WO1996013381A1 - Meteriau decoratif resistant a l'abrasion - Google Patents
Meteriau decoratif resistant a l'abrasion Download PDFInfo
- Publication number
- WO1996013381A1 WO1996013381A1 PCT/JP1995/002230 JP9502230W WO9613381A1 WO 1996013381 A1 WO1996013381 A1 WO 1996013381A1 JP 9502230 W JP9502230 W JP 9502230W WO 9613381 A1 WO9613381 A1 WO 9613381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- binder
- spherical particles
- coating layer
- material according
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C5/00—Processes for producing special ornamental bodies
- B44C5/04—Ornamental plaques, e.g. decorative panels, decorative veneers
- B44C5/0469—Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper
- B44C5/0476—Ornamental plaques, e.g. decorative panels, decorative veneers comprising a decorative sheet and a core formed by one or more resin impregnated sheets of paper with abrasion resistant properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44C—PRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
- B44C5/00—Processes for producing special ornamental bodies
- B44C5/04—Ornamental plaques, e.g. decorative panels, decorative veneers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/69—Particle size larger than 1000 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
- Y10T428/257—Iron oxide or aluminum oxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
Definitions
- the present invention relates to a decorative material having excellent surface scratch resistance. More specifically, the present invention relates to a coated material comprising a paper, a plastic sheet or film, or a printed surface thereof coated with a coating layer having both excellent wear resistance and flexibility. It is about.
- thermosetting resin an electron beam, etc.
- an overcoating agent to cover the surface of paper, plastic sheets or films, and those printed on them, to protect them from scratches due to friction and scratching.
- Reactive resins such as curable resins have been used.
- the resin to be coated had to be hardened, and therefore the average molecular weight between crosslinks had to be reduced. As a result, there has been a problem that the flexibility force of the resin itself is reduced, and cracks occur when the base material is bent.
- the inventors of the present invention have studied the overcoating agent that is hard to be scratched and the flexibility of the film, and found that the reactive resin has a spherical particle having an average particle diameter specified. Although a certain amount of effect can be obtained by adding a fixed amount, it is not sufficient by itself, and it is necessary to specify the relationship between the average thickness of the coating layer and the average particle size of the spherical particles.
- the decorative material according to the present invention comprises: a base material; a wear-resistant coating layer formed on the material; and a wear-resistant coating layer, wherein the wear-resistant coating layer has spherical particles having an average particle diameter of 3 to 50.
- A and a binder (B) comprising a crosslinkable resin, wherein the content of the spherical particles (A) is 5 to 50% by weight based on the total amount of (A) and (B).
- Spherical particles (A) Force characterized by having a hardness higher than the hardness of the binder (B), and having a force and an average particle diameter d ⁇ ) satisfying the following expression (1). It is.
- t is the average thickness (u rn) of the coating layer.
- the sheet may have any shape such as a sheet-like sheet such as paper, a plastic sheet, or a non-woven fabric, or a sheet-like sheet such as a metal plate, a wooden plate, or a plastic plate. It is preferable to use a sheet-like material because a roll of a sheet-like material is used as a base material in the production process and the capability of producing the decorative material is continuous.
- a substrate having a thickness of 5 to 200 m is preferably used.
- the substrate those having irregularities on the surface or those having a three-dimensional shape can be used.
- the paper used as the base material is, specifically, so-called vinyl wallpaper raw paper in which polyvinyl chloride resin is sol-coated or dry-laminated with thin paper, kraft paper, titanium paper, linter paper, paperboard, gypsum board paper, or paper.
- Examples include high quality paper, coated paper, art paper, sulfuric acid paper, glassine paper, parchment paper, paraffin paper, and Japanese paper.
- paper-like sheets can also be used as a substrate.
- the above paper-like sheet is a glass fiber Examples include inorganic fibers such as fibers, asbestos, potassium titanate fibers, alumina fibers, silica fibers, and carbon fibers, and woven or nonwoven fabrics using organic resins such as polyester and vinylon.
- plastic sheets used as the base material include polyethylene, polypropylene, polyolefin resins such as polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, vinyl chloride-vinyl acetate copolymer, and ethylene glycol.
- Vinyl resins such as vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, vinyl alcohol, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate-isophthalate copolymer, and methyl methacrylate
- Acrylic resins such as polyethyl methacrylate, polyethyl acrylate, and polybutyl acrylate; polyamides such as nylon 6, nylon 66; cellulose resins such as cellulose triacetate and cellophane; polystyrene;
- Polycarbonate, polyarylate, synthetic resin films such as polyimide, or sheet include single layer body or a laminated strength one Bok '.
- the metal used as the metal foil include aluminum, stainless steel, iron, and copper.
- Examples of the board used as the base material include wood veneer, wood plywood, particle board, wood board such as MDF (medium density fiber board), gypsum board, gypsum-based board such as gypsum slag board, and calcium silicate.
- Cement board such as board, asbestos slate board, lightweight foam concrete board, hollow extruded cement board, pulp cement board, fiber cement board such as asbestos cement board, wood chip cement board, etc., pottery, porcelain, stoneware, earthenware, glass, enamel
- Metal plates such as ceramic plates, iron plates, zinc plating steel plates, polyvinyl chloride sol coated steel plates, aluminum plates, copper plates, etc., thermoplastic resin plates such as polyolefin resin plates, acrylic resin plates, ABS plates, polycarbonate plates, etc.
- FRP plate obtained by impregnating and curing a resin such as an epoxy resin, a melamine resin, or a diaryl phthalate resin into a glass fiber nonwoven fabric, a cloth, paper, or other various fibrous base materials and reconstituted.
- a composite substrate obtained by laminating two or more of the above various substrates by a known means such as an adhesive or heat fusion may be used.
- the spherical particles (A) used in the present invention are spherical or similar in shape.
- the spherical particles preferably include fused alumina, Bayer method alumina, zirconia, titania or a eutectic mixture of these having a particle size of 1300 kg Zmm_mm. Among them, preferred are those having a gnu @ degree of at least 800 kgZmm 2 , and specific examples include fused alumina.
- noo degree refers to the microindentation hardness measured using a Knoop indenter.
- the load when a diamond-shaped indentation is formed on the test surface is calculated from the length of the longer diagonal line of the permanent dent. It means the value represented by the quotient divided by the ⁇ area of the dent.
- the method for measuring the Knoop hardness is described in ASTM C-849.
- a method for making the shape of the inorganic particles spherical As a method for making the shape of the inorganic particles spherical, a method in which the above-mentioned crushed amorphous inorganic material is put into a high-temperature furnace having a melting point of J :, melted and made spherical using surface tension, and the above-mentioned inorganic material has a melting point or higher. A method in which the material melted at a high temperature is blown out into a mist and formed into a spherical shape.
- the content of the spherical particles in the composition constituting the wear-resistant coating layer in the present invention is usually 5 to 50% by weight, preferably 10 to 40% by weight.
- the average particle diameter of the spherical particles is usually 3 to 50 // m, preferably 8 to 40 ⁇ m. If the c average particle diameter is less than 3 ⁇ m, the coating becomes opaque, which is not preferable. On the other hand, if the average particle size exceeds 50 ⁇ m, the film thickness becomes too large compared to the thickness of the coating agent usually used, so that the surface smoothness of the film deteriorates.
- the film thickness and the above average particle diameter d must satisfy the following expression (1).
- the average particle size exceeds 3.0 t, the particles protrude from the surface of the coating layer and the appearance of the coating layer deteriorates. If the average particle size is less than 0.3 t, the abrasion resistance of the coating layer deteriorates, which is not preferable. .
- the spherical particles may have a smooth curved surface, such as a true sphere, an elliptical sphere obtained by flattening a sphere, and a shape close to the true sphere or ellipsoid.
- Spherical particles are preferably spherical particles having no ⁇ or corner on the particle surface, that is, without a so-called cutting edge.
- Spherical particles greatly improve the abrasion resistance of the surface resin layer itself, compared with amorphous particles of the same material, and do not abrasion the surface. It has the feature that it does not wear, and the transparency of the coating film is also high. If there is no cutting edge, especially its effect is large.
- the material of the spherical particles is preferably one having a higher hardness than a crosslinkable resin described later. Both miL particles and organic resin particles can be used.
- the difference in hardness between the spherical particles and the crosslinkable resin is as follows.
- the hardness is measured by a method such as Mohs hardness or Vickers hardness, and is preferably 1 J when expressed in Mohs hardness.
- the Mohs hardness in this case follows the typical definition of Mohs hardness, and is based on the hardness of the following 10 minerals. Measurement.
- the material of the spherical particles include inorganic particles such as ⁇ -alumina, silica, chromium oxide, iron oxide, diamond, and graphite; and organic resin particles such as synthetic resin beads such as cross-linked acryl.
- Particularly preferred spherical particles include spherical ⁇ -alumina because they have extremely high hardness and a large effect on abrasion resistance, and because they have a spherical force ⁇ relatively easily obtainable.
- spherical ⁇ -alumina is obtained by using a mineralizer or a crystallizing agent such as alumina hydrate, halogenated ⁇ , and quenched compound.
- a mineralizer or a crystallizing agent such as alumina hydrate, halogenated ⁇ , and quenched compound.
- Spherical alumina (Sph elical Alumin a) AS-10> AS-20 AS-30, AS-40, AS-50J are available on the market with various average particle diameters.
- Spherical particles can have their surface treated. For example, treatment with a fatty acid such as stearic acid improves dispersibility. Further, by treating the surface with a silane coupling agent, the adhesion between the crosslinkable resin as a binder and the dispersibility of the particles in the ⁇ H compound are improved.
- the silane coupling agent include: vinyl (meth) acryl and the like; a radical double bond (alkoxysilane having an unsaturated bond) such as methacryl; and alkoxy silane having a functional group such as epoxy, amino and mercapto therein.
- the silane coupling agent may be used, for example, in the case of an electron-curable resin such as (meth) acrylate. Is an alkoxysilane having a radical heavy unsaturated bond. In the case of two-component hardened resin, an epoxy group or an aminosilane-containing alkoxysilane is used. It is preferable to select the type of government food, etc.
- alkoxysilane having a radial unsaturated biunsaturated bond include 7-methacryloxypropyltrimethoxysilane, 7-methacryloxypropylmethylsimethoxysilane, methacryloxypropyldimethylmethoxysilane, and methacryloxypropyl.
- the method of treating the surface of the spherical particles with the silane coupling agent is not particularly limited, and a known method can be used.
- the ⁇ method is to spray a predetermined amount of silane coupling agent while vigorously stirring the spherical particles, or the wet method is to disperse the spherical particles offshore, such as toluene, and then apply a predetermined amount of silane coupling.
- the ability to react by adding an agent can be mentioned.
- the treatment amount (required amount) of the silane coupling agent to the spherical particles is preferably a treatment amount such that the minimum coating amount of the silane coupling agent is 100 J: based on the ratio table of spherical particles of 100. If the minimum coverage area of the spherical particles is less than 10 with respect to the spherical particle ratio table of 100, the effect is not so large.
- thermosetting resin As the crosslinkable resin (reactive resin) constituting the binder (B) used in the present invention, a thermosetting resin and an electro- and radiation-curable resin can be used.
- thermosetting resin used for the binder may be a publicly known one. Examples include urethane grease, epoxy grease, alkyd grease, and unsaturated polyester grease.
- Aspect 5 As the urethane resin, the first liquid consisting of a polyol compound having an average of two or more hydroxyl groups in its ⁇ structure, and the second liquid consisting of a polyisocyanate compound And an isocyanate group in which the SJ is 0.7 to 1.5.
- the radiation curable resin used as one component of the binder examples include compounds having one or more radical heavy ⁇ double bonds in the structure. Specific examples thereof include unsaturated polyester resin and (meth) acryloyl. Compounds having a group ⁇ [monofunctional (meth) acrylic ester, polyfunctional (meth) acrylic ester, urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, etc.], vinyl compound [styrene, divinyl Benzene etc.], aryl compounds [diallyl phthalate etc.] and mixtures of these two R ⁇ .
- a more preferable binder resin in the present invention is an electron beam curable resin, and a particularly preferable one is a polyether-based urethane (meth) acrylate represented by the following formula (2).
- diisocyanate used in the polyether-based urethane (meth) acrylate a known diisocyanate can be used. Specific examples thereof include isophorone disocyanate, dicyclohexyl methane diisocyanate, hexamethylene diisocyanate, diphenyl methane diisocyanate, and tolylene diisocyanate.
- polyester diol used for producing the above-mentioned polyether-based urethane (meth) acrylate examples include polyoxypropylene glycol, polyoxyethylene glycol, and polyoxytetramethylene glycol having a molecular weight of 500 to 3,000. Power ⁇
- the amount used is preferably 10% by weight of the total amount, which is less than 10% by weight.
- the flexibility of the resin itself is reduced, and there is a tendency for the substrate to crack when bent.
- the radiation includes ultraviolet rays and electricity.
- a known ultraviolet irradiation device equipped with a high-pressure mercury lamp, a metal halide lamp, or the like can be used.
- the irradiation amount of the ultraviolet ray for curing is preferably 50 to: L, OOO m JZ cm. If the irradiation amount is less than 50 mJZcm, the curing is insufficient, and if it exceeds 1,000 mJ ⁇ : ⁇ , the cured coating film may be yellowed and deteriorated.
- a known electron beam irradiation device can be used.
- the irradiation amount of the electron is preferably 1-2 OM rad.
- the irradiation dose is less than 1 Mrad, curing will be insufficient, and if it exceeds 1 OMrad, the cured coating film or substrate (paper, plastic sheet, film, etc.) will be strongly damaged and deteriorated There is a possibility.
- the average molecular weight between crosslinks after the reaction of the binder resin is usually
- the range is preferably from 180 to 100, more preferably from 200 to 800, and most preferably from 250 to 500.
- the average amount between crosslinks as used herein means a value represented by mZ [2 x (f—1)], where f is the average number of double bonds of the crosslinkable resin and m is the average molecular weight. means.
- the (average) average amount between crosslinks can be represented by the following formula.
- Table 1 below shows an experimental example in which the relationship between wear resistance and flexibility when the average amount of crosslinkable resin in the crosslinkable resin was changed was examined.
- Table 1 shows that the urethane acrylate oligomer and the acrylate monomer 2 were used as the crosslinkable resin, and the mixing ratio of the components was changed to adjust the average cross-linking distance, respectively.
- the average particle diameter was 30 / m as spherical particles.
- the abrasion resistance when the yarn coated with 11 parts by weight of 100 parts by weight of the crosslinkable resin was coated with ⁇ -alumina of the above at a coating amount of 25 gZm 2 and cured. It is a comparison of flexibility.
- the abrasion resistance test was performed according to JISK6902, and the number of times until the thickness of the resin layer became half was shown.
- the flexibility is ⁇ if the cured crosslinkable resin is very flexible, ⁇ if it is good, ⁇ ⁇ if it is slightly less flexible, and Lower values are indicated by x.
- a conventional ⁇ -alumina having an irregular force with an average particle diameter of 30 / im was added in the same amount as in Experiment Nos. 1 to 5 without using spherical particles. It was done.
- the average molecular weight between crosslinks is so powerful that it can be used in the range of 180 to 100, more preferably 200 to 800.
- the average molecular weight between crosslinks is preferably from 300 to 700. Good cosmetic materials can be obtained.
- the yarn of the present invention In order to provide the product for coating, a low viscosity is preferable from the viewpoint of workability.
- the viscosity at the temperature at which it is used for the coating is preferably less than 500 centimeters, more preferably less than 200 centimeters. If the viscosity exceeds 500 cmvoise, workability may deteriorate and a smooth coated surface may not be obtained.
- a binder is dissolved to adjust the viscosity, and one or more solvents having a boiling point at normal pressure of 70 ° C to 150 ° C,
- the above translations can be used for paints, inks, etc.
- Examples include ketones such as aromatic hydrogen fluoride such as toluene and xylene, acetone, methylethyl ketone, methyl isobutyl ketone, cyclohexanone, acid esters such as ethyl acetate, isopropyl acetate, and amyl acetate, methyl alcohol, and alcohol.
- Alcohols such as methyl alcohol and isopropyl alcohol; ethers such as dioxane, tetrahydrofuran and diisopropyl ether; and mixtures of the two]].
- the binder used in the present invention may further optionally contain additives normally added to paints and inks, such as a photopolymerization initiator, an antifoaming agent, a leveling agent, and a coupling agent. be able to.
- additives normally added to paints and inks such as a photopolymerization initiator, an antifoaming agent, a leveling agent, and a coupling agent.
- thermosetting ib ⁇ examples include tertiary butyl peroxybenzoate, benzoyl peroxide, and methyl ethyl ketone.
- Peroxides such as peroxysides; and azo compounds such as azobisisobutyronitrile and azobisisovaleronitrile.
- thermosetting resin used when the binder is an epoxy resin examples include imidazoles such as 2-methyl-4-ethylimidazole, and phenols such as phenol, cresol and bisphenol A.
- thermosetting resin used when the binder is a two-component polyurethane resin in the present invention examples include dibutyltin dilaurate, tin octylate, and triethylamine.
- the amount of TO used is usually 10% by weight or less, preferably 5% by weight or less based on the weight of the binder.
- preferred photopolymerization initiators used when the binder resin is an ultraviolet-curable resin include benzoin alkyl ether, benzyl dimethyl ketone, 1-hydroxycyclohexylphenyl ketone, and 2-hydroxy-ketone. 2—me Examples include butyl-1-phenylpropane-11-one, benzophenone, methylbenzoylformate, and isopropylthioxanthone.
- the amount of the photopolymerization initiator is usually 20% by weight or less, preferably 6% by weight or less based on the weight of the binder.
- the ⁇ r composition comprising the crosslinkable resin as the binder and the spherical particles includes, in addition to the above components, a coloring agent such as a dye or a pigment, and other C a C O 3 , B a SO ⁇ nylon resin.
- a coloring agent such as a dye or a pigment
- other C a C O 3 , B a SO ⁇ nylon resin such as flum beads »Fillers such as J and bulking agents, and other additives can be added.
- the abrasion-resistant resin layer is applied to the surface of the ⁇ material: a direct coating method in which a D fiJ ⁇ material is directly applied, or after the abrasion-resistant resin layer is previously formed on the surface of the releasable base material, A transfer coating method in which a layer is transferred to the surface of a substrate is used. If the material of the substrate is not coated with the coating: oa component, any of the above 1 and ⁇ ⁇ may be used. When using, or when using a substrate with an uneven surface or uniform coating thickness, or when you want to form a uniform abrasion resistance by uniformizing the intensity of the radiation! The power of the transfer coating method 2 is preferred.
- the direct coating method described in (1) above includes gravure coat, gravure reverse coat, gravure offset coat, spinner coat, roll coat, linox roll coat, kiss coat, wheeler coat, dip coat, silk coat screen coating, and wire bar coat.
- the ability to use a flow coat, a comma coat, a pouring coat, a printing coat, a spray coat, and the like is preferable.
- the transfer coating method (2) is a method shown in the following (a) to (d), in which a thin sheet (film) substrate is first formed, cross-linked and cured, and then coated on the surface of the material.
- the laminating method ((a) and (b)) in which the coating film of the composition is adhered to the three-dimensional object together with the substrate, once the adhesive layer is formed on the ⁇ I support sheet as necessary, the transfer sheet comprising cross-linked and hardened, the contact After wearing the three-dimensional object on its side, supported ⁇ sheet only c can utilize means such as a transfer method (c) of peeling Incidentally, a thin sheet substrate, abrasion
- the same various coating means as in the above-mentioned direct coating method can be used.
- step (A) when the radiation-curable resin diluted with ⁇ is used, a step of drying is performed between steps (A) and (B).
- the base material is a highly permeable material such as paper, it is possible to reliably prevent resin from leaking to the back side of the base material, that is, to prevent so-called “unevenness”.
- a good wear-resistant resin layer can be easily formed on the surface.
- the radiation-irradiation equipment used to cure the radiation-curable resin uses ultra-high-pressure mercury lamps or high-pressure mercury lamps when irradiating ultraviolet rays.
- ultra-high-pressure mercury lamps or high-pressure mercury lamps when irradiating ultraviolet rays.
- ISffi mercury lamps, carbon arc lamps, black light lamps, metal halide lamps, etc. are used, and when irradiating electricity, Cockloft Dalton type, Bande graph type, Resonant transformer type, Insulating core
- Various types of electron beam accelerators such as transformer type, linear type, dynamitron type, and high frequency type are used.
- an electron having an energy of usually 100 to 100, preferably 100 to 300 keV is irradiated at about 0.1 to 3 OM rad. Irradiate in quantity.
- the coating composition may be heated after XX in order to accelerate the curing reaction of the thermosetting resin.
- the heating time is, for example, usually 40 to 60 for an isocyanate hard i unsaturated polyester resin or a polyurethane resin. C for 1-5 days, and in the case of polysiloxane resin, it is usually 1-30 minutes at 80-150 ° C.
- the decorative material of the present invention comprises a base material and a wear-resistant resin layer provided on the surface of the base material.
- a force that can be composed only can be constructed by providing a pattern on the surface of the base material and further providing a wear-resistant resin layer on the surface.
- the picture is formed by printing on a vehicle using a printing ink in which a known coloring agent such as a pigment and a dye, an extender pigment, a solvent, a stabilizer, a plasticizer, ⁇ y ⁇ , a curing agent and the like are appropriately mixed as required.
- a thermoplastic resin, a thermosetting resin, an radiation-curable resin, or the like which is selected according to required physical properties, printability, and the like.
- an organic or non-organic pigment commonly used can be used.
- a liquid having a solvent and a moderate drying property which is capable of dissolving a coloring agent such as resin and pigment of a vehicle, and other additives, is used. From the viewpoint of solubility, it is preferable to select a liquid having a solubility parameter similar to that of the vehicle for 3 ⁇ 4.
- the pattern may be partially provided in a pattern (for example, a pattern such as a grain of wood, a cloth, a figure, or a character), or may be provided on the front surface of the base material.
- the partial pattern is provided, for example, when a part of the pattern (for example, a shining part of a wood grain pattern) is particularly emphasized, and the like, and the entire pattern is provided in a solid pattern pattern as a whole. This is the case when an interference appearance appears.
- a part of the pattern for example, a shining part of a wood grain pattern
- the entire pattern is provided in a solid pattern pattern as a whole. This is the case when an interference appearance appears.
- a surface resin layer is provided on the surface of the base material, a pattern-shaped concave portion is formed on the surface, and the concave portion on the surface of the surface resin layer is filled with a normal coloring ink by wiping to form a wiping ink layer. It is also possible to provide a wear-resistant resin layer on the outermost surface. Further, the concave portion and the wiping ink layer may be provided directly and partially on the surface of the base material.
- a wiping ink layer of a colored ink filled with wiping in a cosmetic material the following method power is used.
- a coating including a colored ink After coating a DM material, a coated surface resin layer of the coating material is applied. The upper surface is wiped off with a roller having a doctor blade, air knife, sponge, or the like as the surface material, and the objects on the convex portions are removed.
- This wiping process is colored -11 1-By using a material, it is possible to synchronize the pattern and the concave part, especially using the pattern as a grain, so that the appearance of the conduit part of the grain can be favorably improved.
- a transparent resin is used for the surface resin layer.
- the abrasion-resistant cosmetic material of the present invention is suitable for various uses, and is useful, for example, for decoration of surfaces of buildings, vehicles, ships, furniture, musical instruments, cabinets and the like, and decoration of packaging materials.
- the cosmetic material of the present invention is most suitable for fields requiring abrasion resistance.
- Aerozil 200 parts 0.5 parts Anti-settling agent [Orben, manufactured by Shiraishi Kogyo Co., Ltd.] 0.5 parts These were uniformly mixed with a planetary mixer. This is designated as Main Agent 1.
- Main Agent 1 The viscosity of a mixture obtained by uniformly mixing 100 parts of the main ingredient 1 with 17 parts of m-xylylenediamine and 20 parts of toluene was 400 centimeters.
- AEROSIL 200 0.5 part Toluene 5 parts The viscosity of a mixture of these was 440 centipoise. The average molecular weight between crosslinks of the reactive resin was 272.
- AEROSIL 200 0.5 part The viscosity of the mixture obtained was 740 centiboise. The average molecular weight between crosslinks of the reactive resin was 287.
- AEROSIL 200 0.5 parts Etyl drose 10 parts The viscosity of the mixture was 440 centimeters.
- Aerosil 200 0.5 parts Toluene 5 parts The viscosity of a mixture obtained by mixing these uniformly was 400 centimeters.
- Aerozil 200 0.5 parts The viscosity of those obtained by uniformly mixing them was ⁇ ⁇ ⁇ 20 cm.
- 2-hydroxy-3 -phenoxypropyl acrylate 1 1 part bis (methacryloxypropyl) poly (dimethylsiloxane) 3 parts thixotropy-imparting agent [manufactured by Nippon Aerosil Co., Ltd.
- Aerosil 200 0.5 parts Ethyl acetate 10 parts The viscosity of a mixture obtained by mixing them uniformly was 400 cm.
- the decorative material of the present invention a specific amount of spherical particles having an average particle diameter in a specific range is added to a crosslinkable resin in a coating layer, and the relationship between the average film thickness of the coating layer and the above spherical particles is specified.
- This makes it possible to obtain a cosmetic material which is excellent in both scratch resistance and flexibility of the coating film, and which is excellent in transparency and surface smoothness of the coating film. Therefore, the decorative material of the present invention is hardly damaged by friction or pulling, and is flexible and does not crack even when the substrate is bent, and has a good appearance. You.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/666,407 US5928778A (en) | 1994-10-31 | 1995-10-31 | Decorative material having abrasion resistance |
AU43214/96A AU710878B2 (en) | 1994-10-31 | 1995-10-31 | Decorative material having abrasion resistance |
EP95935596A EP0737567B1 (en) | 1994-10-31 | 1995-10-31 | Decorative material having abrasion resistance |
CA 2180158 CA2180158C (en) | 1994-10-31 | 1995-10-31 | Decorative material having abrasion resistance |
DE1995631485 DE69531485T2 (de) | 1994-10-31 | 1995-10-31 | Dekormaterial mit abriebbeständigkeit |
HK98110063A HK1009262A1 (en) | 1994-10-31 | 1998-08-21 | Decorative material having abrasion resistance |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29070694 | 1994-10-31 | ||
JP6/290706 | 1994-10-31 | ||
JP15859195A JP2740943B2 (ja) | 1994-10-31 | 1995-06-01 | 耐摩耗性を有する化粧材 |
JP7/158591 | 1995-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996013381A1 true WO1996013381A1 (fr) | 1996-05-09 |
Family
ID=26485651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1995/002230 WO1996013381A1 (fr) | 1994-10-31 | 1995-10-31 | Meteriau decoratif resistant a l'abrasion |
Country Status (10)
Country | Link |
---|---|
US (2) | US5928778A (ja) |
EP (1) | EP0737567B1 (ja) |
JP (1) | JP2740943B2 (ja) |
KR (1) | KR100354946B1 (ja) |
CN (1) | CN1076663C (ja) |
AU (1) | AU710878B2 (ja) |
CA (1) | CA2180158C (ja) |
DE (1) | DE69531485T2 (ja) |
HK (1) | HK1009262A1 (ja) |
WO (1) | WO1996013381A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106594100A (zh) * | 2017-02-20 | 2017-04-26 | 苏州赛斯德工程设备有限公司 | 一种高强度耐磨万向节联轴器 |
CN116376390A (zh) * | 2023-04-10 | 2023-07-04 | 江苏士林电气集团有限公司 | 一种用于电动汽车的轻质化装饰材料 |
Families Citing this family (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19535158A1 (de) * | 1995-09-22 | 1997-03-27 | Schock & Co Gmbh | Integrales plattenförmiges Bauteil und Verfahren zu seiner Herstellung |
US6228463B1 (en) | 1997-02-20 | 2001-05-08 | Mannington Mills, Inc. | Contrasting gloss surface coverings optionally containing dispersed wear-resistant particles and methods of making the same |
US6218001B1 (en) * | 1997-10-22 | 2001-04-17 | Mannington Mills, Inc. | Surface coverings containing dispersed wear-resistant particles and methods of making the same |
US6291078B1 (en) | 1997-10-22 | 2001-09-18 | Mannington Mills, Inc. | Surface coverings containing aluminum oxide |
DE19709280B4 (de) * | 1997-03-07 | 2004-03-04 | Heraeus Kulzer Gmbh & Co. Kg | Verfahren zur Herstellung von dekorierten metallischen Schmuckgegenständen und Verwendung einer photopolymerisierbaren Zusammensetzung zur Dekoration von metallischen Schmuckgegenständen m |
US6228433B1 (en) * | 1997-05-02 | 2001-05-08 | Permagrain Products, Inc. | Abrasion resistant urethane coatings |
JP4003990B2 (ja) * | 1998-02-19 | 2007-11-07 | 大日本印刷株式会社 | 化粧材 |
US6852399B2 (en) * | 1998-07-14 | 2005-02-08 | Dai Nippon Printing Co., Ltd. | Decorative material |
DE60045334D1 (de) * | 1999-01-22 | 2011-01-20 | Coveright Surfaces Holding Gmbh | Synthetischer harzfilm für laminate und verfahren zu dessen herstellung |
US6291054B1 (en) * | 1999-02-19 | 2001-09-18 | E. I. Du Pont De Nemours And Company | Abrasion resistant coatings |
DE19927549A1 (de) * | 1999-06-16 | 2000-12-21 | Targor Gmbh | Schichtverbundmaterial mit einer Zwischenlage aus einem thermoplastischen Kunststoff |
KR100409016B1 (ko) * | 1999-06-26 | 2003-12-11 | 주식회사 엘지화학 | 표면층에 폴리에티렌테레프탈레이트 필름층을 포함하는바닥장식재 및 그의 제조방법 |
SE516696C2 (sv) | 1999-12-23 | 2002-02-12 | Perstorp Flooring Ab | Förfarande för framställning av ytelement vilka innefattar ett övre dekorativt skikt samt ytelement framställda enlit förfarandet |
EP1113048A3 (en) | 1999-12-27 | 2002-01-30 | General Electric Company | Hydrophobicity imparting particulate |
US6399670B1 (en) | 2000-01-21 | 2002-06-04 | Congoleum Corporation | Coating having macroscopic texture and process for making same |
US6517674B1 (en) | 2000-02-02 | 2003-02-11 | The Mead Corporation | Process for manufacturing wear resistant paper |
WO2002024446A1 (en) * | 2000-09-21 | 2002-03-28 | 3M Innovative Properties Company | Abrasion-resistant laminate |
JP4061014B2 (ja) | 2000-09-28 | 2008-03-12 | 大日本印刷株式会社 | 化粧材 |
WO2002036524A1 (en) * | 2000-11-01 | 2002-05-10 | Valspar Sourcing, Inc. | Abrasion resistant coating for stacks of fiber cement siding |
US8258225B2 (en) * | 2000-12-08 | 2012-09-04 | Ppg Industries Ohio, Inc | Coating compositions providing improved mar and scratch resistance and methods of using the same |
US20020137872A1 (en) * | 2000-12-08 | 2002-09-26 | Schneider John R. | Coating compositions providing improved mar and scratch resistance and methods of using the same |
KR100404508B1 (ko) * | 2001-02-13 | 2003-11-05 | 주식회사 엘지화학 | 내손상성이 우수한 염화비닐수지 시트 및 그 제조방법 |
US6544315B2 (en) * | 2001-03-12 | 2003-04-08 | Gadi Har-Shai | Sintered jewelry and decorative articles |
JP4759847B2 (ja) * | 2001-05-23 | 2011-08-31 | 大日本印刷株式会社 | 化粧シート及び化粧材 |
US20080063844A1 (en) * | 2001-06-29 | 2008-03-13 | Mannington Mills, Inc. | Surface coverings containing aluminum oxide |
US6844374B2 (en) * | 2001-10-03 | 2005-01-18 | Lord Corporation | Enhanced scratch resistant coatings using inorganic fillers |
AT410300B (de) * | 2001-11-22 | 2003-03-25 | Pap Star Vertriebsgesellschaft | Papiertuch |
DE10161093B4 (de) * | 2001-12-12 | 2008-04-17 | Ackner, Friedrich | Kratz- und abriebfeste Dekorfolie und Verfahren zu deren Herstellung |
EP1488923A1 (en) * | 2002-03-01 | 2004-12-22 | C. I. Kasei Company, Limited | Decorative sheet and process for producing the same |
JP4064130B2 (ja) * | 2002-03-15 | 2008-03-19 | 株式会社きもと | 透明ハードコートフィルム |
US6818282B2 (en) * | 2002-05-14 | 2004-11-16 | Awi Licensing Company | Resilient flooring structure with encapsulated fabric |
US6841802B2 (en) * | 2002-06-26 | 2005-01-11 | Oriol, Inc. | Thin film light emitting diode |
JP4508520B2 (ja) * | 2002-07-12 | 2010-07-21 | 大日本印刷株式会社 | 化粧板およびその製造方法 |
US7001667B2 (en) * | 2002-07-17 | 2006-02-21 | Ppg Industries Ohio, Inc. | Alkyd-based free radical wood coating compositions |
WO2004110743A1 (en) * | 2002-09-12 | 2004-12-23 | Wilson Richard C | Laminate structure suitable for furniture exeriors |
US20060141213A1 (en) * | 2002-09-12 | 2006-06-29 | Wilson Richard C | Laminate structure suitable for furniture exteriors |
US20040071978A1 (en) * | 2002-10-15 | 2004-04-15 | Omnova Solutions Inc. | Laminate and method of production |
US7052734B2 (en) * | 2003-09-25 | 2006-05-30 | General Dynamics Land Systems Inc. | Integral pigments in composite surfaces |
US20050075023A1 (en) * | 2003-10-03 | 2005-04-07 | Ayata Yusuf Kemal | Non-slip materials and articles and methods of making thereof |
US7479653B2 (en) * | 2003-12-04 | 2009-01-20 | Henkel Ag & Co Kgaa | UV curable protective encapsulant |
CN100469569C (zh) * | 2004-01-06 | 2009-03-18 | 艾弗里·丹尼森公司 | 织纹网印层压体 |
DE102004008772A1 (de) * | 2004-02-23 | 2005-09-08 | Institut für Neue Materialien Gemeinnützige GmbH | Abriebbeständige und alkalibeständige Beschichtungen oder Formkörper mit Niedrigenergieoberfläche |
US7585426B2 (en) * | 2004-03-26 | 2009-09-08 | Arrowstar, Llc | Compositions and methods for imparting stain resistance, liquid repellency, and enhanced antimicrobial activity to an article and articles thereof |
US20050260414A1 (en) * | 2004-05-18 | 2005-11-24 | Macqueen Richard C | Coatings having low surface energy |
US7435462B2 (en) * | 2004-05-28 | 2008-10-14 | Arkema France | Thermoplastic article with a printable matte surface |
JP2006016529A (ja) * | 2004-07-02 | 2006-01-19 | Dainippon Ink & Chem Inc | 化粧シート用活性エネルギー線硬化性コーティング組成物及び化粧シート |
JP2006016528A (ja) * | 2004-07-02 | 2006-01-19 | Dainippon Ink & Chem Inc | 化粧シート用コーティング組成物及び化粧シート |
DE102004038675B4 (de) * | 2004-08-10 | 2009-07-23 | MöllerTech GmbH | Verfahren zum Herstellen eines Bauteils und Bauteil |
JP4703180B2 (ja) * | 2004-12-28 | 2011-06-15 | リンテック株式会社 | コーティング用組成物、ハードコートフィルムおよび光記録媒体 |
US20090047477A1 (en) * | 2005-07-06 | 2009-02-19 | Roys John E | Textured Screen-Printed Laminates |
EP2404729B1 (en) | 2005-10-21 | 2020-06-17 | Entrotech, Inc. | Composite articles comprising protective sheets and related methods |
AT502200B1 (de) * | 2005-11-08 | 2007-02-15 | Otmar Mag Oehlinger | Werbetafel |
AU2006315105C1 (en) | 2005-11-15 | 2012-08-16 | Swimc Llc | Crush resistant latex topcoat composition for fiber cement substrates |
WO2007090131A1 (en) | 2006-01-31 | 2007-08-09 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
US9783622B2 (en) | 2006-01-31 | 2017-10-10 | Axalta Coating Systems Ip Co., Llc | Coating system for cement composite articles |
EP1979426A1 (en) | 2006-01-31 | 2008-10-15 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
WO2007090132A1 (en) * | 2006-01-31 | 2007-08-09 | Valspar Sourcing, Inc. | Method for coating a cement fiberboard article |
EP2361955B1 (en) * | 2006-05-19 | 2014-12-17 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
US7812090B2 (en) | 2006-06-02 | 2010-10-12 | Valspar Sourcing, Inc. | High performance aqueous coating compositions |
CA2655125C (en) * | 2006-06-02 | 2014-10-14 | Valspar Sourcing, Inc. | High performance aqueous coating compositions |
WO2008005228A2 (en) * | 2006-06-30 | 2008-01-10 | Omnova Solutions Inc. | Coating compositions and related products and methods |
US8932718B2 (en) | 2006-07-07 | 2015-01-13 | Valspar Sourcing, Inc. | Coating systems for cement composite articles |
DE102006049062A1 (de) * | 2006-10-13 | 2008-04-17 | Christian Pluta | Verschleißschutzbeschichtung |
US8545960B2 (en) | 2006-10-23 | 2013-10-01 | Entrotech, Inc. | Articles comprising protective sheets and related methods |
US8415005B2 (en) * | 2006-11-03 | 2013-04-09 | Dirk Richter | Non-stick coating |
MX2008002220A (es) | 2007-02-16 | 2009-02-25 | Valspar Sourcing Inc | Tratamiento para articulos compuestos de cemento. |
JP2007185965A (ja) * | 2007-02-28 | 2007-07-26 | Dainippon Printing Co Ltd | 化粧シートの製造方法およびその製造方法により製造された化粧シートが表面に積層されている建具・造作部材。 |
JP5486151B2 (ja) * | 2007-04-05 | 2014-05-07 | 中国塗料株式会社 | 防塵性および滑り止め性に優れた塗膜およびその塗膜を形成しうる塗料 |
ATE552124T1 (de) * | 2007-05-15 | 2012-04-15 | Flooring Ind Ltd Sarl | Herstellungsverfahren für tafeln und dadurch gewonnene tafel |
CN101104701A (zh) * | 2007-06-26 | 2008-01-16 | 张少华 | 膜转移法制备高耐磨和高抗冲性有机玻璃的方法 |
WO2009041964A1 (en) | 2007-09-25 | 2009-04-02 | Entrotech, Inc. | Paint replacement films, composites therefrom, and related methods |
US20090087643A1 (en) * | 2007-10-02 | 2009-04-02 | Gottzmann Andreas M | Laminate Surface Layer Without an Overlay and Method of Manufacture |
US10981371B2 (en) | 2008-01-19 | 2021-04-20 | Entrotech, Inc. | Protected graphics and related methods |
US20090246439A1 (en) * | 2008-03-31 | 2009-10-01 | 3M Innovative Properties Company | Decorative sheet |
US7867358B2 (en) | 2008-04-30 | 2011-01-11 | Xyleco, Inc. | Paper products and methods and systems for manufacturing such products |
US7846295B1 (en) * | 2008-04-30 | 2010-12-07 | Xyleco, Inc. | Cellulosic and lignocellulosic structural materials and methods and systems for manufacturing such materials |
AU2009281835B2 (en) | 2008-08-15 | 2015-02-05 | Swimc Llc | Self-etching cementitious substrate coating composition |
WO2010060109A1 (en) | 2008-11-24 | 2010-05-27 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
ITMT20080001A1 (it) * | 2008-12-03 | 2010-06-03 | Adamo Filippo D | Pannello lavorato |
JP2010257952A (ja) * | 2009-03-31 | 2010-11-11 | Jsr Corp | 電線被覆用放射線硬化性樹脂組成物 |
ITMI20100440A1 (it) * | 2010-03-18 | 2011-09-19 | Dow Global Technologies Inc | Processo per la preparazione di poliuretani rinforzati con fibre lunghe che contengono riempitivi particolati |
JP2011194756A (ja) * | 2010-03-22 | 2011-10-06 | Tomoegawa Paper Co Ltd | 加飾用ハードコートフィルム、加飾フィルムおよび加飾成形品 |
DE202010018290U1 (de) * | 2010-03-24 | 2015-06-03 | Phoenix Contact Gmbh & Co. Kg | Messanordnung zur Erfassung von Wechselströmen |
US9370404B2 (en) | 2010-08-11 | 2016-06-21 | Bhaskar V. Velamakanni | Aesthetic and abrasion resistant coated dental articles and methods of making the same |
US9044292B2 (en) | 2010-08-11 | 2015-06-02 | 3M Innovative Properties Company | Dental articles including a ceramic and microparticle coating and method of making the same |
WO2012127126A1 (fr) * | 2011-02-21 | 2012-09-27 | Lafarge Gypsum International | Element resistant a des transferts d'air et des transferts thermohydriques pour le domaine de la construction, notamment des murs légers ou des façades légères |
CN102561104B (zh) * | 2012-02-24 | 2014-12-10 | 浙江科技学院 | 一种液体耐磨装饰纸及其生产方法 |
JP6156714B2 (ja) * | 2012-06-12 | 2017-07-05 | パナソニックIpマネジメント株式会社 | 木質板 |
US9650499B2 (en) | 2012-10-04 | 2017-05-16 | 3M Innovative Properties Company | Thermoformable microsphere articles |
ES2524143T3 (es) * | 2012-11-12 | 2014-12-04 | Flooring Technologies Ltd. | Procedimiento para tratar una placa de compuesto de madera y placa de construcción con un núcleo de compuesto de madera |
US9422435B2 (en) * | 2013-01-25 | 2016-08-23 | Ppg Industries Ohio, Inc. | Scratch and stain resistant coatings |
CN105683305B (zh) | 2013-06-26 | 2018-11-13 | 3M创新有限公司 | 耐污染性微球体制品 |
US10245812B2 (en) | 2014-02-13 | 2019-04-02 | 3M Innovative Properties Company | Dual cure stain resistant microsphere articles |
JP6489931B2 (ja) * | 2014-05-21 | 2019-03-27 | 日本合成化学工業株式会社 | コンクリート表面被覆層形成用積層フィルム |
EP3147271B1 (en) * | 2014-05-21 | 2021-12-22 | Mitsubishi Chemical Corporation | Laminated film for forming concrete surface coating layer, concrete building material, and method of manufacturing the same |
JP6565222B2 (ja) * | 2014-09-25 | 2019-08-28 | 三菱ケミカル株式会社 | コンクリート表面被覆用積層フィルム及びコンクリート表面被覆方法 |
CN104626670B (zh) * | 2014-12-10 | 2017-01-04 | 南京交通职业技术学院 | 一种耐高温抗紫外防水透气板 |
JP6617424B2 (ja) * | 2015-03-30 | 2019-12-11 | 大日本印刷株式会社 | 化粧シート及び化粧板 |
US10822811B2 (en) | 2015-04-03 | 2020-11-03 | Armstrong World Industries, Inc. | Scratch resistant coating |
EP3436259A4 (en) | 2016-03-30 | 2020-02-05 | 3M Innovative Properties Company | ARTICLE HAVING A PREDETERMINED PATTERN OF RANDOM DISTRIBUTED MICROSPHERES AND METHODS OF MAKING SAME |
KR102552547B1 (ko) * | 2016-03-30 | 2023-07-05 | 다이니폰 인사츠 가부시키가이샤 | 바닥용 화장 시트 및 바닥용 화장판 |
EP3497490A1 (en) | 2016-08-12 | 2019-06-19 | 3M Innovative Properties Company | Truncated beadfilm constructions and methods of making the same |
JP7104977B2 (ja) | 2016-09-20 | 2022-07-22 | エントロテック・インコーポレーテッド | 欠陥を低減したペイントフィルムアップリケ、物品および方法 |
CN110023418A (zh) * | 2016-10-05 | 2019-07-16 | Afi特许有限责任公司 | 含耐磨涂料的木质基板 |
US11691381B2 (en) | 2016-10-18 | 2023-07-04 | 3M Innovative Properties Company | Thermoformable beaded articles with removable stabilizing layer and methods thereof |
CN106652801A (zh) * | 2017-01-22 | 2017-05-10 | 昆山工研院新型平板显示技术中心有限公司 | 柔性保护薄膜及其制造方法和显示装置 |
US11015069B2 (en) * | 2018-05-16 | 2021-05-25 | The Johns Hopkins University | Surface treatment formulation for inhibiting scaling or climbing of a surface |
WO2021190728A1 (de) * | 2020-03-24 | 2021-09-30 | PolymerTrend LLC. | Herstellung eines lignocellulosehaltigen, kunststoffbeschichteten und bedruckbaren formteils |
CN115851054A (zh) * | 2022-11-29 | 2023-03-28 | 湖北华强科技股份有限公司 | 一种膜材表面耐刮擦涂层的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144963A (ja) * | 1984-08-10 | 1986-03-04 | Mitsubishi Rayon Co Ltd | 表面被覆用組成物 |
JPH01172801A (ja) * | 1987-12-28 | 1989-07-07 | Asahi Chem Ind Co Ltd | 光透過性を有する光拡散板 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4919849A (ja) * | 1972-06-12 | 1974-02-21 | ||
FR2306246A1 (fr) * | 1975-04-02 | 1976-10-29 | Corona Peintures | Produit d'un type nouveau a etaler en couche superficielle sur une surface a proteger ou a decorer |
US4263081A (en) * | 1977-01-10 | 1981-04-21 | Nevamar Corporation | Abrasion-resistant laminate |
US4430375A (en) * | 1977-01-10 | 1984-02-07 | Nevamar Corporation | Abrasion-resistant laminate |
US4255480A (en) * | 1978-02-22 | 1981-03-10 | Nevamar Corporation | Abrasion-resistant laminate |
JPS6328646A (ja) * | 1986-07-22 | 1988-02-06 | 株式会社イナックス | 大理石調薄型化粧板 |
US4971855A (en) * | 1988-05-02 | 1990-11-20 | Nevamar Corporation | Wear-resistant glossy laminates |
US5178928A (en) * | 1988-09-22 | 1993-01-12 | Dai Nippon Insatsu Kabushiki Kaisha | Decorative materials |
JPH02251576A (ja) * | 1989-03-24 | 1990-10-09 | Nitto Denko Corp | 熱硬化性粉体塗料 |
JP2848921B2 (ja) * | 1990-05-30 | 1999-01-20 | 住友ベークライト株式会社 | 熱硬化性樹脂化粧板 |
JPH06144963A (ja) * | 1992-10-30 | 1994-05-24 | Ngk Spark Plug Co Ltd | 薄型グレーズ基板 |
US5344704A (en) * | 1993-04-07 | 1994-09-06 | Nevamar Corporation | Abrasion-resistant, aesthetic surface layer laminate |
-
1995
- 1995-06-01 JP JP15859195A patent/JP2740943B2/ja not_active Expired - Lifetime
- 1995-10-31 DE DE1995631485 patent/DE69531485T2/de not_active Expired - Lifetime
- 1995-10-31 CN CN95191885A patent/CN1076663C/zh not_active Expired - Lifetime
- 1995-10-31 WO PCT/JP1995/002230 patent/WO1996013381A1/ja active IP Right Grant
- 1995-10-31 KR KR1019960703493A patent/KR100354946B1/ko active IP Right Grant
- 1995-10-31 EP EP95935596A patent/EP0737567B1/en not_active Expired - Lifetime
- 1995-10-31 US US08/666,407 patent/US5928778A/en not_active Expired - Lifetime
- 1995-10-31 CA CA 2180158 patent/CA2180158C/en not_active Expired - Lifetime
- 1995-10-31 AU AU43214/96A patent/AU710878B2/en not_active Expired
-
1998
- 1998-08-21 HK HK98110063A patent/HK1009262A1/xx not_active IP Right Cessation
- 1998-12-17 US US09/213,896 patent/US6040044A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6144963A (ja) * | 1984-08-10 | 1986-03-04 | Mitsubishi Rayon Co Ltd | 表面被覆用組成物 |
JPH01172801A (ja) * | 1987-12-28 | 1989-07-07 | Asahi Chem Ind Co Ltd | 光透過性を有する光拡散板 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0737567A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106594100A (zh) * | 2017-02-20 | 2017-04-26 | 苏州赛斯德工程设备有限公司 | 一种高强度耐磨万向节联轴器 |
CN116376390A (zh) * | 2023-04-10 | 2023-07-04 | 江苏士林电气集团有限公司 | 一种用于电动汽车的轻质化装饰材料 |
CN116376390B (zh) * | 2023-04-10 | 2024-05-07 | 江苏士林电气集团有限公司 | 一种用于电动汽车的轻质化装饰材料 |
Also Published As
Publication number | Publication date |
---|---|
DE69531485D1 (de) | 2003-09-18 |
KR100354946B1 (ko) | 2004-05-03 |
AU710878B2 (en) | 1999-09-30 |
EP0737567A4 (en) | 1999-01-07 |
DE69531485T2 (de) | 2004-07-01 |
JP2740943B2 (ja) | 1998-04-15 |
AU4321496A (en) | 1996-05-23 |
HK1009262A1 (en) | 1999-09-30 |
CN1142212A (zh) | 1997-02-05 |
EP0737567B1 (en) | 2003-08-13 |
US6040044A (en) | 2000-03-21 |
CA2180158C (en) | 2001-02-13 |
CN1076663C (zh) | 2001-12-26 |
US5928778A (en) | 1999-07-27 |
JPH08183147A (ja) | 1996-07-16 |
CA2180158A1 (en) | 1996-05-09 |
EP0737567A1 (en) | 1996-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1996013381A1 (fr) | Meteriau decoratif resistant a l'abrasion | |
KR100594652B1 (ko) | 화장시트 | |
JP2001225420A (ja) | 化粧シート | |
WO2006035880A1 (ja) | 化粧材 | |
JP3954665B2 (ja) | プレコート紙を用いた化粧板の製造方法 | |
JP2002119910A (ja) | 表面保護塗膜の積層方法およびその積層方法を用いて製造された表面保護塗膜付き化粧材 | |
JP2000006325A (ja) | 耐摩耗性を有する化粧材 | |
JPH11207885A (ja) | 化粧板及び家具 | |
JP2000238196A (ja) | 耐摩耗性を有する化粧紙 | |
JP3585620B2 (ja) | 化粧材 | |
JP2000211092A (ja) | 化粧材 | |
JPH1110823A (ja) | 化粧材及びその製造方法 | |
JPH10119228A (ja) | 化粧シート | |
JPH11138735A (ja) | リコート性のある化粧シート | |
JP2002036446A (ja) | 化粧紙 | |
JPH1177944A (ja) | 耐摩耗性を有する化粧材 | |
JP2004042492A (ja) | 化粧板およびその製造方法 | |
JPH11207897A (ja) | 化粧シート及び建具・造作部材 | |
JPH1058631A (ja) | 化粧シート | |
JPH09239908A (ja) | プレコート化粧紙 | |
JP2007185965A (ja) | 化粧シートの製造方法およびその製造方法により製造された化粧シートが表面に積層されている建具・造作部材。 | |
CA2235542C (en) | Decorative sheet | |
JPH11207918A (ja) | 化粧板の製造方法 | |
JP4109344B2 (ja) | 化粧板の製造方法 | |
JP2000117910A (ja) | 化粧シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 95191885.0 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA CN KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2180158 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1019960703493 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995935596 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 08666407 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1995935596 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1995935596 Country of ref document: EP |