WO1997041185A1 - Composition de revetement - Google Patents

Composition de revetement Download PDF

Info

Publication number
WO1997041185A1
WO1997041185A1 PCT/JP1997/001349 JP9701349W WO9741185A1 WO 1997041185 A1 WO1997041185 A1 WO 1997041185A1 JP 9701349 W JP9701349 W JP 9701349W WO 9741185 A1 WO9741185 A1 WO 9741185A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
coating
coating composition
lens
film
Prior art date
Application number
PCT/JP1997/001349
Other languages
English (en)
French (fr)
Inventor
Katsuyoshi Takeshita
Jun Kinoshita
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP53873197A priority Critical patent/JP3840664B2/ja
Priority to US08/981,226 priority patent/US6057039A/en
Publication of WO1997041185A1 publication Critical patent/WO1997041185A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31598Next to silicon-containing [silicone, cement, etc.] layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31667Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product

Definitions

  • the present invention relates to a coating composition for forming a transparent material having excellent durability such as abrasion resistance, chemical resistance, hot water resistance, heat resistance, and weather resistance and excellent dyeability on a synthetic resin lens surface. Further, the present invention relates to a composite structure having an antireflection film made of an inorganic substance (hereinafter, also referred to as “inorganic vapor-deposited film”) provided on the transparent film.
  • inorganic vapor-deposited film an inorganic substance
  • synthetic resin lenses especially styrene glycol bisaryl carbonate (CR-39) resin lenses, are superior in safety, workability and fashionability. Further, in recent years, due to the development of anti-reflection technology and hard coating technology, these synthetic resin lenses have become popular.
  • CR-39 styrene glycol bisaryl carbonate
  • a method of providing a silicon-based hard coat film on the surface of a plastic lens is generally used.
  • Hard coat using acetyl acetonate as A 1 (III) central metal atom for such hard biW, such as Japanese Patent Publication No. 60-117172, Japanese Patent Publication No. 60-35050 A composition is disclosed.
  • amines, compounds, polycarboxylic acids, various acetylacetone metal salt compounds, phenol compounds, boron trifluoride-containing compounds, etc. are added to JP-B-6-1338688.
  • a hardcoat composition is disclosed.
  • Japanese Patent Publication No. Sho 62-92666 describes a hard coat product using ammonium peroxygen
  • Japanese Patent Publication No. 4-59601 discloses a case using magnesium peroxy acid.
  • a monocoat composition is disclosed.
  • the hard coat composition using the above-mentioned curing catalyst has no particular problem in the properties of the coating film, it is necessary to adjust the pH in order to extend the liquid life of the composition. It is not always satisfactory in that the coating liquid management becomes complicated.
  • the present inventors have found that according to the composition containing metal oxide particles, a silane compound having a polymerizable reactive group, and a polyfunctional epoxy compound as a component, the coating obtained by thermosetting can be made transparent. It has been found that it is possible to improve the paintability and curability, and also to exhibit excellent performance in terms of dyeability and adhesion (durability) with inorganic vapor-deposited films, and at the same time extend the life of the coating solution.
  • the present invention relates to a coating comprising (I) a polymerizable cured component, and (II) a component obtained by adding together the following components ( ⁇ ⁇ ⁇ ) and ( ⁇ ) as the cured component.
  • the present invention relates to a composition for use.
  • the heavy curable component as a main component constituting the coating composition, a conventionally known component can be used.
  • a coating composition comprising the following (C), (D), (E) and (F) as main components, and an antireflection coating comprising an inorganic substance on the surface comprising the coating composition:
  • an antireflection coating comprising an inorganic substance on the surface comprising the coating composition:
  • Composite fine particles composed of more than one kind of metal oxide selected from Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, Ti.
  • R n An organic gay compound represented by R n (wherein, R 1 is an organic group having a polymerizable reactive group, R is a hydrocarbon group having 1 to 6 carbon atoms. X 1 is a hydrolyzate, n is 0 or 1.)
  • R 3 and R are each a hydrocarbon group having 1 to 6 carbon atoms.
  • X 2 and X 3 are hydrolyzed
  • Y is a carbonate or epoxy group-containing group, and k and m are 0 or 1.
  • the combined use of the components (A) and (B) plays a very important role in curing. That is, even when the component (A) is used alone, the effect of curing is sufficient.
  • the combination of these catalysts and the component (B) significantly improves the durability and productivity of the coating film.
  • the combined use of the component (B) is excellent in improving the pot life of the composition (coating liquid).
  • acetyl acetonate of lithium and manganese is particularly preferable in terms of exhibiting its effects.
  • the component (C) is selected from Si, A1, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, and Ti having a particle size of 1 to 100 millimicrons. Selected from the group consisting of fine particles comprising one or more metal oxides and Si or Ai, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, Ti specific preferred examples of the composed composite fine particles of two or more metals oxide, S i 0 2, a 1 9 ⁇ 3, Sn0 2, Sb 2 ⁇ r, T a 2 0 r. Ce_ ⁇ 2, .
  • inorganic oxide Mi particles, minute m3 ⁇ 4 such as water, colloid alcoholic or other organic solvents Dispersed in a state.
  • composite fine particles composed of two or more of these inorganic oxidants are colloidally dispersed in water, an alcohol-based or other organic solvent.
  • organic gay compound or an amine compound there are monofunctional silane, difunctional silane, trifunctional silane, tetrafunctional silane and the like.
  • Add water during treatment Decomposition ttS may be performed untreated or may be hydrolyzed. After the treatment, the state in which the hydrolyzable group has reacted with the mono-OH group of the fine particles is preferable, but there is no problem with the stability even if the hydrolyzable group remains in the state of 150.
  • the amine compound examples include ammonium, ethylamine, triethylamine, isopropylamine, alkylamines such as n-propylamine, aralkylamines such as benzylamine, alicyclic amines such as piperidine, and monoethanolamine. And triethanolamine and the like. It is preferable that the addition amount of the organic gay compound and the amine compound is added within a range of about 1 to 15% based on the weight of the fine particles. In any case, the particle diameter is preferably about 1 to 30 O nm, and the kind and amount to be applied to the coating composition of the present invention are determined by the target film performance. It is desirable that the content be 1/10 to 50% by weight.
  • the amount is less than 10% by weight, the tendency of the adhesiveness to the inorganic vapor-deposited film to be insufficient or the tendency of the coating film to become insufficient in the abrasion resistance increases. On the other hand, if it exceeds 50% by weight, cracks tend to occur. In addition, the dyeability becomes insufficient.
  • R 1 has a polymerizable reactive group, and is preferably a vinyl group, an aryl group, an acryl group, a methacryl group, an epoxy group, a mercapto group, a cyano group, an isocyano group, It is a silane compound having a polymerizable reactive group such as an amino group, and R 2 is a hydrocarbon group having 1 to 6 carbon atoms. Preferred examples thereof include a methyl group, an ethyl group, a butyl group, and a vinyl group. And phenyl groups.
  • X 1 is a hydrolyzable functional group, and preferred specific examples thereof include alkoxy groups such as methoxy, ethoxy, and methoxyethoxy groups, and hachigen groups such as chloro and butyl groups. And an acyloxy group.
  • silane compound examples include vinyl trialkoxysilane, vinyltrichlorosilane, vinyltri (-methoxyethoxy) silane, aryltrialkoxysilane, acryloxypropyltrialkoxysilane, and methanol.
  • the component (D) may be used as a mixture of two or more kinds.
  • the amount of the component (D) be 20 to 60% by weight of the total composition. That is, if it is less than 20% by weight, the adhesion to the inorganic vapor deposition film tends to be insufficient. On the other hand, if it exceeds 60% by weight, it may cause cracks in curing and is not preferred.
  • R 3 and R are a hydrocarbon group having 1 to 6 carbon atoms.
  • Preferred specific examples thereof include a methyl group and an ethyl group. Groups, a butyl group, a vinyl group, a phenyl group and the like.
  • X 2 and X 3 are hydrolyzable functional groups. Preferred specific examples thereof include alkoxy groups such as methoxy group, ethoxy group and methoxetoxy group, halogen groups such as chloro group and bromo group, And an acyloxy group.
  • Y is an a® containing a carbonate group or an epoxy group, and preferred specific examples include the following.
  • disilane compounds can be synthesized by conventionally known various methods. For example, it can be obtained by performing an addition reaction between diaryl carbonate and trichlorosilane or the like, followed by alkoxylation. Alternatively, it can be obtained by subjecting a compound having an addable substituent at both terminals and further containing an epoxidizable functional group to an addition reaction with trichlorosilane or the like, followed by alkoxylation.
  • the amount used is desirably 3 to 40% by weight of the solid content. That is, if it is less than 3% by weight, it is not possible to simultaneously satisfy both the dyeability and the various durability of the inorganic vapor-deposited film. On the other hand, if it exceeds 40% by weight, the water resistance of the coating film deteriorates. Also, the pot life of the coating liquid is shortened.
  • the addition of the above-mentioned component (E) is preferable from the viewpoint of increasing the curing rate of the composition and improving the yield.
  • increasing the curing speed and shortening the curing time is excellent because it reduces the possibility of dust and impurities adhering to the coating surface in the coating film forming process.
  • the component (E) also has an action of improving the dyeing property, it is advantageous in that the content of the component (F) described below can be reduced.
  • the component (E) has an excellent effect in making the presence of defective spots such as scratches on the surface of the object to be coated less noticeable.
  • the epoxy compound (F) is widely used for paints, adhesives, casting, and the like.
  • a polyolefin-based epoxy resin synthesized by a peroxidation method cyclopentene Alicyclic epoxy resins such as polyglycidyl ester obtained from hexenoxide or hexahydrophtalic acid and epichlorohydrin; polyphenols such as bisphenol A ⁇ catechol and resorcinol; or (poly) ethylene glycol, (poly) Propylene glycol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythr Polyglycidyl ether obtained from polyhydric alcohols such as itolitol, diglycerol and sorbitol and epichlorohydrin, epoxy ⁇ vegetable oil, novolak type phenolic resin and epoxy novolak obtained from epichlorohydrin, pheno-lephthalein and epipi Epoxy resins obtained from chlorhydrin, copo
  • Preferred specific examples of the polyfunctional epoxy compound include 1,6-hexanediol diglycidyl ether, ethylene glycol diglycidyl ether, dimethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, and tetraethylene glycol diglycidyl ether.
  • (F) 51 ⁇ is used to improve the water resistance * warm water resistance simultaneously with the role of the dyeing component. Therefore, among the above, 1,6-hexanediol diglycidyl ether, diethylene glycol diglycidyl ether, trimethylolprono "? Diglycidyl ether, trimethylolpropane triglycidyl ether, glycerol diglycidyl ether, glycerol tridaricidyl ether, Particularly preferred are fatty epoxy compounds such as triglycidyl ether of tris (2-hydroxyethyl) isocyanurate.
  • the amount of the component (F) used is 5 to 40% by weight of the total composition. That is, if it is less than 5% by weight, the water resistance of the coating film will be insufficient. On the other hand, if it exceeds 40% by weight, the adhesion to the inorganic vapor-deposited film tends to be insufficient, which is not preferable.
  • a tetrafunctional silane compound represented by the general formula S i (OR) 4 Preferred specific examples are tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraphenoxysilane, tetraacetoxysilane, tetraaryloxysilane, and tetrakis (2-methoxetoxy).
  • the coating composition thus obtained can be used after being diluted with a solvent, if necessary.
  • a solvent solvents such as alcohols, esters, ketones, ethers, and aromatics can be used.
  • the coating composition of the present invention may contain a small amount of a surfactant, an antistatic agent, an ultraviolet absorber, an antioxidant, a disperse dye, an oil-soluble dye, a fluorescent dye, a pigment, if necessary, in addition to the above components.
  • a photochromic compound, a light- and heat-resistant stabilizer such as a hindered amine / hindered phenol-based compound or the like can also improve the coating properties of the coating liquid and the film performance after curing.
  • the surface of the substrate in order to improve the adhesion between the substrate lens and the coating, is subjected to an alkali treatment, an acid treatment, a surfactant treatment, an inorganic or organic material in advance. It is effective to perform polishing, primer treatment or plasma treatment with fine particles.
  • the coating / hardening method is as follows: a coating liquid is applied by a dipping method, a spinner method, a spray method or a flow method, and then 40 to 200. By heating and drying at a temperature of C for several hours, 3 ⁇ 4 can be formed. In particular, for a substrate having a heat temperature of less than 100, a spinner method that does not require fixing the lens substrate with a jig is preferable.
  • the thickness of the cured film is preferably from 0.05 to 30 m. That is, if the thickness is less than 0.05 m, the basic performance is not obtained, and if it exceeds 30 m, the surface smoothness is impaired and optical distortion is generated, which is not preferable.
  • Examples of the coating method include a dipping method, a spray method, a roll coating method, a spin coating method, and a flow coating method.
  • the M-forming method to be formed includes a vacuum deposition method, an ion plating method, a sputtering method and the like.
  • an ion beam assist method in which an ion beam is simultaneously irradiated during evaporation may be used.
  • the film configuration either a single-layer antireflection film or a multilayer antireflection film may be used.
  • the anti-reflection film When forming the anti-reflection film, it is desirable to apply a surface treatment to the hard coat film.
  • Specific examples of the surface treatment include an acid treatment, an alkali treatment, an ultraviolet irradiation treatment, a plasma treatment using a high-frequency discharge in an argon or oxygen atmosphere, and an ion beam irradiation treatment with argon, oxygen, or nitrogen.
  • the present invention will be described in more detail by way of examples. The present invention is not limited to these examples.
  • the coating liquid thus obtained was applied to an alkali-treated refractive index 1.60 spectacle lens (manufactured by Seiko Epson Corporation, lens fabric for Seiko Super Lucius) by an immersion method.
  • the lifting speed was 23 cm / min.
  • the cured film thus obtained has a thickness of about 2 microns, and is excellent in both appearance and dyeability.
  • An anti-reflection coating thin film made of an inorganic substance was formed on each of the lenses obtained in Example 11 by the following method.
  • S i 0 2, Z R_ ⁇ . , S i 0 2, Z r0 2, S i 0 2 consists of five layers of the antireflection multilayer film vacuum deposition (vacuum Kikai Kogyo Co., Ltd.: BMC- 1000) was performed to form at.
  • the optical film thickness of each layer is as follows: the first S i0 2 layer, the next Z rO ⁇ and S i 0 o equivalent film layers and the next Z r ⁇ 2 ⁇ , and the top S i0 o layer; It formed so that it might become.
  • the design wavelength was 520 nm.
  • the reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%.
  • Hard multi-coated lens Lens obtained in Example 1 (hereinafter referred to as hard-coated lens) and implementation Each lens obtained in —2 (hereinafter referred to as “hard multi-coated lens”) was tested by the following method, and the results are shown in Table 1.
  • Abrasion resistance Apply lkg load with Bonstar # 0000 steel wool (manufactured by Nippon Steel Wool Co., Ltd.), rub the surface for 10 reciprocations, and visually evaluate the broken ⁇ in the following stages did.
  • Acid resistance Detergent resistance 0.1N salt and 1% “Mama Lemon” (manufactured by Lion Oil & Fat Co., Ltd.) was immersed in an aqueous solution for 12 hours.
  • Adhesion The adhesion between the substrate and the hard coat film and between the hard coat film and the multi-coat film was determined by a cross-cut tape test according to JISD-0202. That is, cuts are made at lmm intervals on the base material surface using a knife, and 100 squares of 1 square mm are formed. Next, put cellophane adhesive tape on top of it (Nichiban
  • Stainability (hard coat lens only): 2 g of Amber D, a staining agent for Sico-Plax Diamond Co., was dispersed in a liter at 92 ° C. to prepare a staining solution. The dyeing solution was immersed in this dyeing solution for 5 minutes to perform dyeing. The dye having no unevenness in dyeing and having a total transmittance of 20% or more before and after dyeing was rated as good.
  • the thus obtained coating solution was applied to a 1.66 spectacle lens (lens fabric for Seiko Super Sovereign, manufactured by Seiko Epson Corporation) by a spinner method.
  • the coating conditions are as follows.
  • the thickness of the cured film thus obtained was about 2.3 microns, and both the appearance and the dyeing properties were excellent.
  • the thus obtained coating liquid was applied to a polycarbonate injection-molded spectacle lens having a refractive index of 1.58 by a spinner method. Coating conditions were set in the same manner as in Example 13.
  • the thickness of the cured film thus obtained was about 2.1 microns, and the appearance was excellent.
  • the reflection interference color of the obtained multilayer film was green, and the total light transmittance was 99%.
  • the lens obtained in this manner was tested in the same manner as in Example 12, and the results are shown in Table 1.
  • the dyeability was evaluated in the state of a hard-coated lens.
  • the coating liquid thus obtained was applied by a spray method with a refractive index of 1.56 spectacle lens (a lens fabric for Seiko Plux IIGX, manufactured by Seiko Epson Corporation).
  • Spraying was performed using Iwata Weider 61 (made by Iwata Coating Machine Co., Ltd .: nozzle diameter lmm) at a spray pressure of 3 kg and a paint discharge amount of 100 mlZmin.
  • the cured film thus obtained had a thickness of about 4 microns, and was excellent in both appearance and dyeability.
  • the lens obtained in this manner was tested in the same manner as in Example 1, and the results are shown in Table 1.
  • Example one 6 After performing the ion beam irradiation treatment of the lens obtained in Example one 6 with oxygen gas (acceleration voltage 500VX60 seconds), in order from the substrate to the air, S i 0 2, Z r0 2, S i 0 2 , T i 0 2, S i vacuum deposition antireflection multilayer film composed of five layers (vacuum Kikai Kogyo Co., Ltd.: BMC- 1000) was performed to form at. At this time, the fourth layer T i 02 was subjected to ⁇ 3 ⁇ 4 by ion beam assisted vapor deposition.
  • oxygen gas acceleration voltage 500VX60 seconds
  • each vapor deposition layer is as follows: the first S i 0 2 , the next Z r 0 2 and the equivalent film layer of S i 0 2 ; 1/4, T i 0 2 layer; Z2, the top layer S The i 0 2 layer was formed so as to be 1/4.
  • the design wavelength ⁇ was set to 52 Onm.
  • the reflection interference color of the obtained multilayer film was green, and the total transmittance was 99%.
  • the coating liquid thus obtained was applied to a CR-39 spectacle lens having a refractive index of 1.50 by a spinner method. Coating conditions were set in the same manner as in Example 5-5.
  • the thickness of the cured film thus obtained was about 2.1 ⁇ m, and was excellent in both appearance and dyeability. In particular, no defects due to dust adhesion were observed.
  • the reflection interference color of the obtained multilayer film was green, and the total light transmittance was 99%.
  • the lens obtained in this manner was tested in the same manner as in Example 12, and the results are shown in Table 1.
  • the dyeability was evaluated in the state of a hard-coated lens.
  • the coating liquid thus obtained was applied to an alkali-treated refractive index 1.60 spectacle lens (manufactured by Seiko Epson Corporation, Seiko Super Lucious Lens Fabric) by an immersion method.
  • the bow I lifting speed was 18 cm / min.
  • the thickness of the cured material thus obtained was about 2 microns, and the appearance was excellent.
  • the lens obtained by the above method was used to form an anti-reflection ihM in the same manner as in Example 18.
  • the reflection of the obtained multilayer film was green, and the total light transmittance was 99%.
  • the lens obtained in this manner was tested in the same manner as in Example 12, and the results are shown in Table 1.
  • the dyeability was evaluated in the state of a hard-coated lens.
  • Example 1-1 the lens was coated in the same manner except that Li (CH 70 o ) was not added.
  • the lens obtained in this way was tested in the same way. It was shown to.
  • Example over 1 Mg (C 10 4) 2 lines applied to the lens at all similar way but without the addition of Natsuta.
  • Example 13 Fe (C 5 H 7 ⁇ 2 ) was not added
  • Methanol 1144 g methylcellulose solvent-dispersed titanium dioxide triiron trioxide monodioxide complex fine particle sol (Catalyst Chemical Industry Co., Ltd., solid content 20SS%) 6113 g, ⁇ -glycidoxypropyltrimethoxysilane 1056 g and bis [3-((ethoxymethyl) yl) ethyl] carbonate (610 g) were mixed.
  • 420 g of a 0.05 N aqueous hydrochloric acid solution was added dropwise to the mixture with stirring, and the mixture was further aged for 4 hours and then aged for 24 hours.
  • the coating liquid thus obtained was applied to an alkali-treated refractive index 1.60 spectacle lens (manufactured by Seiko Epson Corporation, a lens cloth for Seiko Super Plus) by an immersion method.
  • the lifting speed was set at 20 cm / min.
  • the film was air-dried at 80 ° C. for 20 minutes and baked at 130 ° C. for 60 minutes.
  • the thickness of the cured film obtained in this way was about 1.8 microns, and both the appearance and the dyeability were excellent. In particular, no defect due to dust adhesion was found.
  • an anti-reflection coat thin film made of an inorganic substance was formed by the following method.
  • Si 0 9 , Z r 0 .S i 0 2 , Z r 0 2 , S i 0 2 vacuum deposition antireflection multilayer film composed of five layers of (vacuum Kikai Kogyo Co., Ltd.: BMC- 1000) was performed to form at.
  • the optical thickness of each layer, the first S i 0 o layer, next Z R_ ⁇ 2 and S I_ ⁇ 2 equivalent film layers and the following Z r0 2 layer, a layer of S i 0 2 layers each scan / 4 was formed.
  • the design wavelength ⁇ was 520 nm.
  • the reflection interference color of the obtained multilayer film was green, and the total light transmittance was 98%.
  • Ethylse mouth soup 3780 g, methanol-dispersed diacid titanium titanium diacid oxide zirconium mu silicon dioxide composite fine particle sol (manufactured by Mei Kasei Kogyo Co., Ltd., solid content concentration 20% by weight) 4160 g, aglycidoxy 987 g of propyltrimethoxysilane, 622 g of 7-methacryloxypropyltrimethoxysilane and bis [3- (diethoxymethylsilyl) ethyl] epoxide were mixed.
  • the coating solution obtained in this way was immersed in a plasma-treated (argon plasma: 200 W for 60 seconds) refractive index 1.67 spectacle lens (Seiko Epson Corporation, Seiko Super Sovereign Lens Fabric). Was applied. The lifting speed was 26 cmZmin. After the application, it was air-dried at 80 ° C for 20 minutes, and then subjected to ⁇ 3 ⁇ 4 at 130 ° C for 120 minutes. The cured film thus obtained had a thickness of about 2 microns and was excellent in appearance. In particular, no defects due to dust adhesion were found. (3) Formation of anti-reflection thin film
  • An antireflection film was formed on the lens obtained by the above method in the same manner as in Example 18.
  • the reflection interference color of the obtained multilayer film was green, and the total light transmittance was 99%.
  • the lens obtained in this manner was tested in the same manner as in Example 12, and the results are shown in Table 1.
  • the dyeability was evaluated in the state of a hard-coated lens.
  • Example 1 1 ⁇ A ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ ⁇ 89%
  • Example 1 2 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ 98 ⁇ 98%
  • Example 1 3 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ ⁇ 88%
  • Example 1 4 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ 98 ⁇ 98%
  • Example 1 5 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ 99%
  • Example 1 6 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ 90%
  • Example-7 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ ⁇ 99%
  • Example 1 8 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ ⁇ 99%
  • Example-9 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ 100/100 ⁇ ⁇ ⁇ ⁇ 99%
  • Example-9 ⁇ A ⁇ ⁇ 100/100 ⁇ ⁇
  • the present invention provides a plastic lens material including (meth) acrylic resin, styrene resin, carbonate resin, aryl resin, aryl carbonate resin, vinyl resin, polyester resin, polyether resin, urethane resin, and a new monomer monomer. It can be applied to resins having various functions such as polymers. Plastic materials that combine high productivity (no need for complicated coating liquid management and long coating liquid pot life) and various durability are used as eyeglass lenses, camera lenses, light beam fluorescent lenses, and light diffusion lenses. Or L ⁇ can be widely applied for industrial use. Furthermore, the present invention can be applied or used in general for transparent glass such as watch glass and cover glass for displays, and transparent plastics for optical use such as cover glass, and is extremely useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

明 細 書 コーティング用組成物 技 術 分 野
本発明は、 合成樹脂製レンズ表面に、 耐摩耗性、 耐薬品性、 耐温水性、 耐熱性、 耐候性等の耐久性および染色性に優れた透明 を形成するためのコーティング 用組成物に関する。 さらに本発明は、 その透明被膜上に、 無機物質からなる反射 防止膜 (以下、 「無機蒸着膜」 とも呼ぶ) を設けてなる複合構造に関するもので ある。 背 景 技 術
合成樹脂製レンズ、 特にジェチレングリコールビスァリルカーボネート ( C R - 3 9 ) 樹脂レンズは、 ガラスレンズと比較し、 安全性、 易加工性、 ファッショ ン性などにおいて優れている。 さらに近年、 反射防止技術およびハードコート技 術の開発により、 これら合成樹脂製レンズが; Ιϋ¾に普及してきた。
ハードコート組成物としては、 シリコン系のハードコー卜被膜をプラスチック レンズ表面に設ける方法カ 般的に行われている。 その硬ィ biWとして、 特公昭 6 0— 1 1 7 2 7号、 特公昭 6 0 - 3 0 3 5 0号等に A 1 (III ) 中心金属原子 とするァセチルァセトネートを用いるハードコート組成物が開示されている。 また、 特公昭 6 1 - 3 3 8 6 8号には、 アミン、 化合物、 多価カルボン酸、 数 々のァセチルアセトン金属塩化合物、 フエノール化合物、 三フッ化ホウ素含有化 合物等を添加するハードコート組成物が開示されている。
また、 特公昭 6 2— 9 2 6 6号には、 過酸素酸アンモニゥムを用いるハードコ ート誠物が、 特公平 4— 5 9 6 0 1号には、過酸素酸マグネシウムを用いるハ 一ドコー卜組成物が開示されている。
しかし、 前述の硬化触媒を用いた時のハードコート組成物は、 塗膜の 特性 等には特に問題はないが、 組成物の液寿命を延ばすためには、 p Hの調整が必要 になるなど塗液管理が繁雑化する点で必ずしも満足のいくものではない。
発明 の 開示
本発明者らは、 これらの問題点を解決するため鋭意研究を行ったところ、 硬化 M ^として、 F e、 A 1、 S nあるいは T iのァセチルァセトネートまたは、 過 塩素!^またはカルボン酸あるいはその無水物と L i、 C uあるいは M nのァセ チルァセトネ一卜とを併用することにより、 優れた生産性および基本特性の双方 を調和的に発現させることができることを見出した。
また、 本発明者らは、 金属酸化 粒子、 重合可能な反応基を有するシラン化 合物および多官能性ェポキシ化合物を^分とする組成物によれば、 熱硬化で得 られるコーティング ¾^の透明性、 硬化性を向上させ、 さらに染色性、 無機蒸着 膜との密着性 (耐久性) においても優れた性能を発現させると同時に塗液の寿命 を延ばすことができることを見出した。
発明を実施するための最良の形態
すなわち本発明は、 (I ) 重合可能な硬化賊分、 および (II) 硬化讓とし て、 下記の成分 (Α) および (Β) を併用して添加してなるものを含んでなるコ 一ティング用組成物に関するものである。
(Α) (ィ) F e (III )、 A 1 (III ) . S n (IV) あるいは T i (IV) を中 心金属原子とするァセチルァセトネート、
(口) 過塩素酸マグネシウムあるいは過塩素酸アンモニゥム、
(ハ) 脂皿の飽和もしくは不飽和カルボン酸あるいは芳香族カルボン酸また はその無水物、 およびそれらの混合物、
からなる群から選ばれる 1種以上の化合物。 (B) L i (I)、 Cu (II)、 Mn (II) あるいは Mn (III ) を中心金属原 子とするァセチルァセトネー卜。
コーティング用組成物を構成する主成分としての重^ の硬化性成分としては、 従来公知の成分が使用され得る。
特に、 本発明においては、 下記 (C)、 (D) 、 (E) および (F) を主成分 とするコーティング用組成物およびそのコーティング用組成物からなる ¾^表面 に無機物質からなる反射防止膜を設けてなる複合構造として構成した場合にその すぐれた効果を発揮する。
(C)粒径 1〜 100ミ リ ミクロンの S i、 Al、 Sn、 Sb、 Ta、 Ce、 La、 Fe、 Zn、 W、 Z r、 I n、 T iから選ばれる 1種以上の金属酸化物か らなる微粒子および Zまたは S i、 A 1、 S n、 S b、 Ta、 C e、 L a、 F e、 Zn、 W、 Z r、 I n、 T iからなる群から選ばれる 2種以上の金属酸化物から 構成される複合微粒子
(D) —般式
R S i一一 Λ X 1
3-n
2
Rn で表される有機ゲイ素化合物 (式中、 R1は重合可能な反応基を有する有機基、 Rムは炭素数 1〜 6の炭化水素基である。 X1は加水分解 であり、 nは 0ま たは 1である。 ) 。
(E)下記式で表される有機ゲイ素化合物。
Figure imgf000005_0001
(式中、 R3、 R,は炭素数 1〜 6の炭素水素基である。 X2、 X 3は加水分解 であり、 Yは、 カーボネート基またはエポキシ基を含有する有^であり、 kおよび mは 0または 1である。
(F) 多官食 エポキシ化合物
本発明において、 硬化 として (A) 成分と (B)成分を併用することは、 極めて重要な役割を果たす。 すなわち、 (A)成分単独で用いても硬化 とし ての効果は充分にある。 しカヽしな力 ら、 これらの触媒と (B) 成分とを併用する ことにより、 塗膜の各種耐久性および生産性が飛躍的に向上する。 特に、 (B) 成分の併用添加は、 組成物 (塗液) のポットライフを向上させる上で優れている。 この (B)成分の中においても、 リチウムおよびマンガンのァセチルァセトネ -卜がその効果の発現において特に好ましい。
また、 (C)成分の粒径 1~100ミリミクロンの S i、 A 1、 Sn、 S b、 Ta、 Ce、 La、 F e、 Zn、 W、 Z r、 I n、 T iから選ばれる 1種以上の 金属酸化物からなる微粒子およびノまたは S i、 Ai、 Sn、 Sb、 Ta、 C e、 La、 Fe、 Z n、 W、 Z r、 I n、 T iからなる群から選ばれる 2種以上の金 属酸化物から構成される複合微粒子の好ましい具体例としては、 S i 02、 A 1 93、 Sn02、 Sb2r、 T a 20 r. Ce〇2、 L a 20 g F e 20 os ZnO、 W03, Z r0o I n20o. T i 02の無機酸化 Mi:粒子が、 分 m¾たとえば水、 アルコール系もしくはその他の有機溶媒にコロイド状に分散 させたものが挙げられる。 または、 これら無機酸ィ匕物の 2種以上によって構成さ れる複合微粒子が、 水、 アルコール系もしくはその他の有機溶媒にコロイド状に 分散したものである。
さらにコーティグ液中での分散安定性を高めるためにこれらの微粒子表面を有 機ゲイ素化合物またはァミン系化合物で処理したものを使用することも可能であ る。 この際用いられる有機ゲイ素化合物としては、 単官能性シラン、 あるいは二 官能性シラン、 三官能性シラン、 四官能性シラン等がある。 処理に際しては加水 分解 ttSを未処理で行つてもあるいは加水分解して行ってもよい。 また処理後は、 加水分解性基が微粒子の一 O H基と反応した状態が好ましいが、 一 ¾5¾存した伏 態でも安定性には何ら問題がない。 またアミン系化合物としてはアンモニゥムま たはェチルァミン、 トリェチルァミン、 ィソプロピルァミン、 n—プロピルァミ ン等のアルキルァミ ン、 ベンジルァミ ン等のァラルキルァミ ン、 ピぺリジン等の 脂環式ァミン、 モノエタノールァミン、 卜リエタノールァミン等のアル力ノール ァミンがある。 これら有機ゲイ素化合物とァミン化合物の添加量は微粒子の重量 に対して 1から 1 5 %程度の範囲内で加えることが好ましい。 いずれも粒子径は 約 1〜3 0 O n m力く好適であり、 本発明のコーティ ング組成物への適用種及び使 用量は目的とする被膜性能により決定されるものである力 使用量は固形分の 1 0〜5 0重量%であることが望ましい。 すなわち、 1 0重量%未満では、 無機蒸 着膜との密着性が不充分となるカヽ、 もしくは、 塗膜の耐擦傷性力不充分となる傾 向が増大する。 また 5 0重量%を超えると、 にクラックが生じる傾向がある。 また、 染色性も不充分となる。
また、 (D) 成分において、 R 1は重合可能な反応基を有する有 であり、 好ましくは、 ビニル基、 ァリル基、 ァクリル基、 メタクリル基、 エポキシ基、 メ ルカプト基、 シァノ基、 イソシァノ基、 アミノ基等の重合可能な反応基を有する シラン化合物であり、 R 2は炭素数 1〜6の炭化水素基である力く、 その好ましい 具体例としては、 メチル基、 ェチル基、 ブチル基、 ビニル基、 フエニル基等が挙 げられる。 また X 1は加水分解可能な官能基であり、 その好ましい具体例として は、 メ 卜キシ基、 エトキシ基、 メ トキシエトキン基等のアルコキシ基、 クロ口基、 ブ口モ基等のハ口ゲン基、 ァシルォキシ基等が挙げられる。
このシラン化合物の好ましい具体例として、 ビニルトリアルコキシシラン、 ビ ニルトリクロロシラン、 ビニルトリ ( ーメ トキシ一エトキン) シラン、 ァリル トリアルコキシシラン、 アクリルォキシプロピルトリアルコキシシラン、 メタク リルォキシプロビルトリアルコキシシラン、 メタクリルォキシプロピルジアルコ キシメチルシラン、 y—グリシドォキシプロピルトリアルコキシシラン、 β— (3, 4一エポキシシクロへキシル) 一ェチルトリアルコキシシラン、 メルカプ トプロピルトリアルコキシシラン、 7—ァミノプロピルトリアルコキシシラン、 Ν— (アミノエチル) 一 7—ァミノプロピルメチルジアルコキシシラン等があ る。
この (D)成分は、 2種以上混合して用いてもかまわない。
また、 加水分解を行なってから用いるか、 もしくは硬ィ匕した後の ¾ に酸処理 を行うか、 どちらかの方法を取った方がより有効である。
(D)成分の使用量は、 全組成物の 20〜 60重量%であること力く望ましい。 すなわち、 20重量%未満であると、 無機蒸着膜との密着性が不充分となりやす い。 また 60重量%を越えると、 硬化 にクラックを生じさせる原因となり好 ましくない。
次に、 成分 (Ε) については、 前記一般式 (Ε) において、 R3、 R,は炭素 数 1〜6の炭化水素基であるが、 その好ましい具体的例としては、 メチル基、 ェ チル基、 プチル基、 ビニル基、 フエニル基等が挙げられる。 また、 X2、 X3は、 加水分解可能な官能基であり、 好ましい具体例としては、 メ トキシ基、 エトキシ 基、 メ トキシェトキシ基等のアルコキシ基、 クロ口基、 ブロモ基等のハロゲン基、 ァシルォキシ基等が挙げられる。 また、 Yはカーボネート基またはエポキシ基を 含有する有 a®であり、 好ましい具体例としては、 下記のものが挙げられる。
CH^CH20C0CHoCH2
〇 CH2 CH2 CH2OCOCH2 CH2 CH2
0
CH2 CH2OCOCH2 CH2OCOCH2 CH2 0 0
CH2 CH2 CH2OCOCH2 CH2OCOCH2 CH2 CH2
0 0
CH2 CH2OCOCH2 CH2OCH2 CH2OCOCH2 CH2 0 0
CH2CH2 CH2OCOCH2CH2OCH2 CH2OCOCH2CH2 CH2
0 0
C H 2 C H CH - C H C H C H 2
0
CH2CH CH20CCH-CHC0CH2 CH2 CH9
0 0 0
CH2CH C0CH2 CH-CHCH20CCH2CH9
0 0 0
CH CH90CCH-CHC0CH9CH9
Δ Δ \\ \ / II Δ Δ
0 0 0 これらのジシラン化合物は、 従来公知の種々方法で合成することができる。 例えば、 ジァリルカーボネートとトリクロロシラン等を付加反応させ、 その後 アルコキシ化させれば得ることができる。 または、 両末端に付加可能な置換基を 持ち、 更にその内部にエポキシ化可能な官能基を含む化合物に、 トリクロロシラ ン等を付加反応させ、 その後アルコキシ化させれば得ることができる。
この (E ) 成分は、 加水分解を行なってから用いるか、 もしくは硬ィ匕した後の 被膜に酸処理を行なうか、 どちらかの方法を取つた方がより有効である。
使用量は固形分の 3〜4 0重量%であることが望ましい。 すなわち、 3重量% 未満では、 染色性と無機蒸着膜との各種耐久性の双方を同時に満足させることが できない。 また 4 0重量%を超えると塗膜の耐水性が悪くなる。 また、 塗液のポ ッ トライフも短くなる。
上述した (E) 成分を添加することは、 組成物の硬化速度を増大させて歩留ま りを向上させる上で好ましい。 とくに、 硬化速度が増大して硬化時間力短くなる ことは、 塗膜形成工程における塗布表面へのゴミや不純物の付着の可能性を少な くするので、 優れている。 さらに、 この (E ) 成分は、 染色性を向上させる作用 も有しているので、 後述する (F) 成分の含有量を少なくすることができる点に おいても有利である。 さらに、 (E) 成分は、 塗工する対象物の表面に存在する 傷などの不良箇所の存在を目立たなくする上でもすぐれた効果を有している。
( F) 成分の多官肖 エポキシ化合物は、 塗料、 接着剤、 注型用などに広く実 用されているもので、 例えば過酸化法で合成されるポリオレフィン系エポキシ樹 脂、 シクロペン夕ジェンォキシドゃシクロへキセンォキシドあるいはへキサヒド ロフタル酸とェピクロルヒドリンから得られるポリグリシジルエステルなどの脂 環式エポキシ樹脂、 ビスフエノール Aゃカテコール、 レゾシノールなどの多価フ ェノールあるいは (ポリ) エチレングリコール、 (ポリ) プロピレングリコール、 ネオペンチルグリコール、 グリセリン、 トリメチロールプロパン、 ペンタエリス リ トール、 ジグリセロール、 ソルビトールなどの多価アルコールとェピクロルヒ ドリンから得られるポリグリシジルエーテル、 ェポキシ^ f匕植物油、 ノボラック型 フエノール樹脂とェピクロルヒドリンから得られるエポキシノボラック、 フエノ —ルフタレインとェピクロルヒドリンから得られるエポキシ榭脂、 グリシジルメ タクリレートとメチルメタクリレートァクリル系モノマーあるいはスチレンなど の共重合体、 さらには上記エポキシ化合物とモノカルボン酸含有 (メタ) ァクリ ル酸とのダリシジル基開^ Κ応により得られるエポキシァクリレー卜などが挙げ られる。
多官能性エポキシ化合物の好ましい具体例としては、 1 , 6—へキサンジォ一 ルジグリシジルェ一テル、 エチレングリコールジグリシジルエーテル、 ジェチレ ングリコールジグリシジルエーテル、 卜リエチレングリコールジグリシジルエー テル、 テトラエチレングリコールジグリシジルエーテル、 ノナエチレングリコー ルジグリシジルエーテル、 プロピレングリコールジグリシジルエーテル、 ジプロ ピレングリコールジグリシジルエーテル、 トリプロピレングリコールジグリシジ ルエーテル、 テ卜ラプロピレングリコールジグリシジルエーテル、 ノナプロピレ ングリコールジグリシジルエーテル、 ネオペンチルグリコールジグリシジルエー テル、 ネオペンチルグリコールヒドロキシヒバリン酸エステルのジグリシジルェ 一テル、 卜リメチロールプロパンジグリシジルエーテル、 トリメチロールプロパ ントリグリシジルエーテル、 グリセロールジグリシジルエーテル、 グリセロール トリグリシジルエーテル、 ジグリセロールジグリシジルエーテル、 ジグリセロー ル卜リグリシジルエーテル、 ジグリセロールテトラグリシジルエーテル、 ペン夕 エリスリ トールジグリシジルエーテル、 ペンタエリスリ トールトリグリシジルェ 一テル、 ペンタエリスリ トールテトラグリシジルエーテル、 ジペンタエリスリ ト ールテトラグリシジルエーテル、 ソルビトールテトラグリシジルエーテル、 卜リ ス (2—ヒドロキシェチル) イソシァヌレートのジグリシジルエーテル、 トリス ( 2—ヒドロキシェチル) ィソシァヌレー卜の卜リダリシジルエーテル、 等の脂 肪疾ェポキシ化合物、 イソホロンジオールジグリシジルエーテル、 ビス一 2 , 2 —ヒドロキシシクロへキシルプロパンジグリシジルエーテル等の脂環族エポキシ 化合物、 レゾルシンジグリシジルエーテル、 ビスフエノール Aジグリシジルエー テル、 ビスフエノール Fジグリシジルェ一テル、 ビスフヱノール Sジグリシジル エーテル、 オルトフタル酸ジグリシジルエステル、 フヱノールノボラックポリグ リシジルエーテル、 クレゾールノボラックポリグリシジルエーテル等の芳香族ェ ポキシ化合物等が挙げられる。
本発明では (F) 51 ^は、 染色成分の役割と同時に耐水性 *耐温水性の向上と して用いる。 そこで、 上記した中でも、 1 , 6—へキサンジオールジグリシジル エーテル、 ジエチレングリコールジグリシジルエーテル、 トリメチロールプロノ"? ンジグリシジルエーテル、 トリメチロールプロパントリグリシジルエーテル、 グ リセロールジグリシジルエーテル、 グリセロールトリダリシジルエーテル、 トリ ス (2—ヒドロキシェチル) イソシァヌレートのトリグリシジルエーテル等の脂 エポキシ化合物が特に好ましい。
(F) 成分の使用量は、 全組成物の 5〜4 0重量%であること力 ^である。 すなわち 5重量%未満であると塗膜の耐水性力《不充分となる。 また、 4 0重量% を越えると無機蒸着膜との密着性が不充分となりやすく、 好ましくない。
また、 一般式が S i (O R) 4で表される四官能シラン化合物を添加すること も有用である。 好ましい具体例として、 テトラメ 卜キシシラン、 テトラエトキシ シラン、 テトラプロボキシシラン、 テトライソプロボキシシラン、 テトラブトキ シシラン、 テトラフヱノキシシラン、 テトラァセトキシシラン、 テトラァリロキ シシラン、 テトラキス (2—メ トキシェトキシ) シラン、 テトラキス (2—ェチ ルブトキン) シラン、 テトラキス (2—ェチルへキシロキシ) シラン等があげら れる。 これらは単独で用いても、 2種 を混合して用いてもよい。 また、 これ 'らは無溶媒下またはアルコール等の有機溶剤中で、 酸の存在下で加水分解して使 用する方が好ましい。
このようにして得られるコーティング用組成物は、 必要に応じ、 溶剤に希釈し て用いることができる。 溶剤としては、 アルコール類、 エステル類、 ケトン類、 エーテル類、 芳香族類等の溶剤が用いられ得る。
尚、 本発明のコーティング組成物は上記成分の他に必要に応じて、 少量の界面 活性剤、 帯電防止剤、 紫外線吸収剤、 酸化防止剤、 分散染料 ·油溶染料 ·蛍光染 料 ·顔料、 フォトクロミック化合物、 ヒンダ一ドアミン · ヒンダ一ドフヱノール 系等の耐光耐熱安定剤等を添加しコ一ティング液の塗布性および硬化後の被膜性 能を改良することもできる。
さらに、 本発明のコ一ティング組成物の塗布にあたっては、 基材レンズと被膜 の密着性を向上させる目的で、 基材表面をあらかじめアルカリ処理、 酸処理、 界 面活性剤処理、 無機あるいは有機物の微粒子による研磨処理、 プライマー処理ま たはプラズマ処理を行うことが効果的である。
また、 塗布 ·硬ィ匕方法としては、 デイツビング法、 スピンナ一法、 スプレー法 あるいはフロー法によりコーティング液を塗布した後、 4 0〜2 0 0。Cの温度で 数時間加熱乾燥することにより、 ¾ を形成することができる。 特に熱 温度 が 1 0 0 未満の基材に対しては治工具でレンズ基材を固定する必要のないスピ ンナ一法が好適である。
また、 硬化被膜の膜厚としては、 0. 0 5〜3 0 mであることが好ましい。 すなわち、 0. 0 5 m未満では、基本となる性能が出ず、 3 0 mを越えると、 表面の平滑性が損なわれたり、 光学的歪力、'発生する為好ましくない。
その塗!^法としては、 浸漬法、 スプレー法、 ロールコート法、 スピンコート 法、 フローコート法等力く挙げられる。
このようにして得られたコー卜被膜の表面上に、 無機物質からなる反射防止膜 ^形成する M化方法としては、 真空蒸着法、 イオンプレーティング法、 スパッ タリング法等が挙げられる。 真空蒸着法においては、 蒸着中にイオンビームを同 時に照射するイオンビームアシスト法を用いてもよい。 また、 膜構成としては、 単層反射防止膜もしくは多層反射防止膜のどちらを用いてもかまわない。
使用される無機物の好ましい具体例としては、 S i 0o、 S i 0、 Z r02、 Ti 0o、 T i O、 Ti 20つ、 T i 20 r A 120 n Ta„〇5
Ce02、 MgO、 Y23、 Sn02、 MgFg, WO 3などが挙げられる。 これらの無機物は単独で用いるかもしくは 2種以上の混合物を用いる。
また、 反射防止膜を形成する際には、ハードコート膜の表面処理を行なうこと 力望ましい。 この表面処理の具体的例としては、 酸処理、 アルカリ処理、 紫外線 照射処理、 アルゴンもしくは酸素雰囲気中での高周波放電によるプラズマ処理、 アルゴンや酸素もしくは窒素などのイオンビーム照射処理などが挙げられる。 以下、 例により更に詳細に説明するカ^ 本発明はこれらに限定されるもの ではない。
実施例一 1
(1)塗液の調整
メタノール 1832 g、 1, 4一ジォキサン 785 g、 メチルセ口ソルブ分散 二酸化チタン一三酸化鉄—二酸化ケイ素複合微粒子ゾル (雌化成 (株) 製、 固形分 0重量%) 5332 g、 メタノール分散コロイド状シリカ (^化 成工業 (株) 製、 商品名 「オスカル 1132」、 固形分濃度 30重量 102 gおよびァーダリシドキシプロピルトリメ トキシシラン 902 gを混合した。 こ の混合液に 0. 05 N塩酸水溶液 250 gを撹拌しながら滴下し、 さらに 4時間 撹拌後—昼夜熟成させた。 この液に 1, 6—へキサンジオールジグリシジルエー テル (ナガセ化成工業 (株) 製、 商品名 「デナコール EX— 212」 ) を 762 g添加した後、 Mg (C 104) 2を 37 gおよび L i (CcH?02)を 5. 5g、 シリコン系界面活性剤 (日本ュニカー (株) 製、 商品名 「L—
7001」 ) 3 gおよびヒンダ一ドアミン系光安定剤 (三共 (株) 製、 商品名 [ザノール LS— 770」) 6 gを添加し 4時間攬拌後一昼夜熟成させて塗液と し 7^-ο
(2)塗布および硬化
このようにして得られた塗液で、 アルカリ処理を施した屈折率 1. 60眼鏡レ ンズ (セイコーエプソン (株) 製、 セイコースーパールシヤス用レンズ生地) に 浸漬法にて塗布を行なった。 引き上げ速度は、 23 cm/mi nとした。 塗布後
80°Cで 20分間風乾した後 130°Cで 60分間焼成を行なった。 このようにし て得られた硬化被膜の厚みは約 2ミクロンであり、 外観、 染色性共に優れたもの 'あつナ:。
実施例一 2
実施例一 1で得られたレンズに、 それぞれ以下の方法で無機物質からなる反射 防止コート薄膜の形成を行なつた。
( 1 ) 反射防止薄膜の形成
上記の方法で得られたレンズをプラズマ処理 (アルゴンプラズマ 40 OWx 60秒) を行なった後、 基板から大気にむかって順に、 S i 02、 Z r〇。、 S i 02、 Z r02、 S i 02の 5層からなる反射防止多層膜を真空蒸着法 (真 空器械工業 (株) 製: BMC— 1000) にて形成を行なった。 各層の光学的膜 厚は、 最初の S i 02層、 次の Z rO^と S i 0oの等価膜層および次の Z r〇2靥、 最上層の S i0o層がそれぞれ; IZ4となる様に形成した。 なお、 設計波長スは 520 nmとした。
得られた多層膜の反射干渉色は緑色を呈し、全光線透過率は 98%であった。
(2)試験および評価結果
実施例一 1で得られたレンズ (以下、 ハードコートレンズと呼ぶ) および実施 — 2で得られたレンズ (以下、 ハードマルチコートレンズと呼ぶ) をそれぞれ 次に述べる方法で試験を行ない、 その結果を表 1に示した。
(a)耐摩耗性: ボンスター # 0000スチールウール (日本スチールウール (株) 製) で lkgの荷重をかけ、 10往復、 表面を摩擦し、 傷ついた^を目 視で次の段階に分けて評価した。
A: 1 cm* 3 cmの範囲に全く傷がつなかい。
B:上記範囲内に 1〜 10本の傷がつく。
C:上記範囲内に 10〜 100本の傷がつく。
D:無数の傷がついている力、 平滑な表面が残っている。
E:表面についた傷のため、 平滑な表面が残っていない。
(b)耐水 *耐薬品性:水、 アルコール、 灯油中に 48時間浸溃し、 表面状態に 変化のないものを良とした。
(c)耐酸 '耐洗剤性: 0. 1N塩^び 1%「ママレモン」 (ライオン油脂 (株) 製) 水溶液に 12時間浸漬し、 表面状態に変化のないものを良とした。
(d)密着性:基材とハードコート膜およびハードコート膜とマルチコ一ト膜と の密着性は、 J I SD— 0202に準じてクロスカツ卜テープ試験によって行な つた。 即ち、 ナイフを用い基材表面に lmm間隔に切れ目を入れ、 1平方 mmの マス目を 100個形成させる。 次に、 その上へセロファン粘着テープ (ニチバン
(株) 製 商品名 「セロテープ」 ) を強く押し付けた後、 表面から 9 OS^向へ 急に引っ張り剥離した後コート被膜の残っているマス目をもって密着性指標とし た。
(e)耐候性:キセノンランプによるサンシャインウエザーメ一ターに 400時 間暴露した後の表面忧態に変化のないものを良とした。
( f )耐熱性 (冷却サイクル性) : 70〇の¾中に 1時間保存した後表面状態 を調べた。 更に— 5。Cで 15分、 60°Cで 15分のサイクルを 5回繰り返し、 表 ®状態に変化のないものを良とした。
(g)耐久性:耐久性は本質的に密着性の接続であると考え、 (a) から (f) の試験を行なったものについて、 上記のクロスカツ 卜テープ試験を行ないコート 膜に剥離のないものを良とした。
(h)染色性 (ハードコートレンズのみ) : 92°Cの リッ トルに、 セィコ ープラックスダイヤコ一卜用染色剤アンバー Dを 2 g分散させ染色液を調整した。 この染色液に、 5分間浸漬させ染色を行な L、、染色ムラがなく、かつ全 ¾ϋ透過 率が染色前と染色後の差が 20%以上のものを良とした。
(i)塗液のポットライフ:塗液調整後 20°Cの雰囲気で 3週間保管した後に、 同様な方法で塗布および硬化を行ない、 そのハードコートレンズの各種耐久性お よび染色性を確認した。 耐久性に関しては、 保管後塗布したレンズの耐久性が、 保管前に塗布したレンズより、 低下しないものを良とした。 染色性に関しては、 染色ムラがなく、かつ保管前の全 透過率と保管後の^^透過率の差が 3 % 以内のものを良とした。
実施例一 3
(1)塗液の調整
プチルセ口ソルブ 383 gおよびメチルセ口ソルブ分散二酸化セリゥム一二酸 化チタン-二酸ィ匕ゲイ素複合微粒子ゾル (触媒化成工業 (株) 製、 商品名 「ォプ トレイク 1832」 固形分-濃度 20wt%) 416 gおよび 7—グリシドキシプ 口ビルトリメ トキシシラン 95 gを混合した。 この混合液に 0. 1 N塩酸水溶液 27 gを撹拌しながら滴下を行ない 4時間撹 —昼夜熟成させた。 この液にグ リセロールトリグリシジルエーテル (ナガセィ 工業 (株) 製、 商品名 「デナコ ール EX— 314」) を 77 g添加した後、 F e (C5H70o) 3を 2gおよ び Mn (C5H?02) 2 1. l g、 シリコン系界面活性剤 (日本ュニカー (株) 製、 商品名 「FZ— 2110」 ) 0. 3 gおよびフエノール系酸化防止剤 '(川口化学工業 (株) 製、 商品名 「アンテ一ジクリスタル」) 0. 7 gを添加し 4時間撹拌後一昼夜熟成させて塗液とした。
(2) 塗布および硬化
このようにして得られた塗液で、 屈折率 1. 66眼鏡レンズ (セイコーェプソ ン (株) 製、 セイコースーパーソブリン用レンズ生地) にスピンナ一法にて塗布 を行なつた。
コーティング条件は以下の通りである。
回転数 500 r pmで 10秒 (この間に塗液を塗布)
回転数 2000 r pmで 1秒
回転数 500 r pmで 5秒
塗布後 80°Cで 20分間風乾した後、 130°Cで 60分間焼成を行なった。 こ のようにして得られた硬化被膜の厚みは約 2. 3ミクロンであり、 外観、 染色性 共に儍れたものであった。
(3) 試験および評価結果
このようにして得られたレンズは実施例一 1と同様の方法で試験を行な L \ そ の結果を表 1に示した。
実施例— 4
(1) 反射防止薄膜の形成
上記の方法で得られたレンズをプラズマ処理 (アルゴンプラズマ 400WX 60秒) を行なった後、 基板から大気にむかって順に、 Z r 02、 S i 0„、 Z r 02、 S i 02の 4層からなる反射防止多層膜を真空蒸着法 (真空器械工業 (株) 製: BMC— 1000) にて形成を行なった。 各層の光学的膜厚は、 最初 の Z r0oと S i 00の等価膜層および次の Z rOQ層、 最上層の S i〇2層が それぞれス Z 4となる様に形成した。 なお、 設計波長 λは 520 nmとした。 得られた多層膜の反射干渉色は緑色を呈し、 全^^^率は 98%であった。 (2)試験および評価結果
このようにして得られたレンズは実施例一 2と同様の方法で試験を行ない、 そ の結果を表 1に示した。
実施例— 5
(1)塗液の調整
イソプロピルセロソルブ 385 g、 純水 112 gおよびメタノール分 ft l酸ィ匕 スズ—二酸化タングステン複合微粒子ゾル (日産化学工業 (株) 製、 固形分濃度 3 Owt%) 29 Ogを混合した後、 7—メタクリロキシプロビルトリメ トキシ シラン 97 gおよびァ一グリシドキシプロビルトリメ トキシシラン 51 gおよび テトラメ トキシシラン 16 gを混合した。 この混合液に 0. 1N塩酸水溶液 50 gを撹拌しながら滴下し、 5時間攪拌後この液に SnC 12 (C ΓΗγ02) 2 を 2gおよび Cu (C5H72) „を 0. 8g、 シリコン系界面活性剤 (日本 ュニカー (株) 製、 商品名 「L— 7604」 ) 0. 3 gを添加し 4時間撹拌後一 昼夜 させて塗液とした。
(2)塗布および硬化
このようにして得られた塗液で、 屈折率 1. 58のポリカーボネート射出成形 眼鏡レンズにスピンナ一法にて塗布を行なった。 コ一ティング条件は、 ^例一 3と同様な方法で行なった。
塗布後 80°Cで 15分間風乾した後、 130°Cで 60分焼成を行なった。 この ようにして得られた硬化被膜の厚みは約 2. 1ミクロンであり、 外観に優れたも のであった。
(3)反射防止薄膜の形成
上記の方法で得られたレンズを 例— 4の Z r 02を∑ 1"02と丁 i酸化物 の混^ (Z r 0oZT i酸化物 =65ノ35 (重量比) ) に変更したこと以外 は、 同様の方法で反射防hMを形成した。 得られた多層膜の反射干渉色は緑色を呈し、 全光線透過率は 99%であった。 (4)試験および評価結果
このようにして得られたレンズは実施例一 2と同様の方法で試験を行ない、 そ の結果を表 1に示した。 なお、 染色性はハ一ドコートレンズの状態で評価を行な つた。
実施例一 6
(1)塗液の調整
メチルセ口ソルブ 390 g、 水分 酸ィ匕アンチモン微粒子ゾル (日産化学ェ 業 (株) 製、 固形分濃度 30wt%) 372 gを混合した後、 7—グリシドキシ プロピルメチルジメ トキシシラン 69 gおよびァーグリシドキシプロビルトリメ トキシシラン 66 gを混合した。 この混合液に 0. 05N塩酸水溶液 30 gを撹 拌しながら滴下を行ない 4時間撹 ^一昼夜!^させた。 この液にグリセロール ジグリシジルエーテル (ナガセィ匕成工業 (株) 製、 商品名 「デナコール EX— 313」 ) 73 g添加した後、 無水マレイン酸 8. 5g、 および
L i (C5H702) を 1. 9 g、 シリコン系界面活性剤 (ビッグケミー (株) 製:商品名 ΓΒΥΚ— 300」 ) 0. 2 gを添加し 4時間攪拌後一昼夜^させ て塗液とした。
(2)塗布および硬化
このようにして得られた塗液で、 屈折率 1. 56眼鏡レンズ (セイコーェプソ ン (株) 製、 セイコープラックス IIGX用レンズ生地) スプレー法にて塗布を行 なった。
スプレーは、 イワタワイダー 61 (岩田塗装機 (株) 製: ノズル口径 lmm) を用い、 スプレー圧力 3 k gノ平方 cm、 塗料吐出量 100m lZm i nでおこ なった。
塗布後 80°Cで 10分間風乾した後 130°Cで 60分間 ^^を行なった。 この うにして得られた硬化被膜の厚みは約 4ミクロンであり、 外観、 染色性共に優 れたものであった。
(3)試験および評価結果
このようにして得られたレンズは実施例— 1と同様の方法で試験を行ない、 そ の結果を表 1に示す。
実施例一 7
( 1 ) 反射防止薄膜の形成
実施例一 6で得られたレンズを酸素ガスによるイオンビーム照射処理 (加速電 圧 500VX60秒) を行なった後、 基板から大気にむかって順に、 S i 02、 Z r02、 S i 02、 T i 02、 S i の 5層からなる反射防止多層膜を真空 蒸着法 (真空器械工業 (株) 製: BMC— 1000) にて形成を行なった。 その 際 4層目の T i 02をイオンビームアシスト蒸着により β¾ を行った。 蒸着各層 の光学的膜厚は、 最初の S i 02、 次の Z r 02と S i 02の等価膜層が; 1/4、 T i 02層が; Z2、 最上層の S i 02層が; 1/4となる様に形成した。 なお、 設計波長 λは 52 Onmとした。
得られた多層膜の反射干渉色は緑色を呈し、 全 透過率は 99%であった。
(2)試験および評価結果
このようにして得られたレンズは実施例— 2と同様の方法で試験を行ない、 そ の結果を表 1に示す。
実施例- 8
(1)塗液の調整
イソプロピルセロソルブ 342 g、 ^δτΚΐ 00 gおよびメチルセ口ソルブ分散 S i 02微粒子ゾル 0 &媒化成工業 (株) 製、商品名 「オスカル 1832」 固形 分濃度 30wt%) 338 gおよび 7—グリシドキシプロピルトリメ トキシシラ ン 92 gおよびビス [3— (ジエトキンメチルシリル) プロピル] カーボネート '31 を混合した。 この混合液に 0 · 1 N塩酸水溶液 37 gを攪拌しながら滴下 した。 さらに 5時間携拌後、 この液にペン夕エリスリ トールテトラグリシジルェ 一テル (ナガセ化成工業 (株) 製、 商品名 「デナコール EX— 411」 ) 63 g および A l (CrH72) 。を 3. 2gおよび Mn (C ΓΗ?02) 3を l g、 シリコン系界面活性剤 (日本ュニ力一 (株) 製、 商品名 「L— 7604」 ) 0. 3 gを添加し 4時間撹拌後一昼夜^ ¾させて塗液とした。
(2)塗布および硬ィ匕
このようにして得られた塗液で、 屈折率 1. 50の CR— 39製眼鏡レンズに スピンナ一法にて塗布を行なった。 コ一ティング条件は、 ¾5¾例一 3と同様な方 法で行なつた。
塗布後 80°Cで 15分間風乾した後、 130°Cで 2時間^を行なった。 この ようにして得られた硬化被膜の厚みは約 2. 1ミクロンであり、 外観、 染色性共 に優れたものであった。 特に、 ゴミ付着に起因する不良は認められなかった。
(3)反射防止薄膜の形成
上記の方法で得られたレンズを 例— 4の Z r 02を∑ 02と丁 i酸化物 の混合物 (Z r02/T i酸化物 =65 35 (重量比) ) に変更したこと以外 は、 同様の方法で反射防止膜を形成した。
得られた多層膜の反射干渉色は緑色を呈し、 全光線透過率は 99%であった。
(4)試験および評価結果
このようにして得られたレンズは実施例一 2と同様の方法で試験を行ない、 そ の結果を表 1に示した。 なお、 染色性はハードコートレンズの状態で評価を行な つた。
実施例— 9
(1) 塗液の調整
プチルセ口ソルブ 1830 g、 メタノール分散二酸化チタン一二酸ィ匕ジルコニ ゥム—二酸化ケイ素複合微粒子ゾル (腿化成工業 (株) 製、 固形分濃度 20重 量%) 5683 gおよび 7—グリシドキシプロビルトリメ トキシシラン 1922 gを混合した。 この混合液に 0. 05 N塩酸水溶液 528 を撹拌しながら滴下 し、 4時間撹拌後一昼夜舰させた後、 Fe (C5H?02) を 36 gおよび L i (C5H7On) を 5g、 シリコン系界面活性剤 (日本ュニカー (株) 製、 商品名 「L— 7001」 ) 3 gを添加し 4時間撹拌後一昼夜熟成させて塗液とし た。
(2)塗布および硬化
このようにして得られた塗液で、 アルカリ処理を施した屈折率 1. 60眼鏡レ ンズ (セイコーエプソン (株) 製、 セイコースーパールーシャスレンズ生地) に 浸漬法にて塗布を行なった。 弓 Iき上げ速度は、 18 cm/m i nとした。 塗布後 80°Cで 20分間風乾した後 130°Cで 120分間焼成を行なった。 このように して得られた硬化 の厚みは約 2ミクロンであり、 外観に優れたものであった。
(3)反射防止薄膜の形成
上記の方法で得られたレンズを^例一 8と同様の方法で反射防 ihMを形成し た。
得られた多層膜の反射千渉色は緑色を呈し、 全光線透過率は 99%であった。
(4)試験および評価結果
このようにして得られたレンズは実施例一 2と同様の方法で試験を行ない、 そ の結果を表 1に示した。 なお、 染色性はハードコートレンズの状態で評価を行な つた。
比較例一 1
¾5¾例一 1において、 L i (C H70o)を添加しないこと以外はすべて同 様な方法でレンズに塗布を行なつた。
このようにして得られたレンズを同様の方法で試験を行な L、、 その結果を恙 1 に示した。
比較例— 2
実施例ー1において、 Mg (C 104) 2を添加しないこと以外はすべて同様 な方法でレンズに塗布を行なつた。
このようして得られたレンズを urn例一 1と同様の方法で試験を行ない、 その 結果を表 1に示した。
比較例一 3
実施例一 3において、 Fe (C5H72) を添加せず、
Mn (C 5Ηγ02) の添加量を 3 gにしたこと以外はすべて同様な方法でレ ンズに塗布を行なった。
このようして得られたレンズを 例一 1と同様の方法で試験を行ない、 その 結果を表 1に示した。
実施例一 10
(1)塗液の調製
メタノール 1144 g、 メチルセ口ソルブ分散二酸化チタン一三酸化鉄一二酸 化ゲイ素複合微粒子ゾル (触媒化成工業 (株) 製、 固形分 '離 20SS%) 6113 g、 ァ一グリシドキシプロピルトリメ トキシシラン 1056 gおよびビ ス [3— (ジェトキシメチルンリル) ェチル] カーボネート 610 gを混合した。 この混合液に 0. 05 N塩酸水溶液 420 gを攪拌しながら滴下し、 さらに 4時 間携摔後一昼夜熟成させた。 この液に 1, 6—へキサンジオールジクリシジルェ 一テル (ナガセ化成工業 (株) 製、 商品名 「デナコール EX— 212」 ) を 609 g添加した後、 Mg (C 10 2を 36g、 Ai (〇 5Ηγ0ο) 3を 5. 3 gおよび Mn (C5H72) nを 5. 7 g、 シリコン系界面活性剤 (日 本ュニカー (株) 製、 商品名 「L一 7001」 ) 3 gおよびヒンダ一ドアミン 系光安定剤 (三共 (株) 製、 商品名 「サノール L S— 770」 ) 6 gを添加し 4 時間撹拌後一昼夜熟成させて塗液とした。
(2)塗布および硬化
このようにして得られた塗液で、 アルカリ処理を施した屈折率 1. 60眼鏡レ ンズ (セイコーエプソン (株) 製、 セイコースーパ一ルシヤス用レンズ生地) に 浸漬法にて塗布を行なった。 引き上げ速度は、 20 c m/m i nとした、塗布後 80°Cで 20分間風乾した後 130°Cで 60分間焼成を行なった。 このようにし て得られた硬化被膜の厚みは約 1. 8ミクロンであり、 外観、 染色性共に優れた ものであった。 特にゴミ付着に起因する不良は認められなかつた。
(3)試験および評価結果
このようにして得られたレンズは実施例— 1と同様の方法で試験を行ない、 そ の結果を表 1に示した。 実施例一 11
実施例— 10で得られたレンズに、 それぞれ以下の方法で無機物質からなる反 射防止コ一ト薄膜の形成を行なつた。
(1)反射防止薄膜の形成
上記の方法で得られたレンズをプラズマ処理 (アルゴンプラズマ 40 OWx 60秒) を行なった後、 基板から大気にむかって順に、 S i 09、 Z r 0 . S i 02、 Z r02、 S i 02の 5層からなる反射防止多層膜を真空蒸着法 (真 空器械工業 (株) 製: BMC— 1000) にて形成を行なった。 各層の光学的膜 厚は、 最初の S i 0o層、 次の Z r〇2と S i〇2の等価膜層および次の Z r02層、 層の S i 02層がそれぞれス /4となる様に形成した。 なお、 設計波長 λは 520 nmとした。
得られた多層膜の反射干渉色は緑色を呈し、 全光線透過率は 98%であった。 (2) 試験および評価結果
このようにして得られたレンズは実施例一 2と同様の方法で試験を行ない、 そ の結果を表 1に示した。 実施例一 12
(1) 塗液の調整
ェチルセ口ソルプ 3780 g、 メタノール分散二酸ィ匕チタン一二酸ィ匕ジルコニ ゥムー二酸化ケイ素複合微粒子ゾル (雌化成工業 (株) 製、 固形分濃度 20重 量%) 4160 g、 ァーグリシドキシプロビルトリメ トキシシラン 987 g、 7 ーメタクリルォキシプロビルトリメ トキシシラン 622 gおよびビス [3— (ジ エトキシメチルシリル) ェチル] エポキシドを混合した。 この混合液に 0. 05 N塩酸水溶液 435 gを撹拌しながら滴下し、 4時間撹拌後一昼夜 させた後、 無水マレイン酸 14 g、 F e (C 5H?0o) 3を 3. 2 gおよび
L i (C5H72) を 5. 3 g、 シリコン系界面活性剤 (日本ュニカー (株) 製、 商品名 「L一 7001」 ) 3 gを添加し 4時間撹 ί^—昼夜熟成させて塗液 とした。
(2) 塗布および硬ィ匕
このようにして得られた塗液で、 プラズマ処理 (アルゴンプラズマ: 200W Χ 60秒) を施した屈折率 1. 67眼鏡レンズ (セイコーエプソン (株) 製、 セ イコースーパーソブリンレンズ生地) に浸漬法にて塗布を行なった。 引き上げ速 度は、 26 cmZm i nとした。 塗布後 80°Cで 20分間風乾した後 130°Cで 120分間^ ¾を行なった。 このようにして得られた硬化被膜の厚みは約 2ミク ロンであり、 外観に優れたものであった。 特に、 ゴミ付着に起因する不良は認め られなかった。 (3) 反射防止薄膜の形成
上記の方法で得られたレンズを¾½例一 8と同様の方法で反射防 ^を形成し た。
得られた多層膜の反射干渉色は緑色を呈し、 全光線透過率は 99%であった。
(4)試験および評価結果
このようにして得られたレンズは実施例一 2と同様の方法で試験を行ない、 そ の結果を表 1に示した。 なお、 染色性はハードコートレンズの状態で評価を行な つた。
(a) (b) (c) ( d ) (e) (f) (g) (h) (i)
外節 ifnf i麇 密着 性 伸 jSra it it 染^拌 ττΐ Κ 全^線 性 ロロ性 洗剤性 ライフ 透過率 実施例一 1 ◎ A 〇 〇 100/100 〇 〇 〇 〇 〇 89% 実施例一 2 ◎ A 〇 〇 100/100 〇 〇 〇 ― 98% 実施例一 3 ◎ A 〇 〇 100/100 〇 〇 〇 〇 〇 88% 実施例一 4 ◎ A 〇 〇 100/100 〇 〇 〇 ― 98% 実施例一 5 ◎ A 〇 〇 100/100 〇 〇 〇 〇 99% 実施例一 6 ◎ A 〇 〇 100/100 〇 〇 〇 〇 〇 90% 実施例— 7 ◎ A 〇 〇 100/100 〇 〇 〇 ― ― 99% 実施例一 8 ◎ A 〇 〇 100/100 〇 〇 〇 〇 〇 99% 実施例— 9 ◎ A 〇 〇 100/100 〇 〇 〇 〇 99% 実施例一 10 ◎ A 〇 〇 100/100 〇 〇 〇 〇 〇 89% 実施例一 11 ◎ A 〇 〇 100/100 〇 〇 〇 ― 98% 実施例 - 12 ◎ A 〇 〇 100/100 〇 〇 〇 〇 〇 99% 比較例 - 1 ◎ B 〇 〇 100/100 〇 〇 〇 〇 X 89% 比校例 - 2 ◎ E 〇 〇 100/100 〇 〇 X X X 89% 比較例一 3 ◎ D 〇 〇 100/100 〇 〇 X X X 88%
©:優れている 〇:良好 X :不良
以上詳述したように、 本発明によれば、 表面の高硬度化か可能となり、 かつ塗 液の複雑な管理を要することなく塗液のポッ トライフを著しく長くすることが可 能となる。 本発明は、 プラスチックレンズ材料として、 (メタ) アクリル樹脂を はじめとしてスチレン樹脂、 カーボネート樹脂、 ァリル樹脂、 ァリルカーボネー ト樹脂、 ビニル樹脂、 ポリエステル樹脂、 ポリエーテル樹脂、 ウレタン樹脂更に 新たなモノマーゃコモノマ一の重合体等各種機能をもつた樹脂に応用し得る。 優れた生産性 (複雑な塗液管理が不要なことおよび塗液のポッ トライフカ長い こと) および各種耐久性を兼ね備えたプラスチック材料は、 眼鏡レンズ、 カメラ レンズ、 光ビーム蛍光レンズゃ光拡散用レンズとして 用或 Lゝは産業用に広く 応用することができる。 更に本発明は、 ウォッチガラスやディスプレイ用カバー ガラス等の透明ガラスやカバーガラス等の光学用途の透明プラスチック全般に応 用ないし利用することも可能であり、 工業上すこぶる有用である。

Claims

請 求 の 範 囲
1. 重合可能な硬化性成分、 および
硬ィ 媒として、 下記の成分 (A) および (B)、 を含有してなるコーティン グ用組成物。
(A) (ィ) F e (III ) . A 1 (III ) , Sn (IV) あるいは Τ i (IV) を中 心金属原子とするァセチルァセトネート、
(口) 過塩素酸マグネシゥムあるいは過塩素酸ァンモニゥム、
(ハ) 脂 の飽和もしくは不飽和カルボン酸あるいは芳香族カルボン酸また はその無水物、
またはこれらの混合物、 力、らなる群から選ばれる 1種以上の化合物、
(B) L i (I)、 Cu (II)、 Mn (II) あるいは Mn (III ) を中心金属原 子とするァセチルァセトネート。
2. 下記の成分 (C) および (D) を含有する、 請求項 1に言己載のコーティ ング用組成物。
(C)粒径 1〜100ミ リミクロンの S i、 Aし Sn、 Sb、 Ta、 Ce、
L a、 F e、 Z n、 W、 Z r、 I n、 T iから選ばれる 1種以上の金属酸化物か らなる微粒子および/または S i、 A 1、 S n、 S b、 T a、 C e、 L a、 F e、 Zn、 W、 Z r、 I n、 T iからなる群から選ばれる 2種以上の金属酸化物から 構成される複合微粒子。
(D)—般式
Figure imgf000030_0001
で表される有機ゲイ素ィ匕合物 (式中、 R1は重合可能な反応基を有する有機基、 尺2は炭素数1〜6の炭0^素基でぁる。 X1は加水分解 ttSであり、 nは 0ま は 1である。 )
3. 下記式 (E ) で表される有機ゲイ素化合物を含有する、 請求項 1に記載 のコ一ティング用組成物。 x
Figure imgf000031_0001
(式中、 R 3、 R 4は炭素数 1〜 6の炭素水素基である。 X 2、 X ま加水分解
^であり、 γは、 カーボネート基またはエポキシ基を含有する有 sであり、 kおよび mは 0または 1である。 )
4. 成分 (F) として多官能性エポキシ化合物を含有する、 請求項 1に記載 のコーティング用組成物。
5. 基 に、 請求項 1乃至 4の t、ずれか 1項に記載のコーティ ング用組成 物の硬化物からなるコ一ティング が形成され、 さらにコーティング ¾ ^の表 面に無機物質からなる反射防止膜をさらに設けてなる複合構造。
6. 請求項 5に記載の複合構造を有する光学物品。
7. 請求項 6に記載の複合構造を有する眼鏡レンズ。
PCT/JP1997/001349 1996-04-26 1997-04-18 Composition de revetement WO1997041185A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53873197A JP3840664B2 (ja) 1996-04-26 1997-04-18 コーティング用組成物
US08/981,226 US6057039A (en) 1996-04-26 1997-04-18 Coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/107973 1996-04-26
JP10797396 1996-04-26

Publications (1)

Publication Number Publication Date
WO1997041185A1 true WO1997041185A1 (fr) 1997-11-06

Family

ID=14472760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001349 WO1997041185A1 (fr) 1996-04-26 1997-04-18 Composition de revetement

Country Status (3)

Country Link
US (1) US6057039A (ja)
JP (1) JP3840664B2 (ja)
WO (1) WO1997041185A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324846A (ja) * 1997-05-26 1998-12-08 Seiko Epson Corp コーティング用組成物、積層体及び眼鏡レンズ
JPH11116843A (ja) * 1997-10-14 1999-04-27 Seiko Epson Corp コーティング用組成物および複合構造
JP2002528590A (ja) * 1998-10-23 2002-09-03 エスディーシー、コーティングズ、インコーポレーテッド 改良された接着性および改良された耐亀裂形成性を有する、耐磨耗性コーティングを支持体上に与える組成物
JP2002543235A (ja) * 1999-04-23 2002-12-17 エスディーシー、コーティングズ、インコーポレーテッド 耐摩耗性コーティングを形成するための組成物
JP2006077256A (ja) * 2005-10-07 2006-03-23 Seiko Epson Corp コーティング用組成物および複合構造
JP2006089749A (ja) * 1996-04-26 2006-04-06 Seiko Epson Corp コーティング用組成物
JP2006097032A (ja) * 2005-10-07 2006-04-13 Seiko Epson Corp コーティング用組成物、積層体及び眼鏡レンズ
JP3840664B2 (ja) * 1996-04-26 2006-11-01 セイコーエプソン株式会社 コーティング用組成物
WO2007032127A1 (ja) * 2005-09-15 2007-03-22 Hoya Corporation 硬化性組成物及びそれを用いた光学部材
WO2007049711A1 (ja) * 2005-10-26 2007-05-03 Asahi Lite Optical Co., Ltd. コーティング組成物及び透光性を有する樹脂製品
WO2014119736A1 (ja) * 2013-01-31 2014-08-07 ホーヤ レンズ マニュファクチャリング フィリピン インク コーティング組成物および光学物品の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342097B1 (en) * 1999-04-23 2002-01-29 Sdc Coatings, Inc. Composition for providing an abrasion resistant coating on a substrate with a matched refractive index and controlled tintability
US6712994B1 (en) * 1999-11-24 2004-03-30 Brad A. Miller Method and composition for the preservation of film
JP3526439B2 (ja) * 2000-09-29 2004-05-17 Hoya株式会社 眼鏡レンズ用コーティング組成物の製造方法
US6433043B1 (en) * 2000-11-28 2002-08-13 Transitions Optical, Inc. Removable imbibition composition of photochromic compound and kinetic enhancing additive
JP4188672B2 (ja) * 2002-05-31 2008-11-26 篠田プラズマ株式会社 フォトクロミック体、フォトクロミック材料及びその製造方法
US7097704B1 (en) 2002-09-16 2006-08-29 Sdc Technologies, Inc. Tintable abrasion resistant coating composition and methods of making and using same
US7018463B2 (en) * 2003-07-24 2006-03-28 Lens Technology I, Llc Abrasion resistant coating composition
DE102011083960A1 (de) 2011-10-04 2013-04-04 Carl Zeiss Vision International Gmbh Zusammensetzung für die Herstellung einer Beschichtung mit hoher Haft- und Kratzfestigkeit
EP3382429A1 (en) 2017-03-28 2018-10-03 Essilor International Optical article comprising an abrasion- and/or scratch-resistant coating having a low sensitivity to cracks
CN109535583A (zh) * 2017-09-21 2019-03-29 张家港市沐和新材料技术开发有限公司 二氧化钛改性的环氧苯丙树脂复合材料的制备方法
JP7327402B2 (ja) * 2018-08-03 2023-08-16 三菱ケミカル株式会社 積層体及びエポキシ樹脂シートの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247427A (ja) * 1991-02-01 1992-09-03 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液、被膜付基材および液晶表示セル
JPH05271611A (ja) * 1991-05-08 1993-10-19 Ici Americas Inc 水性被覆組成物
JPH06220428A (ja) * 1993-01-28 1994-08-09 Toray Ind Inc 表面改質された防曇性被膜
JPH08295846A (ja) * 1995-03-01 1996-11-12 Seiko Epson Corp コーティング用組成物および積層体
JPH08311391A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物およびその積層体
JPH08311401A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物およびその製造方法および積層体
JPH08311402A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物および積層体
JPH08311240A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物および積層体
JPH08311408A (ja) * 1995-03-15 1996-11-26 Seiko Epson Corp コーティング用組成物およびその製造方法および積層体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213902A (ja) * 1984-04-10 1985-10-26 Seiko Epson Corp 合成樹脂製レンズ
JP2729373B2 (ja) * 1987-01-07 1998-03-18 東京応化工業 株式会社 金属酸化膜形成用塗布液
JP2791662B2 (ja) * 1988-01-25 1998-08-27 セイコーエプソン株式会社 合成樹脂製レンズ
JPH0368901A (ja) * 1989-08-07 1991-03-25 Toray Ind Inc 高屈折率ハードコート膜
JP3133357B2 (ja) * 1990-06-11 2001-02-05 日本エーアールシー株式会社 高屈折率耐擦傷性被膜形成用コーティング組成物および該組成物を用いる成形体
JPH059439A (ja) * 1991-07-02 1993-01-19 Seikoh Chem Co Ltd コーテイング用組成物
JPH05264805A (ja) * 1992-03-18 1993-10-15 Asahi Optical Co Ltd コーティング組成物及びこれを用いたプラスチックレンズ
JP2611093B2 (ja) * 1992-07-07 1997-05-21 ホーヤ株式会社 硬化膜を有する光学部材
JPH07168002A (ja) * 1993-12-15 1995-07-04 Nikon Corp コーティング組成物及びプラスチック基材
JP3203142B2 (ja) * 1994-04-21 2001-08-27 セイコーエプソン株式会社 被膜形成用塗布液および合成樹脂製レンズ
JPH09125003A (ja) * 1995-08-28 1997-05-13 Nissan Chem Ind Ltd コーティング組成物及び光学部材
JPH09227830A (ja) * 1995-12-20 1997-09-02 Seiko Epson Corp コーティング組成物及び該組成物の硬化被膜を有する合成樹脂製レンズ
JP3840664B2 (ja) * 1996-04-26 2006-11-01 セイコーエプソン株式会社 コーティング用組成物
JPH10306258A (ja) * 1997-03-04 1998-11-17 Nissan Chem Ind Ltd コーティング組成物及び光学部材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247427A (ja) * 1991-02-01 1992-09-03 Catalysts & Chem Ind Co Ltd 透明被膜形成用塗布液、被膜付基材および液晶表示セル
JPH05271611A (ja) * 1991-05-08 1993-10-19 Ici Americas Inc 水性被覆組成物
JPH06220428A (ja) * 1993-01-28 1994-08-09 Toray Ind Inc 表面改質された防曇性被膜
JPH08295846A (ja) * 1995-03-01 1996-11-12 Seiko Epson Corp コーティング用組成物および積層体
JPH08311391A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物およびその積層体
JPH08311401A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物およびその製造方法および積層体
JPH08311402A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物および積層体
JPH08311240A (ja) * 1995-03-01 1996-11-26 Seiko Epson Corp コーティング用組成物および積層体
JPH08311408A (ja) * 1995-03-15 1996-11-26 Seiko Epson Corp コーティング用組成物およびその製造方法および積層体

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089749A (ja) * 1996-04-26 2006-04-06 Seiko Epson Corp コーティング用組成物
JP3840664B2 (ja) * 1996-04-26 2006-11-01 セイコーエプソン株式会社 コーティング用組成物
JPH10324846A (ja) * 1997-05-26 1998-12-08 Seiko Epson Corp コーティング用組成物、積層体及び眼鏡レンズ
JPH11116843A (ja) * 1997-10-14 1999-04-27 Seiko Epson Corp コーティング用組成物および複合構造
JP2007291408A (ja) * 1998-10-23 2007-11-08 Sdc Coatings Inc 改良された接着性および改良された耐亀裂形成性を有する、耐磨耗性コーティングを支持体上に与える組成物
JP2002528590A (ja) * 1998-10-23 2002-09-03 エスディーシー、コーティングズ、インコーポレーテッド 改良された接着性および改良された耐亀裂形成性を有する、耐磨耗性コーティングを支持体上に与える組成物
JP2011105943A (ja) * 1998-10-23 2011-06-02 Sdc Coatings Inc 改良された接着性および改良された耐亀裂形成性を有する、耐磨耗性コーティングを支持体上に与える組成物
JP2002543235A (ja) * 1999-04-23 2002-12-17 エスディーシー、コーティングズ、インコーポレーテッド 耐摩耗性コーティングを形成するための組成物
WO2007032127A1 (ja) * 2005-09-15 2007-03-22 Hoya Corporation 硬化性組成物及びそれを用いた光学部材
JP2007077327A (ja) * 2005-09-15 2007-03-29 Hoya Corp 硬化性組成物及びそれを用いた光学部材
JP2006077256A (ja) * 2005-10-07 2006-03-23 Seiko Epson Corp コーティング用組成物および複合構造
JP2006097032A (ja) * 2005-10-07 2006-04-13 Seiko Epson Corp コーティング用組成物、積層体及び眼鏡レンズ
WO2007049711A1 (ja) * 2005-10-26 2007-05-03 Asahi Lite Optical Co., Ltd. コーティング組成物及び透光性を有する樹脂製品
US7820286B2 (en) 2005-10-26 2010-10-26 Asahi Lite Optical Co., Ltd. Coating composition and resin article having optical permeability
JP5000528B2 (ja) * 2005-10-26 2012-08-15 株式会社アサヒオプティカル コーティング組成物及び眼鏡用プラスチックレンズ
WO2014119736A1 (ja) * 2013-01-31 2014-08-07 ホーヤ レンズ マニュファクチャリング フィリピン インク コーティング組成物および光学物品の製造方法
JPWO2014119736A1 (ja) * 2013-01-31 2017-01-26 イーエイチエス レンズ フィリピン インク コーティング組成物および光学物品の製造方法

Also Published As

Publication number Publication date
US6057039A (en) 2000-05-02
JP3840664B2 (ja) 2006-11-01

Similar Documents

Publication Publication Date Title
WO1997041185A1 (fr) Composition de revetement
JP5918138B2 (ja) 光学物品用プライマー組成物及び光学物品
WO2010134464A1 (ja) コーティング組成物および光学物品
JPH11310755A (ja) コーティング用組成物及び積層体
JP5686728B2 (ja) コーティング組成物
JP6480951B2 (ja) コーティング組成物、及び該コーティング組成物よりなるコート層を有する光学物品
JP4745324B2 (ja) プラスチックレンズ
WO1999057212A1 (fr) Composition de revetement, son procede de preparation et lentille de plastique resistant aux rayures
JP5414449B2 (ja) コーティング組成物
JP3852100B2 (ja) コーティング用組成物およびその積層体
JPH08295846A (ja) コーティング用組成物および積層体
JP3837865B2 (ja) コーティング用組成物及び光学物品
JPH08311408A (ja) コーティング用組成物およびその製造方法および積層体
JP3812685B2 (ja) コーティング用組成物および積層体
JPH10292135A (ja) コーティング用組成物、その製造方法および積層体
JPH11199797A (ja) ディッピング用組成物及びディッピング塗装方法
JPH11119001A (ja) プラスチックレンズ
JPH10324846A (ja) コーティング用組成物、積層体及び眼鏡レンズ
JPH08311240A (ja) コーティング用組成物および積層体
JPH08311401A (ja) コーティング用組成物およびその製造方法および積層体
JP2003292896A (ja) コーティング用組成物および積層体
JPH06136318A (ja) コーティング用組成物
JP2006089749A (ja) コーティング用組成物
JP2000284235A (ja) プラスチックレンズ
JP2006057106A (ja) コーティング用組成物、その製造方法および積層体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP SG US

WWE Wipo information: entry into national phase

Ref document number: 08981226

Country of ref document: US