 処理機器 3 a〜 9 dの各種別ごとの機器数を考慮して定められる。
np ( 3 ) =- 2
np (4) =- 2
n p ( 5 ) = + 2
n p ( 6 ) =— 3
np ( 7 ) =+ 6
このとき、 各基板が同一種別内の各処理機器 (例えば、 8 a〜 8 b、 9 a〜9 d) に投入順 ·周期的に割り当てられるものとすれば、 以下に 示す動作予定時間が一義的に定められる。 これらの動作予定時間は、 上 述の入力装置 1 2により入力されたもの、 あるいは入力された値を基に 搬送機の位置や経路を考慮して計算により求められるものである。
M l (k3 n) :搬送機が動作 kの直前位置から基板 nを受け取る前 に移動する時間
G 1 (k, n) :搬送機が動作 kで処理機器から基板 nを受け取る時
M (k, n) :搬送機が動作 kで基板 nを保持して移動する時間
G 2 (k, n) :搬送機が動作 kで処理機器に基板 nを引き渡す時間 M 2 (k, n) :搬送機が動作 kで基板 nを引き渡してから移動する 時間
なお、 これらの動作予定時間は 0となる場合がある。
また、 これらの合計を T g (k, n) と定義しておく。 即ち、
T g (k, n) =M 1 (k, n) + G 1 (k, n)
+ M (k, n) + G 2 (k, n) +M 2 (k, n) と -S) o
また、 以下の非負の変数を定義する。
r (k, n) :基板; Qに対する動作 kの直前の搬送機の休止時間 xw (k, n) :基板 nに対する動作 kの直前の処理機器上での搬送 機の待ち時間
X f (k, n) :基板 nに対する動作 kにより基板を処理機器に引き 渡す直前の該処理機器の空き時間 · なお、 xw (k, n) は処理機器からの基板受け取りを含む動作につ いてのみ定義される。 また、 x f (k, n) は処理機器への基板の引き 渡しを含む動作についてのみ定義されるが、 実用的には、 搬送機間の基 板の受け渡しに用いられる中継型の処理機器に基板を引き渡す動作に限 定してもよい。
ここで、 基板 nに対する動作 kの開始時刻を t (k, n) で表すと、 以下の 3式が成立する。
t ( k p (k) , n + n p (k) )
= t (k, n) + T g ( k , n)
+ x r ( k p ( k ) , n + n p ( k ) ) . · . (式 1 ) t (k+ 1 , n)
= t (k, n) +T g (k, n) -M 2 (k, n) +P (k, n)
— M l (k-t- 1 , n) +xw (k+ l , n) · . . (式 2 ) t (k, n)
= t (k+ 1 , n-U (k) )
+ M 1 (k+ 1 , n-U (k) ) +G 1 ( k + 1 , n-U (k) )
— M l (k, n) -G 1 (k, n) 一 M (k, n) +x f (k, n)
• · . (式 3 ) ここで、 (式 2 ) 中の P (k, n) は動作番号 kで表される動作後の 基板番号 nの処理予定時間であって、 上記入力装置 1 2により入力され たもの、 あるいは、 入力された値を基に計算されるものであり、 通常基 板ごとに指定されるめつき、 洗浄等の処理予定時間に加えて、 処理機器 上で処理を行うに先立って実行されるシャツ夕閉ゃ液張り等の前動作や、 処理を終えてから実行される液抜きゃシャッ夕閧等の後動作に要する時 間を含むものである。 また、 (式 3) 中の U (k) は動作 kで基板を引 き渡す処理機器に対する種別内の機器数を表す。
上記 (式 1 ) は基板 nに対する動作 kの次に同一の搬送機が行う動作 の開始時刻、 (式 2) は基板 nに対して処理機器での処理終了後次に行 われる動作 k+ 1の開始時刻、 (式 3 ) は搬送機が処理機器から処理後 の基板を受け取った後次の基板 nを引き渡す動作の開始時刻をそれぞれ 上述の (式 1 ) 〜 (式 3 ) の式は、 T, X r , Xw, X f をそれぞれ t ( k , η ) , χ r ( k, η ) , χ w ( k , η ) , χ f ( k, η ) を要 素とする列べク トル、 Rm, Wm, Fmを適当な行列、 Rv, Wv, F vを適当な列べク トルとして、 以下のように変形することができる。
T = RmX r + R V · · · (式 1 a )
Xw二 WmX r +Wv · . · (式 2 a)
Xf = FmX r + F v · · ' (式 3 a)
ここで、 上記 (式 l a) において、 左辺のベク トル Tには最終基板 N (空基板を除く) に対する回収動作の開始時刻を表す t (Κ, N) に相 当する要素があり、 右辺のぺク トル: R mX rにおいてこれに対応する要 素が最小となれば、 対象とする基板の最終枚が全処理を終えて半導体製 造装置から回収される時刻を最も早くすることができる。
この回収時刻を最も早くする条件は、 cを適当な行べク トルとして以 下のように表すことができる。
cX r 最小 · · · (式 4)
ところで、 上記 (式 1 a) 〜 (式 3 a) で表される搬送動作が物理的 に成立するための条件は、 通常、 X r 0 , Xw≥ 0 , X f 0であり、 この不等式と上記 (式 l a) 〜 (式 3 a) とから、 以下の不等式を導く ことができる。
X r≥ 0 · · · (式 1 b)
WmX r≥ -W v · · · (式 2 b) FmX r≥- F v · · · (式 3 b)
ここで、 ある処理機器において、 搬送機が先行する基板を受け取って から次の基板を引き渡し始めるまでに一定の時間を要する場合には、(式 3 b) の右辺の対応する要素に、 この時間を加える。 例えば、 上述の反 転器 4においては、 搬送機 1 aが反転後の基板を受け取った後、 反転機 構がリセッ トされてはじめて、 搬送機 1 bが次の基板を引き渡すことが できる。 このような場合には、 右辺の対応する要素にリセッ ト所要時間 を加えることとする。
また、 (式 l a) に表されるように、 すべての動作開始時刻は X rの —次式で表されるから、 任意の動作時刻に関連する一次の制約条件は X rに関する一次不等式で表すことができる。 例えば、 制約条件として、 動作 k 0において、 直前の処理終了後の任意の基板を直ちに受け取るこ と、 即ち xw (k 0, n) 二 0であることを条件とするならば、 上記 (式 2 a) において k 0に該当する行を取り出して、 以下の一次不等式で表 すことができる。
- Wm 0 X r 0≥W v 0 · · · (式 5 )
なお、 基板 η θに対して、 動作 k 0で直前の処理機器から基板を受け 取ってから、 動作 k 0 + 1で次の処理機器に引き渡すまでの時間に上限 の制約条件を設ける場合にも、 同様の形式の不等式を導くことができる。 また、 同様に、 任意の 2つの動作の開始時刻間に下限の制約条件を設け ることもでき、 これにより、 搬送機にある程度余裕を持ったスケジユー ルを行うことが可能である。 更に、 動作 kにより処理機器へ基板 nを引 き渡してから実際に処理を開始するまでの処理前の待ち時間を xww(k, n) と定義し、 上述の変数ベク トル Xrに含めるように定式化すること も可能である。 この場合には、 xw (k+ 1 , n) に関する上限の制約 条件を満たす確率を上げることができる。
以上より、 (式 l b ) 〜 (式 3 b ) 、 及び (式 5 ) は、 Aを適当な行 列、 bを適当な列ベク トルとすれば、 以下の式で表すことができる。
A X r≥ b · · · (式 6 )
従って、 最終基板の回収時刻を最も早くするためには、 (式 6 ) の下 で (式 4 ) の最小値を求めることが必要となるが、 このような X rの解 は線形計画法の問題として解くことができる。この解 X rが得られれば、 最終基板の回収時刻を最も早くする各動作の実行時刻を (式 l a ) から 得ることができ、 これに基づいて上述したタイムテ一ブルを作成 (更新) することができる。
次に、 本発明に係る基板搬送制御装置の第 2の実施形態について図 5 乃至図 7を参照して説明する。 図 5は本実施形態における基板搬送制御 装置 1 0の構成を示すプロツク図、 図 6は本実施形態に係る基板搬送制 御装置 1 0における基板搬送制御の手順を示すフローチヤ一ト、 図 7は 本実施形態におけるスケジユーリングの対象とする時間領域のイメージ を示す図である。
半導体製造装置を長時間連続して運転する場合には、 各基板に対する 処理予定時間が事前に与えられる場合だけであるとは限らず、運転中に、 例えば、 新しいカセッ トを装着する度に、 カセッ ト内の未処理の基板に 対する処理予定時間を与えて制御を行うことが考えられる。 本実施形態 の基板搬送制御装置はこのような場合にも対応することができる。
即ち、 本実施形態における基板搬送制御装置 1 0は、 図 7に示すスケ ジュ一リング対象時間領域を半導体製造装置の運転中に後方に移動させ ながら、 逐次スケジューリングを繰り返し、 各スケジューリングの結果 を矛盾なく継ぎ足して制御を行うものである。 本実施形態における基板搬送制御装置 1 0は、 図 5に示すようにハー ドディスク 1 5内に演算時間テーブル 1 8が格納され、 また、 記憶装置 1 3 〜 1 5に格納されたコンピュータプログラムと C P U 1 1との協動 によって、 スケジュール判断部 3 1、 演算条件決定部 3 2、 スケジユー ル演算部 3 3、 解判断部 3 4、 タイムテーブル作成部 3 5、 動作指令部 3 6、 再試行部 3 7が構成される。
以下、 本実施形態に係る基板搬送制御装置における基板搬送制御の手 順について説明する。
まず、 上述の第 1の実施形態と同様に、 入力装置 1 2により動作予定 時間が入力され (ステップ 2 1 ) 、 更に入力装置 1 2により処理予定時 間が入力される (ステップ 2 2 ) 。 本実施形態では、 入力装置によって 入力されたデータを一旦記憶装置 1 4又は 1 5に格納して、 これを読み 込むことにより動作予定時間及び処理予定時間の入力が行われる。
これら動作予定時間及び処理予定時間が入力されると、 スケジュール 判断部 3 1が新たなスケジユーリングが必要か否かを判断する (ステヅ プ 2 3 ) 。 即ち、 処理予定時間が入力されているのにスケジューリング がまだなされていない基板がないかを検査する。
このスケジユール判断部 3 1により、 スケジユーリングがなされてい ない基板がない、 即ち、 新たなスケジューリングが必要ないと判断され た場合には、 再度ステップ 2 2に戻り、 処理予定時間が入力されるのを 待つ。
一方、 スケジュール判断部 3 1により、 スケジューリングがなされて いない基板があると判断された場合には、 演算条件決定部 3 2により、 現時点以降の一の想定時刻と、 スケジュ一リング演算の対象とする最終 基板 (空基板を除く) とが決定される (ステップ 2 4 ) 。 最終基板は、 既にスケジユーリング済みの基板に加えて新たにスケジユーリング演算 の対象として追加される基板の最終枚であり、 空基板ではないものとす る。
この想定時刻と最終基板は、 図 7に示すように、 過去に導出されたス ケジユーリング結果において、 最終非空基板 (空基板でないものをいう) が半導体製造装置に投入されてから最初に空基板を含む基板がカセッ ト 2 a又は 2 bに回収される時刻を想定時刻として、 現時点から想定時刻 まで間に余裕を持ってスケジユーリング演算を完了できる範囲の追加基 板の枚数を推定し、 最終基板を決定する。 追加基板の枚数の推定は、 ス ケジュ一リングはまだされていないが処理予定時間が入力されている基 板の枚数の範囲内で行われる。 また、 正の追加基板枚数が得られない場 合には、 想定時刻を次のスケジユーリング済みの基板の回収時刻にずら して求められる。 このようにすると、 図 7に示すように、 上記想定時刻 から上記最終基板が回収される時刻までの間が、 概略のスケジユーリン グ対象時間領域となる。
ここで、 追加した基板の枚数に対してスケジユーリング演算に要した 時間の平均値が演算時間テーブル 1 8としてハードディスク 1 5内に保 存されており、 演算条件決定部 3 2は、 この演算時間テーブル 1 8に保 存された演算の所要時間を考慮して適切な追加基板枚数の推定を行う。
この新たなスケジュ一リングによる最終基板の回収時刻は、 全基板の 処理予定時間が事前に与えられている場合に実現される真の最早値 (最 も早い時刻) に比べて通常遅くなるが、 各回のスケジューリングにおい て追加する基板の枚数をある程度大きくとれば、 近似的に真の最早値に 近くすることができる。
演算条件決定部 3 2により想定時刻とスケジユーリング演算の対象と なる最終基板とが決定されると、 次に、 スケジュール演算部 3 3は、 上 述の追加基板を追加した後の条件式に基づいて上記スケジユーリング対 象時間領域内における搬送機の各動作の実行時刻を導出する (ステツプ 2 5 ) o
この場合において、 過去に導出されたスケジュ一リング結果のうち、 実行時刻が想定時刻より後の動作番号と基板番号の組を参照することに より、 各動作 kに対して着目する基板番号の下限を求める。 あるいは、 搬送機の動作順序から処理予定時間や動作予定時間によっては想定時刻 より後に起こり得る動作を求めて基板番号の下限を定めてもよい。 この ようにすれば、 過去のスケジューリング結果において、 想定時刻以前の 多くの動作の実行時刻は保持されるが、 想定時刻付近には実行時刻が保 持されない動作が生じる場合もある。
また、 上述のスケジユーリング演算の対象となる最終基板のカセヅ ト への回収動作の開始時刻よりも前に起こり得る動作を求めて、 基板番号 の上限を定める。 ここで、 最終基板以降の基板に関しては、 動作時間と 処理時間が 0の空基板が存在すると仮定する。
このようにして定められた基板番号の下限と上限とに基づいて、 上述 した未知の列ベク トル T, X r等が構成され、 スケジューリング演算が 行われる。 そして、 各回のスケジューリング演算において、 演算に実際 に要した時間に基づいて上記演算時間テーブル 1 8に保存された演算の 所要時間の平均値が更新される。
なお、 連続運転開始時にはスケジユーリングの即応性を特に重視する ため、 先頭の 1枚目の基板に対し、 (式 1 ) 〜 (式 3 ) が成立する最小 値として k = l , 2 , · · · , Kの順に動作時刻を求める。 装置内で処 理される基板が 1枚の場合、 このようにすれば該基板の回収時刻は最も 早くなる。 また、 処理予定時間や動作予定時間が極端な値をとらない限 り、 基板は、 各処理機器 3 a〜 9 dで処理された後すぐに搬送機 1 a〜 1 cによって次の処理機器に搬送される。 よって、 与えられた制約条件 を満たす最適解が求められることとなる。 、
スケジュール演算部 3 3による処理の後、 第 1の実施形態と同様に、 解判断部 3 4により実行時刻の解が得られたか否かが判断され (ステヅ プ 2 6 ) 、 実行時刻の解が得られた場合はタイムテーブル作成部 3 5に よりタイムテ一ブルが作成 (更新) される (ステップ 2 7 ) 。 タイムテ —ブルが作成 (更新) された後は、 上記ステップ 2 2に戻り、 以降のス テップを繰り返す。
動作指令部 3 6は、 第 1の実施形態と同様に、 ハードディスク 1 5に 格納されたタイムテーブル 1 7を参照することにより搬送機 1 a〜 1 c の制御を行う。
一方、 実行時刻の解が得られなかったと解判断部 3 4により判断され た場合には、 第 1の実施形態と同様に、 再試行部 3 7により空基板が各 基板間に挿入される (ステップ 2 8 ) が、 かかる場合には、 上記演算条 件決定部 3 2は、 この挿入される空基板をも考慮して、 非空の追加基板 が存在するように、 想定時刻とスケジユーリング演算の対象となる最終 基板とを決定する。
なお、 本実施形態においては、 新たなスケジューリングで求められる 搬送機の動作の実行時刻が想定時刻よりも前になることがあるので、 上 述した追加基板枚数の推定において安全率を大きめに設定して、 想定時 刻より早くスケジユーリング演算を終えて動作指令部 3 6による搬送機 への動作指令を行えるようにする必要がある。
次に、 本発明に係る基板搬送制御装置の第 3の実施形態について図 8 及び図 9を参照して説明する。 図 8は本実施形態における基板搬送制御 装置 1 0の構成を示すプロック図である。
本実施形態における基板搬送制御装置 1 0は、 図 8に示すようにスケ ジユーリング部 4 0、 スケジュール補正部 5 0、 及び動作指令部 6 0を 備え、 ハードディスク 1 5には経過データファイル 1 9が格納される。 動作指令部 6 0は、 上述の第 2の実施形態における動作指令部 3 6に相 当するものである。
スケジュ一リング部 4 0は、 上記第 2の実施形態におけるスケジユー ル判断部、 演算条件決定部、 スケジュール演算部、 解判断部、 タイムテ 一ブル作成部、 再試行部から構成される。 またスケジュール補正部 5 0 は、 実績時刻取得部 5 1、 再スケジューリング判断部 5 2、 無効化部 5 3、 経過データ取得部 5 4、 補正部 5 5、 有効化部 5 6とから構成され る。これらスケジューリング部 4 0とスケジユール補正部 5 0はともに、 記憶装置 1 3〜 1 5に格納されたコンピュ一夕プログラムと C P U 1 1 との協動によって実現されるものである。
以下、 本実施形態に係る基板搬送制御装置 1 0における基板搬送制御 の手順について説明する。 図 9は本実施形態におけるスケジュール補正 部 5 0において行われる処理の手順を示すフローチヤ一トである。
スケジユーリング部 4 0における基本的な処理の流れは、 上述の第 2 の実施形態にて説明した処理と同様であるが、 動作予定時間、 処理予定 時間等の条件データと、 上述の t ( k , n ) , x r ( k , n ) 、 及び、 スケジユーリング済みの最終基板番号等のスケジュ一リング結果のデ一 夕を経過データファイル 1 9として、 スケジュール補正部 5 0との間で 矛盾なく共有して更新する点が第 2の実施形態と異なる。
即ち、 運転開始時に、 入力装置 1 2により各搬送機個々の動作予定時 間が入力され、 この動作予定時間が経過データファイル 1 9としてメモ リ 1 4又はハードディスク 1 5内に格納される。 また、 連続運転開始以 後において、 入力装置 1 2により各基板に対する各処理機器の種別ごと の処理予定時間が入力されると、 この処理予定時間も経過デ一夕フアイ ル 1 9としてメモリ 1 4又はハードディスク 1 5内に蓄積される。 その 後、 スケジュール補正部 5 0による搬送機の各動作の実行時刻の補正結 果を反映するために、 経過デ一夕ファイル 1 9を読み込んで、 これを基 に、 タイムテーブル作成部によるタイムテーブル 1 7の作成 (更新) ま でのステツプが実行され、結果が経過デ一夕ファイル 1 9に蓄積される。 経過データファイル 1 9に蓄積されたデータは、 例えば各時点で実際に 全処理を終えてカセッ トに回収された基板の番号等を参照して、 古くて 不要になったものから順次消去する。
なお、 スケジュール判断部による新たなスケジユーリング演算の必要 性の判断、 及び、 演算条件決定部による最終基板の決定においては、 経 過データファイル 1 9の記憶容量や時刻補正の発生頻度などを考慮して、 スケジユーリング演算の対象となる基板の範囲に制約を設けてもよい。 ところで、 本実施形態では、 上記スケジューリング部 4 0の処理とは 独立して、 以下に述べる処理がスケジュール補正部 5 0において行われ まず、 実績時刻取得部 5 1は、 上記入出力ィン夕一フェイス 1 6を介 して搬送機 1 a〜 1 cが実際に各動作をし始めた時刻 (以下、 実績時刻 という) を取得する (ステップ 4 1 ) 。 次に、 再スケジュ一リング判断 部 5 2が、 上記実績時刻取得部 5 1により取得された実績時刻と、 上記 スケジユーリング部 4 0のスケジュール演算部において過去にスケジュ —リングされタイムテーブル 1 7に記述された実行時刻との差を求め、 この差が予め決められた許容範囲を超えるものであるか否かを判断する (ステップ 4 2 ) 。
上記遅れ時間が所定許容範囲を超えないと判断された場合には、 再び 実績時刻の取得が行われ (ステップ 4 1 ) 、 一方、 この許容範囲を超え たと判断された場合には、 タイムテーブル 1 7に記述された実行時刻の 補正が必要となる。 従って、 以下に述べる処理が行われる (ステップ 4 3〜ステップ 4 7 ) 。 なお、 上記再スケジューリング判断部 5 2におい て、 実績時刻とタイムテーブル 1 7に記述された実行時刻との関係で動 作に矛盾が生じたか否かを判断することとしてもよい。 例えば、 一の搬 送機の動作が遅れて実際に中継型の処理機器に基板を引き渡す前に、 他 の搬送機が該処理機器から該基板を受け取るようにスケジューリングさ れているとすれば、 矛盾が生じているので、 この場合に実行時刻の補正 をすることとしてもよい。
また、 実績時刻取得部 5 1による実績時刻の取得において、 各搬送機 が各動作をし始めた時刻に加えて、 各動作の進渉を表すデータ、 例えば、 搬送元や搬送先の処理機器への移動、 及び、 基板の受け取りや引き渡し の終了等の時刻や、処理機器における処理の終了等の時刻を取得すれば、 よりきめの細かい実行時刻の補正を行うことができる。
ステップ 4 3 〜 4 7の処理は、 まず、 無効化部 5 3が上記スケジユー リング部 4 0での処理を無効化あるいは停止し (ステップ 4 3 ) 、 経過 デ一夕取得部 5 4が経過デ一夕ファイル 1 9を参照して上記経過デ一夕 を取得する (ステップ 4 4 ) 。
次に、 補正部 5 5が、 この経過デ一夕と実績時刻入力部 5 1により入 力された実績時刻とに基づいて、 半導体製造装置内の搬送機上及び処理 機器上に存する基板、 及び半導体製造装置に投入前の先頭の 1枚の基板 (いずれも空基板を含む) に関し、 現時点において未実施の動作につい て、 上記 (式 1 ) 〜 (式 3 ) を満たし、 かつ、 過去にスケジューリング された時刻を下回らない最小値として、 新たな (補正された) 実行時刻 を算出する (ステップ 4 5 ) 。 このとき、 スケジューリング済みの最終 基板は、 上述の半導体製造装置に投入する前の先頭 1枚の基板となり、 計算の便宜上、 その後に適当枚数の空墓板が挿入される。 そして、 補正 部 5 5は、 この補正された実行時刻に基づいて上記タイムテ一ブル 1 7 と経過データフアイル 1 9を更新する (ステ、リプ 4 6 ) 。
なお、 上記新たな実行時刻の算出においては、 簡単のために、 過去に スケジューリングされた時刻を、 最新の実績時刻の遅れに合わせて、 一 律後方に移動することとしてもよい。 また、 搬送機が搬送元の処理機器 から基板を受け取り終わる時刻又は搬送先の処理機器に基板を引き渡し 終わる時刻を対象として、 過去のスケジユーリング結果との比較を行う こととしてもよい。
その後、 有効化部 5 6が、 上記無効化部 5 3により無効化又は停止さ れたスケジュ一リング部 4 0における処理を再び有効化又は再始動する
(ステップ 4 7 ) 。 この有効化又は再始動後、 スケジユーリング部 4 0 においては、 上記更新された経過デ一夕ファイル 1 9の内容に基づいて 処理が行われる。
なお、 搬送機の一の動作が予定よりも遅れた場合には、 考慮した搬送 機の動作時刻に関連する制約条件は必ずしも満たされなくなるが、 再ス ケジユーリング判断部 5 2における遅れの基準を適切に設定することで、 制約条件からの逸脱を無視できるレベルにまで小さくすることができる。 また、 スケジュ一リング部 4 0における処理を有効化又は再始動後は、 その後の基板について線形計画法により制約条件を考慮した最適値を求 めることができ、将来に対する時間遅れの影響を解消することができる。 次に、 本発明に係る基板搬送制御装置の第 4の実施形態について図 1 0及び図 1 1を参照して説明する。 図 1 0は本実施形態における基板搬 送制御装置 1 0の構成を示すプロック図である。
本実施形態における基板搬送制御装置 1 0は、 図 1 0に示すようにス ケジユーリング部 4 0、 スケジュール補正部 7 0、 及び動作指令部 6 0 を備え、 ハードディスク 1 5には経過データファイル 1 9が格納されて いる。 これらスケジューリング部 4 0とスケジュール補正部 7 0はとも に、 記憶装置 1 3 〜 1 5に格納されたコンピュータプログラムと C P U 1 1との協動によって実現されるものである。 本実施形態におけるスケ ジュール補正部 7 0は、 条件変更検知部 7 1、 無効化部 7 2、 経過デー 夕取得部 7 3、 処理予定時間更新部 7 4、 補正部 7 5、 有効化部 7 6か ら構成される。
スケジュ一リング部 4 0における処理の流れは、 上述の第 2及び第 3 の実施形態にて説明した処理と同様であるが、 スケジュール補正部 7 0 において行なわれる処理が第 3の実施形態におけるスケジュール補正部 5 0と異なる。 以下、 本実施形態のスケジュール補正部 7 0において行 なわれる処理について説明する。 なお、 このスケジュール補正部 7 0に おいて行なわれる処理はスケジユーリング部 4 0の処理と独立して行な われる。 図 1 1は本実施形態におけるスケジュール補正部 7 0において 行われる処理の手順を示すフロ一チヤ一トである。
まず、 条件変更検知部 7 1は、 運転開始後において、 装置への投入が 予定されている基板 (以下、 未投入基板という) に関する条件の変更、 例えば、 装置投入予定の取消、 処理予定時間の変更や装置投入順序の変 更などの有無を入力装置 1 2を介して検知する (ステップ 5 1 ) 。 条件 変更検知部 7 1により、 未投入基板に関する条件の変更が検知された場 合には、 タイムテーブル 1 7に記述された実行時刻の補正が必要となる ので、 以下に述べる処理が行なわれる。
まず、 無効化部 7 2が上記スケジユーリング部 4 0での処理を無効化 あるいは停止し (ステップ 5 2 ) 、 経過デ一夕取得部 7 3が経過データ ファイル 1 9を参照して上記経過データを取得する (ステヅプ 5 3 ) 。 そして、 処理予定時間更新部 7 4が、 上述した未投入基板に関する条件 の変更 (装置投入予定の取消、 処理予定時間の変更や装置投入順序の変 更など) を参照して、 上記経過デ一夕の一部として過去に蓄積された処 理予定時間に関するデータを更新する (ステップ 5 4 ) 。 ここで、 条件 変更後の未投入基板に対しては新たに投入順が設定され、 この投入順に 基づいて処理予定時間が更新される。また、搬送に関する制約条件が個々 の基板に対して指定されている場合には、 この制約条件についても同様 に.更新される。
次に、ステップ 5 4で処理予定時間が更新された先頭の基板について、 過去において既にスケジユーリングが行なわれていた場合に、 補正部 7 5が、 経過データ内の過去のスケジューリング結果から、 その基板以降 のスケジューリング結果を取消し、 適当枚数の空基板を挿入する。 そし て、 上記 (式 1 ) 〜 (式 3 ) を満たし、 かつ、 過去にスケジューリング された時刻を下回らない最小値として、 新たな (補正された) 実行時刻 を算出する (ステップ 5 5 ) 。 このときスケジューリング済みの最終基 板は、 ステップ 5 4において処理予定時間が変更されなかった最終の基 板となる。 そして、 補正部 7 5は、 この補正された実行時刻に基づいて 上記タイムテーブル 1 7と経過データファイル 1 9を更新する (ステツ プ 5 6 ) 。 なお、 ステップ 5 5においては、 搬送機が搬送元の処理機器 から基板を受け取り終わる時刻又は搬送先の処理機器に基板を引き渡し 終わる時刻を対象として、 過去のスケジュ一リング結果との比較を行う こととしてもよい。
その後、 有効化部 7 6が、 上記無効化部 7 2により無効化又は停止さ れたスケジユーリング部 4 0における処理を再び有効化又は再始動する (ステップ 5 7 ) 。 この有効化又は再始動後、 スケジューリング部 4 0 においては、 上記更新された経過デ一夕ファイル 1 9の内容に基づいて 処理が行われる。 この結果、 上記ステップ 5 4で処理予定時間が変更さ れた先頭の基板以降の基板についても、 変更後の処理予定時間に基づい て動作の実行時刻を算出し直すことができる。 このように、 処理の取消、 処理予定時間の変更、 装置投入順序の変更などの未投入基板に関する条 件の変更があった場合においても、 この変更に柔軟に対応して基板処理 装置を運転することが可能となる。
なお、 本実施形態におけるスケジュール補正部 7 0と上述した第 3の 実施形態のスケジュール補正部 5 0とを同時に機能するように構成する こととしてもよい。
上述したように、 上記各実施形態におけるスケジュール演算部では、 対象とする基板の最終枚が全処理を終えて半導体製造装置から回収され る時刻を最も早くするような搬送機の各動作の実行時刻が導出される。 本発明では、 特定の基板に対してある処理機器における処理を省略する ように指定した場合においても、 この墓板が指定された処理機器を飛び 越して搬送されるように、 搬送機の各動作の実行時刻を算出することが 可能である。 このような処理の省略は、 例えば、 ある処理機器における 特定の基板に対する処理予定時間を 0とすることにより指定することが できる。 このように処理機器を飛び越して基板を搬送する場合には、 飛び越す 処理機器の直前であって、 かつ、 対象とする基板の直前に、 適当枚数の 空基板が揷入される。 そして、 この挿入された空基板を前提にして、 上 述した線形計画法に基づく計算によって実行時刻が算出される。 このよ うに適当枚数の空基板を挿入することによって、 処理機器を飛び越して 基板を搬送することが可能となる。 以下、 このような空基板の挿入につ いて説明する。
まず、 図 1 2に示すように、 基板処理装置内に処理機器種別 S 1〜S 3が設置されている場合を例として考える。 処理機器種別 S 1〜S 3に 対する基板の引き渡しを含む動作 k一 1 , k, k+ 1は同一の搬送機に よって行われるものとし、 基板 A, B, C, Dがこの順番に基板処理装 置内に投入されて搬送、 処理されるものとする。
ここで、 基板 B及び Cに関して、 処理機器種別 S 2における処理予定 時間が 0と指定され、 基板 B及び Cが処理機器種別 S 2における処理を 飛び越して搬送される場合を考える。 なお、 図 1 3及び後述する図 1 5 は、 図 12の処理機器種別間における基板の流れの例を示しており、 下 方に向かって時間軸がとられている。
1 ) 定常運転時のこの搬送機の動作順序が k+ 1 , k, k— 1であり、 動作番号と基板番号の組で表すと [k+ 1 , 2] , [k, 4] , [k—
1 , 5] , [k+ 1 , 3] , [k, 5] , [k— 1 , 6] という順序で 搬送機が動作する場合 (図 1 3)
この場合には、 図 14 Aに示すように、 基板 Bの直前に、 処理機器種 別 S 2の機器数 2に相当する枚数、即ち 2枚の空基板②と③を挿入する。 そして、 空基板②に対する動作 [k+ l, 2] における搬送元の処理機 器種別が S 2から S 1に置き換えられると共に、 処理機器種別 S 1から の基板 B (④) の受け取りを含む動作、 即ち、 飛び越しがないとした場 合における動作 [k, 4] に先行して、 上記動作 [k+ 1 , 2] が行わ れる。 これにより、 図 13において点線で示すように、 基板 Bが処理機 器種別 S 1から処理機器種別 S 3に搬送される。 このようにすれば、 こ の動作 [k + 1, 2] は、 基板 C (⑤) の処理機器種別 S 1への引き渡 しを含む動作 [k— 1 , 5] を阻害しない。 動作 [k, 4] は、 空基板 に対する動作、 即ち、 動作時間 0の実体のない動作として扱われる。
また同様に、 空基板③に対する動作 [k+ 1 , 3] における搬送元の 処理機器種別が S 2から S 1に置き換えられると共に、 基板 D (⑥) の 処理機器種別 S 1への引き渡しを含む動作 [k— 1 , 6] を阻害しない ように、 この動作 [k + 1 , 3] が処理機器種別 S 1からの基板 C (⑤) の受け取りを含む動作 [k, 5] に先行して行われる。 これにより、 図 13において点線で示すように、 基板 Cが処理機器種別 S 1から処理機 器種別 S 3に搬送される。 動作 [k, 5] も実体のない動作として扱わ れる。
なお、 このような動作を行うことにより、 基板 B, Cの前にあった空 基板は、 動作 [k + 1 , 3 ] の後には、 図 14 Bに示すように基板 B , Cの後方に移動することととなる。
2) 定常運転時のこの搬送機の動作順序が k, k+ 1 , k— 1であり、 動作番号と基板番号の組で表すと [k, 3] , [k+ 1 , 2] , [k一 1, 4] , [k, 4] , [k+ 1 , 3] , [k— 1 , 5] という順序で 搬送機が動作する場合 (図 1 5)
この場合には、 図 16 Aに示すように、 基板 Bの直前に、 処理機器種 別 S 2の機器数 2から 1を減じた枚数、即ち 1枚の空基板②を揷入する。 そして、基板 B (③)の処理機器種別 S 1からの受け取りを含む動作 [k: 3] を空基板に対する動作として扱い、 次の動作、 即ち、 空基板②に対 する動作 [k+ 1 , 2] において搬送元の処理機器種別を S 2から S 1 に置き換えることによって、 図 1 5において点線で示すように、 処理機 器種別 S 1から処理機器種別 S 3に基板 Bが搬送される。
同様に、 基板 C (④) の処理機器種別 S 1からの受け取りを含む動作
[k, 4]を空基板に対する動作として扱い、 空基板③に対する動作 [k + 1 , 3] の搬送元の処理機器種別を S 2から S 1に置き換えることに よって、 図 1 5において点線で示すように、 処理機器種別 S 1から処理 機器種別 S 3に基板 Cが搬送される。
このように、 基板 Cの処理機器種別 S 1への引き渡しを含む動作 [k — 1 , 4] の前に基板 Bの処理機器種別 S 1からの受け取りは完了して おり、 また、 基板 Dの処理機器種別 S 1への引き渡しを含む動作 [k一
1 , 5] の前に基板 Cの処理機器種別 S 1から受け取りも完了している ので、 搬送機はこれらの基板 C, Dを問題なく処理機器種別 S 1に引き 渡すことができる。 なお、 動作 [k + 1 , 3 ] の後には、 図 16 Bに示 すように、 基板 B, Cの前にあった空基板が基板 B, Cの後方に移動す ることとなる。
なお、 上記説明においては、 飛び越される処理機器種別が 1種類で、 動作 k一 1が動作 k及び動作 k+ 1と同一の搬送機によって行われる場 合について説明したが、 ある基板が複数の処理機器種別を飛び越して搬 送される場合には、 飛び越される処理機器種別全体を考慮して空基板を 挿入することにより、 これらの処理機器種別を飛び越して基板を搬送す ることが可能となる。
また、 動作 k— 1が別の搬送機の動作であっても、 この動作 k一 1の 代わりに、 中継型の処理機器種別を介して該別の搬送機と基板の受け渡 しを行う搬送機の動作を考え、 該別の搬送機の動作順序に影響を与える ことがないように、 挿入される空基板の数を決定することによって、 飛 び越しが可能となる。
次に、 図 1 7に示すように、 基板処理装置内に処理機器種別 S 1〜S 4が設置されている場合を例として説明する。 処理機器種別 S 1〜S 4 に対する基板の引き渡しを含む動作 k— 1 , k, k+ 1 , k+ 2は同一 の搬送機によって行われるものとし、 基板 A, B, C, D , E, Fがこ の順番に基板処理装置内に投入されて搬送、 処理されるものとする。 ま た、 定常運転時のこの搬送機の動作順序が k+ 2 , k+ 13 k, k- 1 であり、 図 18に示すような順序で搬送機が動作するものとする。 なお、 図 1 8においても、 下方に向かって時間軸がとられている。
ここで、 基板 C及び: Dが処理機器種別 S 3における処理を飛び越して 搬送され、 基板 E及び Fが処理機器種別 S 2における処理を飛び越して 搬送される場合を考える。
この場合には、 図 1 9Aに示すように、 基板 Cの直前に、 処理機器種 別 S 3の機器数 2に相当する枚数、即ち 2枚の空基板③と④を挿入する。 そして、 空基板③に対する動作 [k+ 2, 3] における搬送元の処理機 器種別が S 3から S 2に置き換えられると共に、 処理機器種別 S 2から の基板 C (⑤) の受け取りを含む動作 [k+ l , 5] に先行して、 上記 動作 [k+ 2 , 3 ] が行われる。 これにより、 基板 Cは処理機器 S 3を 飛び越して搬送される。
また、 上記動作 [k+ 1 , 5] の搬送元の処理機器種別が S 2から S 1に置き換えられると共に、 処理機器種別 S 1からの基板 E (⑦) の受 け取りを含む動作 [k, 7] に先行して、 上記動作 [k+ 1 , 5] が行 われる。 これにより、 基板 Eは処理機器 S 2を飛び越して搬送される。 このとき、 図 1 9 Bに示すように、 空基板のうちの 1枚が基板 Dの後方 に移動することとなる。
また同様に、 動作 [k+2 , 4] の搬送元の処理機器種別が S 3から S 2に置き換えられると共に、 処理機器種別 S 2からの基板 Dの受け取 りを含む動作 [k + 1 , 6 ] に先行して、 上記動作 [k + 2, 4 ] が行 われる。 これにより、 基板 Dは処理機器 S 3を飛び越して搬送される。 更に、 上記動作 [k+ 1 , 6] の搬送元の処理機器種別が S 2から S 1に置き換えられると共に、 処理機器種別 S 1からの基板 F (⑧) の受 け取りを含む動作 [k, 8] に先行して、 上記動作 [k+ 1 , 6] が行 われる。 これにより、 基板 Fは処理機器 S 2を飛び越して搬送される。 このとき、 図 1 9 Cに示すように、 2枚の空基板が基板 Fの後方に移動 することとなる。
このように、 本発明によれば、 基板処理装置の連続運転中において、 基板毎に、 不要な処理機器種別を飛び越して基板を搬送したり、 複数の 処理機器種別を目的に応じて使い分けたりすることができるので、 多品 種少量生産に対応した柔軟な運転が可能となる。 例えば、 連続運転を一 旦停止して異なる処理がなされる基板を扱う場合に比べて大幅にスルー プッ トを向上することができ、 また、 目的毎に基板処理装置を別個に用 意する場合に比べて大幅にコストを低減することができる。
なお、 上述した処理機器種別の飛び越しを考慮して、 上述したスケジ ユール演算部 (図 3の符号 2 1、 図 5の符号 33) を構成した場合には、 上述した補正部 (図 8の符号 55、 図 10の符号 75) においても同様 に飛び越しが考慮される。
次に、 本発明に係る基板搬送制御装置を基板処理装置に組み込んだ例 を図面を参照して説明する。 図 20は、 本実施形態に係る基板処理装置 (半導体製造装置) の全体構成を示すプロック図である。 この基板処理 装置は、 図 1に示す搬送機 1 a〜 1 c、 カセッ ト 2 a, 2 b、 及び、 処 理機器 3 a〜 9 dを装置本体として備えている。 また、 基板処理装置は、 コンピュータなどから構成される装置制御部 1 0 0と、 独立のコンビュ 一夕などから構成されるスケジューラ 1 0 2と、 装置の状態などを表示 する表示装置 1 04と、 装置の運転条件や制御条件を入力する上述した 入力装置 1 2とを備えている。
装置制御部 1 0 0やスケジューラ 1 0 2の内部の記憶装置には、 上述 した基板制御のためのコンピュー夕プログラム及び装置制御のためのコ ンピュー夕プログラムが格納されている。 なお、 これら装置制御部 1 0 0及びスケジューラ 1 0 2を複数のコンピュー夕を協動させることによ つて構成することとしてもよいし、 あるいは、 これらを 1つのコンビュ —夕で構成することとしてもよい。
装置制御部 1 0 0には、 装置本体内の搬送機 1 a〜 1 c、 カセッ ト 2 a, 2 b、 及び各処理機器 3 a〜 9 dと接続されるコントロ一ラ 1 1 0 〜 1 1 2と、 これらのコン トローラ 1 1 0〜 1 1 2に接続されるメィ ン コントローラ 1 2 0とから主に構成されている。 コントローラ 1 1 0〜 1 1 2は、 メインコントロ一ラ 1 20から指令を受け、 該指令を各機器 1 a〜 9 dに送信する。 また、 コントローラ 1 1 0〜 1 1 2は、 各機器 1 a〜 9 dを監視し、 各機器 1 a〜 9 dの状態をメインコントローラ 1 20に送信する。 メインコントローラ 1 2 0には、 処理機器 3 a〜 9 d に対し処理の開始指令や処理条件等を送信する機能の他、 上述した搬送 機の制御を行う動作指令部 (図 3の符号 24、 図 5の符号 3 6、 図 8及 び図 1 0の符号 6 0) 、 実績時刻取得部 (図 8の符号 5 1 ) 、 再スケジ ュ一リング判断部 (図 8の符号 5 2) 、 条件変更検知部 (図 1 0の符号 7 1 ) が含まれている。 また、 メインコントローラ 1 20には、 表示装 置 1 04及び入力装置 1 2が接続されている。
スケジューラ 1 0 2は、 上述した搬送機の制御を行うスケジュール演 算部 (図 3の符号 2 1、 図 5の符号 3 3 ) 、 解判断部 (図 3の符号 2 2、 図 5の符号 34) 、 再試行部 (図 3の符号 2 5、 図 5の符号 3 7 ) 、 夕 ィムテ一ブル作成部 (図 3の符号 23、 図 5の符号 3 5 ) 、 スケジュ一 ル判断部 (図 5の符号 3 1 ) 、 演算条件決定部 (図 5の符号 3 2 ) 、 無 効化部 (図 8の符号 5 3、 図 1 0の符号 7 2 ) 、 経過デ一夕取得部 (図 8の符号 54、 図 1 0の符号 73 ) 、 補正部 (図 8の符号 5 5、 図 1 0 の符号 7 5 ) 、 有効化部 (図 8の符号 5 6、 図 1 0の符号 7 6 ) 、 処理 予定時間更新部 (図 1 0の符号 74) を含んでいる。
なお、 このようなメインコントローラ 1 2 0及びスケジューラ 1 0 2 の構成は一例であり、 これと異なる構成でメインコントローラ 1 2 0や スケジューラ 1 0 2を構成してもよいことはもちろんである。
次に、 基板搬送制御装置が組み込まれたこの基板処理装置の動作につ いて説明する。
装置本体の電源は、 装置制御部 1 0 0、 表示装置 1 04、 入力装置 1 2、 スケジューラ 1 0 2の電源と連動しており、 装置本体に電源が投入 されると、 これら装置制御部 1 0 0、 表示装置 1 04、 入力装置 1 2、 スケジューラ 1 0 2にも自動的に電源が投入され、 装置制御部 1 0 0、 表示装置 1 04、 入力装置 1 2、 スケジューラ 1 り 2が起動する。 この とき、 スケジューラ 1 0 2は、 メインコントローラ 1 2 0からの信号に 対する待機状態となる。
次に、 装置本体を運転する前に、 入力装置 1 2によって、 装置本体の 各処理機器 3 a〜 9 dの使用の可否、 各搬送機 1 a〜 l cによって各処 理機器 3 a〜9 dの種別間を基板が搬送される順序を示す搬送経路、 定 常運転時の各搬送機 1 a〜 1 cの基本動作の順序などが入力される。 こ こで、 メイ ンコン トローラ 1 2 0から各搬送機 1 a〜 1 cに動作指令を 送信して装置本体内の搬送機 1 a〜 1 cを動作させ、 各搬送機 1 a〜 1 cの動作の所要時間を取得することとしてもよい。 この取得された所要 時間やその他の設定値を装置制御部 1 0 0内の磁気ディスクや不揮発性 メモリ等に保存すれば、 一旦電源を遮断した後であっても前に取得した 所要時間やその他の設定値に基づいて装置を運転することが可能となる。 入力装置 1 2から装置運転開始指令が入力されると、 メインコント口 —ラ 1 2 0が搬送機 1 a〜 l cの原点復帰、 処理機器 3 a ~ 9 dの初期 化などの開始処理を各機器に対して指示すると共に、 スケジューラ 1 0 2に対して運転開始指令と上述の搬送経路、 基本動作の順序、 動作予定 時間などのデータを送信する。 スケジューラ 1 0 2は、 これらのデータ を読み込んで、 内部メモリの設定等の初期化処理を行う。
そして、 装置本体に未処理の基板が装填されたカセヅ ト 2 a , 2 bが 装着された時点で、 入力装置 1 2によりこれら未処理の基板に対する処 理予定時間や搬送に関する制約条件などが入力され、 これらのデータが メインコントローラ 1 2 0を介してスケジューラ 1 0 2に送信される。 スケジューラ 1 0 2は、 この処理予定時間と制約条件に関するデ一夕 を読み込み、 上述した基板の搬送制御により 1枚目の基板に関して各動 作の実行時刻を計算してタイムテ一ブルを作成し、 このタイムテ一ブル をメインコントローラ 1 2 0に送信する。メインコントローラ 1 2 0は、 このタイムテーブルに基づいて、 搬送機の動作、 及びこれに対応した各 処理機器での処理を開始させ、 各動作の実行時刻の計測を開始する。 な お、 メインコントロ一ラ 1 2 0は、 搬送機 1 a〜 1 cに動作を指令する 際に、 タイムテーブルに指定された時刻の経過だけでなく、 その搬送機 が非動作中であること、 搬送元の処理機器における基板の処理が完了し ていること、 及び搬送先の処理機器に先行する基板が存在せずリセッ ト も完了していることを確認する。 これにより、 搬送機 l a ~ l cの動作 時間や、 処理機器 3 a 〜 9 dでの処理時間、 リセッ ト時間に関して予定 からのずれがあっても問題が発生しないようにしている。
また、 この動作の指令と同時に、 メインコントローラ 1 2 0は各動作 の実行時刻をスケジューラ 1 0 2に送信し、 また、 各基板の位置や処理 の進行状況などを出力装置 1 0 4に送信する。 これら装置本体の状況の 送信は、 適当に定められた間隔で以後継続して行われる。
次に、 スケジューラ 1 0 2は、 最初に処理予定時間を取得した 2枚目 以降の基板に関して、 上述したように適当枚数の追加基板を設定し、 線 形計画法で逐次スケジュ一リングを行い、 更新されたタイムテ一プルを メインコントローラ 1 2 0に送信する。 このタイムテ一ブルの送信に際 しては、 スケジューラ 1 0 2から送信前にメインコントローラ 1 2 0の 時刻を停止する旨の指令を出して新たな動作の開始を禁止し、 タイムテ ―ブル中の未実施の動作に対応する部分のみ送信して、 この送信後にメ インコントローラ 1 2 0の時刻を再起動することにしてもよい。 また、 メインコントローラ 1 2 0内の記憶装置の記憶容量を考慮して、 タイム テーブルをスケジューラ 1 0 2内の記憶装置に記憶、 蓄積し、 未実施の 動作を先頭にして一定量のスケジュールを、 スケジユーリング演算の夕 ィミングに関係なく定期的に順次メインコントローラ 1 2 0に送信する こととしてもよい。
新たな未処理の基板のカセッ トが装置本体に装着された場合には、 上 述と同様にして各基板の処理予定時間や搬送に関する制約条件などが入 力され、 入力されたデータは、 メインコントローラ 1 2 0からスケジュ ーラ 1 0 2に送信される。 スケジューラ 1 0 2は、 これらのデ一夕を読 み込んで経過デ一夕ファイル内に蓄積し、 上述した線形計画法による逐 次スケジユーリングを続行する o
なお、 処理予定時間が入力された未投入の基板のすべてについて、 動 作予定時刻が算出された場合には、 スケジューラ 1 0 2は次の未投入基 板の処理予定時間が入力されるまで待機する。
また、 メインコントローラ 1 2 0は、 装置本体の運転中において、 各 動作の実行時刻を計測し、 この計測された時刻とタイムテーブル上に指 定された時刻との差を監視する。 上述のように各搬送機 1 a〜 1 cの動 作時間や各処理機器 3 a〜 9 dでの処理時間、 リセッ ト時間に遅れがあ ると、 結果としてある動作の実行時刻が遅れてしまうことがある。 この ような場合、 メインコントローラ 1 2 0は上述した再スケジュ一リング 判断部によって時刻の補正指令をスケジューラ 1 0 2に送信し、 これを 受けてスケジューラ 1 0 2は未実施の動作の実行時刻を補正してタイ厶 テーブルを更新し、 これをメインコントローラ 1 2 0に送信する。 この とき、 メインコントローラ 1 2 0は上記補正指令の送信前に時刻を停止 し、 タイムテーブルを受信した後に再起動して、 補正されたタイムテ一 ブルと実際の動作の間に矛盾が生じないようにする。
一方、 装着された未処理の基板が装填されたカセッ 卜が装置本体から 外された場合、 あるいは、 入力装置 1 2によって、 未投入の基板の投入 予定が取り消されたり、 処理予定時間が変更されたり、 装置への投入順 序が変更されたりした場合、 これらの情報が未投入基板の補正指令と共 に、 メインコントローラ 1 2 0からスケジューラ 1 0 2に転送される。 スケジューラ 1 0 2では、 タイムテーブルの一部を更新し、 更新した夕 ィムテーブルをメインコントローラ 1 2 0に送信する。 なお、 上述の時 刻の補正指令の場合と同様に、 未投入基板の補正指令をスケジューラ 1 0 2に送信する前に、 メインコントローラ 1 2 0の時刻を停止し、 タイ ムテーブルを受信した後に再起動する。
装置本体に装着されたカセッ トに装填された基板がすべて処理を終え てカセッ 卜に回収されたときには、 メインコントローラ 1 2 0がスケジ ユーラ 1 0 2からの送信有無のチェックを停止し、 メモリを解放するな どの終了処理を行って、 上述した起動後の状態に戻る。 また、 スケジュ ーラ 1 0 2や入力装置 1 2も同様に起動後の状態に戻る。 この場合にお いて、 入力装置 1 2から、 搬送経路、 基本動作の順序、 動作予定時間等 を設定し直して、 次回の運転を行うこともできる。 あるいは、 そのまま の設定で、 再度運転開始指令を入力し、 未処理基板のカセッ トを装着し て処理を再開することもできる。
ここで、 図 2 1及び図 2 2に、 上述の第 2の実施形態における基板搬 送制御装置を用いて、 搬送機の実行時刻をスケジユーリングした結果の 一例を示す。 図 2 1及び図 2 2において、 数字は基板番号を表しており、 搬送機 1 a〜 l cに対応する Xで挟まれた実線は各搬送機が動作中であ ることを表し、 また、 処理機器 3 a〜 9 dに対応する *で挟まれた実線 は各処理機器において処理が行われていることを表している。
図 2 1は、 基板搬送制御装置の運転開始直後のスケジューリング結果 を示すが、 この時点での搬送機 1 a〜 1 cの余裕は大きいことがわかる。 図 2 2は、 基板搬送制御装置の運転開始から一定時間経過した定常状 態を示す。 図 2 2において、 各搬送機の休止時間は少なく、 ほとんど常 に動作中の状態にあるが、 それでも、 基板処理後の搬送機待ち時間を 0 とする制約条件を与えためっき槽 9 a〜 9 dにおいては、 図 2 2におい てきで示すように、 処理終了前に搬送機がめっき槽に移動を開始して処 理後の基板を直ちに受け取り、粗洗浄機 7に搬送していることがわかる。 上述したように本発明は、 対象とする基板の最終枚が全処理を終えて 上記基板処理装置から回収される時刻を最も早くするような搬送機の各 動作の実行時刻をスケジユーリングすることができるので、 基板処理装 置のスループヅ トを最大にすることができる。
また、 煩わしい事前の検討や処理予定時間の制約を伴うことなく、 搬 送機の動作時刻に関連して設定された制約条件を満たしつつ、 対象とす る基板の最終枚が全処理を終えて上記基板処理装置から回収される時刻 を最も早くすることができ、 プロセス処理上の要求を満たすことができ ると共に、 基板処理装置のスループッ トを最大にすることができる。 更に、 連続運転中の各基板の処理予定時間が逐次分割して得られるよ うな場合においても、 プロセス処理上の制約を満たしつつスループヅ ト を近似的に最大とすることができる。
また、 各回のスケジューリングの試行において、 計算可能な枚数を考 慮してスケジュ一リングの対象となる追加基板数を推定し得るので、 比 較的処理能力の低いコンピュ一夕でもスケジュ一リングを行うことがで きる。
更に、 搬送機の動作又は処理機器における基板処理に予定からの遅れ が生じたとしても、 プロセス処理上の制約やスループッ トに対する影響 を小さく抑え、 かつ、 将来にその影響を引きずらずに基板処理装置を運 転することが可能となる。
また、 処理の取消、 処理予定時間の変更、 装置投入順序の変更などの 未投入基板に関する条件の変更があった場合においても、 この変更に柔 軟に対応して基板処理装置を運転することが可能となる。 更に、 基板処理装置の連続運転中に、 不要な処理機器種別を飛び越し て基板を搬送することができるため、 複数の処理機器種別を目的に応じ て使い分けることができる。 従って、 大幅にスループッ トを向上するこ とができると共に多品種少量生産に対応した柔軟な運転が可能となる。 産業上の利用可能性
本発明は、 搬送機により半導体製造装置などの基板処理装置内の複 数の基板を複数の処理機器に順次搬送して処理を行う基板搬送制御装置 及びかかる基板搬送制御装置によって基板の搬送が制御される基板処理 装置に好適に用いられる。

Claims

請求の範囲
1 . 基板処理装置内に設置された複数の処理機器間において搬送機によ り基板を搬送する基板搬送方法において、
前記搬送機の各動作に必要とされる時間と各処理機器における基板に 対する処理に必要とされる時間とをパラメ一夕として含む所定の条件式 に基づいて、 対象とする基板の最終枚が全処理を終えて前記基板処理装 置から回収される時刻を最も早くするような搬送機の各動作の実行時刻 を算出し、
前記算出された搬送機の各動作の実行時刻になったときに、 対応する 搬送機に該動作を指令することを特徴とする基板搬送方法。
2 . 線形計画法に基づいて前記搬送機の各動作の実行時刻を算出するこ とを特徴とする請求項 1に記載の基板搬送方法。
3 . 前記条件式に基づいて搬送機の各動作の実行時刻の解が得られたか 否かを判断し、
前記実行時刻の解が得られなかったと判断された場合に、 前記基板処 理装置内に同時に存在する基板の平均枚数を減少させるように前記条件 式を修正し、 前記実行時刻の算出を再試行することを特徴とする請求項 1に記載の基板搬送方法。
4 . 前記基板処理装置の運転開始後において、 前記搬送機の各動作の実 行時刻の算出が新たに必要か否かを判断し、
前記実行時刻の算出が新たに必要であると判断された場合に、 一の想 定時刻と実行時刻の算出において対象とする基板の最終基板とを決定し、 過去に求められたスケジユーリング結果であって前記決定された想定 時刻以前のスケジュ一リング結果を保持しつつ、 前記決定された最終基 板までの基板を対象として新たに実行時刻を算出することを特徴とする' 請求項 1に記載の基板搬送方法。
5 . 搬送機が各動作をし始めた時刻を取得し、
前記取得された時刻と過去に求められたスケジューリング結果におけ る実行時刻との間に矛盾又は予め決められた範囲以上の差があるか否か を判断し、
矛盾又は予め決められた範囲以上の差があると判断された場合に、 該 矛盾又は予め決められた範囲以上の差があると判断された時点において 未実施の搬送機の各動作の実行時刻を補正することを特徴とする請求項 1に記載の基板搬送方法。
6 - 前記基板処理装置の運転開始後において、 基板処理装置への投入が 予定されている基板に関する条件の変更を検知し、
前記基板に関する条件の変更が検知された場合に、 該条件が変更され た基板以降の基板に対する搬送機の各動作の実行時刻を補正することを 特徴とする請求項 1に記載の基板搬送方法。
7 . 1以上の基板について前記基板処理装置内の 1以上の処理機器にお ける処理が省略される場合に、 前記 1以上の基板が前記 1以上の処理機 器を飛び越して搬送されるように; 前記搬送機の各動作の実行時刻を算 出することを特徴とする請求項 1に記載の基板搬送方法。
8 . 基板処理装置内に設置された複数の処理機器間における搬送機によ る基板の搬送を制御する基板搬送制御装置において、
前記搬送機の各動作に必要とされる時間と各処理機器における基板に 対する処理に必要とされる時間とを入力する入力装置と、
前記入力装置により入力された時間をパラメ一夕として含む所定の条 件式に基づいて、 対象とする基板の最終枚が全処理を終えて前記基板処 理装置から回収される時刻を最も早くするような搬送機の各動作の実行 時刻を算出するスケジユール演算部と、
前記スケジュール演算部により算出された搬送機の各動作の実行時刻 になったときに、 対応する搬送機に該動作を指令する動作指令部とを備 えることを特徴とする基板搬送制御装置。
9 . 前記スケジュール演算部は線形計画法に基づいて前記搬送機の各動 作の実行時刻を算出することを特徴とする請求項 8に記載の基板搬送制 御装置。
1 0 . 前記スケジュール演算部により搬送機の各動作の実行時刻の解が 得られたか否かを判断する解判断部と、
前記解判断部により前記実行時刻の解が得られなかったと判断された 場合に、 前記基板処理装置内に同時に存在する基板の平均枚数を減少さ せるように前記条件式を修正し、 前記スケジュール演算部による実行時 刻の算出を再試行する再試行部とを備えることを特徴とする請求項 8に 記載の基板搬送制御装置。
1 1 . 前記基板処理装置の運転開始後において、 前記スケジュール演算 部による前記搬送機の各動作の実行時刻の算出が新たに必要か否かを判 断するスケジュール判断部と、
前記スケジュール判断部により前記実行時刻の算出が新たに必要であ ると判断された場合に、 一の想定時刻と前記スケジュール演算部による 実行時刻の算出において対象とする基板の最終基板とを決定する演算条 件決定部とを備え、
前記スケジュール演算部は、 過去に求められたスケジュ一リング結果 であつて前記演算条件決定部により決定された想定時刻以前のスケジュ ーリング結果を保持しつつ、 前記演算条件決定部により決定された最終 基板までの基板を対象として新たに実行時刻を算出することを特徴とす る請求項 8に記載の基板搬送制御装置。
1 2 . 搬送機が各動作をし始めた時刻を取得する実績時刻取得部と、 前記実績時刻取得部により取得された時刻と過去に求められたスケジ ユーリング結果における実行時刻との間に矛盾又は予め決められた範囲 以上の差があるか否かを判断する再スケジユーリング判断部と、
前記再スケジュ一リング判断部により矛盾又は予め決められた範囲以 上の差があると判断された場合に、 該矛盾又は予め決められた範囲以上 の差があると判断された時点において未実施の搬送機の各動作の実行時 刻を補正する補正部とを備えることを特徴とする請求項 8.に記載の基板 搬送制御装置。
1 3 . 前記基板処理装置の運転開始後において、 基板処理装置への投入 が予定されている基板に関する条件の変更を検知する条件変更検知部と、 前記条件変更検知部により前記基板に関する条件の変更が検知された 場合に、 該条件が変更された基板以降の基板に対する搬送機の各動作の 実行時刻を補正する補正部とを備えることを特徴とする請求項 8に記載 の基板搬送制御装置。
1 4 . 前記スケジュール演算部は、 1以上の基板について前記基板処理 装置内の 1以上の処理機器における処理が省略される場合に、 前記 1以 上の基板が前記 1以上の処理機器を飛び越して搬送されるように、 前記 搬送機の各動作の実行時刻を算出することを特徴とする請求項 8に記載 の基板搬送制御装置。
1 5 . 基板の処理を行う複数の処理機器を備え、 該処理機器間において 搬送機により基板を搬送して基板を処理する基板処理装置において、 前記搬送機の各動作に必要とされる時間と各処理機器における基板に 対する処理に必要とされる時間とを入力する入力装置と、
前記入力装置により入力された時間をパラメ一夕として含む所定の条 件式に基づいて、 対象とする基板の最終枚が全処理を終えて装置から回 収される時刻を最も早くするような搬送機の各動作の実行時刻を算出す るスケジュール演算部と、
前記スケジュール演算部により算出された搬送機の各動作の実行時刻 になったときに、 対応する搬送機に該動作を指令する動作指令部とを備 えることを特徴とする基板処理装置。
1 6 . 前記スケジュール演算部は線形計画法に基づいて前記搬送機の各 動作の実行時刻を算出することを特徴とする請求項 1 5に記載の基板処 理装置。
1 7 . 前記スケジュール演算部により搬送機の各動作の実行時刻の解が 得られたか否かを判断する解判断部と、
前記解判断部により前記実行時刻の解が得られなかったと判断された 場合に、 装置内に同時に存在する基板の平均枚数を減少させるように前 記条件式を修正し、 前記スケジュール演算部による実行時刻の算出を再 試行する再試行部とを備えることを特徴とする請求項 1 5に記載の基板 処理装置。
1 8 . 運転開始後において、 前記スケジュール演算部による前記搬送機 の各動作の実行時刻の算出が新たに必要か否かを判断するスケジュール 判断部と、
前記スケジュール判断部により前記実行時刻の算出が新たに必要であ ると判断された場合に、 一の想定時刻と前記スケジュール演算部による 実行時刻の算出において対象とする基板の最終基板とを決定する演算条 件決定部とを備え、
前記スケジュール演算部は、 過去に求められたスケジユーリング結果 であって前記演算条件決定部により決定された想定時刻以前のスケジュ ーリング結果を保持しつつ、 前記演算条件決定部により決定された最終 基板までの基板を対象として新たに実行時刻を算出することを特徴とす る請求項 1 5に記載の基板処理装置。
1 9 . 搬送機が各動作をし始めた時刻を取得する実績時刻取得部と、 前記実績時刻取得部により取得された時刻と過去に求められたスケジ ュ一リング結果における実行時刻との間に矛盾又は予め決められた範囲 以上の差があるか否かを判断する再スケジユーリング判断部と、
前記再スケジユーリング判断部により矛盾又は予め決められた範囲以 上の差があると判断された場合に、 該矛盾又は予め決められた範囲以上 の差があると判断された時点において未実施の搬送機の各動作の実行時 刻を補正する補正部とを備えることを特徴とする請求項 1 5に記載の基 板処理装置。
2 0 . 運転開始後において、 装置への投入が予定されている基板に関す る条件の変更を検知する条件変更検知部と、
前記条件変更検知部により前記基板に関する条件の変更が検知された 場合に、 該条件が変更された基板以降の基板に対する搬送機の各動作の 実行時刻を補正する補正部とを備えることを特徴とする請求項 1 5に記 載の基板処理装置。
2 1 . 前記スケジュール演算部は、 i以上の基板について装置内の 1以 上の処理機器における処理が省略される場合に、 前記 1以上の基板が前 記 1以上の処理機器を飛び越して搬送されるように、 前記搬送機の各動 作の実行時刻を算出することを特徴とする請求項 1 5に記載の基板処理
PCT/JP2000/009404 2000-01-17 2000-12-28 Appareil de commande de transfert de tranches et procede de transfert de tranches WO2001054187A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/181,293 US6772029B2 (en) 2000-01-17 2000-12-28 Wafer transfer control apparatus and method for transferring wafer
JP2001553578A JP3995478B2 (ja) 2000-01-17 2000-12-28 基板搬送制御装置及び基板搬送方法
EP00987798A EP1255294A4 (en) 2000-01-17 2000-12-28 SEMI-SLIDE TRANSPORT CONTROL APPARATUS AND METHOD OF TRANSPORTING SEMICONDUCTED DISCS
US10/869,848 US7072730B2 (en) 2000-01-17 2004-06-18 Substrate transfer controlling apparatus and substrate transferring method
US11/385,760 US7313452B2 (en) 2000-01-17 2006-03-22 Substrate transfer controlling apparatus and substrate transferring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-8038 2000-01-17
JP2000008038 2000-01-17

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/181,293 A-371-Of-International US6772029B2 (en) 2000-01-17 2000-12-28 Wafer transfer control apparatus and method for transferring wafer
US10181293 A-371-Of-International 2000-12-28
US10/869,848 Division US7072730B2 (en) 2000-01-17 2004-06-18 Substrate transfer controlling apparatus and substrate transferring method

Publications (1)

Publication Number Publication Date
WO2001054187A1 true WO2001054187A1 (fr) 2001-07-26

Family

ID=18536375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009404 WO2001054187A1 (fr) 2000-01-17 2000-12-28 Appareil de commande de transfert de tranches et procede de transfert de tranches

Country Status (6)

Country Link
US (3) US6772029B2 (ja)
EP (1) EP1255294A4 (ja)
JP (1) JP3995478B2 (ja)
KR (1) KR100823237B1 (ja)
TW (1) TW473813B (ja)
WO (1) WO2001054187A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260294A (ja) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd 製鋼プロセスの操業スケジュール作成システム、製鋼プロセスの操業スケジュール作成方法、及びコンピュータプログラム
US7392812B2 (en) * 2002-12-02 2008-07-01 Kaijo Corporation Substrate processing apparatus and substrate transporting device mounted thereto
WO2008133286A1 (ja) 2007-04-20 2008-11-06 Ebara Corporation 研磨装置及びそのプログラム
JP2009021589A (ja) * 2007-07-05 2009-01-29 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2013118415A (ja) * 2013-03-15 2013-06-13 Hitachi High-Technologies Corp 半導体処理システム及びプログラム
JP2015216326A (ja) * 2014-05-13 2015-12-03 キヤノン株式会社 露光装置及びその制御方法、並びにデバイスの製造方法
US9385016B2 (en) 2009-12-14 2016-07-05 Hitachi High-Technologies Corporation Semiconductor processing system and program
US9673067B2 (en) 2013-04-23 2017-06-06 Ebara Corporation Substrate processing apparatus and processed substrate manufacturing method
JP2023032391A (ja) * 2021-08-27 2023-03-09 株式会社Screenホールディングス 基板処理装置および基板処理方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915033B2 (ja) * 2000-06-15 2012-04-11 株式会社ニコン 露光装置、基板処理装置及びリソグラフィシステム、並びにデバイス製造方法
US7280883B2 (en) * 2001-09-06 2007-10-09 Dainippon Screen Mfg. Co., Ltd. Substrate processing system managing apparatus information of substrate processing apparatus
US7218983B2 (en) * 2003-11-06 2007-05-15 Applied Materials, Inc. Method and apparatus for integrating large and small lot electronic device fabrication facilities
US7720557B2 (en) * 2003-11-06 2010-05-18 Applied Materials, Inc. Methods and apparatus for enhanced operation of substrate carrier handlers
TWI316044B (en) 2004-02-28 2009-10-21 Applied Materials Inc Methods and apparatus for material control system interface
KR101018525B1 (ko) * 2004-03-31 2011-03-03 도쿄엘렉트론가부시키가이샤 기판 처리 장치 및 기판 처리 방법
US8078311B2 (en) * 2004-12-06 2011-12-13 Tokyo Electron Limited Substrate processing apparatus and substrate transfer method adopted in substrate processing apparatus
US7346413B2 (en) * 2005-05-09 2008-03-18 International Business Machines Corporation Productivity for tool having plurality of processing modules
JP4492875B2 (ja) * 2005-06-21 2010-06-30 東京エレクトロン株式会社 基板処理システム及び基板処理方法
US9235413B1 (en) * 2005-08-03 2016-01-12 National Semiconductor Corporation Automated control of semiconductor wafer manufacturing based on electrical test results
JP2007058499A (ja) * 2005-08-24 2007-03-08 Matsushita Electric Ind Co Ltd 情報処理装置およびデータ書き込み方法
JP4884801B2 (ja) * 2005-10-06 2012-02-29 東京エレクトロン株式会社 処理システム
US7840452B2 (en) * 2006-08-30 2010-11-23 International Business Machines Corporation Application, method and process for managing part exchangeability across functional boundaries
JP5154102B2 (ja) * 2007-03-07 2013-02-27 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP5006122B2 (ja) 2007-06-29 2012-08-22 株式会社Sokudo 基板処理装置
US20090069919A1 (en) * 2007-09-07 2009-03-12 International Business Machines Corporation Intelligent mass production planning and routing system
JP4828503B2 (ja) * 2007-10-16 2011-11-30 東京エレクトロン株式会社 基板処理装置、基板搬送方法、コンピュータプログラムおよび記憶媒体
JP5128918B2 (ja) 2007-11-30 2013-01-23 株式会社Sokudo 基板処理装置
JP5001828B2 (ja) 2007-12-28 2012-08-15 株式会社Sokudo 基板処理装置
JP5179170B2 (ja) * 2007-12-28 2013-04-10 株式会社Sokudo 基板処理装置
JP5294681B2 (ja) * 2008-04-28 2013-09-18 東京エレクトロン株式会社 基板処理装置及びその基板搬送方法
KR20090117580A (ko) * 2008-05-08 2009-11-12 엘지전자 주식회사 부호어의 생성 방법
US20100162954A1 (en) * 2008-12-31 2010-07-01 Lawrence Chung-Lai Lei Integrated facility and process chamber for substrate processing
US8110511B2 (en) * 2009-01-03 2012-02-07 Archers Inc. Methods and systems of transferring a substrate to minimize heat loss
US7897525B2 (en) * 2008-12-31 2011-03-01 Archers Inc. Methods and systems of transferring, docking and processing substrates
US8367565B2 (en) * 2008-12-31 2013-02-05 Archers Inc. Methods and systems of transferring, docking and processing substrates
US20100162955A1 (en) * 2008-12-31 2010-07-01 Lawrence Chung-Lai Lei Systems and methods for substrate processing
JP5410794B2 (ja) * 2009-03-17 2014-02-05 東京エレクトロン株式会社 基板処理装置
JP5463066B2 (ja) * 2009-04-30 2014-04-09 東京エレクトロン株式会社 ロット処理開始判定方法及び制御装置
US8655472B2 (en) 2010-01-12 2014-02-18 Ebara Corporation Scheduler, substrate processing apparatus, and method of transferring substrates in substrate processing apparatus
KR101868304B1 (ko) * 2010-04-09 2018-06-15 가부시키가이샤 니콘 기판 처리 장치
US20130079913A1 (en) * 2011-09-28 2013-03-28 Globalfoundries Inc. Methods and systems for semiconductor fabrication with local processing management
NL2010166A (en) * 2012-02-22 2013-08-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
US8881297B2 (en) * 2012-09-06 2014-11-04 Brooks Automation, Inc. Access arbitration module and system for semiconductor fabrication equipment and methods for using and operating the same
US9146551B2 (en) 2012-11-29 2015-09-29 Asm Ip Holding B.V. Scheduler for processing system
JP5867473B2 (ja) * 2013-09-19 2016-02-24 東京エレクトロン株式会社 塗布、現像装置、塗布、現像装置の運転方法及び記憶媒体
JP6370084B2 (ja) * 2014-04-10 2018-08-08 株式会社荏原製作所 基板処理装置
JP2017518626A (ja) * 2015-02-17 2017-07-06 ソーラーシティ コーポレーション 太陽電池の製造歩留まりを向上させる方法及びシステム
TWI617818B (zh) * 2015-05-28 2018-03-11 Seiko Epson Corp Electronic component transport system, electronic component inspection system, electronic component transport device, and electronic component inspection device
US20160359080A1 (en) 2015-06-07 2016-12-08 Solarcity Corporation System, method and apparatus for chemical vapor deposition
US10295979B2 (en) * 2015-09-15 2019-05-21 Applied Materials, Inc. Scheduling in manufacturing environments
US9748434B1 (en) 2016-05-24 2017-08-29 Tesla, Inc. Systems, method and apparatus for curing conductive paste
US9954136B2 (en) 2016-08-03 2018-04-24 Tesla, Inc. Cassette optimized for an inline annealing system
US10115856B2 (en) 2016-10-31 2018-10-30 Tesla, Inc. System and method for curing conductive paste using induction heating
JP6517845B2 (ja) * 2017-01-17 2019-05-22 株式会社荏原製作所 スケジューラ、基板処理装置、及び基板搬送方法
TWI758578B (zh) * 2018-03-01 2022-03-21 日商荏原製作所股份有限公司 排程器、基板處理裝置、及基板搬送方法
JP6981918B2 (ja) * 2018-05-11 2021-12-17 株式会社Screenホールディングス 基板処理方法、基板処理装置、およびコンピュータプログラム
CN111489986B (zh) * 2019-01-28 2024-03-22 东京毅力科创株式会社 基片处理装置和基片处理方法
JP2022052165A (ja) * 2020-09-23 2022-04-04 東京エレクトロン株式会社 半導体製造装置、基板搬送方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201950A (ja) * 1993-12-28 1995-08-04 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH10256342A (ja) * 1997-03-06 1998-09-25 Kokusai Electric Co Ltd 搬送制御方法
JPH11102953A (ja) * 1997-08-01 1999-04-13 Kokusai Electric Co Ltd 基板搬送制御方法
JP2000332083A (ja) * 1999-03-17 2000-11-30 Hitachi Ltd 真空処理装置及びその運転方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2982038B2 (ja) 1994-04-01 1999-11-22 東京エレクトロン株式会社 被処理体の処理のスケジューリング方法及びその装置
JP2994553B2 (ja) * 1994-04-08 1999-12-27 大日本スクリーン製造株式会社 基板処理装置
US5975740A (en) * 1996-05-28 1999-11-02 Applied Materials, Inc. Apparatus, method and medium for enhancing the throughput of a wafer processing facility using a multi-slot cool down chamber and a priority transfer scheme
JPH10207525A (ja) 1997-01-21 1998-08-07 Kokusai Electric Co Ltd 処理制御装置
US6201999B1 (en) * 1997-06-09 2001-03-13 Applied Materials, Inc. Method and apparatus for automatically generating schedules for wafer processing within a multichamber semiconductor wafer processing tool
JP3442669B2 (ja) * 1998-10-20 2003-09-02 東京エレクトロン株式会社 基板処理装置
US6418350B1 (en) * 2000-06-09 2002-07-09 Brooks Automation Inc. Periodic scheduler for dual-arm robots in cluster tools with process-module residency constraints
US6535784B2 (en) 2001-04-26 2003-03-18 Tokyo Electron, Ltd. System and method for scheduling the movement of wafers in a wafer-processing tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201950A (ja) * 1993-12-28 1995-08-04 Dainippon Screen Mfg Co Ltd 基板処理装置
JPH10256342A (ja) * 1997-03-06 1998-09-25 Kokusai Electric Co Ltd 搬送制御方法
JPH11102953A (ja) * 1997-08-01 1999-04-13 Kokusai Electric Co Ltd 基板搬送制御方法
JP2000332083A (ja) * 1999-03-17 2000-11-30 Hitachi Ltd 真空処理装置及びその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1255294A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7392812B2 (en) * 2002-12-02 2008-07-01 Kaijo Corporation Substrate processing apparatus and substrate transporting device mounted thereto
JP4501740B2 (ja) * 2005-03-17 2010-07-14 住友金属工業株式会社 製鋼プロセスの操業スケジュール作成システム、製鋼プロセスの操業スケジュール作成方法、及びコンピュータプログラム
JP2006260294A (ja) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd 製鋼プロセスの操業スケジュール作成システム、製鋼プロセスの操業スケジュール作成方法、及びコンピュータプログラム
WO2008133286A1 (ja) 2007-04-20 2008-11-06 Ebara Corporation 研磨装置及びそのプログラム
US8206197B2 (en) 2007-04-20 2012-06-26 Ebara Corporation Polishing apparatus and program thereof
JP2009021589A (ja) * 2007-07-05 2009-01-29 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US9385016B2 (en) 2009-12-14 2016-07-05 Hitachi High-Technologies Corporation Semiconductor processing system and program
JP2013118415A (ja) * 2013-03-15 2013-06-13 Hitachi High-Technologies Corp 半導体処理システム及びプログラム
US9673067B2 (en) 2013-04-23 2017-06-06 Ebara Corporation Substrate processing apparatus and processed substrate manufacturing method
JP2015216326A (ja) * 2014-05-13 2015-12-03 キヤノン株式会社 露光装置及びその制御方法、並びにデバイスの製造方法
JP2023032391A (ja) * 2021-08-27 2023-03-09 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP7289881B2 (ja) 2021-08-27 2023-06-12 株式会社Screenホールディングス 基板処理装置および基板処理方法
TWI828196B (zh) * 2021-08-27 2024-01-01 日商斯庫林集團股份有限公司 基板處理裝置及基板處理方法

Also Published As

Publication number Publication date
US7313452B2 (en) 2007-12-25
JP3995478B2 (ja) 2007-10-24
KR20020070336A (ko) 2002-09-05
EP1255294A1 (en) 2002-11-06
KR100823237B1 (ko) 2008-04-18
US6772029B2 (en) 2004-08-03
US20040249494A1 (en) 2004-12-09
US20060161286A1 (en) 2006-07-20
US7072730B2 (en) 2006-07-04
US20020192055A1 (en) 2002-12-19
EP1255294A4 (en) 2009-01-21
TW473813B (en) 2002-01-21

Similar Documents

Publication Publication Date Title
WO2001054187A1 (fr) Appareil de commande de transfert de tranches et procede de transfert de tranches
JP4921726B2 (ja) オブジェクトを製造するためのコンピュータ制御されたマルチ・ステップの製造システム内で例外取扱いを実行するための方法、システム、及び、コンピュータによって利用可能な記録媒体
TWI521628B (zh) 排程器、基板處理裝置,及基板處理裝置之基板傳送方法
KR101079487B1 (ko) 기판 캐리어 핸들러의 향상된 동작을 위한 방법 및 장치
JP4845553B2 (ja) 基板処理装置のスケジュール実行方法及びそのプログラム
JP5415356B2 (ja) 基板処理装置の基板搬送方法、スケジューラ、及び基板処理装置の運転制御装置
JP5277838B2 (ja) 搬送制御装置及び搬送システム
US6996449B2 (en) Semiconductor manufacturing apparatus control system
JP2000277401A (ja) 基板処理装置、基板処理装置のシミュレート装置、及び基板処理装置のシミュレートプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2000158254A (ja) ロット搬送制御システム及びその搬送制御方法ならびに搬送制御プログラムを格納した記憶媒体
JP2003031454A (ja) 基板処理装置のスケジュール作成方法及びそのプログラム
CN1689941A (zh) 增强载体处理器操作的方法和装置
JP2008210956A (ja) 基板処理装置のスケジュール作成方法及びそのプログラム
JP5077284B2 (ja) 電子部品実装装置およびデータダウンロード方法
JP2003068823A (ja) 基板キャリア管理システム、基板キャリア管理方法、プログラム、記録媒体及び半導体装置の製造方法
US7224442B2 (en) Supply control system and method, program, and information storage medium
JP2012104683A (ja) 半導体装置の製造ライン、及び、半導体装置の製造方法
JP3528286B2 (ja) 作業ラインシステム
JP2013122969A (ja) 搬送装置、搬送システム、及び、搬送方法
JP4449774B2 (ja) 物流システム
TW487835B (en) Automation system and its control method
JP4530247B2 (ja) 半導体装置の製造方法
KR20220017831A (ko) 기판 처리 장치 및 반송 스케줄 제작 방법
JP6357806B2 (ja) コントローラ冗長化システム、そのコントローラ
Seo et al. Developing a Practical Machine Scheduler for Worker-Involved Systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 553578

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027008868

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10181293

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000987798

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027008868

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000987798

Country of ref document: EP