WO1999011708A1 - Compositions de resine de polyolefine - Google Patents

Compositions de resine de polyolefine Download PDF

Info

Publication number
WO1999011708A1
WO1999011708A1 PCT/JP1998/003815 JP9803815W WO9911708A1 WO 1999011708 A1 WO1999011708 A1 WO 1999011708A1 JP 9803815 W JP9803815 W JP 9803815W WO 9911708 A1 WO9911708 A1 WO 9911708A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
weight
copolymer
resin composition
block
Prior art date
Application number
PCT/JP1998/003815
Other languages
English (en)
French (fr)
Inventor
Akihiko Sanpei
Yozo Shimomura
Tooru Fukazawa
Hiroshi Suzuki
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to US09/297,274 priority Critical patent/US6107388A/en
Priority to EP98940579A priority patent/EP0933394B1/en
Priority to DE69829836T priority patent/DE69829836T2/de
Priority to AU88861/98A priority patent/AU8886198A/en
Priority to CA002270167A priority patent/CA2270167A1/en
Publication of WO1999011708A1 publication Critical patent/WO1999011708A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyolefin resin composition. More specifically, the present invention relates to a polyolefin-based resin composition having an excellent balance between rigidity and impact resistance of the obtained injection-molded article and excellent fluidity. Background art
  • Polypropylene resin is widely used in various molded products such as automotive parts, home appliances, sundries, and films because of its excellent rigidity and heat resistance.
  • molded products of general polypropylene resin have insufficient impact resistance, and the range of use is limited.
  • Typical methods include block copolymerization of propylene and ethylene, and ethylene- ⁇ -olefin copolymer.
  • a method of compounding a polymer rubber with a polypropylene resin may be used.
  • the polypropylene resin obtained by these methods is mainly used for automotive exterior materials such as automobile bumpers, automotive interior materials such as instrument panels, console boxes, resin pillars and trims, washing tubs, It is used for materials for home appliances such as vacuum cleaner housings, housings for home appliances, etc.
  • an inorganic filler such as talc may be blended, or rubber may be added to the block copolymer. It is used after being added.
  • Japanese Patent Publication No. Sho 59-372,974 discloses a resin composition in which hydrogenated polybutadiene is blended with a polypropylene resin
  • Japanese Patent Publication No. Sho 62-458883 discloses a resin composition.
  • Diblock copolymers comprising polybutadiene are disclosed.
  • Japanese Patent Application Laid-Open Nos. 4-342752 and 5-132606 disclose a resin composition in which a block copolymer comprising hydrogenated polybutadiene is blended with a polypropylene resin.
  • Japanese Patent Application Laid-Open Publication Nos. Hei 11-16873 and Hei 1-168744 disclose a block copolymer of hydrogenated isoprene and butadiene mixed with a polypropylene resin or a polyethylene resin.
  • a resin composition is disclosed.
  • the present invention relates to the flowability of a resin composition, the rigidity of a molded product, An object of the present invention is to provide a polyolefin-based resin composition having excellent impact resistance and an excellent balance between them.
  • the present inventors have conducted intensive studies to solve the above problems. As a result, by further blending a hydrogenated genblock copolymer with a composition consisting of ethylene mono-higher-olefin copolymer rubber and high-rigidity polypropylene / propylene ethylene block copolymer or talc, The inventors have found that a polyolefin-based resin composition excellent in the flowability of the resin composition and the balance between the rigidity and the impact resistance of the molded article can be obtained, and based on this finding, completed the present invention. Disclosure of the invention
  • the present invention has the following configuration.
  • High-rigidity polypropylene comprising 60 to 95% by weight of a propylene homopolymer component having the following relationship, and 5 to 40% by weight of an ethylene / propylene copolymer component having an ethylene content of 30 to 80% by weight. 83-88% by weight of propylene / ethylene block copolymer
  • a polyolefin resin composition (A) comprising (a) and (b) having a total of 100% by weight.
  • ⁇ segment is 1, 4—Polybutene block
  • B segment is 1, Hydrogenation rate of A-B_A type or A-B type gemlock copolymer consisting of polybutadiene block, polyisoprene block or butadiene / isoprene copolymer block, with a hydrogenation rate of 85% or more
  • a polyolefin resin composition (B) comprising 1 to 5% by weight of a block copolymer, wherein the total of (a), (b) and (c) is 100% by weight.
  • the ethylene-higher ⁇ -olefin copolymer rubber (b) is a two-component and / or three-component random copolymer consisting of ethylene and one or more higher ⁇ -olefins having 4 or more carbon atoms. 3.
  • Hydrogenated block copolymer (c) Powerful 1 1 segment is 1,4-polybutadiene block, B segment is 1,2-polybutadiene block, A-B- A type Gen block copolymer; or 2 A-B type gen block copolymer consisting of 1,4-polybutadiene block with A segment, and butadiene 'isoprene copolymer block with B segment.
  • the polyolefin-based resin composition (E) according to the above item 2, wherein each of them is 85% or more.
  • MFR Melt edge of resin composition
  • the resin molding part for automobile interiors consisting of a molded product having an Izod impact strength at room temperature (ASTM D256) of 300 JZm or more
  • MFR (ASTM D 1 238) of the resin composition is 20 g / 10 min or more.
  • the high-impact surface impact strength at 23 ° C (hauling speed: 4 mZs) of the molded polyolefin-based resin composition described in 6 above is 20 J or more, and the high-speed tensile elongation at 23 ° C ( Tensile speed: 4 m / s) Resin molding for automotive interiors consisting of molded products having a force of 30% or more
  • FIG. 1 is a schematic perspective view of an apparatus for measuring high-speed surface impact strength.
  • FIG. 2 is a schematic perspective view of an apparatus for measuring high-speed tensile elongation.
  • the high-rigidity polypropylene Z propylene / ethylene block copolymer (a) has a high stereoregularity having a high MFR. It is a main component of a resin composition comprising a propylene homopolymer component having a narrow molecular weight distribution and an ethylene / propylene copolymer component having an ethylene content of 30 to 80% by weight.
  • the propylene homopolymer component has a high stereoregularity with an isotactic pentad fraction (P) of 0.96 or more, and a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC).
  • P isotactic pentad fraction
  • Mw weight average molecular weight measured by gel permeation chromatography
  • Q value ratio of less than or equal to 6 to the number average molecular weight (Mn)
  • Mn number average molecular weight
  • the amount of the propylene homopolymer component is 60 to 95% by weight based on the total amount of the high-rigidity polypropylene propylene / ethylene block copolymer ( a ) composition finally obtained. You. If the amount of the propylene homopolymer component is less than 60% by weight, the rigidity of the product will be reduced, and if it exceeds 95% by weight, the improvement in the low-temperature impact strength will be insufficient. When the isotactic pentad fraction (P) is less than 0.96, the rigidity of the molded article decreases, and when the Q value exceeds 6, the impact resistance of the molded article decreases, which is not preferable.
  • the ethylene / propylene copolymer component comprises a random copolymer of ethylene and propylene having an ethylene content of 30 to 80% by weight, preferably 40 to 70% by weight. If the ethylene content is out of the above range, the obtained polymer has poor rigidity and impact resistance, which is not preferable.
  • the amount of the ethylene / propylene copolymer component is 5 to 40% by weight based on the total amount of the high-rigidity polypropylene / propylene / ethylene block copolymer (a) composition finally obtained.
  • Ethylene and propylene may be used in combination with other ⁇ -olefins, non-conjugated gens, and the like.
  • the MFR of the high-rigidity polypropylene / propylene / ethylene block copolymer (a) is preferably in the range of 0.1 to 100, more preferably in the range of 1 to 80. When the MFR is less than 0.1, the moldability decreases, and when the MFR exceeds 100, the impact resistance decreases, which is not preferable.
  • the blending amount of the high-rigidity polypropylene Z propylene / ethylene block copolymer (a) is 83% based on the total weight of the resin component comprising the components (a) and (b). To 88% by weight, and more preferably 78 to 87% by weight based on the total weight of the resin component comprising the components (a), (b) and (c).
  • High-rigidity polypropylene Z-propylene 'ethylene block copolymer (a) is a component that imparts rigidity and heat-resistant rigidity to the molded product. If the blending amount is too small, then (a) and (b) Less than 83% by weight in a two-component system, or less than 78% by weight in a three-component system of (a), (b) and (c)]; If it is too large [ie, more than 88% by weight in the binary system of (a) and (b), or 8 in the ternary system of (a), (b) and (c) If it exceeds 7% by weight], the impact resistance of the molded product is reduced.
  • the high-rigidity polypropylene / propylene • ethylene block copolymer (a) may be produced by any method as long as it satisfies the above requirements. However, the above properties are obtained by homopolymerizing propylene in the polymerization step (I). A propylene homopolymer component is produced, and then in the polymerization step (II), ethylene and propylene are copolymerized in the presence of the propylene homopolymer produced in the polymerization step (I) to form an ethylene-propylene copolymer component. Can be easily produced by employing a two-stage polymerization method for producing
  • a highly stereoregular polyolefin polymerization catalyst such as titanium, magnesium, halogen, and polyvalent ruponic acid ester is essential.
  • a propylene homopolymer is produced using a catalyst system comprising a combination of a solid catalyst component, an organoaluminum compound and an organosilicon compound.
  • ethylene and propylene are copolymerized to make the produced propylene homopolymer component exist to produce an ethylene-propylene copolymer. This makes it possible to produce a high-rigidity polypropylene Z-propylene • ethylene block copolymer (a).
  • a solid catalyst component (A) containing at least a magnesium atom, a titanium atom, a halogen atom, and a polycarboxylic acid ester, an organic aluminum compound (B) and an electron donating compound (C) are used as the polymerization catalyst.
  • a highly stereoregular catalyst system obtained by the above method is used, there is no particular limitation on these catalysts, and it is possible to use various known catalyst systems which give polypropylene having a high cubic regularity.
  • Examples of the method for producing such a solid catalyst component (A) include, for example, JP-A-50-108385, JP-A-50-12690, and JP-A-51-202. No. 97, No. 51-2 8 189, No. 5 1-6 4 5 8 6, No. 5 1-9 2 885, No. 5-1 3 6 6 25, No. 5 2— 8 7 4 8 9 and 5 2— 10 0 5 9 6 and 5 2— 1 4 7 6 8 8 and 5 2— 10 4 5 9 3 and 5 3— No. 2580, No. 53—40093, No. 5 3-4 0 0 9 4 No. 5 5 1 3 5 10 2 No. 5 5 1 3 5 10 3 No. 5 5 1 5 2 7 10 No.
  • polycarboxylic acid ester used in the solid catalyst component (A) include esters of phthalic acid, maleic acid, substituted malonic acid and the like and alcohols having 2 or more carbon atoms.
  • magnesium compound used for the solid catalyst component (A) various magnesium compounds having or not having various reducing ability are used.
  • the former include dimethyl magnesium, getyl magnesium, dipropyl magnesium, dibutyl magnesium, ethyl magnesium chloride, propyl magnesium chloride, and butyl magnesium chloride.
  • Examples of the latter include magnesium chloride, magnesium bromide, magnesium halides such as magnesium iodide, methoxyquine magnesium chloride, alkoxymagnesium chlorides such as ethoxymagnesium chloride, ethoxymagnesium, and isopropoxymagnesium. And alkoxymagnesium such as butoxymagnesium, magnesium carboxylate such as magnesium laurate and magnesium stearate.
  • Particularly preferred compounds among these are magnesium halide, alkoxymagnesium chloride and alkoxymagnesium.
  • the titanium compound used for the solid catalyst component (A) is usually a compound represented by Ti (OR) A X A (R is a hydrocarbon group, X is a halogen, 0 ⁇ A ⁇ 4).
  • X is a halogen, 0 ⁇ A ⁇ 4.
  • tetrahalides such as T i C 1 4, T i B r 4 Titanium, T i ( ⁇ _CH 3) C l 3, T i (0 C 2 H 5) trihalide Kaa Rukokishichitan such C 1, T i (OCH 3 ) 2 C 1 2, T i (OC 2 H 5)
  • Jiharoge emissions reduction dialkoxy titanium such as 2 C 1, T i (OCH 3) 3 C l, T i (OC 2 H 5) 3 Mo
  • Noharogen of trialkoxy titanium such as C 1, T i ( ⁇ CH 3 ) 4, T i (a tetraalkoxy titanium such as OC 2 H 5) 4, particularly preferred is T i C 1 4.
  • solid catalyst component (A) in addition to the above titanium compound, magnesium compound and polycarboxylic acid ester, if necessary, other electron donors, for example, alcohols, ethers, phenols, gay compounds, and aluminum compounds Can coexist.
  • the general formula is A 1 R 2 m R 3 personallyX 3- (m + volunteer, wherein R 2 and R 3 are a hydrocarbon group or an alkoxy group. And X represents a halogen, and m and n each represent an arbitrary number of 0 ⁇ m ⁇ 3, 0 ⁇ n ⁇ 3.1.5 ⁇ m + n ⁇ 3.
  • organoaluminum compound represented by be able to.
  • Examples thereof include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, tri-i-butylaluminum, getylaluminum chloride, di- n -propylaluminum monochloride, getyl
  • Examples thereof include aluminum iodide, methyl aluminum sesquique mouth light, ethyl aluminum sesquique mouth light, and ethoxy getyl aluminum.
  • organoaluminum compounds (B) can be used alone or in combination of two or more.
  • the electron donating compound (C) used in the present invention has a general formula:
  • Organic gay compounds represented by can be used.
  • methyltrimethoxysilane methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane.
  • organic gay compounds can be used alone or as a mixture of two or more kinds at an arbitrary ratio.
  • particularly preferred organic gay compounds are di-i-propyl dimethoxysilane, t-butyltriethoxysilane, t-butyltrimethoxysilane, i-butyltrimethoxysilane, and cyclohexyltrimethoxysilane.
  • the solid catalyst component (A) may be used in combination with an organoaluminum compound (B) and the aforementioned organosilicon compound (C) as a catalyst for the polymerization of propylene.
  • an organoaluminum compound (B) and the aforementioned organosilicon compound (C) as a catalyst for the polymerization of propylene.
  • a one-year-old olefin is reacted and used as a preactivated catalyst.
  • the preactivation is performed by using 0.3 to 20 moles of the organoaluminum compound (B) with respect to 1 mole of titanium in the solid catalyst component (A), and using 0 to 50 for 1 minute to 20 hours. It is desirable to react 0.1 to 10 moles, preferably 0.3 to 3 moles of the one-year-old fin.
  • the reaction of ⁇ -refining for preactivation can be carried out in an aliphatic or aromatic hydrocarbon solvent, or in a liquefied olefin such as liquefied propylene or liquefied butene-11 without using a solvent.
  • the reaction can be performed in the gas phase.
  • an ⁇ -olefin polymer or hydrogen obtained in advance can be allowed to coexist.
  • an organic gay compound (C) can be added in advance.
  • the alpha-olefins used for preactivation are ethylene, propylene, butene-11, hexene1-1, heptene1-1, other linear monoolefins, 4-methyl-1-pentene1-1,2- Branched monoolefins such as methyl-pentene-11,3-methylbutene-11, and styrene. These ⁇ -olefins may be used as a mixture of ⁇ -olefins to be polymerized.
  • the solvent, the organoaluminum compound, the unreacted ⁇ -refined compound, and the organic gayne compound can be separated by filtration, removed by decantation, or dried and used as a powder.
  • the pre-activated catalyst thus obtained can be obtained by slurry polymerization of propylene in a hydrocarbon solvent such as ⁇ -hexane, ⁇ -heptane, ⁇ -octane, benzene, toluene, or liquefied propylene. It can be used in bulk polymerization and gas phase polymerization performed in the above.
  • a hydrocarbon solvent such as ⁇ -hexane, ⁇ -heptane, ⁇ -octane, benzene, toluene, or liquefied propylene. It can be used in bulk polymerization and gas phase polymerization performed in the above.
  • the polymerization temperature is usually 20 to 90 ° C., preferably 50 to 80 ° C., and the polymerization pressure is 0 to 5 MPa.
  • the polymerization temperature is usually 20 to 150 ° C., and the polymerization pressure is 0.2 to 5 MPa.
  • Hydrogen is usually used for controlling the molecular weight, and the MFR of the polymer finally obtained is in the range of 0.1 to 100.
  • the polymerization temperature is usually 20 to 80 ° C, preferably 40 to 70 ° C, It is carried out by copolymerizing ethylene and propylene at a pressure of 0 to 5 MPa.
  • the method of feeding ethylene and propylene to the polymerization vessel and the type of polymerization are not limited. Hydrogen is usually used to control the molecular weight, and the concentration is 0.1 to 10 mol% in the gas phase.
  • the polymerization in the polymerization step (II) is carried out by using one polymerization vessel or two connected polymerization vessels.
  • the MFR of the polymer finally obtained is preferably in the range of 0.1 to 100, more preferably in the range of 1 to 80. If the MFR is less than 0.1, the moldability decreases, and if the MFR exceeds 100, the impact resistance decreases, which is not preferable.
  • the ethylene-higher ⁇ -olefin copolymer rubber (b) has an ethylene component of 45% by weight or more and has a long period of 6 to 10 as measured by small-angle X-ray scattering. 14 nm, more preferably 8 to 12 nm.
  • the long period of the ethylene-higher ⁇ -olefin copolymer rubber (b) is less than 6 nm, it is not sufficient to strengthen the rubber by using polyethylene crystals as pseudo-crosslinked products, and if it exceeds 14 nm, the polyethylene Is too large and phase separation from the polypropylene resin becomes remarkable, which leads to a decrease in the tensile elongation of a molded article molded using the resin composition, which is not preferable.
  • Ethylene-higher ⁇ -olefin copolymer rubber (b) is a two-component or Z- or three-component system composed of ethylene and one or more higher-grade olefins having 4 or more carbon atoms. It is preferably a random copolymer, and a two-component copolymer rubber such as ethylene-11-butene copolymer rubber, ethylene-11-hexene copolymer rubber, ethylene-11-octene copolymer rubber and / or Alternatively, one or more selected from ternary copolymer rubbers such as ethylene-11-butene-11-hexene copolymer rubber can be preferably used.
  • the molecular weight of the ethylene-higher-grade one-year-old olefin copolymer rubber (b), and the Ml: melt 'index (ASTM D-123) is 0.1 to 30 g / 10 minutes. Can be used.
  • the ethylene content in the ethylene-higher ⁇ -olefin copolymer rubber (b) is preferably 45 to 90% by weight.
  • the ethylene-higher ⁇ -olefin copolymer rubber exhibits an effect of improving impact resistance. Its content is 12 to 17% by weight, and when the content is less than 12% by weight, the impact resistance is improved. If the improvement effect is not sufficient, and if it exceeds 17% by weight, the rigidity and heat-resistant rigidity may decrease, or the fluidity of the composition may be impaired.
  • the substance and production method of the ethylene-higher ⁇ -olefin copolymer rubber (b) used in the present invention are disclosed in, for example, ethylene and Japanese Patent Application Laid-Open No. 6-316121.
  • One or more such ⁇ -olefins having a carbon number of 4 to 20 can be obtained by converting one or more ⁇ -olefins having a carbon number of 4 to 20 into a group 3 to 10 group or a lanthanide series metal, a metal coordination complex, and the like.
  • Ethylene-1-butene, ethylene-1-hexene, ethylene-4-methyl-1-pentene and ethylene-1 obtained by continuous contact with a catalyst composition containing an activating cocatalyst under polymerization conditions for polymerization 1-octene copolymer rubber can be mentioned.
  • the hydrogenated gen block copolymer (c) is represented by the following general formulas ⁇ — ⁇ — ⁇ or A—B.
  • A is a 1,4-polybutadiene segment having a maximum melting curve peak at 80 to 120 ° C as measured by a differential scanning calorimeter
  • B is a 1,2-polybutadiene block, a polybutadiene block. It is an isoprene block or a butadiene / isoprene copolymer block segment.
  • the 1,4-polybutadiene segment A has an effect of increasing the compatibility with the ethylene-higher ⁇ -olefin copolymer rubber (c), and the one having a melting temperature of 80 ° C or more has the same effect. It is preferable because the crystallinity is high and the compatibility is improved.
  • the 1,2-polybutadiene block, polyisoprene block and / or butadiene-isoprene copolymer block segment B act to increase the compatibility with the polypropylene resin (a).
  • the hydrogenated gen-block copolymer (c) used in the present invention acts as a compatibilizer between the polypropylene resin (a) and the ethylene mono-higher ⁇ -olefin copolymer rubber (b), and acts as a rubber particle. Micro-dispersed to improve impact resistance.
  • the hydrogenated gen block copolymer (c) can be obtained, for example, by the following method. That is, the selectivity of 1,2-butadiene and 1,4-butadiene is controlled as disclosed in Japanese Patent Publication No. Sho 62-48583 and Japanese Patent Application Laid-Open No. Hei 4-342752.
  • Hydrogenated polybutadiene di- or triplex copolymer obtained by hydrogenating a block polymer of polybutadiene polymerized by polymerization Japanese Patent Application Laid-Open No. H11-16873 No. 4 disclosed a hydrogenated polybutadiene / butadiene isoprene copolymer obtained by hydrogenating a block copolymer of a butadiene 'isoprene random copolymer and 1,4-polybutadiene. And block copolymers of 1,4-polybutadiene and polyisoprene, and hydrogenated polybutadiene 'isoprene, di- or triblock copolymers.
  • the hydrogenated gen block copolymer (c) is composed of 1,4-polybutene gen block in the A segment and 1,2-polybutene gen block, polysoprene block or bus gen isoprene copolymer in the B segment.
  • A-B-A or A-B type gen-block copolymer composed of blocks, the hydrogenation ratio of which is 85% or more.
  • Preferred hydrogenated gemrock copolymers (c) are: A-B-A type, which is a 1,4-polybutadiene block having an A-segment force and a 1,2-polybutadiene block having a B-segment force.
  • a gem block copolymer and A-B type gen block copolymer in which A segment is a 1,4-polybutadiene block and B segment is a butadiene 'isoprene copolymer block.
  • the hydrogenation rate is 85% or more.
  • the hydrogenated gen-block copolymer (c) is more preferably linear.
  • the hydrogenated gen block copolymer (c) with the polyolefin resin composition (A) of the present invention in an amount of 1 to 5% by weight, the ethylene-higher monoolefin copolymer rubber is used as a compatibilizer. It is excellent in the effect of dispersing water and can suppress phase separation due to heat during molding. In addition, with a blending amount of 1 to 5% by weight, polypropylene resin (a) is not plasticized or softened, and the rigidity and heat resistance of the obtained molded article are not impaired.
  • talc (d) By adding talc (d) to the polyolefin-based resin composition compositions (A) to (E) of the present invention, the effect of improving the rigidity of a molded product is exhibited.
  • the content of resin in the resin composition has adverse effects such as impairing fluidity, increasing the specific gravity to increase the product weight, and generating flow marks on the molding surface.Therefore, keep the content to the minimum necessary. It's important to.
  • the rigidity and heat-resistant rigidity of the molded product are improved, and the flexural modulus, which is the basic performance as a material for automobile interiors, is increased by 22%. It maintains 0 OMPa or more, does not impair the high-speed tensile elongation and impact resistance of the obtained molded product, and reduces the occurrence of flow marks on the surface of the molded product.
  • the talc (d) contained in the polyolefin resin compositions (A) to (E) of the present invention has a narrow particle size distribution having an average particle size of 3 / zm or less and a standard deviation of the particle size distribution of 0.2 or less. It is.
  • talc (d) having a narrow particle size distribution, it is possible to exhibit the effect of improving the rigidity and heat resistance of a molded product inherent to talc without impairing impact resistance, particularly surface impact.
  • the average particle size and the particle size distribution were measured using a Shimadzu laser diffraction distribution measuring device SALD-2000.
  • an antioxidant In the polyolefin-based resin compositions (A) to (F) of the present invention, an antioxidant, an antistatic agent, a colorant ( Pigments), nucleating agents, slip agents, mold release agents, flame retardants, ultraviolet absorbers, weathering agents, plasticizers, radical generators, and other various additives.
  • a colorant Pigments
  • nucleating agents In the polyolefin-based resin compositions (A) to (F) of the present invention, an antioxidant, an antistatic agent, a colorant ( Pigments), nucleating agents, slip agents, mold release agents, flame retardants, ultraviolet absorbers, weathering agents, plasticizers, radical generators, and other various additives.
  • Examples of the method for producing the polyolefin-based resin compositions (A) to (F) of the present invention include, for example, a method in which a predetermined amount of each component of the composition of the present invention and a stabilizer and a colorant are combined with a ribbon blender and a tumbler mixer. , Hensel mixer (trade name), super mixer, etc., and then the mixture is rolled, Banbury mixer, Labo Plast mill, A method of melt kneading pelletizing at a melting temperature of 150 ° C. to 300 ° C., preferably 180 ° C. to 250 ° C. using a single screw or twin screw kneading extruder can be exemplified.
  • the polyolefin-based resin compositions (A) to (F) of the present invention thus obtained can be obtained by various molding methods such as injection molding, injection mold clamping, extrusion molding, vacuum molding, and pressure molding. Among the forces that can be used for the production of molded articles, production of molded articles by injection molding or injection mold clamping is preferred.
  • a segment 1,4-polybutadiene
  • a segment 1,4-polybutadiene
  • Isotactic pentad fraction Measured based on Macromolecules, vol. 8, page 687 (1975). Using ' 3 C-NMR, determine the isotactic fraction in pentad units in the polypropylene molecular chain.
  • the obtained pellet was melted at 230 ° C. and 10 MPa for 5 minutes, and then cooled at 50 ° C. and 10 MPa to obtain a sheet having a thickness of 50 O ⁇ m.
  • the long period of the obtained sheet was measured by small-angle X-ray scattering using an X-ray diffractometer: JEOL 8200T X-RAY DIFFRACTOMETER (manufactured by JEOL Ltd.).
  • Source Cu— ⁇ ray, Step angle: 0.02 °, Scan range: — 4 ° to 10 ° C
  • a differential scanning calorimeter (1900 DSC manufactured by DuPont) was loaded with 1 mg of the sample, heated to 230 ° C / min at 30 ° C / min, and then heated to 230 ° C for 10 min. Hold with C. Then cool to-60 ° C at a rate of 20 ° C / min and hold at 60 ° C for 10 minutes. Thereafter, the melting temperature is determined from the peak position of the thermogram obtained when the temperature is raised at a rate of 20 ° C / min.
  • the fluidity was evaluated by measuring the obtained pellets at 190 ° C under a load of 2.16 kg (according to ASTM D1238).
  • a test piece having a length of 130 mm, a width of 13 mm and a thickness of 6.4 mm was prepared by injection molding, and the test piece was used at 23 ° C.
  • the rigidity was evaluated by measuring the flexural modulus (according to ASTM D790).
  • the impact resistance is evaluated by preparing a test piece of mm in diameter by injection molding, performing notch processing, and measuring the Izod impact strength at 23 ° C using this test piece (according to ASTM D256). did.
  • a test piece having a length of 100 mm, a width of 100 mm and a thickness of 2.5 mm was prepared by injection molding, and the apparatus shown in FIG. Under the following conditions, the high-speed surface impact strength was measured and the total energy was evaluated.
  • a test piece having a length of 24.6 mm, a width of 19 mm, and a thickness of 3.2 mm was prepared by injection molding, and the test piece was used to prepare an apparatus shown in FIG.
  • the value obtained by dividing the displacement of the high-speed tension by the length of the test piece (246 mm) under the conditions was evaluated as the high-speed tensile elongation.
  • Example 1 in Table 1 a molded product using the polyolefin-based resin molding composition (A) according to the present invention is excellent in rigidity, impact resistance and fluidity.
  • the composition of Comparative Example 1 in which the high-rigidity propylene / ethylene-propylene block copolymer (a) was not blended was the same as in Example 1 in which the high-rigidity propylene / ethylene 'propylene block copolymer (a) was blended. In comparison, the balance between rigidity and impact resistance, especially rigidity, is reduced.
  • Example 2 in Table 2 a molded article using the polyolefin-based resin molding composition (B) according to the present invention is excellent in rigidity, impact resistance and fluidity.
  • the composition of Comparative Example 2 in which the high-rigidity propylene Z ethylene 'propylene block copolymer (a) was not blended was the same as Example 2 in which the high-rigidity propylene / ethylene' propylene block copolymer (a) was blended.
  • the balance between stiffness and impact resistance, especially stiffness was reduced.
  • molded articles using the polyolefin resin molding composition (F) according to the present invention are excellent in rigidity, impact resistance and fluidity. More specifically, the MFR required for automotive interior materials is 20 gZ 10 min or more, and the molded product obtained from the resin composition has a normal temperature flexural modulus of 220 OMPa or more and a normal temperature Izod impact strength.
  • Comparative Example 3 in which the high-rigidity propylene Z ethylene / propylene block copolymer (a) was not blended, Example 3 in which the high-rigidity propylene / ethylene ′ propylene block copolymer (a) was blended was used.
  • the balance between rigidity and impact resistance is lower than that of ⁇ 4.
  • Comparative Example 5 is an example of a resin composition using an ethylene-higher ⁇ -olefin olefin copolymer rubber (b) having a long cycle of 14 nm or more. The impact resistance and the high-speed tensile elongation were high. It is not practical because it is significantly reduced.
  • the molded article made of the resin composition of the present invention has a specific propylene block copolymer composition, a specific ethylene-higher grade olefin copolymer rubber, or an ethylene block copolymer, And / or by using a specific talc compound, it has a better balance of rigidity and impact resistance compared to conventional resin composition molded products, and shows better fluidity. It is possible to reduce the size and thickness, and it is possible to reduce the weight and cost. In addition, since it has excellent surface impact while maintaining rigidity, it is an extremely useful material that is suitable for automotive interior parts that comply with head impact protection regulations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 ポリオレフィン系樹脂組成物 技術分野
本発明は、 ポリオレフイ ン系樹脂組成物に関する。 さらに詳しくは、 得られる 射出成形品の剛性と耐衝撃性の物性バランスに優れ、 かつ流動性に優れるポリオ レフィン系樹脂組成物に関する。 背景技術
ポリプロピレン樹脂はその成形品が剛性、 耐熱剛性に優れるので自動車部品用 途を始め家電製品、 雑貨、 フィルム等の各種成形品分野に幅広く用いられている。 しかしながら、 一般的なポリプロピレン樹脂の成形品は耐衝撃性が不足しており、 その使用範囲には限界がある。
ポリプロピレン樹脂の耐衝撃性を改良する方法として幾つかの方法が知られて おり、 その代表的なものとしては、 プロピレンとエチレンとをブロック共重合す る方法、 また、 エチレン一 α—ォレフィ ン共重合体ゴムをポリプロピレン樹脂に 配合する方法などが挙げられる。 これらの方法で得られたポリプロピレン樹脂は、 主に自動車用バンパーなどの自動車外装用材料や、 インス トルメ ントパネル、 コ ンソ一ルボックス、 樹脂ピラーやトリム類などの自動車内装用材料の用途や洗濯 槽、 掃除機のハウジングゃコ一ヒメ一力一のハウジング等の家電製品用途の材料 に用いられ、 さらには、 必要に応じてタルクなどの無機フイラ一を配合したり、 プロック共重合体にさらにゴムを添加したりして用いられている。 これらの方法 によりポリプロピレン樹脂組成物の耐衝撃性は改良されてきたが、 その反面、 添 加するゴムの量を増すと得られる成形品の剛性、 耐熱剛性及び流動性が低下する などの問題が新たに発生する。 したがって、 剛性、 耐熱剛性、 流動性を低下させ ずに耐衝撃性を向上させた成形品が得られるポリプロピレン樹脂組成物の開発が 求められている。 この問題を解決するためにいくつかの提案がなされている。 その 1つとして、 低下する剛性や耐熱剛性を補強するためにプロピレン単独重合体部分の立体規則 性を向上させたプロピレンブロック共重合体を用いる方法 (特公平 1 — 2 5 4 7 0 6号公報、 特開昭 6 2 - 1 8 7 7 0 7号公報) や、 タルクなどの無機フイラ一 をポリプロピレン樹脂に配合する方法が知られている。 プロピレン単独重合体部 分の立体規則性を向上させる方法は、 比重をほとんど上げることなく剛性及び耐 熱剛性を向上させることができるため、 種々の分野で利用されている。 一方、 タ ルクを配合する方法も多く用いられているが、 タルクを配合すると、 得られる成 形品の比重が高くなり、 製品重量が増すばかりではなく、 得られる組成物自身の 流動性をも悪化させる等の問題点も指摘されている。
各種共重合体を耐衝撃性の改良、 衝撃白化性の改良などの目的でポリプロピレ ン樹脂に配合する方法が幾つか提案されている。 例えば、 特公昭 5 9 - 3 7 2 9 4号公報には水添されたポリブタジェンをポリプロピレン樹脂に配合する樹脂組 成物が、 特公昭 6 2 - 4 5 8 8 3号公報には水添されたポリブタジエンからなる ジブロック共重合体が開示されている。 さらに、 特開平 4— 3 4 2 7 5 2号公報、 特開平 5— 1 3 2 6 0 6号公報には水添されたポリブタジエンからなるブロック 共重合体をポリプロピレン樹脂に配合する樹脂組成物が、 特開平 1 一 1 6 8 7 4 3号公報、 特開平 1 — 1 6 8 7 4 4号公報には水添されたイソプレンとブタジェ ンからなるブロック共重合体をポリプロピレン樹脂又はポリエチレン樹脂に配合 する樹脂組成物が開示されている。
これらの樹脂組成物は総じて耐衝撃白化や折り曲げ時の耐白化性と耐衝撃性の 両方を向上させることが可能であるが、 耐衝撃性の改良の割には剛性及び耐熱剛 性が著しく低下する等の問題があり、 実用上その用途が限定されてしまっている 上記したような、 ポリプロピレン樹脂組成物の耐衝撃性を改良するゴム成分を 多量に添加すると、 得られる成形品の剛性および流動性が低下するなどの問題が 新たに発生する。 したがって、 成形品の剛性、 ならびに樹脂組成物の流動性を低 下させずに、 成形品の耐衝撃性を向上させ得るポリプロピレン樹脂組成物の開発 が焦点となっている。 本発明は、 樹脂組成物の流動性、 成形品の剛性および耐衝 撃性、 ならびにそれらのバランスに優れたポリオレフィン系樹脂組成物を提供す ることを目的とする。
本発明者らは、 上記課題を解決すべく鋭意検討を行った。 その結果、 エチレン 一高級 —ォレフィン共重合体ゴムと高剛性ポリプロピレン/プロピレン 'ェチ レンブロック共重合体、 もしくはタルクとからなる組成物に、 水添ジェンブロッ ク共重合体をさらに配合することにより、 樹脂組成物の流動性、 および成形品の 剛性と耐衝撃性とのバランスに優れたポリオレフィン系樹脂組成物が得られるこ とを見出し、 この知見に基づいて本発明を完成した。 発明の開示
本発明は下記の構成を有する。
1) (a) ァイソタクチックペンタッ ド分率(P)が 0. 9 6以上、 MwZMn (Q値)が 6以下、 かつメルトフ口一レー卜の最高値(MFRmax)と最小値(MFR min) の比が、
0. 1≤L o g(MF Rmax/MF Rmin)≤ 1 · · · (1)
の関係を有するプロピレン単独重合成分が 6 0〜9 5重量%、 およびエチレン含 有量 3 0〜 8 0重量%のェチレン ·プロピレン共重合体成分が 5 ~ 4 0重量%か らなる高剛性ポリプロピレン/プロピレン · エチレンプロック共重合体が 8 3〜 8 8重量%、
(b) エチレン含有量が 4 5重量%以上で、 小角 X線散乱で測定される長周期の 値が 6〜 1 4 nmのポリエチレン結晶を持つエチレン一高級 α—才レフィン共重 合体ゴム 1 2〜 1 7重量%、
を含有し (a) 、 (b) の合計が 1 0 0重量%であることからなるポリオレフィ ン系樹脂組成物 (A) 。
2 ) 前項 1記載の ( a ) 高剛性ポリプロピレン /プロピレン 'エチレンプロ ック共重合体 7 8〜8 7重量%、 前項 1記載の (b) エチレン一高級 α—ォレフ ィン共重合体ゴム 1 2〜 1 7重量%、 および
(c) Αセグメントが 1, 4—ポリブ夕ジェンブロック、 及び Bセグメン卜が 1, 2—ポリブタジェンブロック、 ポリイソプレンブロックまたはブタジェン ·イソ プレン共重合体プロックからなる A— B_ A型又は A— B型のジェンプロック共 重合体の水添率が 8 5 %以上の水添ジェンプロック共重合体 1〜5重量%、 を含有し (a) 、 (b) 、 (c) の合計が 1 0 0重量%であることからなるポリ ォレフィン系樹脂組成物 (B) 。
3) エチレン一高級 α—ォレフィ ン共重合体ゴム (b) の長周期を 8〜 1 2 nmとする前項 1、 もしくは前項 2記載のポリオレフィン系樹脂組成物 (C) 。
4) エチレン一高級 α—ォレフィ ン共重合体ゴム (b) が、 エチレンと炭素 数 4以上の高級 α—才レフィンの 1種またはそれ以上とからなる二成分系および /または三成分系ランダム共重合体である前項 1、 もしくは前項 2記載のポリオ レフィン系樹脂組成物 (D) 。
5) 水添ジェンブロック共重合体 (c) 力く、 ① Αセグメ ン トが 1, 4—ポリ ブタジエンブロック、 Bセグメントが 1, 2—ポリブタジェンブロック力、らなる A— B— A型ジェンブロック共重合体; または② Aセグメント力く 1, 4ーポリブ タジェンブロック、 Bセグメントがブタジエン 'イソプレン共重合体ブロックか らなる A— B型のジェンブロック共重合体であり、 その水添率がいずれも 8 5 % 以上である前項 2記載のポリオレフイ ン系樹脂組成物 (E) 。
6 ) 前項 1 ~ 5のいずれかに記載のポリオレフィン系樹脂組成物が 7 5〜 8 0重量%、 および
( d ) 平均粒子径 3 u m以下でかつ粒子径の標準偏差が 0. 2以下の粒度分布が 狭いタルクが 2 0〜 2 5重量%、
を含有するポリオレフイ ン系樹脂成形用組成物 (F) 。
7 ) 樹脂組成物のメルトフ口一レー ト (以下 " MFR" : ASTM D 1 2
3 8 ) が 2 0 gZ 1 0分以上の前項 6記載のポリオレフィ ン系樹脂成形用組成物 を成形した、 2 3°Cでの曲げ弾性率 (ASTM D 7 9 0 ) が 2 2 0 0 M P a以 上、 常温のアイゾッ ト衝撃強度 (ASTM D 2 5 6 ) が 3 0 0 JZm以上、 を 有する成形品からなる自動車内装用樹脂成形部ロ口ロ ο
8 ) 樹脂組成物の MFR (ASTM D 1 2 3 8 ) が 2 0 g / 1 0分以上の 前項 6記載のポリオレフイ ン系樹脂成形用組成物を成形した、 2 3°Cの高速面衝 撃強度 (撃芯速度: 4mZs) が 2 0 J以上、 2 3 °Cでの高速引張伸度 (引張速 度: 4 m/s) 力 3 0 %以上、 を有する成形品からなる自動車内装用樹脂成形部
ΠΠο 図面の簡単な説明
第 1図は、 高速面衝撃強度を測定する装置の概略斜視図である。 第 2図は、 高 速引張伸度を測定する装置の概略斜視図である。 発明を実施するための最良の形態
以下本発明を詳細に説明する。
(a) 高剛性ポリプロピレン/プロピレン ' エチレンプロック共重合体 本発明のポリオレフィン系樹脂組成物において、 高剛性ポリプロピレン Zプロ ピレン · エチレンブロック共重合体 (a) は、 高 MF Rを有する高立体規則性、 狭分子量分布のプロピレン単独重合体成分と、 エチレン含有量 3 0〜8 0重量% のエチレン ·プロピレン共重合体成分とからなる樹脂組成物の主成分である。 プロピレン単独重合体成分は、 ァイソタクチックペンタッ ド分率(P)が 0. 9 6以上の高立体規則性、 及びゲルパーミエ一シヨ ンクロマトグラフィー(G P C) で測定した重量平均分子量 (Mw) と数平均分子量 (Mn) との比 (Q値) が 6 以下の狭分子量分布を有し、 、 かつ ASTM D 1238に準拠して測定温度 2 3 0 °C、 荷重 2. 1 6 kgの条件で測定したメル卜フローレー トの最高値(MFRmax)と最 小値(MFRmin)との比が、
0. 1 ≤ L o g(MF Rmax/MF Rmin)≤ 1 · · · (1)
好ましくは、
0. 2≤ L o g (M F Rmax/M F Rmin)≤ 0. 5 · · · (2)
の関係を有する。
プロピレン単独重合成分量は最終的に得られる高剛性ポリプロピレンノプロピ レン · エチレンプロック共重合体 (a) 組成物全量に対し 6 0~9 5重量%であ る。 プロピレン単独重合成分量が、 6 0重量%未満の場合は製品の剛性面の低下 が発生し、 9 5重量%を超える場合は低温衝撃強度の改善が不十分となる。 アイ ソタクチックペンタツ ド分率 (P) が 0. 9 6未満の場合は成形品の剛性が低下 し、 Q値が 6を超える場合は成形品の耐衝撃性が低下し好ましくない。 さらに MFRの最高値と最小値の比が、 0. 1未満の場合は製品の剛性面の低下が発生 し、 1を超える場合は最終的に得られる高剛性ポリプロピレン/プロピレン ·ェ チレンブロック共重合体 (a) 組成物の引張伸度と耐衝撃性が低下し好ましくな い。
エチレン . プロピレン共重合体成分は、 エチレン含有量が 3 0〜8 0重量%、 好ましくは 4 0〜7 0重量%のエチレンとプロピレンのランダム共重合体からな る。 エチレン含有量が上記範囲外の場合は得られる重合体の剛性、 耐衝撃性が劣 り好ましくない。 エチレン · プロピレン共重合体成分量は最終的に得られる高剛 性ポリプロピレン/プロピレン ·エチレンブロック共重合体 (a) 組成物全量に 対して 5〜4 0重量%である。 エチレン、 プロピレンに更に他の α—才レフィ ン、 非共役ジェンなども併用してもよい。
高剛性ポリプロピレン Ζプロピレン · エチレンブロック共重合体 (a) の MF Rは 0. 1〜 1 0 0の範囲が好ましく、 より好ましくは 1 ~ 8 0の範囲である。 該 MFRが 0. 1未満の場合は成形性が低下し、 該 MFRが 1 0 0を超える場合 は耐衝撃性が低下し好ましくない。
本発明のポリオレフイ ン系樹脂組成物において、 高剛性ポリプロピレン Zプロ ピレン ·エチレンプロック共重合体 (a) の配合量は、 成分 (a) および (b) からなる樹脂成分の全重量基準で 8 3〜8 8重量%であり、 より好ましくは、 成 分 (a) 、 (b) および (c) からなる樹脂成分の全重量基準で 7 8〜8 7重量 %である。
高剛性ポリプロピレン Zプロピレン ' エチレンブロック共重合体 (a) は、 成 形品に剛性および耐熱剛性を付与する成分であり、 配合量が過小な場合には 〔即 ち、 (a) と (b) の二成分系において 8 3重量%未満の場合、 もしくは (a) 、 (b) 、 (c) の三成分系において 7 8重量%未満の場合〕 、 成形品の耐熱剛性 が低下し、 過大な場合には 〔即ち、 (a) と (b) の二成分系において 8 8重量 %を超える場合、 もしくは (a) 、 (b) 、 (c) の三成分系において 8 7重量 %を超える場合〕 、 成形品の耐衝撃性を低下させる。
高剛性ポリプロピレン /プロピレン ·エチレンプロック共重合体 ( a ) は、 上 記の要件を満足すればいかなる方法で製造しても良いが、 重合工程(I )でプロピ レンを単独重合して前記特性を有するプロピレン単独重合体成分を製造し、 引き 続き重合工程(II)において重合工程(I )で製造したプロピレン単独重合体の存在 化にエチレンとプロピレンとを共重合してエチレン ·プロピレン共重合体成分を 製造する二段重合法を採用することによって容易に製造することができる。
より具体的には、 2槽以上の重合器を直列に使用する重合工程( I )において、 高立体規則性ポリオレフイ ン重合触媒、 たとえばチタン、 マグネシウム、 ハロゲ ンおよび多価力ルポン酸エステルを必須とする固体触媒成分、 有機アルミニウム 化合物および有機珪素化合物の組合せからなる触媒系を用い、 プロピレンの単独 重合体を生成させる。 引き続いて、 1槽以上の重合器を使用する重合工程(Π)に おいて、 生成したプロピレン単独重合体成分の存在化にエチレンとプロピレンと を共重合し、 エチレン .プロピレン共重合体を生成させることにより高剛性ポリ プロピレン Zプロピレン ·エチレンブロック共重合体 (a) を製造することがで きる。
本発明においては、 重合触媒として少なくともマグネシウム原子、 チタン原子、 ハロゲン原子、 及び多価カルボン酸エステルを含む固体触媒成分 (A) と、 有機 アルミニウム化合物 (B) と電子供与性化合物 (C) を用いて得られる高立体規 則性触媒系を用いるが、 これら触媒について特に制限はなく、 公知の種々の高立 体規則性のポリプロピレンを与える触媒系を使用することが可能である。
このような固体触媒成分 (A) を製造する方法としては、 例えば特開昭 5 0— 1 0 8 3 8 5号、 同 5 0— 1 2 6 5 9 0号、 同 5 1— 2 0 2 9 7号、 同 5 1— 2 8 1 8 9号、 同 5 1— 6 4 5 8 6号、 同 5 1— 9 2 8 8 5号、 同 5 1— 1 3 6 6 2 5号、 同 5 2— 8 7 4 8 9号、 同 5 2— 1 0 0 5 9 6号、 同 5 2— 1 4 7 6 8 8号、 同 5 2— 1 0 4 5 9 3号、 同 5 3— 2 5 8 0号、 同 5 3— 4 0 0 9 3号、 同 5 3— 4 0 0 9 4号、 同 5 5— 1 3 5 1 0 2号、 同 5 5— 1 3 5 1 0 3号、 同 5 5— 1 5 2 7 1 0号、 同 5 6— 8 1 1号、 同 5 6 — 1 1 9 0 8号、 同 5 6— 1 8 6 0 6号、 同 5 8— 8 3 0 0 6号、 同 5 8— 1 3 8 7 0 5号、 同 5 8— 1 3 8 7 0 6号、 同 5 8— 1 3 8 7 0 7号、 同 5 8— 1 3 8 7 0 8号、 同 5 8— 1 3 8 7 0 9号、 同 5 8— 1 3 8 7 1 0号、 同 5 8— 1 3 8 7 1 5号、 同 6 0— 2 3 4 0 4号、 同 6 1 — 2 1 1 0 9号、 同 6 1 — 3 7 8 0 2号、 同 6 1 — 3 7 8 0 3号、 同 6 2— 1 0 4 8 1 0号、 同 6 2— 1 0 4 8 1 1号、 同 6 2— 1 0 4 8 1 2号、 同 6 2— 1 0 4 8 1 3号、 同 6 3— 5 4 4 0 5号等の各公報に開示された方法に 準じて製造することができる。
上記固体触媒成分 (A) において使用される多価カルボン酸エステルとしては その具体例として、 フタル酸、 マレイン酸、 置換マロン酸などと炭素数 2以上の アルコールとのエステルである。
本発明において上記固体触媒成分 (A) に用いられるマグネシウム化合物は種 々あるカ^ 還元能を有するまたは有しないマグネシゥム化合物が用いられる。 前者の例としては、 ジメチルマグネシウム、 ジェチルマグネシウム、 ジプロピ ルマグネシウム、 ジブチルマグネシウム、 ェチル塩化マグネシウム、 プロピル塩 化マグネシウム、 ブチル塩化マグネシゥムなどが挙げられる。
また後者の例としては、 塩化マグネシウム、 臭化マグネシウム、 ヨウ化マグネ シゥムのようなハロゲン化マグネシウム、 メ 卜キン塩化マグネシウム、 エトキシ 塩化マグネシゥムのようなアルコキシ塩化マグネシゥム、 エトキシマグネシゥム、 ィソプロポキシマグネシウム、 ブ卜キシマグネシウムのようなアルコキシマグネ シゥム、 ラウリン酸マグネシウム、 ステアリン酸マグネシウムのようなカルボン 酸マグネシゥムなどを挙げることができる。
これらの中で特に好ましい化合物はハロゲン化マグネシウム、 アルコキシ塩化 マグネシウム、 アルコキシマグネシウムである。
本発明において固体触媒成分 (A) に用いられるチタン化合物としては、 通常 T i (OR)AX A (Rは炭化水素基、 Xはハロゲン、 0≤A≤ 4) で示される化 合物が最適である。 具体的には、 T i C 1 4 , T i B r 4 などのテトラハロゲン 化チタン、 T i (〇CH3)C l 3, T i (0 C2H5)C 1 などのトリハロゲン化ァ ルコキシチタン、 T i (OCH3)2C 1 2, T i (OC2H5)2C 1 などのジハロゲ ン化ジアルコキシチタン、 T i (OCH3)3C l, T i (OC2H5)3C 1などのモ ノハロゲン化トリアルコキシチタン、 T i (〇 CH3)4, T i (O C2H5)4 などの テトラアルコキシチタンであり、 特に好ましいものは T i C 1 4 である。
固体触媒成分 (A) の調製において上記チタン化合物、 マグネシウム化合物及 び多価カルボン酸エステルの他、 更に必要に応じて他の電子供与体例えばアルコ ール、 エーテル、 フヱノール、 ゲイ素化合物、 アルミニウム化合物などを共存さ せることができる。
本発明において使用される有機アルミニウム化合物 (B) としては、 一般式が A 1 R2 mR3„X3- (m +„, (式中 R2及び R3は炭化水素基またはアルコキシ基を示 し、 Xはハロゲンを示し、 m及び nは 0 ≤m≤ 3、 0≤ n≤ 3. 1. 5≤m+ n ≤ 3の任意の数を示す。 ) で表される有機アルミニウム化合物を用いることがで きる。
具体例としては、 トリメチルアルミニウム、 卜リエチルアルミニウム、 トリ一 n—プロピルアルミニウム、 トリー n—ブチルアルミニウム、 トリー i —ブチル アルミニウム、 ジェチルアルミニウムクロライ ド、 ジ n—プロピルアルミニウム モノクロライ ド、 ジェチルアルミニウムアイオダイ ド、 メチルアルミニウムセス キク口ライ ド、 ェチルアルミニウムセスキク口ライ ド、 エトキシジェチルアルミ ニゥムなどを挙げることができる。
これら有機アルミニウム化合物 (B) は単独あるいは 2種類以上を混合して使 用することができる。
本発明において使用される電子供与性化合物 (C) としては、 一般式が
R R S i (OR6)z (式中 R4, R6は炭化水素基、 R5は炭化水素基あるいは ヘテロ原子を含む炭化水素基を示し、 x + y + z = 4、 0≤ X≤ 2 l ≤ y≤ 3、 1 ≤ z≤ 3である。 ) で表される有機ゲイ素化合物が使用できる。
その具体例としてはメチルトリメ トキシシラン、 メチルトリェトキシシラン、 メチルトリプロボキシシラン、 ェチルト リメ トキシシラン、 ェチルトリエトキシ シラン、 ェチルトリプロボキシシラン、 n—プロビルトリメ トキシシラン、 n— プロピルトリエトキシシラン、 i —プロビルト リメ トキシンラン、 i—プロピル トリエトキシシラン、 n—ブチルトリメ トキシシラン、 n —ブチルトリエトキン シラン、 i ーブチルトリメ トキシシラン、 i 一ブチルトリエトキシシラン、 t 一 ブチルトリメ トキシシラン、 t —ブチルトリエトキシシラン、 n—ペンチル卜リ メ トキシシラン、 n—ペンチルト リエトキシシラン、 ネオペンチルトリメ 卜キシ シラン、 ネオペンチルトリエトキシシラン、 へキサデシルトリメ トキシシラン、 へキサデシルトリエトキシシラン、 ジメチルジメ トキシシラン、 ジメチルジェト キシシラン、 ジェチルジメ トキシシラン、 ジェチルジェトキシシラン、 ジー n— プロピルジメ トキシシラン、 ジー i —プロピルジメ トキシンラン、 ジー n—ブチ ルジメ トキシシラン、 ジー i —ブチルジメ トキシシラン、 ジ一 t—ブチルジメ ト キシシラン、 ジー n—ペンチルジメ トキシシラン、 ジネオペンチルジメ トキシシ ラン、 フヱニルト リメ トキシシラン、 フヱニルト リエトキンシラン、 ジフヱニル ジメ トキシシラン、 ジフヱ二ルジェトキシンラン、 シクロへキシルトリメ トキシ シラン、 シクロへキシルトリエトキシシラン、 ジシクロへキシルジメ トキシシラ ン、 ジシクロへキシルジェトキシシラン、 3 —メルカプトプロピルメチルジメ ト キシシラン、 3 —イソシアナトプロピルトリエトキシシシラン、 2— ( 3—シク 口へキセニル) ェチルトリメ トキシシラン等を例示することができる。
これら有機ゲイ素化合物は単独あるいは 2種類以上を任意の割合で混合し使用 することができる。 この中で特に好ましい有機ゲイ素化合物はジー i 一プロピル ジメ トキシシラン、 t 一ブチルトリエトキシシラン、 tーブチルトリメ トキシシ ラン、 i 一ブチルトリメ トキシシラン、 シクロへキシルトリメ トキシシランであ る。 有機ゲイ素化合物 (C ) の好ましい添加量は、 前記有機アルミニウム化合物 ( B ) に対しモル比 (B ) / ( C ) = 1〜 1 5である。 該モル比が 1 5を超える と剛性の向上が不十分であり、 該モル比が 1未満の場合は触媒活性が低下し実用 的でない。
前記固体触媒成分 (A) は、 有機アルミニウム化合物 (B ) 及び前述の有機ケ ィ素化合物 (C ) と組み合わせて触媒としてプロピレンの重合に用いるか、 更に 好ましくは、 一才レフィ ンを反応させて予備活性化した触媒として用いる。 予 備活性化は固体触媒成分 (A ) 中のチタン 1モルに対して有機アルミニウム化合 物 (B ) 0 . 3〜2 0モルを用い、 0〜5 0でで 1分〜2 0時間、 ひ一才レフィ ン 0 . 1 ~ 1 0モル、 好ましくは 0 . 3〜 3モルを反応させる事が望ましい。 予備活性化のための α—才レフィンの反応は脂肪族または芳香族炭化水素溶媒 中でも、 また溶媒を用いないで液化プロピレン、 液化ブテン一 1等の液化 ォ レフイ ン中でも行え、 エチレン、 プロピレン等を気相で反応させることもできる。 また、 予め得られた α—ォレフィン重合体または水素を共存させることもできる。 さらに、 予備活性化に於いて予め有機ゲイ素化合物 (C ) を添加することもでき る。
予備活性化するために用いる α—才レフインは、 エチレン、 プロピレン、 ブテ ン一 1、 へキセン一 1、 ヘプテン一 1、 その他の直鎖モノォレフィン類、 4ーメ チル一ペンテン一 1、 2 —メチルーペンテン一 1、 3—メチループテン一 1等の 枝鎖モノォレフィ ン類、 スチレン等である。 これらの α—才レフイ ンは重合対象 である α—ォレフィ ンを混合して用いても良い。
予備活性化終了後は、 溶媒、 有機アルミニウム化合物及び未反応 α—才レフィ ン、 有機ゲイ素化合物を濾別、 デカンテ一シヨンで除いたり、 乾燥して粉粒体と して用いることもできる。
このようにして得られた予備活性化された触媒は、 プロピレンを η—へキサン、 η—ヘプタン、 η—オクタン、 ベンゼン、 トルエン等の炭化水素溶媒中で行うス ラリ一重合、 または液化プロピレン中で行うバルク重合及び気相重合で用いるこ とができる。
スラリ一重合の場合、 通常重合温度は 2 0〜 9 0 °C、 好ましくは 5 0〜 8 0 °C であり、 重合圧力は 0 ~ 5 M P aで実施させる。 また気相重合の場合、 通常重合 温度は 2 0〜 1 5 0 °Cであり、 重合圧力は 0 . 2〜5 M P aで実施される。 分子 量コントロールのために通常水素が使用され、 最終的に得られる重合体の M F R が 0 . 1〜 1 0 0 0の範囲で実施される。
重合工程 (I I) は、 通常重合温度が 2 0〜 8 0 °C、 好ましくは 4 0 ~ 7 0 °C、 圧力 0〜5MP aでエチレンとプロピレンを共重合させることにより実施される。 エチレンとプロピレンとの重合器への供給方法ならびに重合形式は限定されない。 分子量コントロールのため通常水素が用いられ、 気相中の濃度で 0. 1〜 1 0モ ル%で実施される。 重合工程 (II) の重合は、 1槽の重合器又は連結された 2槽 の重合器を用いて実施する。
最終的に得られる重合体の MF Rは 0. 1〜 1 0 0の範囲が好ましく、 より好 ましくは 1〜8 0の範囲である。 該 MFRが 0. 1未満の場合は成形性が低下し、 該 MFRが 1 0 0を超える場合は耐衝撃性が低下し好ましくない。
(b) エチレン一高級 ォレフィ ン共重合体ゴム
本発明のポリオレフイン系組成物において、 エチレン一高級 α—ォレフィン共 重合体ゴム (b) は、 4 5重量%以上のエチレン成分を有し、 X線小角散乱で測 定される長周期が 6〜1 4 nmであり、 さらに好ましくは 8〜 1 2 nmのものを 用いる。 エチレン一高級 α—才レフィ ン共重合体ゴム (b) の長周期が 6 nm未 満ではポリェチレン結晶を疑似架橋体としてゴムを強化することが十分ではなく、 又、 1 4 nmを超えるとポリエチレンの結晶が大きすぎてポリプロピレン樹脂と の相分離が著しくなり、 その樹脂組成物を用いて成形した成形品の引つ張り伸度 の低下を招くことになるため好ましくない。
エチレン一高級 α—才レフイ ン共重合体ゴム (b) は、 エチレンと炭素数 4以 上の高級ひ一才レフィ ンの 1種またはそれ以上とからなる二成分系および Zまた は三成分系ランダム共重合体であることが好ましく、 エチレン一 1—ブテン共重 合体ゴム、 エチレン一 1—へキセン共重合体ゴム、 エチレン一 1ーォクテン共重 合体ゴム等の二成分系共重合体ゴムおよび/またはエチレン一 1ブテン一 1へキ セン共重合体ゴム等の三成分系共重合体ゴムから選択された 1種以上のものを好 ましく用いることができる。
該エチレン一高級 一才レフイ ン共重合体ゴム (b) の分子量には特に制約は なく、 Ml : メルト ' インデックス (ASTM D— 1 2 3 8 ) が 0. 1〜3 0 g/ 1 0分のものを用いることができる。 又、 エチレン一高級 α—才レフイン共 重合体ゴム (b) 中のエチレン含量は好ましくは 4 5〜9 0重量%である。 該エチレン一高級 α—才レフィ ン共重合体ゴムは耐衝撃性改良の効果を示し、 その含有量は 1 2〜 1 7重量%であり、 含有量が 1 2重量%未満では耐衝撃性の 改良効果が十分ではなく、 1 7重量%を超えると剛性及び耐熱剛性が低下したり、 組成物の流動性を損ねたりしてしまう恐れがある。
本発明に使用するエチレン一高級 α—才レフイ ン共重合体ゴム (b ) の物質及 び製造方法は、 例えば、 エチレンと、 特開平 6— 3 0 6 1 2 1号公報に開示され ているような実質的に線状のォレフィ ンポリマー 1種又はそれ以上の炭素数 4〜 炭素数 2 0の α—才レフィンを周期律表 3〜 1 0族又はランタナイ ド系列の金属、 金属配位錯体及び活性化共触媒を含有する触媒組成物と重合条件下連続的に接触 させて重合することにより得られるエチレン一 1 —ブテン、 エチレン一 1 —へキ セン、 エチレン一 4ーメチルー 1 —ペンテン及びエチレン一 1 ーォクテン共重合 体ゴムを挙げることができる。
( c ) 水添ジェンブロック共重合体
本発明において水添ジェンブロック共重合体 (c ) は、 一般式 Α— Β— Α又は 一般式 A— Bで表される。
Aは示差走査熱量計による測定で 8 0〜 1 2 0 °Cに融解曲線の最大ピークを持 つ 1, 4 一ポリブタジェンセグメントであり、 Bは 1 , 2 —ポリブタジェンブロッ ク、 ポリイソプレンプロックまたはブタジエン · ィソプレン共重合体ブロックセ グメントである。
該 1 , 4—ポリブタジェンセグメ ン ト Aはエチレン一高級 α —ォレフィ ン共重 合体ゴム (c ) との相溶性を高める作用をし、 融解温度が 8 0 °C以上のものはそ の結晶性が高く相溶性が向上するので好ましい。
一方、 該 1, 2 —ポリブタジエンブロック、 ポリイソプレンブロックおよび/ またはブタジェン ·ィソプレン共重合体プロックセグメント Bはポリプロピレン 樹脂 (a ) との相溶性を高める作用をする。
本発明で使用する水添ジェンブロック共重合体 (c ) は、 ポリプロピレン樹脂 ( a ) とエチレン一高級 α—才レフイ ン共重合体ゴム (b ) との相溶化剤として 作用をし、 ゴム粒子をミクロ分散させ、 耐衝撃性を向上させる。 該水添ジェンブロック共重合体 (c ) は、 例えば、 次のような方法で得ること ができる。 すなわち、 特公昭 6 2— 4 5 8 8 3号公報ゃ特開平 4 一 3 4 2 7 5 2 号公報に開示されているような 1, 2 —ブタジエン及び 1, 4 一ブタジエンの選択 性を制御して重合したポリブタジエンのブロック重合体を水素添加した水添ポリ ブタジエンのジ—またはトリープロック共重合体、 特開平 1 一 1 6 8 7 4 3号公 報ゃ特開平 1 一 1 6 8 7 4 4号公報に開示されているようなブタジエン 'イソプ レンランダム共重合体と 1, 4 一ポリブタジェンとのブロック共重合体を水素添 加した水添ポリブタジェン /ブタジェン 'ィソプレン共重合体のジ一またはトリ ーブロック共重合体、 1, 4 一ポリブタジェンとポリィソプレンとのブロック共 重合体を水素添加した水添ポリブタジエン ' イソプレンのジーまたはトリープロ ック共重合体などが挙げられる。
水添ジェンブロック共重合体 (c ) は、 Aセグメ ントが 1, 4ーポリブ夕ジェ ンブロック、 及び Bセグメントが 1 , 2—ポリブ夕ジェンブロック、 ポリィソプ レンブロック又はブ夕ジェン . ィソプレン共重合体ブロックからなる A— B— A 型又は A— B型のジェンブロック共重合体であって、 その水添率は 8 5 %以上で ある。
好ましい水添ジェンプロック共重合体 (c ) は、 ① Aセグメント力く 1, 4—ポ リブタジエンブロックであり、 Bセグメン卜力く 1 , 2 —ポリブタジエンブロック である、 A— B— A型のジェンプロック共重合体;及び② Aセグメン卜が 1 , 4 一ポリブタジエンブロックであり、 Bセグメントがブタジエン 'イソプレン共重 合体ブロックである、 A— B型のジェンブロック共重合体である。 なお、 その水 添率はいずれも 8 5 %以上である。
相溶化剤としては、 水添ジェンブロック共重合体 (c ) は直鎖状であることが より好ましい。
本発明のポリオレフイ ン系樹脂組成物 (A ) に、 水添ジェンブロック共重合体 ( c ) を 1〜5重量%配合することにより、 相溶化剤としてエチレン一高級ひ一 ォレフィ ン共重合体ゴムを分散させる効果に優れ、 成形時の熱による相分離を 抑制することができる。 また、 1〜5重量%の配合量では、 ポリプロピレン樹脂 (a) を可塑化、 軟化させることなく、 得られる成形品の剛性及び耐熱剛性を損 なわない。
(d) タルク
本発明のポリオレフイ ン系樹脂組成物組成物 (A) 〜 (E) にタルク (d) を 配合することにより、 成形品の剛性を改良する効果が発現する。 樹脂組成物のタ ルクの含有は流動性を損ねたり、 比重を高めて製品重量を重く したり、 成形表面 にフローマークを発生させるなどの悪影響があるので必要最低限の含有量にとど めることが重要である。 タルク (d) を組成物に対して 2 0〜2 5重量%配合す ることにより、 成形品の剛性及び耐熱剛性が向上し、 自動車内装用材料としての 基本性能である曲げ弾性率が 2 2 0 OMP a以上を保持し、 かつ得られる成形品 の高速引張伸度および耐衝撃性を損なわず、 また成形品表面にフローマークを発 生させることも少なくなる。
本発明のポリオレフイ ン系樹脂組成物 (A) 〜 (E) に含有するタルク (d) は、 平均粒子径 3 /zm以下でかつ粒度分布の標準偏差が 0. 2以下の粒度分布が 狭いタルクである。
上記粒度分布の狭いタルク (d) を用いることにより、 耐衝撃性特に面衝撃を 損なうことなく、 タルクが本来持つ成形品の剛性及び耐熱剛性を向上させる効果 を発揮できる。
ここで、 平均粒径及び粒度分布は、 島津レーザー回折分布測定装置 SALD— 2 0 0 0を用いて測定した。
本発明のポリオレフイ ン系樹脂組成物 (A) 〜 (F) にあっては、 本発明の効 果を阻害しない範囲で、 必要に応じて適宜に、 酸化防止剤、 帯電防止剤、 着色剤 (顔料) 、 造核剤、 スリップ剤、 離型剤、 難燃剤、 紫外線吸収剤、 耐候剤、 可塑 剤、 ラジカル発生剤などの各種添加剤の 1種以上を含有することができる。
本発明のポリオレフィン系樹脂組成物 (A) 〜 (F) の製造方法としては、 例 えば、 本発明の組成物の各成分の所定量と安定剤、 着色剤とをリボンプレンダー、 タンブラ一ミキサー、 ヘンセルミキサー (商品名) 、 スーパ一ミキサーなどで撹 伴混合したのち、 該混合物をロール、 バンバリ一ミキサー、 ラボプラストミル、 一軸又は二軸混練押出機などで溶融温度 1 5 0 °C〜 3 0 0 °C、 好ましくは 1 8 0 °C〜 2 5 0 °Cで溶融混練ペレタイズする方法を例示することができる。
かく して得られた本発明のポリオレフィン系樹脂組成物 (A) ~ (F) は、 射 出成形、 射出型締め成形、 押出成形、 真空成形、 圧空成形などの各種成形法によ り種々の成形品の製造に供することができる力 なかでも射出成形もしくは射出 型締め成形による成形品の製造が好ましい。
具体的なものとして、 自動車内装部品、 特に頭部衝撃性保護規制対応のピラー やクオ一タートリム、 側突規制対応のドアトリムに適する。 実施例
以下、 実施例及び比較例によつて本発明を具体的に説明するが本発明はこれに よって限定されるものではない。
なお、 実施例及び比較例で用いた組成物成分の物性を下記に示す。
《 1》 組成物成分
(a) プロピレン /エチレン ' プロピレンブロック共重合体
成分番号
a一 1 a
プロピレン単独重合体成分
アイ、ノタクチックペン ^ド 分率 (P) 0. 9 9 6 0. 9 5 5
Q値 5. 0 5. 7
MFR [g / 1 0分] 3 6 3 5
L 0 g(MF Rmax/MF Rmin) 0. 1 8 0. 2 4
含有量 [重量%] 8 6 8 7
エチレン . プロピレン共重合体成分
エチレン含有量 [重量%] 5 0 5 9
含有量 [重量%] 1 4 1 3
ポリプロピレン Zエチレン · プロピレン共重合体
MFR [g/ 1 0分] 3 0 3 0 (b) エチレン—高級 α—才レフイ ン共重合体ゴム
エチレン含有量 M I 長周期 成分番号 ひーォレフイン [重量%] [gZio分] Cnm] b一 1 卜ォクテン 7 7. 9 2 9 9 3 b一 2 1-ォクテン 7 6. 3 1 1 8 6 b一 3 1-ォクテン 7 6. 2 4 3 9 2 b - 4 1-ブテン 9 0 2 1 1 1 2 b— 5 卜ブテン 8 0 3 0 1 0 2 b— 6 1 -ブテン 8 5 3 6 1 0 9 b一 7 1 -へキセン 8 5 1 3 1 1 0 b一 8 トへキセン ·1-ブテン 8 5 3 5 1 0 8 (へキセン含有量; 14重量%)
b - 9 プロピレン 7 8 0. 4 1 5. 6
(ム一二一粘度; ML1+4(100°C)=60
(c) 水添ジェンブロック共重合体
成分番号: c一 1
A - B - A型
MFR [gZl 0分] 1. 4
(230°C、 2.16kg荷重)
水添率 [%] 9 5
Aセグメ ン ト : 1, 4 -ボリブタジエン
含有量 [重量%] 3 0
融解温度 [°C] 9 7
B— Aセグメ ン ト : 1,2 -ポリブタジエン ·1, 4-ポリブタジエン
[重量%] 7 0 成分番号: c一 2
A— B— A型
MFR [g/ 1 0分] 0, 4
(230°C、 2.16kg荷重)
水添率 [%] 9 5
Aセグメ ン ト : 1, 4-ポリブタジエン
含有量 [重量%] 3 0
融解温度 [°C] 9 2
B— Aセグメ ン 卜 : 1, 2-ポリブタジエン ·1, 4-ポリブタジエン 含有量 [重量%] 7 0
_J¾分 ¾~ : c一 3 —
A_B型
MFR [g/ 1 0分] 1 4
(230°Cs 2.16kg荷重)
水添率 [%] 9 5
Aセグメ ン ト : 1, 4 -ポリブタジエン
含有量 [重量%] 3 0
融解温度 [°C] 9 2
Bセグメ ン ト : 1, 2-ボリブタジエン ·イソプレン
含有量 [重量%] 7 0
(d) 夕ノレク
成分番号
d— 1 d— 2 d一 3 平均粒子径 [ /m] 2. 2 3. 5 1. 8 粒子径分布の標準偏差 0. 1 8 0. 1 9 0. 2 2 《 2》 物性測定方法
上記各成分の物性は、 下記の方法により測定した。
( 1 ) ァイソタクチックペンタツ ド分率 (P) ; Ma c r omo l e c u l e s, v o l . 8, p a g e 6 8 7 ( 1 9 7 5 ) に基づいて測定される。 '3C— NMR を使用し、 ポリプロピレン分子鎖中のペンタッ ド単位でのァイソタクチック分率 しめる。
(2) 平均分子量 (Mn, Mw) ;試料を 1 3 5 °Cのオルトジクロルベンゼンに 溶解させ、 ウォータス社製 1 5 0 C型の G P C (Gel Permeation Chromatograph) で測定した。 使用カラム TSK GEL GMH 6 -HT
(3) エチレン含有量;赤外線吸収スペク トル法による。 (単位;重量%) 重合工程 ( I ) と重合工程 (Π) の重合量比 (Wl, W2) ; エチレン Zプロ ピレンの反応量比を変化させた共重合体を予め作り、 これを標準サンプルとし、 赤外線吸収スぺク トルで検量線を作り、 重合工程 (II) のエチレン/プロピレン 反応量比を求め、 さらに全ポリマ一中のエチレン含量から計算した。 (重量 Z重 量)
(4) エチレン—高級 α—才レフイ ン共重合体ゴム (b) の長周期
得られたペレッ トを 2 3 0 °C、 1 0 MP a下で 5分溶融後、 5 0 °C、 1 0 MP a下で冷却して厚み 5 0 O ^mのシートを得た。
得られたシートを X線回折装置: JEOL 8200T X-RAY DIFFRACTOMETER (日本 電子社製) を用いて小角 X線散乱により長周期を測定した。
線源: C u— Κα線、 ステプブ角度: 0. 0 2 ° 、 スキャン範囲: — 4 ° 〜十 4 ° c
(5) 水添ジェンブロック共重合体 (c) の Aセグメン トの融解温度
示差走査熱量計 (デュポン社製 1 0 9 0型 D S C) に 1 O mgの試料を装塡し て、 まず 2 3 0 °Cまで 3 0°C/分加熱し、 1 0分間 2 3 0 °Cで保持する。 そして — 6 0 °Cまで 2 0 °C /分速度で冷却し、 一 6 0 °Cで 1 0分間保持する。 その後、 2 0 °C /分の速度で昇温したときに得られるサ一モグラムのピーク位置から融解 温度を求める。
(6) メルトフローレー ト : MFR (g/ 1 0分) 得られたペレツ トを 2 3 0 °C、 荷重 2. 1 6 k gの条件下で測定 (ASTM D 1 2 3 8に準拠) することにより流動性を評価した。
(7 ) メルトインデックス: M I (gZ l O分)
得られたペレツ トを 1 9 0°C、 荷重 2. 1 6 k gの条件下で測定 (ASTM D 1 2 3 8に準拠) することにより流動性を評価した。
《 3》 樹脂組成物の調整
実施例 1〜 1 4および比較例 1〜 8
上記各成分を表 1〜表 3に示す割合 (重量部) で配合し、 安定剤としてフエノ ール系酸化防止剤:テトラキス [メチレン— 3— (3, 5—ジ— t一ブチル— 4 ーヒ ドロキシフエニル) プロピオネー ト] メ タン 0. 0 5重量部、 リ ン系酸化 防止剤 : テ トラキス (2, 4—ジー t—ブチルフエ二ル) 一 4, 4ービフエ二 レンージーフォスフォナイ 卜 0. 0 5重量部、 中和剤: ステアリ ン酸カルシウム 0. 1重量部、 および分散剤: ステアリン酸亜鉛 0. 2重量部を配合してヘンセ ルミキサー (商品名) にて 3分間攪拌混合し、 二軸混練押出機 P CM— 4 5 (池 貝鉄工社製) を用いて 2 0 0 °Cの条件下で溶融混練、 ペレツ 卜化した自動車内装 用樹脂組成物を調整した。
《 4》 樹脂組成物の成形
上記調整した実施例および比較例の各樹脂組成物のペレツ トを用いて、 MFR の測定及び所定の試験片を成形温度 2 1 0°C、 金型温度 4 0°Cで射出成形により 成形し、 得られた試験片を用いて各種評価試験を行った。 その結果を表 1〜表 3 に示した。
《 5》 評価試験
( 1 ) 曲げ弾性率 (3点曲げ弾性率) (MP a)
得られたペレツ トを用いて、 長さ 1 3 0 mm、 巾 1 3 mm、 厚み 6. 4 mmの 試験片を射出成形により作成し、 該試験片を用いて 2 3°Cの条件下で曲げ弾性率 を測定 (ASTM D 7 9 0に準拠) する事により剛性を評価した。
(2) アイゾッ ド衝撃強度 (J/m)
得られたペレツ 卜を用いて、 長さ 6 3. 5 mm、 巾 1 2. 7 mm、 厚み 6. 4 mmの試験片を射出成形により作成し、 ノッチ加工を施し、 該試験片を用いて 2 3 °Cにおけるアイゾッ ド衝撃強度を測定 (ASTM D 2 5 6に準拠) すること により耐衝撃性を評価した。
(3) 高速面衝撃強度 (J)
得られたペレッ トを用いて、 長さ 1 0 0 mm、 巾 1 0 0 mm、 厚み 2. 5 mm の試験片を射出成形により作成し、 該試験片を用いて第 1図に示す装置および下 記条件下で高速面衝撃強度を測定しそのトータルエネルギーを評価した。
試験装置: 島津製作所製サ-ボパルサ-高速衝撃試験機 形式 EHF-2H- 20L 条件: ①口-ドセル (撃芯) 直径 Φ 1Ζ2インチ
先端 R 1 /4インチ
容量 2 t o n
形式 RC— 4 0 2 - 2 T
②受け台 穴径 Φ 1. 5インチ
③試験速度 4. 4 m/sec
④変位ストロ-ク 2 2 0 mm
(4) 高速引張伸度 (%)
得られたペレツ トを用いて、 長さ 2 4 6 mm、 巾 1 9 mm、 厚み 3. 2 mmの 試験片を射出成形により作成し、 該試験片を用いて第 2図に示す装置および下記 条件下で高速引張の変位を試験片長さ (2 4 6 mm) で割った値を高速引張伸度 とし評価した。
島津製作所製サ-ボパルサ-高速衝撃試験機 形式 EHF-2H- 20L 条件 ①ロ-ドセル 容量 2 t o n
形式 S H— 4 0 2— 2 T
②チ ク間距離 1 1 5 隱
③試験速度 4 m/sec (助走治具不使用) 表 1 配 合 成 分 圭夫 " jSjfet iyリ 1 J^L^ 'J プロピレン/エチレン ·プロピレンブロ ク共重合体 a-1 λ
ο 4
a- 0 4 エチレン,
一 1—ォクァ一、ノ, A£ Ι-ί-;—3 f*ム / b - 1 e
C)
b-2
b-3
エチレン- 1-ブテン共重合体ゴム b- 4
b-5
b-6
エチレン- 1 -へキセン共重合体ゴ厶 b-7
エチレン- 1 -へキセン- 1-ブテン共重合体ゴム b-8
エチレン-フ atレン共重合体 ム b-9
エチレンブ^ク共重合体 c-1
c-2
c-3
タルク d- 1
d-2
d - 3
(1)メルトフローレ一ト (g/10分) 2 3 2 3 評
(2)曲げ弾性率 (MPa) 9 6 0 8 0 0 価
(3) ゾッ 衝撃強度 (J/m) 3 1 0 3 1 0 糸口
(4)高速面衝撃強度 (J) 1 0 . 3 9 . 6 )高速引張伸度 ) > 1 0 0 > 1 0 0 表 2 配 合 成 分 夭; !ffiiyリ 9
3Χ. . \乙 プロピレン/エチレン ' ピレンブ D 共重合体 -丄 A
o 4
A
0 4 エチレン一 1—ォクァノ ί^ϋ^^Φ:3ム D -丄 Q 1 o Q b-2
b-3
エチレン- 1-ブテン共重合体ゴム b-4
b-5
b-6
エチレン- 1 -へキセン共重合体ゴム b-7
エチレン- 1-へキセン- 1-ブテン共重合体ゴム b - 8
エチレン -プロヒレン共重合体コム b - 9
エチレンブロ yク共重合体 c-1 3 d
c-2
c-3
タルク d-1
d-2
d - 3
(1)メルトフローレ一ト (g/10分) 2 2 2 2 評
(2)曲げ弾性率 (MPa) 1 0 0 0 8 4 0 価
(3)アイゾッ ト衝撃強度 (J/m) 3 6 0 3 5 0 灶
^口
(4)高速面衝撃強度 (J) 1 0. 7 9. 8 果
(5)高速引張伸度 ) > 1 0 0 > 1 0 0 表 3 (その 1 ) 実 施 例
配 合 成 分
o
6 4 5 0 7 0 ブ口ヒレノ /ェナレン ·7口ヒレノブロ ク a-1 59 59 59 64 62 60 a-2
^ ^"-八 /
エチレン- 1 -ォクアン共重合体コム b-1 16 13
b-2 13 13 6. 5 b-3 6. 5 エチレン- 1 -ブテン共重合体ゴム b - 4 17 b - 5
b-6
エチレン- 1 -へキセン共重合体ゴム b-7
エチレン- 1-へキセン- 1-ブアン共重合体コム b-8
エチレン-ブ πピレン共重合体ゴム b-9
エチレンブ!^ク共重合体 c-1 3 3 3 5 3 c- 2
c-3
タルク o「 「 「
d-1 25 25 25 20 20 20 d-2
d-3
(1)メルトフローレ一 ト (g/10分) 23 21 20 20 20 20 評
(2)曲げ弾性率 (MPa) 2250 2350 2410 2310 2380 2240 価
(3)アイゾッ ト衝撃強度 (J/m) 430 450 300 310 320 480 灶
(4)高速面衝撃強度 (J) 23. 9 25. 0 21. 1 20. 9 22. 2 24. 5 果
(5)高速引張伸度 (!¾) 46 51 34 35 36 55 表 3 (その 2) 実 施 例
配 合 成 分
n 9 1 u 丄 1 丄 L 丄 οi 丄 4
en ブ口ヒレノ /エチレン *フ口ヒレノフロック a-1 b0 ol οϋ 54 a-2
エチレン - 1-ォクアン共重合体コム b-1
b-2
b- 3
エチレン- 1-ブテン共重合体ゴム b- 4 17 13 b-5 17 7.5
b - 6 17
エチレン- 1 -へキセン共重合体ゴム b-7 7.5
エチレン - 1-へキセン- 1 -ブアン共重合体ゴム b- 8 17
エチレン-ブ Dt'レン共重合体ゴム b-9
エチレンブ D 共重合体 c - 1 3 3 4 3
c- 2 3 c- 3 3 タルク d - 1 20 20 20 20 ZQ
d-2
d - 3
(1)メルトフ口一レート (g/10分) 21 22 20 21 20 21 評
(2)曲げ弾性率 (MPa) 2320 2260 2280 2270 2300 2310 価
(3)アイゾッ ト衝撃強度 UA 310 390 320 400 400 370
(4)高速面衝撃強度 (J) 21.0 23.7 21.3 24.5 24.5 23.6 果
(5)高速引張伸度 ) 34 43 35 45 46 41 表 3 (その 3 ) 比 較 例
配 合 成 分
3 4 5 6 7 8 プロヒレン/エチレン *フ口ヒレンブロプク共重合体 a- 1 59 59 59 4
a-2 59 59
エチレン- 1-ォクテン共重合体ゴム b-1 16 13 13 13 13 b - 2
b-3
エチレン- 1 -ブテン共重合体ゴム b-4
b - 5
b-6
エチレン- 1 -へキセン共重合体ゴム b-7
エチレン- 1 -へキセン- 1-ブテン共重合体ゴム b-8
エチレン-ブ Dピレン共重合体ゴム b-9 13
エチレンブ D 共重合体 c - 1 3 3 3 3 3 c-2
c - 3
タルク d-1 25 25 25 30 d - 2 ZD
d-3 25
(1)メル トフローレ一 卜 (g/10分) 22 22 17 22 22 17 評
(2)曲げ弾性率 (MPa) 1960 2010 2300 2320 2300 2690 価
(3)アイゾッ ト衝撃強度 (J/m) 360 380 290 340 300 290 条ロ
(4)高速面衝撃強度 (J) 17. 1 18. 1 16. 8 19. 0 17. 3 18. 4 果
(5)高速引張伸度 00 48 56 34 29 31 15 表 1の実施例 1から明らかなように、 本発明に係わるポリオレフィン系樹脂成 形用組成物 (A) を用いた成形品は、 剛性と耐衝撃性と流動性に優れている。 一 方、 高剛性プロピレン/エチレン ·プロピレンプロック共重合体 (a) を配合し ない比較例 1の組成物では、 高剛性プロピレン /ェチレン ' プロピレンブロック 共重合体 (a) を配合した実施例 1 と比較して、 剛性ー耐衝撃性のバランス特に 剛性が低下している。
表 2の実施例 2から明らかなように、 本発明に係わるポリオレフィン系樹脂成 形用組成物 (B) を用いた成形品は、 剛性と耐衝撃性と流動性に優れている。 一 方、 高剛性プロピレン Zエチレン ' プロピレンブロック共重合体 (a) を配合し ない比較例 2の組成物では、 高剛性プロピレン/エチレン ' プロピレンブロック 共重合体 (a) を配合した実施例 2と比較して、 表 1の結果と同様に剛性ー耐衝 撃性のバランス特に剛性が低下している。
表 3の実施例 3〜1 4から明らかなように、 本発明に係わるポリオレフィン系 樹脂成形用組成物 (F) を用いた成形品は、 剛性と耐衝撃性と流動性に優れてい る。 詳しくは、 自動車内装用材料として必要な MFRが 2 0 gZ 1 0分以上、 該 樹脂組成物から得られる成形品の常温の曲げ弾性率が 2 2 0 OMP a以上かつ常 温のアイゾッ ト衝撃強度が 3 0 0 JZm以上である良好な自動車内装用樹脂組成 物、 また、 MFRが 2 0 g/1 0分以上、 該樹脂組成物から得られる 2 3°Cの高 速面衝撃強度 (撃芯速度: 4 m/ s ) が 2 0 J以上、 2 3 °Cでの高速引張伸度 (引張速度: 4 mZs) が 3 0 %以上である自動車内装用樹脂成形部品が得られ る
一方、 高剛性プロピレン Zエチレン · プロピレンブロック共重合体 (a) を配 合しない比較例 3〜4の組成物では、 高剛性プロピレン/エチレン 'プロピレン ブロック共重合体 (a) を配合した実施例 3 ~4と比較して、 剛性ー耐衝撃性の バランスが低下している。 また、 比較例 5はエチレン一高級 α—才レフイン共重 合体ゴム (b) の長周期が 1 4 nm以上のものを使用した樹脂組成物の例である 力 耐衝撃性及び高速引張伸度が著しく低下するため実用的ではない。
平均粒子径が 3 / mを越えるタルク (比較例 6) および粒度分布の標準偏差が 0 . 2を越えるタルク (比較例 7 ) を配合した組成物では、 高速面衝撃性及び高 速引張伸度が低下し、 頭部衝撃保護規制に対応できない。 また、 比較例 8の組成 物はタルク (d ) を 2 5重量%を超えて含有するものであるが、 タルクの多量添 加により、 流動性、 高速面衝撃性及び高速引張伸度が低下しており実用的ではな い。 産業上の利用可能性
本発明の樹脂組成物からなる成形品は、 その組成に特定のプロピレンブロック 共重合体組成物、 特定のエチレン一高級ひ一才レフイン共重合体ゴム、 又は、 さ らにエチレンブロック共重合体、 及び/又は特定のタルク配合を用いたことで、 従来の樹脂組成物の成形品に比べて剛性と耐衝撃性のバランスに優れ、 さらに良 好な流動性を示すことから、 特に自動車内装部品の大型 ·薄肉化が可能となり、 軽量化と低コスト化を図ることが可能である。 また、 剛性を保持しながら特に面 衝撃性に優れるため、 頭部衝撃保護規制対応の自動車内装部品に適応し、 極めて 有用な材料である。

Claims

請 求 の 範 囲
1. (a) ァイソタクチックペンタッ ド分率(P)が 0. 9 6以上、 Mw/Mn (Q値)が 6以下、 かつメルトフローレ一卜の最高値(MFRmax)と最小値(MFR min) の比が、
0. 1≤L 0 g(MFRmax/MFRmin)≤ 1 · · · (1)
の関係を有するプロピレン単独重合成分が 6 0〜9 5重量%、 およびエチレン含 有量 3 0〜8 0重量%のエチレン ·プロピレン共重合体成分が 5〜4 0重量%か らなる高剛性ポリプロピレン/プロピレン ' エチレンプロック共重合体が 8 3〜 8 8重量%、
(b) エチレン含有量が 4 5重量%以上で、 小角 X線散乱で測定される長周期の 値が 6〜 1 4 nmのポリエチレン結晶を持つエチレン一高級 α—才レフィ ン共重 合体ゴム 1 2〜 1 7重量%、
を含有し (a) 、 (b) の合計が 1 0 0重量%であることからなるポリオレフィ ン系樹脂組成物 (A) 。
2. 請求の範囲第 1項記載の ( a ) 高剛性ポリプロピレン/プロピレン 'ェチ レンブロック共重合体 7 8 ~8 7重量%、 請求の範囲第 1項記載の (b) ェチレ ン—高級 α—ォレフィン共重合体ゴム 1 2〜 1 7重量%、 及び
( c ) Αセグメ ン トが 1 , 4—ポリブタジエンブロック、 及び Bセグメ ントが 1, 2—ポリブタジエンブロック、 ポリイソプレンブロックまたはブタジエン ·イソ プレン共重合体プロックからなる A— B— A型又は A— B型のジェンプロック共 重合体の水添率が 8 5 %以上の水添ジェンプロック共重合体 1〜5重量%、 を含有し (a) 、 (b) 、 (c) の合計が 1 0 0重量%であることからなるポリ ォレフィン系樹脂組成物 (B) 。
3. エチレン—高級 α—ォレフィ ン共重合体ゴム (b) の長周期を 8〜1 2 n mとする請求の範囲第 1項、 もしくは第 2項記載のポリオレフィン系樹脂組成物 (C) 。
4. エチレン一高級 α—ォレフィ ン共重合体ゴム (b) が、 エチレンと炭素数 4以上の高級 α—ォレフィンの 1種またはそれ以上とからなる二成分系および または三成分系ランダム共重合体である請求の範囲第 1項、 もしくは第 2項記載 のポリオレフイ ン系樹脂組成物 (D) 。
5. 水添ジェンブロック共重合体 (c) が、 ① Αセグメントが 1, 4—ポリブ タジェンブロック、 Bセグメントが 1, 2 _ポリブタジエンブロックからなる A —B— A型ジェンプロック共重合体; または② Aセグメン卜が 1, 4—ポリブタ ジェンプロック、 Bセグメン卜がブタジェン ·ィソプレン共重合体プロックから なる A_B型のジェンブロック共重合体であり、 その水添率がいずれも 8 5 %以 上である請求の範囲第 2項記載のポリオレフイ ン系樹脂組成物 (E) 。
6. 請求の範囲第 1項〜第 5項のいずれかに記載のポリオレフイ ン系樹脂組成 物が 7 5 - 8 0重量%、 および
( d ) 平均粒子径 3 n m以下でかつ粒子径の標準偏差が 0. 2以下の粒度分布が 狭いタルクが 2 0〜2 5重量%、
を含有するポリオレフィ ン系樹脂成形用組成物 (F) 。
7. 樹脂組成物のメルトフローレート (MFR: ASTM D 1 2 3 8 ) が 2 0 g/ 1 0分以上の請求の範囲第 6項記載のポリオレフィン系樹脂成形用組成物 を成形した、 2 3 °Cでの曲げ弾性率 (A S TM D 7 9 0) 力く 2 2 0 0MP a以 上、 常温のアイゾッ 卜衝撃強度 (A S TM D 2 5 6 ) が 3 0 0 J /m以上、 を 有する成形品からなる自動車内装用樹脂成形部品。
8. 樹脂組成物の MFR (ASTM D 1 2 3 8 ) が 2 0 gノ 1 0分以上の請 求の範囲第 6項記載のポリオレフィン系樹脂成形用組成物を成形した、 2 3 の 高速面衝撃強度 (撃芯速度: 4m/s) が 2 0 J以上、 2 3 °Cでの高速引張伸度 (引張速度: 4m/s) が 3 0 %以上、 を有する成形品からなる自動車内装用樹 脂成形部品。
PCT/JP1998/003815 1997-08-28 1998-08-27 Compositions de resine de polyolefine WO1999011708A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/297,274 US6107388A (en) 1997-08-28 1998-08-27 Polyolefin resin compositions
EP98940579A EP0933394B1 (en) 1997-08-28 1998-08-27 Polyolefin resin compositions
DE69829836T DE69829836T2 (de) 1997-08-28 1998-08-27 Polyolefinharzzusammensetzungen
AU88861/98A AU8886198A (en) 1997-08-28 1998-08-27 Polyolefin resin compositions
CA002270167A CA2270167A1 (en) 1997-08-28 1998-08-27 Polyolefin resin compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/247774 1997-08-28
JP24777497 1997-08-28

Publications (1)

Publication Number Publication Date
WO1999011708A1 true WO1999011708A1 (fr) 1999-03-11

Family

ID=17168460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003815 WO1999011708A1 (fr) 1997-08-28 1998-08-27 Compositions de resine de polyolefine

Country Status (6)

Country Link
US (1) US6107388A (ja)
EP (1) EP0933394B1 (ja)
AU (1) AU8886198A (ja)
CA (1) CA2270167A1 (ja)
DE (1) DE69829836T2 (ja)
WO (1) WO1999011708A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170814A (ja) * 1998-09-30 2000-06-23 Mazda Motor Corp 衝撃吸収構造
JP2008266431A (ja) * 2007-04-19 2008-11-06 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001072815A (ja) 1999-09-07 2001-03-21 Chisso Corp プロピレン系樹脂組成物
JP2002018887A (ja) 2000-07-12 2002-01-22 Chisso Corp ポリプロピレン樹脂発泡成形体
JP4752149B2 (ja) 2000-11-14 2011-08-17 Jnc株式会社 長繊維強化ポリプロピレン樹脂組成物
JP2002302554A (ja) 2001-04-04 2002-10-18 Tamio Serita 無機フィラー配合ポリオレフィン樹脂組成物の製造方法及び製造装置
TW201811976A (zh) 2016-08-08 2018-04-01 美商堤康那責任有限公司 用於散熱器之導熱聚合物組合物
US11680159B2 (en) * 2019-09-30 2023-06-20 Ddp Specialty Electronic Materials Us, Llc Polyolefin-based microporous films via sequential cold and hot stretching of unannealed polypropylene copolymer films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718151A (ja) * 1993-06-30 1995-01-20 Mitsui Petrochem Ind Ltd ポリプロピレン組成物
JPH0977953A (ja) * 1995-09-11 1997-03-25 Chisso Corp ポリオレフィン系樹脂組成物
JPH09137035A (ja) * 1995-11-17 1997-05-27 Mitsubishi Chem Corp 熱可塑性樹脂組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252914A (en) * 1979-08-20 1981-02-24 The Firestone Tire & Rubber Company Thermoplastic elastomer blends of hydrogenated polybutadiene block copolymers with alpha-olefin polymers and copolymers
US4807047A (en) * 1985-10-04 1989-02-21 Fujitsu Limited Electro luminescence device and electrophotographic printing system using the same
CA1303270C (en) * 1986-08-01 1992-06-09 Hirokazu Nakazima High stiffness propylene polymer compositions
JPH0841279A (ja) * 1994-05-24 1996-02-13 Showa Denko Kk 樹脂組成物
JPH0841278A (ja) * 1994-05-24 1996-02-13 Showa Denko Kk 樹脂組成物
KR100341040B1 (ko) * 1994-08-18 2002-11-23 칫소가부시키가이샤 고강성프로필렌-에틸렌블록공중합체조성물및이의제조방법
JP3398485B2 (ja) * 1994-08-29 2003-04-21 昭和電工株式会社 ポリプロピレン系樹脂組成物
JP3153079B2 (ja) * 1994-10-06 2001-04-03 宇部興産株式会社 自動車内装部品用ポリプロピレン系樹脂組成物及びそれを用いて成形してなる自動車内装用部品
AU696168B2 (en) * 1995-04-28 1998-09-03 Sumitomo Chemical Company, Limited Thermoplastic resin composition
JP3260268B2 (ja) * 1995-12-18 2002-02-25 宇部興産株式会社 ポリプロピレン系樹脂組成物
JPH09208881A (ja) * 1996-02-07 1997-08-12 Mitsubishi Chem Corp 塗装用プロピレン系樹脂組成物
TW473489B (en) * 1997-05-26 2002-01-21 Chisso Corp A polyolefin resin composition comprising
JPH10324725A (ja) * 1997-05-26 1998-12-08 Toyota Motor Corp 樹脂組成物および自動車内装部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718151A (ja) * 1993-06-30 1995-01-20 Mitsui Petrochem Ind Ltd ポリプロピレン組成物
JPH0977953A (ja) * 1995-09-11 1997-03-25 Chisso Corp ポリオレフィン系樹脂組成物
JPH09137035A (ja) * 1995-11-17 1997-05-27 Mitsubishi Chem Corp 熱可塑性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0933394A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170814A (ja) * 1998-09-30 2000-06-23 Mazda Motor Corp 衝撃吸収構造
JP2008266431A (ja) * 2007-04-19 2008-11-06 Sumitomo Chemical Co Ltd ポリプロピレン系樹脂組成物

Also Published As

Publication number Publication date
CA2270167A1 (en) 1999-03-11
EP0933394A4 (en) 2000-04-19
EP0933394A1 (en) 1999-08-04
US6107388A (en) 2000-08-22
DE69829836D1 (de) 2005-05-25
AU8886198A (en) 1999-03-22
EP0933394B1 (en) 2005-04-20
DE69829836T2 (de) 2005-09-22

Similar Documents

Publication Publication Date Title
EP0593221B1 (en) Propylene resin compositions
EP0902051A1 (en) Elastomer composition
KR100215332B1 (ko) 열가소성 수지 조성물
EP1726618B1 (en) Resin composition and molded body made from same
EP1824929A1 (en) Polypropylene composition having improved scratch resistance
JP2009522422A (ja) 強化された表面耐久性を有するポリオレフィン材料
TW473489B (en) A polyolefin resin composition comprising
JPH10324725A (ja) 樹脂組成物および自動車内装部品
JPH09208761A (ja) ポリオレフィン系樹脂組成物
WO1999011708A1 (fr) Compositions de resine de polyolefine
JP3255266B2 (ja) ガスケット
JP2836161B2 (ja) 熱可塑性樹脂組成物
JP4212716B2 (ja) 耐傷付き性に優れるエラストマー組成物
JP2001106844A (ja) プロピレン系樹脂組成物
JP4363604B2 (ja) 傷付き性に優れるエラストマー組成物
JPH05247277A (ja) 耐衝撃性ポリオレフィン成形用組成物
JP4022308B2 (ja) ブロー成形用樹脂組成物
JP4532084B2 (ja) ポリプロピレン樹脂組成物の製造方法
JPH07145298A (ja) 無機充填剤含有樹脂組成物
JP3578519B2 (ja) エチレン−α−オレフィンランダム共重合体およびその製造法
JP4368467B2 (ja) エラストマー組成物
JP3476159B2 (ja) 樹脂組成物
JP2010248532A (ja) プロピレン系樹脂組成物
JP2500391B2 (ja) 柔軟で耐熱性の優れたエラストマ―組成物
JP2022166805A (ja) ブロック共重合体、該ブロック共重合体を含有するエラストマー組成物及び成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2270167

Country of ref document: CA

Ref country code: CA

Ref document number: 2270167

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998940579

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09297274

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998940579

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1998940579

Country of ref document: EP