WO1999009602A1 - Dispositif de semi-conducteur compose, a base de nitrure de gallium - Google Patents

Dispositif de semi-conducteur compose, a base de nitrure de gallium Download PDF

Info

Publication number
WO1999009602A1
WO1999009602A1 PCT/JP1998/003611 JP9803611W WO9909602A1 WO 1999009602 A1 WO1999009602 A1 WO 1999009602A1 JP 9803611 W JP9803611 W JP 9803611W WO 9909602 A1 WO9909602 A1 WO 9909602A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
compound semiconductor
gallium nitride
based compound
film
Prior art date
Application number
PCT/JP1998/003611
Other languages
English (en)
French (fr)
Inventor
Takashi Kano
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to EP98937810A priority Critical patent/EP1018770A4/en
Priority to KR1020007001714A priority patent/KR20010023092A/ko
Priority to US09/463,985 priority patent/US6388275B1/en
Publication of WO1999009602A1 publication Critical patent/WO1999009602A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3215Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities graded composition cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3407Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3409Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers special GRINSCH structures

Definitions

  • Gallium nitride-based compound semiconductor device Gallium nitride-based compound semiconductor device
  • the present invention relates to a gallium nitride-based compound semiconductor device suitable for use in light-emitting devices such as a light-emitting diode and a laser diode.
  • Indium gallium nitride (In x G a, — X N) compound semiconductor film is attracting attention as a material that emits light in all visible wavelengths by changing its In composition (X).
  • In x G a, — X N Indium gallium nitride
  • X In composition
  • a ridge-type InGaN-based MQW laser diode using this material has been proposed. (Proceedings of the 17th Annual Meeting of the Laser Society of Japan S 17 or S 20).
  • the above-described ridge type InGaN MQW laser diode has a GaN buffer layer 42 and an n-type GaN contact layer 4 on a sapphire substrate 41.
  • n-type I n G a n Kura click prevention layer 4 4, n-type A l y G a, _ y n Kura head layer 4 5, n-type G a n Guide layer 4 6, I n G a N-type MQW active layer 47, p-type A1 GaN cap layer 48, p-type GaN guide layer 49, p-type AlyG a, — yN clad layer 50
  • the p-type GaN contact layer 51 is formed in this order.
  • the p-electrode 52 is formed on the p-type contact layer 51, and the n-electrode 53 is etched from the n-type contact layer 43 to the n-type contact layer 43.
  • the AlG that forms a clad layer on the contact layer by epitaxy is used.
  • cracks are generated in the cladding layer due to differences in lattice constant and coefficient of thermal expansion, so that it is not possible to form a thick A1GaN layer. There is.
  • the present invention has been made in view of the above-mentioned conventional problems, and prevents cracks and defects caused by distortion due to a difference in lattice constant and thermal expansion coefficient. It is an object to provide a semiconductor device capable of forming a semiconductor layer. Disclosure of the invention
  • a gallium nitride-based compound semiconductor device includes a first gallium nitride-based compound semiconductor layer, and a second nitride-based compound semiconductor layer having a different composition from the first gallium nitride-based compound semiconductor layer. It is characterized in that buffer layers having compositions substantially the same as the compositions of the first and second gallium nitride-based compound semiconductor layers are interposed between the semiconductor layers.
  • the buffer layer is formed by alternately stacking a layer having substantially the same composition as the first gallium nitride-based compound semiconductor layer and a layer having substantially the same composition as the second gallium nitride-based semiconductor layer. It can be composed of a superlattice structure layer.
  • the buffer layer has a composition ratio from a layer having substantially the same composition as the first gallium nitride-based compound semiconductor layer to a layer having substantially the same composition as the second nitride gallium-based semiconductor layer. It can be formed by changing.
  • the present invention provides a contact layer of one conductivity type composed of a first gallium nitride-based compound semiconductor layer, and a second nitride gallium compound having a different composition from the first gallium nitride-based compound semiconductor layer.
  • a first conductivity type cladding layer made of a metal-based semiconductor layer, an active layer having a quantum well structure having an indium nitride nitride composition, and the first gallium nitride-based compound semiconductor layer A different conductivity type cladding layer made of a different second nitride gallium-based semiconductor layer; and another conductivity type cladding layer made of the first gallium nitride-based compound semiconductor layer
  • a gallium nitride-based compound semiconductor layer comprising: the first and second gallium nitride layers between at least the one conductivity type contact layer and the one conductivity type cladding layer.
  • a buffer layer having a composition substantially the same as the composition of the palladium compound semiconductor layer is interposed.
  • buffer layers having compositions substantially the same as the compositions of the first and second gallium nitride-based compound semiconductor layers are interposed on both sides of the cladding layer.
  • the buffer layer By forming the buffer layer between the first and second gallium nitride-based compound semiconductor layers, the buffer layer is formed on both sides of the first and second gallium nitride-based compound semiconductor layers. It acts to reduce the lattice constant and the coefficient of thermal expansion, and suppresses the occurrence of cracks and defects caused by the difference between the lattice constant and the coefficient of thermal expansion. As a result, cracks do not occur even when a thick n-type or p-type gallium nitride-based compound semiconductor layer is epitaxially grown, and more efficient confinement of the carrier in the active layer and light A light-emitting element that can be confined can be formed. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a first shows an example, I n y G a, _ y N compound semiconductor film made of a quantum well structure (S QW) or multi-weight quantum well nitride gully um-based compound semiconductor device of the present invention
  • FIG. 4 is a vertical sectional side view of a semiconductor laser diode using a structure (MQW) as an active layer.
  • S QW quantum well structure
  • MQW structure
  • FIG. 2 shows an n-type GaN film with a thickness of 50 ⁇ and a film with a thickness of 50 ⁇ .
  • FIG. 11 is a band energy diagram of a semiconductor laser diode when a crack preventing buffer layer in which a 15 G a Q 85 N film is alternately formed is used.
  • FIG. 3 is a pan energy diagram of a semiconductor laser diode in the case of using a crack-preventing buffer layer having a grating structure in which the 81 composition ratio is sequentially increased from 0 to 0.15.
  • FIG. 4 shows the cracks when the A1 composition ratio was varied with a gradient in the film thickness direction.
  • FIG. 4 is a band energy diagram of a semiconductor laser diode when a prevention buffer layer is used.
  • FIG. 5 is a schematic diagram showing an example of a horizontal MOCVD device used for forming each compound semiconductor film of the present invention.
  • FIG. 4 is a vertical sectional side view of a semiconductor laser diode using a structure (MQW) as an active layer.
  • Figure 7 shows a 50 ⁇ thick n-type GaN film and a 50 ⁇ thick Al film. , 5 G a. 8 5 a-band energy diagram of the semiconductor laser diode in the case of using a class click prevention of buffers layers laminated alternately formed an N film.
  • FIG. 8 is a band energy diagram of a semiconductor laser diode in the case of using a crack preventing buffer layer having a grating structure in which the composition ratio is sequentially increased from 0 to 0.15.
  • FIG. 9 is a band energy diagram of a semiconductor laser diode in the case where a crack prevention buffer layer is used when the A 1 composition ratio is varied with a gradient in the film thickness direction.
  • the first 0 figure shows a third embodiment of the nitride gully um-based compound semiconductor device of the present invention, I n y G ai - y N compound semiconductor film made of a quantum well structure (S QW) or multi-quantum
  • FIG. 4 is a vertical sectional side view of a semiconductor laser diode using a well structure (MQW) as an active layer.
  • the first 1 figure fourth shows the example, I n y G a 1- y N compound semiconductor film made of a quantum well structure (S QW) or multi-weight nitride gully um-based compound semiconductor device of the present invention
  • FIG. 4 is a vertical sectional side view of a semiconductor laser diode using a subwell structure (MQW) as an active layer.
  • S QW quantum well structure
  • MQW subwell structure
  • Fig. 12 is a longitudinal sectional side view of a conventional InGaN MQW laser diode. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a first embodiment of a nitride gully ⁇ beam based compound semiconductor device of the present invention, I n x G a, _ x N compound semiconductor film made of a quantum well structure (S QW) or multi-weight element
  • FIG. 4 is a longitudinal sectional side view of a semiconductor laser diode using a well structure (MQW) as an active layer.
  • This semiconductor laser diode has an AIG aN buffer layer 2 having a thickness of 100 to 200 ⁇ as an n- type nitride compound semiconductor on a sapphire substrate 1 and a film thickness of A 400 angstrom undoped gallium nitride (GaN) underlayer 3 is formed.
  • GaN gallium nitride
  • an n-type GaN film doped with silicon (Si) having a thickness of about 30000 angstrom to be an n-type contact layer 4 is formed.
  • a crack preventing buffer layer 5 having the composition of the clad layer 6 and the contact layer 4 made of the n-type GaN film is provided. The details of the crack prevention buffer layer 5 will be described later.
  • an n-type A 1 y G a] —y N clad layer 6 having a thickness of about 500 ⁇ is formed on the crack prevention buffer layer 5, an n-type A 1 y G a] —y N clad layer 6 having a thickness of about 500 ⁇ is formed.
  • An undoped GaN or n-type GaN optical guide layer 7 having a thickness of about 300 angstroms is formed on the clad layer 6, and a quantum well structure is formed on the optical guide layer 7.
  • An active layer 8 having an InGaN composition having an (SQW) or multiple quantum well (MQW) structure is formed on this active layer 8, a light guide layer 9 composed of a p-type GaN film with a thickness of about 300 angstroms and a p-type A doped with a Mg of about 500 angstroms.
  • a cladding layer 10 composed of a 1 y G a y y N film is formed.
  • a contact layer 11 made of a p-type GaN film having a thickness of 30000 ⁇ is formed on the cladding layer 10. ing.
  • the n-type contact layer 4 is sampled and covered with an insulating film 14 such as a silicon oxide film (SiO 2 ). The p-electrode portion and the n-electrode portion are removed to provide an n-electrode 12 and a p-electrode 13 respectively.
  • the above-described anti-crack buffer layer 5 has the composition of a clad layer 6 composed of an Al y G a, -y N film and a contact layer 4 composed of an n-type G a N film, respectively. , And acts to reduce the lattice constant difference and the thermal expansion coefficient difference between the n-type GaN film and the Al y G a] —y N film.
  • n-type A 1 D] 5 G a is used as the cladding layer 6. .
  • the anti-crack buffer layer 5 can be formed by laminating.
  • the cracks preventing buffer layer 5 for example, in the case of using the n-type A 1 0, 5 G a 0 8 5 N film as a clad layer 6, a thickness of 5 0 Ongusu preparative Rohm n Type G aN film and 50 angstrom thick A 1 y G ay N film are alternately laminated to increase the aluminum (A 1) composition ratio from 0 to 0.15 sequentially. With this structure, the crack prevention buffer layer 5 can be formed.
  • the crack preventing buffer layer 5 described above may be a layer having substantially the same composition as the contact layer 4 and the cladding layer 6.
  • the characteristics such as the lattice constant and the coefficient of thermal expansion are substantially the same, cracking can be prevented. It can be used as a buffer layer.
  • the G a N film alternately laminated with the A 1 y G a, — y N film may have a substantially G a N composition, and a film containing a small amount of In also has a crack prevention buffer layer. Can be used as it can.
  • n-type Al is used as the cladding layer 6. 15 G a.
  • the crack preventing buffer layer 5 is formed by forming the film by changing the composition ratio of A 1 from 0 to 0.15 with a gradient in the film thickness direction. You can also do it.
  • FIGS. 2 to 4 show energy band diagrams when the crack prevention buffer layers 5 having the above-described configurations are provided.
  • Figure 2 shows a 50 ⁇ thick n-type GaN film and a 50 ⁇ thick Al film. 15 G a.
  • Fig. 3 shows a cladding with a grating structure in which the A1 composition ratio is gradually increased from 0 to 0.15.
  • FIG. 4 shows a semiconductor laser diode using the anti-crack buffer layer 5 when the A 1 composition ratio is changed with a gradient in the film thickness direction.
  • the crack prevention buffer layer 5 becomes a lattice constant and a coefficient of thermal expansion of both the contact layer 4 and the cladding layer 6. This serves to reduce the occurrence of cracks and defects caused by the difference in lattice constant and the difference in coefficient of thermal expansion. As a result, cracks do not occur even when epitaxially growing a thick n-type or p-type A 1 GaN, and the carrier is more efficiently confined in the active layer and the light is more efficiently absorbed. A light-emitting element that can be confined can be formed.
  • FIG. 5 is a schematic diagram showing an example of a horizontal MOCVD apparatus used for forming each compound semiconductor film.
  • This horizontal MOCVD apparatus has a two-layer flow structure, and a sapphire substrate 1 is held at an inclination by a susceptor (not shown) in a formation chamber 30 where two-layer gas flows intersect.
  • the formation chamber 30 is evacuated to a predetermined degree of vacuum by a vacuum pump (not shown).
  • the susceptor is heated to a predetermined growth temperature by a high-frequency coil or the like.
  • the source gas is supplied to the surface of the substrate 1 from the source gas supply line 31, and the upper stream gas disposed above the source gas supply line 31. Hydrogen and / or nitrogen gas is supplied from line 32.
  • the upper stream gas line 32 is connected to a hydrogen (H 2 ) gas cylinder and a nitrogen (N 2 ) gas cylinder via a valve.
  • the source gas is pressed against the substrate 1 by the hydrogen (H 2 ) gas and the Z or nitrogen (N 2 ) gas supplied from the upper stream gas line 32, and the source gas is brought into contact with the substrate 1.
  • Organic metal compound sources such as trimethyl aluminum (TMA), trimethyl gallium (TMG), trimethyl indium (TM I) and triethyl gallium (TEG) as raw material gas can be converted to trace amounts of bubbling gas. It is further vaporized and supplied to the source gas supply line 31 via a valve (not shown). Also, n-type dopant gas containing ammonia (NH 3 ) and silicon (Si) (for example, silane (SiH 4 )), and p-type dopant gas containing magnesium (Mg) (for example, C p 2 M g) is also supplied to the source gas supply line 31 via a valve not shown.
  • NH 3 ammonia
  • Si silicon
  • an AlGaN buffer layer 2 is formed on a substrate 1.
  • TM A, TMG and NH 3 are supplied as source gases into the formation chamber 30, and the substrate temperature is maintained at 600 ° C. to form a 150 ⁇ thick Al film on the substrate 1. 6 G a 0 4 N that form a buffer layer 2.
  • TMG and NH 3 are supplied into the formation chamber 30, and the substrate temperature is kept at 115 ° C. and Al is increased. 6 G a.
  • An undoped GaN underlayer 3 having a thickness of 400 ⁇ is formed on the 4N buffer layer 2.
  • the source gas was switched to TMG, NH 3 , and the dopant gas were switched to SiH 4 and supplied into the forming chamber 30 , respectively, and the substrate temperature was maintained at 115 ° C and the temperature was lower than that of AlGaN.
  • a contact layer 4 made of a 300- ⁇ -thick n-type GaN film is formed on the formation 3. Form.
  • the raw material gas is supplied to the forming chamber 30 while keeping the TMG and NH 3> dopant gas as SiH 4 , and the substrate temperature is maintained at 115 ° C. and the film thickness is 50 ⁇ .
  • the raw material gas by adding TMA were supplied into the forming chamber 3 0, keeping the substrate temperature at 1 1 5 0 ° C, film thickness 5 0 Ongusu preparative Rohm n Type A 101 G a.
  • An 85N film is formed.
  • the supply of the TMA into the formation chamber 30 is controlled to form a 50 angstrom thick n-type GaN film and a 50 angstrom thick n-type Al. 15 G a. 10 5 pairs of 85 N films are alternately formed to form a crack preventing buffer layer 5 having a super lattice structure.
  • the source gas was supplied to the forming chamber 30 while keeping the TMG, TMA, NH 3 , and dopant gases as SiH 4 , and the substrate temperature was maintained at 115 ° C. 0 Angstrom n- type A 1. 15 G a.
  • a cladding layer 6 made of an 85N film is formed on the anti-crack buffer layer 5.
  • the source gas was switched to TMG, NH 3 , and the dopant gas were switched to SiH 4 and supplied into the forming chamber 30, the substrate temperature was maintained at 115 ° C., and the film thickness was 100 ° C.
  • An optical guide layer 7 made of a 0-ng-length n-type GaN film is formed on the clad layer 6.
  • the raw material gas TM I their respective supplies to the switching forming chamber 3 in 0 to TEG and NE 3, keeping the substrate temperature at 8 6 0 ° C, film thickness as a barrier layer on the light guide layer 7 7 0 Angstrom In. . 5 G a.
  • a 95 N film is formed, and then the substrate temperature is kept at 800 ° C. and the thickness of the well layer becomes 30 ⁇ . ls G a.
  • An 85N film is formed, and thereafter, 20 pairs of these pairs are similarly laminated to form an active layer 8 having an MQW'InGaN composition.
  • the raw material gas, TMG and NH 3 and supplied the dopant Togasu in C p 2 M g to switch to form chamber 3 0, keeping the substrate temperature at 1 1 5 0 ° C, M g is doped
  • the optical guide layer 9 consisting of a 1000 ⁇ thick p-type GaN film was formed. To achieve.
  • a cladding layer 10 composed of an 85N film is formed.
  • the source gas is switched to TMG and NH 3 , and the dopant gas is switched to Cp 2 Mg, and supplied into the formation chamber 30, and the substrate temperature is kept at 150 ° C. Then, a contact layer 11 made of a p-type GaN film having a thickness of 300 ⁇ is formed.
  • Electrodes 13 are provided respectively.
  • the crack prevention buffer layer 5 has a superlattice structure
  • the crack prevention buffer layer having a gradation is provided.
  • the supply amount of TMA may be controlled so as to be increased in a stepwise manner. Further, as shown in the band energy diagram of FIG. In order to change the amount of TMA, the supply amount of TMA should be gradually increased.
  • FIG. 4 is a vertical sectional side view of a semiconductor laser diode using a structure (MQW) as an active layer.
  • This second embodiment the first embodiment Conta click coat layer 4 and the n-type A l y G a] consisting of the n-type G a N film - between the classes head layer 6 made of y N film
  • the anti-cracking buffer layer 5 is provided on both sides of the n-type and p-type cladding layers, whereas the anti-cracking buffer layer 5 is provided on both sides. That is, between the n-type contact layer 4 and the n-type cladding layer 6, between the n-type cladding layer 6 and the optical guiding layer 7, between the optical guiding layer 9 and the p-type cladding layer.
  • a crack preventing buffer layer 5 is provided between the p-type cladding layer 10 and the p-type contact layer 11 to further prevent the occurrence of cracks and defects.
  • the crack preventing buffer layer 5 in this embodiment also has the same composition as the first embodiment, that is, the composition of the cladding layer 6 or the cladding 10 and the GaN films located on both sides thereof.
  • the cladding layers 6 and 10 are A 10.] 5 G a.
  • a 50 angstrom thick GaN film and a 50 angstrom thick Al film are used. 15 G a. 8 5 N Ri by a film and laminated child alternately, can be formed anti-cracking buffer layer 5.
  • the anti-cracking buffer layer 5 for example, as a cluster head layer 6 A 1 0., 5 G a. + 8 5 if N film using, G a N film and film thickness 5 0 Ongusu bets thickness 5 0 angstroms Rohm A l y G ai - y N and a film laminated alternately, A 1 composition ratio
  • the anti-crack buffer layer 5 can be formed by employing a graded structure in which the number of layers is sequentially increased from 0 to 0.15. At this time, the composition ratio of A 1 is controlled so as to increase as it approaches the cladding layer.
  • the A 1 composition ratio changes from 0 to 0 ⁇ 15 with a gradient in the film thickness direction.
  • the crack prevention buffer layer 5 can be formed.
  • the A 1 composition ratio is controlled so as to increase as it approaches the cladding layer.
  • FIGS. 7 to 9 show energy band diagrams when the crack preventing buffer layer 5 of each of the above configurations is provided.
  • Figure 7 shows a 50 angstrom thick GaN film and a 50 angstrom thick Al film. 15 G a. . 8
  • Fig. 8 shows the anti-cracking buffer having a grating structure in which A 1 composition ratio is added sequentially from 0 to 0.15.
  • FIG. 9 shows a semiconductor laser diode using the anti-crack buffer layer 5 when the composition ratio of A 1 is changed with a gradient in the film thickness direction.
  • the anti-crack buffer layer 5 is formed with the clad layers 6 and 10 and the films located on both sides thereof. This acts to reduce both the lattice constant and the coefficient of thermal expansion, and suppresses the occurrence of cracks and defects caused by the difference between the lattice constant and the coefficient of thermal expansion. As a result, cracks do not occur even when epitaxially growing a thick n-type or p-type A 1 GaN, and the carrier is more efficiently confined in the active layer.
  • a light-emitting element capable of confining light can be formed.
  • the semiconductor laser diode shown in FIG. 6 can be formed in the same manner as the semiconductor laser diode shown in FIG. 1 by using the apparatus shown in FIG.
  • the first 0 figure shows a third embodiment of the nitride gully ⁇ beam based compound semiconductor device of the present invention, I n x G a, " x N compound semiconductor film made of a quantum well structure (S QW) or multi
  • the third embodiment is a vertical sectional side view of a semiconductor laser diode using a quantum well structure (MQW) as an active layer.
  • MQW quantum well structure
  • the anti-crack buffer layer 5 is provided between the p-type cladding layer 10 and the p-type contact layer 11.
  • the n-type A crack preventing buffer layer 5 is provided between the cladding layer 6 and the light guide layer 7 and between the p-type cladding layer 10 and the p-type contact layer 11 respectively. .
  • the n-type cladding layer 4 is sandwiched between crack preventing buffer layers 5 so as to prevent cracks and defects from occurring.
  • the crack prevention buffer layer 5 in this embodiment also has a composition of the cladding layer 6 or 10 and the G a N films located on both sides thereof, similarly to the first embodiment. It acts to reduce the lattice constant difference and the thermal expansion coefficient difference from the cladding layer. Therefore, the buffer layer 5 has a superlattice structure in which a thin film having the same composition as the GaN film and a thin film of A 1 y G a, having the same composition as the cladding layer are alternately laminated.
  • the cladding layers 6 and 10 are A 1. , 5 G a.
  • the thickness of the GaN film is 50 ⁇ and the thickness is 50 ⁇ . 15 G a.
  • the anti-crack buffer layer 5 can be formed by alternately stacking the 85N films.
  • the crack preventing buffer layer 5 is, for example, A 1 as the cladding layer 6. , s G a 0 8 s N film, a G a N film having a thickness of 50 ⁇ and a 50 ⁇ film thickness A 1 y G ay N film are alternately laminated, and A 1
  • the anti-crack buffer layer 5 can be formed by adopting a graying structure in which the composition ratio is sequentially increased from 0 to 0.15. At this time, the A 1 composition ratio is controlled so as to increase as it approaches the cladding layer.
  • the cladding layers 6 and 10 are n-type Al. 15 G a.
  • the crack prevention buffer layer 5 is formed by forming the film by changing the composition ratio of A 1 from 0 to 0.15 with a gradient in the film thickness direction. can do. At this time, the A 1 composition ratio is controlled so as to increase as it approaches the cladding layer.
  • a film having substantially the same composition as in the first embodiment described above can be used as the crack prevention buffer layer 5.
  • the semiconductor laser diode shown in FIG. 10 can be formed in the same manner as the semiconductor laser diode shown in FIG. 1 by using the apparatus shown in FIG.
  • FIG. 11 shows a fourth embodiment of the gallium nitride-based compound semiconductor device according to the present invention, which is a quantum well structure (SQW) composed of an In x Ga x N compound semiconductor film or a multiple quantum well.
  • FIG. 6 is a vertical sectional side view of a semiconductor laser diode using a structure (MQW) as an active layer.
  • the fourth embodiment, the first embodiment is n-type G a N consisting film co Ntaku coat layer 4 and the n-type A l y G a - between the Class head layer 6 made of y N film!
  • the anti-crack buffer layer 5 is provided in the first embodiment, the anti-crack buffer layer 5 is also provided between the p-type cladding layer 10 and the p-type contact layer 11. That is, a crack preventing buffer layer 5 is provided between the n-type contact layer 4 and the n-type cladding layer 6, and between the p-type cladding layer 10 and the p-type contact layer 11 respectively. .
  • the crack prevention buffer layer 5 in this embodiment also has a composition of the cladding layer 6 or 10 and the GaN films located on both sides of the cladding layer 6 or 10 as in the first embodiment. It acts to reduce the difference in lattice constant and coefficient of thermal expansion between the film and the cladding layer. Therefore, the buffer layer 5 is of a super lattice structure obtained by laminating a thin film of G a n-type N layer film having the same composition and the phrase La head layer the same composition A l y G ai- y N alternately Is used. For example, Al as the cladding layers 6 and 10. 1 5 G a 0.
  • the crack prevention buffer layer 5 can be formed.
  • the crack prevention buffer layer 5 is, for example, Al as the cladding layers 6 and 10.
  • 15 G a When using 8 5 N film, thickness 5 0 Ongusu preparative ROHM G a N film and the film thickness 5 0 Ongusu preparative Rohm A 1 y G a, - y N and a film laminated alternately, A 1 composition By adopting a graying structure in which the ratio is gradually increased from 0 to 0.15, 15 P / JP98 / 0 11 Crack prevention buffer layer 5 can be formed. At this time, the A 1 composition ratio is controlled so as to increase as it approaches the cladding layer.
  • the n-type Al is used as the cladding layer 6, 10. 15 G a.
  • the crack prevention buffer layer 5 is formed by forming the film by changing the composition ratio of A1 from 0 to 0.15 with a gradient in the film thickness direction. can do. At this time, the A 1 composition ratio is controlled so as to increase as it approaches the cladding layer.
  • the semiconductor laser diode shown in FIG. 11 can be formed in the same manner as the semiconductor laser diode shown in FIG. 1 by using the apparatus shown in FIG.
  • first and second gallium nitride-based compound semiconductor layers having different compositions from the first first gallium nitride-based compound semiconductor layer may be cracked when the first and second gallium nitride-based semiconductor layers are grown. Similar effects can be obtained by interposing buffer layers each having the composition of the gallium nitride-based compound semiconductor layer.
  • the first gallium nitride-based compound semiconductor layer and the second gallium nitride-based compound semiconductor layer having different compositions from each other are different from each other.
  • the buffer layers having the respective compositions of the first and second gallium nitride-based compound semiconductor layers are interposed, so that the difference in lattice constant and the difference in thermal expansion coefficient Cracks and defects can be prevented, and when used in a semiconductor laser, the carrier and light can be confined in the active layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

明 細 書
窒化ガリ ゥム系化合物半導体装置 技術分野
この発明は、 発光ダイオー ド、 レーザダイオー ドなどの発光デバイスに用いて 好適な窒化ガリ ゥム系化合物半導体装置に関する。 背景技術
窒化イ ンジウムガリ ウム ( I n x G a , — X N) 化合物半導体膜は、 その I n組 成 ( X ) を変化させるこ とによ り 、 可視全域の波長の発光を得る材料と して注目 されており、 この材料を用いたリ ッジ型 I n G a N系 MQWレーザダイォ一 ドが 提案されている (レーザー学会学術講演会第 1 7回年次大会講演予稿集 S 1 7な いし S 2 0参照)。
上記したリ ッジ型 I n G a N系 MQWレーザダイオー ドは、 第 1 2図に示すよ うに、 サファイア基板 4 1 上に G a Nバッファ層 4 2、 n型 G a Nコンタク ト層 4 3 、 n型 I n G a Nクラ ック防止層 4 4 、 n型 A l y G a , _ y Nクラ ッ ド層 4 5 、 n型 G a Nガイ ド層 4 6 、 I n G a N組成の M Q W活性層 4 7、 p型 A 1 G a Nキャップ層 4 8 、 p型 G a Nガイ ド層 4 9、 p型 A l y G a , — y Nク ラ ッ ド 層 5 0 、 p型 G a Nコンタク ト層 5 1 、 がこの順序で形成されている。 そして、 p電極 5 2は p型コンタク ト層 5 1上に、 また、 n電極 5 3は n型コンタク ト層 4 3までエッチングして上から採られている。
上記したリ ッジ型 I n G a N系 M Q Wレーザダイオー ドなどの窒化ガリ ゥム系 化合物半導体装置においては、 ェピタキシャル成長によ り コンタク ト層上にク ラ ッ ド層となる A l G a Nを形成する際に、 格子定数や熱膨張率の差によ り クラ ッ ド層にクラ ックが発生するために、 膜厚の厚い A 1 G a N層が形成できないとレヽ う問題がある。 上記したリ ッジ型 I n G a N系 M Q Wレーザダイォ一 ドにおいて は、 クラッ ド層と コンタク ト層との間に n型 I n G a Nクラック防止層を設けて いるが、 n型 I n G a Nクラ ック防止層においてもその上に形成される A I G a Nからなるク ラッ ド層とは、 格子定数及び熱膨張率が相違するために、 やはり膜 厚の厚い A 1 G a N層が形成できないという問題がある。
この発明は、 上述した従来の問題点に鑑みなされたものにして、 格子定数や熱 膨張率差による歪みが原因と されるクラックや欠陥の発生を防止し、 膜厚の厚い 窒化ガリ ゥム系半導体層を形成できる半導体装置を提供するこ とを目的とする。 発明の開示
この発明の窒化ガリ ウム系化合物半導体装置は、 第 1 の窒化ガリ ウム系化合物 半導体層と、 この第 1 の窒化ガリ ゥム系化合物半導体層とは組成の異なる第 2の 窒化物ガリ ゥム系半導体層との間に第 1及び第 2の窒化ガリ ゥム系化合物半導体 層の組成と実質的に同じ組成をそれぞれ有するバッファ層を介在させたこ とを特 徴とする。
前記バッファ層は、 第 1 の窒化ガリ ウム系化合物半導体層と実質的に同じ組成 の層と、 第 2の窒化物ガリ ウム系半導体層と実質的に同じ組成の層と、 を交互に 積層した超格子構造層で構成するこ とができる。
また、 前記バッファ層は、 第 1 の窒化ガリ ウム系化合物半導体層と実質的に同 じ組成の層から第 2の窒化物ガリ ゥム系半導体層と実質的に同じ組成の層へ組成 比を変化させて形成するこ とができる。
また、 この発明は、 第 1 の窒化ガリ ウム系化合物半導体層からなる一導電型の コンタク ト層と、 この第 1 の窒化ガリ ゥム系化合物半導体層とは組成の異なる第 2の窒化物ガリ ゥム系半導体層からなる一導電型のクラッ ド層と、 量子井戸構造 からなる窒化ィ ンジゥムガリ ゥム組成の活性層と、 前記第 1 の窒化ガリ ゥム系化 合物半導体層とは組成の異なる第 2の窒化物ガリ ゥム系半導体層からなる他導電 型のクラッ ド層と、 前記第 1 の窒化ガリ ゥム系化合物半導体層からなる他導電型 のコンタク ト層と、 からなる窒化ガリ ウム系化合物半導体層において、 少なく と も前記一導電型のコンタク ト層と一導電型のク ラ ッ ド層の間に前記第 1及び第 2 の窒化ガリ ゥム系化合物半導体層の組成と実質的に同じ組成をそれぞれ有するバ ッファ層を介在させたこ とを特徴とする。
前記クラッ ド層の両側に前記第 1及び第 2の窒化ガリ ゥム系化合物半導体層の 組成と実質的に同じ組成をそれぞれ有するバッファ層を介在させる とよい。
上記したバッファ層を第 1及び第 2の窒化ガリ ゥム系化合物半導体層の間に形 成するこ とで、 バッファ層が第 1及び第 2の窒化ガリ ゥム系化合物半導体層の双 方の格子定数と熱膨張率を緩和するよ う に作用し、 格子定数差や熱膨張率の差に 起因するク ラ ックや欠陥の発生が抑制される。 この結果、 厚い n型又は p型窒化 ガリ ウム系化合物半導体層をェピタキシャル成長させてもクラックが発生するこ とがなく なり、 よ り効率的な活性層でのキヤ リ ァの閉じこめと光の閉じこめが可 能な発光素子を形成するこ とができる。 図面の簡単な説明
第 1 図は、この発明の窒化ガリ ウム系化合物半導体装置の第 1 の実施例を示し、 I n y G a , _ y N化合物半導体膜からなる量子井戸構造 ( S QW) または多重量 子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断面側 面図である。
第 2図は、 膜厚 5 0オングス ト ロームの n型 G a N膜と膜厚 5 0オングス ト口 ーム A l 。 1 5 G a Q 8 5 N膜とを交互に積層形成したク ラ ック防止バッファ層 を用いた場合の半導体レーザダイオー ドのバン ドエネルギー図である。
第 3図は、 八 1 組成比を 0から 0. 1 5まで順次増加させたグレーティ ング構 造のク ラック防止バッファ層を用いた場合の半導体レーザダイオー ドのパン ドエ ネルギー図である。
第 4図は、 A 1組成比を膜厚方向に勾配を持たせて変化させた場合のク ラ ック 防止バッファ層を用いた場合の半導体レーザダイォー ドのバン ドエネルギー図で ある。
第 5図は、 この発明の各化合物半導体膜の成膜に用いられる横型 MO C V D装 置の一例を示す模式図である。
第 6図は、この発明の窒化ガリ ゥム系化合物半導体装置の第 2の実施例を示し、 I n y G a iy N化合物半導体膜からなる量子井戸構造 ( S QW) または多重量 子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断面側 面図である。
第 7図は、 膜厚 5 0オングス トロームの n型 G a N膜と膜厚 5 0オングス ト ロ —ム A l 。 , 5 G a 。 8 5 N膜とを交互に積層形成したクラ ック防止バッ フ ァ層 を用いた場合の半導体レーザダイオー ドのバン ドエネルギー図である。
第 8図は、 1 組成比を 0から 0. 1 5まで順次増加させたグレーティ ング構 造のク ラック防止バッファ層を用いた場合の半導体レーザダイオー ドのバン ドエ ネルギー図である。
第 9図は、 A 1 組成比を膜厚方向に勾配を持たせて変化させた場合のクラック 防止バッファ層を用いた場合の半導体レーザダイォー ドのバン ドエネルギー図で ある。
第 1 0図は、 この発明の窒化ガリ ウム系化合物半導体装置の第 3の実施例を示 し、 I n y G a iy N化合物半導体膜からなる量子井戸構造 ( S QW) または多 重量子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断 面側面図である。
第 1 1 図は、 この発明の窒化ガリ ウム系化合物半導体装置の第 4の実施例を示 し、 I n y G a 1— y N化合物半導体膜からなる量子井戸構造 ( S QW) または多 重量子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断 面側面図である。
第 1 2図は、 従来の I n G a N系 MQWレーザダイオー ドの縦断面側面図であ る 発明を実施するための最良の形態
この発明をよ り詳細に説述するために、 添付の図面に従ってこれを説明する。 第 1 図は、この発明の窒化ガリ ゥム系化合物半導体装置の第 1 の実施例を示し、 I n x G a , _ x N化合物半導体膜からなる量子井戸構造 ( S QW) または多重量 子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断面側 面図である。
この半導体レーザダイオー ドは、 サファイア基板 1 上に n型窒化物系化合物半 導体と しての膜厚 1 0 0〜 2 0 0オングス ト ロームの A I G a Nバッファ層 2及 びこの上に膜厚 4 0 0オングス トロ一ムのアン ドープの窒化ガリ ゥム (G a N) 下地層 3が形成されている。 この G a N下地層 3上に n型コンタク ト層 4 となる 膜厚 3 0 0 0 0オングス ト ローム程度のシリ コン ( S i ) を ドープした n型 G a N膜が形成されている。 そして、 この n型 G a N膜からなるコンタク ト層 4上に クラッ ド層 6 と n型 G a N膜からなるコンタク ト層 4の組成をそれぞれ有するク ラック防止バッファ層 5が設けられる。 このクラック防止バッファ層 5の詳細に ついては後述する。
クラック防止バッファ層 5上に膜厚 5 0 0 0オングス トロ一ム程度の n型 A 1 y G a ]— y Nのク ラ ッ ド層 6が形成されている。 このクラッ ド層 6上に膜厚 3 0 0オングス トローム程度のアン ドープの G a Nまたは n型 G a N膜の光ガイ ド層 7が形成され、 この光ガイ ド層 7上に量子井戸構造 ( S QW) または多重量子井 戸 (MQW) 構造からなる I n G a N組成の活性層 8が形成される。 この活性層 8上に膜厚 3 0 0オングス トローム程度の p型 G a N膜からなる光ガイ ド層 9 と 膜厚 5 0 0 0オングス ト ローム程度の M gを ド一プした p型 A 1 y G a i y N膜 からなるクラッ ド層 1 0が形成されている。 そして、 クラッ ド層 1 0上に膜厚 3 0 0 0オングス ト口一ムの p型 G a N膜からなるコンンタク ト層 1 1 が形成され ている。 n型電極 1 2を上からコンタク トするために n型コンタク ト層 4 までメ サェツチングされ、 シリ コン酸化膜 ( S i O 2) などの絶縁膜 1 4 で被覆し、 こ の絶縁膜 1 4の p電極部分と n電極部分を除去して、 n電極 1 2および p電極 1 3がそれぞれ設けられる。
さて、 上記したクラ ック防止バッファ層 5 は、 A l y G a ,— y N膜からなるク ラッ ド層 6 と n型 G a N膜からなるコンタク ト層 4の組成をそれぞれ有して、 n 型 G a N膜と A l y G a ]y N膜との格子定数差や熱膨張率差を緩和するよ う に 作用する。
このため、 このバッファ層 5は、 n型 G a N膜からなるコンタク ト層 4 と同じ 組成の n型 G a N膜薄膜と n型 A l y G a ,— y Nク ラ ッ ド層 6 と同 じ組成の n型 A 1 y G a y N薄膜を交互に積層した超格子構造のものが用いられる。例えば、 ク ラ ッ ド層 6 と して n型 A 1 D ] 5 G a 。 . 8 5 N膜を用いた場合、 膜厚 5 0オン ダス ト ロームの n型 G a N膜と膜厚 5 0オングス ト ロームの A l 0 1 5 G a 0 8 5 N膜とを交互に積層形成するこ とによ り 、 ク ラ ック防止バッファ層 5 を形成す ることができる。
また、 ク ラック防止バッファ層 5 と しては、 例えば、 クラッ ド層 6 と して n型 A 1 0 , 5 G a 0 8 5 N膜を用いた場合、 膜厚 5 0オングス ト ロームの n型 G a N膜と膜厚 5 0オングス ト ロームの A 1 y G a y N膜とを交互に積層形成し、 アルミニウム ( A 1 ) 組成比を 0から 0. 1 5まで順次増加させるグレーティ ン グ構造にするこ とで、 クラック防止バッファ層 5を形成するこ ともできる。
尚、 上記したク ラック防止バッファ層 5は、 コンタク ト層 4 とク ラ ッ ド層 6の 組成と実質的に同じ組成の層であればよい。 例えば、 クラッ ド層 6 よ り A 1 組成 比が高い A 1 y G a ,— y N膜であっても格子定数、 熱膨張率等の特性が実質的に 同じであれば、 クラ ック防止バッファ層と して用いるこ とができる。 また、 A 1 y G a ,— y N膜と交互に積層する G a N膜も実質的に G a N組成であれば良く 、 I nが少量を含まれた膜でも同様にクラック防止バッファ層と して用いるこ とが できる。
さ らに、 クラ ッ ド層 6 と して n型 A l 。 1 5 G a 。 8 S N膜を用いた場合、 A 1 組成比を膜厚方向に勾配を持たせて 0から 0. 1 5まで変化させて膜を形成す ることによ り、 クラック防止バッファ層 5 を形成すること もできる。
第 2図ないし第 4図に上記各構成のクラック防止バッファ層 5を設けたときの エネルギーバン ド図を示す。 第 2図は、 膜厚 5 0オングス トロームの n型 G a N 膜と膜厚 5 0オングス ト ローム A l 。 1 5 G a 。 8 5 N膜とを交互に積層形成し たクラ ック防止バッファ層 5の場合、 第 3図は、 A 1 組成比を 0力 ら 0. 1 5 ま で順次増加させたグレーティ ング構造のクラ ック防止バッファ層 5の場合、 第 4 図は A 1 組成比を膜厚方向に勾配を持たせて変化させた場合のクラック防止バッ ファ層 5 を用いた半導体レーザダイオー ドである。
上記した各クラック防止バッファ層 5をコンタク ト層 4 とクラッ ド層 6の間に 形成することで、 クラック防止バッファ層 5がコンタク ト層 4 とクラッ ド層 6 の 双方の格子定数と熱膨張率を緩和するよ うに作用し、 格子定数差や熱膨張率の差 に起因するクラ ックや欠陥の発生が抑制される。 この結果、 厚い n型又は p型 A 1 G a Nをェピタキシャル成長させてもクラ ックが発生するこ とがなく なり 、 よ り効率的な活性層でのキャ リ アの閉じこめと光の閉じこめが可能な発光素子を形 成するこ とができる。
上記第 1 図に示す半導体レーザダイオー ドの各化合物半導体膜は MO C V D法 によ りサファイア基板 1上に形成される。 第 5図は、 上記各化合物半導体膜の成 膜に用いられる横型 MO C V D装置の一例を示す模式図である。
この横型 MO C V D装置は、 2層流構造になっており 、 2層流ガスが交わる形 成室 3 0内のところにサファイア基板 1 が図示しないサセプタによ り傾斜を有し て保持される。 この形成室 3 0は、 図示しない真空ポンプによ り所定の真空度に 排気される。 また、 サセプタは高周波コイルなどによ り所定の成長温度に加熱さ れるよ うになっている。 そして、 形成室 3 0内には、 原料ガス供給ライン 3 1 よ り原料ガスが基板 1 の 表面に供給される と共に、 その原料ガス供給ライ ン 3 1 よ り上層に配置された上 層流ガスライン 3 2 よ り水素及び/又は窒素ガスが供給される。 この上層流ガス ライ ン 3 2は、 バルブを介して水素 (H 2) ガスボンベ、 窒素 (N 2) ガスボン べに接続されている。そして、 この上層流ガスライ ン 3 2から供給される水素(H 2 ) ガス及び Z又は窒素 (N 2) ガスによ り 、 原料ガスが基板 1 面に押圧され、 原料ガスが基板 1 に接触される。
原料ガスと しての ト リ メチルアルミニウム (TMA)、 ト リ メチルガリ ウム (T MG)、 ト リ メチルインジウム (TM I )、 ト リェチルガリ ウム (T E G) の有機 金属化合物ソースは、 微量のバブリ ングガスによ り気化され、 図示しないバルブ を介して原料ガス供給ライン 3 1 に与えられる。 また、 アンモニア (N H 3 )、 シリ コン ( S i ) を含む n型 ドーパン トガス (例えば、 シラン ( S i H 4 ) )、 マ グネシゥム ( M g ) を含む p型 ドーパン トガス (例えば、 C p 2 M g ) も図示し ないバルブを介して原料ガス供給ライン 3 1 に与えられる。
上記のよ う に構成された横型 MO C V D装置を用いて、 第 1 図に示す半導体レ 一ザダイォ一 ドを製造する方法について説明する。
まず、 基板 1 上に A l G a Nバッファ層 2を形成する。 原料ガスと して、 TM A、 TMGと NH 3を形成室 3 0内に供給し、 基板温度を 6 0 0 °Cに保ち基板 1 上に膜厚 1 5 0オングス ト ロームの A l 。 6 G a 0 4 Nバッファ層 2 を形成す る。
次に、 原料ガス と して、 TMGと NH 3を形成室 3 0内に供給し、 基板温度を 1 1 5 0 °Cに保ち A l 。 6 G a 。 4 Nバッファ層 2に膜厚 4 0 0 0オングス ト ロームのアン ドープの G a N下地層 3を形成する。
続いて、 原料ガスを T M G、 N H 3、 ドーパン トガスを S i H 4に切 り替え形 成室 3 0内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち A l G a N下地層 3 上に膜厚 3 0 0 0 0オングス トロームの n型 G a N膜からなるコンタク ト層 4 を 形成する。
そ して、 原料ガスを T M G、 N H 3 > ドーパン トガスを S i H 4のままで形成 室 3 0内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 膜厚 5 0オングス ト ロームの n型 G a N膜を形成した後、 原料ガスに TMAを加えて形成室 3 0内に それぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 膜厚 5 0オングス ト ローム n型 A 1 0 1 5 G a 。 8 5 N膜を形成する。 以下、 TMAの形成室 3 0 内への供給を 制御し、 膜厚 5 0オングス ト ロ一ムの n型 G a N膜と膜厚 5 0オングス ト ローム n型 A l 。 1 5 G a 。 8 5 N膜を交互に 1 0ペア積層形成し、 超格子構造のク ラ ック防止バッファ層 5 を形成する。
次に、 原料ガスを T M G、 T M A、 N H 3、 ドーパン トガスを S i H 4のまま で形成室 3 0内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 膜厚 3 0 0 0 オングス ト ロームの n型 A 1 。 1 5 G a 。 8 5 N膜からなるクラッ ド層 6 をク ラ ック防止バッファ層 5上に形成する。
続いて、 原料ガスを TMG、 NH 3、 ドーパン トガスを S i H4に切 り替えて 形成室 3 0 内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 膜厚 1 0 0 0ォ ングス トロームの n型 G a N膜からなる光ガイ ド層 7をク ラッ ド層 6上に形成す る。
そして、 原料ガスを TM I 、 T E Gと ΝΉ 3に切り替え形成室 3 0 内にそれぞ れ供給し、 基板温度を 8 6 0 °Cに保ち、 光ガイ ド層 7上に障壁層となる膜厚 7 0 オングス ト ロームの I n。 。 5 G a 。 9 5 N膜を形成し、 次に基板温度を 8 0 0 °C に保ち井戸層となる膜厚 3 0オングス ト ロームの I n。 . l s G a 。 8 5 N膜を形 成し、 以下、 同様にこのペアを 2 0ペア積層して、 MQW ' I n G a N組成の活 性層 8 を形成する。
次に、 原料ガスを、 TMGと N H 3、 ドーパン トガスを C p 2M g に切り替え て形成室 3 0内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 M gが ドープ された膜厚 1 0 0 0オングス ト ロームの p型 G a N膜からなる光ガイ ド層 9 を形 成する。
続いて、 原料ガスを、 TMA、 TMG と NH 3、 ドーパン ト ガスを C p 2M g に切り替えて形成室 3 0内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 M gが ド一プされた膜厚 3 0 0 0オングス ト ロームの p型 A l 。 . 】 5 G a 。 8 5 N 膜からなるクラッ ド層 1 0を形成する。
そして、 原料ガスを、 TMGと NH 3、 ドーパン トガスを C p 2M g に切り替 えて形成室 3 0内にそれぞれ供給し、 基板温度を 1 1 5 0 °Cに保ち、 クラッ ド層 1 0上に膜厚 3 0 0 0オングス ト ロームの p型 G a N膜からなるコンタク ト層 1 1 を形成する。
その後、 メサエッチングを施して n型コンタク ト層表面を露出させた後、 S i 02からなる絶縁膜 1 4を形成し、 電極部分の絶縁膜を除去した後、 n電極 1 2 及ぴ p電極 1 3がそれぞれ設けられる。
上記した製造例は、 クラック防止バッファ層 5 を超格子構造で構成する場合に ついて説明したが、 第 3図のバン ドエネルギー図に示すよ う に、 グレーデイ ング を有するク ラ ック防止バッファ層の場合には、 TM Aの供給量を段階的に増加さ せるよ うに制御すればよく 、 また、 第 4図のバン ドエネルギー図に示すよ う に、 A 1 組成比を膜厚方向に勾配を持たせて変化させる場合には、 TMAの供給量を 徐々に増加させればよい。
第 6図は、この発明の窒化ガリ ゥム系化合物半導体装置の第 2の実施例を示し、 I n x G a j _ x N化合物半導体膜からなる量子井戸構造 ( S QW) または多重量 子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断面側 面図である。 この第 2の実施例は、 第 1 の実施例が n型 G a N膜からなるコンタ ク ト層 4 と n型 A l y G a 】— y N膜からなるクラ ッ ド層 6 との間にクラック防止 ノ ッファ層 5 を設けているのに対し、 n型及び p型クラッ ド層の両側にクラ ック 防止バッファ層 5 を設けている。 即ち、 n型コンタク ト層 4 と n型クラッ ド層 6 の間、 n型ク ラ ッ ド層 6 と光ガイ ド層 7 との間、 光ガイ ド層 9 と p型クラッ ド層 1 0の間、 p型クラッ ド層 1 0 と p型コンタク ト層 1 1 との間にそれぞれクラ ッ ク防止バッファ層 5 を設け、 クラック及び欠陥の発生をさ らに防いでいる。
尚、 他の構成は、 第 1 の実施例と同様であるので、 説明の重複を避けるために、 同一部分には同一符号を付しここでは説明を省略する。
この実施例におけるクラック防止バッファ層 5 も上記第 1 の実施例と同じく は クラッ ド層 6またはクラッ ド 1 0 とその両側に位置する G a N膜との組成をそれ ぞれ有して、 G a N膜と A 1 y G a y Nからなるク ラッ ド層との格子定数差や 熱膨張率差を緩和するよ うに作用する。 このため、 このバッファ層 5は、 G a N 膜と同じ組成の薄膜とクラ ッ ド層と同じ組成の A 1 y G a 】 — y Nの薄膜を交互に 積層した超格子構造のものが用いられる。 例えば、 クラッ ド層 6、 1 0 と して A 1 0 . 】 5 G a 。 8 5 N膜を用いた場合、 膜厚 5 0オングス ト ロームの G a N膜と 膜厚 5 0オングス ト ローム A l 。 1 5 G a 。 8 5 N膜とを交互に積層形成するこ とによ り、 クラック防止バッファ層 5を形成することができる。
また、 クラック防止バッファ層 5 と しては、 例えば、 クラ ッ ド層 6 と して A 1 0. , 5 G a 。+ 8 5 N膜を用いた場合、 膜厚 5 0オングス トロームの G a N膜と膜 厚 5 0オングス ト ローム A l y G a iy N膜とを交互に積層形成し、 A 1 組成比 を 0から 0. 1 5まで順次増加させるグレーティ ング構造にするこ とで、 クラッ ク防止バッファ層 5 を形成するこ とができる。 このとき A 1 組成比はクラ ッ ド層 に近く なるほど高く なるよ う に制御している。
さらに、 クラッ ド層 6、 8 と して A l 0 1 5 G a 0 8 5 N膜を用いた場合、 A 1 組成比を膜厚方向に勾配を持たせて 0から 0 · 1 5まで変化させて膜を形成す ることによ り、 クラック防止バッファ層 5 を形成するこ とができる。 このとき A 1 組成比はクラッ ド層に近く なるほど高く なるよ うに制御している。
この第 2の実施例におけるクラック防止バッファ層 5においても、 前述した第 1 の実施例と同じく実質的に同じ組成の膜であれば、 クラック防止バッファ層 5 と して用いることができる。 第 7図ないし第 9図に上記各構成のクラック防止バッファ層 5を設けたと きの エネルギーバン ド図を示す。 第 7図は、 膜厚 5 0オングス ト ロームの G a N膜と 膜厚 5 0オングス ト ローム A l 。 . 1 5 G a 。 . 8 5 N膜とを交互に積層形成したク ラ ック防止バッファ層 5の場合、 第 8図は、 A 1 組成比 0から 0. 1 5まで順次 增加させたグレーティ ング構造のクラック防止バッファ層 5の場合、 第 9図は A 1 組成比を膜厚方向に勾配を持たせて変化させた場合のクラック防止バッファ層 5を用いた半導体レーザダイォー ドである。
上記した各クラック防止バッファ層 5をク ラ ッ ド層 6、 1 0の両側に形成する こ とで、 クラ ッ ド防止バッファ層 5がクラッ ド層 6、 1 0 とその両側に位置する 膜との双方の格子定数と熱膨張率を緩和するよ う に作用し、 格子定数差や熱膨張 率の差に起因するクラックや欠陥の発生が抑制される。 この結果、 厚い n型又は p型 A 1 G a Nをェピタキシャル成長させてもク ラ ックが発生する こ とがなく な り、 よ り効率的な活性層でのキヤ リ ァの閉じこめと光の閉じこめが可能な発光素 子を形成するこ とができる。
第 6図に示す半導体レーザダイオー ドも第 1 図に示す半導体レーザダイオー ド と同様に第 5図に示す装置を用いて同様に形成することができる。
第 1 0図は、 この発明の窒化ガリ ゥム系化合物半導体装置の第 3の実施例を示 し、 I n x G a ,„ x N化合物半導体膜からなる量子井戸構造 ( S QW) または多 重量子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断 面側面図である。 この第 3の実施例は、 第 1 の実施例が n型 G a Nからなるコン タク ト層 4 と n型 A 1 y G a y N膜からなるク ラッ ド層 6 との間にクラ ック防 止バッファ層 5 を設けているのに対し、 n型クラッ ド層 6の両側と、 p型クラ ッ ド層 1 0 と p型コンタク ト層 1 1 の間にクラック防止バッファ層 5 を設けている。 即ち、 n型コンタク ト層 4 と n型クラッ ド層 6の間、 n型クラッ ド層 6 と光ガイ ド層 7 との間、 p型クラッ ド層 1 0 と p型コンタク ト層 1 1 との間にそれぞれク ラ ック防止バッファ層 5を設けている。 これは、 クラックの一番発生頻度が高い n型ク ラッ ド層 4はクラック防止バッファ層 5で挟み、 クラ ック及び欠陥の発生 を防ぐよ う に構成している。
尚、 他の構成は、 第 1 の実施例と同様であるので、 説明の重複を避けるために、 同一部分には同一符号を付しここでは説明を省略する。
この実施例におけるクラック防止バッファ層 5 も上記第 1 の実施例と同じく は クラッ ド層 6 または 1 0 とその両側に位置する G a N膜との組成をそれぞれ有し て、 G a N膜とクラッ ド層との格子定数差や熱膨張率差を緩和するよ うに作用す る。 このため、 このバッファ層 5は、 G a N膜と同じ組成の薄膜とクラッ ド層と 同じ組成の A 1 y G a , の薄膜を交互に積層 した超格子構造のものが用いら れる。 例えば、 ク ラ ッ ド層 6 、 1 0 と して A 1 。 , 5 G a 。 8 s N膜を用いた場 合、 膜厚 5 0オングス ト ロームの G a N膜と膜厚 5 0 オングス ト ローム A 1 。 1 5 G a 。 8 5 N膜とを交互に積層形成するこ とによ り 、 ク ラ ック防止バッファ 層 5 を形成することができる。
また、 クラック防止バッファ層 5 と しては、 例えば、 クラッ ド層 6 と して A 1 。 , s G a 0 8 s N膜を用いた場合、 膜厚 5 0オングス トロームの G a N膜と膜 厚 5 0オングス トローム A 1 y G a y N膜とを交互に積層形成し、 A 1 組成比 を 0から 0 . 1 5まで順次増加させるグレーティ ング構造にするこ とで、 ク ラ ッ ク防止バッファ層 5を形成することができる。 このとき A 1 組成比はク ラ ッ ド層 に近く なるほど高く なるよ うに制御している。
さ らに、 クラ ッ ド層 6 、 1 0 と して n型 A l 。 1 5 G a 。 8 S N膜を用いた場 合、 A 1 組成比を膜厚方向に勾配を持たせて 0から 0 . 1 5まで変化させて膜を 形成することによ り、 クラック防止バッファ層 5を形成するこ とができる。 この とき A 1 組成比はクラッ ド層に近く なるほど高く なるよ うに制御している。
この第 3の実施例におけるクラック防止バッファ層 5においても、 前述した第 1 の実施例と同じく実質的に同じ組成の膜であれば、 クラック防止バッファ層 5 と して用いるこ とができる。 第 1 0図に示す半導体レーザダイオー ドも第 1 図に示す半導体レーザダイォー ドと同様に第 5図に示す装置を用いて同様に形成するこ とができる。
第 1 1 図は、 この発明の窒化ガリ ウム系化合物半導体装置の第 4の実施例を示 し、 I n x G a i x N化合物半導体膜からなる量子井戸構造 ( S QW) または多 重量子井戸構造 (MQW) を活性層と して用いた半導体レーザダイオー ドの縦断 面側面図である。 この第 4の実施例は、 第 1 の実施例が n型 G a N膜からなるコ ンタク ト層 4 と n型 A l y G a !— y N膜からなるクラ ッ ド層 6 との間にク ラック 防止バッファ層 5を設けているのに対し、 p型クラ ッ ド層 1 0 と p型コンタク ト 層 1 1 の間にもクラック防止バッファ層 5 を設けている。 即ち、 n型コンタク ト 層 4 と n型クラッ ド層 6の間、 p型クラッ ド層 1 0 と p型コンタク ト層 1 1 との 間にそれぞれク ラ ック防止バッファ層 5 を設けている。
尚、 他の構成は、 第 1 の実施例と同様であるので、 説明の重複を避けるために、 同一部分には同一符号を付しここでは説明を省略する。
この実施例におけるクラック防止バッファ層 5 も上記第 1 の実施例と同じく は、 クラ ッ ド層 6または 1 0 とその両側に位置する G a N膜との組成をそれぞれ有し て、 G a N膜とクラッ ド層との格子定数差や熱膨張率差を緩和するよ う に作用す る。 このため、 このバッファ層 5は、 G a N膜と同じ組成の薄膜と ク ラ ッ ド層と 同じ組成の n型 A l y G a i— y Nの薄膜を交互に積層した超格子構造のものが用 いられる。 例えば、 クラッ ド層 6、 1 0 と してA l 。 1 5 G a 0. 8 5 N膜を用ぃ た場合、 膜厚 5 0オングス ト ロームの G a N膜と膜厚 5 0オングス ト ローム A 1 0 . 1 5 G a 0 8 5 N膜とを交互に積層形成するこ とによ り、 ク ラック防止バッフ ァ層 5 を形成するこ とができる。
また、 クラック防止バッファ層 5 と しては、 例えば、 クラッ ド層 6、 1 0 と し て A l 。 1 5 G a 。 8 5 N膜を用いた場合、 膜厚 5 0オングス ト ロームの G a N 膜と膜厚 5 0オングス ト ローム A 1 y G a ,— y N膜とを交互に積層形成し、 A 1 組成比を 0から 0. 1 5まで順次増加させるグレーティ ング構造にするこ とで、 15 P /JP98/0 11 クラック防止バッファ層 5 を形成することができる。 このとき A 1 組成比はク ラ ッ ド層に近く なるほど高く なるよ うに制御している。
さ らに、 ク ラッ ド層 6、 1 0 と して n型 A l 。 1 5 G a 。 8 5 N膜を用いた場 合、 A 1 組成比を膜厚方向に勾配を持たせて 0から 0 . 1 5まで変化させて膜を 形成することによ り、 クラック防止バッファ層 5を形成することができる。 この とき A 1 組成比はクラッ ド層に近く なるほど高く なるよ う に制御している。
第 1 1 図に示す半導体レーザダイオー ドも第 1 図に示す半導体レーザダイォー ドと同様に第 5図に示す装置を用いて同様に形成するこ とができる。
上記した各実施例は、 半導体レーザダイォー ドに本発明を適用した場合につい て説明したが、 発光ダイオー ドアレイなど他の窒化ガリ ウム系化合物半導体装置 において、 第 1 の窒化ガリ ウム系化合物半導体層と、 この第 1 の第 1 の窒化ガリ ゥム系化合物半導体層とは組成の異なる第 2の窒化物ガリ ウム系半導体層とを成 長させる場合にクラックが発生するよ うな場合に、 第 1及び第 2の窒化ガリ ゥム 系化合物半導体層の組成をそれぞれ有するバッファ層を介在させるこ と によ り 、 同様の効果が得られる。
以上説明したよ うに、 この発明によれば、 第 1 の窒化ガリ ウム系化合物半導体 層と、 この第 1 の第 1 の窒化ガリ ゥム系化合物半導体層とは組成の異なる第 2の 窒化物ガリ ゥム系半導体層とを成長させる場合に、 第 1及び第 2の窒化ガリ ゥム 系化合物半導体層の組成をそれぞれ有するバッファ層を介在させることで、 格子 定数の差や熱膨張率の差によるクラック、 欠陥の発生が防止でき、 半導体レーザ に用いた場合には、活性層でのキャ リ アの閉じ込めと光の閉じ込めが可能となる。

Claims

請求の範囲
1 . 第 1 の窒化ガリ ウム系化合物半導体層と、 この第 1 の窒化ガリ ウム系化合物 半導体層とは組成の異なる第 2の窒化物ガリ ゥム系半導体層との間に第 1及び第 2の窒化ガリ ゥム系化合物半導体層の組成と実質的に同じ組成をそれぞれ有する バッファ層を介在させたことを特徴とする窒化ガリ ゥム系化合物半導体装置。
2 . 前記バッファ層は、 第 1 の窒化ガリ ウム系化合物半導体層と実質的に同じ組 成の層と、 第 2の窒化物ガリ ウム系半導体層と実質的に同じ組成の層と、 を交互 に積層した超格子構造層からなるこ とを特徴とする請求項 1 に記載の窒化ガリ ゥ ム系化合物半導体装置。
3 . 前記バッファ層は、 第 1 の窒化ガリ ウム系化合物半導体層と実質的に同じ組 成の層から第 2の窒化物ガリ ゥム系半導体層と実質的に同じ組成の層へ組成比を 変化させて形成されているこ とを特徴とする請求項 1 に記載の窒化ガリ ゥム系化 合物半導体装置。
4 . 第 1 の窒化ガリ ゥム系化合物半導体層からなる一導電型のコンタク ト層と、 この第 1 の窒化ガリ ゥム系化合物半導体層とは組成の異なる第 2の窒化物ガリ ゥ ム系半導体層からなる一導電型のクラッ ド層と、 量子井戸構造からなる窒化イ ン ジゥムガリ ゥム組成の活性層と、 前記第 1 の窒化ガリ ウム系化合物半導体層とは 組成の異なる第 2の窒化物ガリ ゥム系半導体層からなる他導電型のクラッ ド層と、 前記第 1 の窒化ガリ ゥム系化合物半導体層からなる他導電型のコンタク ト層と、 からなる窒化ガリ ウム系化合物半導体層において、 少なく と も前記一導電型のコ ンタク ト層と一導電型のクラッ ド層の間に前記第 1及び第 2の窒化ガリ ゥム系化 合物半導体層の組成と実質的に同じ組成をそれぞれ有するバッファ層を介在させ たことを特徴とする窒化ガリ ゥム系化合物半導体装置。
5 . 前記クラッ ド層の両側に前記第 1及び第 2の窒化ガリ ゥム系化合物半導体層 の組成と実質的に同じ組成をそれぞれ有するバッファ層を介在させたことを特徴 とする請求項 4に記載の窒化ガリ ゥム系化合物半導体装置。
PCT/JP1998/003611 1997-08-20 1998-08-12 Dispositif de semi-conducteur compose, a base de nitrure de gallium WO1999009602A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98937810A EP1018770A4 (en) 1997-08-20 1998-08-12 SEMICONDUCTOR DEVICE BASED ON A GALLIUM NITRIDE SEMICONDUCTOR CONNECTION
KR1020007001714A KR20010023092A (ko) 1997-08-20 1998-08-12 질화갈륨계 화합물 반도체 장치
US09/463,985 US6388275B1 (en) 1997-08-20 1998-08-12 Compound semiconductor device based on gallium nitride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/223322 1997-08-20
JP22332297A JPH1168158A (ja) 1997-08-20 1997-08-20 窒化ガリウム系化合物半導体装置

Publications (1)

Publication Number Publication Date
WO1999009602A1 true WO1999009602A1 (fr) 1999-02-25

Family

ID=16796345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003611 WO1999009602A1 (fr) 1997-08-20 1998-08-12 Dispositif de semi-conducteur compose, a base de nitrure de gallium

Country Status (5)

Country Link
US (1) US6388275B1 (ja)
EP (1) EP1018770A4 (ja)
JP (1) JPH1168158A (ja)
KR (1) KR20010023092A (ja)
WO (1) WO1999009602A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756245B2 (en) 1999-09-24 2004-06-29 Sanyo Electric Co., Ltd. Method of fabricating semiconductor device
USRE45672E1 (en) * 1999-06-07 2015-09-22 Nichia Corporation Nitride semiconductor device

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519253B1 (de) * 1991-06-18 1997-11-26 Siemens Aktiengesellschaft Verfahren zum Realisieren eines Seitendruckers für einen Personalcomputer mittels eines Telefaxgerätes
JP3567790B2 (ja) * 1999-03-31 2004-09-22 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
DE19955747A1 (de) * 1999-11-19 2001-05-23 Osram Opto Semiconductors Gmbh Optische Halbleitervorrichtung mit Mehrfach-Quantentopf-Struktur
JP4032636B2 (ja) * 1999-12-13 2008-01-16 日亜化学工業株式会社 発光素子
US6486499B1 (en) * 1999-12-22 2002-11-26 Lumileds Lighting U.S., Llc III-nitride light-emitting device with increased light generating capability
US6777253B2 (en) * 2000-12-20 2004-08-17 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor, method for fabricating semiconductor substrate, and semiconductor light emitting device
US7230263B2 (en) * 2001-04-12 2007-06-12 Nichia Corporation Gallium nitride compound semiconductor element
JP3912043B2 (ja) * 2001-04-25 2007-05-09 豊田合成株式会社 Iii族窒化物系化合物半導体発光素子
US6630692B2 (en) * 2001-05-29 2003-10-07 Lumileds Lighting U.S., Llc III-Nitride light emitting devices with low driving voltage
JP3876649B2 (ja) 2001-06-05 2007-02-07 ソニー株式会社 窒化物半導体レーザ及びその製造方法
JP2003023217A (ja) * 2001-07-06 2003-01-24 Sony Corp 発光素子
US7067849B2 (en) 2001-07-17 2006-06-27 Lg Electronics Inc. Diode having high brightness and method thereof
US6949395B2 (en) 2001-10-22 2005-09-27 Oriol, Inc. Method of making diode having reflective layer
US7148520B2 (en) 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
DE10203393B4 (de) * 2002-01-29 2010-06-02 Osram Opto Semiconductors Gmbh Halbleiterbauelement mit einem Halbleiterkörper auf der Basis eines Nitrid-Verbindungshalbleiters
JP2003264345A (ja) * 2002-03-11 2003-09-19 Sharp Corp 窒化物半導体発光素子
JP4204982B2 (ja) 2002-04-04 2009-01-07 シャープ株式会社 半導体レーザ素子
US20030189215A1 (en) 2002-04-09 2003-10-09 Jong-Lam Lee Method of fabricating vertical structure leds
KR20030083820A (ko) * 2002-04-22 2003-11-01 엘지전자 주식회사 질화물 반도체 발광 소자의 제조 방법
JP4457564B2 (ja) * 2002-04-26 2010-04-28 沖電気工業株式会社 半導体装置の製造方法
US6841802B2 (en) * 2002-06-26 2005-01-11 Oriol, Inc. Thin film light emitting diode
JP3909694B2 (ja) * 2002-10-15 2007-04-25 パイオニア株式会社 3族窒化物半導体発光素子及びその製造方法
KR101034055B1 (ko) 2003-07-18 2011-05-12 엘지이노텍 주식회사 발광 다이오드 및 그 제조방법
US7348600B2 (en) * 2003-10-20 2008-03-25 Nichia Corporation Nitride semiconductor device, and its fabrication process
GB2407702A (en) * 2003-10-28 2005-05-04 Sharp Kk A semiconductor light-emitting device
JP2005150568A (ja) * 2003-11-19 2005-06-09 Sharp Corp 窒化物半導体発光素子及び光ピックアップ装置
JP2005285869A (ja) * 2004-03-26 2005-10-13 Kyocera Corp エピタキシャル基板及びそれを用いた半導体装置
KR100664988B1 (ko) * 2004-11-04 2007-01-09 삼성전기주식회사 광추출효율이 향상된 반도체 발광소자
KR100765004B1 (ko) * 2004-12-23 2007-10-09 엘지이노텍 주식회사 질화물 반도체 발광소자 및 그 제조방법
JP2006324280A (ja) * 2005-05-17 2006-11-30 Rohm Co Ltd 半導体発光素子
KR100718129B1 (ko) * 2005-06-03 2007-05-14 삼성전자주식회사 Ⅲ-Ⅴ족 GaN계 화합물 반도체 소자
EP1869715B1 (en) * 2005-07-06 2012-04-25 LG Innotek Co., Ltd. Nitride semiconductor led and fabrication method thereof
JP2007066981A (ja) * 2005-08-29 2007-03-15 Toshiba Corp 半導体装置
JP2007080896A (ja) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd 半導体素子
US8044430B2 (en) * 2006-01-18 2011-10-25 Panasonic Corporation Nitride semiconductor light-emitting device comprising multiple semiconductor layers having substantially uniform N-type dopant concentration
KR100774198B1 (ko) * 2006-03-16 2007-11-08 엘지전자 주식회사 수직형 발광 소자
US7696523B2 (en) 2006-03-14 2010-04-13 Lg Electronics Inc. Light emitting device having vertical structure and method for manufacturing the same
DE102006046237A1 (de) * 2006-07-27 2008-01-31 Osram Opto Semiconductors Gmbh Halbleiter-Schichtstruktur mit Übergitter
EP1883141B1 (de) 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
EP1883140B1 (de) 2006-07-27 2013-02-27 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht und Dotierungsgradienten
EP1883119B1 (de) 2006-07-27 2015-11-04 OSRAM Opto Semiconductors GmbH Halbleiter-Schichtstruktur mit Übergitter
US8409972B2 (en) * 2007-04-11 2013-04-02 Cree, Inc. Light emitting diode having undoped and unintentionally doped nitride transition layer
JP2008305857A (ja) * 2007-06-05 2008-12-18 Mitsubishi Electric Corp 光半導体装置
JP5100427B2 (ja) * 2008-02-07 2012-12-19 古河電気工業株式会社 半導体電子デバイス
JP5117283B2 (ja) * 2008-05-29 2013-01-16 古河電気工業株式会社 半導体電子デバイス
KR100962898B1 (ko) 2008-11-14 2010-06-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
USRE48774E1 (en) 2008-11-14 2021-10-12 Suzhou Lekin Semiconductor Co., Ltd. Semiconductor light emitting device
JP5306254B2 (ja) 2010-02-12 2013-10-02 株式会社東芝 半導体発光素子
JP2012243780A (ja) 2011-05-13 2012-12-10 Toshiba Corp 半導体発光素子及びウェーハ
KR20130048844A (ko) * 2011-11-03 2013-05-13 서울옵토디바이스주식회사 발광 다이오드 및 그 제조 방법
JP2012244154A (ja) * 2012-01-23 2012-12-10 Toshiba Corp 半導体発光素子及びウェーハ
KR101936305B1 (ko) * 2012-09-24 2019-01-08 엘지이노텍 주식회사 발광소자
JP2014220407A (ja) * 2013-05-09 2014-11-20 ローム株式会社 窒化物半導体素子
KR20140146887A (ko) 2013-06-18 2014-12-29 엘지이노텍 주식회사 발광소자
FR3028670B1 (fr) * 2014-11-18 2017-12-22 Commissariat Energie Atomique Structure semi-conductrice a couche de semi-conducteur du groupe iii-v ou ii-vi comprenant une structure cristalline a mailles cubiques ou hexagonales
JP6327323B2 (ja) 2015-11-30 2018-05-23 日亜化学工業株式会社 半導体レーザ素子及びその製造方法
US9716367B2 (en) * 2015-12-18 2017-07-25 International Business Machines Corporation Semiconductor optoelectronics and CMOS on sapphire substrate
DE112017003057T5 (de) * 2016-06-20 2019-03-07 Sony Corporation Nitridhalbleiterelement, nitridhalbleitersubstrat, herstellungsverfahren für ein nitridhalbleiterelement und herstellungsverfahren für ein nitridhalbleitersubstrat
DE102016111929A1 (de) * 2016-06-29 2018-01-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Leuchtdiode
JP6917953B2 (ja) * 2017-09-12 2021-08-11 日機装株式会社 窒化物半導体発光素子
JP6379265B1 (ja) 2017-09-12 2018-08-22 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP6993843B2 (ja) * 2017-10-27 2022-01-14 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2019054236A (ja) * 2018-08-23 2019-04-04 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
WO2020039904A1 (ja) * 2018-08-24 2020-02-27 ソニーセミコンダクタソリューションズ株式会社 発光素子
DE102018129051A1 (de) * 2018-11-19 2020-05-20 Osram Opto Semiconductors Gmbh Kantenemittierender Halbleiterlaser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203388A (ja) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JPH04199752A (ja) * 1990-11-29 1992-07-20 Sharp Corp 化合物半導体発光素子とその製造方法
JPH0541560A (ja) * 1991-08-06 1993-02-19 Hitachi Ltd 半導体レーザ素子
JPH09116234A (ja) * 1995-10-17 1997-05-02 Sony Corp 半導体装置
JPH09148678A (ja) * 1995-11-24 1997-06-06 Nichia Chem Ind Ltd 窒化物半導体発光素子
JPH09266327A (ja) * 1996-03-27 1997-10-07 Toyoda Gosei Co Ltd 3族窒化物化合物半導体発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137123A (en) 1975-12-31 1979-01-30 Motorola, Inc. Texture etching of silicon: method
US4253882A (en) 1980-02-15 1981-03-03 University Of Delaware Multiple gap photovoltaic device
JPH0680837B2 (ja) 1983-08-29 1994-10-12 通商産業省工業技術院長 光路を延長した光電変換素子
DE59008544D1 (de) 1990-09-28 1995-03-30 Siemens Solar Gmbh Nasschemische Strukturätzung von Silizium.
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
JP3318391B2 (ja) * 1993-06-14 2002-08-26 ローム株式会社 半導体発光装置
JPH08288587A (ja) * 1995-04-18 1996-11-01 Fujitsu Ltd 半導体レーザ
US5739554A (en) * 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JP3314641B2 (ja) * 1996-11-29 2002-08-12 日亜化学工業株式会社 窒化物半導体レーザ素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203388A (ja) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JPH04199752A (ja) * 1990-11-29 1992-07-20 Sharp Corp 化合物半導体発光素子とその製造方法
JPH0541560A (ja) * 1991-08-06 1993-02-19 Hitachi Ltd 半導体レーザ素子
JPH09116234A (ja) * 1995-10-17 1997-05-02 Sony Corp 半導体装置
JPH09148678A (ja) * 1995-11-24 1997-06-06 Nichia Chem Ind Ltd 窒化物半導体発光素子
JPH09266327A (ja) * 1996-03-27 1997-10-07 Toyoda Gosei Co Ltd 3族窒化物化合物半導体発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1018770A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE45672E1 (en) * 1999-06-07 2015-09-22 Nichia Corporation Nitride semiconductor device
US6756245B2 (en) 1999-09-24 2004-06-29 Sanyo Electric Co., Ltd. Method of fabricating semiconductor device

Also Published As

Publication number Publication date
US6388275B1 (en) 2002-05-14
EP1018770A1 (en) 2000-07-12
KR20010023092A (ko) 2001-03-26
EP1018770A4 (en) 2006-07-26
JPH1168158A (ja) 1999-03-09

Similar Documents

Publication Publication Date Title
WO1999009602A1 (fr) Dispositif de semi-conducteur compose, a base de nitrure de gallium
KR100267839B1 (ko) 질화물 반도체 장치
JP3770014B2 (ja) 窒化物半導体素子
TWI238543B (en) Semiconductor light emitting device and the manufacturing method thereof
JP2000332364A (ja) 窒化物半導体素子
JPWO2008153130A1 (ja) 窒化物半導体発光素子及び窒化物半導体の製造方法
WO2018180450A1 (ja) 半導体多層膜反射鏡及び垂直共振器型発光素子
JPH1174622A (ja) 窒化物系半導体発光素子
JP4150449B2 (ja) 化合物半導体素子
JP4877294B2 (ja) 半導体発光素子の製造方法
JP2003086903A (ja) 半導体発光素子およびその製造方法
JP3794530B2 (ja) 窒化物半導体レーザ素子
JP2009224370A (ja) 窒化物半導体デバイス
US8816354B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP4628651B2 (ja) 窒化物半導体発光素子の製造方法
JP3656454B2 (ja) 窒化物半導体レーザ素子
US20030218181A1 (en) Radiation-emitting semiconductor component based on gallium nitride, and method for fabricating the semiconductor component
JPH11274556A (ja) 半導体発光素子及びその製造方法
JP2000277862A (ja) 窒化物半導体素子
JP2003086533A (ja) 窒化物半導体素子および半導体装置
JP2000196195A (ja) 半導体発光素子およびその製造方法
JP2002252427A (ja) Iii族窒化物半導体素子およびiii族窒化物半導体基板
US8450718B2 (en) Semiconductor light emitting device and a production method thereof
JP4104686B2 (ja) 半導体発光素子
JP2001007448A (ja) 窒化物系化合物半導体発光素子およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020007001714

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998937810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09463985

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998937810

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007001714

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020007001714

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998937810

Country of ref document: EP