WO2001003176A1 - Dispositif de formation de bosses sur substrat semi-conducteur generateur de charge electrique, procede de suppression de la charge electrique d'un substrat generateur de charge electrique, dispositif de suppression de la charge electrique d'un substrat generateur de charge electrique et substrat semi-conducteur generateur - Google Patents

Dispositif de formation de bosses sur substrat semi-conducteur generateur de charge electrique, procede de suppression de la charge electrique d'un substrat generateur de charge electrique, dispositif de suppression de la charge electrique d'un substrat generateur de charge electrique et substrat semi-conducteur generateur Download PDF

Info

Publication number
WO2001003176A1
WO2001003176A1 PCT/JP2000/004280 JP0004280W WO0103176A1 WO 2001003176 A1 WO2001003176 A1 WO 2001003176A1 JP 0004280 W JP0004280 W JP 0004280W WO 0103176 A1 WO0103176 A1 WO 0103176A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
semiconductor substrate
temperature
generating semiconductor
wafer
Prior art date
Application number
PCT/JP2000/004280
Other languages
English (en)
French (fr)
Inventor
Shoriki Narita
Yasutaka Tsuboi
Masahiko Ikeya
Takaharu Mae
Shinji Kanayama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP30885599A external-priority patent/JP3655787B2/ja
Priority claimed from JP2000184467A external-priority patent/JP4570210B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE60037251T priority Critical patent/DE60037251T2/de
Priority to EP00942389A priority patent/EP1202336B1/en
Priority to CNB008098964A priority patent/CN100382261C/zh
Priority to US10/019,700 priority patent/US6818975B1/en
Publication of WO2001003176A1 publication Critical patent/WO2001003176A1/ja
Priority to US10/651,199 priority patent/US7005368B1/en
Priority to US10/651,103 priority patent/US7014092B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67138Apparatus for wiring semiconductor or solid state device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/974Substrate surface preparation

Definitions

  • Bump forming apparatus for charge-generating semiconductor substrate charge-elimination method for charge-generating semiconductor substrate, charge-elimination apparatus for charge-generating semiconductor substrate, and charge-generating semiconductor substrate
  • the present invention is, for example, a charge generation type semiconductor substrate that generates an electric charge according to a temperature change, such as a piezoelectric substrate, that is, a bump forming apparatus for forming a bump on the charge generation semiconductor substrate.
  • the present invention also relates to a method for neutralizing the charge-generating semiconductor substrate, a neutralization device for the charge-generating semiconductor substrate provided in the bump forming apparatus, and a charge-generating semiconductor substrate.
  • Such a bump forming apparatus includes a carry-in device that takes out the pre-bump-formed wafer from the first storage container that stores the semiconductor wafer before the bump is formed, and a second device that stores the bump-formed wafer after the bump is formed.
  • An unloading device for storing the wafer after the bump formation in the second storage container, and a transfer device for transferring the wafer from the loading device to the bonding stage and from the bonding stage to the unloading device.
  • the piezoelectric substrate on which the S AW (Surface Acoustic Wave) filter used in the above-mentioned mobile phones is formed and the substrate is made of quartz instead of conventional silicon
  • the substrate is made of quartz instead of conventional silicon
  • the heating power is usually about 150 ° C. and up to about 200 ° C.
  • the heating and cooling speed is higher than that of a conventional silicon wafer. Need to be slowed down.
  • an input side circuit 12 and an output side circuit 13 are formed on a piezoelectric substrate 11 in pairs.
  • a bump 19 is formed on the electrode portion 18 of the SAW filter 10 by a bump forming head provided in the bump forming apparatus.
  • Both the input side circuit 12 and the output side circuit 13 are in the form of fine teeth, and the input side circuit 12 oscillates according to the supplied input electric signal, and the vibration is generated by the piezoelectric substrate 1.
  • the output side circuit 13 is vibrated by propagating along the surface 11 a of 1, and an electronic signal is generated and output by the output side circuit 13 based on the vibration.
  • the SAW filter 10 allows only a signal of a specific frequency to pass.
  • the S AW filter 10 shown in FIG. 85 shows one of a large number of S AW filters 10 formed in a lattice on the piezoelectric substrate 11 in a wafer shape.
  • a bump forming operation or the like for the circuit portion in the above is performed on the wafer-shaped piezoelectric substrate 11, and is finally separated from the wafer-shaped piezoelectric substrate 11 into each SAW filter 10.
  • Such a wafer-shaped piezoelectric substrate 11 has a characteristic that it is difficult to be charged, but once charged, it is difficult to remove it.
  • the back side of the piezoelectric substrate 11 on the wafer side is as shown in FIG. 87.
  • a fine groove 14 is formed on the substrate. Therefore, it is difficult to remove the charge existing in the groove 14.
  • the groove 14 is shown in an exaggerated manner. In practice, the groove 14 is formed with dimensions corresponding to the frequency processed by the S AW filter. They are arranged at a pitch of about im to several hundred A.
  • the wafer-shaped piezoelectric substrate 11 thus charged is placed on, for example, the above-mentioned bonding stage, the wafer-shaped piezoelectric substrate 11 is placed between the bonding stage and the piezoelectric substrate 11 or on the wafer-shaped piezoelectric substrate 11. Sparks may occur between the back and back.
  • the spark is generated, as shown by reference numerals 15 to 17 in FIG. 86, the above-mentioned comb teeth are melted and the circuit is destroyed.
  • the charging causes the wafer-shaped piezoelectric substrate 11 to be attracted to the bonding stage side, and the attractive force causes the wafer-shaped piezoelectric substrate 11 to move.
  • the phenomenon of breakage and the phenomenon that when the piezoelectric substrate 11 is re-transferred after being placed on the bonding stage, the adhesive strength to the bonding stage is so strong that it is broken by forcible separation. Occurs.
  • bumps are formed on a substrate, such as the wafer-shaped piezoelectric substrate 11, the quartz substrate wafer, or the compound semiconductor wafer, which generates an electric charge based on a temperature change due to a temperature rise or fall, such as the compound semiconductor wafer.
  • a substrate such as the wafer-shaped piezoelectric substrate 11, the quartz substrate wafer, or the compound semiconductor wafer
  • an aluminum film is formed along a dicing line formed on the surface of a wafer to charge the surface side.
  • a wafer has been proposed in which the wafer is discharged to the periphery of the wafer by the dicing line to remove the electricity from the periphery of the wafer, or an aluminum film is formed on the entire back surface of the wafer to facilitate the removal of electricity from the back surface.
  • the wafer is neutralized by such a method, after the chips are separated from the wafer into chips, for example, when the chips are flip-chip mounted on the substrate via bumps, a pressing portion is formed on the back surface.
  • a temperature change occurs, for example, when the wafer is placed on the above-mentioned bonding stage after the above-mentioned temperature rise.
  • warpage occurs due to a temperature difference between the temperature at the time of the temperature rise and the temperature of the bonding stage. If the bumps are formed while the warpage is occurring, the wafer-like piezoelectric substrate 11 will be cracked, chipped, or damaged. Therefore, it is necessary to correct the warpage.
  • the present invention has been made in order to solve the above-described problems, and effectively eliminates charges generated by increasing and decreasing the temperature of a charge-generating semiconductor substrate before and after forming a bump on the substrate, and furthermore, the temperature is reduced. Operates with a contact that is comparable to that of a substrate that does not generate charge even if there is a difference, and does not cause damage to the charge-generating semiconductor substrate.
  • Bump forming apparatus capable of preventing mechanical damage, a charge removing method for a charge generating semiconductor substrate executed by the bump forming apparatus, the charge removing semiconductor substrate charge removing apparatus provided in the bump forming apparatus, and a charge generating semiconductor substrate. The purpose is to provide. Disclosure of the invention
  • the present invention is configured as described below to achieve the above object.
  • the charge generation semiconductor substrate bump forming apparatus of the first aspect of the present invention the charge generation semiconductor substrate that generates charges with temperature changes is heated to the bump bonding temperature necessary for forming bumps.
  • a bump forming apparatus for a charge generating semiconductor substrate comprising: a bump forming head for forming the bump on an electrode formed in a circuit on the charge generating semiconductor substrate;
  • the heating / cooling device and the control device when cooling the charge generation semiconductor substrate after at least bump bonding to the charge generation semiconductor substrate is performed, the charge generation semiconductor substrate is cooled by the cooling.
  • the charge stored in the battery is eliminated. Therefore, the charge amount of the charge generation semiconductor substrate can be reduced as compared with the conventional case. Therefore, the charge-generating semiconductor substrate does not need to be subjected to a charge removing step, and the charge-generating semiconductor substrate itself can be protected from pyroelectric damage or cracking of the charge-generating semiconductor substrate itself due to the charging. Damage can be prevented.
  • the heating and cooling device when performing the cooling, includes a back surface facing a surface of the charge-generating semiconductor substrate which is a circuit forming surface. , And the charge generated on the charge-generating semiconductor substrate due to the temperature drop due to the cooling may be removed.
  • the charge removal method for a charge-generating semiconductor substrate of the third aspect of the present invention it is necessary to form bumps on electrodes formed in a circuit on the charge-generating semiconductor substrate that generates charges with a change in temperature. After the bump is bonded to the charge-generating semiconductor substrate by being heated to the temperature for bump bonding, when cooling the charge-generating semiconductor substrate, The charge generated on the charge-generating semiconductor substrate due to the temperature drop due to the cooling is grounded via a mounting member on which the charge-generating semiconductor substrate is mounted, and the charge is removed.
  • the heating / cooling device comes into direct contact with the charge-generating semiconductor substrate, so that the charge can be removed.
  • the heating and cooling apparatus includes a step of heating the charge-generating semiconductor substrate to the bump-bonding temperature before heating the charge-generating semiconductor substrate to the bump-bonding temperature. Further performing a preheating operation of the charge generation semiconductor substrate, and removing the charge generated on the charge generation semiconductor substrate due to a temperature rise due to the preheating operation by contacting the back surface of the charge generation semiconductor substrate;
  • the control device may further be configured to perform a temperature increase control for performing the preheating operation on the heating and cooling device.
  • the heating / cooling apparatus further comprises a bump bonding stage for heating the charge generating semiconductor substrate to the bump bonding temperature;
  • a cooling device that cools the charge-generating semiconductor substrate according to the temperature-drop control by the cooling device, wherein the cooling device comprises: a heat-diffusing member that contacts the back surface of the charge-generating semiconductor substrate;
  • a heating unit that is detachably attached and raises the temperature of the heat diffusion member, and a separation device that separates the heat diffusion member and the heating unit to promote cooling of the heat diffusion member. it can.
  • the heating and cooling apparatus comprises: a bump bonding stage for heating the charge generating semiconductor substrate to the bump bonding temperature; Due to the above temperature rise A preheat device that performs the preheat operation of the charge generation semiconductor substrate according to control; and wherein the preheat device includes: a heat diffusion member that contacts the back surface of the charge generation semiconductor substrate; and a heat diffusion member that contacts the heat diffusion member. It may be configured to include a heating unit that raises the temperature of the heat diffusion member, and a separation device that separates the heat diffusion member and the heating unit to promote cooling of the heat diffusion member.
  • the device further comprises a gas supply device for supplying gas to the charge generating semiconductor substrate mounted on the heating and cooling device,
  • the control device controls a warp correcting operation for correcting a warp generated in the charge generation semiconductor substrate mounted on the heating / cooling device for one of the gas supply device and the heating / cooling device. It can also be configured to do so.
  • the gas is blown from the gas supply device to the charge-generating semiconductor substrate, whereby the charge-generating semiconductor substrate can be corrected for warpage and damage such as cracks can be prevented.
  • the control device is configured to remove the charge generated on the charge generating semiconductor substrate mounted on the heating / cooling device. It is also possible to adopt a configuration in which one operation control of the static elimination port is performed on the gas supply device.
  • the control device controls the charge supply blow operation for the gas supply device, the charge generation semiconductor substrate can be discharged, and the damage such as the pyroelectric destruction and cracking can be caused. Can be prevented.
  • a charge removing contact member for contacting the surface of the charge generating semiconductor substrate and removing charges generated on the surface. It can also be configured to provide further.
  • the charge on the surface of the charge-generating semiconductor substrate is also reduced by the charge removing contact member. Static electricity can be removed, and damage such as the pyroelectric breakdown and cracks can be prevented.
  • the charge-generating semiconductor substrate is further provided with an ion generator for generating ions for neutralizing the charge accumulated in the charge-generating semiconductor substrate. You can also.
  • the charge of the charge-generating semiconductor substrate can be neutralized by the ion generator, and the damage such as the pyroelectric breakdown and the crack can be prevented.
  • the charge generation semiconductor substrate has a holding claw for holding the charge generation semiconductor substrate, and the holding claw holds the charge generation semiconductor substrate.
  • a portion that contacts the back surface of the charge generating semiconductor substrate includes the heating and cooling device, It is also possible to adopt a configuration in which a metal plating for improving the heat transfer coefficient with the charge generating semiconductor substrate and removing the charge from the charge generating semiconductor substrate is performed.
  • the thermal conductivity between the heating / cooling device and the charge generating semiconductor substrate is improved, and the charge removing effect of the charge generating semiconductor substrate can be enhanced.
  • the charge generating semiconductor substrate static eliminator of the thirteenth aspect of the present invention when the charge generating semiconductor substrate that generates a charge that is approximately half a temperature change is cooled after heating, the charge generating semiconductor substrate A contact is made with the back surface opposite to the front surface, which is the circuit formation surface, to remove the charge generated on the charge generation semiconductor substrate due to the temperature drop due to the cooling.
  • a thermal cooling device when the charge generating semiconductor substrate that generates a charge that is approximately half a temperature change is cooled after heating, the charge generating semiconductor substrate A contact is made with the back surface opposite to the front surface, which is the circuit formation surface, to remove the charge generated on the charge generation semiconductor substrate due to the temperature drop due to the cooling.
  • the charge generation semiconductor substrate of the fourteenth aspect of the present invention is formed on a surface which is a circuit forming surface of the charge generation semiconductor substrate which generates a charge with a change in temperature, and is formed on the charge generation semiconductor substrate.
  • a dicing line connected to the charge removal region and for separating a circuit formation portion formed on the surface from the charge generation semiconductor substrate.
  • the charge-generating semiconductor substrate of the ninth aspect is brought into contact with the charge-generating semiconductor substrate of the fourteenth aspect. Is removed.
  • the charge-generating semiconductor substrate includes a charge-removing region and a dicing line. It can be removed from the charge removing region or through the charge removing region and the dicing line. Therefore, it is possible to prevent damages such as pyroelectric destruction of a circuit formed on the charge-generating semiconductor substrate due to charging and cracking of the charge-generating semiconductor substrate itself.
  • the amount of charge on the charge-generating semiconductor substrate also changes depending on, for example, how the circuit-forming portion formed on the charge-generating semiconductor substrate is grounded to the dicing line on the charge-generating semiconductor substrate. When the static elimination is performed most effectively, the charge amount can be reduced to about ⁇ 20 OV without using an ion generating device, and can be reduced to about ⁇ 20 OV on average.
  • the charge generated on the charge generation semiconductor substrate that generates the charge with the temperature change is removed, and the charge amount is 200 V or less. is there. Furthermore, according to the charge generation semiconductor substrate of the seventeenth aspect of the present invention, the charge of the charge generation semiconductor substrate is removed by the charge removal method of the third aspect.
  • the temperature drop control performed by the control device is generated in the charge generating semiconductor substrate by the temperature drop due to the cooling. Temperature drop control to remove charge,
  • the heating / cooling device heats the charge generation semiconductor substrate to the bump bonding temperature in a non-contact state with the charge generation semiconductor substrate, and controls the control device after the bonding in the non-contact state.
  • the charge generation semiconductor substrate may be cooled in accordance with the above-mentioned temperature drop control. Further, according to the charge-generating semiconductor substrate charge elimination method of the nineteenth aspect of the present invention, it is possible to form a bump on an electrode formed in a circuit on a charge-generating semiconductor substrate that generates charge with a change in temperature.
  • the bumps are bonded to the charge-generating semiconductor substrate by being heated to a necessary bump bonding temperature, the bumps are arranged in a non-contact state with the charge-generating semiconductor substrate, and the charge-generating semiconductor substrate is heated to
  • the cooling device controls the temperature drop to remove the charge generated in the charge-generating semiconductor substrate due to the temperature drop due to the cooling.
  • the heating / cooling device transfers the charge accumulated in the charge-generating semiconductor substrate in a state of not contacting the charge-generating semiconductor substrate. Since the temperature drop control for removing is performed, the charge amount can be reduced as compared with the related art. Therefore, without applying means for removing electricity to the charge-generating semiconductor substrate, damage to a circuit formed on the charge-generating semiconductor substrate or damage such as cracking of the charge-generating semiconductor substrate itself due to the charging can be obtained. Generation can be prevented.
  • the temperature drop control includes: lowering the temperature; It is also possible to adopt a configuration in which the temperature rise by the temperature width is alternately repeated.
  • the heating of the charge-generating semiconductor substrate to the bump bonding temperature in the heating and cooling device may include heating the charge-generating semiconductor substrate to near the bump bonding temperature in advance. Pre-write operation,
  • the control device may further be configured to perform a temperature increase control on the heating / cooling device for removing charges generated in the charge generation semiconductor substrate due to a temperature rise due to the preheating operation.
  • the temperature increase control may be configured to alternately and repeatedly perform a temperature increase and a temperature decrease by a temperature width smaller than the temperature increase width in the temperature increase.
  • the charge-generating semiconductor substrate static eliminator of the twenty-first aspect of the present invention when the charge-generating semiconductor substrate that generates electric charges with the temperature change is heated and then cooled, the temperature is reduced by the cooling.
  • the charge of the charge generating semiconductor substrate is removed by the charge removing method of the nineteenth aspect.
  • FIG. 1 is a perspective view showing an overall configuration of a bump forming apparatus according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a detailed structure of a main part of the bump forming apparatus shown in FIG. 1,
  • FIG. 3 is a perspective view showing details of the configuration of the loading device shown in FIGS. 1 and 2.
  • FIG. 4 is a perspective view showing details of the configuration of the orientation flat aligner shown in FIGS. 1 and 2.
  • FIG. 5 is a perspective view showing the details of the configuration of the transfer device shown in FIGS. 1 and 2, and FIG. 6 is a diagram showing the details of the holding claws of the wafer holding unit shown in FIG.
  • FIG. 6 is a diagram showing details of a configuration of a contact member for static elimination of the wafer holding unit shown in FIG. 5;
  • FIG. 8 is a diagram showing a configuration of another example of the contact member for static elimination of the wafer holding unit shown in FIG. 5,
  • FIG. 9 is a diagram showing a relationship between an aluminum film provided on a peripheral portion of a wafer and a contact position of the contact member for static elimination.
  • FIG. 10 is a diagram showing a modification of the contact member for static elimination
  • FIG. 11 is a diagram showing the structure of the bump bonding apparatus shown in FIG. 1, and FIG. 12 is a diagram for explaining the warpage of the wafer.
  • FIG. 13 is a diagram showing a modified example of the contact member for static elimination
  • FIG. 14 is a diagram showing a modified example of the contact member for static elimination
  • FIG. 15 is a perspective view for explaining the structure of the static elimination member shown in FIG. 14, and FIG. 16 is a perspective view for explaining the structure of the static elimination member shown in FIG.
  • FIG. 17 is a perspective view showing a modified example of the contact member for static elimination
  • FIG. 18 is a view showing a modification of the contact member for static elimination
  • FIG. 19 is a diagram showing a modified example of the contact member for static elimination shown in FIG. 18, and FIG. 20 is a diagram showing a modified example of the contact member for static elimination,
  • FIG. 21 is a perspective view showing a modification of a member attached to one end of the contact member for static elimination
  • FIG. 22 is a perspective view of the pre-heating device and the post-heating device
  • FIG. 23 is a diagram for explaining the operation of the pre-heating device and the post-heating device shown in FIG. 22.
  • FIG. 24 is a diagram for explaining the operation of the preheating device and the boast heating device shown in FIG. 22,
  • FIG. 25 is a perspective view of an aluminum plate and a heater plate frame of the preheating device and the post-heat device shown in FIG. 22;
  • FIG. 26 is a perspective view of an aluminum plate and a panel heater frame of the preheating device and the boss heating device shown in FIG.
  • FIG. 27 is a flowchart showing the operation of the bump forming apparatus shown in FIG. 1.
  • FIG. 28 is a view for explaining the operation in step 2 shown in FIG. 27.
  • FIG. 29 is a diagram for explaining the operation in step 2 shown in FIG. 27, and is a diagram showing a state immediately before the wafer is held by the loading-side transfer device,
  • FIG. 30 is a diagram for explaining the operation in step 2 shown in FIG. 27, and is a diagram showing a state immediately after the wafer is held by the loading-side transfer device,
  • FIG. 31 is a diagram for explaining the operation in step 2 shown in FIG. 27 and is a diagram showing a state where the wafer is held by the loading-side transfer device,
  • FIG. 32 is a flowchart for explaining the operation in step 3 shown in FIG. 27, and is a flowchart showing the operation when the panel heater frame and the aluminum plate are separated.
  • FIG. 33 is a view for explaining the operation in step 3 shown in FIG. 27, and is a view showing a state in which the wafer before bump formation is transported above the preheating apparatus.
  • FIG. 34 is a view for explaining the operation in step 3 shown in FIG. 27, and is a view showing a state in which the wafer before bump formation is mounted on an aluminum plate
  • FIG. FIG. 7 is a diagram for explaining the operation in step 3 shown in FIG. 5 and is a diagram showing a state in which the holding of the wafer before bump formation by the wafer holding unit is released.
  • FIG. 36 is a view for explaining the operation in step 3 shown in FIG. 27, and is a view showing a state where the aluminum plate on which the wafer before bump formation is mounted is lowered.
  • FIG. 37 is a flowchart for explaining the operation in step 3 shown in FIG. This is a flow chart showing the operation when the panel heater frame and the aluminum plate are not separated.
  • FIG. 38 is a diagram for explaining the operation in step 4 shown in FIG. 27, and is a diagram showing the temperature rise control in the pre-heating operation.
  • FIG. 39 is a diagram showing a modification of the temperature raising control in the preheating operation.
  • FIG. 40 is a diagram for explaining the transfer operation from the preheating device to the bump bonding device in step 5 shown in FIG. This is a flow chart showing the operation when the panel heater frame and the aluminum plate are separated from each other,
  • FIG. 41 is a flowchart for explaining the transfer operation from the preheating device to the bump bonding device in step 5 shown in FIG. 27, and shows the operation when the panel heater frame and the aluminum plate are not separated. It is a flow chart,
  • FIG. 42 is a flowchart for explaining the warp correction operation when hot air is blown, which is performed when the wafer before bump formation is transferred to the bump bonding stage in step 5 shown in FIG. 27. ,
  • FIG. 43 is a flow chart for explaining the warp correction operation in the case where hot air blowing is not performed, which is performed when the wafer before bump formation is transferred to the bump bonding stage in step 5 shown in FIG. 27.
  • Figure 44 is a graph showing the temperature rise due to the temperature rise control operation in the preheat operation.
  • FIG. 45 is a view for explaining the operation in step 5 shown in FIG. 27, and is a view showing a state in which the wafer before bump formation is arranged above the bonding stage.
  • FIG. 46 is a diagram for explaining the operation in step 5 shown in FIG. 27, and is a diagram showing a state immediately before the wafer is held at the bonding stage
  • FIG. 47 is a diagram shown in FIG.
  • FIG. 9 is a view for explaining the operation in Step 5, in which the wafer is held at the bonding stage and the loading side transfer device holds the wafer.
  • FIG. 6 is a diagram showing a released state
  • FIG. 48 is a view for explaining the operation in step 5 shown in FIG. 27 and is a view showing a state where the wafer is held on the bonding stage.
  • Fig. 49 is a graph showing the temperature drop due to the temperature drop control operation in the post-heat operation.
  • FIG. 50 is a flow chart for explaining the post-heating operation.
  • FIG. 51 is a flow chart showing an operation for heating the wafer holding unit when starting the post-heating operation.
  • Fig. 52 is a graph showing the temperature drop pattern in the above-mentioned boast heat operation.
  • FIG. 53 is a flowchart for explaining the above-mentioned post-heat operation
  • FIG. 54 is a flowchart for explaining the above-mentioned post-heat operation
  • FIG. 9 is a flowchart showing an operation of unloading a wafer from a post-heater after bump formation.
  • FIG. 56 is a view for explaining the operation in step 8 shown in FIG. 27, and is a view showing a state in which the wafer after bump formation held by the unloading-side transfer device is arranged above the unloading device. Yes,
  • FIG. 57 is a diagram for explaining the operation in step 8 shown in FIG. 27, and is a diagram showing a state in which the holding unit of the unloading device is brought into contact with the wafer after bump formation
  • FIG. 27 is a view for explaining the operation in step 8 shown in FIG. 27, and is a view showing a state immediately after the holding of the wafer by the unloading-side transfer device is released
  • FIG. 59 is a view showing step 8 shown in FIG. FIG. 8 is a view for explaining the operation in the above, and is a view showing a state immediately before placing the wafer on the holding table after the bumps held by the holding section of the unloading device,
  • FIG. 60 is a view for explaining the operation in step 8 shown in FIG. 27 and is a view showing a state where the wafer after the bump formation is mounted on a holding table.
  • Fig. 61 shows a state where ions are applied to the wafer by the ion generator when the wafer is transferred from the unloading side transfer device shown in Fig. 1 to the unloading device after bump formation.
  • FIG. 62 is a perspective view of a modified example of the bump forming apparatus shown in FIG. 1.
  • FIG. 63 is a flow chart for explaining the discharging blow operation performed by the bump forming apparatus shown in FIG. And
  • FIG. 64 is a plan view of a sub-plate to be attached to the wafer before bump formation.
  • FIG. 65 is a view showing a modification of the contact member for static elimination
  • FIG. 66 is a view showing a modification of the loading-side transfer device and the unloading-side transfer device shown in FIGS. 1 and 2,
  • FIG. 67 is a view showing a modification of the contact member for static elimination
  • FIG. 68 is a view showing a state in which silver plating is applied to the contact surface with the charge-generating semiconductor substrate in the preheating device, the postheating device, and the bonding stage shown in FIGS. 1 and 2.
  • FIG. 69 is a plan view of the charge generation semiconductor substrate on which the charge removal region is formed
  • FIG. 70 is a diagram showing a modification of the charge removal region shown in FIG. 69
  • FIG. FIG. 2 is a perspective view showing a detailed structure of a main part of a bump forming apparatus in a modification of the bump forming apparatus shown in FIG. 1,
  • FIG. 72 is a perspective view showing details of the configuration of the preheating device and the boast heating device shown in FIG.
  • FIG. 73 is a cross-sectional view showing the configuration of the preheater and the postheater shown in FIG.
  • FIG. 74 is a diagram showing the relationship between the operation flow of the bump forming apparatus shown in FIG. 71, the temperature change of the wafer, and the charge amount of the wafer.
  • FIG. 75 is a flowchart showing the preheating operation shown in FIG. 27,
  • FIG. 76 is a flowchart showing the temperature rise control operation shown in FIG. 75, and
  • FIG. It is a graph which shows the temperature rise by the temperature rise control operation shown in FIG.
  • Fig. 78 shows the charge of the wafer in the pre-heat operation and the post-heat operation. It is a diagram showing a structure for measuring the amount with an electrostatic sensor,
  • FIG. 79 is a flowchart showing the post-heat operation shown in FIG. 27,
  • FIG. 80 is a flowchart showing the temperature drop control operation shown in FIG. 79,
  • FIG. 81 is a flowchart shown in FIG. 5 is a graph showing a temperature drop due to the temperature drop control operation shown in FIG.
  • FIG. 82 is a diagram showing a state in which ions are applied to the wafer after the bumps are formed by the ion generator during the post-heating operation shown in FIG. 27,
  • FIG. 83 is a diagram showing a state in which ions are applied to the wafer before bump formation by the ion generator during the preheating operation shown in FIG. 27,
  • FIG. 84 is a flow chart for explaining the operation of the static elimination port performed by the bump forming apparatus shown in FIG.
  • FIG. 85 is a perspective view showing the structure of the SAW filter.
  • Fig. 86 shows the damage in the comb circuit portion of the S AW filter.
  • FIG. 87 is a diagram for explaining a charged state on the front and back surfaces of the piezoelectric substrate wafer
  • FIG. 88 is a plan view showing a state where bumps are formed on electrode portions of a circuit.
  • a bump forming apparatus according to an embodiment of the present invention, a charge removing method for a charge generating semiconductor substrate executed by the bump forming apparatus, a charge removing apparatus for the charge generating semiconductor substrate provided in the bump forming apparatus, and a charge generating semiconductor substrate This will be described below with reference to the drawings.
  • the same components are denoted by the same reference numerals.
  • the bump forming apparatus 101 of the present embodiment shown in FIGS. 1 and 2 is used for processing a wafer-like piezoelectric substrate (hereinafter, referred to as a “piezoelectric substrate wafer”) for forming the SAW filter. It is suitable, and in the following description, a case where bumps are formed on the piezoelectric substrate wafer is taken as an example, but the processing target is not limited to the piezoelectric substrate wafer. That is, a charge-generating semiconductor substrate (hereinafter, referred to as a charge-generating semiconductor substrate) that generates charges with a change in temperature.
  • a charge-generating semiconductor substrate hereinafter, referred to as a charge-generating semiconductor substrate
  • charge-generating semiconductor substrate for example, L i and T a 0 3 L i N B_ ⁇ 3 compound such as a semiconductor wafer, but the present embodiment with respect to quartz semiconductor wafer or the like for the quartz substrate
  • the present invention can be applied to an Si semiconductor wafer having Si as a substrate. In this case, the temperature of the wafer when forming the bumps is heated to about 250 ° C. to about 270 ° C. as described above.
  • the bump forming apparatus 101 stores a first storage container 205 in which the piezoelectric substrate wafer 201 before bump formation is stored in a layer and a piezoelectric substrate wafer 202 in which the bump is formed in a layer. It is a so-called double magazine type provided with both the second storage container 206 and is not limited to this type.
  • the piezoelectric substrate wafer 201 before bump formation and the piezoelectric substrate wafer after bump formation are provided.
  • a so-called single magazine type in which 202 is stored in one storage container can also be configured.
  • a bonding stage 110, a pre-heating device 160, and a post-heating device 170 described below correspond to a heating / cooling device, and the post-heating device 170 is an example that functions as a cooling device.
  • a static eliminator is constituted by the above-mentioned heating / cooling device and a control device 180 described below.
  • the above-mentioned bump forming apparatus 101 is roughly divided into one bonding stage 110, one bump forming head 120, a transfer device 130, and a transfer provided on the loading side and the unloading side.
  • the temperature change between the bump bonding temperature required for bump formation and the room temperature changes.
  • Pre-heating device 160 mounting operation and bonding from pre-heating device 160
  • the transfer operation to the bonding stage 110 and the transfer operation from the bonding stage 110 to the post-heater 170 in the piezoelectric substrate wafer 202 after the bumps are formed, the piezoelectric substrate wafers 201 and 2
  • the structure and operation that do not cause damage to O.sub.2 are significantly different from those of the conventional bump forming apparatus.
  • the bump forming apparatus 101 is an apparatus for forming a bump, the most basic components are the bonding stage 110 and the bump forming head 120.
  • the bonding stage 110 places the piezoelectric substrate wafer before bump formation (hereinafter simply referred to as “wafer before bump formation”) 201 and is formed on the wafer before bump formation 201.
  • the pre-bump-forming wafer 201 is heated to a bump bonding temperature necessary for forming a bump on an electrode in the circuit in question.
  • the bump bonding temperature required for forming the bumps is a temperature required for bonding the electrodes and the bumps at a designed strength, and is not limited to a wafer or substrate on which the bumps are formed.
  • the temperature is set according to the material of the material and the strength of the design. In the case of the present embodiment, the temperature is about 210 ° C.
  • the wafer 210 before the bump formation is sucked onto the wafer mounting table 111 on which the wafer 201 before the bump formation is mounted, and An inlet / outlet 1 13 for ejecting gas is opened, and the inlet / outlet 1 13 functions as a suction device 1 14 and a gas supply device, which are operationally controlled by a controller 180.
  • An example blow device 1 15 is connected.
  • the gas is air.
  • the wafer mounting table 1 1 1 of the bonding stage 1 1 1 1 is moved up and down between the heating position in contact with the heater 1 1 2 side and the transfer position for transferring the charge generating semiconductor substrate. Can be moved up and down. As shown in FIG.
  • a metal plating in this embodiment, a silver plating 261 is applied to the contact surface of the wafer mounting table 111 with the wafer 201 before bump formation.
  • a silver plating 261 is applied to the contact surface of the wafer mounting table 111 with the wafer 201 before bump formation.
  • the bump forming head 120 is an apparatus for forming bumps on the above-mentioned electrodes of the wafer before bump formation 201 placed on the bonding stage 110 and heated to the temperature for bump bonding.
  • a bump forming unit for melting the gold wire to form a ball and pressing the molten ball against the electrode, It has an ultrasonic generator that applies ultrasonic waves to the bumps.
  • the bump forming head 1 configured as described above is used.
  • Reference numeral 20 denotes an X, Y table 122 which has, for example, a ball screw structure and is movable in X and Y directions orthogonal to each other on a plane, and is fixed to the wafer before bump formation.
  • the electrodes are moved in the X and Y directions by the X and Y tables 122 so that bumps can be formed on each of the electrodes 201.
  • One of the carry-in devices 1 3 1 is a device for taking out the pre-bump-formed wafer 201 from the first storage container 205, and another carry-out device 1.
  • Reference numeral 32 denotes an apparatus for transporting the piezoelectric substrate wafer after bump formation (hereinafter, simply referred to as “wafer after bump formation”) 202 to the second storage container 206 for storage.
  • the carry-in device 13 1 includes a holding table 1311 holding the pre-bump-forming wafer 201 by suction, and a holding table 1311 along the X direction. It is provided with a moving device 1 3 1 2 for the loading device to be moved.
  • the driving unit 1313 included in the loading device moving device 1312 is connected to the control device 180 to control the operation. Therefore, the holder 1311 moves along the X direction by the operation of the driving unit 1313, and the wafer 201 before bump formation is taken out from the first storage container 205.
  • the carrying-out device 132 has the same structure as the carrying-in device 131, and operates in the same manner.
  • the carrying-out device 13 2 holds the wafer 202 after the bumps are formed by the suction operation, and the holding device 1 32 1 Moving device 1 3 2 2 for transferring the wafers 202 after the formation of the bumps into the second storage container 206, and the back surface 20 of the wafers 202 after the formation of the bumps.
  • Holder 1 3 2 3 which holds wafer 2 after sucking on b and bumps are formed, and holder 1 3 2 1 placed below holder 1 3 2 1 And a driving unit 1324 for moving the holding unit 1323 in the thickness direction of the wafer 202 after the held bumps are formed.
  • the operation of the moving device 1 32 2 and the driving unit 1 32 4 for the unloading device is controlled by a control device 180.
  • the orientation flat of the wafer 201 before bump formation taken out of the first storage container 205 by the loading device 131 is oriented in a predetermined direction.
  • a matching device 1 3 3 is provided.
  • the orientation flat aligning device 1 33 includes a holding plate 1 3 3 1 that moves in the Y direction by the driving unit 1 3 32 and holds the wafer 20 1 before bump formation. In order to be able to move in the thickness direction of the wafer 201 before bump formation and to hold the wafer 201 before bump formation, and to orient the orientation flat of the held wafer 201 before bump formation.
  • a holding portion 133 3 3 rotatable in the circumferential direction of the wafer 201 before bump formation and a driving portion 133 4 of the holding portion 133 3 are provided.
  • the operation of the above-mentioned drive units 13332 and 133334 is controlled by a controller 180.
  • the transfer device 140 is provided with a carry-in transfer device 141 and a carry-out transfer device 142 in the bump forming device 101.
  • the loading-side transfer device 1 4 1 1 sandwiches the pre-bump-forming wafer 2 1 held by the holding table 1 3 1 1 of the loading device 1 3 1, transports it to the pre-heating device 1 60, Transport from the device 160 to the bonding stage 110 is performed.
  • the unloading-side transfer device 144 holds the wafer 202 after the bump formation held on the bonding stage 110, transports the wafer to the boost heating device 170, and From 70, transfer to the holding table 1 32 1 of the above-mentioned unloading device 1 32 is performed. As shown in FIG.
  • such a loading-side transfer device 14 1 includes a wafer holding unit that sandwiches the wafer before bump formation 201 and removes the charge on the front and back surfaces of the wafer before bump formation 201.
  • 1 4 1 1 and a driving unit 1 4 1 2 having an air cylinder in this embodiment for driving the wafer holding unit 1 4 1 1 for the pinching operation, and a wafer holding unit 1 4 1 1 and a driving Department
  • a moving device 14 13 configured by a ball screw mechanism is provided, which moves the entirety of 14 14 in the X direction.
  • the driving unit 1412 and the moving device 1413 are connected to a control device 180, and their operations are controlled.
  • the unloading-side transfer device 14 like the transfer-side transfer device 14 1, also includes a wafer holding unit 14 2 1, a driving unit 1 4 2 2, and a moving device 1 4 2 3, The operation of the driving unit 1442 and the moving device 14423 is controlled by the control device 180.
  • the wafer holding section 144 1 1 has a first holding member 1 4 1 4 and a second holding member 1 4 1 5 movable in the X direction by the driving section 1 4 1 2.
  • the static elimination members 14 and 16 sandwiched between them are arranged in parallel with each other.
  • the first holding member 14 14, the second holding member 14 15, and the charge removing member 14 16 are all made of iron or another conductive material.
  • the wafer holding unit 14 21 has a first holding member 14 24 and a second holding member 14 25, and a static eliminator sandwiched therebetween.
  • the members 144 are arranged in parallel with each other.
  • the first holding member 144, the second holding member 144, and the charge removing member 144 26 are all made of iron or another conductive material. Since the wafer holders 1411 and 1421 have the same structure, the wafer holder 1411 will be described as a representative below.
  • the first holding member 14 14 and the second holding member 14 15 each have two L-shaped holding claws 14 17 for holding the wafer 201 before bump formation as shown in the figure.
  • the holding claws 14 17 are made of the same material as that of the first holding member 14 14 and the second holding member 14 15, such as iron or conductive resin, and the wafer before bump formation 20 1
  • a conductive resin film 141171 as a cushioning material to a portion directly in contact with the resin.
  • the first holding member 14 14, the second holding member 14 15, and the holding claws 14 17 are made of iron or a conductive material because of the back surface of the wafer before bump formation 201 to be held. This is to make the 201b charging possible.
  • the first and second holding members 14 14 and 14 15 of the electric charges in the wafer 201 before the formation of the bump and the wafer 202 after the formation of the bump are grounded.
  • the outer surfaces of the first holding member 14 14 and the second holding member 14 15 in the wafer holding portions 14 11 and 14 21 are provided with insulating material 14 17 as described below. 4. Apply coating.
  • an ion generator 190 As described later, the ions generated from the ion generator 190 generate a first holding member 14 14 and a second holding member 1 made of iron or a conductive material. It is also conceivable that the ground may be grounded to the 415 and the holding claws 147, and may not effectively act on the wafer 201 before the bump formation and the wafer 202 after the bump formation.
  • At least ions generated from the ion generator 190 act to prevent the grounding of the ions and effectively cause the ions to act on the wafer 201 before bump formation and the wafer 202 after bump formation. It is preferable to coat the entire outer surface of the first holding member 14 14, the second holding member 14 15, and the holding claw 14 17 with an insulating material as shown in FIG. preferable.
  • the static elimination member 14 16 has a shape such that it can contact the peripheral portion 201 c of the front surface 201 a of the wafer 210 before bump formation held by the wafer holding portion 141 1.
  • static elimination contact members 141 161 are provided at two locations along the diameter direction of the wafer 201 so as to protrude in the thickness direction of the wafer 201.
  • the contact member for static elimination 1 4 1 6 1 is slidably penetrated through the member for static elimination 1 4 16, and the axial direction of the contact member for static elimination 1 4 1 6 1
  • the spring is biased by a spring 1 4 1 6 2.
  • the contact member for static elimination At the contact end, a conductive resin 14 16 3 is provided as a cushioning material.
  • the contact member 141 4 1 for static elimination is formed on the surface 201 a Ground the electrostatic charge at the ground.
  • the contact member for static elimination is used. 1 4 1 6 1 can come into contact with the surface 201a of the wafer 201 before bump formation. Therefore, first, the surface 201a can be neutralized.
  • a configuration in which a ground wire is directly connected to the contact member for static elimination 14 16 1 can also be adopted.
  • the structure is not limited to the structure in which the contact member for charge removal 14 16 1 is attached to the member for charge removal 14 16, and for example, as shown in FIG. A structure in which a plate panel made of a metal or conductive material and made capable of contacting the surface 201a is attached to the member 14 14 and the second holding member 14 15 Can also be taken.
  • the peripheral portions 201 c of the surfaces 201 a of the wafers 201 and 202, which are in contact with the contact member for static elimination 141 161 As shown in FIG. 9, there is a wafer on which an aluminum film 203 is formed over the entire circumference as shown in FIG. 9 so that the surface 201a can be efficiently charged. In the case of such a wafer, the static elimination of the surface 201a can be performed effectively by the contact member 141 161 for static elimination contacting the aluminum film 203. Further, as shown in FIG. 10, it is also possible to arrange so that the static elimination contact members 141 161 are arranged at three or more places in the peripheral portion 201 c.
  • dummy cells 1 4 1 which do not cause any trouble even if the charge removing contact member 14 1 6 1 comes into contact with the center of the wafer so that the charge can be removed from the center of the wafer. 6 5 is formed, and a static elimination contact member 1 4 1 6 1 is arranged at a position corresponding to the dummy cell 1 4 1 6 5. W
  • the static elimination performance can be improved by increasing the number of the above-described static elimination contact members 141 161 or by increasing the contact area thereof.
  • a dicing line 211 for cutting out the circuit forming portion 211 on which the S AW filter is formed from a wafer is provided with a conductor corresponding to a charge removal region and made of a conductor. It can also be configured to connect the dummy cells 14 16 5.
  • the dicing line 212 extends to the aluminum film 203. Since the generated charges are accumulated on the surface 201a of the wafer, by adopting the above-described configuration, the contact member for static elimination 1411 and 611 contacts the aluminum film 203 as described above, The charge on the dummy cell 14 16 5 is also eliminated through the dicing line 21 2 and the aluminum film 203 so that the surface 201 a can be effectively eliminated.
  • the static elimination of the surface 2Ola may be performed by bringing the contact member for static elimination 14 16 1 directly into contact with the dummy cell 14 16 5.
  • the formation position on the wafer of No. 5 can be determined according to the charge removing contact member 14 16 1 as described above, but is not limited to this.
  • a dummy cell 1416 5 may be formed at a damage occurrence location on a wafer where damage is likely to occur due to pyroelectric rupture or the like.
  • Such a structure is effective in terms of static elimination effect and yield.
  • the static elimination contact member 14161 is arranged so as to correspond to the dummy cell 141665 formed at the damage occurrence location.
  • the dummy cell 14 16 5 is formed in a rectangular shape having a size occupying almost one circuit forming portion 2 11, but the area of the dummy cell 14 16 5 Is not limited to this. Further, the shape of the dummy cell 14 16 5 is not limited to the above-mentioned square shape, and for example, the dummy cell shown in FIG.
  • the cell may have a frame shape surrounding one circuit forming portion 211, as in cell 1 4 1 6 5—1.
  • the method for neutralizing the surface 201a is also the same as the contact member for static elimination described above.
  • the ion generator 190 may be used in place of the charge removing contact member 141 161 or in combination with the charge removing contact member 141 161.
  • the dummy cell 14 16 5 is provided and the force connecting the dummy cell 14 16 5 to the dicing line 21 2 is not provided.
  • a structure in which dicing lines 2 12 extending to 203 may be provided.
  • the static elimination efficiency and the static elimination effect are inferior to those of the above-described structure having the dummy cells 14 16 5, the charge can be removed from the aluminum film 203 through the dicing line 212 even with this structure.
  • the surface 2 O la can be neutralized.
  • L i T a 0 3 and L i N B_ ⁇ 3 compound such as a semiconductor wafer
  • the substrate may be warped due to a temperature difference generated in the substrate.
  • the amount of warpage dimensional I shown in FIG. 1 2, the thickness 3 5 mm, a diameter of 7 6 mm, in the case of L i T a 0 3 wafer:! A 1. 5 to 2 mm in the case of ⁇ 1. 5 mm, L i N b 0 3.
  • the static elimination contact member 14 16 1 is arranged so as to correspond to the peripheral portion of the charge generation semiconductor substrate where the above-mentioned warpage is large.
  • the static elimination contact member 14 16 1 Since the contact member can move only in the axial direction of the contact member, the contact member swings in response to the warpage of the charge-generating semiconductor substrate.
  • the contact member for static elimination itself cannot be tilted as it is. Accordingly, when the charge removing contact member 14 16 1 contacts the warped charge generating semiconductor substrate, the charge removing semiconductor substrate extends along the thickness direction of the unwarped charge generating semiconductor substrate and is movable.
  • the mounting structure of the contact member for static elimination 14 14 16 to the member for static elimination 14 16 and its related parts are as shown in Figs. 13 to 21 and 65.
  • the structure is preferred. Since the structure of the neutralizing member 14 16 also changes with the change of the mounting structure and its related parts, it is necessary to strictly change the sign of the neutralizing member. 4 1 6 ”is added as it is.
  • a mortar-shaped hole 14 16 6 is provided in the static elimination member 14 16, and the wire diameter 1. 5-2 of m m approximately conduction, for example for charge removal contact member 1 4 1 0 0 made of metal bars through ⁇ , spring 1 4 1 6 2 for charge removal contact member 1 4 1 0 0 at The contact member 1410 for static elimination is urged in the axial direction. ⁇ forces, in this embodiment, is set to about 4 9 ⁇ 9 8 X 1 0- 3 N one divided conductive for contact members 1 4 1 0 0 per. Also, a corner portion 14 at one end of the charge removing contact member 14 10
  • the contact member for charge elimination 1410100 is a chamfered or arcuate shape so that the contact member for charge elimination 1410100 easily swings in the direction of the arrow 141110 according to the curvature of the warped charge-generating semiconductor substrate.
  • One end of the static elimination contact member 14100 may be provided with an electrically conductive material having a diameter of, for example, about 5 mm, as shown in FIG.
  • a cylinder 14 10 6 as shown in FIG. 21 may be attached, or the one end may be shaped into a hemisphere as shown in FIG. 65.
  • the contact member for static elimination 14 1 0 0 is formed by the arrow 14 1 so that the plane including the trajectory of the oscillating static elimination contact 14 1 0 0 0 and the diameter direction of the charge generating semiconductor substrate are parallel. Swings in the 10 direction.
  • the cylinder 140 106 is arranged so that the axial direction of the cylinder 140 106 is along the direction orthogonal to the diameter direction and the thickness direction of the charge generating semiconductor substrate. Place.
  • a configuration is employed in which the ground wire 14109 is directly connected to the other end of the contact member 141010 for static elimination.
  • the contact member for static elimination 1410 00 can swing with the small diameter portion of the mortar-shaped hole 14 16 6 as a fulcrum, so that the warped charge-generating semiconductor According to the curvature of the substrate, the contact member for static elimination 1 4 1 0 0 is an arrow 1 4 1
  • It can swing in the 10 direction, and can prevent damage to the charge generating semiconductor substrate.
  • FIG. 14 the structure shown in FIG. 14 can be adopted.
  • two rollers 14103 are arranged at appropriate intervals in mounting holes 14102 formed in the charge removing member 1416, and rotatably attached to the charge removing member 1416 with pins 14104.
  • a contact member 14107 for static elimination is provided to be able to swing in the directions of arrows 14110 by two rollers 14103.
  • the other end of the charge removing contact member 14107 has a roller 14108 rotatably supported, and the ball 14105 is attached to one end of the charge removing contact member 14107.
  • Such a static elimination contact member 14107 is attached to the static elimination member 1416 by being urged in the axial direction by a spring 14162. Therefore, the roller 14108 of the contact member 14107 for static elimination is rotatably supported from both sides by the two rollers 14103 of the member 1416 for static elimination.
  • the charge generation semiconductor substrate can be prevented from being damaged.
  • FIG. 17 can be adopted.
  • This structure is an extension of the structure shown in FIG. 14, in which four rollers 14 11 1 are rotatably provided in a cross shape on a member 1416 for static elimination, while a ball 141 12 is provided at the other end.
  • the static elimination contact member 1411 13 is attached to the static elimination member 1416 such that the sphere 141 12 is located at the center of the four rollers 141 11.
  • the ball 14 1 12 is urged by the four rollers 14 1 1 1 1 by the spring 14 1 62.
  • the ground wire may be attached to the ball 141 12 in a form as shown in FIG. 20, or may be attached to the charge removing member 1416.
  • the contact member 141 13 for static elimination can be slidably rotated not only in the direction of the arrow 141 110 but also in the direction of the arrow 141 14 perpendicular to the direction of the arrow 141 10.
  • the generated semiconductor substrate can be prevented from being damaged.
  • the elimination member 1416 is provided with a mortar-shaped hole 14166, while the other end is provided with a ball 141 15 at the other end. It is supported in a rotatable state and attached to the charge removing member 1416.
  • the ball 14 1 1 5 has a hole 141 66 at the spring 14 1 62 It is biased on the wall. Also, the ball 1 4 1 1 5 is pressed by the spring 1 4 1 1 8 with the current collecting member 1 4 1 1 7 with the ground wire 1 4 1 1 9 connected to the charge removing member 1 4 1 6 Have been.
  • the charge of the charge-generating semiconductor substrate passes through the charge removing contact member 14 1 16, the current collecting member 14 1 17, the ground wire 14 1 19, and the ground attached to the charge removing member 14 16. Flow to line 1410.
  • the contact member for static elimination 14 1 16 can rotate in any direction with respect to the mounting state shown in FIG. 18 to prevent damage to the charge generating semiconductor substrate. be able to.
  • a structure using a static elimination contact member 14 120 except for a spring 14 16 2 as shown in FIG. 19 can be used as a modification of the mounting structure shown in FIG. 18, a structure using a static elimination contact member 14 120 except for a spring 14 16 2 as shown in FIG. 19 can be used. In this case, the following effects are obtained in addition to the effects of cost reduction and easy assembly as compared with the structure shown in FIG.
  • the current collecting member 14 1 17 and the spring 14 1 18 were deleted, and the ground wire 14 1 9 was attached directly to the ball 14 1 15 to remove static electricity.
  • a structure using the contact member 1 4 1 2 1 may be adopted. In this case, the number of parts can be reduced and the structure can be simplified as compared with the structure shown in FIG. 18, so that the cost can be reduced.
  • the force is configured so that the contact member for static elimination can swing.
  • the contact member for static elimination 14 1 122 shown in Fig. 65 the static elimination in the member for static elimination 14 16
  • a linear guide bearing 1 4 1 2 3 is provided on a supporting portion of the contact member 1 4 1 22 for use. Therefore, in the structure shown in FIG. 65, the axial movement of the contact member for static elimination 1412 in the axial direction is equivalent to the movement of the contact member for static elimination in the structure shown in FIG. Very smooth compared to. Therefore, the structure shown in FIG.
  • the contact member for charge elimination 1442 22 does not swing, but the contact member for charge elimination 14 14 22 Hemispherical end of When the contact is made, the contact member for static elimination 1412 moves smoothly in the axial direction thereof, so that the charge generating semiconductor substrate that warps can be prevented from being damaged such as cracking.
  • the support member 1 4 1 2 4 into which the linear guide bearing 1 4 1 2 3 is fitted may be made of iron, but is made of a heat insulating material like Vespel described above. More preferably, the support member 14 12 4 made of the above-mentioned Vespel has a thermal conductivity of about 18 4 compared to that made of iron. Therefore, by providing the support member 14 12 made of a heat insulating material, it is possible to prevent the charge removing contact member 14 12 22 from contacting the charge generating semiconductor substrate and rapidly cooling the charge generating semiconductor substrate. Thus, heat damage to the charge generation semiconductor substrate can be prevented.
  • a contact member for static elimination 1 4 1 2 As a modified example of the contact member for static elimination 1 4 1 2 2, as shown in FIG. 67, a contact member for static elimination 1 4 1 provided with a weight 1 4 1 2 6 instead of the spring 14 1 6 2. 25 can also be configured.
  • the spring 1 4 1 6 2 When the spring 1 4 1 6 2 is used, the pressing force of the charge removing contact member against the charge-generating semiconductor substrate depends on the amount of contraction of the spring 1 4 1 Although it changes, the use of the weights 14 1 2 6 has an effect that a constant pressing force can be applied to the charge-generating semiconductor substrate regardless of the amount of movement of the contact member for static elimination.
  • weights 1 4 1 2 6 are replaced with springs 1 4 1 6 2.
  • the weight may be provided in the contact member for static elimination 1412 shown in FIG. 19 as well.
  • the preheating device 160 mounts the pre-bump-forming wafer 201 held by the carry-in device 13 1 in the wafer holding unit 14 11 1, as shown in FIGS.
  • This is a device that raises the temperature from room temperature to about 210 ° C., which is the above-mentioned bump bonding temperature when forming a bump at the bonding stage 110, and has a panel heater 161 as a heating unit.
  • a 6 mm-thick aluminum plate 163 is mounted on the panel heater frame 162 as a heat diffusion member.
  • a metal plating in this embodiment, a silver plating 261, is applied to the wafer mounting surface 1663a of the aluminum plate 1663.
  • the thermal conductivity between the aluminum plate 163 and the wafer 201 before bump formation is improved, and the static electricity removing effect of the wafer 201 before bump formation is also increased.
  • the temperature raising operation by the panel heater 161 is controlled by the controller 180 while referring to temperature information from a temperature sensor 166 such as a thermocouple that measures the temperature of the aluminum plate 163.
  • a temperature sensor 166 such as a thermocouple that measures the temperature of the aluminum plate 163.
  • the material of the heat diffusion member 163 is not limited to the above-mentioned aluminum, but is a material having a good thermal conductivity and not causing a chemical reaction with the wafer 201 before bump formation, for example, duralumin. And so on.
  • the carry-in side transfer device 14 1 and the carry-out side transfer device 14 2 each hold the wafer holding unit 14 11 1 and the wafer holding unit 14 21.
  • No mechanism is provided to move the wafer 201 before bump formation and the wafer 202 after bump formation in the thickness direction. Therefore, the pre-heater 16 0 has the panel heater frame 16 2 having the panel heater 16 1 and the aluminum plate 16 6 for placing the pre-bump forming wafer 201 on the aluminum plate 16 3.
  • An elevating mechanism for raising and lowering 3 in the thickness direction between the lowering position 1667 shown in FIG. 23 and the raising position 1668 shown in FIG. 24 is provided.
  • the elevating mechanism includes an air cylinder 1601 as a driving source for performing the elevating operation in the thickness direction, and a T-shaped support member 1602 which is raised and lowered by the air cylinder 1601. And two support rods 1 erected on the support member 16 02 to support the panel heater frame 16 2 and the aluminum plate 16 3
  • the air cylinder 1601 is operated by a cylinder drive unit 1604, the operation of which is controlled by the control unit 180. Further, in the present embodiment, the panel heater frame 162 and the aluminum plate 163 are separated from each other by the lifting / lowering operation by the air cylinder 1601, as described later, and the cooling of the aluminum plate 163 is promoted. For this reason, the cylinder driving device 1604 and the air cylinder 1601 have a function as a separating device.
  • the support rods 1603 penetrate the panel heater frame 162, and the ends thereof are inserted into the aluminum plate 1663.
  • Support bar 1 6 0 When 3 is pierced, the panel heater frame 16 2 is slidable in the axial direction of the support rod 16 03, and the aluminum plate 16 3 is connected to the support rod 16 at the tip of the support rod 16 03. 0 Fixed to 3. Further, the panel heater frame 162 is pressed against the aluminum plate 163 by a spring 165 as an example of an urging means. Therefore, when the air cylinder 1601 operates, as shown in FIG.
  • the panel heater frame 16 2 and the aluminum plate 16 3 move up and down as one unit from 7, but when ascending, the panel heater frame 16 2 abuts the stopper 16 0 6 provided at the contact position. After that, as shown in Fig. 24, the panel heater frame 162 stops rising at the stopper 1606, so that only the aluminum plate 163 rises and the panel heater frame 162 Separation from the aluminum plate 16 3 is performed. Then, the aluminum plate 163 rises to the rising position 168.
  • the gap between the panel heater frame 162 and the aluminum plate 163 when the separation is completed is about 2 to 4 mm.
  • the temperature of the anode plate 16 3 needs to be lowered to about 40 ° C when the next new wafer before bump formation 201 is placed, but as described above, the panel heater frame 16
  • the cooling rate of the aluminum plate 16 3 can be improved as compared with the conventional case, and the tact time can be reduced.
  • the above cooling structure can be used to improve the cooling rate. Especially effective.
  • the panel heater frame 16 2 and the aluminum plate 16 3 may be combined, and the panel heater frame 16 2 drops to about 40 ° C. Since there is no need to wait, the temperature difference in the panel heater frame 16 2 becomes smaller than before. Therefore, since the load on the panel heater 16 1 can be reduced, the life of the panel heater 16 1 can be extended as compared with the conventional case. It can also be done.
  • the panel heater frame 16 2 and the aluminum plate 16 3 are configured to be separable, but as a simplified type, the panel heater frame 16 2 and the aluminum plate 16 3 It is also possible to construct so that it always moves up and down without separating.
  • the heat from the panel heater frame 162 is Difficult to transmit to 602 and air cylinder 161. Therefore, most of the heat from the panel heater frame 16 2 can be conducted to the aluminum plate 16 3, so that the temperature distribution in the aluminum plate 16 3 can be made substantially uniform and the wafer 2 before bump formation can be formed. 01 can be uniformly heated. Furthermore, even if the apparatus is continuously operated, the supporting member 1602 and the like do not heat up.
  • the wafer mounting surface 16 3 a of the aluminum plate 16 3 has an escape for the holding claw 14 17 provided on the wafer holding portion 14 11 to enter when transferring the wafer 201 before bump formation.
  • a groove 1607 and an air inlet / outlet 1608 are formed.
  • the air inlet / outlet port 166 communicates with a blow suction passage 169 formed in the aluminum plate 163.
  • the blow suction passage 1609 is connected to a blow suction device 1611 controlled by a control device 180 via a connecting pipe 1610. Is done.
  • air is used as the gas to be ejected as described above, but another gas may be used.
  • the blow suction device 1611 corresponds to an example that functions as a gas supply device that supplies gas during a warp correction operation and a static elimination operation described below.
  • Refrigerant passages 1612 are formed inside the aluminum plate 1 63.
  • room-temperature air is used as the refrigerant, but other gases, water, or the like may be used.
  • the refrigerant passage 16 12 is connected to a cooling air supply device 16 13 controlled by a control device 180 through a connecting pipe 16 14 as shown in FIG. .
  • the cooling air supplied to the refrigerant passage 16 16 flows through the refrigerant passage 16 12 according to the arrow shown in the figure, and is exhausted through the connecting pipe 16 15.
  • the professional suction passage 1609 and the refrigerant passage 1612 are formed by making holes in the aluminum plate 163 with a drill or the like, Although a stopper was formed as shown in the drawing, the blow suction passage 1609 and the refrigerant passage 1612 could be formed by a known method.
  • a groove can be formed by digging a groove on the back surface of the anode plate 1 63.
  • the post-heating apparatus 170 places the wafer 202 after the bump formation held from the bonding stage 110 on the wafer holding unit 1442 from the bonding stage 110, and sets the bump bonding temperature to about 200%.
  • This is a device for gradually lowering the temperature from around 10 ° C. to around room temperature. It has a structure similar to that of the above-described preheater 160, and in this embodiment, the panel heater frame and the aluminum plate are different from each other. It is a structure that separates. That is, in correspondence with each component of the above-described preheater 160, the panel heater 171, the panel heater frame 1 also in the postheater 170.
  • the wafer mounting surface 1 73 a of the aluminum plate 113 is provided with a metal plating as shown in FIG. 68, and a silver plating 26 1 in the present embodiment, similarly to the case of the aluminum plate 16 3.
  • a silver plating 26 1 in the present embodiment similarly to the case of the aluminum plate 16 3.
  • the silver plating By applying the silver plating, the thermal conductivity between the aluminum plate 173 and the wafer 202 after the bump is formed is improved, and the static electricity removing effect of the wafer 202 after the bump is formed is also increased.
  • the operation in the post-heat device 170 is similar to the operation in the pre-heat device 160 described above, and can be understood by reading the operation description relating to the preheat in the pre-heat device 160 into the operation description of the bottom heat. Therefore, detailed description is omitted here.
  • the lifting device 150 is a first lifting device 1 on which the first storage container 205 is placed.
  • the first elevating device 15 1 elevates and lowers the first storage container 205 so that the wafer before bump formation 201 is located at a position where it can be taken out by the carry-in device 13 1.
  • the second lifting / lowering device 152 is configured to store the bump 202 after being formed by the unloading device 132 in such a manner that the wafer 202 can be stored at a predetermined position in the second storage container 206.
  • the storage container 206 is raised and lowered.
  • the operation of the bump forming apparatus 101 of the present embodiment having the above-described configuration will be described below.
  • the operation of each of the components described above is controlled by the control device 180 so that bumps are formed on the wafer 201 before bump formation, and the wafer 202 after bump formation is stored in the second storage container. A series of operations of being stored in 206 are executed.
  • the controller 180 controls the post-heating operation in a state where the wafer 202 after the bump formation is in contact with the aluminum plate 173 of the post-heating device 170, and furthermore, the post-heating device 170 It is also possible to control the charge elimination blow operation and the warp correction blow operation for the wafer 202 after the bump formation, which can be executed at 0. Furthermore, the wafer 201 before bump formation is preheated.
  • Preheating operation is controlled in the state of contact with the aluminum plate 16 of 16 0, and the blow operation for static elimination and the blow operation for correcting the warpage of the wafer before bump formation 21, which can be executed by the preheating device 16 0 Can also be controlled. Also, Bondi For warp correction of wafer 201 before bump formation executed at aging stage 110.
  • the contact member for static elimination provided in the wafer holders 141 1 and 1421 is applicable to any wafer or substrate, such as the above-described charge-generating semiconductor substrate that causes warpage.
  • the contact member 14 100 for static elimination shown as an example.
  • the above-described charge removing contact members 14107, 14113, 14116, 14120, and 14121 can also be used.
  • the bumps are formed on the pre-bump forming antenna 201 by the steps shown in FIG. 27 (indicated by “Sj” in the figure) from step 1 to step 10.
  • the post-wafer 202 is stored in the second storage container 206. That is, in step 1, the wafer 2 ⁇ 1 before bump formation from the first storage container 205 is placed at a position where it can be taken out by the loading device 131. As described above, the first storage container 205 is moved up and down by the first elevating device 151, and thereafter, the wafer 201 before bump formation is taken out of the first storage container 205 by the loading device 1331. Further, the loading device 1 The orientation flat orientation of the wafer 201 before bump formation held in 31 is performed by the orientation flat aligner 133.
  • step 2 the wafer 201 before bump formation, which is held on the holding table 1311 of the loading device 131, is held by the loading-side transfer device 141. The operation will be described in detail with reference to FIGS.
  • the holding portion 1333 of the orientation flat aligning device 133 rises, and the wafer 201 before bump formation is sucked and held from the holding table 1311 and rises.
  • the wafer holding unit 141 1 is arranged above the wafer 201 before bump formation, and the first holding member 14 14 and the second holding member 141 5 are moved by the driving unit 14 12 in the opening direction along the X direction. I do.
  • the holding portion 1333 is raised, whereby the contact member for static elimination of the wafer holding portion 141 1 is firstly moved.
  • the tip of 14010 contacts the surface 201a of the wafer 210 before bump formation.
  • the surface 201a is charged immediately before the contact with the contact member for static elimination 14100, the charge is eliminated by the contact with the contact member for static elimination 14100.
  • the wafer 201 before bump formation and the wafer 202 after bump formation used in the present embodiment are difficult to be charged, but once charged, they are difficult to remove electricity. have. Therefore, it is difficult to completely remove the surface 201a even by the contact of the contact member 1401 for static elimination, and the surface 201a is approximately +1 V to approximately +2
  • the holding table 1311 descends, and the wafer 201 before bump formation is held by the holding claws 1417 of the wafer holding section 14111.
  • the pre-bump-forming wafer 201 is pressed against the holding claws 14 17 by the urging force of the springs 14 16 2 provided on the charge removing contact member 14 100.
  • the pressing force is such that the wafer holding unit 141 1 does not cause a problem such as dropping when the wafer 201 before bump formation is transferred by the wafer holding unit 141, and causes the deformation of the wafer 201 before bump formation. is not.
  • a part of the electric charge on the back surface 201 b is grounded by the contact between the back surface 201 b of the wafer before bump formation 201 and the holding claws 144 17.
  • the back surface 201 b also has an initial charge of about 120 V to about 130 V.
  • the wafer holding unit 1411 holds the pre-bump-forming wafer 201 and the pre-heater 1
  • the preheating device 160 has a structure in which the panel heater frame 162 and the anode plate 163 can be separated. Therefore, when the aluminum plate 163 is at a temperature equal to or higher than the normal temperature, before the wafer before bump formation 201 is conveyed above the preheating device 160, the steps 510 to 510 shown in FIG. Step 5 15 is executed to cool the aluminum plate 16 3. Steps 5 10 to 5 15 will be described later with reference to FIG.
  • the aluminum plate 163 is lowered to the above-mentioned lower position 167 when the anoremy-plate plate 163 is cooled to a predetermined temperature, in this embodiment, about 40 ° C. Then, in the next step 303, as shown in FIG. 33, the wafer holding section 1411, while holding the wafer 201 before bump formation, is pre-heated by the moving device 1413.
  • Device 1
  • the anode plate 163 is raised again to the raised position 1668.
  • the holding claws 14 17 provided on the wafer holding portion 14 11 enter the escape grooves 16 07 formed in the aluminum plate 16 3 as shown in FIG. Therefore, the wafer before bump formation 201 held by the wafer holding unit 1411 is placed on the aluminum plate 163.
  • the carry-in side transfer device 14 1 and the carry-out side transfer device 14 2 are not provided with an elevating mechanism, the wafer before bump formation on the pre-heat device 16 In order to perform the loading operation of the aluminum plate 161 and the mounting operation of the aluminum plate 163, it is necessary to raise and lower the aluminum plate 163.
  • next step 3 05 as shown in FIG. 35, the first holding member 14 14 and the second holding member 14 15 of the loading-side transfer device 14 1 are opened, and the next step 30 5 Then, as shown in FIG. 36, the aluminum plate 16 3 is lowered to the above-mentioned lower position 16 7. Then, the process proceeds to step 4 to start the preheating operation.
  • the loading operation of the wafer before bump formation 201 into the pre-heater 16 0 is shown in Fig. 37. Steps 311 to 316 are performed. Explanation of the operation I do.
  • the non-separable panel heater frame 162 and the aluminum plate 163 are collectively referred to as a preheat stage.
  • step 311 the pre-bump-forming wafer 201 held in the wafer holding section 141 1 is loaded above the preheat stage.
  • step 312 in order to stabilize the temperature of the wafer 201 before bump formation, the carry-in state is maintained above the pre-heat stage, for example, for 30 seconds to 2 minutes.
  • the above preheat stage is raised to the above raised position 168.
  • step 314 the first holding member 14 14 and the second holding member 14 15 of the loading-side transfer device 14 1 are opened.
  • an operation peculiar to the modification is performed due to a structure in which the panel heater frame 162 and the aluminum plate 163 are not separated.
  • the wafer before bump formation 201 is transferred from the preheating stage to the bonding stage 110 by the loading-side transfer device 141, and at this time, the holding claw is used. If the temperature difference between the pre-bump-formed wafer 201 and the pre-bump-formed wafer 201 is large, the pre-bump-formed wafer 201 may be locally cooled and cause problems. Therefore, it is determined in step 3 15 whether or not the holding claws 14 17 are to be heated, and if so, the pre-heating operation is started with the pre-heating stage raised to the rising position 16 8 I do.
  • the holding claw 14 17 has entered the escape groove 16 07, and the holding claw 14 17 can be heated by heating the preheat stage, thereby preventing the occurrence of the above problem. It is possible.
  • the preheating stage is lowered to the lowering position 1667 in the next step 316 to start the preheating operation.
  • the pre-bump-forming wafer 201 is preheated from room temperature to about 210 ° C. by the preheating device 160. Due to the temperature change of the wafer before bump formation 201 due to the preheating operation, electric charge is generated on the wafer before bump formation 201, but the wafer before bump formation 201 is placed on the aluminum plate 163. Therefore, the electric charge on the back surface 201 b side where the electric charge is easily accumulated is discharged through the aluminum plate 163, so that the electric charge can be efficiently removed. Therefore, The temperature rise rate for preheating the wafer before bump formation 201 is within the temperature rise rate at which the wafer 201 before bump formation is damaged by a rapid temperature change, that is, about 5 (temperature rise rate of about TCZ).
  • Various temperature rising speeds can be adopted, such as a rapid temperature rising speed of about CZ, etc. Therefore, even when performing the preheating operation, the same takt as before can be maintained.
  • the temperature rise control as shown in FIG. 39 can be performed. That is, the operation of step 312 is performed from time t1 to time t2, and the temperature of the wafer before bump formation 201 is raised from about 40 ° C. to about 60 to 120 ° C. Thereafter, as described above, the temperature rise control up to about 210 ° C. is performed at a gentle or steep temperature rise rate.
  • step 5 first, as shown in FIG. 40, a transfer operation of the wafer before bump formation 201 from the preheating device 160 to the bonding stage 110 is performed. At a temperature of about 210 ° C., the charge amount of the wafer before bump formation 201 is smaller than that at a temperature of about 100 ° C., for example. It is unlikely that sparks will occur in the wafer before bump formation 201 during the transfer operation to 10.
  • FIG. 40 shows the operation of the preheating device 160 in a case where the panel heater frame 162 and the aluminum plate 163 can be separated from the force S by a force.
  • step 501 of FIG. 40 the first holding member 1414 and the second holding member 1415 are opened in the opening direction by the operation of the drive unit 141 of the loading-side transfer device 141.
  • step 502 the aluminum plate 163 of the preheating device 1660 is moved from the lowering position 1667 to the raising position 1668.
  • the holding claws 14 17 provided on the first holding member 14 14 and the second holding member 14 15 enter the escape grooves 16 07 of the aluminum plate 16 3.
  • the next step 503 the first Close the holding member 14 14 and the second holding member 14 15.
  • the blow suction device 161 is operated to blow air from the air inlet / outlet 166 of the aluminum plate 163, and the aluminum plate 163 and the wafer before bump formation 2 Separate from 0 1.
  • the temperature of the air to be jetted is such that the temperature of the pre-heated pre-bump forming wafer 201 can be prevented from lowering as much as possible, for example, about 160 ° C.
  • the aluminum plate 16 3 is lowered in step 505, and the wafer 201 before bump formation is moved to the first holding member 14 14 and the second holding member 14.
  • the wafer is held by the wafer holding unit 14 11 having 15.
  • step 506 the operation of the blow suction device 161 is stopped to end the blow operation, and in step 507, the heated wafer before bump formation 201 is held.
  • the wafer holding part 14 11 is moved above the bonding stage 110. Thereafter, the operation shifts to the mounting operation on the bonding stage 110 described later.
  • step 510 shown in FIG. 40 the cooling air supply device 1613 is operated to supply cooling air to the refrigerant passage 1612 in the aluminum plate 163.
  • the air cylinder 16 0 1 of the pre-heater 16 0 is operated to move the aluminum plate 16 3 from the lower position 16 7 to the upper position 16 8.
  • the panel heater frame 16 2 is separated from the anolemme plate 163 to cool the temperature of the anoreme plate 163 to about 30 ° C.
  • the cooling temperature of the aluminum plate 163 is set to about 30 ° C., but the cooling temperature is not limited to this. In other words, due to the temperature difference from the wafer 201 before bump formation at room temperature, the charge amount of the wafer 201 before bump formation does not exceed the allowable amount, and the aluminum plate 16 3 of such a degree that warping does not occur. Cooling temperature can be set. By separating the panel heater frame 162 from the aluminum plate 163 as described above, the aluminum plate 163 can be cooled efficiently. The temperature of the aluminum plate 1 6 3 is about 3 After cooling to 0 ° C, the operation of the cooling air supply device 16 13 is stopped in step 5 13 and the supply of cooling air is terminated. Then, in step 514, the aluminum plate 163 is lowered, and in step 515, the wafer holding section 1411 of the loading-side transfer device 1411 is returned above the transfer device 130.
  • Steps 521, 522 shown in FIG. 41 correspond to steps 502, 505 shown in FIG. 40, respectively.
  • the panel heater frame 162 and the aluminum plate 16 The preheat stage, which is integrally formed with 3, moves up and down.
  • the temperature of the wafer before bump formation 201 is raised to about 210 ° C. by the preheating operation, but the temperature is slightly lowered before being mounted on the bonding stage 110. .
  • the temperature of the wafer 201 before bump formation is reduced. Due to the difference from the temperature of the bonding stage 110, depending on the material of the wafer before bump formation 201, warpage may occur as shown in FIG. Wafer before bump formation that causes the warpage 20
  • L i in the case of N B_ ⁇ 3 E c is correct the warp by blowing hot air to the after incubation placing the bonding stage 1 1 0, whereas, in the case of L i T a 0 3 wafer since the hot air blowing with the operation of the after loading becomes longer the time required for warpage correction as compared with the case of L i N b 0 3 wafer, is not performed hot-air-blower's.
  • step 507 shown in FIG. 42 as shown in FIG.
  • the wafer before bump formation 201 held by the wafer holding unit 141 of FIG. 41 is carried into the bonding stage 110.
  • the bonding stage 110 is rotated to adjust the carry-in angle of the wafer 201 before bump formation to the bonding stage 110.
  • the wafer mounting table 1 1 1 1 rises in the thickness direction of the wafer before bump formation 201 as shown in FIG. And push up the wafer slightly further.
  • the holding claws 1 4 1 7 of the wafer holding section 1 4 1 1 1 enter the relief grooves 1 1 6 formed on the wafer mounting table 1 1 1. I do.
  • the static elimination contact member 14100 that is in contact with the surface 201a of the wafer 201 before the bump is formed is opposed to the urging force of the spring 1442. It is pushed up while keeping the state in contact with 201a. As described above, at a temperature around 210 ° C., the charge amount of the wafer before bump formation 201 decreases, and further, the contact member for static elimination 144 1 0 ° is brought into contact with the surface 201 a. I have. Therefore, generation of spark on the surface 201a can be prevented.
  • the first holding member 14 14 and the second holding member 14 are operated by the operation of the driving portion 14 12 of the loading side transfer device 14 1. 15 moves in the opening direction, and the holding of the wafer before bump formation 201 by the wafer holding unit 1411 is released.
  • the blowing device 1 15 is operated, and the air outlet 1 1 3 opened in the wafer mounting table 1 1
  • the hot air for correcting the warp is blown onto the wafer 201 before bump formation. Due to the blowing operation, the wafer before bump formation is about 0.5 mm, and the wafer before bump formation is closer to the wafer mounting table. Before the bump is formed, there are the holding claws 14 17 of the first holding member 14 14 and the second holding member 14 15 around the wafer 201 before the bump is formed. The wafer 201 does not fall off the wafer mounting table 111.
  • the above i N b 0 3 about 2-4 minutes the warp correcting is achieved for the wafer, performs the spraying of the warpage correction for hot air blowing time of the thermal wind, and temperature
  • the value is set according to the material of the charge generation semiconductor substrate to be subjected to the warp correction operation, and is not limited to the above value.
  • step 535 the operation of the blowing device 115 is stopped, and the blowing of the warp correcting hot air is terminated.
  • step 536 the suction device 1 14 is operated to start suction from the air inlet / outlet 1 13 and the wafer 201 before bump formation is sucked onto the wafer mounting table 1 1 1.
  • step 537 it is detected that the above-mentioned suction has been performed, and in step 538, the wafer mounting table 1 1 1 holds the wafer 2 0 before bump formation as shown in FIG. Lowers to the original position while maintaining the state.
  • the 1 wafer holding unit 1 4 1 1 moves above the transfer device 1 30.
  • step 532 the wafer mounting table 1 1 1 is raised.
  • step 541 the wafer 201 before bump formation is mounted on the wafer mounting table 1 1 1. At this time, the wafer mounting table 111 does not attract the wafer 201 before bump formation.
  • the wafer mounting table 1 1 1 When the wafer mounting table 1 1 1 is lowered, the wafer mounting table 1 1 1 is heated again to about 110 ° C by the heater 1 1 2, and in step 5 43, the wafer mounting table 1 1 1 In a state where the bumps formed before the wafer 2 0 1 is ⁇ on 1, without blowing the warp correction heat air as described above, in the present embodiment, the pair of the above and i T a 0 3 wafer above Allow approximately 2 minutes for the straightening to be achieved. Thus during this period, L i T a 0 3 wafer is heated by the wafer ⁇ base 1 1 1, warping is corrected. It should be noted that the leaving time and the temperature for the warp correction are set according to the material of the charge-generating semiconductor substrate to be subjected to the warp correction operation, and are not limited to the values described above.
  • the warp of the wafer 201 before bump formation can be corrected. Damage can be prevented.
  • bumps are formed on the electrode portions of the circuit on the wafer before bump formation by the bump formation head.
  • the wafer 201 before bump formation is maintained at the above-mentioned bump bonding temperature and there is almost no temperature change, so that almost no charge is generated on the wafer 201 before bump formation.
  • Step 6 the wafer 2 after the bump formation by the first holding member 1442 4 and the second holding member 1442 5 in the wafer holding portion 1442 1 of the unloading side transfer device 1442 is used. 0 2 is held, and the wafer holding unit 1442 1 is moved in the X direction by the drive of the transfer device 1442 of the unloading side transfer device 1442, and as shown in FIG. After the bumps are formed, the wafer 202 is placed above the heating device 170, and then placed on the boost heating device 170.
  • step 601 shown in FIG. 50 the aluminum plate 173 of the post heating apparatus 170 is heated to about 210 ° C.
  • the wafer 202 after the bump formation held in the wafer holding section 1441 is carried in above the post-heater 170.
  • the heated aluminum plate 173 is raised from the lowered position 167 to the raised position 168.
  • the wafer 202 is placed in contact with the anode plate 173 after the bump formation.
  • the holding claws 1 4 1 7 provided on the first holding member 1 4 2 4 and the second holding member 1 4 2 5 in the wafer holding section 1 4 2 1 of the unloading side transfer device 1 4 2 enters the escape groove 1707 formed in the aluminum plate 1733.
  • the first holding member 1442 4 and the second holding member 1442 5 in the wafer holding portion 1442 of the unloading side transfer device 144 are opened, and after the bumps are formed.
  • the holding of the wafer 202 is released.
  • the post-heating operation in step 7 after this will be described in the case where the post-heating apparatus 170 has a structure in which the panel heater frame 17 2 and the anolem panel 17 3 can be separated as in the present embodiment.
  • the operation is slightly different from the case of the separated type as in the modified example and the case of the integrated type.
  • Steps 641 to 647 can be executed between Steps 61 and 62.
  • step 641 shown in FIG. 51 it is determined whether or not it is necessary to heat the wafer holding section 1442 1 of the unloading side transfer device 142, particularly the holding claw 14417. That is, as described above, after forming the bumps heated to about 210 ° C. on the bonding stage 110, the wafer 202 is held by the wafer holding section 144 of the unloading side transfer device 144. Then, the wafer is transported to the post-heater 170, but when holding the above, the difference between the temperature of the wafer holding section 1442 1, especially the holding claws 14 17 and the temperature of the wafer 202 after bump formation is bumped.
  • the wafer 202 may be damaged after bump formation. Whether or not the above-mentioned temperature difference or damage occurs depends on the material of the charge-generating semiconductor substrate to be handled and the like.
  • the process proceeds to step 642.
  • the heating is not performed, the process proceeds to step 644.
  • step 642 in step 642, the transfer device 1442 of the unloading transfer device 1442 is operated, and the wafer holding portion 1442 of the unloading transfer device 1442 is moved. Move it over the post-heater 170.
  • step 643 the post heat stage integrated with the panel heater frame 172 and the aluminum plate 173 of the postheater 170 is moved from the lower position 167 to the upper position. Raise to 1 6 8 Due to the ascent operation, the holding claws 1 4 1 provided on the first holding member 144 2 4 and the second holding member 144 2 5 in the wafer holding section 144 2 1 of the unloading side transfer device 144 are provided. 7 enters the escape groove 1707 formed in the aluminum plate 173.
  • the above-mentioned post heat stage is heated to about 210 ° C, and in the next step 645, the retaining claw 1 4 1 existing in the escape groove 1707 7. Further, heat the wafer holding section 144 2 1.
  • the above-mentioned bottom heat stage is lowered to the lowering position 1667 in step 646.
  • the heated wafer holding section 14421 is moved to above the bonding stage 110, and in step 648, the wafer stage 1 1 of the bonding stage 110 is moved. 1 is raised, and after forming the bump on the wafer mounting table 1 1 1, the wafer 202 is held by the wafer holding section 144 2 1. Then, the flow shifts to the above-mentioned step 602, and then shifts to the above-mentioned step 7 through the steps 603 and 604.
  • step 7 while controlling the temperature drop of the wafer 202 by heating the wafer 202 after the bumps are formed by the boss heat device 170, the bump bonding temperature of about 210 ° C. Then, post-heating of the anode is performed after bump formation to a temperature about 1 ° C. higher than room temperature.
  • the post-bump wafer 202 which is a charge-generating semiconductor substrate, is charged due to a change in temperature when the temperature is lowered.
  • the post-bump wafer 202 is connected to the post-heating device 170. Since it is placed in direct contact with the aluminum plate 173, the charge on the back surface, which is particularly easily charged, can be efficiently grounded via the aluminum plate 173. Therefore, as in the case of the above-described pre-heat operation, various temperature reduction controls can be performed as shown in FIG. That is, not only when the temperature is controlled by controlling the temperature of the panel heater 171, but also the panel heater frame 172 and the aluminum plate 173 of the post-heater 170 are provided as in the present embodiment. If the structure is separable, the panel heater frame 172 and the aluminum plate 173 are separated or not separated. Temperature reduction control is also possible by various operation controls in the case where there is no temperature control.
  • the temperature decrease curve indicated by reference numeral 1101 separates the panel heater frame 172 from the aluminum plate 173 and supplies cooling air to the aluminum plate 173.
  • the temperature drop curve indicated by reference numeral 1102 is a curve obtained when only the cooling air is supplied without performing the above separation, and reference numeral 1 1
  • the temperature decrease curve indicated by 03 is a curve when the above separation is performed and the supply of the cooling air is not performed
  • the temperature decrease curve indicated by reference numeral 104 is the curve of the separation operation and the cooling air. It is a curve when neither supply operation
  • the operation shown in FIG. 53 is performed by separating the panel heater frame 17 2 and the aluminum plate 17 3, and separating the aluminum plate 17 3, that is, the wafer 2 after the bump formation placed on the aluminum plate 17 3.
  • the temperature of the panel heater 171 is reduced from about 210 ° C to about 100 ° C by controlling the temperature of the panel heater 1-1 or by natural cooling.
  • the aluminum plate 173 is raised to the above-mentioned raised position 168, and the panel heater frame 172 and the aluminum plate 173 are separated.
  • step 612 it is determined in step 612 whether or not the temperature of the anode plate 1733 of the post-heater 170 has reached about 150 ° C. in the present embodiment.
  • the above-mentioned 150 ° C is higher than the above-mentioned temperature-falling rate from about 210 ° C to about 150 ° C. This is the temperature at which the cooling rate slows down after 50 ° C, that is, the temperature at which the cooling rate changes, and is a value obtained from the applicant's experiment. As described above, the value of 150 ° C.
  • the cooling air supply unit 173 is operated in step 613 to supply cooling air to the aluminum plate 173 I do.
  • step 614 it is determined whether the temperature of the aluminum plate 17 3 has dropped to about 40 ° C. When the temperature has dropped, the operation of the cooling air supply device 17 13 is stopped and the aluminum plate 17 3 The supply of cooling air to the You.
  • the above 40 ° C. is a value set according to the material of the charge generation semiconductor substrate and the like, and is not limited to this value.
  • Step 611 to Step 615 the temperature lowering control indicated by reference numeral 111 shown in FIG. 52 is executed.
  • the temperature of the aluminum plate 173 can be lowered from about 210 ° C to about 40 ° C in about 10 minutes.
  • Steps 6 13 to 6 15 are not performed, the temperature lowering control indicated by reference numeral 11 in FIG. 52 is performed. In this case, the temperature of the aluminum plate 173 is lowered from about 210 ° C to about 40 ° C in about 25 to 30 minutes.
  • the operation shown in FIG. 54 is performed without separating the panel heater frame 172 and the aluminum plate 173, and forming the aluminum plate 173, that is, the bumps placed on the aluminum plate 173.
  • the figure shows a case where temperature control of the rear wafer 202 is performed.
  • the only difference between the temperature control operation shown in Fig. 53 and the temperature control operation shown in Fig. 54 is the presence or absence of separation between the panel heater frame 172 and the aluminum plate 173. Description is omitted. Step 6 2 1 to Step 6 2 shown in Fig. 54
  • the operations 5 correspond to the operations of steps 61 1 to 61 5 shown in FIG.
  • Step 621 to Step 625 the temperature lowering control indicated by reference numeral 1102 in FIG. 52 is executed.
  • the temperature of the aluminum plate 173 can be lowered from about 210 ° C to about 40 ° C in about 20 minutes.
  • Steps 623 to 625 when the operations of Steps 623 to 625 are not performed, the temperature lowering control indicated by reference numeral 110 in FIG. 52 is performed. In this case, the temperature of the aluminum plate 173 is lowered from about 210 ° C to about 40 ° C in about 50 minutes.
  • step 8 After the end of the above-described post-heat operation, the process proceeds to step 8 and the following operation is performed.
  • the wafer holding section 1 4 2 1 of the unloading side transfer device 1 4 2 the wafer 2 0 2 is held, and the unloading device 1 3 2 Move upward.
  • the state after the movement is shown in FIG. Referring to FIG. 55, the following shows the formation of bumps from the boast heating device 170 to the unloading device 132.
  • the unloading operation of the wafer 202 will be described. In the unloading operation, the operation is slightly different depending on whether the panel heater frame 172 of the post-heater 170 is separated from the aluminum plate 173. Steps 801 and 802 shown in FIG.
  • Step 55 are performed when the panel heater frame 172 and the aluminum plate 173 are separated from each other, while the operations of steps 803 to 806 are performed. Is executed when the above separation operation is not performed. Steps 807 to 810 are operations common to both.
  • the panel heater frame 17 2 and the aluminum plate 17 3 are already separated due to the cooling operation in the boast heating operation as described above, and the aluminum plate 17 3 8, the first holding member 144 2 4 and the second holding member 144 2 5 of the wafer holding portion 144 2 1 of the unloading side transfer device 142 are attached in the above step 81. Close and hold the cooled bumps 202 on the aluminum plate 173.
  • step 802 the blow suction device 1711 is operated to blow air from the air inlet / outlet 17708 of the aluminum plate 1773 to blow the wafer 202 after the bump formation. Float from the aluminum plate 173. Then, the flow shifts to step 807 described later.
  • step 803 the first holding in the wafer holding unit 1442 of the unloading side transfer device 144 arranged above the post heat device 170 is performed. Open the member 1 4 2 4 and the second holding member 1 4 2 5.
  • step 804 the bottom heat stage in which the panel heater frame 172 and the aluminum plate 173 are integrally formed is raised to the above-mentioned raising position 168.
  • step 805 the first holding member 144 and the second holding member 144 are closed, and the wafer 202 is held after the cooled bumps are formed.
  • the blow suction device 1711 is operated to blow air from the air inlet / outlet hole 170 of the aluminum plate 173 to blow the wafer 202 after the bump formation. Floating from the plate 1 73.
  • step 807 if the above separation operation was performed, only the aluminum plate 173 was used. Lower to position 1 6 7. Therefore, the wafer 202 after the bump formation held by the wafer holding section 144 2 is located above the post-heater 170.
  • step 808 the operation of the blower suction device 1711 is stopped to stop the blowing of the blowing air.
  • the moving device 1442 of the unloading side transfer device 142 is driven to move above the unloading device 132 along the X direction.
  • step 810 if the post-heating apparatus 170 accepts the wafer 202 after the next bump formation, the aluminum plate 173 is again moved from about 40 ° C to about 210 ° C. Raise the temperature to
  • the driving unit 1 3 2 4 of the unloading device 1 3 2 operates, and as shown in FIG. 57, the holding unit 1 3 2 3 contacts the back surface 202 b of the wafer 202 after the bumps are formed. Then, after the bumps are formed, the wafer 202 is lifted so as to rise by about 1 bar from the holding claws 14 17 of the wafer holding portion 14 21.
  • the holding portion 1 3 2 3 contacts the back surface 2 0 2 b, the charging of the back surface 2 0 2 b is reduced because the charging of the back surface 2 0 2 b is grounded through the holding portion 1 3 2 3. .
  • the contact member for static elimination 14100 keeps in contact with the surface 202a of the wafer 202 after the bumps are formed. Therefore, as in the case of the transfer of the wafers 201 and 202 in the carry-in device 13 1 and the bonding stage 110, the holding portion 133 2 3 has the back surface 2 of the wafer 202 after the bump formation.
  • the holding portions 1323 hold the wafer 202 after the bumps are formed by the suction operation.
  • the holding portions 1 3 2 3 hold the wafers 202 after the bumps are formed, as shown in FIG. 58, the first holding members 14 2 4 and the second holding members 14 of the wafer holding portions 14 21
  • the opening 25 is opened by the drive section 142, and the holding of the wafer 202 is released after the bumps are formed.
  • the holding section 1323 is lowered, and after the bumps are formed, the wafer 202 is placed on the holding table 1321.
  • the holding table 1321 holds the wafer 202 after bump formation by a suction operation.
  • the holding table 1 32 1 holding the wafer 202 after the bump formation is moved in the X direction by the operation of the transfer device 1 32 2 for the unloading device. 2 Transport to the storage container 206 side.
  • the holding table 1321 stores the wafer 202 in the second storage container 206 after the bumps are formed.
  • the pre-heating operation and the post-heating are performed on a charge-generating semiconductor substrate, for example, a wafer such as a piezoelectric substrate wafer, which generates charges with a change in temperature.
  • a charge-generating semiconductor substrate for example, a wafer such as a piezoelectric substrate wafer, which generates charges with a change in temperature.
  • the charge-generating semiconductor substrate is brought into direct contact with the aluminum plates 16 3 and 17 3 that constitute the pre-heater 160 and the post-heater 170 and grounded. ing. Therefore, for example, without forming an aluminum film along the dicing line of the wafer or forming an aluminum film on the entire back surface of the wafer, the charge generated by the above temperature change may damage the circuits formed on the wafer. It can be reduced to the extent that it is not applied, and to the extent that, for example, the wafer itself does not crack due to a decrease in the adhesive strength to the stage.
  • the thickness of the wafer is 0.2 mm or less, or when the line-to-line distance of the circuit formed on the wafer is smaller than 1 im, and particularly when the difference between the line widths of adjacent lines is large.
  • the temperature control was performed both when the temperature of the wafer 201 before bump formation was increased and when the temperature of the wafer 202 after bump formation was decreased. Only when cooling from temperature to room temperature The above-mentioned temperature drop control may be performed. This is because, as described above, the wafers 201 and 202 have a characteristic that they are not easily discharged once charged, and after the temperature is reduced from the bump bonding temperature to room temperature, the wafer 202 is stored in the second container 2. This is because it is necessary to perform sufficient static elimination since it is housed in 06 and it may be a cause of failure if it remains charged.
  • FIG. 61 shows the ion generators 190-1, 19 9 when the wafer holding part 142-1 holding the wafer 202 after bump formation is placed above the unloading device 132.
  • the state where ions are applied to the wafer 202 after bump formation from 0-2 is shown in the figure.
  • each operation from FIG. 57 to FIG. 60 is performed.
  • ions are made to act on the wafer 202 after the bumps are formed.
  • the charge amount can be further reduced as described below, as compared with the case where the ion generator 190 is not provided.
  • the following charge amount is an example.
  • the surface 2 The charge amount of 02 a is about +18 V
  • the back face 202 b is about 110 V as described above. After the formation of such bumps, ions are caused to act on the front and back surfaces of the wafer 202 with the ion generator 190 for 4 minutes.
  • the amount of charge on the front surface 202 a is approximately +22 V
  • the charge on the rear surface 202 b can be approximately +22 V. Therefore, the above-described temperature rise control and temperature drop control in the present embodiment are performed, and further, ions are caused to act on at least the back surface 202 b by the ion generator 190 to thereby charge the back surface 202 b. Can be further reduced.
  • a blower 191 may be provided on the 02 b side to move the generated ions to the back surface 202 b more efficiently.
  • the operation of the blower 191 is controlled by the controller 180.
  • an electrostatic sensor 25 1 is provided, and the charge amount of both surfaces including at least the back surface 202 b, and preferably also the front surface 202 a is added to the electrostatic sensor 25 1.
  • the controller 180 controls the amount of ions generated by the above-mentioned ion generator 190 and the amount of air blown by the blower 191 based on the measured charge amount. part 1 4 before delivering operation of the bump forming after the wafer 2 0 2 from 2 1 to carry-out device 1 3 2, for more efficient removal conductive even in the Bosutohito operation, ions by the ion generating device 1 9 0 May be configured to work.
  • the pre-heating operation may be configured so that the ions generated by the ion generator 190 act.
  • the warp correcting operation is performed when the wafer 201 before bump formation is mounted on the bonding stage 110.
  • the preheating device 16 is additionally provided.
  • the above-mentioned blow suction device 16 1 1, 17 1 The warp correction operation may be executed by operating the device 1 to eject gas.
  • the wafer 201 before bump formation and the wafer 202 after bump formation are accompanied by a rise in temperature.
  • a positive charge is generated, and a negative charge is generated as the temperature drops.
  • the temperature of the wafer 201 before bump formation is not raised from room temperature to the above-mentioned bump bonding temperature at once, but is raised and lowered as shown in FIG. 44, for example. Is performed alternately, and the temperature is gradually increased to the above-mentioned bump bonding temperature.
  • positive charges generated by the temperature rise can be neutralized by negative charges generated by the temperature decrease.
  • the concept is that the increased charge is removed by reverse charging each time, so that even when the temperature is raised to the bump bonding temperature, the charge amount is equal to the initial charge of the wafer 201 before bump formation.
  • the wafer 20 is formed after bump formation from the bump bonding temperature to room temperature.
  • Such zigzag temperature rise control and temperature drop control may be adopted in the above-described preheating operation and the boast heating operation in the preheating device 160 and the boast heating device 170.
  • the wafer 201 before bump formation and the wafer 202 after bump formation cover almost the entire back surface of the aluminum plate 16.
  • the contact is made with the contact 17 and 17 3, when considering only the operation for removing static electricity, it is not always necessary to make contact with almost the entire surface, and the wafer before bump formation 21 and the wafer after bump formation 20 It is only necessary that about 1/3 of the radius from the outer periphery to the center of 2 contact the conductive member in an annular shape.
  • the preheating device 160 and the boast heating device 170 are provided, the above-described temperature drop control is performed using the postheating device 170, and further, the preheating device 160 is used.
  • the above-mentioned temperature rise control was performed. By performing independent operations in this way, the processes from wafer loading to wafer unloading can be processed more efficiently, and the tact time can be reduced.
  • a preheating device 160 and a boston heating device 170 are installed as in a bump forming device 102 as shown in FIG.
  • the controller is configured to control the temperature of the wafer 201 to be maintained at the bump bonding temperature, to control the temperature drop in the boost heating operation, and to control the temperature increase in the preheating operation in the bonding stage 110. It is also possible to adopt a configuration in which control is executed by 180.
  • the configuration of the entire bump forming apparatus can be made compact.
  • 0 shows the operation when a charge generating semiconductor substrate like the wafer before bump formation 201 is mounted on the wafer mounting table 1 1 1 and the pre-heating operation, the bonding operation, and the post-heating operation are performed.
  • a wafer before bump formation 201 as a charge-generating semiconductor substrate is transferred by using a transfer device 144 such as the transfer device 144 described above. It is mounted on the wafer mounting table 1 1 1 of the bonding stage 110 from the transfer device 130. At this time, the temperature of the wafer mounting table 111 is about 40 ° C.
  • the sub-plate 195 described later if the sub-plate 195 described later is used, the sub-plate placed by operating the suction device 114 of the bonder stage 110 is operated.
  • the plate 1 95 is sucked onto the wafer mounting table 1 1 1.
  • the suction operation is not performed.
  • the temperature of the wafer 201 before bump formation is increased from the above about 40 ° C. to about 210 ° C.
  • the wafer 201 is deformed such as the above-described warpage. Therefore, it is conceivable that damage to the wafer before bump formation 201 may be caused by restricting the deformation due to the suction operation, so that such damage is prevented from occurring.
  • step 1003 the temperature of the wafer before bump formation 201 is increased as described above at a temperature increase rate of, for example, 10 ° CZ.
  • the wafer before bump formation 201 is Since it is in direct contact with the wafer mounting table 111, the charge generated on the wafer 201 before bump formation due to the temperature change during the above temperature rise can be efficiently removed from the wafer mounting table 111. it can. Therefore, the heating rate can be set to various rates as described above.
  • step 4 Use the holding claw 1 4 1 7 to restrict the movement of the wafer 2 1 before bump formation on the wafer mounting table 1 1 1, and use the blower 1 1 5 in the next step 1 0 5
  • hot air is blown from the air inlet / outlet 1 1 3 of the wafer mounting table 1 1 1 to the wafer 201 before bump formation, and the electric charge charged to the wafer 201 before bump formation is discharged to the air.
  • the suction device 114 is operated to suck the wafer 201 before bump formation onto the wafer mounting table 111. Note that, in the present embodiment, after performing the above-described steps 1005 and 106, the steps 1005 and 106 are executed again.
  • the above-described blow operation for static elimination is performed twice.
  • the number of times of the above-described discharging operation and the time for performing the blowing operation may be set according to the charge amount of the wafer 201 before bump formation. For example, when the charge amount is about 150 V or less, the above-described blow operation for static elimination is performed only for a set time, and when the charge amount is about 180 V, the blow operation for static elimination is one. When the charge amount is about 100 V, the discharging blow operation can be performed a plurality of times and continuously as described above.
  • next step 1007 bump bonding is performed on the wafer before bump formation 201, and in the next step 1008, the operation of the suction device 114 is stopped to stop the suction.
  • the reason why the suction operation is stopped is the same as that the suction is not performed in step 1002, and the deformation of the wafer 202 after the bumps are formed due to the temperature change is not limited. This is to prevent occurrence.
  • the temperature of the wafer mounting table 111 is decreased from about 210 ° C. to about 40 ° C., for example, at a rate of 10 ° C.Z.
  • the wafer 202 is in direct contact with the wafer mounting table 1 1 1.
  • the charge generated on the wafer 202 after the bumps are formed due to the temperature change in the above can be efficiently removed from the wafer mounting table 111. Therefore, various rates can be set as the temperature decreasing rate as described above.
  • step 110 after the bumps are formed, the wafer 202 is blown to lift it from the wafer mounting table 111, and the transfer apparatus is used to unload the wafer 202 from the wafer mounting table 111. After the bumps are formed, the wafer 202 is transferred.
  • the blow operation for static elimination described above is performed in the pre-heating operation and the post-heating operation in the bump forming device 101 including the pre-heating device 160 and the boast heating device 170 also in the blow suction device 16 11, 17.
  • the operation may be performed by ejecting gas by operating 11.
  • a so-called subplate which is a so-called subplate
  • the sub-plate 195 shown in FIG. 64 can be attached to the back surface 201 b side.
  • the sub-plate 195 is made of, for example, a metal material such as aluminum, and the wafer 201 before bump formation is brought into contact with the back surface 201 b on the sub-plate 195. It is held on the sub-plate 195 by a leaf spring 196 provided on the 195.
  • the sub-plate 195 By providing the sub-plate 195, it is possible to prevent the wafers 201 and 202 from cracking, and the back surface 201b is always in contact with the sub-plate 195. Since it is electrically connected to the surface 201a through the panel 196, the difference in the amount of charge between the front and back surfaces can be reduced, and the circuit formed on the wafer 201 before bump formation is formed. The occurrence of damage due to charging can be reduced.
  • the sub-plate 195 when the sub-plate 195 is provided, the heat of the panel heaters 161 and 171 in the pre-heating operation and the post-heating operation is effectively applied to the wafers 201 and 202 so as to be effective.
  • the sub-plate 195 is placed on the sub-plate 195 so that the ions generated by the ion generator 190 effectively act on the back surfaces 201 b and 202 b of the wafers 201 and 202.
  • a plurality of through holes 197 penetrating in the thickness direction of the sub-plate 195 are provided. The charge whose charge amount has been reduced to approximately 200 V on average by the charge elimination operation performed on the charge-generating semiconductor substrate in the bump forming device 101 and the bump forming device 102 described above.
  • the charge generation semiconductor substrate is arranged in a state of being in contact with the pre-heating apparatus 160 and the boast heating apparatus 170 to remove and reduce the charge on the charge generation semiconductor substrate.
  • the charge generation semiconductor substrate may be configured to remove or reduce the charge on the charge generation semiconductor substrate without bringing the charge generation semiconductor substrate into contact with the preheat device and the boast heat device. .
  • FIG. 71 is a view corresponding to FIG. 2 and shows a bump forming apparatus 501 corresponding to the above-described modification.
  • the main difference between the first and second embodiments is the preheating device 560 and the postheating device 570, and the operation of removing and reducing the charge.
  • the preheating device 560 corresponds to the above-described preheating device 16 °
  • the post heating device 570 corresponds to the above-described boost heating device 170.
  • the same components are denoted by the same reference numerals, and description thereof will be omitted. Therefore, in the following, the preheating device 560 and the post-heating device 570 differ in the configuration from the above-described preheating device 160 and the post-heating device 170, and the operation of removing and reducing the charge. I will explain only.
  • the preheating device 560 holds the wafer before bump formation 201 held by the carry-in device 13 1 in the wafer holding portion 141 1 as shown in FIGS.
  • the temperature is raised from room temperature to about 210 ° C, which is the above-mentioned temperature for bump bonding when forming a bump on the bonding stage 11 °, without contacting the preheating device 560 as it is.
  • Device, and a panel as a heat source It has a structure in which an aluminum plate 163 as a heat diffusion member is mounted on a panel heater frame 162 having a heater 161.
  • the above-mentioned temperature for bump bonding of about 210 ° C. can be changed from about 150 ° C. to about 210 ° C. depending on the material of the wafer before bump formation.
  • the temperature rising operation by the panel heater 161 is controlled by the controller 180 while referring to temperature information from a temperature sensor 166 such as a thermocouple for measuring the temperature of the anode plate 163.
  • a temperature sensor 166 such as a thermocouple for measuring the temperature of the anode plate 163.
  • the temperature raising operation is one of the characteristic operations of the present bump forming apparatus 501, and will be described later in detail.
  • a coolant passage 1664 is formed in a zigzag shape in the anode plate 163.
  • air at room temperature is used as the above-mentioned coolant, and air is supplied to the coolant passage 1664 by the air supply device 165 whose operation is controlled by the controller 180.
  • water can be used as the coolant.
  • the wafer 201 before bump formation was held by the wafer holding unit 1411, with a gap between the aluminum plate 1663 of the pre-printing device 560 being about lmm. It is placed on the aluminum plate 16 3 in the state. Therefore, a groove 567 for avoiding interference with the holding claws 14 17 of the wafer holding portion 14 11 is provided on the wafer facing surface of the aluminum plate 16 3 in the traveling direction of the wafer holding portion 14 11. It is formed along.
  • the above-described boast heat device 570 is not connected to the boast heat device 570 with the wafer 202 after the bump formation held by the wafer holding section 1442 from the bonding stage 110 held.
  • the operation of the panel heater 17 1 is controlled by the controller 180 in order to control the temperature of the wafer 202 after the bumps are formed, and the temperature lowering control operation is the characteristic operation of the bump forming apparatus 501 of this example. This will be described in detail later.
  • an insulating far-infrared radiation coating is applied to the surfaces facing the pre-bump-forming wafer 201 and the post-bump-forming wafer 202 in the pre-heating devices 560 and 57 ⁇ provided in the anode heating plates 163 and 173. Is preferred. By performing the coating, the heat release property to the wafer 201 before bump formation and the wafer 202 after bump formation can be improved.
  • the charge generation is performed without bringing the charge-generating semiconductor substrate into contact with the preheating device 560 and the post-heating device 570.
  • the operation of removing and reducing the charge on the semiconductor substrate will be described below.
  • the operation of each component is controlled by the control device 180, so that a bump is formed on the pre-bump forming wafer 201.
  • a series of operations is performed in which the wafer 202 is stored in the second storage container 206 after the bumps are formed.
  • the control device 180 controls a warpage correction professional operation on the wafer 201 before bump formation, which is performed in the bonding stage 110.
  • the contact member for static elimination provided in the wafer holders 141 1 and 1421 is applicable to any wafer or substrate, such as the above-described warp-generating semiconductor substrate.
  • the contact member 14 100 for static elimination shown as an example.
  • the charge removing contact member 14100 the charge removing contact members 14107, 14113, 14116, 14120, 14121, and 14122 described above can be used.
  • preheating In operation instead of raising the temperature of the pre-bump-forming wafer 201 from room temperature to the above-mentioned bump bonding temperature at a stretch, for example, as shown in Fig. 74, temperature rise control is performed by alternately increasing and decreasing the temperature. Then, the temperature is raised to the above bump bonding temperature. By performing such a preheating operation, the positive charges generated by the temperature rise can be neutralized by the negative charges generated by the temperature drop.
  • the basic idea of the preheat operation in this example is that the increased charge is removed by reverse charging each time, so that the charge amount of the initial charge is maintained even when the temperature is increased to the bump bonding temperature.
  • the idea is to The preheating operation in this example will be described more specifically below.
  • FIG. 75 shows the flow of the entire pre-print operation, and the operation is controlled by the control device 180. That is, in step 211, it is determined whether the temperature of the anode plate 163 of the preheating device 560 is the start temperature. If the temperature is not at the start temperature, the panel heater 1 is turned on in step 210.
  • the above-mentioned starting temperature is adjusted by heating by 61 or cooling by air supply by the air supply device 165. In this example, the starting temperature is 40 ° C., and the temperature of the aluminum plate 163 is measured by the temperature sensor 166.
  • step 2103 the temperature rise gradient is controlled, and the temperature of the aluminum plate 163, that is, the wafer 201 before bump formation is started.
  • step 2104 the aluminum temperature is raised to the target temperature. It is determined whether plate 1 63 has arrived. In this example, as described above, the temperature for bump bonding of the wafer 201 before bump formation is about
  • the above-mentioned target temperature for the aluminum plate 163 is about 200 ° C. correspondingly.
  • the steps 221 to 224 shown in FIG. 76 are executed.
  • the target temperature for temperature rise can be changed according to the temperature for bump bonding. .
  • step 210 If it is determined in step 210 that the temperature has reached the target temperature, the process proceeds to step 210, and the preheating operation is completed. Therefore, in step 210, the wafer before bump formation 201 is transferred to the bonding stage 110.
  • step 210 air supply by the air supply device 165 is started, and the temperature of the aluminum plate 163 is lowered to the above-mentioned starting temperature.
  • step 210 the aluminum plate is cooled to the above-mentioned starting temperature. It is determined whether the temperature has dropped. Then, when the temperature is lowered to the start temperature, the air supply to the air supply device 165 is stopped in step 210, and the start temperature is maintained. Then, the process returns to step 210 to prepare for the pre-heating operation of the next wafer 201 before bump formation.
  • step 2103 the temperature of the aluminum plate 163 is raised according to a preset temperature rising gradient.
  • the temperature is set to 20 ° CZ.
  • the process proceeds to step 211, and it is determined whether or not the temperature lowering start condition is satisfied.
  • the temperature of the aluminum plate 163 is used.
  • the panel heater 161, the panel heater frame 162, and the aluminum plate 163 A plurality of through holes 2 5 2 are provided to penetrate them, and an electrostatic sensor 25 1 is arranged below the panel heater 16 1. Measure the charge of 0 1 b. The measured value is sent to the controller 180, and the charge amount is calculated.
  • Ions are pulled by conductors to accurately measure charge Of the through hole 25 2, the panel heater 16 1, the panel heater frame 16 2, and the aluminum plate 16 3 in order to prevent
  • the surface is preferably coated with an insulating material.
  • step 2 121 the temperature rise start time and the current A temperature width is obtained from each temperature of the aluminum plate 163 in the above, and it is determined whether or not the temperature width 271 has reached a predetermined value.
  • the process proceeds to the next step 211, and when not reached, returns to step 2103.
  • the temperature width 271 is set to 30 ° C.
  • time is selected as the physical quantity of the above-mentioned temperature drop start condition
  • reference numeral 273 seems to be a more appropriate corresponding part, but reference numeral 271 corresponds to time.
  • the time from the temperature rising start time to the temperature falling start time can be set to, for example, 2 minutes.
  • charge amount is selected, reference numeral 27 1 corresponds to the charge amount difference, for example, 30 OV ⁇ 1.
  • step 2 122 the supply of air to the coolant passage 164 by the air supply device 165 is started, and the temperature of the aluminum plate 163 is reduced.
  • the temperature drop slope at this time is set in advance. In this example, it is set to 130 ° C / min.
  • step 2 1 2 3 it is determined whether or not the cooling target condition is satisfied.
  • the physical quantity serving as the temperature lowering target condition include “time” and “charge amount” as described above, in addition to “temperature” in the present example.
  • the temperature width is obtained from the temperature of the aluminum plate 16 3 at the start of cooling and the current temperature, which is indicated by reference numeral 2 72 in FIG. It is determined whether or not has reached a predetermined ⁇ i. Then, when the above-mentioned predetermined value is reached, the next step 21
  • the above temperature range 272 is a value less than the above temperature range 271 and is a value of about 1/2 to about 1 Z3 of the temperature range 271, and in this example, it is set to 15 ° C. ing.
  • time is selected as the physical quantity
  • reference numeral 27 2 corresponds to time, for example, can be set to 1 minute.
  • charge amount is selected, reference numeral 27 2 corresponds to the difference in charge amount, for example, 1 It can be set to 0 0 V ⁇ 10%.
  • step 2 124 the supply of air to the coolant passage 164 by the air supply device 165 is stopped, and the cooling of the aluminum plate 163 is stopped.
  • step 4 After the operation in step 4, the process returns to step 210 again.
  • the temperature rise of the aluminum plate 16 3, that is, the wafer 201 before the bump is formed is performed by the temperature rise control operation of the steps 210 3, 210 4, and steps 212 1 to 212 4. Then, the temperature raising operation up to the bump bonding temperature is performed while alternately repeating the temperature lowering. By alternately raising and lowering the temperature in this manner, the electric charge mainly on the back surface 201 b of the wafer 201 before bump formation mainly increases by increasing the temperature, but the negative electric charge is generated by lowering the temperature. Neutralization is performed.
  • the temperature decrease width is smaller than the temperature increase width as described above, a positive charge is applied to the back surface 201 b of the wafer 201 before bump formation by the preheating operation as shown in FIG.
  • the charge is accumulated, the charge amount can be greatly reduced as compared with a case where the temperature is raised uniformly without alternately raising and lowering the temperature.
  • the voltage exceeds +200 V and is charged to approximately +300 V, but the temperature is increased by approximately +1 by alternately increasing and decreasing the temperature. It can be suppressed to about 0 V.
  • step 5 the transfer device 14 1 on the loading side is moved from the preheating device 560 to the bonding stage 110 by the moving device 14 13, and is held by the wafer holding unit 14 11.
  • the wafer before bump formation 201 is placed on the bonding stage 110.
  • the electric charge accumulated on the back surface 201 b Some of the charges may be grounded to the wafer mounting table 111, and some of the charges accumulated on the back surface 201b may move to the front surface 201a side.
  • the charge amount on the front surface 201a and the back surface 201b, especially on the back surface 201b is reduced as compared with the conventional case where the temperature rise control is not performed. . Further, a contact member 14100 for static elimination is brought into contact with the surface 201a. Therefore, it is possible to prevent spark from being generated on the surface 201a.
  • the amount of charge on the back surface 201b is negative due to a slight decrease in the temperature of the wafer 201 before bump formation due to grounding to the wafer mounting table 111 and deviating from the preheating device 560. Due to the increase in the charge, the charge decreases as indicated by reference numeral 302 in FIG.
  • the wafer 201 before bump formation is mounted on the bonding stage 110 and then mounted on the bonding stage 110 for the above-mentioned bump bonding by the heater 112 controlled by the control device 180.
  • the bump 19 is formed on the electrode portion 18 in the circuit on the wafer 201 before the bump is formed by the bump forming head 120 while being heated to the temperature. .
  • the post-bump forming anode 202 is carried out from the bonding stage 110.
  • the first holding member 1442 and the second holding member 144 are opened above the bonding stage 110 by the driving unit 1442, and then the bonding stage 110 is opened.
  • Raise the wafer mounting table 1 1 1 By the raising operation, the charge removing contact member 14100 provided on the charge removing member 1426 first contacts the surface 202a of the wafer 202 after the bumps are formed.
  • the wafer mounting table 111 of the bonding stage 110 is lowered. As a result, the wafer 202 after the bump formation is held by the wafer holding section 1442 of the unloading side transfer device 142.
  • the wafer 202 after bump formation held by the wafer holder 1 4 2 1 is transferred to the unloading side.
  • the wafer holder 1 4 2 1 is moved in the X direction by driving the transfer device 1 4 2 3 Then, as shown in FIG. 71, it is disposed above the post-heating device 570.
  • the post-heater 570 After forming the bumps, the bumps are formed from the above-mentioned temperature for bump bonding of about 210 ° C. to about 10 ° C. above the room temperature while controlling the temperature of the wafers 202 by heating the wafers 202. Post-heat of the post-wafer 202 is performed.
  • the temperature reduction control is performed by alternately repeating the temperature decrease and the temperature increase, thereby suppressing the charge amount particularly on the back surface 202b.
  • FIG. 79 shows an operation flow of the entire boast heat operation, and the operation control is performed by the control device 180. That is, in step 2 131, it is determined whether or not the temperature of the aluminum plate 1 73 of the boast heating device 570 is the starting temperature. When the temperature is not at the starting temperature, the panel heater 17 The starting temperature is adjusted to the above-mentioned temperature by the heat generated by the heat from 1 or by cooling by the air supply from the air supply device 175. In this example, the starting temperature is about 200 ° C., and the temperature of the aluminum plate 173 is measured by the temperature sensor 176.
  • step 2 1 3 the temperature drop gradient is controlled, and the temperature of the aluminum plate 1 7 3, that is, the wafer 202 after bump formation is started by the air supply by the air supply device 1 75, and step 2 1 At 34, it is determined whether or not the aluminum plate 17 3 has reached the target temperature for cooling.
  • the target temperature for cooling the aluminum plate 173 is 40 ° C.
  • the steps 2151 to 2154 shown in FIG. 80 are executed.
  • the operations performed in these steps 2 1 3 3, 2 1 3 4, and steps 2 15 1 to 2 15 4 are one of the characteristic operations in this example.
  • the temperature lowering operation is performed up to the temperature lowering target temperature while alternately repeating the temperature raising. W
  • step 2134 If it is determined in step 2134 that the temperature has reached the target temperature, the process proceeds to step 2135 to complete the post heat operation. Therefore, the wafer 202 is transferred to the unloading device 142 after the bumps are formed in step 213.
  • step 213 7 the power supply to the panel heater 177 is started, the aluminum plate 173 is heated to the above-mentioned start temperature, and the above-mentioned start is made in step 213. It is determined whether the temperature has risen to the temperature. Then, when the temperature has risen to the above-mentioned start temperature, the power supply to the panel heater 17 1 is stopped in step 213 to maintain the above-mentioned start temperature. Then, the process returns to step 2133 to prepare for the post-heating operation of the wafer 202 after the next bump formation.
  • step 213 the temperature of the aluminum plate 173 is lowered in accordance with the above-mentioned preset temperature drop gradient.
  • the temperature drop gradient is set to ⁇ 20 ° C./min.
  • step 2134 when the temperature of the aluminum plate 1733 has not reached the target temperature, the process proceeds to step 2151, and it is determined whether or not the temperature rising start condition is satisfied.
  • the temperature of the aluminum plate 173, the time from the start of the temperature drop, or the wafer 202 after bump formation is used.
  • the charge amount of the back surface 202 b is considered, and in this example, the temperature of the aluminum plate 173 is used.
  • a through hole 25 2 a plurality disposed an electrostatic sensor 2 5 1 to the lower panel heater 1 7 1, to measure the charge amount of the back 2 0 2 b by the electrostatic sensor 2 5 1 through the through hole 2 5 2.
  • the measured value is sent to the controller 180, and the charge amount is obtained.
  • step 2151 the temperature is indicated by the reference numeral 275 in FIG. Temperature range from each temperature of the aluminum plate 1 6 3 It is determined whether 75 has reached a predetermined value. If the predetermined value has been reached, the process proceeds to the next step 2152, and if not, the process returns to step 2133.
  • the temperature range 275 is set to 30 ° C.
  • time when “time” is selected as the physical quantity of the above-mentioned temperature rising start condition, reference numeral 275 corresponds to time, for example, can be set to 2 minutes, and when “charge amount” is selected, reference numeral 27 5 Corresponds to the difference in charge amount, and can be set to, for example, 300 V ⁇ 10%.
  • step 2 152 energization of the panel heater 17 1 of the post heating device 570 is started, and the temperature of the aluminum plate 17 3 is started.
  • the heating gradient at this time is set in advance. In this example, it is set to + 30 ° CZ.
  • the air supply by the air supply device 175 is stopped in response to the start of energization of the heater 171.
  • step 211 it is determined whether or not the heating target condition is satisfied.
  • the physical quantity serving as the target condition for temperature increase include “time” and “charge amount” as described above, in addition to “temperature” in the present example.
  • step 2 1
  • a temperature range is determined from the temperatures of the aluminum plate 173 at the start of heating and at the present time, as indicated by reference numeral 2776 in FIG. Is determined. If the predetermined value has been reached, the flow shifts to step 215. Otherwise, the flow returns to step 215.
  • the above-mentioned temperature range 276 is about 1/3 of the temperature range of 275 which is less than the above-mentioned temperature range 275, and is about 1/3 of the temperature range. ing.
  • reference numeral 276 corresponds to time, for example, it can be set to 1 minute, and when “charge amount” is selected, reference numeral 276 Corresponds to the charge amount difference, and can be set to, for example, 100 V ⁇ 10%.
  • step 2154 the power supply to the panel heater 1701 of the post heating apparatus 570 is stopped, and the temperature rise of the aluminum plate 173 is stopped. After the operation in step 2 1 5 4 is completed, the flow returns to step 2 1 3 3 again.
  • steps 2 1 3 3, 2 1 3 4 and steps 2 1 5 1 to 2 1 By the temperature drop control operation 54, the temperature lowering operation to the target temperature lowering temperature is performed while alternately repeating the temperature reduction and the temperature increase of the aluminum plate 173, that is, the wafer 202 after the bumps are formed.
  • the electric charge mainly on the back surface 202 b of the wafer 202 after the bump is formed increases as the temperature decreases, but increases as the temperature rises. Neutralization is performed.
  • the temperature rise width is smaller than the temperature fall width as described above. Therefore, as shown by reference numeral 303 in FIG.
  • the back surface 2 The force at which negative charges accumulate in 0 2b
  • the amount of charge can be significantly reduced as compared to the case where the temperature is uniformly lowered without alternately decreasing and raising the temperature. For example, as an example, when the temperature is lowered uniformly, the charge is made to about 2200 000 V to about 130 000 V. It can be suppressed to about V.
  • the wafer holding section 1442 of the unloading side transfer device 1442 is unloaded along the X direction by driving the moving device 1442 while holding the wafer 202 after the bumps are formed. Move above device 1 32. The state after the movement is shown in FIG. After the above movement, the drive unit 1324 of the unloading device 1332 is operated, and as shown in Fig. 57, the holding unit 1332 is placed on the back surface 202b of the wafer 202 after bump formation. After the bumps are formed, the wafer 202 rises from the holding claws 14 17 of the wafer holding portion 14 21 by about 1 mm.
  • the holding portion 1332 contacts the back surface 2 ⁇ 2b
  • the back surface 202b is grounded through the holding portion 1323.
  • the charge amount on the back surface 202 b decreases.
  • the contact member for static elimination 14100 keeps in contact with the surface 202a of the wafer 202 after the bumps are formed. Therefore, as in the case of the transfer of the wafers 201 and 202 in the carry-in device 13 1 and the bonding stage 110, the holding portion 133 is formed on the back surface 220 of the wafer 202 after the bumps are formed.
  • the holding portions 1323 hold the wafer 202 after the bumps are formed by the suction operation.
  • the first holding members 144 2 4 and the second holding members of the wafer holding portions 144 2 1 The drive unit 1442 is opened by the drive unit 142, and the holding of the wafer 202 is released after the bumps are formed.
  • the holding section 1323 is lowered, and after the bumps are formed, the wafer 202 is placed on the holding table 1321.
  • the holding table 1321 holds the wafer 202 after bump formation by a suction operation.
  • the holding table 1 32 1 holding the wafer 202 after the bump formation moves in the X direction by the operation of the unloading device moving device 1 32 2 to form the bump.
  • the rear wafer 202 is transferred to the second storage container 206 side.
  • the holding table 1321 stores the wafer 202 in the second storage container 206 after the bumps are formed.
  • the bump forming apparatus 501 of the present embodiment for example, wafer dicing of wafers, such as a piezoelectric substrate wafer, which generates electric charges in accordance with a temperature change, such as a piezoelectric substrate wafer, Without forming an aluminum film along the line or forming an aluminum film on the entire back surface of the wafer, the charge generated on the wafer by the above-mentioned temperature rise control and temperature drop control for the above wafer is transferred to the wafer. It can be reduced to a degree that does not damage the circuit formed in the wafer, and to a degree that the wafer itself does not crack.
  • the thickness of the wafer is 0.2 mm or less, or when the distance between the lines formed on the wafer is smaller than 1 ⁇ , and particularly when the difference between the line widths of adjacent lines is large.
  • the temperature rise gradient in the preheating operation is set to a constant value of 20 ° CZ, and
  • the above-mentioned temperature drop gradients were set at a constant of 120 ° C./min, respectively, but are not limited thereto.
  • the slope value may be different between near the start and end of the pre-heat operation and the next heat operation and near the middle.
  • the above-mentioned temperature rise gradient value, the above-mentioned target temperature for temperature rise, the above-mentioned temperature rise start temperature, the temperature fall gradient value, etc. Setting the temperature lowering target value, and setting the temperature lowering gradient value, the temperature lowering target temperature, the temperature raising start temperature, the temperature raising gradient value, and the temperature raising target value in the boost heat operation, It is also possible to previously store the data in a storage device 18 1 provided in the control device 180 and change the control according to the type of the wafer to be processed.
  • a unique temperature control was performed both when the temperature of the wafer 201 before bump formation was raised and when the temperature of the wafer 202 after bump formation was lowered, but also in this example.
  • the temperature drop control may be performed only when the temperature is lowered from the bump bonding temperature to room temperature. If f, as described above, the wafers 201 and 202 have the characteristic that they are not easily discharged once charged, and after the temperature is lowered from the above-mentioned bump bonding temperature to room temperature, the wafer 202 becomes the second This is because it is necessary to perform sufficient static elimination since the charged state remains in the storage container 206, which may cause a trouble when the charged state remains.
  • the wafers 20 2 after the bumps are formed from the wafer holding unit 14 2 1 of the unloading-side transfer device 14 2 to the unloading device 13 22, the wafers 20 2 after the bumps are formed It is preferable to provide the ion generator 190 at least on the back surface 202 b side, and preferably on both surfaces including the front surface 202 a side.
  • the ions generated by the ion generator 190 are used to form the bumps on the wafer 202 after the bump formation, as shown in FIG.
  • At least the back side 202 b preferably further It is preferable to act on both sides including the surface 202a side.
  • the static electricity can be removed more effectively.
  • the control device 1 based on the measured charge amount is used.
  • the amount of ion generated by the ion generator 190 and the amount of air blown by the blower 191 may be controlled.
  • the ion generator 190 is disposed below the panel heater 171 of the post-heating device 570. As shown, it is necessary to provide the through hole 252 described above with reference to FIG.
  • the ions generated by the ion generator 190 are applied to at least the back surface 201 b of the wafer 201 before bump formation, and preferably to both surfaces including the front surface 201 a. It is also possible to adopt a configuration in which it works.
  • the above-mentioned blower 19 1 ⁇ electrostatic sensor 25 1 may be added to the configuration. With such a configuration, static electricity can be more efficiently removed even during the preheating operation.
  • the pre-heating apparatus 560 and the post-heating apparatus 560 are arranged in the bump forming apparatus 501 of the present example. Further, as in the case described with reference to FIGS. 62 and 63, in the bump forming apparatus 501 of the present example, the pre-heating apparatus 560 and the post-heating apparatus
  • a configuration in which the installation of 0 is omitted can be adopted, and the operation shown in FIG. 84 is executed. That is, a pre-heating operation is performed by disposing a charge-generating semiconductor substrate such as the wafer 201 before bump formation at a distance of about 1 to several mm from the wafer mounting table 111, and after the pre-heating operation.
  • the charge-generating semiconductor substrate is placed on the wafer mounting table 1 1 1 to perform a bonding operation.After the bonding operation, the charge-generating semiconductor substrate is placed again in a non-contact state with the wafer mounting table 1 1 1. This shows the operation when performing the BOST heat operation.
  • a transfer device 144 such as the above-described transfer device 141 is used as a charge-generating semiconductor substrate. All of the wafers before bump formation 201 are placed above the wafer mounting table 111 of the bonding stage 110 from the transfer device 130. At this time, the temperature of the wafer mounting table 111 is about 40 ° C.
  • step 2203 as described above, the temperature of the wafer before bump formation 201 is increased while repeating the temperature increase and decrease at a temperature increase rate of 20 times.
  • the blower 1 1 5 is operated to blow hot air from the air inlet / outlet 1 1 3 of the wafer mounting table 1 1 1 1 onto the wafer 2 0 before bump formation, and the wafer before bump formation. Electric charge is removed by discharging the electric charge charged in 201 into the air.
  • the wafer before bump formation 201 is transferred onto the wafer mounting table 111, and the suction device 114 is operated to operate the wafer before bump formation 210 in step 220. 1 is sucked onto the wafer mounting table 1 1 1.
  • step 222 bump bonding is performed on the wafer 201 before bump formation.
  • the wafer mounting table 1 1 1 is raised to hold the above-mentioned charge-generating semiconductor substrate in the transfer device 1 4 3, and the gap between the charge-generating semiconductor substrate and the wafer mounting table 1 1 1
  • the wafer mounting table 111 is lowered so as to be about 1 to several mm.
  • the temperature of the wafer mounting table 111 is lowered from about 210 ° C. to about 40 ° C., for example, at a temperature lowering rate of 20 ° C.Z while repeating the temperature drop and the temperature rise.
  • the blowing operation for static elimination performed in step 222 can be performed in parallel.
  • the wafer 202 is transferred from the substrate 11 to the unloading device 1332.
  • the blowing apparatus was provided in the pre-heating apparatus 560 and the post-heating apparatus 570, respectively.
  • the above-described blow operation for static elimination is performed by the bump forming apparatus 5 including the preheating device 560 and the boast heating device 570.
  • the blowing device can be operated to discharge gas to execute the operation.
  • the charge-generating semiconductor substrate is discharged.
  • the charges in the groove 14 can be efficiently discharged into the air. Therefore, by performing the above-described charge elimination blow operation in parallel with the zigzag temperature control by raising and lowering the temperature of the charge-generating semiconductor substrate and further in parallel with the above-described ion blow operation, the above-described efficiency is improved.
  • the charge generation semiconductor substrate can be neutralized.
  • the processing can be performed using the above-described sub-plate.
  • Japanese Patent Application No. 1-1 189053 filed on July 2, 1999 including the description, claims, drawings, and abstracts Japanese Patent Application No. 1 filed on October 29, 1999 1-308855, Japanese Patent Application No. 11-293702 filed on October 15, 1999, Japanese Patent Application No. 11-323979, filed on January 15, 1999, And all those disclosed in Japanese Patent Application No. 2000-184467 filed on June 20, 2000 are incorporated herein by reference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

明 細 書 電荷発生半導体基板用バンプ形成装置、 電荷発生半導体基板の除電方法、 電 荷発生半導体基板用除電装置、 及び電荷発生半導体基板 技術分野
本発明は、 例えば圧電基板のように温度変化に伴い電荷を発生する電荷発生 型半導体基板、 即ち電荷発生半導体基板上にバンプを形成するためのバンプ形 成装置、 該バンプ形成装置にて実行される上記電荷発生半導体基板の除電方法、 上記バンプ形成装置に備わる上記電荷発生半導体基板用除電装置、 及び電荷発 生半導体基板に関する。
背景技術
近年、 例えば携帯電話のように電子部品が取り付けられる機器が非常に小型 化するのに伴い上記電子部品も小型化している。 よって、 半導体ウェハ上に形 成された個々の回路形成部分を上記半導体ウェハから切り出すことなく上記半 導体ウェハ上のそれぞれの上記回路形成部分における電極部分にバンプを形成 するバンプ形成装置が存在する。 このようなバンプ形成装置には、 バンプ形成 前の半導体ウェハを収納する第 1収納容器から上記バンプ形成前ウェハを取り 出す搬入装置と、 上記バンプが形成されたバンプ形成後ウェハを収納する第 2 収納容器と、 上記バンプ形成前ゥェハを載置して上記電極部分とバンプとの接 合のために上記半導体ウェハを通常 2 5 0 °Cから 2 7 0 °C程度まで加熱するボ ンディングステージと、 上記バンプ形成後ウェハを上記第 2収納容器へ収納す る搬出装置と、 上記搬入装置から上記ボンディングステージへ、 及び上記ボン デイングステージから上記搬出装置へ上記ウェハの移載を行う移載装置とが備 わる。
又、 上記携帯電話等に使用される S AW (Surface Acoust ic Wave) フィ ルタが形成される圧電基板や、 基板が従来のシリコンではなく、 水晶からなる 場合や、 リチウムタンタルや、 リチウムニオブや、 ガリウムヒ素等からなるい わゆる化合物半導体ウェハがある。 このような化合物半導体ウェハ等において も、 上記バンプを形成するときには、 通常 1 5 0 °C程度で最大 2 0 0 °C程度ま で加熱される力 従来のシリコンウェハに比べて加熱及び冷却の速度を遅くす る必要がある。
例えば、 図 8 5に示すような S AWフィルタ 1 0は、 圧電基板 1 1上に、 入 力側回路 1 2と出力側回路 1 3とが対をなして形成されている。 尚、 図 8 8に 示すように S AWフィルタ 1 0の電極部分 1 8にバンプ 1 9が上記バンプ形成 装置に備わるバンプ形成へッドにて形成される。 入力側回路 1 2及び出力側回 路 1 3は、 共に、 微細なく し歯状の形態にてなり、 供給された入力電気信号に て入力側回路 1 2が発振し、 該振動が圧電基板 1 1の表面 1 1 aを伝播して出 力側回路 1 3を振動させ、 該振動に基づき出力側回路 1 3にて電子信号が生成 され、 出力される。 このような動作により S AWフィルタ 1 0は、 特定周波数 の信号のみを通過させる。 尚、 図 8 5に示す S AWフィルタ 1 0は、 ウェハ状 の圧電基板 1 1上に格子状に形成した多数の S AWフィルタ 1 0の 1個を図示 しており、 各 S AWフィルタ 1 0における回路部分に対する例えばバンプ形成 動作等は、 ウェハ状の圧電基板 1 1に対して行われ、 最終的に上記ウェハ状の 圧電基板 1 1から各 S AWフィルタ 1 0に切り分けられる。 このようなウェハ 状の圧電基板 1 1は、 帯電し難いが、 一旦帯電するとこれを除去するのが困難 であるという特質がある。
このように圧電基板 1 1を用いていることから、 室温と上記約 1 5 0 °Cとの 間の昇温、 降温によるウェハ状の圧電基板 1 1の変形等により電荷が発生し、 ウェハ状の圧電基板丄 1の表面及び裏面に帯電が生じる。 該帯電量としては最 高約 9千 Vにも達する。
又、 上記ウェハ状の圧電基板 1 1そのものも薄いため、 上記表面 1 1 aに発 生させた振動に起因して裏面側も振動してしまう可能性がある。 裏面側も振動 すると、 表面側の振動に悪影響を及ぼすことから、 上記裏面側における振動発 生を防止するため、 ウェハ伏の圧電基板 1 1の裏面側には、 図 8 7に示すよう に微細な溝 1 4が形成されている。 よって、 溝 1 4内に存在する電荷を除電す るのは困難である。 尚、 図 8 7では溝 1 4を誇張して図示しており、 実際には 溝 1 4は、 上記 S AWフィルタにて処理される周波数に対応した寸法にて形成 されるもので、 数/ i m〜数百 A程度のピッチにて配列されている。
従って、 このように帯電したウェハ状の圧電基板 1 1を例えば上記ボンディ ングステージ上に載置するときに、 該ボンディングステージと圧電基板 1 1と の間、 又はウェハ状の圧電基板 1 1の表、 裏面の間でスパークが発生する場合 がある。 該スパークが生じると、 図 8 6に符号 1 5〜1 7にて示すように、 上 記くし歯部分が溶融してしまい、 回路を破壊してしまう。 又、 ウェハ状の圧電 基板 1 1が例えば上記ボンディングステージの上方に位置したとき、 上記帯電 によりウェハ状の圧電基板 1 1がボンディングステージ側に引き寄せられ、 該 引力によりウェハ状の圧電基板 1 1が割れてしまうという現象や、 ボンディン グステージに載置後、 再び圧電基板 1 1を移載しょうとしたとき、 ボンディン グステージへの接着力が強く無理に離そうとすることで割れてしまうという現 象が生じる。
このように、 ウェハ状の圧電基板 1 1や、 上記水晶基板のウェハや、 上記化 合物半導体ウェハのように、 昇温、 降温による温度変化に基づいて電荷が発生 する基板にバンプを形成するバンプ形成装置では、 シリコンウェハにバンプを 形成する従来のバンプ形成装置では重大な問題とならなかった、 バンプ形成の ために行うウェハの昇温、 降温により発生する電荷を除電することが重要な課 題となってくる。
尚、 例えば特開昭 5 5— 8 7 4 3 4号公報に開示されるように、 ウェハの表 面に施されたダイシングラインに沿ってアルミ二ゥム膜を形成して上記表面側 の帯電を上記ダイシングラインにてウェハ周囲に逃がして該ウェハ周囲から除 電したり、 ウェハ裏面全面にアルミニウム膜を形成し上記裏面の除電を容易に したウェハが提案されている。 このような方法によりウェハの除電は行われる と思われるが、 ウェハから各チップに切り離された後、 例えばバンプを介して 上記チップを基板にフリップチップ実装するようなときには上記裏面に押圧部 材を接触させながら押圧及び超音波振動を作用させる。 このとき、 上記押圧部 材の上記超音波振動により上記裏面のアルミ二ゥム膜が剥離し不具合発生の要 因となる可能性がある。 よって、 除電のために施した上記アルミニウム膜を実 装前には除去する必要があり、 工程及びコス卜の増加という問題がある。
一方、 上述したように、 ウェハ状の圧電基板 1 1や、 上記水晶基板のウェハ や、 上記化合物半導体ウェハでは、 昇温、 降温による温度変化に起因して電荷 が発生するので、 従来のシリコンウェハに対する昇温、 降温の速度に比べて低 速にする必要がある。 よって、 上記圧電基板 1 1等では、 従来のシリコンゥェ ハのような帯電を生じないウェハにおけるタク トに比べてタク トが長くなつて しまうという問題も生じる。
さらに又、 ウェハ状の圧電基板 1 1や、 上記水晶基板のウェハや、 上記化合 物半導体ウェハでは、 例えば、 上記昇温後上記ボンディングステージ上に載置 したときのように温度変化が生じたときに、 例えば上記ウェハ状の圧電基板 1 1においては、 上記昇温時における温度と上記ボンディングステージとの温度 差により、 反りが生じる。 該反りが生じたままバンプ形成を行うとウェハ状の 圧電基板 1 1が割れたり欠けたり、 破損してしまうことから、 上記反りを矯正 する必要がある。
本発明は、 上述したような問題点を解決するためになされたもので、 電荷発 生半導体基板のバンプ形成前後における当該基板の昇温、 降温により発生する 電荷の除電を有効に行い、 かつ温度差が生じても帯電を生じない基板における タク 卜と遜色のないタク トにて動作し、 さらに電荷発生半導体基板の破損を生 じない、 即ち、 電荷発生半導体基板に対して焦電破壊及び物理的破損を防止可 能な、 バンプ形成装置、 該バンプ形成装置にて実行される電荷発生半導体基板 の除電方法、 上記バンプ形成装置に備わる上記電荷発生半導体基板用除電装置、 及び電荷発生半導体基板を提供することを目的とする。 発明の開示
本発明は、 上記目的を達成するため、 以下のように構成している。 本発明の第 1態様の電荷発生半導体基板用バンプ形成装置によれば、 温度変 化に伴い電荷を発生する電荷発生半導体基板がバンプを形成するに必要なバン プボンディング用温度に加熱された状態にて、 上記電荷発生半導体基板上の回 路に形成されている電極上に上記バンプを形成するバンプ形成へッドを備えた 電荷発生半導体基板用バンプ形成装置であって、
上記加熱された上記電荷発生半導体基板へのバンプのボンディングの後、 上 記電荷発生半導体基板を冷却するとき、 該冷却による温度降下にて当該電荷発 生半導体基板に生じた電荷を除去する加熱冷却装置と、
上記ボンディング後に上記電荷発生半導体基板を冷却するための温度降下制 御を上記加熱冷却装置に対して行う制御装置と、
を備えた。
上記構成によれば、 加熱冷却装置及び制御装置を備えることで、 少なくとも 電荷発生半導体基板へのバンプボンディングが行われた後に電荷発生半導体基 板を冷却するときに、 該冷却により上記電荷発生半導体基板に蓄積する電荷を 除電するようにした。 よって、 上記電荷発生半導体基板の帯電量を従来に比べ て低減することができる。 したがって、 上記電荷発生半導体基板に除電用の手 段を施すことなく、 上記帯電が原因となる上記電荷発生半導体基板に形成され ている回路の焦電破壊や当該電荷発生半導体基板自体の割れ等の損傷の発生を 防止することができる。
又、 本発明の第 2態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記加熱冷却装置は、 上記冷却を行うとき、 上記電荷発生半導体基板の回路形成 面である表面に対向する裏面に接触して、 上記冷却による温度降下にて当該電 荷発生半導体基板に生じた電荷を除去するように構成することもできる。
又、 本発明の第 3態様の電荷発生半導体基板用除電方法によれば、 温度変化 に伴い電荷を発生する電荷発生半導体基板上の回路に形成されている電極上に バンプを形成するに必要なバンプボンディング用温度に加熱されて当該電荷発 生半導体基板へのバンプのボンディングが行われた後、 上記電荷発生半導体基 板を冷却するとき、 上記冷却による温度降下にて上記電荷発生半導体基板に生じる電荷を当該電 荷発生半導体基板を載置する載置部材を介してアースして除電を行う。
これらの構成によれば、 バンプ形成後に上記電荷発生半導体基板が冷却され るとき、 上記加熱冷却装置は上記電荷発生半導体基板に直接接触することから、 上記除電が可能である。
又、 本発明の第 4態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記加熱冷却装置は、 上記電荷発生半導体基板を上記バンプボンディング用温度 に加熱する前に上記バンプボンディング用温度付近まで上記電荷発生半導体基 板のプリヒート動作をさらに行い、 かつ上記プリヒート動作による温度上昇に て上記電荷発生半導体基板に生じた電荷を上記電荷発生半導体基板の上記裏面 に接触して除去し、
上記制御装置は、 さらに、 上記プリヒート動作を行うための温度上昇制御を 上記加熱冷却装置に対して行うように構成することもできる。
該構成によれば、 上記電荷発生半導体基板を上記バンプボンディング用温度 に加熱するプリヒート動作により上記電荷発生半導体基板に生じる電荷につい ても除電することが可能となる。 よって、 上記焦電破壊や上記割れ等の損傷の 発生をより低減することが可能となる。
又、 本発明の第 5態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生半導体基板 を加熱するバンプボンディングステージと、 上記制御装置による上記温度降下 制御に従い上記電荷発生半導体基板の冷却を行う冷却装置と、 を備え、 上記冷 却装置は、 上記電荷発生半導体基板の上記裏面に接触する熱拡散部材と、 上記 熱拡散部材に対して着脱自在であり上記熱拡散部材を昇温する加熱部と、 上記 熱拡散部材と上記加熱部とを分離させ上記熱拡散部材の冷却を促進させる分離 装置と、 を有するように構成することもできる。
又、 本発明の第 6態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生半導体基板 を加熱するバンプボンディングステージと、 上記制御装置による上記温度上昇 制御に従い上記電荷発生半導体基板の上記プリヒート動作を行うプリヒート装 置と、 を備え、 上記プリヒート装置は、 上記電荷発生半導体基板の上記裏面に 接触する熱拡散部材と、 上記熱拡散部材に接触し上記熱拡散部材を昇温する加 熱部と、 上記熱拡散部材と上記加熱部とを分離させ上記熱拡散部材の冷却を促 進させる分離装置と、 を有するように構成することもできる。
これらの構成によれば、 上記分離装置により上記熱拡散部材と上記加熱部と の分離が行われることから、 上記熱拡散部材の冷却を促進して従来に比べてタ タ トの短縮を図ることができ、 又、 上記加熱部の寿命を長くすることができる。 又、 本発明の第 7態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記加熱冷却装置に載置された上記電荷発生半導体基板に対して気体を供給する 気体供給装置をさらに備え、
上記制御装置は、 上記加熱冷却装置に載置された上記電荷発生半導体基板に 生じた反りを矯正するための反り矯正動作制御を上記気体供給装置及び上記加 熱冷却装置のいずれか一方に対して行うように構成することもできる。
該構成によれば、 気体供給装置から電荷発生半導体基板に気体を吹き付ける ようにしたことにより、 電荷発生半導体基板の反りを矯正でき、 割れ等の損傷 を防止することができる。
又、 本発明の第 8態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記制御装置は、 上記加熱冷却装置に載置された上記電荷発生半導体基板に生じ た電荷を除去するための除電用ブ口一動作制御を上記気体供給装置に対して行 うように構成することもできる。
該構成によれば、 上記制御装置は上記気体供給装置に対して除電用ブロー動 作制御を行うことから、 電荷発生半導体基板の除電を行うことができ、 上記焦 電破壊や、 割れ等の損傷を防止することができる。
又、 本発明の第 9態様の電荷発生半導体基板用バンプ形成装置によれば、 上 記電荷発生半導体基板の上記表面に接触し、 上記表面に生じた分の電荷を除去 する除電用接触部材をさらに備えるように構成することもできる。
該構成によれば、 除電用接触部材により電荷発生半導体基板の表面の電荷も 除電でき、 さらに上記焦電破壊や、 割れ等の損傷を防止することができる。 又、 本発明の第 1 0態様の電荷発生半導体基板用バンプ形成装置によれば、 上記電荷発生半導体基板に蓄積された電荷を中和するイオンを発生するイオン 発生装置をさらに備えるように構成することもできる。
該構成によれば、 イオン発生装置により電荷発生半導体基板の電荷の中和を 行うことができ、 さらに上記焦電破壊や、 割れ等の損傷を防止することができ る。
又、 本発明の第 1 1態様の電荷発生半導体基板用バンプ形成装置によれば、 上記電荷発生半導体基板を保持する保持爪を有し該保持爪にて上記電荷発生半 導体基板を保持するとともに上記電荷発生半導体基板の上記加熱冷却装置への 搬送を行うウェハ保持部をさらに備え、 上記ウェハ保持部及び上記保持爪にお いて、 上記ィォン発生装置から発生した上記イオンが作用する箇所には絶縁材 料にてコーティングを施すように構成することもできる。
該構成によれば、 ウェハ保持部の保持爪部分には絶縁材料にてコーティング を施したことから、 上記イオン発生装置から発せられたイオンが金属部分に作 用して上記除電作用が低減してしまうのを防止することができる。
又、 本発明の第 1 2態様の電荷発生半導体基板用バンプ形成装置によれば、 上記加熱冷却装置において、 上記電荷発生半導体基板の上記裏面に接触する部 分には、 当該加熱冷却装置と上記電荷発生半導体基板との熱伝達率を向上し上 記電荷発生半導体基板の除電を図る金属メツキを施すように構成することもで さる。
該構成によれば、 金属メツキを施すことで、 加熱冷却装置と電荷発生半導体 基板との間の熱伝導率が良くなり、 又、 電荷発生半導体基板の除電効果を高く することができる。
さらに又、 本発明の第 1 3態様の電荷発生半導体基板用除電装置によれば、 温度変化に ί半い電荷を発生する電荷発生半導体基板を加熱後冷却するとき、 当 該電荷発生半導体基板の回路形成面である表面に対向する裏面に接触して、 上 記冷却による温度降下にて当該電荷発生半導体基板に生じた電荷を除去する加 熱冷却装置と、
上記電荷発生半導体基板を冷却するための温度降下制御を上記加熱冷却装置 に対して行う制御装置と、
を備える。
さらに又、 本発明の第 1 4態様の電荷発生半導体基板によれば、 温度変化に 伴い電荷を発生する電荷発生半導体基板の回路形成面である表面に形成され、 当該電荷発生半導体基板に生じた電荷を除去するため導体にてなる電荷除去用 領域と、
上記電荷除去用領域に接続され、 かつ上記表面に形成された回路形成部分を 当該電荷発生半導体基板より切り分けるためのダイシングラインと、 を備える。
さらに又、 本発明の第 1 5態様の電荷発生半導体基板用除電方法によれば、 第 1 4態様の電荷発生半導体基板に、 第 9態様の除電用接触部材を接触させて 当該電荷発生半導体基板に生じた電荷を除去する。
上記第 1 4態様の電荷発生半導体基板、 及び第 1 5態様の電荷発生半導体基 板の除電方法によれば、 電荷除去用領域及びダイシングラインを備え、 電荷発 生半導体基板に生じた電荷を上記電荷除去用領域から、 又は電荷除去用領域及 びダイシングラインを通して除去することができる。 よって、 帯電が原因とな る上記電荷発生半導体基板に形成されている回路の焦電破壊や当該電荷発生半 導体基板自体の割れ等の損傷の発生を防止することができる。 ここで、 電荷発 生半導体基板における帯電量は、 例えば上記電荷発生半導体基板に形成した回 路形成部分から上記電荷発生半導体基板におけるダイシングラインへのアース の仕方によっても変化する。 最も効果的に除電を行つたときにはイオン発生装 置を使用しなくても上記帯電量を約 ± 2 O Vにまで低減することができ、 平均 すると約 ± 2 0 O Vに低減することができる。
さらに又、 本発明の第 1 6態様の電荷発生半導体基板によれば、 温度変化に 伴い電荷を発生する電荷発生半導体基板に帯電した電荷の除去を行ない、 帯電 量が土 2 0 0 V以下である。 さらに又、 本発明の第 1 7態様の電荷発生半導体基板によれば、 上記第 3態 様の除電方法にて電荷発生半導体基板の電荷の除去が行われる。
又、 本発明の第 1 8態様の電荷発生半導体基板用バンプ形成装置によれば、 上記制御装置にて行われる上記温度降下制御は、 上記冷却による温度降下にて 上記電荷発生半導体基板に生じた電荷を除去する温度降下制御であり、
上記加熱冷却装置は、 上記電荷発生半導体基板に対して非接触な状態にて上 記電荷発生半導体基板を上記バンプボンディング用温度に加熱するとともに、 上記非接触な状態にて上記ボンディング後に上記制御装置による上記温度降下 制御に従い上記電荷発生半導体基板の冷却を行うように構成することもできる。 又、 本発明の第 1 9態様の電荷発生半導体基板用除電方法によれば、 温度変 化に伴い電荷を発生する電荷発生半導体基板上の回路に形成されている電極上 にバンプを形成するに必要なバンプボンディング用温度に加熱されて当該電荷 発生半導体基板へのバンプのボンディングが行われた後、 上記電荷発生半導体 基板に非接触な状態にて配置され上記電荷発生半導体基板を加熱して上記電荷 発生半導体基板の降温を調整する冷却装置を用いて上記電荷発生半導体基板を 冷却するとき、 該冷却による温度降下にて当該電荷発生半導体基板に生じる電 荷を除去する温度降下制御を上記冷却装置に対して行う。
これらの構成によれば、 バンプ形成後に上記電荷発生半導体基板が冷却され るとき、 上記加熱冷却装置は上記電荷発生半導体基板に非接触な状態にて、 上 記電荷発生半導体基板に蓄積する電荷を除去する温度降下制御を行うようにし たことから、 上記帯電量を従来に比べて低減することができる。 よって、 上記 電荷発生半導体基板に除電用の手段を施すことなく、 上記帯電が原因となる上 記電荷発生半導体基板に形成されている回路の損傷や当該電荷発生半導体基板 自体の割れ等の損傷の発生を防止することができる。
又、 本発明の第 2 0態様の電荷発生半導体基板用バンプ形成装置によれば、 上記第 1 8態様のバンプ形成装置において、 上記温度降下制御は、 降温と、 該 降温における下降温度幅未満の温度幅による昇温とを交互に繰り返し行うよう に構成することもできる。 又、 上記第 1 8態様のバンプ形成装置において、 上記加熱冷却装置における 上記電荷発生半導体基板の上記バンプボンディング用温度への加熱は、 上記バ ンプボンディング用温度付近まで上記電荷発生半導体基板を予め加熱するプリ ヒ一ト動作を含み、
上記制御装置は、 さらに、 上記プリヒート動作による温度上昇にて生じ上記 電荷発生半導体基板に生じる電荷を除去する温度上昇制御を上記加熱冷却装置 に対して行うように構成することもできる。
又、 上記温度上昇制御は、 昇温と、 該昇温における上昇温度幅未満の温度幅 による降温とを交互に繰り返し行うように構成することもできる。
又、 本発明の第 2 1態様の電荷発生半導体基板用除電装置によれば、 温度変 化に伴い電荷を発生する電荷発生半導体基板を加熱後冷却するとき、 該冷却に よる温度降下にて当該電荷発生半導体基板に生じた電荷を除去する温度降下制 御を行う制御装置と、
上記電荷発生半導体基板に対して非接触な状態にて、 上記電荷発生半導体基 板を加熱するとともに、 該加熱後に上記制御装置による上記温度降下制御に従 い上記電荷発生半導体基板の冷却を行う加熱冷却装置と、
を備える。
又、 本発明の第 2 2態様の電荷発生半導体基板によれば、 上記第 1 9態様の 除電方法にて電荷発生半導体基板の電荷の除去が行われる。 図面の簡単な説明
本発明のこれらと他の目的と特徴は、 添付された図面についての好ましい実 施形態に関連した次の記述から明らかになる。 この図面においては、
図 1は、 本発明における第 1実施形態におけるバンプ形成装置の全体構成を 示す斜視図であり、
図 2は、 図 1に示すバンプ形成装置の主要部分の詳細な構造を示す斜視図で あり、
図 3は、 図 1及び図 2に示す搬入装置の構成の詳細を示す斜視図であり、 図 4は、 図 1及び図 2に示すォリフラ合わせ装置の構成の詳細を示す斜視図 であり、
図 5は、 図 1及び図 2に示す移載装置の構成の詳細を示す斜視図であり、 図 6は、 図 5に示すウェハ保持部の保持爪部分の詳細を示す図であり、 図 7は、 図 5に示すウェハ保持部の除電用接触部材の構成の詳細を示す図で あり、
図 8は、 図 5に示すウェハ保持部の除電用接触部材の他の例における構成を 示す図であり、
図 9は、 ウェハの周縁部分に設けたアルミニゥム膜と上記除電用接触部材の 接触位置との関係を示す図であり、
図 1 0は、 上記除電用接触部材の変形例を示す図であり、
図 1 1は、 図 1に示すバンプボンディング装置の構造を示す図であり、 図 1 2は、 ウェハの反りを説明するための図であり、
図 1 3は、 上記除電用接触部材の変形例を示す図であり、
図 1 4は、 上記除電用接触部材の変形例を示す図であり、
図 1 5は、 図 1 4に示す除電用部材の構造を説明するための斜視図であり、 図 1 6は、 図 1 4に示す除電用部材の構造を説明するための斜視図であり、 図 1 7は、 上記除電用接触部材の変形例を示す斜視図であり、
図 1 8は、 上記除電用接触部材の変形例を示す図であり、
図 1 9は、 図 1 8に示す除電用接触部材の変形例を示す図であり、 図 2 0は、 上記除電用接触部材の変形例を示す図であり、
図 2 1は、 上記除電用接触部材の一端に取り付ける部材の変形例を示す斜視 図であり、
図 2 2は、 プリヒート装置及びボストヒート装置の斜視図であり、 図 2 3は、 図 2 2に示すプリヒート装置及びポス トヒート装置の動作説明用 の図であり、
図 2 4は、 図 2 2に示すプリヒート装置及びボストヒート装置の動作説明用 の図であり、 図 2 5は、 図 2 2に示すプリヒート装置及びボストヒ一ト装置のアルミニゥ ム板及びヒータープレート枠の斜視図であり、
図 2 6は、 図 2 2に示すプリヒート装置及びボス トヒ一ト装置のアルミユウ ム板及びパネルヒータ枠の斜視図であり、
図 2 7は、 図 1に示すバンプ形成装置の動作を示すフローチャートであり、 図 2 8は、 図 2 7に示すステップ 2における動作を説明するための図であつ て搬入装置にてウェハを上昇させている状態を示す図であり、
図 2 9は、 図 2 7に示すステップ 2における動作を説明するための図であつ て搬入側移載装置にてウェハを保持する直前の状態を示す図であり、
図 3 0は、 図 2 7に示すステップ 2における動作を説明するための図であつ て搬入側移載装置にてウェハを保持した直後の状態を示す図であり、
図 3 1は、 図 2 7に示すステップ 2における動作を説明するための図であつ て搬入側移載装置にてウェハを保持した状態を示す図であり、
図 3 2は、 図 2 7に示すステップ 3における動作を説明するためのフローチ ャ一卜であってパネルヒータ枠及びアルミニウム板を分離する場合の動作を示 すフローチヤ一トであり、
図 3 3は、 図 2 7に示すステップ 3における動作を説明するための図であつ てプリヒート装置の上方へバンプ形成前ウェハを搬送させた状態を示す図であ り、
図 3 4は、 図 2 7に示すステップ 3における動作を説明するための図であつ てバンプ形成前ウェハをアルミニゥム板上へ載置した状態を示す図であり、 図 3 5は、 図 2 7に示すステップ 3における動作を説明するための図であつ てウェハ保持部によるバンプ形成前ウェハの保持を解除した状態を示す図であ り、
図 3 6は、 図 2 7に示すステップ 3における動作を説明するための図であつ てバンプ形成前ウェハを載置したアルミニウム板を下降させた状態を示す図で あり、
図 3 7は、 図 2 7に示すステップ 3における動作を説明するためのフローチ ヤートであってパネルヒータ枠及びアルミニウム板を分離しない場合の動作を 示すフローチヤ一トであり、
図 3 8は、 図 2 7に示すステップ 4における動作を説明するための図であつ てプリヒ一ト動作における昇温制御を示す図であり、
図 3 9は、 プリヒート動作における昇温制御の変形例を示す図であり、 図 4 0は、 図 2 7に示すステップ 5における、 プリヒート装置からバンプボ ンディング装置への移載動作を説明するためのフローチヤ一トであってパネル ヒータ枠及びアルミニウム板を分離する場合の動作を示すフローチヤ一トであ り、
図 4 1は、 図 2 7に示すステップ 5における、 プリヒート装置からバンプボ ンディング装置への移載動作を説明するためのフローチヤ一卜であってパネル ヒータ枠及びアルミニウム板を分離しない場合の動作を示すフロ一チヤ一卜で あり、
図 4 2は、 図 2 7に示すステップ 5における、 バンプボンディングステージ へのバンプ形成前ウェハの移載の際に実行される、 熱風吹き付けを行う場合の 反り矯正動作を説明するためのフローチャートであり、
図 4 3は、 図 2 7に示すステップ 5における、 バンプボンディングステージ へのバンプ形成前ウェハの移載の際に実行される、 熱風吹き付けを行なわない 場合の反り矯正動作を説明するためのフローチヤ一トであり、
図 4 4は、 プリヒート動作における温度上昇制御動作による温度上昇を示す グラフであり、
図 4 5は、 図 2 7に示すステップ 5における動作を説明するための図であつ てバンプ形成前ウェハをボンディングステージの上方に配置した状態を示す図 であり、
図 4 6は、 図 2 7に示すステップ 5における動作を説明するための図であつ てボンディングステージにてウェハを保持する直前の状態を示す図であり、 図 4 7は、 図 2 7に示すステップ 5における動作を説明するための図であつ てボンディングステージにてウェハを保持し搬入側移載装置がウェハの保持を 解除した状態を示す図であり、
図 4 8は、 図 2 7に示すステップ 5における動作を説明するための図であつ てボンディングステージにてウェハを保持した状態を示す図であり、
図 4 9は、 ポストヒート動作における温度降下制御動作による温度降下を示 すグラフであり、
図 5 0は、 上記ポストヒート動作を説明するためのフローチヤ一トであり、 図 5 1は、 上記ポス トヒート動作を開始する際に、 ウェハ保持部の加熱を行 う場合の動作を示すフローチヤ一トであり、
図 5 2は、 上記ボストヒート動作における温度降下パターンを示すグラフで り、
図 5 3は、 上記ボストヒート動作を説明するためのフローチヤ一トであり、 図 5 4は、 上記ボストヒ一ト動作を説明するためのフローチヤ一トであり、 図 5 5は、 上記ポストヒート動作後、 バンプ形成後ウェハをポストヒート装 置から搬出する動作を示すフローチャートであり、
図 5 6は、 図 2 7に示すステップ 8における動作を説明するための図であつ て搬出側移載装置にて保持されたバンプ形成後ウェハを搬出装置の上方に配置 した状態を示す図であり、
図 5 7は、 図 2 7に示すステップ 8における動作を説明するための図であつ て搬出装置の保持部をバンプ形成後ウェハに接触させた状態を示す図であり、 図 5 8は、 図 2 7に示すステップ 8における動作を説明するための図であつ て搬出側移载装置によるウェハの保持を解除した直後の状態を示す図であり、 図 5 9は、 図 2 7に示すステップ 8における動作を説明するための図であつ て搬出装置の保持部に保持されたバンプ形成後ウェハを保持台に載置する直前 の状態を示す図であり、
図 6 0は、 図 2 7に示すステップ 8における動作を説明するための図であつ て上記バンプ形成後ウェハを保持台に載置した状態を示す図であり、
図 6 1は、 図 1に示す搬出側移載装置から搬出装置へバンプ形成後ウェハを 移載するときに、 イオン発生装置にてイオンをウェハに作用させる状態を示す 図であり、
図 6 2は、 図 1に示すバンプ形成装置の変形例における斜視図であり、 図 6 3は、 図 6 2に示すバンプ形成装置にて実行される除電用ブロー動作を 説明するためのフローチヤ一トであり、
図 6 4は、 上記バンプ形成前ウェハに取り付けるサブプレートの平面図であ り、
図 6 5は、 上記除電用接触部材の変形例を示す図であり、
図 6 6は、 図 1及び図 2に示す搬入側移載装置及び搬出側移載装置の変形例 を示す図であり、
図 6 7は、 上記除電用接触部材の変形例を示す図であり、
図 6 8は、 図 1及び図 2に示すプリヒート装置、 ポストヒート装置、 及びボ ンデイングステージにおいて、 電荷発生半導体基板との接触面に銀メツキを施 した状態の図であり、
図 6 9は、 電荷除去用領域を形成した電荷発生半導体基板の平面図であり、 図 7 0は、 図 6 9に示す電荷除去用領域の変形例を示す図であり、 図 7 1は、 図 1に示すバンプ形成装置の変形例におけるバンプ形成装置の主 要部分の詳細な構造を示す斜視図であり、
図 7 2は、 図 7 1に示すプリヒート装置及びボストヒート装置の構成の詳細 を示す斜視図であり、
図 7 3は、 図 7 1に示すプリヒート装置及びポストヒート装置の構成を示す 断面図であり、
図 7 4は、 図 7 1に示すバンプ形成装置の動作の流れと、 ウェハの温度変化 と、 ウェハの帯電量との関係を示す図であり、
図 7 5は、 図 2 7に示すプリヒート動作を示すフローチヤ一卜であり、 図 7 6は、 図 7 5に示す温度上昇制御動作を示すフローチヤ一トであり、 図 7 7は、 図 7 6に示す温度上昇制御動作による温度上昇を示すグラフであ り、
図 7 8は、 上記プリヒー卜動作及びボストヒート動作においてウェハの帯電 量を静電センサにて測定する構造を示す図であり、
図 7 9は、 図 2 7に示すポストヒート動作を示すフローチャートであり、 図 8 0は、 図 7 9に示す温度降下制御動作を示すフローチヤ一トであり、 図 8 1は、 図 8◦に示す温度降下制御動作による温度降下を示すグラフであ り、
図 8 2は、 図 2 7に示すポストヒート動作のときに、 イオン発生装置にてィ オンをバンプ形成後ウェハに作用させる状態を示す図であり、
図 8 3は、 図 2 7に示すプリヒート動作のときに、 イオン発生装置にてィォ ンをバンプ形成前ウェハに作用させる状態を示す図であり、
図 8 4は、 図 6 2に示すバンプ形成装置にて実行される除電用ブ口一動作を 説明するためのフローチヤ—トであり、
図 8 5は、 S AWフィルタの構造を示す斜視図であり、
図 8 6は、 上記 S AWフィルタにおけるく し歯回路部分における損傷を示す ずであり、
図 8 7は、 圧電基板ウェハの表裏における帯電状態を説明するための図であり、 図 8 8は、 回路の電極部分にバンプを形成した状態を示す平面図である。 発明を実施するための最良の形態
本発明の実施形態であるバンプ形成装置、 該バンプ形成装置にて実行される 電荷発生半導体基板の除電方法、 及び上記バンプ形成装置に備わる上記電荷発 生半導体基板用除電装置、 並びに電荷発生半導体基板について、 図を参照しな がら以下に説明する。 尚、 各図において同じ構成部分については同じ符号を付 している。
又、 図 1及び図 2に示す、 本実施形態のバンプ形成装置 1 0 1は、 上記 S A Wフィルタを形成するウェハ状の圧電基板 (以下、 「圧電基板ウェハ」 と記 す) を処理するのに適しており、 以下の説明でも上記圧電基板ウェハにバンプ を形成する場合を例に採るが、 処理対象を上記圧電基板ウェハに限定するもの ではない。 即ち、 温度変化に伴い電荷を発生する電荷発生型半導体基板 (以下、 単に、 「電荷発生半導体基板」 と記す) に相当する、 例えば L i T a 03 L i N b〇3等の化合物半導体ウェハや、 水晶を基板とする水晶半導体ウェハ等 に対しても本実施形態のバンプ形成装置 1 0 1は適用可能である。 又、 S iを 基板とする S i半導体ウェハにも適用可能である。 尚、 その場合、 バンプを形 成するときのウェハの温度を上述のように約 2 5 0 °C〜約 2 7 0 °Cまで加熱す ることになる。
又、 上記バンプ形成装置 1 0 1は、 バンプ形成前の圧電基板ウェハ 2 0 1を 層状に収納した第 1収納容器 2 0 5と、 バンプ形成後の圧電基板ウェハ 2 0 2 を層状に収納する第 2収納容器 2 0 6との両方を備えた、 いわゆる両マガジン タイプであるが、 該タイプに限定されるものではなく、 上記バンプ形成前圧電 基板ウェハ 2 0 1及び上記バンプ形成後圧電基板ウェハ 2 0 2を一つの収納容 器に収納するいわゆる片マガジンタイプを構成することもできる。
又、 以下に説明する、 ボンディングステージ 1 1 0、 プリヒート装置 1 6 0、 及びボストヒート装置 1 7 0が加熱冷却装置に相当し、 ポス トヒート装置 1 7 0は冷却装置の機能を果たす一例である。
又、 上記加熱冷却装置、 及び以下に説明する制御装置 1 8 0にて除電装置を 構成する。
上記バンプ形成装置 1 0 1は、 大別して、 一つのボンディングステージ 1 1 0と、 一つのバンプ形成へッド 1 2 0と、 搬送装置 1 3 0と、 搬入側と搬出側 にそれぞれ設けた移載装置 1 4 0と、 上記収納容器 2 0 5 , 2 0 6についてそ れぞれ設けられそれぞれの収納容器 2 0 5, 2 0 6を昇降させる昇降装置 1 5 0と、 プリヒート装置 1 6 0と、 ボストヒート装置 1 7 0と、 制御装置 1 8 0 とを備える。 しカゝしながら、 当該バンプ形成装置 1 0 1では、 以下の構造説明 及び動作説明に示すように、 バンプ形成のために必要となるバンプボンディン グ用温度と室温との間の温度変化によりバンプ形成前の圧電基板ウェハ 2 0 1 及びバンプ形成後の圧電基板ウェハ 2 0 2の表裏面に生じる帯電を除去するた めの構造及び動作、 並びに、 バンプ形成前の圧電基板ウェハ 2 0 1における、 プリヒート装置 1 6 0への载置動作及びプリヒート装置 1 6 0からボンディン グステージ 1 1 0への移载動作、 バンプ形成後の圧電基板ウェハ 2 0 2におけ るボンディングステージ 1 1 0からボストヒート装置 1 7 0への移載動作にて、 圧電基板ウェハ 2 0 1 , 2 0 2に損傷を生じさせない構造及び動作が、 従来の バンプ形成装置とは大きく相違する。 又、 バンプ形成装置 1 0 1は、 バンプを 形成する装置であるから、 最も基本的な構成部分は、 上記ボンディングステー ジ 1 1 0及びバンプ形成へッド 1 2 0である。
以下に、 上述の各構成部分について説明する。
上記ボンディングステージ 1 1 0は、 上記バンプ形成前の圧電基板ウェハ (以下、 単に 「バンプ形成前ウェハ」 と記す) 2 0 1を載置するとともに、 該 バンプ形成前ウェハ 2 0 1上に形成されている回路における電極上にバンプを 形成するに必要なバンプボンディング用温度までバンプ形成前ウェハ 2 0 1を 加熱する。 尚、 上述の、 バンプを形成するに必要なバンプボンディング用温度 とは、 上記電極とバンプとを設計上の強度にて接合するために必要な温度であ り、 バンプが形成されるウェハや基板の材質や上記設計上の強度に応じて設定 される温度である。 本実施形態の場合、 約 2 1 0 °Cである。
ボンディングステージ 1 1 0では、 バンプ形成前ウェハ 2 0 1が載置される ウェハ載置台 1 1 1に、 図 1 1に示すように、 バンプ形成前ウェハ 2 0 1を吸 着するための、 及び気体を噴出するための出入孔 1 1 3を開口させており、 該 出入孔 1 1 3には、 制御装置 1 8 0にて動作制御される吸引装置 1 1 4、 及び 気体供給装置として機能する一例であるブロー装置 1 1 5が接続されている。 尚、 本実施形態では、 上記気体は空気である。 又、 ボンディングステージ 1 1 0のウェハ載置台 1 1 1は、 ヒータ 1 1 2側に接触している加熱位置と電荷発 生半導体基板を移載するための移載位置との間を、 昇降装置にて昇降可能であ る。 又、 ウェハ載置台 1 1 1におけるバンプ形成前ウェハ 2 0 1との接触面に は、 図 6 8に示すように金属メツキ、 本実施形態では銀メツキ 2 6 1を施して いる。 銀メツキを施すことで、 ウェハ載置台 1 1 1とバンプ形成前ウェハ 2 0 1 との間の熱伝導率が良くなり、 又、 バンプ形成前ウェハ 2 0 1の除電効果も 高くなる。 上記バンプ形成へッド 1 2 0は、 上記ボンディングステージ 1 1 0に載置さ れ上記バンプボンディング用温度に加熱されたバンプ形成前ウェハ 2 0 1の上 記電極にバンプを形成するための装置であり、 バンプの材料となる金線を供給 するワイヤ供給部 1 2 1の他、 上記金線を溶融してボールを形成し該溶融ボー ルを上記電極に押圧するバンプ作製部、 上記押圧時にバンプに超音波を作用さ せる超音波発生部等を備える。 又、 このように構成されるバンプ形成ヘッド 1
2 0は、 例えばボールねじ構造を有し平面上で互いに直交する X, Y方向に移 動可能な X, Yテーブル 1 2 2上に設置されており、 固定されている上記バン プ形成前ウェハ 2 0 1の各上記電極にバンプを形成可能なように上記 X , Yテ 一ブル 1 2 2によって上記 X, Y方向に移動される。
当該バンプ形成装置 1 0 1では、 上記搬送装置 1 3 0として 2種類設けられ ている。 その一つである搬入装置 1 3 1は、 上記第 1収納容器 2 0 5から上記 バンプ形成前ウェハ 2 0 1を取り出す装置であり、 他の一つである搬出装置 1
3 2は、 バンプ形成後の圧電基板ウェハ (以下、 単に 「バンプ形成後ウェハ」 と記す) 2 0 2を上記第 2収納容器 2 0 6へ搬送し収納する装置である。 図 3 に示すように、 搬入装置 1 3 1には、 バンプ形成前ウェハ 2 0 1を吸着動作に て保持する保持台 1 3 1 1と、 該保持台 1 3 1 1を X方向に沿って移動させる 搬入装置用移動装置 1 3 1 2とが備わる。 搬入装置用移動装置 1 3 1 2に含ま れる駆動部 1 3 1 3は、 制御装置 1 8 0に接続され動作制御される。 よって、 上記駆動部 1 3 1 3が動作することで保持台 1 3 1 1が X方向に沿って移動し、 第 1収納容器 2 0 5からバンプ形成前ウェハ 2 0 1を取り出してくる。
搬出装置 1 3 2も搬入装置 1 3 1と同様の構造を有し、 同様に動作すること 力 ら、 略説する。 つまり搬出装置 1 3 2は、 図 5 6に示すように、 バンプ形成 後ウェハ 2 0 2を本実施形態では吸着動作により保持する保持台 1 3 2 1と、 該保持台 1 3 2 1を X方向に沿って移動させ、 第 2収納容器 2 0 6へ上記バン プ形成後ウェハ 2 0 2を収納させる搬出装置用移動装置 1 3 2 2と、 バンプ形 成後ウェハ 2 0 2の裏面 2 0 2 bに吸着しバンプ形成後ウェハ 2 0 2を保持す る保持部 1 3 2 3と、 上記保持台 1 3 2 1の下方に配置され保持台 1 3 2 1に 保持されているバンプ形成後ウェハ 2 0 2の厚み方向へ保持部 1 3 2 3を移動 させる駆動部 1 3 2 4とを備える。 上記搬出装置用移動装置 1 3 2 2及び駆動 部 1 3 2 4は、 制御装置 1 8 0にて動作制御される。
又、 搬入装置 1 3 1の設置箇所には、 第 1収納容器 2 0 5から搬入装置 1 3 1にて取り出したバンプ形成前ウェハ 2 0 1のオリエンテ一ションフラットを 所定方向に配向させる、 オリフラ合わせ装置 1 3 3が設けられている。 該オリ フラ合わせ装置 1 3 3には、 図 4に示すように、 駆動部 1 3 3 2にて Y方向に 移動してバンプ形成前ウェハ 2 0 1を挟持する挟持板 1 3 3 1と、 バンプ形成 前ウェハ 2 0 1の厚み方向に移動可能であり、 かつバンプ形成前ウェハ 2 0 1 を保持可能であり、 かつ保持したバンプ形成前ウェハ 2 0 1のオリエンテーシ ヨンフラッ卜の配向を行うためにバンプ形成前ウェハ 2 0 1の周方向に回転可 能な保持部 1 3 3 3と、 該保持部 1 3 3 3の駆動部 1 3 3 4とが備わる。 上記 駆動部 1 3 3 2、 1 3 3 4は、 制御装置 1 8 0にて動作制御される。
移載装置 1 4 0は、 当該バンプ形成装置 1 0 1では、 搬入側移載装置 1 4 1 と搬出側移載装置 1 4 2とを備える。 搬入側移載装置 1 4 1は、 上記搬入装置 1 3 1の保持台 1 3 1 1に保持された上記バンプ形成前ウェハ 2 0 1を挟持し、 プリヒート装置 1 6 0への搬送と、 プリヒート装置 1 6 0からボンディングス テージ 1 1 0への搬送を行う。 一方、 搬出側移載装置 1 4 2は、 ボンディング ステージ 1 1 0上に保持されている上記バンプ形成後ウェハ 2 0 2を挟持し、 ボス トヒート装置 1 7 0への搬送と、 ボス トヒート装置 1 7 0から上記搬出装 置 1 3 2の保持台 1 3 2 1への搬送とを行う。 このような搬入側移載装置 1 4 1は、 図 2に示すように、 バンプ形成前ウェハ 2 0 1を挟持しかつバンプ形成 前ウェハ 2 0 1の表面及び裏面の帯電を除去するウェハ保持部 1 4 1 1と、 上 記挟持動作のためにウェハ保持部 1 4 1 1を駆動する、 本実施形態ではエアー シリンダを有する駆動部 1 4 1 2と、 これらウェハ保持部 1 4 1 1及び駆動部
1 4 1 2の全体を X方向に移動させる、 本実施形態ではボールねじ機構にて構 成される移動装置 1 4 1 3とを備える。 上記駆動部 1 4 1 2及び移動装置 1 4 1 3は、 制御装置 1 8 0に接続され、 動作制御される。 搬出側移載装置 1 4 2も、 上記搬入側移载装置 1 4 1と同様に、 ウェハ保持 部 1 4 2 1と、 駆動部 1 4 2 2と、 移動装置 1 4 2 3とを備え、 駆動部 1 4 2 2及び移動装置 1 4 2 3は制御装置 1 8 0にて動作制御される。
上記ウェハ保持部 1 4 1 1、 1 4 2 1について説明する。 ウェハ保持部 1 4 1 1は、 図 5に示すように、 上記駆動部 1 4 1 2にて X方向に可動な、 第 1保 持部材 1 4 1 4及び第 2保持部材 1 4 1 5と、 これらに挟まれて配置される除 電用部材 1 4 1 6とが互いに平行に配列されている。 これら第 1保持部材 1 4 1 4、 第 2保持部材 1 4 1 5、 及び除電用部材 1 4 1 6は、 ともに鉄又はその 他の導電性材料から作製されている。 ウェハ保持部 1 4 2 1も、 ウェハ保持部 1 4 1 1と同様に、 第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5と、 これ らに挟まれて配置される除電用部材 1 4 2 6とが互いに平行に配列されている。 これら第 1保持部材 1 4 2 4、 第 2保持部材 1 4 2 5、 及び除電用部材 1 4 2 6は、 ともに鉄又はその他の導電性材料から作製されている。 尚、 ウェハ保持 部 1 4 1 1、 1 4 2 1は同じ構造にてなるので、 以下には代表してウェハ保持 部 1 4 1 1を例に説明する。
第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5には、 図示するようにバン プ形成前ウェハ 2 0 1を保持するための L字形の保持爪 1 4 1 7がそれぞれ 2 個ずつ設けられている。 該保持爪 1 4 1 7は、 第 1保持部材 1 4 1 4及び第 2 保持部材 1 4 1 5と同じ材料である鉄や、 導電性樹脂にて作製され、 バンプ形 成前ウェハ 2 0 1と直接に接触する部分には、 図 6に示すように、 緩衝材とし て導電性樹脂膜 1 4 1 7 1を取り付けるのが好ましい。 尚、 第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5並びに保持爪 1 4 1 7を鉄又は導電性材料にて 作製するのは、 保持するバンプ形成前ウェハ 2 0 1の裏面 2 0 1 bの帯電をァ ース可能にするためである。
一方、 図 6 6に示すように、 上記保持爪 1 4 1 7に対応する保持爪 1 4 1 7
2を例えばデュポン社製の商品名べスペルのような断熱部材にて作製すること で、 ウェハ保持部 1 4 i 1 4 2 1における温度変化を小さくすることがで き、 バンプ形成前ウェハ 2 0 1及び後述のバンプ形成後ウェハ 2 0 2に対して 温度変化を生じさせにくくなる。 よってバンプ形成前ウェハ 2 0 1及びバンプ 形成後ウェハ 2 0 2における割れ等の損傷防止を図ることができる。 尚、 図 6 6に示す構造の場合、 バンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2と、 保持爪 1 4 1 7 2との接触部分には、 導電性材料 1 4 1 7 3を設け、 ノ ンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2における電荷の第 1保 持部材 1 4 1 4及び第 2保持部材 1 4 1 5へのアースを行う。 又、 ウェハ保持 部 1 4 1 1、 1 4 2 1における第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5等の外面には、 以下に記すように、 絶縁材料 1 4 1 7 4にてコーティングを 施す。
バンプ形成前ウェハ 2 0 1及び後述のバンプ形成後ウェハ 2 0 2から、 より 効率的に除電を行うため、 後述するように、 イオン発生装置 1 9 0を設けるの が好ましい。 該イオン発生装置 1 9 0を設けたとき、 イオン発生装置 1 9 0力 ら発生したイオンが、 鉄又は導電性材料にて作製されている第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5並びに保持爪 1 4 1 7にアースされてしまい、 バンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2に効果的に作用しな くなる場合も考えられる。 よって、 上記イオンのアースを防ぎ上記イオンをバ ンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2に効果的に作用させる ため、 少なくとも、 イオン発生装置 1 9 0から発生したイオンが作用する箇所 に、 好ましくは第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5並びに保持爪 1 4 1 7の外面全面に、 図 6 6に示すように絶縁材料にてコーティングを施す のが好ましい。
除電用部材 1 4 1 6には、 当該ウェハ保持部 1 4 1 1にて保持されるバンプ 形成前ウェハ 2 0 1の表面 2 0 1 aにおける周縁部分 2 0 1 cに接触可能なよ うに、 本実施形態ではウェハ 2 0 1の直径方向に沿った 2箇所にてウェハ 2 0 1の厚み方向に突出して除電用接触部材 1 4 1 6 1が設けられている。 除電用 接触部材 1 4 1 6 1は、 図 7に示すように除電用部材 1 4 1 6に対して摺動可 能に貫通して取り付けられ、 除電用接触部材 1 4 1 6 1の軸方向にスプリング 1 4 1 6 2にて付勢されている。 又、 除電用接触部材 1 4 1 6 1におけるゥェ ハ接触端部には、 緩衝材として導電性樹脂 1 4 1 6 3が設けられている。 このような除電用接触部材 1 4 1 6 1は、 上記導電性樹脂 1 4 1 6 3がバン プ形成前ウェハ 2 0 1の表面 2 0 1 aに接触することで、 該表面 2 0 1 aにお ける帯電をアースする。 又、 保持爪 1 4 1 7にてバンプ形成前ウェハ 2 0 1が 保持される前の状態では、 除電用接触部材 1 4 1 6 1は、 バンプ形成前ウェハ
2 0 1の厚み方向において、 保持爪 1 4 1 7と同レベルもしくは保持爪 1 4 1 7を超えて突出している。 該構成により、 当該ウェハ保持部 1 4 1 1がバンプ 形成前ウェハ 2 0 1を保持しようとするとき、 保持爪 1 4 1 7がバンプ形成前 ウェハ 2 0 1に接触する前に除電用接触部材 1 4 1 6 1がバンプ形成前ウェハ 2 0 1の表面 2 0 1 aに接触可能となる。 よって、 まず、 上記表面 2 0 1 aの 除電を行うことができる。
又、 除電用接触部材 1 4 1 6 1に直接、 アース線を接続する構成を採ること もできる。 又、 除電用部材 1 4 1 6に除電用接触部材 1 4 1 6 1を取り付ける 構造に限定されるものではなく、 例えば図 8に示すように、 保持爪 1 4 1 7が 設けられる第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5に、 金属の又は導 電性の材料にてなり上記表面 2 0 1 aに接触可能な板パネ 1 4 1 6 4を取り付 ける構成を採ることもできる。
一方、 ウェハ 2 0 1、 2 0 2において、 除電用接触部材 1 4 1 6 1が接触す る、 ウェハ 2 0 1 , 2 0 2の表面 2 0 1 aの周縁部分 2 0 1 cには、 表面 2 0 1 aの帯電を効率的に除去可能なように、 図 9に示すようにアルミニウム膜 2 0 3が全周にわたり形成されたウェハも存在する。 このようなウェハの場合に は、 除電用接触部材 1 4 1 6 1がアルミニウム膜 2 0 3に接触することで効果 的に表面 2 0 1 aの除電を行うことができる。 又、 図 1 0に示すように、 上記 周縁部分 2 0 1 cにて、 3箇所以上の箇所に除電用接触部材 1 4 1 6 1を配置 するように構成することもできる。 さらに、 ウェハの中央部分からも除電が行 えるように、 図 1 0に示すように、 ウェハの中央部分に除電用接触部材 1 4 1 6 1が接触しても支障の生じないダミーセル 1 4 1 6 5を形成しておき、 該ダ ミ一セル 1 4 1 6 5に対応する位置に除電用接触部材 1 4 1 6 1を配置し、 ダ W
25 ミ一セノレ 1 4 1 6 5に収集される電荷を効率的に取り除くこともできる。 尚、 上述のような除電用接触部材 1 4 1 6 1の数を増加させ、 又はその接触面積を 大きくすることにより、 除電性能を向上させることもできる。
さらに又、 図 6 9に示すように、 例えば上記 S AWフィルタを形成した回路 形成部分 2 1 1をウェハから切り出すためのダイシングライン 2 1 2に、 電荷 除去用領域に相当し導体にてなる上記ダミーセル 1 4 1 6 5を接続するように 構成することもできる。 ここで上記ダイシングライン 2 1 2は、 上記アルミ二 ゥム膜 2 0 3にまで延在している。 発生する電荷はウェハの上記表面 2 0 1 a に蓄積されるので、 上記構成を採ることで、 上述のように除電用接触部材 1 4 1 6 1がアルミニウム膜 2 0 3に接触することで、 ダミーセル 1 4 1 6 5上の 電荷もダイシングライン 2 1 2及びアルミニウム膜 2 0 3を通して除電され、 効果的に表面 2 0 1 aの除電を行うことができる。 勿論、 上述のように除電用 接触部材 1 4 1 6 1をダミーセル 1 4 1 6 5に直接接触させることで、 表面 2 O l aの除電を行ってもよい。
図 1 0及び図 6 9に示すいずれの構造においても、 上記ダミーセル 1 4 1 6
5のウェハ上での形成位置は、 上述のように除電用接触部材 1 4 1 6 1に対応 して決定することができるが、 これに限定されるものではない。 例えば焦電破 壊等により損傷が生じ易い、 ウェハ上の損傷発生場所にダミーセル 1 4 1 6 5 を形成してもよく、 このような構造は除電効果及び歩留りの点から効果的であ る。 尚、 この場合、 上記損傷発生場所に形成したダミーセル 1 4 1 6 5に対応 するように、 除電用接触部材 1 4 1 6 1は配置される。
又、 図 6 9に示す構造では、 ダミーセル 1 4 1 6 5は、 ほぼ一つの回路形成 部分 2 1 1を占めるような大きさの四角形状にて形成したが、 ダミーセル 1 4 1 6 5の面積はこれに限定されるものではない。 さらに、 ダミ一セル 1 4 1 6 5の形状も上記四角形状に限定されるものではなく、 例えば図 7 0に示すダミ
—セル 1 4 1 6 5— 1のように、 例えば一つの回路形成部分 2 1 1を取り囲ん だ枠形状であってもよい。
又、 上記表面 2 0 1 aの除電方法も上述の除電用接触部材 1 4 1 6 1の接触 による方法に限定されず、 例えば上記イオン発生装置 1 9 0を除電用接触部材 1 4 1 6 1に代えて、 又は除電用接触部材 1 4 1 6 1と併用しても良い。 又、 図 6 9の構成では、 ダミーセル 1 4 1 6 5を設け該ダミーセル 1 4 1 6 5をダイシングライン 2 1 2に接続している力 ダミーセル 1 4 1 6 5を設け ず、 単に、 アルミニウム膜 2 0 3にまで延在しているダイシングライン 2 1 2 を設けた構造でもよい。 上述のダミーセル 1 4 1 6 5を設けた構造に比べると 除電効率、 除電効果は劣るが、 該構造であっても、 ダイシングライン 2 1 2を 通してアルミニウム膜 2 0 3から電荷を除去でき、 上記表面 2 O l aの除電を 行うことができる。
後述の動作説明にて述べるが、 例えば L i T a 03や L i N b〇3等の化合物 半導体ウェハの場合のように、 処理する電荷発生半導体基板によっては、 図 1 2に示すように、 該基板に生じる温度差により該基板に反りが生じる場合があ る。 尚、 上記反り量として、 図 1 2に示す寸法 Iは、 厚み 3 5 mm、 直径 7 6 mmの、 L i T a 03ウェハの場合で:!〜 1 . 5 mm、 L i N b 03の場合 で 1 . 5〜2 mmとなる。
一方、 除電用接触部材 1 4 1 6 1は、 電荷発生半導体基板において上記反り 量が大きくなる周縁部分に対応するように配置されている。 又、 上述したよう な、 除電用部材 1 4 1 6への除電用接触部材 1 4 1 6 1の取り付け構造では、 図 7に示すように、 除電用接触部材 1 4 1 6 1は、 除電用接触部材 1 4 1 6 1 の軸方向にのみ移動可能であるので、 電荷発生半導体基板の上記反りに対応し て揺動する、 つまり反った面に対してほぼ直交して除電用接触部材が延在する ように除電用接触部材自体が傾くことはできない。 よって、 反りが生じた電荷 発生半導体基板に対して除電用接触部材 1 4 1 6 1が接触したとき、 反ってい ない状態の電荷発生半導体基板の厚み方向に沿って延在しかつ移動可能な除電 用接触部材 1 4 1 6 1から上記電荷発生半導体基板へ不要な力が作用し、 電荷 発生半導体基板が割れたり欠けたりして損傷する場合も考えられる。 したがつ て、 除電用部材 1 4 1 6への除電用接触部材 1 4 1 6 1の取り付け構造及びそ の関連部分は、 図 1 3〜図 2 1、 図 6 5に示す以下のような構造等が好ましい。 尚、 取り付け構造及びその関連部分の変更に伴い除電用部材 1 4 1 6にも構造 変更が生じるので、 厳格には除電用部材の符号変更が必要であるが、 説明の便 宜上、 「1 4 1 6」 をそのまま付すこととする。
図 1 3に示す除電用接触部材の取り付け構造の一変形例では、 除電用部材 1 4 1 6にすり鉢状の穴 1 4 1 6 6を設け、 該穴 1 4 1 6 6に線径 1 . 5〜2 m m程度の導電性の、 例えば金属の棒材にてなる除電用接触部材 1 4 1 0 0を揷 通し、 スプリング 1 4 1 6 2にて除電用接触部材 1 4 1 0 0の軸方向に除電用 接触部材 1 4 1 0 0を付勢している。 該付勢力は、 本実施形態では、 一つの除 電用接触部材 1 4 1 0 0当たり約 4 9〜9 8 X 1 0— 3 Nとしている。 又、 電荷 発生半導体基板に接触する除電用接触部材 1 4 1 0 0の一端における角部 1 4
1 0 1は、 上記反りを生じた電荷発生半導体基板の曲率に応じて除電用接触部 材 1 4 1 0 0が矢印 1 4 1 1 0方向に揺動しやすいように、 例えば面取りや円 弧状に整形してもよいし、 除電用接触部材 1 4 1 0 0の一端に、 図 1 4に示す ように例えば直径 5 mm程度の導電性の、 例えば金属の球 1 4 1 0 5や、 図 2 1に示すような円筒 1 4 1 0 6を取り付けても良いし、 又、 上記一端を図 6 5 に示すように半球状に整形してもよレ、。 尚、 揺動する除電用接触部材 1 4 1 0 0の軌跡を含む平面と電荷発生半導体基板の直径方向とが平行になるように、 除電用接触部材 1 4 1 0 0は上記矢印 1 4 1 1 0方向に揺動する。 上記円筒 1 4 1 0 6を取り付ける場合には、 該円筒 1 4 1 0 6の軸方向が電荷発生半導体 基板の直径方向及び厚み方向に直交する方向に沿うように円筒 1 4 1 0 6を配 置する。 又、 本実施形態では、 除電用接触部材 1 4 1 0 0の他端に、 直接、 ァ ース線 1 4 1 0 9を接続する構成を採っている。
このような構造を採ることで、 除電用接触部材 1 4 1 0 0は、 すり鉢状の穴 1 4 1 6 6の小径部分を支点として首を振ることができるので、 反りを生じた 電荷発生半導体基板の曲率に応じて、 除電用接触部材 1 4 1 0 0は矢印 1 4 1
1 0方向に揺動可能であり、 電荷発生半導体基板の損傷を防止することができ る。
他の変形例として、 図 1 4に示す構造を採ることもできる。 該構造では、 図 15に示すように、 除電用部材 1416に形成した取付穴 14102内に、 2 つのローラ 14103を適宜な間隔にて配置して、 ピン 14104にて回転可 能に除電用部材 141 6へ取り付け、 上記 2つのローラ 14103にて矢印 1 41 10方向に揺動可能なように除電用接触部材 14107力待設けられる。 除 電用接触部材 14 107の他端部には、 図 16に示すように、 回転可能に支持 されたローラ 14108を有し、 除電用接触部材 14107の一端には上記球 14105が取り付けられる。 このような除電用接触部材 14 107は、 スプ リング 14162にて軸方向に付勢されて除電用部材 141 6に取り付けられ る。 よって、 除電用接触部材 14107のローラ 14 108は、 除電用部材 1 416の 2つのローラ 14 1 03にて両側から回転可能に支持されるので、 除 電用接触部材 14 1 07は矢印 141 10方向に揺動可能であり、 電荷発生半 導体基板の損傷を防止することができる。
さらに他の変形例として、 図 1 7に示す構造を採ることもできる。 該構造は、 図 14に示す構造を発展させたもので、 除電用部材 1416に十字状にて 4つ のローラ 14 1 1 1を回転可能に設け、 一方、 他端に球 141 1 2を設けた除 電用接触部材 14 1 1 3を、 上記球 141 1 2が上記 4つのローラ 141 1 1 の中央部に位置するようにして除電用部材 1416に取り付ける。 尚、 球 14 1 12はスプリング 14 1 62により 4つのローラ 14 1 1 1に付勢されてい る。 又、 アース線は、 図 20に示すような形態にて上記球 141 12に取り付 けてもよいし、 除電用部材 1416に取り付けるようにしてもよレ、。 このよう な構造をとることで、 除電用接触部材 141 1 3は、 上記矢印 14 1 10方向 のみならず、 該矢印 141 10方向に直交する矢印 141 14方向にも滑ら力 に回転可能となり、 電荷発生半導体基板の損傷を防止することができる。
さらに他の変形例として、 図 1 8〜図 20に示す構造を採ることもできる。 該構造では、 除電用部材 14 16にはすり鉢状の穴 14166を設け、 一方、 他端に球 141 1 5を設けた除電用接触部材 14 1 1 6力 上記球 141 1 5 を上記穴 14166に回転可能な状態にて支持させて、 除電用部材 1416に 取り付けられる。 球 14 1 1 5は、 スプリング 14 1 62にて穴 141 66の 壁面に付勢されている。 又、 球 1 4 1 1 5には、 除電用部材 1 4 1 6との間に アース線 1 4 1 1 9を接続した集電部材 1 4 1 1 7がスプリング 1 4 1 1 8に て押圧されている。 よって、 電荷発生半導体基板の電荷は、 除電用接触部材 1 4 1 1 6、 集電部材 1 4 1 1 7、 アース線 1 4 1 1 9を通り、 除電用部材 1 4 1 6に取り付けたアース線 1 4 1 0 9へ流れる。 このような構造をとることで、 除電用接触部材 1 4 1 1 6は、 図 1 8に示す取付状態に対していずれの方向に も回転することができ、 電荷発生半導体基板の損傷を防止することができる。 又、 図 1 8に示す取付け構造の変形例として、 図 1 9に示すようにスプリン グ 1 4 1 6 2を除いた、 除電用接触部材 1 4 1 20を用いた構造とすることも できる。 この場合、 図 1 8に示す構造に比べてコス ト低減、 組み立て容易の効 果に加えて、 さらに以下の効果が得られる。 つまり、 球 1 4 1 05の重量によ り、 例えば 1 9. 6 X 1 0— 3 N程度の微小な力にて電荷発生半導体基板に接触 可能となる。 よって、 例えば 0. 1 mm程度の厚みにてなる薄い電荷発生半導 体基板に対しても割れ等の損傷を与えないようにすることができる。
又、 図 20に示すように、 集電部材 1 4 1 1 7及びスプリング 1 4 1 1 8を 削除し、 球 1 4 1 1 5に直接、 アース線 1 4 1 0 9を取り付けた、 除電用接触 部材 1 4 1 2 1を用いた構造を採ることもできる。 この場合、 図 1 8に示す構 造に比べて部品点数を削減でき構造を単純化できるので、 コスト削減を図るこ とができる。
さらに他の変形例として、 図 6 5に示す構造を採ることもできる。 上述の図
1 3から図 20に示す構造では、 除電用接触部材が揺動可能なように構成した 力 図 6 5に示す除電用接触部材 1 4 1 22では、 除電用部材 1 4 1 6におけ る除電用接触部材 1 4 1 22の支持部分にリニアガイドベアリング 1 4 1 2 3 を設けている。 よって、 図 6 5に示す構造では、 除電用接触部材 1 4 1 2 2の 軸方向への移動は、 図 7に示す構造における除電用接触部材 1 4 1 6 1の軸方 向への移動に比べて非常に滑らかになる。 したがって、 図 6 5に示す構造では、 除電用接触部材 1 4 1 22が揺動しない構造ではあるが、 上述のような反りを 生じる電荷発生半導体基板に対して除電用接触部材 1 4 1 2 2の半球状の一端 が接触したとき、 除電用接触部材 1 4 1 2 2はその軸方向に滑らかに移動する ので、 反りを生じる電荷発生半導体基板に対しても割れ等の損傷を与えないよ うにすることができる。
上記除電用接触部材 1 4 1 2 2において、 リニアガイ ドベアリング 1 4 1 2 3を嵌合している支持部材 1 4 1 2 4は鉄製でも良いが、 上記べスペルのよう な断熱材料にて作製するのがより好ましい。 例えば上記べスペルにて作製した 支持部材 1 4 1 2 4は、 鉄にて作製した場合に比べて、 熱伝導率にて約 1 8 4となる。 よって、 断熱材料にてなる支持部材 1 4 1 2 4を設けることで、 除 電用接触部材 1 4 1 2 2が電荷発生半導体基板に接触して電荷発生半導体基板 を急激に冷却するのを防止でき、 電荷発生半導体基板への熱ダメージを防止す ることができる。
又、 上記除電用接触部材 1 4 1 2 2の変形例として、 図 6 7に示すように、 スプリング 1 4 1 6 2に代えて重り 1 4 1 2 6を設けた除電用接触部材 1 4 1 2 5を構成することもできる。 スプリング 1 4 1 6 2を使用した場合、 スプリ ング 1 4 1 6 2の縮み量、 つまり除電用接触部材の軸方向への移動量により電 荷発生半導体基板への除電用接触部材の押圧力が変化するが、 重り 1 4 1 2 6 を使用することで、 除電用接触部材の上記移動量に関係なく一定の押圧力を電 荷発生半導体基板へ作用させることができるという効果がある。
尚、 上述の、 図 1 3、 図 1 4、 図 1 7、 図 1 8、 図 2 0に示す各除電用接触 部材においても、 スプリング 1 4 1 6 2に代えて重り 1 4 1 2 6を設ける構造 とすることができ、 又、 図 1 9に示す除電用接触部材 1 4 1 2 0においても、 重り 1 4 1 2 6を設ける構造とすることができる。
上記プリヒート装置 1 6 0は、 図 2 2〜図 2 4に示すように、 搬入装置 1 3 1からウェハ保持部 1 4 1 1にて保持したバンプ形成前ウェハ 2 0 1を載置し て、 室温から、 ボンディングステージ 1 1 0にてバンプ形成を行うときの上記 バンプボンディング用温度である約 2 1 0 °C付近まで昇温する装置であり、 加 熱部としてのパネルヒータ 1 6 1を有するパネルヒータ枠 1 6 2上に熱拡散部 材としての、 本実施形態では 6 mm厚のアルミニウム板 1 6 3を載置している。 アルミニウム板 1 6 3のウェハ載置面 1 6 3 aには、 図 6 8に示すように金属 メツキ、 本実施形態では銀メツキ 2 6 1を施している。 銀メツキを施すことで、 アルミニウム板 1 6 3とバンプ形成前ウェハ 2 0 1との間の熱伝導率が良くな り、 又、 バンプ形成前ウェハ 2 0 1の除電効果も高くなる。 パネルヒータ 1 6 1による昇温動作は、 アルミニウム板 1 6 3の温度を測定する例えば熱電対の ような温度センサ 1 6 6からの温度情報を参照しながら制御装置 1 8 0にて制 御される。 尚、 上記熱拡散部材 1 6 3の材質は、 上述のアルミニウムに限定さ れるものではなく、 熱伝導率が良好な材質でバンプ形成前ウェハ 2 0 1と化学 的反応を起こさない材質、 例えばジュラルミン等でもよい。
本実施形態では、 上記搬入側移載装置 1 4 1及び搬出側移載装置 1 4 2は、 いずれもウェハ保持部 1 4 1 1及びウェハ保持部 1 4 2 1を、 これらが保持し ているバンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2の厚み方向へ 移動させる機構を設けていない。 よって、 プリヒート装置 1 6 0は、 バンプ形 成前ウェハ 2 0 1を上記アルミニウム板 1 6 3上に载置するため、 パネルヒ一 タ 1 6 1を有するパネルヒータ枠 1 6 2及びアルミニウム板 1 6 3を上記厚み 方向へ図 2 3に示す下降位置 1 6 7と図 2 4に示す上昇位置 1 6 8との間にて 昇降させる昇降機構を備える。 該昇降機構は、 上記厚み方向への昇降動作をす るための駆動源としてのエアーシリンダ 1 6 0 1と、 該エアーシリンダ 1 6 0 1にて昇降される T字形の支持部材 1 6 0 2と、 該支持部材 1 6 0 2に立設さ れパネルヒータ枠 1 6 2及びアルミニウム板 1 6 3を支持する 2本の支持棒 1
6 0 3とを備える。 尚、 上記エア一シリンダ 1 6 0 1は、 制御装置 1 8 0にて 動作制御されるシリンダ駆動装置 1 6 0 4にて動作される。 又、 本実施形態で は、 後述するようにェアーシリンダ 1 6 0 1による昇降動作により、 パネルヒ —タ枠 1 6 2とアルミニウム板 1 6 3とは分離しアルミニウム板 1 6 3の冷却 を促進させることから、 上記シリンダ駆動装置 1 6 0 4及び上記エアーシリン ダ 1 6 0 1は分離装置としての機能を有する。
本実施形態では、 図示するように支持棒 1 6 0 3はパネルヒータ枠 1 6 2を 貫通し、 その先端部がアルミニウム板 1 6 3に挿入されている。 支持棒 1 6 0 3が貫通された状態においてパネルヒータ枠 1 6 2は支持棒 1 6 0 3の軸方向 に滑動可能であり、 支持棒 1 6 0 3の先端部にてアルミニウム板 1 6 3は支持 棒 1 6 0 3に固定される。 さらに、 パネルヒータ枠 1 6 2は付勢手段の一例で あるスプリング 1 6 0 5にてアルミニウム板 1 6 3へ押圧されている。 よって、 ェアーシリンダ 1 6 0 1が動作することで、 図 2 3に示すように下降位置 1 6
7からパネルヒータ枠 1 6 2とアルミニウム板 1 6 3とは一体的に昇降するが、 上昇時、 接触位置に設けられているス トッパー 1 6 0 6にパネルヒータ枠 1 6 2が当接した後は、 図 2 4に示すようにストッパー 1 6 0 6にてパネルヒータ 枠 1 6 2の上昇が停止されるので、 アルミニウム板 1 6 3のみが上昇し、 パネ ルヒ一タ枠 1 6 2とアルミニウム板 1 6 3との分離が行われる。 そしてアルミ 二ゥム板 1 6 3が上昇位置 1 6 8まで上昇する。 本実施形態では、 分離完了時 におけるパネルヒータ枠 1 6 2とアルミニウム板 1 6 3との隙間は、 約 2〜4 mmである。 該分離後における降下時には、 上記上昇位置 1 6 8から上記スト ッパー 1 6 0 6を設けている上記接触位置まではアルミニウム板 1 6 3のみが 下降し、 上記接触位置からはパネルヒータ枠 1 6 2とアルミニウム板 1 6 3と がー体的に上記下降位置 1 6 7まで下降する。
プリヒート後、 次の新たなバンプ形成前ウェハ 2 0 1を載置するに当たりァ ノレミニゥム板 1 6 3の温度を約 4 0 °Cまで下げる必要があるが、 上述のように、 パネルヒータ枠 1 6 2とァノレミニゥム板 1 6 3とを分離可能な構造にすること で、 従来に比べてアルミニウム板 1 6 3の冷却速度を向上させることができ、 タク トの短縮を図ることができる。 又、 量産前に行う試作段階のときや、 同種 類のウェハについて 1, 2枚程度しかバンプ形成を行わないときに、 上記分離 構造を採ることで上記冷却速度の向上を図れるのでタク ト上、 特に有効となる。 さらに、 アルミニウム板 1 6 3の温度が下がった時点でパネルヒータ枠 1 6 2とアルミニウム板 1 6 3とを合体させればよく、 パネルヒータ枠 1 6 2が上 記約 4 0 °Cまで下がるのを待つ必要はないことから、 パネルヒータ枠 1 6 2に おける温度差は従来に比べて小さくなる。 したがって、 パネルヒーター 1 6 1 の負荷を低減できることから、 従来に比べてパネルヒータ一 1 6 1の寿命を長 くすることもできる。
尚、 上述のように本実施形態ではパネルヒータ枠 1 6 2とアルミニウム板 1 6 3とは分離可能な構造としたが、 簡易型としてパネルヒータ枠 1 6 2とアル ミニゥム板 1 6 3とは分離せず常に一体にて昇降するように構成することもで さる。
又、 上述のように 2本の支持棒 1 6 0 3にてパネルヒータ枠 1 6 2及びアル ミニゥム板 1 6 3を支持しているので、 パネルヒータ枠 1 6 2からの熱が支持 部材 1 6 0 2やエア一シリンダ 1 6 0 1等へ伝わりにくレヽ。 よって、 パネルヒ ータ枠 1 6 2からの熱は、 ほとんどアルミニウム板 1 6 3へ伝導させることが できるので、 アルミニウム板 1 6 3における温度分布をほぼ均一にすることが でき、 バンプ形成前ウェハ 2 0 1の全体を均一に加熱することができる。 さら に又、 連続運転しても、 支持部材 1 6 0 2等が熱を帯びることもない。
アルミニウム板 1 6 3のウェハ載置面 1 6 3 aには、 バンプ形成前ウェハ 2 0 1の移載時に上記ウェハ保持部 1 4 1 1に備わる保持爪 1 4 1 7が進入する ための逃がし溝 1 6 0 7、 及び空気出入孔 1 6 0 8が形成されている。 空気出 入孔 1 6 0 8は、 図 2 5に示すように、 アルミニウム板 1 6 3内に形成された ブロー吸引用通路 1 6 0 9に連通しており、 後述の動作説明でも述べるが、 ノく ンプ形成前ウェハ 2 0 1を搬送するときにバンプ形成前ウェハ 2 0 1とウェハ 載置面 1 6 3 aとを分離させたり、 バンプ形成前ウェハ 2 0 1の裏面の帯電を 除去したりするときに空気を噴出するための孔であり、 又は本実施形態では基 本的には行わないがバンプ形成前ウェハ 2 0 1をウェハ載置面 1 6 3 aに吸着 保持させるときの空気吸引用の孔である。 尚、 上記ブロー吸引用通路 1 6 0 9 は、 図 2 2に示すように、 制御装置 1 8 0にて動作制御されるブロー吸引装置 1 6 1 1に連結管 1 6 1 0を介して接続される。 又、 本実施形態では、 噴出す る気体として上述のように空気を用いているが、 他の気体を用いても良い。 又、 上記ブロー吸引装置 1 6 1 1は、 後述の反り矯正動作及び除電動作の際にて気 体を供給する気体供給装置としての機能を果たす一例に相当する。
さらにアルミニウム板 1 6 3内には、 ァノレミニゥム板 1 6 3を冷却するため の冷媒用通路 1 6 1 2が形成されている。 本実施形態では、 冷媒として常温の 空気を使用するが、 他の気体や水等を使用してもよい。 冷媒用通路 1 6 1 2は、 図 2 2に示すように、 制御装置 1 8 0にて動作制御される冷却空気供給装置 1 6 1 3に連結管 1 6 1 4を介して接続されている。 尚、 冷媒用通路 1 6 1 2に 供給された冷却用空気は、 図示する矢印に従って該冷媒用通路 1 6 1 2を流れ、 連結管 1 6 1 5を通って排気される。
本実施形態では図 2 5に示すように、 プロ一吸引用通路 1 6 0 9及び冷媒用 通路 1 6 1 2は、 ドリル等にてアルミニウム板 1 6 3内に穴をあけて、 斜線に て図示するように止め栓を施して形成したが、 ブロー吸引用通路 1 6 0 9及び 冷媒用通路 1 6 1 2の形成方法は、 公知の手法を採ることができ、 例えば図 2
6に示すように、 ァノレミニゥム板 1 6 3の裏面に溝を掘って形成することもで きる。 但しこの場合には、 アルミニウム板 1 6 3とパネルヒータ枠 1 6 2との 間に冷媒の漏れを防止するためのシール板を設ける必要がある。
上記ボストヒート装置 1 7 0は、 バンプ形成後、 ボンディングステージ 1 1 0からウェハ保持部 1 4 2 1にて保持したバンプ形成後ウェハ 2 0 2を載置し て、 上記バンプボンディング用温度の約 2 1 0 °C付近から室温付近まで徐々に 降温するための装置であり、 構造的には上述のプリヒート装置 1 6 0と同様の 構造を有し、 本実施形態ではパネルヒータ枠とアルミニウム板とは分離する構 造である。 つまり、 上述したプリヒート装置 1 6 0の各構成部分に対応して、 ポス トヒー卜装置 1 7 0においても、 パネルヒータ 1 7 1、 パネルヒータ枠 1
7 2、 アルミニウム板 1 7 3、 温度センサ 1 7 6、 エアーシリンダ 1 7 0 1、 支持部材 1 7 0 2、 支持棒 1 7 0 3、 シリンダ駆動装置 1 7 0 4、 スプリング 1 7 0 5、 ストッパー 1 7 0 6、 逃がし溝 1 7 0 7、 空気出入孔 1 7 0 8、 ブ ロー吸引用通路 1 7 0 9、 連結管 1 7 1 0、 ブロー吸引装置 1 7 1 1、 冷媒用 通路 1 7 1 2、 冷却空気供給装置 1 7 1 3、 連結管 1 7 1 4、 1 7 1 5を有す る。 よって、 図 2 2〜図 2 6には、 プリヒート装置 1 6 0及びポス トヒート装 置 1 7 0の両者における符号を記している。 但し、 パネルヒータ 1 7 1は、 バ ンプ形成後ウェハ 2 0 2の降温を制御するために制御装置 1 8 0にて動作制御 される。 尚、 アルミニウム板 1 1 3のウェハ载置面 1 7 3 aには、 アルミニゥ ム板 1 6 3の場合と同様に、 図 6 8に示すように金属メツキ、 本実施形態では 銀メツキ 2 6 1を施している。 銀メツキを施すことで、 アルミニウム板 1 7 3 とバンプ形成後ウェハ 2 0 2との間の熱伝導率が良くなり、 又、 バンプ形成後 ウェハ 2 0 2の除電効果も高くなる。
又、 ポストヒート装置 1 7 0における動作は、 上述したプリヒート装置 1 6 0における動作に類似し、 プリヒート装置 1 6 0におけるプリヒー卜に関する 動作説明をボストヒートの動作説明に読み替えることで理解可能である。 よつ てここでの詳しい説明は省略する。
上記昇降装置 1 5 0は、 上記第 1収納容器 2 0 5を載置する第 1昇降装置 1
5 1と、 上記第 2収納容器 2 0 6を載置する第 2昇降装置 1 5 2とを備える。 第 1昇降装置 1 5 1は、 上記バンプ形成前ウェハ 2 0 1が上記搬入装置 1 3 1 によって取り出し可能な位置に配置されるように、 上記第 1収納容器 2 0 5を 昇降する。 第 2昇降装置 1 5 2は、 上記搬出装置 1 3 2にて保持されているバ ンプ形成後ウェハ 2 0 2を第 2収納容器 2 0 6内の所定位置へ収納可能なよう に、 第 2収納容器 2 0 6を昇降する。
以上説明したような構成を有する本実施形態のバンプ形成装置 1 0 1におけ る動作について以下に説明する。 上述した各構成部分は制御装置 1 8 0にて動 作制御がなされることで、 バンプ形成前ウェハ 2 0 1にバンプが形成され、 そ してバンプ形成後ウェハ 2 0 2が第 2収納容器 2 0 6 へ収納される、 という一 連の動作が実行される。 又、 制御装置 1 8 0は、 バンプ形成後ウェハ 2 0 2を ボストヒート装置 1 7 0のアルミニウム板 1 7 3に接触させた状態にてボスト ヒート動作を制御し、 さらには、 ポス トヒート装置 1 7 0にて実行可能なバン プ形成後ウェハ 2 0 2に対する除電用ブロー動作や反り矯正用ブロー動作を制 御することもできる。 さらに又、 バンプ形成前ウェハ 2 0 1をプリヒート装置
1 6 0のアルミニウム板 1 6 3に接触させた状態にてプリヒート動作を制御し、 プリヒート装置 1 6 0にて実行可能なバンプ形成前ウェハ 2 0 1に対する除電 用ブロー動作や反り矯正用ブロー動作を制御することもできる。 又、 ボンディ ングステージ 1 10にて実行するバンプ形成前ウェハ 20 1の反り矯正用プロ —動作を制御する。
これらの各動作については以下に詳しく説明する。 尚、 以下の説明において、 ウェハ保持部 141 1、 1421に備わる除電用接触部材は、 上述した反りを 生じる電荷発生半導体基板等、 いずれのウェハ、 基板に対しても適用可能な、 図 1 3に示す除電用接触部材 14 100を例に採る。 該除電用接触部材 141 00に代えて、 上述の除電用接触部材 14107、 141 1 3、 141 16、 141 20、 141 2 1を使用することもできる。
本実施形態のバンプ形成装置 101では、 図 27に示すステップ (図内では 「Sj にて示す) 1からステップ 10までの各工程により、 バンプ形成前ゥェ ノヽ 201にバンプが形成され、 バンプ形成後ウェハ 202が第 2収納容器 20 6へ収納される。 即ち、 ステップ 1では、 第 1収納容器 205からバンプ形成 前ウェハ 2◦ 1が搬入装置 1 3 1によって取り出し可能な位置に配置されるよ うに、 第 1昇降装置 1 5 1により第 1収納容器 205が昇降し、 その後、 バン プ形成前ウェハ 20 1が搬入装置 1 3 1によって第 1収納容器 205から取り 出される。 さらに、 搬入装置 1 3 1にて保持されたバンプ形成前ウェハ 201 は、 オリフラ合わせ装置 1 33にてオリエンテーションフラッ トの配向が行わ れる。
オリエンテーションフラッ トの配向終了後、 ステップ 2では、 搬入装置 1 3 1の保持台 1 3 1 1に保持されているバンプ形成前ウェハ 201が搬入側移載 装置 141にて挟持される。 該動作について図 28〜図 3 1を参照して詳しく 説明する。
図 28に示すように、 上記配向後、 オリフラ合わせ装置 1 33の保持部 13 33が上昇し保持台 1 3 1 1からバンプ形成前ウェハ 201を吸着保持し上昇 する。 一方、 ウェハ保持部 141 1がバンプ形成前ウェハ 201の上方に配置 され、 かつ駆動部 14 1 2にて第 1保持部材 14 14及び第 2保持部材 141 5が X方向に沿って開く方向に移動する。 次に、 図 29に示すように、 保持部 1333が上昇し、 それによりまず、 ウェハ保持部 141 1の除電用接触部材 1 4 1 0 0の先端がバンプ形成前ウェハ 2 0 1の表面 2 0 1 aに接触する。 よ つて、 除電用接触部材 1 4 1 0 0の接触直前において上記表面 2 0 1 aが帯電 していたとしても、 除電用接触部材 1 4 1 0 0の接触により除電が行われる。 , 尚、 本実施形態で使用しているバンプ形成前ウェハ 2 0 1、 バンプ形成後ゥ ェハ 2 0 2は、 上述のように、 帯電し難いが、 一旦帯電すると除電し難いとい う特質を持っている。 よって、 除電用接触部材 1 4 1 0 0の接触によっても表 面 2 0 1 aの完全な除電は困難であり、 表面 2 0 1 aには約 + 1◦ V〜約 + 2
5 V程度の初期電荷が存在する。 ここで、 +は正の電荷であることを示す。 そして、 図 3 0に示すように、 駆動部 1 4 1 2にて第 1保持部材 1 4 1 4及 び第 2保持部材 1 4 1 5が X方向に沿って閉じる方向に移動する。
「次に、 図 3 1に示すように、 上記保持台 1 3 1 1が下降し、 バンプ形成前ゥ ェハ 2 0 1はウェハ保持部 1 4 1 1の保持爪 1 4 1 7にて保持される。 このと き、 除電用接触部材 1 4 1 0 0部分に設けたスプリング 1 4 1 6 2による付勢 力によりバンプ形成前ウェハ 2 0 1は保持爪 1 4 1 7へ押圧される。 尚、 該押 圧力は、 ウェハ保持部 1 4 1 1によるバンプ形成前ウェハ 2 0 1の搬送時に落 下等の不具合を生じさせない程度であり、 バンプ形成前ウェハ 2 0 1に変形を 生じさせるものではない。
;又、 バンプ形成前ウェハ 2 0 1の裏面 2 0 1 bと保持爪 1 4 1 7とが接触す ることで、 上記裏面 2 0 1 bにおける電荷の一部はアースされる。 しかしなが ら、 上述のように上記裏面 2 0 1 bに形成されている溝 1 4内の電荷を除電す るのは、 当該バンプ形成装置 1 0 1の構成では困難であり、 上述の表面 2 0 1 aの場合と同様に、 裏面 2 0 1 bにも約一 2 0 V〜約一 3 0 V程度の初期電荷 が存在する。 ここで一は、 負の電荷であることを示す。 尚、 後述の変形例にて 説明するように、 さらにィオン発生装置を用いて除電することでより効率的に 電が可能となる。
次のステップ 3では、 図 2に示すように、 バンプ形成前ウェハ 2 0 1を保持 した状態にてウェハ保持部 1 4 1 1が移動装置 1 4 1 3にてプリヒート装置 1
6 0の上方に搬送され配置される。 一方、 図 2 2に示すように本実施形態では、 プリヒート装置 1 6 0はパネル ヒータ枠 1 6 2とァノレミニゥム板 1 6 3とは分離可能な構造である。 よって、 アルミニウム板 1 6 3が常温以上の温度にあるときには、 バンプ形成前ウェハ 2 0 1がプリヒート装置 1 6 0の上方に搬送されてくる前に、 図 3 2に示すス テツプ 5 1 0 〜 5 1 5が実行されアルミニウム板 1 6 3の冷却が行われる。 こ れらステップ 5 1 0 ~ 5 1 5については、 図 4 0を参照して後述する。
ァノレミ -ゥム板 1 6 3が所定温度、 本実施形態では約 4 0 °Cまで冷却された 時点でアルミニウム板 1 6 3は上記下降位置 1 6 7まで下がる。 そして、 次の ステップ 3 0 3にて、 図 3 3に示すように、 バンプ形成前ウェハ 2 0 1を保持 した状態にてウェハ保持部 1 4 1 1が移動装置 1 4 1 3にてプリ ヒー ト装置 1
6 0の上方に搬送され配置される。
次のステップ 3 0 4にて、 再度、 ァノレミニゥム板 1 6 3を上昇位置 1 6 8ま で上昇させる。 このとき、 ウェハ保持部 1 4 1 1に備わる保持爪 1 4 1 7は、 図 3 4に示すように、 アルミニウム板 1 6 3に形成されている上記逃がし溝 1 6 0 7内に進入する。 よって、 ウェハ保持部 1 4 1 1に保持されているバンプ 形成前ウェハ 2 0 1は、 アルミニウム板 1 6 3上に載置される。 尚、 上述した ように本実施形態では搬入側移載装置 1 4 1及び搬出側移載装置 1 4 2には昇 降機構を設けていないので、 プリ ヒート装置 1 6 0へのバンプ形成前ウェハ 2 0 1の搬入動作及びアルミニウム板 1 6 3への載置動作を行うために、 アルミ 二ゥム板 1 6 3の昇降を行う必要がある。
次のステップ 3 0 5では、 図 3 5に示すように、 搬入側移載装置 1 4 1の第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5を開き、 次のステップ 3 0 6に て、 図 3 6に示すように、 アルミニウム板 1 6 3を上記下降位置 1 6 7まで下 げる。 そして、 ステップ 4 へ移行してプリヒート動作を開始する。
又、 上述したようにプリヒート装置 1 6 0の変形例として、 パネルヒータ枠
1 6 2とアルミニウム板 1 6 3とは分離せず常に一体として昇降する構成を採 つたときには、 プリ ヒート装置 1 6 0へのバンプ形成前ウェハ 2 0 1の搬入動 作は図 3 7に示すステップ 3 1 1 〜 3 1 6の動作となる。 該動作について説明 する。 尚、 該説明において、 分離不可能なパネルヒータ枠 1 6 2及びアルミ二 ゥム板 1 6 3を総称してプリヒートステージと記す。
ステップ 3 1 1では、 ウェハ保持部 1 4 1 1に保持されているバンプ形成前 ウェハ 2 0 1が上記プリヒートステージの上方に搬入される。 次のステップ 3 1 2では、 バンプ形成前ウェハ 2 0 1の温度を安定させるため、 上記プリヒ一 トステージの上方にて、 例えば 3 0秒から 2分の間、 搬入状態が維持される。 次のステップ 3 1 3にて、 上記プリヒートステージを上記上昇位置 1 6 8まで 上昇させる。 次のステップ 3 1 4では、 搬入側移載装置 1 4 1の第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5を開く。 次のステップ 3 1 5では、 パネル ヒータ枠 1 6 2とアルミニウム板 1 6 3とが分離しない構造に起因する、 当該 変形例特有の動作が行われる。 即ち、 後述のプリヒート動作終了後、 搬入側移 載装置 1 4 1にてバンプ形成前ウェハ 2 0 1を上記プリヒートステージからボ ンディングステージ 1 1 0上へ移載するが、 その際、 上記保持爪 1 4 1 7とプ リヒー卜されたバンプ形成前ウェハ 2 0 1との温度差が大きいとバンプ形成前 ウェハ 2 0 1は局所的に冷やされ不具合を生じることも考えられる。 よってス テツプ 3 1 5にて保持爪 1 4 1 7を加熱するか否かを判断し、 加熱する場合に は、 上昇位置 1 6 8にプリヒートステージを上昇させた状態にてプリヒート動 作を開始する。 該動作により、 保持爪 1 4 1 7は、 逃がし溝 1 6 0 7に進入し た状態であり上記プリヒートステージの加熱により保持爪 1 4 1 7も加熱する ことができ、 上記不具合の発生を防止可能である。 一方、 加熱しない場合には、 次のステップ 3 1 6にてプリヒートステージを下降位置 1 6 7まで下げてプリ ヒート動作を開始する。
次のステップ 4では、 プリヒート装置 1 6 0によって室温から約 2 1 0 °C付 近までバンプ形成前ウェハ 2 0 1はプリヒートされる。 該プリヒート動作によ るバンプ形成前ウェハ 2 0 1の温度変化により、 バンプ形成前ウェハ 2 0 1に は電荷が発生するが、 バンプ形成前ウェハ 2 0 1はアルミニウム板 1 6 3に載 置されているので、 電荷が蓄積しやすい裏面 2 0 1 b側の電荷はアルミニウム 板 1 6 3を介してァ一スされているので効率的に除電可能である。 よって、 バ ンプ形成前ウェハ 2 0 1をプリヒー卜するための温度上昇速度は、 急激な温度 変化にてバンプ形成前ウェハ 2 0 1が破損する温度上昇速度内、 つまり約 5 (TCZ分程度の温度上昇速度内であれば、 温度変化により電荷が発生する電荷 発生半導体基板においても図 3 8に示すように、 例えば 5 〜 1 0 °CZ分程度の 緩やかな温度上昇速度や、 例えば 2 0 〜 4 0 °CZ分程度の急速な温度上昇速度 等、 種々の温度上昇速度を採ることができる。 よってプリヒート動作を行う場 合でも従来と同程度のタク トを維持することができる。
又、 上述した、 パネルヒータ枠 1 6 2とアルミニウム板 1 6 3とを分離させ ず常に一体として昇降する構成を採ったときには、 図 3 9に示すような温度上 昇制御を行うことができる。 即ち、 上記ステップ 3 1 2の動作が時刻 t 1から 時刻 t 2まで実行されバンプ形成前ウェハ 2 0 1は約 4 0 °Cから約 6 0 〜 1 2 0 °Cまで昇温される。 その後、 上述のように緩やかな、 又は急な温度上昇速度 にて約 2 1 0 °Cまでの昇温制御が行われる。
バンプ形成前ウェハ 2 0 1が上記約 2 1 0 °Cまで昇温された時点で、 次のス テツプ 5 へ移行する。 ステップ 5では、 まず図 4 0に示すように、 プリヒート 装置 1 6 0からボンディングステージ 1 1 0へバンプ形成前ウェハ 2 0 1の移 載動作が行われる。 尚、 上記 2 1 0 °C前後の温度においては例えば 1 0 0 °C程 度における場合に比べてバンプ形成前ウェハ 2 0 1の帯電量は少なく、 プリヒ ―ト装置 1 6 0からボンディングステージ 1 1 0への移載動作のときにバンプ 形成前ウェハ 2 0 1にスパークが発生する可能性は低い。 又、 図 4 0は、 プリ ヒート装置 1 6 0におけるパネルヒータ枠 1 6 2とアルミニウム板 1 6 3と力 S 分離可能な構造の場合の動作を示している。
図 4 0のステップ 5 0 1では、 搬入側移載装置 1 4 1の駆動部 1 4 1 2の動 作により第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5が開く方向に移動す る。 次のステップ 5 0 2ではプリヒート装置 1 6 0のアルミニウム板 1 6 3を 下降位置 1 6 7から上昇位置 1 6 8まで移動させる。 このとき第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5に備わる各保持爪 1 4 1 7はアルミニウム板 1 6 3の各逃がし溝 1 6 0 7に進入する。 そして次のステップ 5 0 3にて第 1 保持部材 1 4 1 4及び第 2保持部材 1 4 1 5を閉じる。 次のステップ 5 0 4で は、 ブロー吸引装置 1 6 1 1を動作させてアルミニウム板 1 6 3の空気出入孔 1 6 0 8から空気を噴出し、 アルミニウム板 1 6 3とバンプ形成前ウェハ 2 0 1とを分離させる。 尚、 噴出させる空気の温度は、 プリ ヒートされたバンプ形 成前ウェハ 2 0 1の温度低下を極力防止可能な程度の温度、 例えば約 1 6 0 °C 前後である。 そしてこのようなブロー動作中に、 ステップ 5 0 5にてアルミ二 ゥム板 1 6 3を下降させ、 バンプ形成前ウェハ 2 0 1を第 1保持部材 1 4 1 4 及び第 2保持部材 1 4 1 5を有するウェハ保持部 1 4 1 1に保持させる。 次の ステップ 5 0 6では上記ブロー吸引装置 1 6 1 1の動作を停止しブロー動作を 終了し、 ステップ 5 0 7にて、 昇温されたバンプ形成前ウェハ 2 0 1を保持し ている上記ウェハ保持部 1 4 1 1をボンディングステージ 1 1 0の上方へ移動 させる。 以後、 後述する、 ボンディングステージ 1 1 0への載置動作に移行す る。
一方、 約 2 1 0 °Cまで昇温されたプリヒート装置 1 6 0のアルミニウム板 1 6 3は、 室温にある次のバンプ形成前ウェハ 2 0 1を載置する前に再び室温程 度まで降温させる必要がある。 そこで、 図 4 0に示すステップ 5 1 0において、 冷却空気供給装置 1 6 1 3を動作させアルミニウム板 1 6 3内の冷媒用通路 1 6 1 2に冷却用空気を供給する。 さらに次のステップ 5 1 1及びステップ 5 1 2では、 プリヒート装置 1 6 0のェアーシリンダ 1 6 0 1を動作させて上記下 降位置 1 6 7から上記上昇位置 1 6 8までアルミニウム板 1 6 3を上昇させ、 パネルヒータ枠 1 6 2とァノレミ-ゥム板 1 6 3とを分離させてァノレミニゥム板 1 6 3の温度を約 3 0 °Cまで冷やす。 尚、 本実施形態ではアルミニウム板 1 6 3の冷却温度を上記約 3 0 °Cに設定しているが、 該温度に限定するものではな レ、。 つまり常温にあるバンプ形成前ウェハ 2 0 1との温度差により、 バンプ形 成前ウェハ 2 0 1の帯電量が許容量を超えず、 又、 反りが生じない程度のアル ミニゥム板 1 6 3の冷却温度に設定することができる。 上述のようにパネルヒ ータ枠 1 6 2とアルミニウム板 1 6 3とを分離させることでアルミニウム板 1 6 3を効率的に冷却することができる。 アルミニウム板 1 6 3の温度が約 3 0 °Cまで冷えた後、 ステップ 5 1 3にて冷却空気供給装置 1 6 1 3の動作を停 止し冷却用空気の供給を終了する。 そしてステップ 5 1 4にてアルミニウム板 1 6 3を下降させ、 ステップ 5 1 5にて搬入側移載装置 1 4 1のウェハ保持部 1 4 1 1を搬送装置 1 3 0の上方に戻す。
一方、 上述した、 パネルヒータ枠 1 6 2とアルミニウム板 1 6 3とを分離さ せず常に一体として昇降する構成を採ったときには、 図 4 1に示す動作を行う。 尚、 図 4 1に示す動作において図 4 0を参照して説明した動作と同様の動作に ついては図 4 0の場合と同符号を付しその説明を省略する。 図 4 1に示すステ ップ 5 2 1、 5 2 2は、. 図 4 0に示すステップ 5 0 2、 5 0 5にそれぞれ対応 する動作であり、 パネルヒータ枠 1 6 2とアルミニウム板 1 6 3とが一体的に 構成されたプリヒートステージが上昇、 下降する動作を行う。
次に、 プリヒート装置 1 6 0からボンディングステージ 1 1 0へのバンプ形 成前ウェハ 2 0 1の移载動作について説明する。
上述したようにバンプ形成前ウェハ 2 0 1はプリヒート動作により約 2 1 0 °Cまで昇温されるが、 ボンディングステージ 1 1 0上へ載置されるまでの時 間にて若干その温度は下がる。 このように温度が若干下がったバンプ形成前ゥ ェハ 2 0 1を約 2 1 0 °Cに加熱されているボンディングステージ 1 1 0に載置 したとき、 バンプ形成前ウェハ 2 0 1の温度とボンディングステージ 1 1 0の 温度との差に起因して、 バンプ形成前ウェハ 2 0 1の材質によっては図 1 2に 示すように反りが生じる場合がある。 該反りを生じるバンプ形成前ウェハ 2 0
1としては、 例えば L i T a 03ウェハや、 L i N b 03ウェハがある。 そこで 本実施形態では、 ボンディングステージ 1 1 0のバンプ形成前ウェハ 2 0 1に 対して、 反りを矯正する動作を施している。 本実施形態では、 L i N b〇3 ェハの場合にはボンディングステージ 1 1 0に載置後に熱風を吹き付けること で上記反りを矯正し、 一方、 L i T a 03ウェハの場合には載置後の熱風吹き 付け動作では L i N b 03ウェハの場合に比べて反り矯正に要する時間が長く なってしまうので、 熱風の吹き付けは行わない。 このような差異が生じるのは、 L i T a 03ウェハは、 L i N b 03ウェハに比べて熱伝導率が悪く、 熱風の吹 き付けは逆効果であり載置後における加熱動作のみの方が L i T a 03ゥ. の温度が均一になりやすいためと考えられる。 以下に、 図 4 2を参照して上記 熱風吹き付けによる反り矯正動作を、 図 4 3を参照して熱風吹き付け無しの反 り矯正動作について説明する。
図 4 2に示すステップ 5 0 7では、 図 4 5に示すように、 搬入側移載装置 1
4 1のウェハ保持部 1 4 1 1に保持されているバンプ形成前ウェハ 2 0 1がボ ンデイングステージ 1 1 0上に搬入される。 次のステップ 5 3 1では、 ボンデ イングステージ 1 1 0へのバンプ形成前ウェハ 2 0 1の搬入角度調整のためボ ンデイングステージ 1 1 0の回転が行われる。 次のステップ 5 3 2では、 図 4 6に示すようにウェハ載置台 1 1 1がバンプ形成前ウェハ 2 0 1の厚み方向に 上昇して、 バンプ形成前ウェハ 2 0 1の裏面 2 0 1 bに接触し、 さらに若干ゥ ェハ 2 0 1を押し上げる。 尚、 ウェハ載置台 1 1 1が上昇したとき、 上記ゥェ ハ保持部 1 4 1 1の各保持爪 1 4 1 7はウェハ載置台 1 1 1に形成されている 逃がし溝 1 1 6に進入する。
該押し上げのとき、 バンプ形成前ウェハ 2 0 1の表面 2 0 1 aに接触してい る除電用接触部材 1 4 1 0 0は、 スプリング 1 4 1 6 2の付勢力に逆らいなが ら上記表面 2 0 1 aに接触した状態を維持したまま押し上げられる。 上述した ように、 2 1 0 °C付近の温度ではバンプ形成前ウェハ 2 0 1の帯電量は減り、 さらに又、 上記表面 2 0 1 aに除電用接触部材 1 4 1 0◦を接触させている。 よって、 表面 2 0 1 aにおけるスパークの発生を防止することができる。
次のステップ 5 3 3では、 図 4 7に示すように、 搬入側移載装置 1 4 1の駆 動部 1 4 1 2の動作により第 1保持部材 1 4 1 4及び第 2保持部材 1 4 1 5が 開く方向に移動し、 ウェハ保持部 1 4 1 1によるバンプ形成前ウェハ 2 0 1の 保持が解除される。
この状態にて、 次のステップ 5 3 4にて、 ブロー装置 1 1 5を動作させて、 ウェハ載置台 1 1 1に開口されている空気出入孔 1 1 3から約 1 6 0 °C程度の 上記反り矯正用熱風をバンプ形成前ウェハ 2 0 1へ吹き付ける。 該ブロー動作 により、 約 0 . 5 mm程、 バンプ形成前ウェハ 2 0 1はウェハ載置台 1 1 1よ り浮き上がるが、 バンプ形成前ウェハ 2 0 1の周囲には第 1保持部材 1 4 1 4 及び第 2保持部材 1 4 1 5の保持爪 1 4 1 7が存在するので、 浮き上がったバ ンプ形成前ウェハ 2 0 1がウェハ載置台 1 1 1上から脱落することはない。 本 実施形態では、 上記し i N b 03ウェハに対して上記反り矯正が達成される約 2〜4分間、 上記反り矯正用熱風の吹き付けを行うが、 該熱風の吹き付け時間、 及び温度は、 反り矯正動作の対象となる電荷発生半導体基板の材質によって設 定されるものであり、 上述の値に限定されるものではない。
上記熱風吹き付け時間の経過後、 ステップ 5 3 5にてブロー装置 1 1 5の動 作を停止し反り矯正用熱風の吹き付けを終了する。 そしてステップ 5 3 6では、 吸引装置 1 1 4を動作させて上記空気出入孔 1 1 3から吸引を開始しバンプ形 成前ウェハ 2 0 1をウェハ載置台 1 1 1上へ吸着する。 ステップ 5 3 7にて上 記吸着が行われたことを検出し、 ステップ 5 3 8にて、 図 4 8に示すようにゥ ェハ載置台 1 1 1がバンプ形成前ウェハ 2 0 1を保持した状態のまま、 元の位 置まで下降する。
以上の動作にて上記反り矯正動作は終了する。 その後、 搬入側移載装置 1 4
1のウェハ保持部 1 4 1 1が上記搬送装置 1 3 0の上方へ移動する。
次に、 熱風吹き付け無しの反り矯正動作について説明する。 尚、 図 4 3に示 す動作の内、 ステップ 5 0 7、 5 3 1、 5 3 2、 5 3 6、 5 3 7の各動作につ いては、 図 4 2を参照して上述した動作に同じであるので、 ここでの説明は省 略する。 ステップ 5 3 2にてウェハ載置台 1 1 1が上昇し、 ステップ 5 4 1で はウェハ載置台 1 1 1上にバンプ形成前ウェハ 2 0 1が載置される。 このとき、 ウェハ载置台 1 1 1は、 バンプ形成前ウェハ 2 0 1を吸着しない。 これは、 ノく ンプ形成前ウェハ 2 0 1に上記反りが生じたとき、 吸着しているとバンプ形成 前ウェハ 2 0 1の変形動作が制限されてしまい、 バンプ形成前ウェハ 2 0 1に 割れ等の損傷が発生する可能性があるからである。 次のステップ 5 4 2ではゥ
、載置台 1 1 1を元の位置まで下降させる。
ウェハ載置台 1 1 1が降下したことで、 ウェハ載置台 1 1 1はヒータ 1 1 2 :て約 2 1 0 °C程度に再び加熱され、 ステップ 5 4 3では、 ウェハ載置台 1 1 1上にバンプ形成前ウェハ 2 0 1が载置された状態で、 上述した反り矯正用熱 風の吹き付けを行うことなく、 本実施形態では、 上記し i T a 03ウェハに対 して上記反り矯正が達成される約 2分間、 経過させる。 よってこの間に、 L i T a 03ウェハは、 ウェハ载置台 1 1 1にて加熱され、 反りが矯正される。 尚、 上記反り矯正用の放置時間、 及び温度は、 反り矯正動作の対象となる電荷発生 半導体基板の材質によつて設定されるものであり、 上述の値に限定されるもの ではない。
上述した、 熱風吹き付け有り及び熱風吹き付け無しのいずれかの反り矯正動 作を行うことで、 バンプ形成前ウェハ 2 0 1の反りを矯正でき、 従って、 バン プ形成前ウェハ 2 0 1の割れ等の損傷を防止することができる。
以上説明したような反り矯正用動作後、 バンプ形成前ウェハ 2 0 1上の回路 における電極部分へバンプ形成へッド 1 2 0にてバンプが形成される。 尚、 ノく ンプ形成の間、 バンプ形成前ウェハ 2 0 1は上記バンプボンディング用温度に 維持され温度変化はほとんどないので、 バンプ形成前ウェハ 2 0 1に電荷が発 生することはほとんどない。
上記バンプ形成後、 ステップ 6では、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1における第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5にてバンプ 形成後ウェハ 2 0 2を保持し、 搬出側移載装置 1 4 2の移動装置 1 4 2 3の駆 動にてウェハ保持部 1 4 2 1が X方向に移動し、 図 2に示すように、 ポス トヒ 一ト装置 1 7 0の上方にバンプ形成後ウェハ 2 0 2が配置され、 その後、 ボス トヒート装置 1 7 0に載置される。 これらのさらに詳しい動作を図 5 0及び図 5 1を参照して以下に説明する。
図 5 0に示すステップ 6 0 1ではポス トヒート装置 1 7 0のアルミニウム板 1 7 3を約 2 1 0 °Cに加熱する。 次のステップ 6 0 2では、 ウェハ保持部 1 4 2 1に保持されているバンプ形成後ウェハ 2 0 2をポストヒート装置 1 7 0の 上方に搬入する。 次のステップ 6 0 3では、 上記加熱されたアルミニウム板 1 7 3を下降位置 1 6 7から上昇位置 1 6 8へ上昇させる。 該上昇動作により、 上記バンプ形成後ウェハ 2 0 2はァノレミニゥム板 1 7 3に接触し載置される。 尚、 このとき、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1における第 1保 持部材 1 4 2 4及び第 2保持部材 1 4 2 5に備わる各保持爪 1 4 1 7は、 アル ミニゥム板 1 7 3に形成されている逃がし溝 1 7 0 7に進入する。 そして次の ステップ 6 0 4にて、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1における 第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5を開き、 バンプ形成後ウェハ 2 0 2の保持を解除する。 この後のステップ 7におけるポストヒート動作は、 ボストヒート装置 1 7 0が本実施形態のようにパネルヒータ枠 1 7 2とァノレミ 二ゥム板 1 7 3とが分離可能な構造である場合と、 上述した変形例のように分 離しなレ、一体型の場合とで動作が若干異なる。
上記一体型の場合には、 上記ステップ 6 0 1とステップ 6 0 2との間に、 下 記のステップ 6 4 1〜ステップ 6 4 7の動作を実行することができる。
つまり、 図 5 1に示すステップ 6 4 1では、 搬出側移載装置 1 4 2のウェハ 保持部 1 4 2 1の特に保持爪 1 4 1 7の加熱が必要か否かを判断する。 つまり、 上述のようにボンディングステージ 1 1 0にて約 2 1 0 °Cに加熱されたバンプ 形成後ウェハ 2 0 2を搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1にて保持 しポストヒート装置 1 7 0へ搬送するが、 上記保持する際に、 ウェハ保持部 1 4 2 1の特に保持爪 1 4 1 7の温度とバンプ形成後ウェハ 2 0 2の温度との差 がバンプ形成後ウェハ 2 0 2に損傷を与える程度、 例えば 4 0 °C前後であると きには、 バンプ形成後ウェハ 2 0 2に損傷を与える可能性がある。 上記温度差 や損傷を生じるか否かは、 取り扱う電荷発生半導体基板の材質等により異なる ので、 ステップ 6 4 1にてウェハ保持部 1 4 2 1の加熱の有無を判断する。 該 加熱を行うときにはステップ 6 4 2へ移行し、 行わないときにはステップ 6 4 6へ移行する。
上記加熱をする場合、 上記ステップ 6 4 2では、 搬出側移載装置 1 4 2の移 動装置 1 4 2 3を動作させ、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1を ポストヒート装置 1 7 0の上方へ移動させる。 次のステップ 6 4 3では、 ポス トヒート装置 1 7 0に備わるパネルヒータ枠 1 7 2及びアルミニウム板 1 7 3 にて一体的に構成されるボストヒートステージを下降位置 1 6 7から上昇位置 1 6 8まで上昇させる。 該上昇動作により、 搬出側移载装置 1 4 2のウェハ保 持部 1 4 2 1における第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5に備わ る各保持爪 1 4 1 7は、 アルミニウム板 1 7 3に形成されている逃がし溝 1 7 0 7に進入する。 次のステップ 6 4 4では、 上記ポス トヒートステージを約 2 1 0 °Cまで昇温し、 次のステップ 6 4 5にて、 逃がし溝 1 7 0 7に存在する上 記保持爪 1 4 1 7、 さらにはウェハ保持部 1 4 2 1の加熱を行う。 加熱後、 ス テツプ 6 4 6にて上記ボストヒートステージを下降位置 1 6 7まで下降させる。 次のステップ 6 4 7では、 加熱された上記ウェハ保持部 1 4 2 1をボンディ ングステージ 1 1 0の上方まで移動させ、 ステップ 6 4 8にてボンディングス テージ 1 1 0のウェハ载置台 1 1 1を上昇させてウェハ載置台 1 1 1上のバン プ形成後ウェハ 2 0 2をウェハ保持部 1 4 2 1にて保持する。 そして上述のス テツプ 6 0 2へ移行し、 ステップ 6 0 3、 ステップ 6 0 4を経て、 上記ステツ プ 7へ移行する。
ステップ 7では、 ボス 卜ヒート装置 1 7 0にてバンプ形成後ウェハ 2 0 2を 加熱することで該ウェハ 2 0 2の降温を制御しながら、 約 2 1 0 °Cの上記バン プボンディング用温度から、 室温を 1 o °c程上回る温度までバンプ形成後ゥェ ノヽ 2 0 2のポス トヒートを亍う。
電荷発生半導体基板であるバンプ形成後ウェハ 2 0 2は、 降温時における温 度変化に起因して帯電するが、 上述したように、 バンプ形成後ウェハ 2 0 2は、 ポス トヒート装置 1 7 0のアルミニウム板 1 7 3に直接接触して載置されてい るので、 特に帯電しやすい裏面側の電荷はアルミニウム板 1 7 3を介して効率 的にアースすることができる。 よって、 上述したプリヒ一ト動作の場合と同様 に、 電荷発生半導体基板を取り扱うにもかかわらず図 5 2に示すように種々の 降温制御を行うことが可能である。 即ち、 パネルヒータ 1 7 1の温度制御によ り降温制御を行う場合はもちろん、 ポス トヒート装置 1 7 0に備わるパネルヒ —タ枠 1 7 2とアルミニウム板 1 7 3とが本実施形態のように分離可能な構造 である場合には、 さらに、 上記パネルヒータ枠 1 7 2と上記アルミニウム板 1 7 3とを分離する場合、 分離しない場合、 冷却用空気を供給する場合、 供給し ない場合の各種の動作制御によっても降温制御が可能である。
図 5 2において、 符号 1 1 0 1にて示す降温曲線は、 パネルヒータ枠 1 7 2 とアルミニウム板 1 7 3とを分離し、 かつアルミニウム板 1 7 3への冷却用空 気の供給を行った場合の曲線であり、 符号 1 1 0 2にて示す降温曲線は、 上記 分離は行わず上記冷却用空気の供給のみを行った場合の曲線であり、 符号 1 1
0 3にて示す降温曲線は、 上記分離を行い、 上記冷却用空気の供給は行わない 場合の曲線であり、 符号 1 1 0 4にて示す降温曲線は、 上記分離動作及び上記 冷却用空気の供給動作をともに行わない場合の曲線である。 以下に、 上述の各 降温制御動作について説明する。
図 5 3に示す動作は、 パネルヒータ枠 1 7 2とアルミニウム板 1 7 3とを分 離して、 アルミニウム板 1 7 3、 つまり該アルミニウム板 1 7 3に載置されて いるバンプ形成後ウェハ 2 0 2の降温制御を行う場合を示している。 図 5 3の ステップ 6 1 1では、 パネルヒータ 1 Ί 1の温度制御により、 又は自然冷却に よりパネルヒータ 1 7 1の温度を約 2 1 0 °Cから約 1 0 0 °Cまで下げるととも に、 アルミニウム板 1 7 3を上記上昇位置 1 6 8まで上昇させて、 パネルヒー タ枠 1 7 2とアルミニウム板 1 7 3とを分離する。 該降温動作により、 ステツ プ 6 1 2ではポストヒート装置 1 7 0のァノレミニゥム板 1 7 3の温度が、 本実 施形態では約 1 5 0 °Cに達したか否かが判断される。 尚、 上記 1 5 0 °Cは、 上 記約 2 1 0 °Cから冷却を始めた場合、 上記約 2 1 0 °Cから上記 1 5 0 °C程度ま でにおける降温速度に比べて上記 1 5 0 °C後における降温速度が遅くなる、 つ まり降温速度に変化が生じる温度であり、 出願人の実験から得られた値である。 このように、 上記 1 5 0 °Cの値は、 電荷発生半導体基板の材質や、 ボンディン グ用温度等に基づいて設定する値であり、 上記 1 5 0 °Cの値に限定されるもの ではない。 アルミニウム板 1 7 3が上記約 1 5 0 °Cになった後、 さらにステツ プ 6 1 3にて冷却空気供給装置 1 7 1 3を動作させて冷却用空気をアルミユウ ム板 1 7 3に供給する。 ステップ 6 1 4にてアルミニウム板 1 7 3の温度が約 4 0 °Cまで下がったか否かを判断し、 下がったときには上記冷却空気供給装置 1 7 1 3の動作を停止しアルミニウム板 1 7 3への冷却用空気の供給を停止す る。 尚、 上記 4 0 °Cは、 電荷発生半導体基板の材質等により設定する値であり, 該値に限定されるものではない。
このような、 ステップ 6 1 1からステップ 6 1 5までの動作によって、 図 5 2に示す符号 1 1 0 1にてしめす降温制御が実行される。 この場合、 アルミ二 ゥム板 1 7 3を約 2 1 0 °Cから約 4 0 °Cまで約 1 0分で降温させることができ る。
又、 上記ステップ 6 1 3〜ステップ 6 1 5の動作を実行しない場合、 図 5 2 に符号 1 1◦ 3にて示す降温制御が実行される。 この場合、 アルミニウム板 1 7 3は約 2 1 0 °Cから約 4 0 °Cまで約 2 5〜3 0分で降温される。
又、 図 5 4に示す動作は、 パネルヒータ枠 1 7 2とアルミニウム板 1 7 3と を分離せずに、 アルミニウム板 1 7 3、 つまり該アルミニウム板 1 7 3に載置 されているバンプ形成後ウェハ 2 0 2の降温制御を行う場合を示している。 上 記図 5 3に示す降温制御動作と図 5 4に示す降温制御動作との違いは、 パネル ヒータ枠 1 7 2とアルミニウム板 1 7 3との分離の有無のみであるので、 ここ での詳しい説明は省略する。 尚、 図 5 4に示すステップ 6 2 1〜ステップ 6 2
5の各動作は、 図 5 3に示すステップ 6 1 1〜ステップ 6 1 5の各動作に対応 している。
このような、 ステップ 6 2 1からステップ 6 2 5までの動作によって、 図 5 2に符号 1 1 0 2にて示す降温制御が実行される。 この場合、 アルミニウム板 1 7 3を約 2 1 0 °Cから約 4 0 °Cまで約 2 0分で降温させることができる。
又、 上記ステップ 6 2 3〜ステップ 6 2 5の動作を実行しない場合、 図 5 2 に符号 1 1 0 4にて示す降温制御が実行される。 この場合、 アルミニウム板 1 7 3は約 2 1 0 °Cから約 4 0 °Cまで約 5 0分で降温される。
以上説明したボストヒート動作の終了後、 ステップ 8へ移行し以下の動作が 実行される。 搬出側移载装置 1 4 2のウェハ保持部 1 4 2 1にてバンプ形成後 ウェハ 2 0 2を保持し、 移動装置 1 4 2 3の駆動により X方向に沿って搬出装 置 1 3 2の上方へ移動する。 移動後の状態を図 5 6に示している。 図 5 5を参 照して以下にボストヒート装置 1 7 0から搬出装置 1 3 2へのバンプ形成後ゥ ェハ 2 0 2の搬出動作を説明する。 尚、 該搬出動作においても、 ポストヒート 装置 1 7 0のパネルヒータ枠 1 7 2とアルミニウム板 1 7 3との分離動作の有 無に応じて若干動作に差異がある。 図 5 5に示すステップ 8 0 1 、 8 0 2は、 パネルヒータ枠 1 7 2とアルミニウム板 1 7 3との分離動作を行う場合に実行 され、 一方、 ステップ 8 0 3 〜 8 0 6の動作は上記分離動作を行わない場合に 実行される。 又、 ステップ 8 0 7 〜 8 1 0は、 両者に共通する動作である。 上記分離動作が行われる場合、 上述したようにボストヒート動作における冷 却動作のため既にパネルヒータ枠 1 7 2とアルミニウム板 1 7 3とは分離して おりアルミニウム板 1 7 3は上記上昇位置 1 6 8に位置するので、 上記ステツ プ 8 0 1では、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1における第 1保 持部材 1 4 2 4及び第 2保持部材 1 4 2 5を閉じて、 アルミニウム板 1 7 3上 の、 冷却されたバンプ形成後ウェハ 2 0 2を保持する。 そしてステップ 8 0 2 にて、 ブロー吸引装置 1 7 1 1を動作させてアルミニウム板 1 7 3の空気出入 孔 1 7 0 8からブロー用空気を噴出させて、 上記バンプ形成後ウェハ 2 0 2を アルミニウム板 1 7 3から浮上させる。 そして後述のステップ 8 0 7 へ移行す る。
一方、 上記分離動作を行わない場合、 ステップ 8 0 3では、 ポス トヒート装 置 1 7 0の上方に配置された搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1に おける第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5を開く。 次のステップ 8 0 4では、 パネルヒータ枠 1 7 2及びアルミニウム板 1 7 3がー体的に構成 されたボストヒートステージを上記上昇位置 1 6 8まで上昇させる。 そしてス テツプ 8 0 5にて上記第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5を閉じ、 冷却されたバンプ形成後ウェハ 2 0 2を保持する。 次のステップ 8 0 6では、 ブロー吸引装置 1 7 1 1を動作させてアルミニウム板 1 7 3の空気出入孔 1 7 0 8からブロー用空気を噴出し、 上記バンプ形成後ウェハ 2 0 2をアルミニゥ ム板 1 7 3から浮上させる。
ステップ 8 0 7では、 上記分離動作を行った場合にはアルミニウム板 1 7 3 のみを、 上記分離動作がない場合には上記ポストヒートステージを、 上記下降 位置 1 6 7へ下げる。 したがって上記ウェハ保持部 1 4 2 1にて保持されてい るバンプ形成後ウェハ 2 0 2はポストヒート装置 1 7 0の上方に位置すること になる。 次のステップ 8 0 8では、 ブロ一吸引装置 1 7 1 1の動作を停止し上 記ブロー用空気の噴出を停止する。 次のステップ 8 0 9では、 搬出側移載装置 1 4 2の移動装置 1 4 2 3の駆動により X方向に沿って搬出装置 1 3 2の上方 へ移動する。
ステップ 8 1 0では、 ポストヒート装置 1 7 0が、 さらに次のバンプ形成後 ウェハ 2 0 2を受け入れる場合には、 アルミニウム板 1 7 3を約 4 0 °Cから再 び約 2 1 0 °Cまで昇温させる。
上記移動後、 搬出装置 1 3 2の駆動部 1 3 2 4が動作し、 図 5 7に示すよう に、 保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2の裏面 2 0 2 bに接触し、 か つバンプ形成後ウェハ 2 0 2がウェハ保持部 1 4 2 1の保持爪 1 4 1 7力ゝら約 1讓程浮き上がるように上昇する。 保持部 1 3 2 3が上記裏面 2 0 2 bに接触 することで、 裏面 2 0 2 bの帯電が保持部 1 3 2 3を通じてアースされること から裏面 2 0 2 bの帯電量は減少する。 又、 上記上昇のときにも、 除電用接触 部材 1 4 1 0 0はバンプ形成後ウェハ 2 0 2の表面 2 0 2 aに接触した状態を 維持している。 よって、 搬入装置 1 3 1及びボンディングステージ 1 1 0にお けるウェハ 2 0 1 , 2 0 2の受け渡しの場合と同様に、 保持部 1 3 2 3がバン プ形成後ウェハ 2 0 2の裏面 2 0 2 bの接触することで、 裏面 2 0 2 bの帯電 量が変化することに伴い表面 2◦ 2 aの電荷に変化が生じたときでも、 該変化 分の電荷を除去することができる。
又、 上記上昇後、 保持部 1 3 2 3は吸着動作によりバンプ形成後ウェハ 2 0 2を保持する。
保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2を保持した後、 図 5 8に示すよ うに、 ウェハ保持部 1 4 2 1の第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5が駆動部 1 4 2 2により開き、 バンプ形成後ウェハ 2 0 2の保持を解除する。 上記保持解除後、 図 5 9及び図 6 0に示すように、 上記保持部 1 3 2 3が下 降しバンプ形成後ウェハ 2 0 2を保持台 1 3 2 1上に載置する。 該載置後、 保 持台 1 3 2 1は、 本実施形態では吸着動作によりバンプ形成後ウェハ 2 0 2を 保持する。
次のステップ 9では、 バンプ形成後ウェハ 2 0 2を保持した上記保持台 1 3 2 1が搬出装置用移動装置 1 3 2 2の動作により X方向に移動しバンプ形成後 ウェハ 2 0 2を第 2収納容器 2 0 6側へ搬送する。
そして、 次のステップ 1 0では、 保持台 1 3 2 1はバンプ形成後ウェハ 2 0 2を第 2収納容器 2 0 6へ収納する。
以上説明したように、 本実施形態のバンプ形成装置 1 0 1によれば、 電荷発 生半導体基板、 例えば圧電基板ウェハのように温度変化に伴い電荷を発生する ウェハに対して、 プリヒート動作及びポストヒート動作の温度変化するときに は、 電荷発生半導体基板を直接、 プリヒート装置 1 6 0及びポス トヒート装置 1 7 0を構成しているアルミニウム板 1 6 3、 1 7 3上に接触させ、 アースし ている。 したがって、 例えばウェハのダイシングラインに沿ってアルミニウム 膜を形成したり、 ウェハ裏面全面にアルミニウム膜を形成したりすることなく、 上記温度変化により生じる電荷を、 当該ウェハに形成されている回路に損傷を 与えない程度、 及び例えばステージへの接着力が低下することにより当該ゥェ ハ自体に割れ等が生じなレ、程度にまで低減することができる。
特に、 ウェハの厚みが 0 . 2 mm以下である場合や、 ウェハ上に形成されて いる回路の線間距離が 1 i mより小さく特に隣接する線の線幅の差が大きい場 合には、 上述したプリヒート動作及びボストヒート動作における温度上昇制御 及び温度降下制御を行うことにより、 大きな除電効果を得ることができる。 又、 バンプを形成するウェハの種類毎、 つまりその材質、 大きさ等毎に、 上 記プリヒート動作における昇温速度、 及び上記ボストヒート動作における降温 速度を設定し、 制御装置 1 8 0に備わる記憶装置 1 8 1に予め記憶させておき、 処理するウェハの種類に応じて制御を変更するように構成することもできる。 又、 本実施形態では上述したように、 バンプ形成前ウェハ 2 0 1に対する昇 温時及びバンプ形成後ウェハ 2 0 2に対する降温時の両方において温度制御を 行ったが、 最低限、 上記バンプボンディング用温度から室温までの降温時のみ に上記温度降下制御を行えばよい。 なぜならば、 上述したようにウェハ 2 0 1 , 2 0 2は一旦帯電するとなかなか除電されないという特質を有し、 上記バンプ ボンディング用温度から室温までの降温後、 ウェハ 2 0 2は第 2収納容器 2 0 6に収納されることから帯電状態ままでは不具合発生の要因にも成りかねない ことから、 除電を十分に行っておく必要があるからである。
上述のように、 第 2収納容器 2 0 6への収納前にはバンプ形成後ウェハ 2 0 2の帯電量を減少させておく必要があることから、 図 6 1に示すように、 搬出 側移載装置 1 4 2のウェハ保持部 1 4 2 1から搬出装置 1 3 2へのバンプ形成 後ウェハ 2 0 2の受け渡し動作の間、 バンプ形成後ウェハ 2 0 2の少なくとも 裏面 2 0 2 b側、 好ましくはさらに表面 2 0 2 a側をも加えた両面側に、 ィォ ン発生装置 1 9 0を設けるのが好ましい。 上記受け渡しのとき、 バンプ形成後 ウェハ 2 0 2の裏面 2 0 2 bには負電荷が、 表面 2 0 2 aには正電荷がそれぞ れ帯電しているので、 各電荷を中和するため、 裏面 2 0 2 b側に配置されたィ オン発生装置 1 9 0— 1は正イオンを、 表面 2 0 2 a側に配置されたイオン発 生装置 1 9 0— 2は負イオンを発生する。 各イオン発生装置 1 9 0 _ 1、 1 9
0— 2は、 制御装置 1 8 0に接続され動作制御される。 尚、 図 6 1は、 バンプ 形成後ウェハ 2 0 2を保持したウェハ保持部 1 4 2 1が搬出装置 1 3 2の上方 に配置されたときに、 イオン発生装置 1 9 0— 1、 1 9 0— 2からイオンをバ ンプ形成後ウェハ 2 0 2に作用させている状態を図示しているが、 上述のよう に受け渡し動作の間、 つまり図 5 7から図 6 0に至るまでの各動作の間、 バン プ形成後ウェハ 2 0 2にイオンを作用させる。
このようにイオン発生装置 1 9 0を設けることで、 設けない場合に比べて、 以下のように帯電量をより低減させることができる。 尚、 下記の帯電量値は一 例である。 本実施形態における上述の温度上昇制御や温度降下制御を行わない 場合において、 ウェハ保持部 1 4 2 1が搬出装置 1 3 2の上方に配置されたと き、 バンプ形成後ウェハ 2 0 2の表面 2 0 2 aの帯電量は約 + 1 8 Vであり、 裏面 2 0 2 bは上述のように約一 1 0 0 0 Vである。 このようなバンプ形成後 ウェハ 2 0 2の表裏両面にイオン発生装置 1 9 0にてイオンを 4分間作用させ ることで、 表面 2 0 2 aの帯電量は約 + 2 2 Vになり、 裏面 2 0 2 bは約 + 2 2 Vにすることができる。 よって、 本実施形態における上述の温度上昇制御や 温度降下制御を行い、 さらにィオン発生装置 1 9 0にて少なくとも上記裏面 2 0 2 bにイオンを作用させることで、 裏面 2 0 2 bの帯電量をより低減するこ とができる。
さらに又、 イオン発生装置 1 9 0— 1、 1 9 0— 2から発生したイオンを、 より効率的に少なくとも上記裏面 2 0 2 bに作用させるため、 図 6 1に示すよ うに、 少なくとも裏面 2 0 2 b側には、 発生したイオンを裏面 2 0 2 bへより 効率的に移動させるための送風装置 1 9 1を設けてもよい。 尚、 送風装置 1 9 1は制御装置 1 8 0にて動作制御される。
又、 図 6 1に示すように、 静電センサ 2 5 1を設け、 少なくとも裏面 2 0 2 b、 好ましくはさらに表面 2 0 2 aをも加えた両面の帯電量を静電センサ 2 5 1にて測定しながら、 測定された帯電量に基づき制御装置 1 8 0にて上記ィォ ン発生装置 1 9 0のイオン発生量や、 送風装置 1 9 1の送風量を制御するよう さらに、 ウェハ保持部 1 4 2 1から搬出装置 1 3 2へのバンプ形成後ウェハ 2 0 2の受け渡し動作前の、 上記ボストヒート動作においてもより効率的に除 電を行うため、 上記イオン発生装置 1 9 0によるイオンを作用させるように構 成してもよレ、。
さらには、 上記プリヒート動作においても上記イオン発生装置 1 9 0による イオンを作用させるように構成しても良い。
又、 上述の実施形態では、 ボンディングステージ 1 1 0にバンプ形成前ゥェ ハ 2 0 1を載置したときに、 上記反り矯正動作を行ったが、 これに加えてさら に、 プリヒート装置 1 6 0にバンプ形成前ウェハ 2 0 1を載置したとき、 及び ボストヒート装置 1 7 0にバンプ形成後ウェハ 2 0 2に載置したときにも、 上 記ブロー吸引装置 1 6 1 1、 1 7 1 1を動作させて気体を噴出させて上記反り 矯正動作を実行してもよい。
又、 バンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2は、 昇温に伴 い正電荷が発生し、 降温に伴い負電荷が発生する。 この現象を利用し、 プリヒ 一ト動作では、 バンプ形成前ウェハ 2 0 1を室温から上記バンプボンディング 用温度まで一気に昇温するのではなく、 例えば図 4 4に示すように、 昇温、 降 温を交互に繰り返す温度上昇制御を行い、 上記バンプボンディング温度まで 徐々に昇温する。 このようなプリヒート動作を行うことで、 昇温により生じた 正電荷を、 降温により生じる負電荷にて中和することができる。 つまり、 増加 した帯電分をその都度逆帯電により除電することで、 バンプボンディング温度 まで昇温された時点においてもバンプ形成前ウェハ 2 0 1の初期電荷分の帯電 量にするという考え方である。 同様に、 図 4 9に示すように、 ポス トヒート動 作においてもバンプボンディング用温度から室温までバンプ形成後ウェハ 2 0
2を一気に降温せずに降温、 昇温を交互に繰り返して徐々に降温する温度降下 制御を行うことができる。
このようなジグザグの温度上昇制御及び温度降下制御を、 プリヒート装置 1 6 0及びボストヒート装置 1 7 0における上述したプリヒート動作及びボス卜 ヒート動作に採り入れても良い。
又、 上述の実施形態では、 プリヒート装置 1 6 0及びポストヒート装置 1 7 0において、 バンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2は、 そ の裏面のほぼ全面をアルミニウム板 1 6 3、 1 7 3に接触させているが、 除電 を行う動作のみを考えた場合には、 必ずしも上記ほぼ全面が接触する必要はな く、 バンプ形成前ウェハ 2 0 1及びバンプ形成後ウェハ 2 0 2の外周から中心 へ向かって、 半径の約 1 / 3程度が円環状に導電性部材に接触していればよい。 又、 上述の実施形態では、 上記プリヒート装置 1 6 0及びボストヒート装置 1 7 0を設け、 ポストヒート装置 1 7 0を用いて上述した温度降下制御を行い、 さらにはプリヒート装置 1 6 0を用いて上述した温度上昇制御を行った。 この ようにそれぞれ独立した動作を行うことで、 ウェハ搬入からウェハ搬出までの 工程をより効率的に処理でき、 タク ト短縮を図ることができる。 しかしながら、 例えば工程に時間的余裕がある場合等には、 図 6 2に示すようなバンプ形成装 置 1 0 2のように、 プリヒート装置 1 6 0及びボストヒ一ト装置 1 7 0の設置 を省略し、 上記ボンディングステージ 1 1 0にて、 上記バンプボンディング用 温度へのウェハ 2 0 1の保温、 上記ボストヒート動作における上記温度降下制 御、 及び上記プリヒート動作における上記温度上昇制御を、 制御装置 1 8 0に て制御して実行するように構成することもできる。
又、 このような構成を採ったときには、 上記搬入側移載装置 1 4 1又は上記 搬出側移載装置 1 4 2のいずれか一方のみを設ければよく、 プリヒート装置 1 6 0及びポストヒート装置 1 7 0の設置の省略と相まって、 バンプ形成装置全 体の構成をコンパク ト化することができる。
図 6 3には、 上述のバンプ形成装置 1 0 2の構造、 つまりプリヒート装置 1 6 0及びポストヒート装置 1 7 0の設置を省略し、 ボンディングステージ 1 1
0のウェハ载置台 1 1 1に、 上記バンプ形成前ウェハ 2 0 1のような電荷発生 半導体基板を載置して、 プリヒート動作、 ボンディング動作、 ポス トヒート動 作を行う場合の動作を示している。 図 6 3のステップ 1 0 0 1では、 例えば上 記搬入側移載装置 1 4 1のような移載装置 1 4 3を使用して、 電荷発生半導体 基板としてのバンプ形成前ウェハ 2 0 1を搬送装置 1 3 0からボンディングス テージ 1 1 0のウェハ載置台 1 1 1上へ載置する。 尚、 このときウェハ載置台 1 1 1は約 4 0 °C程度の温度である。 そして、 次のステップ 1 0 0 2では、 後 述するサブプレート 1 9 5を使用している場合には、 ボンディンダステ一ジ 1 1 0の吸引装置 1 1 4を動作させて載置したサブプレート 1 9 5をウェハ載置 台 1 1 1上に吸着する。 しかしながら、 上記バンプ形成前ウェハ 2 0 1を直接 ウェハ載置台 1 1 1に載置する場合には、 上記吸着動作は行わない。 この理由 は、 次のステップ 1 0 0 3では、 上記約 4 0 °Cから約 2 1 0 °Cまでバンプ形成 前ウェハ 2 0 1は昇温されるが、 このときの温度変化によりバンプ形成前ゥェ ハ 2 0 1には、 上述した反り等の変形が生じる。 よって吸着動作により上記変 形を制限してしまうことでバンプ形成前ウェハ 2 0 1に損傷が生じる場合が考 えられることから、 このような損傷の発生を防止するためである。
ステップ 1 0 0 3では、 例えば 1 0 °CZ分の昇温速度にて、 上述のようにバ ンプ形成前ウェハ 2 0 1の昇温が行われる。 尚、 バンプ形成前ウェハ 2 0 1は、 ウェハ载置台 1 1 1に直接接触しているので、 上記昇温の際における温度変化 によりバンプ形成前ウェハ 2 0 1に発生する電荷はウェハ載置台 1 1 1から効 率的に除去することができる。 よって、 上記昇温速度は、 上述したように種々 の速度を設定することができる。
次のステップ 1 0 0 4では、 例えば搬入側移載装置 1 4 1のウェハ保持部 1
4 1 1の保持爪 1 4 1 7にて、 ウェハ載置台 1 1 1上でのバンプ形成前ウェハ 2 0 1の動きを制限し、 次のステップ 1 0 0 5にてブロー装置 1 1 5を動作さ せてウェハ載置台 1 1 1の空気出入孔 1 1 3から熱風をバンプ形成前ウェハ 2 0 1へ吹き付け、 バンプ形成前ウェハ 2 0 1に帯電している電荷を空中へ放電 させることで除電を行う。 その後、 ステップ 1 0 0 6にて、 吸引装置 1 1 4を 動作させてバンプ形成前ウェハ 2 0 1をウェハ載置台 1 1 1上に吸着する。 尚、 本実施形態では、 上記ステップ 1 0 0 5及び上記ステップ 1 0 0 6を行った後、 再度ステップ 1 0 0 5及びステップ 1 0 0 6を実行している。 つまり 2回、 上 述した除電用のブロー動作を行っている。 尚、 上記除電用ブロー動作の回数及 びブロー動作を行う時間は、 バンプ形成前ウェハ 2 0 1の帯電量に応じて設定 すればよい。 例えば上記帯電量が約一 5 0 V以下のときには上記除電用ブロー 動作は 1回で設定した時間だけ行うようにし、 上記帯電量が約一 8 0 0 V程度 のときには上記除電用ブロー動作は 1回で連続的に行い、 上記帯電量が約一 1 0 0 0 V程度のときには上述のように上記除電用ブロー動作を複数回でかつ連 続的に行うようにすることができる。
次のステップ 1 0 0 7では、 バンプ形成前ウェハ 2 0 1へバンプボンディン グを行い、 次のステップ 1 0 0 8では、 吸引装置 1 1 4の動作を停止し上記吸 着を停止する。 この時点で、 吸着動作を停止する理由は、 上記ステップ 1 0 0 2にて吸着を行わない趣旨に同様であり、 温度変化によるバンプ形成後ウェハ 2 0 2の変形を制限しないことで、 損傷の発生を防止するためである。
次のステップ 1 0 0 9では、 ウェハ載置台 1 1 1の温度を約 2 1 0 °Cから約 4 0 °Cまで、 例えば 1 0 °CZ分の降温速度にて降下させる。 尚、 バンプ形成後 ウェハ 2 0 2は、 ウェハ載置台 1 1 1に直接接触しているので、 上記降温の際 における温度変化によりバンプ形成後ウェハ 2 0 2に発生する電荷はウェハ載 置台 1 1 1から効率的に除去することができる。 よって、 上記降温速度は、 上 述したように種々の速度を設定することができる。 そして、 ステップ 1 0 1 0 では、 バンプ形成後ウェハ 2 0 2に対してブローを行いウェハ載置台 1 1 1力 ら浮かせ、 上記移載装置にてウェハ載置台 1 1 1から搬出装置 1 3 2へバンプ 形成後ウェハ 2 0 2を移載する。
上述した除電用ブロー動作は、 プリ ヒート装置 1 6 0及びボストヒート装置 1 7 0を備えたバンプ形成装置 1 0 1におけるプリヒート動作及びボストヒー ト動作においても、 上記ブロー吸引装置 1 6 1 1、 1 7 1 1を動作させて気体 を噴出させて実行してもよい。
又、 上述の説明では、 バンプ形成前ウェハ 2 0 1の裏面 2 0 1 b側には、 い わゆるサブプレー卜と呼ばれる、 ウェハの割れを保護するための保護部材を設 けていない場合を例に採ったが、 例えば図 6 4に示すサブプレート 1 9 5を裏 面 2 0 1 b側に取り付けることもできる。 該サブプレー卜 1 9 5は例えばアル ミニゥムのような金属材料にて作製されており、 バンプ形成前ウェハ 2 0 1は、 上記裏面 2 0 1 bをサブプレート 1 9 5に接触させ、 当該サブプレート 1 9 5 に設けた板バネ 1 9 6にてサブプレート 1 9 5に保持される。
サブプレート 1 9 5を設けることで、 ウェハ 2 0 1, 2 0 2の割れを防止す ることができるとともに、 上記裏面 2 0 1 bは常にサブプレート 1 9 5に接触 しており、 かつ板パネ 1 9 6を介して表面 2 0 1 aに導通しているので、 表裏 面間での帯電量の差を小さくすることができ、 バンプ形成前ウェハ 2 0 1に形 成されている回路の帯電に起因する損傷発生を低減することができる。
又、 サブプレート 1 9 5を設けたとき、 上記プリヒート動作及びポストヒー ト動作における上記パネルヒータ 1 6 1, 1 7 1の熱が有効にウェハ 2 0 1 , 2 0 2に作用するように、 さらには上記イオン発生装置 1 9 0にて生じたィォ ンがウェハ 2 0 1, 2 0 2の裏面 2 0 1 b、 2 0 2 bに有効に作用するように、 サブプレート 1 9 5には、 当該サブプレート 1 9 5の厚み方向に貫通する複数 の貫通穴 1 9 7が設けられている。 以上説明した、 バンプ形成装置 1 0 1及びバンプ形成装置 1 0 2にて上記電 荷発生半導体基板に対して実行される除電動作により、 帯電量が平均ほぼ土 2 0 0 Vに低減された電荷発生半導体基板を作製することができ、 さらに上記ィ オン発生装置 1 9 0を使用することで上述のように約 ± 2 0〜3 O Vの帯電量 に低減された電荷発生半導体基板を作製することができる。 したがって、 帯電 が原因となる上記電荷発生半導体基板に形成されている回路の焦電破壊や当該 電荷発生半導体基板自体の割れ等の損傷の発生を防止することができる。
上述の実施形態におけるバンプ形成装置 1 0 1では、 プリ ヒート装置 1 6 0 及びボストヒート装置 1 7 0に接触した状態に電荷発生半導体基板を配置して 該電荷発生半導体基板における帯電を除去、 低減したが、 以下に説明する変形 例のように、 プリヒー ト装置及びボストヒート装置に対して電荷発生半導体基 板を接触させずに該電荷発生半導体基板における帯電を除去、 低減するように 構成することもできる。
図 7 1は上記図 2に対応する図であり、 上記変形例に相当するバンプ形成装 置 5 0 1を示している。 該バンプ形成装置 5 0 1と、 上述のバンプ形成装置 1
0 1とにおいて、 主な相違点は、 プリヒート装置 5 6 0及びポス トヒート装置 5 7 0、 及び上記帯電の除去、 低減動作である。 尚、 プリ ヒート装置 5 6 0は、 上述のプリヒート装置 1 6◦に相当し、 ポス トヒート装置 5 7 0は上述のボス トヒート装置 1 7 0に相当する。 又、 バンプ形成装置 5 0 1とバンプ形成装置 1 0 1とにおいて、 同じ構成部分については同じ符号を付し、 その説明を省略 する。 よって、 以下には、 プリヒート装置 5 6 0及びポストヒート装置 5 7 0 において、 上述のプリヒート装置 1 6 0及びボストヒート装置 1 7 0と構成上 で相違する点、 並びに上記帯電の除去、 低減動作についてのみ説明する。
上記プリヒート装置 5 6 0は、 図 7 2及び図 7 3に示すように、 搬入装置 1 3 1からウェハ保持部 1 4 1 1にて保持したバンプ形成前ウェハ 2 0 1を、 保 持した状態のままプリヒート装置 5 6 0に非接触な状態にて、 室温から、 ボン デイングステージ 1 1◦にてバンプ形成を行うときの上記バンプボンディング 用温度である約 2 1 0 °C付近まで昇温する装置であり、 発熱源としてのバネル ヒータ 1 6 1を有するパネルヒータ枠 1 6 2上に熱拡散部材としてのアルミ二 ゥム板 1 6 3を取り付けた構造を有する。 尚、 上記バンプボンディング用温度 の約 2 1 0 °Cは、 バンプ形成前ウェハ 2 0 1の材質等により約 1 5 0 °C〜上記 約 2 1 0 °Cの間で変更可能である。
パネルヒータ 1 6 1による昇温動作は、 ァノレミニゥム板 1 6 3の温度を測定 する例えば熱電対のような温度センサ 1 6 6からの温度情報を参照しながら制 御装置 1 8 0にて制御される。 該昇温動作は、 本バンプ形成装置 5 0 1におけ る特徴的動作の一つであり、 詳細については後述する。 又、 この特徴的な昇温 制御を可能とするため、 ァノレミニゥム板 1 6 3には、 冷却材通過用の通路 1 6 4がジグザグ状に形成されている。 本例では、 上記冷却材として室温の空気を 使用し、 制御装置 1 8 0にて動作制御される空気供給装置 1 6 5にて空気が冷 却材用通路 1 6 4へ供給される。 又、 上記冷却材として水を使用することもで きる。 但し、 水を使用する場合、 昇降温の応答が遅いため昇降温制御がし難く、 水と比べたときには上記空気を使用する方が好ましい。
又、 バンプ形成前ウェハ 2 0 1は、 本例では、 プリヒ一ト装置 5 6 0のアル ミニゥム板 1 6 3との隙間を約 l mmとして、 ウェハ保持部 1 4 1 1にて保持 された状態でアルミニウム板 1 6 3上に配置される。 よって、 アルミニウム板 1 6 3のウェハ対向面には、 ウェハ保持部 1 4 1 1の保持爪 1 4 1 7との干渉 を避けるための溝 5 6 7がウェハ保持部 1 4 1 1の進行方向に沿って形成され ている。
上記ボストヒート装置 5 7 0は、 バンプ形成後、 ボンディングステージ 1 1 0からウェハ保持部 1 4 2 1にて保持したバンプ形成後ウェハ 2 0 2を、 保持 した状態のままボストヒート装置 5 7 0に非接触な状態にて、 上記バンプボン デイング用温度の約 2 1 0 °C付近から室温付近まで徐々に降温するための装置 であり、 構造的には上述のプリヒート装置 5 6 0と同様の構造を有する。 つま り、 ポス トヒート装置 5 7 0においても、 パネルヒータ 1 7 1、 パネルヒータ 枠 1 7 2、 アルミニウム板 1 7 3、 冷却材用通路 1 7 4、 空気供給装置 1 7 5、 温度センサ 1 7 6、 及び溝 5 7 7を有する。 よって、 図 7 2及び図 7 3には、 プリヒート装置 560及びボストヒート装置 570の両者における符号を記し ている。 但し、 パネルヒータ 1 7 1は、 バンプ形成後ウェハ 202の降温を制 御するために制御装置 1 80にて動作制御され、 該降温制御動作は、 本例のバ ンプ形成装置 501における特徴的動作の一つであり、 詳細については後述す る。
又、 上記プリヒート装置 560及び上記ボストヒート装置 57◦に備わるァ ノレミニゥム板 163、 1 73における、 バンプ形成前ウェハ 201及びバンプ 形成後ウェハ 202に対向する表面には、 絶縁性の遠赤外線輻射塗装を施すの が好ましい。 該塗装を行うことで、 バンプ形成前ウェハ 20 1及びバンプ形成 後ウェハ 202に対する熱放出性を向上させることができる。
上述のように構成されるプリヒート装置 560及びボストヒート装置 570 を備えたバンプ形成装置 501における動作の内、 プリヒート装置 560及び ポス トヒート装置 570に対して電荷発生半導体基板を接触させずに該電荷発 生半導体基板における帯電を除去、 低減する動作について、 以下に説明する。 尚、 上述のバンプ形成装置 101と同様に、 当該バンプ形成装置 501でも、 各構成部分は制御装置 1 80にて動作制御がなされることで、 バンプ形成前ゥ ェハ 201にバンプが形成され、 そしてバンプ形成後ウェハ 202が第 2収納 容器 206へ収納される、 という一連の動作が実行される。 又、 制御装置 1 8 0は、 ボンディングステージ 1 10にて実行するバンプ形成前ウェハ 201に 対する反り矯正用プロ一動作を制御する。
尚、 以下の説明において、 ウェハ保持部 141 1、 1421に備わる除電用 接触部材は、 上述した反りを生じる電荷発生半導体基板等、 いずれのウェハ、 基板に対しても適用可能な、 図 1 3に示す除電用接触部材 14 100を例に採 る。 該除電用接触部材 14100に代えて、 上述の除電用接触部材 14107、 141 1 3、 141 16、 14 1 20、 1412 1、 141 22を使用するこ ともできる。
バンプ形成前ウェハ 20 1及びバンプ形成後ウェハ 202は、 昇温に伴い正 電荷が発生し、 降温に伴い負電荷が発生する。 この現象を利用し、 プリヒート 動作では、 バンプ形成前ウェハ 2 0 1を室温から上記バンプボンディング用温 度まで一気に昇温するのではなく、 例えば図 7 4に示すように、 昇温、 降温を 交互に繰り返す温度上昇制御を行い、 上記バンプボンディング温度まで昇温す る。 このようなプリヒート動作を行うことで、 昇温により生じた正電荷を、 降 温により生じる負電荷にて中和することができる。 つまり、 本例におけるプリ ヒート動作の基本的な思想は、 増加した帯電分をその都度逆帯電により除電す ることで、 バンプボンディング温度まで昇温された時点においても上記初期電 荷分の帯電量にするという考え方である。 本例におけるプリヒート動作につい て、 より具体的に以下に説明する。
図 7 5には、 上記プリヒ一ト動作全体の動作の流れを示しており、 該動作制 御は制御装置 1 8 0にて行われる。 つまり、 ステップ 2 1 0 1では、 プリヒー ト装置 5 6 0のァノレミニゥム板 1 6 3の温度が開始温度か否かが判断され、 開 始温度にないときには、 ステップ 2 1 0 2にてパネルヒータ 1 6 1による加熱 又は空気供給装置 1 6 5による空気供給による冷却により上記開始温度に調節 される。 本例では、 上記開始温度は 4 0 °Cであり、 アルミニウム板 1 6 3の温 度は上記温度センサ 1 6 6にて測定される。
ステップ 2 1 0 3では、 昇温傾きを制御して、 アルミニウム板 1 6 3、 つま りバンプ形成前ウェハ 2 0 1の昇温が開始され、 ステップ 2 1 0 4では昇温目 標温度にアルミニウム板 1 6 3が到達したか否かが判断される。 尚、 本例では、 上述のようにバンプ形成前ウェハ 2 0 1の上記バンプボンディング用温度は約
2 1 0 °Cであるので、 これに対応してアルミニウム板 1 6 3における上記昇温 目標温度は約 2 0 0 °Cである。 アルミニウム板 1 6 3が上記昇温目標温度に達 していないときには、 図 7 6に示すステップ 2 1 2 1〜ステップ 2 1 2 4が実 行される。 尚、 上述のように、 上記バンプボンディング用温度は、 バンプ形成 前ウェハ 2 0 1の材質等に基づいて可変であるので、 該バンプボンディング用 温度に応じて上記昇温目標温度も変更可能である。
これらステップ 2 1 0 3、 2 1 0 4、 及びステップ 2 1 2 1〜 2 1 2 4にて 実行される温度上昇制御動作にて、 本例にて特徴的な動作の一つである、 上述 した、 昇温、 降温を交互に繰り返しながら上記バンプボンディング温度までの 昇温動作が実行されることになる。 尚、 該動作については以下に詳述する。 ステップ 2 1 0 4にて上記昇温目標温度に達していると判断されたときには、 ステップ 2 1 0 5に移行し、 プリ ヒート動作は完了する。 よって、 ステップ 2 1 0 6にてバンプ形成前ウェハ 2 0 1はボンディングステージ 1 1 0へ移載さ れる。 該移載後、 ステップ 2 1 0 7では、 空気供給装置 1 6 5による空気供給 を開始して、 アルミニウム板 1 6 3を上記開始温度まで降温させ、 ステップ 2 1 0 8にて上記開始温度まで降温したか否かが判断される。 そして上記開始温 度まで降温したときにはステップ 2 1 0 9にて空気供給装置 1 6 5の空気供給 を停止し、 上記開始温度を保持する。 そして再びステップ 2 1 0 3に戻り、 次 のバンプ形成前ウェハ 2 0 1のプリ ヒート動作に備える。
上記ステップ 2 1 0 3 、 2 1 0 4、 及びステップ 2 1 2 1 〜 2 1 2 4の上記 温度上昇制御動作について説明する。
ステップ 2 1 0 3では、 予め設定された昇温傾きに従いアルミニウム板 1 6 3を昇温する。 尚、 本例では 2 0 °CZ分に設定している。 ステップ 2 1 0 4に て、 アルミニウム板 1 6 3が上記昇温目標温度に達していないときには、 ステ ップ 2 1 2 1へ移行し、 降温開始条件を満たしているか否かが判断される。 こ こで、 上記降温開始条件となる物理量としては、 アルミニウム板 1 6 3の温度、 昇温開始からの時間、 又はバンプ形成前ウェハ 2 0 1の裏面 2 0 1 bの帯電量 等が考えられ、 本例ではアルミニウム板 1 6 3の温度を使用している。
尚、 上記裏面 2 0 1 bの帯電量を使用する場合には、 図 7 8に示すように、 上記パネルヒータ 1 6 1、 上記パネルヒータ枠 1 6 2、 及びアルミニウム板 1 6 3には、 これらを貫通する貫通穴 2 5 2を複数設けておき、 パネルヒータ 1 6 1の下方に静電センサ 2 5 1を配置して、 貫通穴 2 5 2を通して静電センサ 2 5 1にて裏面 2 0 1 bの帯電量を測定する。 測定値は制御装置 1 8 0 へ送出 され、 帯電量が求められる。 尚、 上記静電センサ 2 5 1にて裏面 2 0 1 bの帯 電量を測定する場合や、 後述するようにイオン発生装置 1 9 0を使用して除電 を行うような場合には、 静電イオンが導電体に引っ張られ正確に帯電量を測定 したり除電を行うことができなくなるのを防止するために、 上記貫通穴 2 5 2 の内面及びその周辺、 並びにパネルヒータ 1 6 1、 パネルヒータ枠 1 6 2、 及 びアルミニウム板 1 6 3の表面は、 絶縁材料にてコーティングを施しておくの が好ましい。
本例のように上記降温開始条件の物理量としてアルミニゥム板 1 6 3の温度 を選択したとき、 ステップ 2 1 2 1では、 図 7 7に符号 2 7 1にて示す、 昇温 開始時と現在とにおけるアルミニウム板 1 6 3の各温度から温度幅を求め該温 度幅 2 7 1が所定値に達しているか否かが判断される。 そして上記所定値に達 しているときには、 次のステップ 2 1 2 2に移行し、 達していないときにはス テップ 2 1 0 3に戻る。
本例では、 上記温度幅 2 7 1は 3 0 °Cに設定している。 尚、 上記降温開始条 件の物理量として 「時間」 を選択したときには、 「時間」 の場合には符号 2 7 3の方がより適切な対応部分と思われるが、 符号 2 7 1は時間に相当し、 昇温 開始時刻から降温開始時刻までの時間を例えば 2分に設定可能であり、 「帯電 量」 を選択したときには符号 2 7 1は帯電量差に相当し、 例えば 3 0 O V ± 1
0 %に設定可能である。
ステップ 2 1 2 2では、 空気供給装置 1 6 5による冷却材用通路 1 6 4への 空気供給を開始して、 アルミニウム板 1 6 3の降温が開始される。 このときの 降温傾きは予め設定されている。 本例では一 3 0 °C/分に設定している。
次のステップ 2 1 2 3では、 降温目標条件を満たしているか否かが判断され る。 ここで、 上記降温目標条件となる物理量としては、 本例における 「温度」 の他、 上述のように 「時間」 や 「帯電量」 等がある。 本例では、 ステップ 2 1 2 3にて、 図 7 7に符号 2 7 2にて示す、 降温開始時と現在とのアルミニウム 板 1 6 3の各温度から温度幅を求め該温度幅 2 7 2が所定^ iに達しているか否 かが判断される。 そして上記所定 に達しているときには、 次のステップ 2 1
2 4に移行し、 達していないときにはステップ 2 1 2 2に戻る。 上記温度幅 2 7 2は、 上記温度幅 2 7 1未満の値であり温度幅 2 7 1の約 1 / 2から約 1 Z 3程度の値であり、 本例では 1 5 °Cに設定している。 尚、 上記降温目標条件の 物理量として 「時間」 を選択したときには符号 2 7 2は時間に相当し、 例えば 1分と設定可能であり、 「帯電量」 を選択したときには符号 2 7 2は帯電量差 に相当し、 例えば 1 0 0 V ± 1 0 %と設定可能である。
ステップ 2 1 2 4では、 空気供給装置 1 6 5による冷却材用通路 1 6 4への 空気供給を停止し、 アルミニウム板 1 6 3の降温を停止する。 ステップ 2 1 2
4における動作終了後、 再びステップ 2 1 0 3へ戻る。
このように上記ステップ 2 1 0 3、 2 1 0 4、 及びステップ 2 1 2 1〜2 1 2 4の温度上昇制御動作により、 アルミニウム板 1 6 3、 つまりバンプ形成前 ウェハ 2 0 1の昇温、 降温を交互に繰り返しながら上記バンプボンディング温 度までの昇温動作が実行されることになる。 このように昇、 降温を交互に繰り 返すことで、 バンプ形成前ウェハ 2 0 1の主に裏面 2 0 1 bにおける電荷は、 昇温により正電荷が増えるが降温により負電荷が生じるので電荷の中和が行わ れる。 実際には、 上述のように昇温幅よりも降温幅の方が小さいので、 図 7 4 に示すように上記プリヒート動作によりバンプ形成前ウェハ 2 0 1の裏面 2 0 1 bには正電荷が蓄積されていくが、 帯電量は、 昇、 降温を交互に繰り返さず に一様に昇温する場合に比べて、 大幅に低減することができる。 例えば一例と して、 上記一様に昇温した場合には + 2 0 0 0 Vを超え、 約 + 3 0 0 0 V程度 まで帯電するが、 昇、 降温を交互に繰り返すことで約 + 1 0 0 V程度に抑える ことができる。
以上のプリヒート動作後、 上述のバンプ形成装置 1 0 1にて説明したステツ プ 5に移行する。 ステップ 5では、 移動装置 1 4 1 3にて搬入側移載装置 1 4 1がプリヒート装置 5 6 0からボンディングステージ 1 1 0へ移動され、 ゥェ ハ保持部 1 4 1 1にて保持されているバンプ形成前ウェハ 2 0 1がボンディン グステージ 1 1 0に載置される。 尚、 バンプ形成前ウェハ 2 0 1の裏面 2 0 1 bが、 金属材料にてなる、 ボンディングステージ 1 1 0のウェハ載置台 1 1 1 に接触するとき、 裏面 2 0 1 bに蓄積された電荷の一部がウェハ載置台 1 1 1 へアースされ、 又、 裏面 2 0 1 bに蓄積された電荷の一部は上記表面 2 0 1 a 側に移動することもある。 しかしながら本例では、 プリヒート動作のとき上述 した温度上昇制御を行っているので、 表面 2 0 1 a及び裏面 2 0 1 b、 特に裏 面 2 0 1 bにおける帯電量は、 上記温度上昇制御を行っていない従来に比べて 低減されている。 さらに又、 上記表面 2 0 1 aに除電用接触部材 1 4 1 0 0を 接触させている。 よって、 表面 2 0 1 aにおけるスパークの発生を防止するこ とができる。 尚、 上記裏面 2 0 1 bの帯電量は、 上記ウェハ載置台 1 1 1への アース、 及びプリヒート装置 5 6 0から外れることでバンプ形成前ウェハ 2 0 1が若干、 温度低下することによる負電荷の増加により、 図 7 4に符号 3 0 2 にて示すように低下する。
バンプ形成前ウェハ 2 0 1は、 ボンディングステージ 1 1 0に載置された後、 ボンディングステージ 1 1 0に備わり制御装置 1 8 0にて動作制御されるヒー タ 1 1 2にて上記バンプボンディング用温度に加熱されながらバンプ形成前ゥ ェハ 2 0 1上の回路における、 例えば図 8 8に示すような電極部分 1 8へバン プ形成へッド 1 2 0にてバンプ 1 9が形成される。
次に、 バンプ形成後、 ボンディングステージ 1 1 0上からバンプ形成後ゥェ ノヽ 2 0 2は搬出される。 つまり、 ボンディングステージ 1 1 0の上方に配置さ れ駆動部 1 4 2 2にて第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5が開か れ、 次にボンディングステージ 1 1 0のウェハ载置台 1 1 1を上昇させる。 該 上昇動作により、 バンプ形成後ウェハ 2 0 2の表面 2 0 2 aに除電用部材 1 4 2 6に備わる除電用接触部材 1 4 1 0 0がまず接触する。 次に、 上記駆動部 1 4 2 2にて第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5を閉じた後、 ボン デイングステージ 1 1 0のウェハ載置台 1 1 1を下降させることで、 バンプ形 成後ウェハ 2 0 2は搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1に保持され る。
ウェハ保持部 1 4 2 1にて保持されたバンプ形成後ウェハ 2 0 2は、 搬出側 移載装置 1 4 2の移動装置 1 4 2 3の駆動にてウェハ保持部 1 4 2 1が X方向 に移動することで、 図 7 1に示すように、 ポストヒート装置 5 7 0の上方に配 置される。
上記図 2 7に示す、 次のステップ 7では、 ポストヒート装置 5 7 0にてバン プ形成後ウェハ 2 0 2を加熱することで該ウェハ 2 0 2の降温を制御しながら、 約 2 1 0 °Cの上記バンプボンディング用温度から、 室温を 1 0 °C程上回る温度 までバンプ形成後ウェハ 2 0 2のポストヒートを行う。
しかしながら、 上述のプリヒート動作と同様に、 降温動作によるバンプ形成 後ウェハ 2 0 2に生じる温度変化に伴い、 バンプ形成後ウェハ 2 0 2には電荷 が発生し、 図 7 4に符号 3 0 3、 3 0 4にて示すように、 その表面 2 0 2 a及 び裏面 2 0 2 bは帯電を起こす。
そこで、 上記ポストヒート動作においても、 上述したプリヒート動作の場合 と同様に、 降温、 昇温を交互に繰り返す、 温度降下制御を行うことで、 特に裏 面 2 0 2 bの帯電量を抑える。 尚、 表面 2 0 2 aには、 除電用接触部材 1 4 1
0 0が接触しており、 表面 2 0 2 aの帯電はアースされる。
図 7 9には、 上記ボストヒート動作全体の動作の流れを示しており、 該動作 制御は制御装置 1 8 0にて行われる。 つまり、 ステップ 2 1 3 1では、 ボスト ヒート装置 5 7 0のアルミニウム板 1 7 3の温度が開始温度か否かが判断され、 開始温度にないときには、 ステップ 2 1 3 2にてパネルヒータ 1 7 1によるカロ 熱又は空気供給装置 1 7 5による空気供給による冷却により上記開始温度に調 節される。 本例では、 上記開始温度は約 2 0 0 °Cであり、 アルミニウム板 1 7 3の温度は上記温度センサ 1 7 6にて測定される。
ステップ 2 1 3 3では、 降温傾きを制御して、 上記空気供給装置 1 7 5によ る空気供給によりアルミニウム板 1 7 3、 つまりバンプ形成後ウェハ 2 0 2の 降温が開始され、 ステップ 2 1 3 4では降温目標温度にアルミニウム板 1 7 3 が到達したか否かが判断される。 尚、 本例では、 アルミニウム板 1 7 3におけ る上記降温目標温度は、 4 0 °Cである。 アルミニウム板 1 7 3が上記降温目標 温度に達していないときには、 図 8 0に示すステップ 2 1 5 1〜ステップ 2 1 5 4が実行される。
これらステップ 2 1 3 3、 2 1 3 4、 及びステップ 2 1 5 1〜2 1 5 4にて 実行される動作にて、 本例にて特徴的な動作の一つである、 上述した、 降温、 昇温を交互に繰り返しながら上記降温目標温度までの降温動作が実行されるこ W
68 とになる。 尚、 該温度降下制御動作については以下に詳述する。
ステップ 2 1 3 4にて上記降温目標温度に達していると判断されたときには、 ステップ 2 1 3 5に移行し、 ポス トヒート動作は完了する。 よって、 ステップ 2 1 3 6にてバンプ形成後ウェハ 2 0 2は搬出装置 1 4 2へ移載される。 該移 載後、 ステップ 2 1 3 7では、 パネルヒータ 1 7 1への通電を開始し、 アルミ 二ゥム板 1 7 3を上記開始温度まで昇温させ、 ステップ 2 1 3 8にて上記開始 温度まで昇温したか否かが判断される。 そして上記開始温度まで昇温したとき にはステップ 2 1 3 9にてパネルヒータ 1 7 1への通電を停止し、 上記開始温 度を保持する。 そして再びステップ 2 1 3 3に戻り、 次のバンプ形成後ウェハ 2 0 2のポス トヒート動作に備える。
上記ステップ 2 1 3 3、 2 1 3 4、 及びステップ 2 1 5 1〜2 1 5 4におけ る上記温度降下制御動作について説明する。
ステップ 2 1 3 3では、 予め設定された上記降温傾きに従いアルミニウム板 1 7 3を降温する。 尚、 上記降温傾きは、 本例では— 2 0 °C/分に設定してい る。 ステップ 2 1 3 4にて、 アルミニウム板 1 7 3が上記降温目標温度に達し ていないときには、 ステップ 2 1 5 1へ移行し、 昇温開始条件を満たしている か否かが判断される。 ここで、 上記昇温開始条件となる物理量としては、 上述 のプリヒート動作制御の場合と同様に、 アルミニウム板 1 7 3の温度や、 降温 開始からの時間や、 又はバンプ形成後ウェハ 2 0 2の裏面 2 0 2 bの帯電量等 が考えられ、 本例ではアルミニウム板 1 7 3の温度を使用している。
尚、 上記裏面 2 0 2 bの帯電量を使用する場合には、 上記プリヒート動作制 御の説明の際に参照した図 7 8に示すように、 アルミニウム板 1 7 3等に貫通 穴 2 5 2を複数設け、 パネルヒータ 1 7 1の下方に静電センサ 2 5 1を配置し て、 貫通穴 2 5 2を通して静電センサ2 5 1にて裏面2 0 2 bの帯電量を測定 する。 測定値は制御装置 1 8 0へ送出され、 帯電量が求められる。
本例のように上記昇温開始条件の物理量としてアルミニウム板 1 6 3の温度 を選択したとき、 ステップ 2 1 5 1では、 図 8 1に符号 2 7 5にて示す、 降温 開始時と現在とのアルミニウム板 1 6 3の各温度から温度幅を求め該温度幅 2 7 5が所定値に達しているか否かが判断される。 そして上記所定値に達してい るときには、 次のステップ 2 1 5 2に移行し、 達していないときにはステップ 2 1 3 3に戻る。
本例では、 上記温度幅 2 7 5は 3 0 °Cに設定している。 尚、 上記昇温開始条 件の物理量として 「時間」 を選択したときには符号 2 7 5は時間に相当し、 例 えば 2分に設定可能であり、 「帯電量」 を選択したときには符号 2 7 5は帯電 量差に相当し、 例えば 3 0 0 V ± 1 0 %に設定可能である。
ステップ 2 1 5 2では、 ポス トヒート装置 5 7 0のパネルヒータ 1 7 1への 通電を開始して、 アルミニウム板 1 7 3の昇温が開始される。 このときの昇温 傾きは予め設定されている。 本例では、 + 3 0 °CZ分に設定している。 尚、 ノ、 ° ネルヒータ 1 7 1への通電開始に対応して上記空気供給装置 1 7 5による空気 供給は停止する。
次のステップ 2 1 5 3では、 昇温目標条件を満たしているか否かが判断され る。 ここで、 上記昇温目標条件となる物理量としては、 本例における 「温度」 の他、 上述のように 「時間」 や 「帯電量」 等がある。 本例では、 ステップ 2 1
5 3にて、 図 8 1に符号 2 7 6にて示す、 昇温開始時と現在とのアルミニウム 板 1 7 3の各温度から温度幅を求め該温度幅 2 7 6が所定値に達しているか否 かが判断される。 そして上記所定値に達しているときには、 ステップ 2 1 5 4 に移行し、 達していないときにはステップ 2 1 5 2に戻る。 上記温度幅 2 7 6 は、 上記温度幅 2 7 5未満の、 温度幅 2 7 5の約 1 Z 2力ゝら約 1 / 3程度の値 であり、 本例では 1 5 °Cに設定している。 尚、 上記昇温目標条件の物理量とし て 「時間」 を選択したときには符号 2 7 6は時間に相当し、 例えば 1分間に設 定可能であり、 「帯電量」 を選択したときには符号 2 7 6は帯電量差に相当し、 例えば 1 0 0 V ± 1 0 %に設定可能である。
ステップ 2 1 5 4では、 ポス トヒート装置 5 7 0のパネノレヒータ 1 7 1への 通電を停止し、 アルミニウム板 1 7 3の昇温を停止する。 ステップ 2 1 5 4に おける動作終了後、 再びステップ 2 1 3 3へ戻る。
このように上記ステップ 2 1 3 3、 2 1 3 4、 及びステップ 2 1 5 1〜2 1 5 4の温度降下制御動作により、 アルミニウム板 1 7 3、 つまりバンプ形成後 ウェハ 2 0 2の降温、 昇温を交互に繰り返しながら上記降温目標温度までの降 温動作が実行されることになる。 このように降、 昇温を交互に繰り返すことで、 バンプ形成後ウェハ 2 0 2の主に裏面 2 0 2 bにおける電荷は、 降温により負 電荷が増えるが昇温により正電荷が生じるので電荷の中和が行われる。 実際に は、 上述のように降温幅よりも昇温幅の方が小さいので、 図 7 4に符号 3 0 3 にて示すように、 上記ボストヒート動作によりバンプ形成後ウェハ 2 0 2の裏 面 2 0 2 bには負電荷が蓄積されていく力 帯電量は、 降、 昇温を交互に繰り 返さずに一様に降温する場合に比べて、 大幅に低減することができる。 例えば 一例として、 上記一様に降温した場合には約 _ 2 0 0 0 V〜約一 3 0 0 0 V程 度まで帯電するが、 降、 昇温を交互に繰り返すことで約一 1 0 0 V程度に抑え ることができる。
上記ボス 卜ヒート動作後、 上記図 2 7のステップ 8へ移行し以下の動作が実 行される。 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1は、 バンプ形成後ゥ ェハ 2 0 2を保持した状態にて、 移動装置 1 4 2 3の駆動により X方向に沿つ て搬出装置 1 3 2の上方へ移動する。 移動後の状態を上記図 5 6に示している。 上記移動後、 搬出装置 1 3 2の駆動部 1 3 2 4が動作し、 上記図 5 7に示す ように、 保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2の裏面 2 0 2 bに接触し、 かつバンプ形成後ウェハ 2 0 2がウェハ保持部 1 4 2 1の保持爪 1 4 1 7から 約 1 mm程浮き上がるように上昇する。 保持部 1 3 2 3が上記裏面 2◦ 2 bに 接触することで、 裏面 2 0 2 bの帯電が保持部 1 3 2 3を通じてアースされる ことから、 図 7 4に符号 3 0 5にて示すように裏面 2 0 2 bの帯電量は減少す る。 又、 上記上昇のときにも、 除電用接触部材 1 4 1 0 0はバンプ形成後ゥェ ハ 2 0 2の表面 2 0 2 aに接触した状態を維持している。 よって、 搬入装置 1 3 1及びボンディングステージ 1 1 0におけるウェハ 2 0 1、 2 0 2の受け渡 しの場合と同様に、 保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2の裏面 2 0 2 bの接触することで、 裏面 2 0 2 bの帯電量が変化することに伴い表面 2 0 2 aの電荷に変化が生じたときでも、 該変化分の電荷を除去することができる。 又、 上記上昇後、 保持部 1 3 2 3は吸着動作によりバンプ形成後ウェハ 2 0 2を保持する。
保持部 1 3 2 3がバンプ形成後ウェハ 2 0 2を保持した後、 上記図 5 8に示 すように、 ウェハ保持部 1 4 2 1の第 1保持部材 1 4 2 4及び第 2保持部材 1 4 2 5が駆動部 1 4 2 2により開き、 バンプ形成後ウェハ 2 0 2の保持を解除 する。
上記保持解除後、 上記図 5 9及び図 6 0に示すように、 上記保持部 1 3 2 3 が下降しバンプ形成後ウェハ 2 0 2を保持台 1 3 2 1上に載置する。 該載置後、 保持台 1 3 2 1は、 本例では吸着動作によりバンプ形成後ウェハ 2 0 2を保持 する。
上記図 2 7に示す、 次のステップ 9では、 バンプ形成後ウェハ 2 0 2を保持 した上記保持台 1 3 2 1が搬出装置用移動装置 1 3 2 2の動作により X方向に 移動しバンプ形成後ウェハ 2 0 2を第 2収納容器 2 0 6側へ搬送する。
そして、 次のステップ 1 0では、 保持台 1 3 2 1はバンプ形成後ウェハ 2 0 2を第 2収納容器 2 0 6へ収納する。
以上説明したように、 本例のバンプ形成装置 5 0 1によれば、 電荷発生半導 体基板、 例えば圧電基板ウェハのように温度変化に伴い電荷を発生するウェハ に対して、 例えばゥェハのダイシングラインに沿ってアルミニゥム膜を形成し たり、 ウェハ裏面全面にアルミニウム膜を形成したりすることなく、 上記ゥェ ハに対する上記温度上昇制御及び温度降下制御により当該ウェハに発生する電 荷を、 当該ウェハに形成されている回路に損傷を与えない程度、 及び当該ゥェ ハ自体に割れ等が生じない程度にまで低減することができる。
特に、 ウェハの厚みが 0 . 2 mm以下である場合や、 ウェハ上に形成されて いる回路の線間距離が 1 μ πιより小さく特に隣接する線の線幅の差が大きい場 合には、 上述したプリヒート動作及びボストヒート動作における温度上昇制御 及び温度降下制御を行うことにより、 大きな除電効果を得ることができる。
尚、 上述した変形例におけるバンプ形成装置 5 0 1では、 上記プリヒート動 作における上記昇温傾きは 2 0 °CZ分の一定値に、 上記ボストヒー卜動作にお ける上記降温傾きは一 2 0 °C/分の一定 にそれぞれ設定したが、 これに限定 されるものではない。 例えば、 プリ ヒート動作及びボストヒート動作における 開始及び終了付近と、 中間付近とで傾き値を異ならせてもよい。
又、 バンプを形成するウェハの種類毎、 つまりその材質、 大きさ等毎に、 上 記プリヒート動作における上記昇温傾き値、 上記昇温目標温度や、 上記降温開 始温度や、 降温傾き値や、 上記降温目標値を設定し、 及び上記ボス 卜ヒート動 作における上記降温傾き値、 上記降温目標温度や、 上記昇温開始温度や、 昇温 傾き値や、 上記昇温目標値を設定し、 制御装置 1 8 0に備わる記憶装置 1 8 1 に予め記憶させておき、 処理するウェハの種類に応じて制御を変更するように 構成することもできる。
又、 本例においても上述のように、 バンプ形成前ウェハ 2 0 1に対する昇温 時及びバンプ形成後ウェハ 2 0 2に対する降温時の両方において、 特有の温度 制御を行ったが、 本例においても最低限、 上記バンプボンディング用温度から 室温までの降温時のみに上記温度降下制御を行えばよい。 な fならば、 上述し たようにウェハ 2 0 1, 2 0 2は一旦帯電するとなかなか除電されないという 特質を有し、 上記バンプボンディング用温度から室温までの降温後、 ウェハ 2 0 2は第 2収納容器 2 0 6に収納されることから帯電状態ままでは不具合発生 の要因にも成りかねないことから、 除電を十分に行っておく必要があるからで ある。
又、 上述のバンプ形成装置 1 0 1の場合と同様に本例においても、 上記図 6
1に示すように、 搬出側移載装置 1 4 2のウェハ保持部 1 4 2 1から搬出装置 1 3 2へのバンプ形成後ウェハ 2 0 2の受渡し動作の間、 バンプ形成後ウェハ 2 0 2の少なくとも裏面 2 0 2 b側、 好ましくはさらに表面 2 0 2 a側をも加 えた両面側に、 イオン発生装置 1 9 0を設けるのが好ましい。
さらに、 ウェハ保持部 1 4 2 1から搬出装置 1 3 2へのバンプ形成後ウェハ
2 0 2の受け渡し動作前の、 上記ボストヒート動作においてもより効率的に除 電を行うため、 図 8 2に示すように、 上記イオン発生装置 1 9 0によるイオン をバンプ形成後ウェハ 2 0 2の少なくとも裏面 2 0 2 b側、 好ましくはさらに 表面 2 0 2 a側をも加えた両面側に作用させるのが好ましい。 さらに上記送風 装置 1 9 1を併設することで、 より効果的な除電が行える。 又、 少なくとも裏 面 2 0 2 b、 好ましくはさらに表面 2 0 2 aをも加えた両面の帯電量を静電セ ンサ 2 5 1にて測定しながら、 測定された帯電量に基づき制御装置 1 8 0にて 上記ィオン発生装置 1 9 0のィオン発生量や、 送風装置 1 9 1の送風量を制御 するようにしてもよい。
尚、 裏面 2 0 2 bへ上記イオンを作用させるためには、 上記ポストヒート装 置 5 7 0の上記パネルヒータ 1 7 1の下方にイオン発生装置 1 9 0を配置する ため、 図 8 2に示すように、 図 7 8を参照し上述した貫通穴 2 5 2を設ける必 要がある。
さらには、 上記プリヒート動作においても上記イオン発生装置 1 9 0による イオンをバンプ形成前ウェハ 2 0 1の少なくとも裏面 2 0 1 b側、 好ましくは さらに表面 2 0 1 a側をも加えた両面側に作用させる構成を採ることもできる。 又、 該構成に上記送風装置 1 9 1ゃ静電センサ 2 5 1を併設してもよい。 この ように構成することで、 プリヒート動作のときにも、 より効率的に除電を行う ことができる。 尚、 裏面 2 0 1 b へ上記イオンを作用させるため、 上記プリヒ ート装置 5 6 0には、 図 8 3に示すように、 上記貫通穴 2 5 2を設ける必要が ある。
又、 上記図 6 2及び図 6 3を参照して説明した場合と同様に、 本例のバンプ 形成装置 5 0 1においても、 プリヒート装置 5 6 0及びポス トヒート装置 5 7
0の設置を省略した構成を採ることもでき、 図 8 4に示す動作を実行する。 即 ち、 ウェハ載置台 1 1 1から約 1〜数 mm離れた状態に、 上記バンプ形成前ゥ ェハ 2 0 1のような電荷発生半導体基板を配置してプリヒート動作を行い、 該 プリヒート動作後、 上記電荷発生半導体基板をウェハ載置台 1 1 1上に載置し てボンディング動作を行い、 該ボンディング動作後、 再びウェハ載置台 1 1 1 に非接触な状態に上記電荷発生半導体基板を配置してボストヒート動作を行う 場合の動作を示している。 図 8 4のステップ 2 2 0 1では、 例えば上記搬入側 移載装置 1 4 1のような移載装置 1 4 3を使用して、 電荷発生半導体基板とし てのバンプ形成前ウェハ 2 0 1を搬送装置 1 3 0からボンディングステージ 1 1 0のウェハ載置台 1 1 1の上方へ配置する。 尚、 このときウェハ載置台 1 1 1は約 4 0 °C程度の温度である。
ステップ 2 2 0 3では、 上述のように、 2 0 ノ分の昇温速度にて、 昇温、 降温を繰り返しながらバンプ形成前ウェハ 2 0 1の昇温が行われる。
次のステップ 2 2 0 5にてブロ一装置 1 1 5を動作させてウェハ載置台 1 1 1の空気出入孔 1 1 3から熱風をバンプ形成前ウェハ 2 0 1へ吹き付け、 バン プ形成前ウェハ 2 0 1に帯電している電荷を空中へ放電させることで除電を行 う。 該除電用ブロー動作後、 ステップ 2 2 0 6にて、 バンプ形成前ウェハ 2 0 1をウェハ載置台 1 1 1上に移載し、 吸引装置 1 1 4を動作させてバンプ形成 前ウェハ 2 0 1をウェハ載置台 1 1 1上に吸着する。
次のステップ 2 2 0 7では、 バンプ开成前ウェハ 2 0 1へバンプボンディン グを行う。
次のステップ 2 2 0 9では、 ウェハ載置台 1 1 1を上昇させて上記電荷発生 半導体基板を移載装置 1 4 3に保持させ、 電荷発生半導体基板とウェハ載置台 1 1 1との隙間が約 1〜数 mmとなるようにウェハ載置台 1 1 1を下降させる。 そして、 ウェハ載置台 1 1 1の温度を約 2 1 0 °Cから約 4 0 °Cまで、 例えば上 記 2 0 °CZ分の降温速度にて、 降温と昇温とを繰り返しながら降下させる。 又、 このとき、 ステップ 2 2 0 5にて行った除電用ブロー動作を並行して行うこと もできる。 そして、 ステップ 2 2 1 0では、 上記移載装置にてウェハ載置台 1
1 1から搬出装置 1 3 2 へバンプ形成後ウェハ 2 0 2を移載する。
又、 プリヒート装置 5 6 0及びボストヒート装置 5 7 0を備えたバンプ形成 装置 5 0 1においてプリ ヒ一ト装置 5 6 0及びポス トヒ一ト装置 5 7 0にそれ ぞれ上記ブロー装置を設けた構造を採ることで、 上述した除電用ブロー動作は、 プリヒート装置 5 6 0及びボストヒート装置 5 7 0を備えたバンプ形成装置 5
0 1におけるプリヒート動作及びボストヒート動作においても、 上記ブロー装 置を動作させて気体を噴出させて実行することもできる。
このように除電用ブ口一動作を行うことで、 上記電荷発生半導体基板の除電 を行うことができ、 特に、 上記電荷発生半導体基板の裏面に溝 14が形成され ているときには、 該溝 14内の電荷を効率的に空中に放電させることができる。 よって、 上記電荷発生半導体基板に対する、 昇、 降温によるジグザグの温度制 御と並行して、 さらには上記イオンブロー動作と並行して上記除電用ブロー動 作を実行することで、 より効率的に上記電荷発生半導体基板の除電を行うこと ができる。
又、 本例のバンプ形成装置 501においても、 上述のサブプレートを用いて 処理を行うこともできる。
明細書、 請求の範囲、 図面、 要約書を含む 1 999年 7月 2日に出願された 日本特許出願第 1 1— 189053号、 1 999年 10月 29日に出願された 日本特許出願第 1 1— 308855号、 1 999年 10月 1 5日に出願された 日本特許出願第 1 1— 293702号、 1 999年 1 1月 1 5日に出願された 日本特許出願第 1 1— 323979号、 及び 2000年 6月 20日に出願され た日本特許出願第 2000- 184467号に開示されたものの総ては、 参考 としてここに総て取り込まれるものである。
本発明は、 添付図面を参照しながら好ましい実施形態に関連して充分に記載 されているが、 この技術の熟練した人々にとつては種々の変形や修正は明白で ある。 そのような変形や修正は、 添付した請求の範囲による本発明の範囲から 外れない限りにおいて、 その中に含まれると理解されるべきである。

Claims

請 求 の 範 囲
1 . 温度変化に伴い電荷を発生する電荷発生半導体基板 (2 0 1、 2 0 2 ) がバンプを形成するに必要なバンプボンディング用温度に加熱された状態にて、 上記電荷発生半導体基板上の回路に形成されている電極上に上記バンプを形成 するバンプ形成へッド (1 2 0 ) を備えた電荷発生半導体基板用バンプ形成装 tiでめって、
上記加熱された上記電荷発生半導体基板へのバンプのボンディングの後、 上 記電荷発生半導体基板を冷却するとき、 該冷却による温度降下にて当該電荷発 生半導体基板に生じた電荷を除去する加熱冷却装置 (1 1 0、 1 6 0、 1 7 0 ) と、
上記ボンディング後に上記電荷発生半導体基板を冷却するための温度降下制 御を上記加熱冷却装置に対して行う制御装置 (1 8 0 ) と、
を備えた電荷発生半導体基板用ノ ^ンプ形成装置。
2 . 上記加熱冷却装置は、 上記冷却を行うとき、 上記電荷発生半導体基板の 回路形成面である表面 (2 0 2 a ) に対向する裏面 (2 0 2 b ) に接触して、 上記冷却による温度降下にて当該電荷発生半導体基板に生じた電荷を除去する、 請求項 1記載の電荷発生半導体基板用バンプ形成装置。
3 . 上記加熱冷却装置は、 上記電荷発生半導体基板を上記バンプボンディン グ用温度に加熱する前に上記バンプボンディング用温度付近まで上記電荷発生 半導体基板のプリヒート動作をさらに行い、 かつ上記プリヒート動作による温 度上昇にて上記電荷発生半導体基板に生じた電荷を上記電荷発生半導体基板の 上記裏面に接触して除去し、
上記制御装置は、 さらに、 上記プリヒート動作を行うための温度上昇制御を 上記加熱冷却装置に対して行う、 請求項 2記載の電荷発生半導体基板用バンプ 形成装置。
4 . 上記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生半 導体基板を加熱するバンプボンディングステージ (1 10) と、 上記制御装置 による上記温度降下制御に従い上記電荷発生半導体基板の冷却を行う冷却装置 (1 70) と、 を備えた、 請求項 3記載の電荷発生半導体基板用バンプ形成装 置。
5. 上記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生半 導体基板を加熱するバンプボンディングステージ (1 10) と、 上記制御装置 による上記温度上昇制御に従い上記電荷発生半導体基板の上記プリヒート動作 を行うプリヒート装置 (160) と、 を備えた、 請求項 3記載の電荷発生半導 体基板用バンプ形成装置。
6. 上記冷却装置は、 上記電荷発生半導体基板の上記裏面に接触する熱拡散 部材 (163、 1 73) と、 上記熱拡散部材に対して着脱自在であり上記熱拡 散部材を昇温する加熱部 (16 1、 1 71) と、 上記熱拡散部材と上記加熱部 とを分離させ上記熱拡散部材の冷却を促進させる分離装置 (1601、 1 70 1) と、 を有する請求項 4記載の電荷発生半導体基板用バンプ形成装置。
7. 上記プリヒート装置は、 上記電荷発生半導体基板の上記裏面に接触する 熱拡散部材 (163、 1 73) と、 上記熱拡散部材に接触し上記熱拡散部材を 昇温する加熱部 (16 1、 1 71) と、 上記熱拡散部材と上記加熱部とを分離 させ上記熱拡散部材の冷却を促進させる分離装置 (1601、 1 701) と、 を有する請求項 5記載の電荷発生半導体基板用バンプ形成装置。
8. 上記加熱冷却装置に載置された上記電荷発生半導体基板に対して気体を 供給する気体供給装置 (1 1 5、 16 1 1、 1 71 1) をさらに備え、 上記制御装置は、 上記加熱冷却装置に載置された上記電荷発生半導体基板に 生じた反りを矯正するための反り矯正動作制御を上記気体供給装置及び上記加 熱冷却装置のいずれか一方に対して行う、 請求項 2記載の電荷発生半導体基板 用バンプ形成装置。
9. 上記制御装置は、 上記加熱冷却装置に載置された上記電荷発生半導体基 板に生じた電荷を除去するための除電用ブロー動作制御を上記気体供給装置に 対して行う、 請求項 8記載の電荷発生半導体基板用バンプ形成装置。
10. 上記電荷発生半導体基板の上記表面に接触し、 上記表面に生じた分の 電荷を除去する除電用接触部材 (14100、 14 16 1) をさらに備えた、 請求項 2記載の電荷発生半導体基板用バンプ形成装置。
1 1. 上記電荷発生半導体基板に蓄積された電荷を中和するイオンを発生す るイオン発生装置 (1 90) をさらに備えた、 請求項 2記載の電荷発生半導体 基板用バンプ形成装置。
1 2. 上記電荷発生半導体基板を保持する保持爪 (141 7) を有し該保持 爪にて上記電荷発生半導体基板を保持するとともに上記電荷発生半導体基板の 上記加熱冷却装置への搬送を行うウェハ保持部 (141 1、 1421) をさら に備え、 上記ウェハ保持部及び上記保持爪において、 上記イオン発生装置から 発生した上記イオンが作用する箇所には絶縁材料にてコーティング (141 7 2、 141 74) を施している、 請求項 1 1記載の電荷発生半導体基板用バン プ形成装置。
1 3. 上記加熱冷却装置において、 上記電荷発生半導体基板の上記裏面に接 触する部分には、 当該加熱冷却装置と上記電荷発生半導体基板との熱伝達率を 向上し上記電荷発生半導体基板の除電を図る金属メツキ (26 1) を施してい る、 請求項 2記載の電荷発生半導体基板用バンプ形成装置。
14. 温度変化に伴い電荷を発生する電荷発生半導体基板上の回路に形成さ れている電極上にバンプを形成するに必要なバンプボンディング用温度に加熱 されて当該電荷発生半導体基板へのバンプのボンディングが行われた後、 上記 電荷発生半導体基板を冷却するとき、
上記冷却による温度降下にて上記電荷発生半導体基板に生じる電荷を当該電 荷発生半導体基板を載置する載置部材を介してアースして除電を行う、 電荷発生半導体基板の除電方法。
1 5. 上記載置部材に載置されている上記電荷発生半導体基板に対して気体 を吹き付けて上記電荷発生半導体基板に生じた電荷をさらに除電する、 請求項
14記載の電荷発生半導体基板の除電方法。
16. 上記電荷発生半導体基板に蓄積された電荷を中和するイオンを上記電 荷発生半導体基板へさらに作用させる、 請求項 1 4記載の電荷発生半導体基板 の除電方法。
1 7. 上記電荷発生半導体基板の回路形成面に除電用接触部材 (1 4 1 0 0) を接触させ、 上記電荷発生半導体基板の上記回路形成面に生じた電荷をさ らに除去する、 請求項 1 4記載の電荷発生半導体基板の除電方法。
1 8. 温度変化に伴い電荷を発生する電荷発生半導体基板を加熱後冷却する とき、 当該電荷発生半導体基板の回路形成面である表面 (20 2 a ) に対向す る裏面 (20 2 b) に接触して、 上記冷却による温度降下にて当該電荷発生半 導体基板に生じた電荷を除去する加熱冷却装置 (1 1 0、 1 60、 1 70) と、 上記電荷発生半導体基板を冷却するための温度降下制御を上記加熱冷却装置 に対して行う制御装置 (1 80) と、
を備えた電荷発生半導体基板用除電装置。
1 9. 温度変化に伴い電荷を発生する電荷発生半導体基板 (20 1、 20 2) の回路形成面である表面 (20 2 a) に形成され、 当該電荷発生半導体基 板に生じた電荷を除去するため導体にてなる電荷除去用領域 (1 4 1 6 5) と、 上記電荷除去用領域に接続され、 かつ上記表面に形成された回路形成部分 (2 1 1) を当該電荷発生半導体基板より切り分けるためのダイシングライン (2 1 2) と、
を備えた電荷発生半導体基板。
20. 請求項 1 9記載の電荷発生半導体基板に、 請求項 1 0記載の除電用接 触部材 (14 1 00、 1 4 1 6 1) を接触させて当該電荷発生半導体基板に生 じた電荷を除去する電荷発生半導体基板の除電方法。
2 1. 温度変化に伴い電荷を発生する電荷発生半導体基板 (20 1、 20 2) に帯電した電荷の除去を行ない、 帯電量が ± 200V以下である電荷発生 半導体基板。
22. 請求項 1 4から 1 7のいずれかに記載の除電方法にて上記電荷の除去 が行なわれた、 請求項 2 1記載の電荷発生半導体基板。
23. 請求項 1 8記載の電荷発生半導体基板用除電装置にて上記電荷の除去 が行なわれた、 請求項 2 1記載の電荷発生半導体基板。
2 4 . 請求項 2◦記載の除電方法にて上記電荷の除去が行なわれた、 請求項 2 1記載の電荷発生半導体基板。
2 5 . 上記制御装置にて行われる上記温度降下制御は、 上記冷却による温度 降下にて上記電荷発生半導体基板に生じた電荷を除去する温度降下制御であり、 上記加熱冷却装置は、 上記電荷発生半導体基板に対して非接触な状態にて上 記電荷発生半導体基板を上記バンプボンディング用温度に加熱するとともに、 上記非接触な状態にて上記ボンディング後に上記制御装置による上記温度降下 制御に従い上記電荷発生半導体基板の冷却を行う、 請求項 1記載の電荷発生半 導体基板用バンプ形成装置。
2 6 . 上記温度降下制御は、 降温と、 該降温における下降温度幅未満の温度 幅による昇温とを交互に繰り返し行う、 請求項 2 5記載の電荷発生半導体基板 用バンプ形成装置。
2 7 . 上記加熱冷却装置における上記電荷発生半導体基板の上記バンプボン デイング用温度への加熱は、 上記バンプボンディング用温度付近まで上記電荷 発生半導体基板を予め加熱するプリヒート動作を含み、
上記制御装置は、 さらに、 上記プリヒート動作による温度上昇にて生じ上記 電荷発生半導体基板に生じる電荷を除去する温度上昇制御を上記加熱冷却装置 に対して行う、 請求項 2 5記載の電荷発生半導体基板用バンプ形成装置。
2 8 . 上記温度上昇制御は、 昇温と、 該昇温における上昇温度幅未満の温度 幅による降温とを交互に繰り返し行う、 請求項 2 7記載の電荷発生半導体基板 用バンプ形成装置。
2 9 . 上記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生 半導体基板を加熱するバンプボンディングステージ ( 1 1 0 ) と、 上記制御装 置による上記温度降下制御に従い上記電荷発生半導体基板の冷却を行う冷却装 置 (1 7 0 ) と、 を備えた、 請求項 2 5記載の電荷発生半導体基板用バンプ形 成装置。
3 0 . 上記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生 半導体基板を加熱するバンプボンディングステージ (1 10) と、 上記制御装 置による上記温度上昇制御に従い上記電荷発生半導体基板の上記プリヒート動 作を行うプリヒート装置 (1 60) と、 を備えた、 請求項 27記載の電荷発生 半導体基板用バンプ形成装置。
31. 上記電荷発生半導体基板の電荷を中和するイオンを発生し上記電荷発 生半導体基板へ作用させるイオン発生装置 (1 90) を上記冷却装置に配置さ れた上記電荷発生半導体基板に対向して設置した、 請求項 29記載の電荷発生 半導体基板用バンプ形成装置。
32. 上記加熱冷却装置は、 上記バンプボンディング用温度に上記電荷発生 半導体基板を加熱するバンプボンディングステージ (1 10) と、 上記電荷発 生半導体基板を上記バンプボンディング用温度に加熱する前に上記電荷発生半 導体基板に非接触な状態にて上記バンプボンディング用温度付近まで上記電荷 発生半導体基板のプリヒート動作を行い、 該プリヒート動作による温度上昇に て上記電荷発生半導体基板に生じた電荷を除去する温度上昇制御が上記制御装 置にてなされるプリヒート装置 (160) とを備え、 上記イオン発生装置を、 さらに、 上記プリヒート装置に配置された上記電荷発生半導体基板に対向して 設置した、 請求項 3 1記載の電荷発生半導体基板用バンプ形成装置。
33. 上記電荷発生半導体基板を保持する保持爪 (14 1 7) を有し該保持 爪にて上記電荷発生半導体基板を保持するとともに上記電荷発生半導体基板の 上記加熱冷却装置への搬送を行うウェハ保持部 (14 1 1、 1421) をさら に備え、 上記ウェハ保持部及び上記保持爪において、 上記イオン発生装置から 発生した上記イオンが作用する箇所には絶縁材料にてコーティングを施してい る、 請求項 3 1記載の電荷発生半導体基板用バンプ形成装置。
34. 上記冷却装置は、 上記電荷発生半導体基板に対向して配置され上記電 荷発生半導体基板との対向面には遠赤外線輻射塗料を塗布した熱拡散部材 (1 73) を備える、 請求項 29記載の電荷発生半導体基板用バンプ形成装置。
35. 上記プリヒート装置は、 上記電荷発生半導体基板に対向して配置され 上記電荷発生半導体基板との対向面には遠赤外線輻射塗料を塗布した熱拡散部 材 (163) を備える、 請求項 30記載の電荷発生半導体基板用バンプ形成装
36. 上記バンプボンディングステージに接続され、 上記バンプボンディン グステージに載置された上記電荷発生半導体基板に対して当該電荷発生半導体 基板の反りを矯正する反り矯正装置 (1 1 5) をさらに備えた、 請求項 29記 載の電荷発生半導体基板用バンプ形成装置。
37. 上記制御装置は、 さらに、 上記バンプボンディングステージに対して、 上記バンプボンディングステージに載置された上記電荷発生半導体基板に対し て当該電荷発生半導体基板の反りを矯正する反り矯正用温度制御を行う、 請求 項 29記載の電荷発生半導体基板用バンプ形成装置。
38. 上記バンプボンディングステージに接続され、 上記バンプボンディン グステージに載置された上記電荷発生半導体基板に対して当該電荷発生半導体 基板に帯電している電荷を除去するための気体供給を行う気体供給装置 (1 1 5) をさらに備え、 上記制御装置は、 さらに、 上記気体供給装置に対して電荷 除去用の気体供給動作制御を行う、 請求項 29記載の電荷発生半導体基板用バ ンプ形成装置。
39. 上記電荷発生半導体基板の回路形成面である表面 (202 a) に接触 し、 上記電荷発生半導体基板の上記表面に生じた分の電荷を除去する除電用接 触部材 (14 100、 14 107、 141 1 3、 141 16、 14120、 1 41 21、 141 22、 14 16 1) をさらに備えた、 請求項 25記載の電荷 発生半導体基板用バンプ形成装置。
40. 温度変化に伴い電荷を発生する電荷発生半導体基板上の回路に形成さ れている電極上にバンプを形成するに必要なバンプボンディング用温度に加熱 されて当該電荷発生半導体基板へのバンプのボンディングが行われた後、 上記 電荷発生半導体基板に非接触な状態にて配置され上記電荷発生半導体基板を加 熱して上記電荷発生半導体基板の降温を調整する冷却装置 (1 70) を用いて 上記電荷発生半導体基板を冷却するとき、 該冷却による温度降下にて当該電荷 発生半導体基板に生じる電荷を除去する温度降下制御を上記冷却装置に対して 行う、 バンプ形成装置にて実行される電荷発生半導体基板の除電方法。
4 1 . 上記温度降下制御は、 降温と、 該降温における下降温度幅未満の温度 幅による昇温とを交互に繰り返し行う、 請求項 4 0記載の電荷発生半導体基板 の除電方法。
4 2 . 温度変化に伴い電荷を発生する電荷発生半導体基板を加熱後冷却する とき、 該冷却による温度降下にて当該電荷発生半導体基板に生じた電荷を除去 する温度降下制御を行う制御装置 (1 8 0 ) と、
上記電荷発生半導体基板に対して非接触な状態にて、 上記電荷発生半導体基 板を加熱するとともに、 該加熱後に上記制御装置による上記温度降下制御に従 い上記電荷発生半導体基板の冷却を行う加熱冷却装置 (1 1 0、 1 6 0、 1 7 0 ) と、
を備えた電荷発生半導体基板用除電装置。
4 3 . 請求項 4 0記載の電荷発生半導体基板除電方法にて上記電荷の除去が 行われた電荷発生半導体基板。
PCT/JP2000/004280 1999-07-02 2000-06-29 Dispositif de formation de bosses sur substrat semi-conducteur generateur de charge electrique, procede de suppression de la charge electrique d'un substrat generateur de charge electrique, dispositif de suppression de la charge electrique d'un substrat generateur de charge electrique et substrat semi-conducteur generateur WO2001003176A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60037251T DE60037251T2 (de) 1999-07-02 2000-06-29 Anordnung zur Herstellung von Löthöckern auf Halbleitersubstraten unter Generierung elektrischer Ladung, Methode und Anordnung zum Entfernen dieser Ladungen, und elektrische Ladung generierendes Halbleitersubstrat
EP00942389A EP1202336B1 (en) 1999-07-02 2000-06-29 Electric charge generating semiconductor substrate bump forming device, method of removing electric charge from electric charge generating semiconductor substrate, device for removing electric charge from electric charge generating semiconductor substrate, and electric charge generating semiconductor substrate
CNB008098964A CN100382261C (zh) 1999-07-02 2000-06-29 电荷发生半导体基板用凸起形成装置、电荷发生半导体基板的除静电方法、电荷发生半导体基板用除静电装置、及电荷发生半导体基板
US10/019,700 US6818975B1 (en) 1999-07-02 2000-06-29 Electric charge generating semiconductor substrate bump forming device, method of removing electric charge from electric charge generating semiconductor substrate device for removing electric charge from electric charge generating semiconductor substrate, and electric charge generating semiconductor substrate
US10/651,199 US7005368B1 (en) 1999-07-02 2003-08-29 Bump forming apparatus for charge appearance semiconductor substrate, charge removal method for charge appearance semiconductor substrate, charge removing unit for charge appearance semiconductor substrate, and charge appearance semiconductor substrate
US10/651,103 US7014092B2 (en) 1999-07-02 2003-08-29 Bump forming apparatus for charge appearance semiconductor substrate, charge removal method for charge appearance semiconductor substrate, charge removing unit for charge appearance semiconductor substrate, and charge appearance semiconductor substrate

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP11/189053 1999-07-02
JP18905399 1999-07-02
JP11/293702 1999-10-15
JP29370299 1999-10-15
JP11/308855 1999-10-29
JP30885599A JP3655787B2 (ja) 1999-07-02 1999-10-29 電荷発生基板用バンプ形成装置及び電荷発生基板の除電方法
JP32397999 1999-11-15
JP11/323979 1999-11-15
JP2000184467A JP4570210B2 (ja) 1999-07-02 2000-06-20 電荷発生基板用バンプ形成装置
JP2000/184467 2000-06-20

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US10/019,700 A-371-Of-International US6818975B1 (en) 1999-07-02 2000-06-29 Electric charge generating semiconductor substrate bump forming device, method of removing electric charge from electric charge generating semiconductor substrate device for removing electric charge from electric charge generating semiconductor substrate, and electric charge generating semiconductor substrate
US10019700 A-371-Of-International 2000-06-29
US10/651,103 Division US7014092B2 (en) 1999-07-02 2003-08-29 Bump forming apparatus for charge appearance semiconductor substrate, charge removal method for charge appearance semiconductor substrate, charge removing unit for charge appearance semiconductor substrate, and charge appearance semiconductor substrate
US10/651,199 Division US7005368B1 (en) 1999-07-02 2003-08-29 Bump forming apparatus for charge appearance semiconductor substrate, charge removal method for charge appearance semiconductor substrate, charge removing unit for charge appearance semiconductor substrate, and charge appearance semiconductor substrate

Publications (1)

Publication Number Publication Date
WO2001003176A1 true WO2001003176A1 (fr) 2001-01-11

Family

ID=27528983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004280 WO2001003176A1 (fr) 1999-07-02 2000-06-29 Dispositif de formation de bosses sur substrat semi-conducteur generateur de charge electrique, procede de suppression de la charge electrique d'un substrat generateur de charge electrique, dispositif de suppression de la charge electrique d'un substrat generateur de charge electrique et substrat semi-conducteur generateur

Country Status (7)

Country Link
US (3) US6818975B1 (ja)
EP (1) EP1202336B1 (ja)
KR (1) KR100446262B1 (ja)
CN (1) CN100382261C (ja)
AT (1) ATE379847T1 (ja)
DE (1) DE60037251T2 (ja)
WO (1) WO2001003176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098675A1 (en) * 2002-05-13 2003-11-27 Intel Corporation Apparatus, system and method to reduce wafer warpage

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4456234B2 (ja) * 2000-07-04 2010-04-28 パナソニック株式会社 バンプ形成方法
JP4206320B2 (ja) * 2003-09-19 2009-01-07 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
US8020281B2 (en) * 2008-08-19 2011-09-20 Silverbrook Research Pty Ltd Printed circuit board bonding device
US8296933B2 (en) * 2008-08-19 2012-10-30 Zamtec Limited Fastening apparatus with authentication system
CN102426412A (zh) * 2011-07-12 2012-04-25 上海华力微电子有限公司 一种掩模板表面微尘去除的方法
US8324783B1 (en) 2012-04-24 2012-12-04 UltraSolar Technology, Inc. Non-decaying electric power generation from pyroelectric materials
WO2015073808A2 (en) 2013-11-15 2015-05-21 Greenlee Textron Inc. Automated bender and systems and methods for providing data to operate an automated bender
JP6077023B2 (ja) * 2015-01-09 2017-02-08 株式会社伸興 静電気除去装置及び静電気除去方法
JP6456768B2 (ja) * 2015-05-18 2019-01-23 株式会社ディスコ 加工装置
KR20180129976A (ko) * 2016-07-13 2018-12-05 어플라이드 머티어리얼스, 인코포레이티드 개선된 기판 지지부
US11735438B2 (en) * 2018-12-03 2023-08-22 Applied Materials, Inc. Methods and apparatus for Marangoni drying
JP7489865B2 (ja) * 2020-08-24 2024-05-24 東京エレクトロン株式会社 基板処理方法及び基板処理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187392A (ja) * 1997-09-09 1999-03-30 Oki Electric Ind Co Ltd バンプ形成方法
JPH11330573A (ja) * 1998-05-11 1999-11-30 Toyo Commun Equip Co Ltd バンプ形成方法及びバンプ形成装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925370B2 (ja) 1978-12-26 1984-06-16 富士通株式会社 半導体装置の製造方法
JPS62173428A (ja) 1986-01-28 1987-07-30 Fujitsu Ltd 導波路光デバイス
JPS6477111A (en) * 1987-09-18 1989-03-23 Fujikura Ltd Removal of static electricity of wafer
JPH02203180A (ja) * 1989-02-02 1990-08-13 Sawafuji Electric Co Ltd 冷却装置
JPH03293808A (ja) * 1990-04-11 1991-12-25 Fujitsu Ltd 弾性表面波素子の製造方法
JPH0491422A (ja) * 1990-08-01 1992-03-24 Mitsubishi Electric Corp 半導体装置の製造方法
JPH06232132A (ja) 1993-02-02 1994-08-19 Toshiba Corp バンプ形成装置
US5665167A (en) 1993-02-16 1997-09-09 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus having a workpiece-side electrode grounding circuit
US5341979A (en) * 1993-09-03 1994-08-30 Motorola, Inc. Method of bonding a semiconductor substrate to a support substrate and structure therefore
US5719739A (en) * 1994-01-13 1998-02-17 Horiguchi; Noboru Static eliminator
JP3339164B2 (ja) 1994-02-16 2002-10-28 東レ株式会社 樹脂硬化tabテープの製造装置および製造方法
JP3415283B2 (ja) * 1994-08-31 2003-06-09 株式会社東芝 バンプ形成装置、バンプ形成方法および半導体素子の製造方法
JP3079921B2 (ja) * 1994-11-28 2000-08-21 松下電器産業株式会社 半田ボールの搭載装置および搭載方法
JPH1116874A (ja) 1997-06-26 1999-01-22 Nec Kansai Ltd 遠心乾燥装置
JPH11168074A (ja) 1997-12-03 1999-06-22 Hitachi Denshi Ltd 圧電体基板のダイシング方法
US6198616B1 (en) 1998-04-03 2001-03-06 Applied Materials, Inc. Method and apparatus for supplying a chucking voltage to an electrostatic chuck within a semiconductor wafer processing system
US6056191A (en) * 1998-04-30 2000-05-02 International Business Machines Corporation Method and apparatus for forming solder bumps
JP2000059165A (ja) * 1998-08-06 2000-02-25 Toshiba Corp 弾性表面波装置およびその製造方法
JP4203152B2 (ja) * 1998-09-11 2008-12-24 株式会社日立メディアエレクトロニクス 弾性表面波装置
CN1317925C (zh) * 1998-10-13 2007-05-23 松下电器产业株式会社 加热装置和加热方法
JP2002009569A (ja) * 2000-06-26 2002-01-11 Toshiba Corp 弾性表面波装置の製造方法
JP2002203995A (ja) * 2000-12-27 2002-07-19 Toshiba Corp 基板加熱方法、基板冷却方法、及びそれらの装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187392A (ja) * 1997-09-09 1999-03-30 Oki Electric Ind Co Ltd バンプ形成方法
JPH11330573A (ja) * 1998-05-11 1999-11-30 Toyo Commun Equip Co Ltd バンプ形成方法及びバンプ形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098675A1 (en) * 2002-05-13 2003-11-27 Intel Corporation Apparatus, system and method to reduce wafer warpage

Also Published As

Publication number Publication date
EP1202336A4 (en) 2004-06-23
CN100382261C (zh) 2008-04-16
DE60037251T2 (de) 2008-10-09
KR100446262B1 (ko) 2004-09-01
US6818975B1 (en) 2004-11-16
CN1359534A (zh) 2002-07-17
US7014092B2 (en) 2006-03-21
DE60037251D1 (de) 2008-01-10
ATE379847T1 (de) 2007-12-15
US20040035849A1 (en) 2004-02-26
EP1202336B1 (en) 2007-11-28
EP1202336A1 (en) 2002-05-02
KR20020022076A (ko) 2002-03-23
US7005368B1 (en) 2006-02-28

Similar Documents

Publication Publication Date Title
WO2001003176A1 (fr) Dispositif de formation de bosses sur substrat semi-conducteur generateur de charge electrique, procede de suppression de la charge electrique d'un substrat generateur de charge electrique, dispositif de suppression de la charge electrique d'un substrat generateur de charge electrique et substrat semi-conducteur generateur
US7350684B2 (en) Apparatus and method for forming bump
JP4014481B2 (ja) ボンディング方法およびその装置
US6921720B2 (en) Plasma treating apparatus and plasma treating method
US20080179378A1 (en) Method of forming bumps on a wafer utilizing a post-heating operation, and an apparatus therefore
US9941132B2 (en) Plasma processing apparatus and plasma processing method
JP4570210B2 (ja) 電荷発生基板用バンプ形成装置
JP3916553B2 (ja) 熱接着フィルム貼付方法およびその装置
JP3655787B2 (ja) 電荷発生基板用バンプ形成装置及び電荷発生基板の除電方法
TWI604560B (zh) 利用膜印刷技術形成靜電夾盤的方法
JP4088628B2 (ja) バンプ形成装置
TW201006568A (en) Substrate heating apparatus, liquid material applying apparatus provided with the same, and substrate heating method
EP1890325B1 (en) Aligning stage, bump forming apparatus and bump forming method using such aligning stage
JP3626595B2 (ja) バンプ形成方法及びバンプ形成装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00809896.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017016543

Country of ref document: KR

Ref document number: 2000942389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10019700

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020017016543

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000942389

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017016543

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000942389

Country of ref document: EP